/* -*- mode: C++; indent-tabs-mode: nil; -*-
* This file is a part of LEMON, a generic C++ optimization library.
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
#include <lemon/tolerance.h>
#include <lemon/elevator.h>
/// \brief Implementation of the preflow algorithm.
/// \brief Default traits class of Preflow class.
/// Default traits class of Preflow class.
/// \param _Graph Digraph type.
/// \param _CapacityMap Type of capacity map.
template <typename _Graph, typename _CapacityMap>
struct PreflowDefaultTraits {
/// \brief The digraph type the algorithm runs on.
/// \brief The type of the map that stores the arc capacities.
/// The type of the map that stores the arc capacities.
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
typedef _CapacityMap CapacityMap;
/// \brief The type of the length of the arcs.
typedef typename CapacityMap::Value Value;
/// \brief The map type that stores the flow values.
/// The map type that stores the flow values.
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
typedef typename Digraph::template ArcMap<Value> FlowMap;
/// \brief Instantiates a FlowMap.
/// This function instantiates a \ref FlowMap.
/// \param digraph The digraph, to which we would like to define
static FlowMap* createFlowMap(const Digraph& digraph) {
return new FlowMap(digraph);
/// \brief The eleavator type used by Preflow algorithm.
/// The elevator type used by Preflow algorithm.
typedef LinkedElevator<Digraph, typename Digraph::Node> Elevator;
/// \brief Instantiates an Elevator.
/// This function instantiates a \ref Elevator.
/// \param digraph The digraph, to which we would like to define
/// \param max_level The maximum level of the elevator.
static Elevator* createElevator(const Digraph& digraph, int max_level) {
return new Elevator(digraph, max_level);
/// \brief The tolerance used by the algorithm
/// The tolerance used by the algorithm to handle inexact computation.
typedef lemon::Tolerance<Value> Tolerance;
/// \brief %Preflow algorithms class.
/// This class provides an implementation of the Goldberg's \e
/// preflow \e algorithm producing a flow of maximum value in a
/// digraph. The preflow algorithms are the fastest known max
/// flow algorithms. The current implementation use a mixture of the
/// \e "highest label" and the \e "bound decrease" heuristics.
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$.
/// The algorithm consists from two phases. After the first phase
/// the maximal flow value and the minimum cut can be obtained. The
/// second phase constructs the feasible maximum flow on each arc.
/// \param _Graph The digraph type the algorithm runs on.
/// \param _CapacityMap The flow map type.
/// \param _Traits Traits class to set various data types used by
/// the algorithm. The default traits class is \ref
/// PreflowDefaultTraits. See \ref PreflowDefaultTraits for the
/// documentation of a %Preflow traits class.
///\author Jacint Szabo and Balazs Dezso
template <typename _Graph, typename _CapacityMap, typename _Traits>
template <typename _Graph,
typename _CapacityMap = typename _Graph::template ArcMap<int>,
typename _Traits = PreflowDefaultTraits<_Graph, _CapacityMap> >
typedef typename Traits::Digraph Digraph;
typedef typename Traits::CapacityMap CapacityMap;
typedef typename Traits::Value Value;
typedef typename Traits::FlowMap FlowMap;
typedef typename Traits::Elevator Elevator;
typedef typename Traits::Tolerance Tolerance;
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
const CapacityMap* _capacity;
typedef typename Digraph::template NodeMap<Value> ExcessMap;
void createStructures() {
_node_num = countNodes(_graph);
_flow = Traits::createFlowMap(_graph);
_level = Traits::createElevator(_graph, _node_num);
_excess = new ExcessMap(_graph);
void destroyStructures() {
///\name Named template parameters
template <typename _FlowMap>
struct DefFlowMapTraits : public Traits {
typedef _FlowMap FlowMap;
static FlowMap *createFlowMap(const Digraph&) {
LEMON_ASSERT(false, "FlowMap is not initialized");
return 0; // ignore warnings
/// \brief \ref named-templ-param "Named parameter" for setting
/// \ref named-templ-param "Named parameter" for setting FlowMap
template <typename _FlowMap>
: public Preflow<Digraph, CapacityMap, DefFlowMapTraits<_FlowMap> > {
typedef Preflow<Digraph, CapacityMap,
DefFlowMapTraits<_FlowMap> > Create;
template <typename _Elevator>
struct DefElevatorTraits : public Traits {
typedef _Elevator Elevator;
static Elevator *createElevator(const Digraph&, int) {
LEMON_ASSERT(false, "Elevator is not initialized");
return 0; // ignore warnings
/// \brief \ref named-templ-param "Named parameter" for setting
/// \ref named-templ-param "Named parameter" for setting Elevator
template <typename _Elevator>
: public Preflow<Digraph, CapacityMap, DefElevatorTraits<_Elevator> > {
typedef Preflow<Digraph, CapacityMap,
DefElevatorTraits<_Elevator> > Create;
template <typename _Elevator>
struct DefStandardElevatorTraits : public Traits {
typedef _Elevator Elevator;
static Elevator *createElevator(const Digraph& digraph, int max_level) {
return new Elevator(digraph, max_level);
/// \brief \ref named-templ-param "Named parameter" for setting
/// \ref named-templ-param "Named parameter" for setting Elevator
/// type. The Elevator should be standard constructor interface, ie.
