Location: LEMON/LEMON-main/test/mip_test.cc

Load file history
gravatar
kpeter (Peter Kovacs)
Use XTI implementation instead of ATI in NetworkSimplex (#234) XTI (eXtended Threaded Index) is an imporved version of the widely known ATI (Augmented Threaded Index) method for storing and updating the spanning tree structure in Network Simplex algorithms. In the ATI data structure three indices are stored for each node: predecessor, thread and depth. In the XTI data structure depth is replaced by the number of successors and the last successor (according to the thread index).
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include "test_tools.h"
#ifdef HAVE_CONFIG_H
#include <lemon/config.h>
#endif
#ifdef HAVE_CPLEX
#include <lemon/cplex.h>
#endif
#ifdef HAVE_GLPK
#include <lemon/glpk.h>
#endif
using namespace lemon;
void solveAndCheck(MipSolver& mip, MipSolver::ProblemType stat,
double exp_opt) {
using std::string;
mip.solve();
//int decimal,sign;
std::ostringstream buf;
buf << "Type should be: " << int(stat)<<" and it is "<<int(mip.type());
// itoa(stat,buf1, 10);
check(mip.type()==stat, buf.str());
if (stat == MipSolver::OPTIMAL) {
std::ostringstream sbuf;
buf << "Wrong optimal value: the right optimum is " << exp_opt;
check(std::abs(mip.solValue()-exp_opt) < 1e-3, sbuf.str());
//+ecvt(exp_opt,2)
}
}
void aTest(MipSolver& mip)
{
//The following example is very simple
typedef MipSolver::Row Row;
typedef MipSolver::Col Col;
Col x1 = mip.addCol();
Col x2 = mip.addCol();
//Objective function
mip.obj(x1);
mip.max();
//Unconstrained optimization
mip.solve();
//Check it out!
//Constraints
mip.addRow(2*x1+x2 <=2);
mip.addRow(x1-2*x2 <=0);
//Nonnegativity of the variable x1
mip.colLowerBound(x1, 0);
//Maximization of x1
//over the triangle with vertices (0,0),(4/5,2/5),(0,2)
double expected_opt=4.0/5.0;
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt);
//Restrict x2 to integer
mip.colType(x2,MipSolver::INTEGER);
expected_opt=1.0/2.0;
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt);
//Restrict both to integer
mip.colType(x1,MipSolver::INTEGER);
expected_opt=0;
solveAndCheck(mip, MipSolver::OPTIMAL, expected_opt);
}
int main()
{
#ifdef HAVE_GLPK
{
GlpkMip mip1;
aTest(mip1);
}
#endif
#ifdef HAVE_CPLEX
try {
CplexMip mip2;
aTest(mip2);
} catch (CplexEnv::LicenseError& error) {
#ifdef LEMON_FORCE_CPLEX_CHECK
check(false, error.what());
#else
std::cerr << error.what() << std::endl;
std::cerr << "Cplex license check failed, lp check skipped" << std::endl;
#endif
}
#endif
return 0;
}