/// the digraph and the maximum level should be passed to it.
template <typename _Elevator>
struct DefStandardElevator
: public Preflow<Digraph, CapacityMap,
DefStandardElevatorTraits<_Elevator> > {
typedef Preflow<Digraph, CapacityMap,
DefStandardElevatorTraits<_Elevator> > Create;
/// \brief The constructor of the class.
/// The constructor of the class.
/// \param digraph The digraph the algorithm runs on.
/// \param capacity The capacity of the arcs.
/// \param source The source node.
/// \param target The target node.
Preflow(const Digraph& digraph, const CapacityMap& capacity,
Node source, Node target)
: _graph(digraph), _capacity(&capacity),
_node_num(0), _source(source), _target(target),
_flow(0), _local_flow(false),
_level(0), _local_level(false),
_excess(0), _tolerance(), _phase() {}
/// \brief Sets the capacity map.
/// Sets the capacity map.
Preflow& capacityMap(const CapacityMap& map) {
/// \brief Sets the flow map.
Preflow& flowMap(FlowMap& map) {
/// \brief Returns the flow map.
/// \return The flow map.
const FlowMap& flowMap() {
/// \brief Sets the elevator.
Preflow& elevator(Elevator& elevator) {
/// \brief Returns the elevator.
/// \return The elevator.
const Elevator& elevator() {
/// \brief Sets the source node.
/// Sets the source node.
Preflow& source(const Node& node) {
/// \brief Sets the target node.
/// Sets the target node.
Preflow& target(const Node& node) {
/// \brief Sets the tolerance used by algorithm.
/// Sets the tolerance used by algorithm.
Preflow& tolerance(const Tolerance& tolerance) const {
/// \brief Returns the tolerance used by algorithm.
/// Returns the tolerance used by algorithm.
const Tolerance& tolerance() const {
/// \name Execution control The simplest way to execute the
/// algorithm is to use one of the member functions called \c
/// If you need more control on initial solution or
/// execution then you have to call one \ref init() function and then
/// the startFirstPhase() and if you need the startSecondPhase().
/// \brief Initializes the internal data structures.
/// Initializes the internal data structures.
for (NodeIt n(_graph); n != INVALID; ++n) {
for (ArcIt e(_graph); e != INVALID; ++e) {
typename Digraph::template NodeMap<bool> reached(_graph, false);
_level->initAddItem(_target);
reached.set(_source, true);
queue.push_back(_target);
reached.set(_target, true);
std::vector<Node> nqueue;
for (int i = 0; i < int(queue.size()); ++i) {
for (InArcIt e(_graph, n); e != INVALID; ++e) {
Node u = _graph.source(e);
if (!reached[u] && _tolerance.positive((*_capacity)[e])) {
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
if (_tolerance.positive((*_capacity)[e])) {
Node u = _graph.target(e);
if ((*_level)[u] == _level->maxLevel()) continue;
_flow->set(e, (*_capacity)[e]);
_excess->set(u, (*_excess)[u] + (*_capacity)[e]);
if (u != _target && !_level->active(u)) {
/// \brief Initializes the internal data structures.
/// Initializes the internal data structures and sets the initial
/// flow to the given \c flowMap. The \c flowMap should contain a
/// flow or at least a preflow, ie. in each node excluding the
/// target the incoming flow should greater or equal to the
/// \return %False when the given \c flowMap is not a preflow.
template <typename FlowMap>
bool flowInit(const FlowMap& flowMap) {
for (ArcIt e(_graph); e != INVALID; ++e) {
_flow->set(e, flowMap[e]);
for (NodeIt n(_graph); n != INVALID; ++n) {
for (InArcIt e(_graph, n); e != INVALID; ++e) {
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
if (excess < 0 && n != _source) return false;
typename Digraph::template NodeMap<bool> reached(_graph, false);
_level->initAddItem(_target);
reached.set(_source, true);
queue.push_back(_target);
reached.set(_target, true);
std::vector<Node> nqueue;
for (int i = 0; i < int(queue.size()); ++i) {
for (InArcIt e(_graph, n); e != INVALID; ++e) {
Node u = _graph.source(e);
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
Node v = _graph.target(e);
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
for (OutArcIt e(_graph, _source); e != INVALID; ++e) {
Value rem = (*_capacity)[e] - (*_flow)[e];
if (_tolerance.positive(rem)) {
Node u = _graph.target(e);
if ((*_level)[u] == _level->maxLevel()) continue;
_flow->set(e, (*_capacity)[e]);
_excess->set(u, (*_excess)[u] + rem);
if (u != _target && !_level->active(u)) {
for (InArcIt e(_graph, _source); e != INVALID; ++e) {
if (_tolerance.positive(rem)) {
Node v = _graph.source(e);
if ((*_level)[v] == _level->maxLevel()) continue;
_excess->set(v, (*_excess)[v] + rem);
if (v != _target && !_level->active(v)) {
/// \brief Starts the first phase of the preflow algorithm.
/// The preflow algorithm consists of two phases, this method runs
/// the first phase. After the first phase the maximum flow value
/// and a minimum value cut can already be computed, although a
/// maximum flow is not yet obtained. So after calling this method
/// \ref flowValue() returns the value of a maximum flow and \ref
/// minCut() returns a minimum cut.
/// \pre One of the \ref init() functions should be called.
Node n = _level->highestActive();
int level = _level->highestActiveLevel();
while (num > 0 && n != INVALID) {
Value excess = (*_excess)[n];
int new_level = _level->maxLevel();
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
Value rem = (*_capacity)[e] - (*_flow)[e];
if (!_tolerance.positive(rem)) continue;
Node v = _graph.target(e);
if ((*_level)[v] < level) {
if (!_level->active(v) && v != _target) {
if (!_tolerance.less(rem, excess)) {
_flow->set(e, (*_flow)[e] + excess);
_excess->set(v, (*_excess)[v] + excess);
_excess->set(v, (*_excess)[v] + rem);
_flow->set(e, (*_capacity)[e]);
} else if (new_level > (*_level)[v]) {
new_level = (*_level)[v];
for (InArcIt e(_graph, n); e != INVALID; ++e) {
if (!_tolerance.positive(rem)) continue;
Node v = _graph.source(e);
if ((*_level)[v] < level) {
if (!_level->active(v) && v != _target) {
if (!_tolerance.less(rem, excess)) {
_flow->set(e, (*_flow)[e] - excess);
_excess->set(v, (*_excess)[v] + excess);
_excess->set(v, (*_excess)[v] + rem);
} else if (new_level > (*_level)[v]) {
new_level = (*_level)[v];
if (new_level + 1 < _level->maxLevel()) {
_level->liftHighestActive(new_level + 1);
_level->liftHighestActiveToTop();
if (_level->emptyLevel(level)) {
_level->liftToTop(level);
n = _level->highestActive();
level = _level->highestActiveLevel();
while (num > 0 && n != INVALID) {
Value excess = (*_excess)[n];
int new_level = _level->maxLevel();
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
Value rem = (*_capacity)[e] - (*_flow)[e];
if (!_tolerance.positive(rem)) continue;
Node v = _graph.target(e);
if ((*_level)[v] < level) {
if (!_level->active(v) && v != _target) {
if (!_tolerance.less(rem, excess)) {
_flow->set(e, (*_flow)[e] + excess);
_excess->set(v, (*_excess)[v] + excess);
_excess->set(v, (*_excess)[v] + rem);
_flow->set(e, (*_capacity)[e]);
} else if (new_level > (*_level)[v]) {
new_level = (*_level)[v];
for (InArcIt e(_graph, n); e != INVALID; ++e) {
if (!_tolerance.positive(rem)) continue;
Node v = _graph.source(e);
if ((*_level)[v] < level) {
if (!_level->active(v) && v != _target) {
if (!_tolerance.less(rem, excess)) {
_flow->set(e, (*_flow)[e] - excess);
_excess->set(v, (*_excess)[v] + excess);
_excess->set(v, (*_excess)[v] + rem);
} else if (new_level > (*_level)[v]) {
new_level = (*_level)[v];
if (new_level + 1 < _level->maxLevel()) {
_level->liftActiveOn(level, new_level + 1);
_level->liftActiveToTop(level);
if (_level->emptyLevel(level)) {
_level->liftToTop(level);
while (level >= 0 && _level->activeFree(level)) {
n = _level->highestActive();
level = _level->highestActiveLevel();
n = _level->activeOn(level);
/// \brief Starts the second phase of the preflow algorithm.
/// The preflow algorithm consists of two phases, this method runs
/// the second phase. After calling \ref init() and \ref
/// startFirstPhase() and then \ref startSecondPhase(), \ref
/// flowMap() return a maximum flow, \ref flowValue() returns the
/// value of a maximum flow, \ref minCut() returns a minimum cut
/// \pre The \ref init() and startFirstPhase() functions should be
void startSecondPhase() {
typename Digraph::template NodeMap<bool> reached(_graph);
for (NodeIt n(_graph); n != INVALID; ++n) {
reached.set(n, (*_level)[n] < _level->maxLevel());
_level->initAddItem(_source);
queue.push_back(_source);
reached.set(_source, true);
std::vector<Node> nqueue;
for (int i = 0; i < int(queue.size()); ++i) {
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
Node v = _graph.target(e);
if (!reached[v] && _tolerance.positive((*_flow)[e])) {
for (InArcIt e(_graph, n); e != INVALID; ++e) {
Node u = _graph.source(e);
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) {
for (NodeIt n(_graph); n != INVALID; ++n) {
_level->dirtyTopButOne(n);
} else if ((*_excess)[n] > 0 && _target != n) {
while ((n = _level->highestActive()) != INVALID) {
Value excess = (*_excess)[n];
int level = _level->highestActiveLevel();
int new_level = _level->maxLevel();
for (OutArcIt e(_graph, n); e != INVALID; ++e) {
Value rem = (*_capacity)[e] - (*_flow)[e];
if (!_tolerance.positive(rem)) continue;
Node v = _graph.target(e);
if ((*_level)[v] < level) {
if (!_level->active(v) && v != _source) {
if (!_tolerance.less(rem, excess)) {
_flow->set(e, (*_flow)[e] + excess);
_excess->set(v, (*_excess)[v] + excess);
_excess->set(v, (*_excess)[v] + rem);
_flow->set(e, (*_capacity)[e]);
} else if (new_level > (*_level)[v]) {
new_level = (*_level)[v];
for (InArcIt e(_graph, n); e != INVALID; ++e) {
if (!_tolerance.positive(rem)) continue;
Node v = _graph.source(e);
if ((*_level)[v] < level) {
if (!_level->active(v) && v != _source) {
if (!_tolerance.less(rem, excess)) {
_flow->set(e, (*_flow)[e] - excess);
_excess->set(v, (*_excess)[v] + excess);
_excess->set(v, (*_excess)[v] + rem);
} else if (new_level > (*_level)[v]) {
new_level = (*_level)[v];
if (new_level + 1 < _level->maxLevel()) {
_level->liftHighestActive(new_level + 1);
_level->liftHighestActiveToTop();
if (_level->emptyLevel(level)) {
_level->liftToTop(level);
/// \brief Runs the preflow algorithm.
/// Runs the preflow algorithm.
/// \note pf.run() is just a shortcut of the following code.
/// pf.startFirstPhase();
/// pf.startSecondPhase();
/// \brief Runs the preflow algorithm to compute the minimum cut.
/// Runs the preflow algorithm to compute the minimum cut.
/// \note pf.runMinCut() is just a shortcut of the following code.
/// pf.startFirstPhase();
/// \name Query Functions
/// The result of the %Preflow algorithm can be obtained using these
/// Before the use of these functions,
/// either run() or start() must be called.
/// \brief Returns the value of the maximum flow.
/// Returns the value of the maximum flow by returning the excess
/// of the target node \c t. This value equals to the value of
/// the maximum flow already after the first phase.
Value flowValue() const {
return (*_excess)[_target];
/// \brief Returns true when the node is on the source side of minimum cut.
/// Returns true when the node is on the source side of minimum
/// cut. This method can be called both after running \ref
/// startFirstPhase() and \ref startSecondPhase().
bool minCut(const Node& node) const {
return ((*_level)[node] == _level->maxLevel()) == _phase;
/// \brief Returns a minimum value cut.
/// Sets the \c cutMap to the characteristic vector of a minimum value
/// cut. This method can be called both after running \ref
/// startFirstPhase() and \ref startSecondPhase(). The result after second
/// phase could be changed slightly if inexact computation is used.
/// \pre The \c cutMap should be a bool-valued node-map.
template <typename CutMap>
void minCutMap(CutMap& cutMap) const {
for (NodeIt n(_graph); n != INVALID; ++n) {
cutMap.set(n, minCut(n));
/// \brief Returns the flow on the arc.
/// Sets the \c flowMap to the flow on the arcs. This method can
/// be called after the second phase of algorithm.
Value flow(const Arc& arc) const {