Location: LEMON/LEMON-main/test/preflow_test.cc

Load file history
gravatar
kpeter (Peter Kovacs)
Use XTI implementation instead of ATI in NetworkSimplex (#234) XTI (eXtended Threaded Index) is an imporved version of the widely known ATI (Augmented Threaded Index) method for storing and updating the spanning tree structure in Network Simplex algorithms. In the ATI data structure three indices are stored for each node: predecessor, thread and depth. In the XTI data structure depth is replaced by the number of successors and the last successor (according to the thread index).
/* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <iostream>
#include "test_tools.h"
#include <lemon/smart_graph.h>
#include <lemon/preflow.h>
#include <lemon/concepts/digraph.h>
#include <lemon/concepts/maps.h>
#include <lemon/lgf_reader.h>
#include <lemon/elevator.h>
using namespace lemon;
char test_lgf[] =
"@nodes\n"
"label\n"
"0\n"
"1\n"
"2\n"
"3\n"
"4\n"
"5\n"
"6\n"
"7\n"
"8\n"
"9\n"
"@arcs\n"
" label capacity\n"
"0 1 0 20\n"
"0 2 1 0\n"
"1 1 2 3\n"
"1 2 3 8\n"
"1 3 4 8\n"
"2 5 5 5\n"
"3 2 6 5\n"
"3 5 7 5\n"
"3 6 8 5\n"
"4 3 9 3\n"
"5 7 10 3\n"
"5 6 11 10\n"
"5 8 12 10\n"
"6 8 13 8\n"
"8 9 14 20\n"
"8 1 15 5\n"
"9 5 16 5\n"
"@attributes\n"
"source 1\n"
"target 8\n";
void checkPreflowCompile()
{
typedef int VType;
typedef concepts::Digraph Digraph;
typedef Digraph::Node Node;
typedef Digraph::Arc Arc;
typedef concepts::ReadMap<Arc,VType> CapMap;
typedef concepts::ReadWriteMap<Arc,VType> FlowMap;
typedef concepts::WriteMap<Node,bool> CutMap;
typedef Elevator<Digraph, Digraph::Node> Elev;
typedef LinkedElevator<Digraph, Digraph::Node> LinkedElev;
Digraph g;
Node n;
Arc e;
CapMap cap;
FlowMap flow;
CutMap cut;
Preflow<Digraph, CapMap>
::SetFlowMap<FlowMap>
::SetElevator<Elev>
::SetStandardElevator<LinkedElev>
::Create preflow_test(g,cap,n,n);
preflow_test.capacityMap(cap);
flow = preflow_test.flowMap();
preflow_test.flowMap(flow);
preflow_test.source(n);
preflow_test.target(n);
preflow_test.init();
preflow_test.init(cap);
preflow_test.startFirstPhase();
preflow_test.startSecondPhase();
preflow_test.run();
preflow_test.runMinCut();
preflow_test.flowValue();
preflow_test.minCut(n);
preflow_test.minCutMap(cut);
preflow_test.flow(e);
}
int cutValue (const SmartDigraph& g,
const SmartDigraph::NodeMap<bool>& cut,
const SmartDigraph::ArcMap<int>& cap) {
int c=0;
for(SmartDigraph::ArcIt e(g); e!=INVALID; ++e) {
if (cut[g.source(e)] && !cut[g.target(e)]) c+=cap[e];
}
return c;
}
bool checkFlow(const SmartDigraph& g,
const SmartDigraph::ArcMap<int>& flow,
const SmartDigraph::ArcMap<int>& cap,
SmartDigraph::Node s, SmartDigraph::Node t) {
for (SmartDigraph::ArcIt e(g); e != INVALID; ++e) {
if (flow[e] < 0 || flow[e] > cap[e]) return false;
}
for (SmartDigraph::NodeIt n(g); n != INVALID; ++n) {
if (n == s || n == t) continue;
int sum = 0;
for (SmartDigraph::OutArcIt e(g, n); e != INVALID; ++e) {
sum += flow[e];
}
for (SmartDigraph::InArcIt e(g, n); e != INVALID; ++e) {
sum -= flow[e];
}
if (sum != 0) return false;
}
return true;
}
int main() {
typedef SmartDigraph Digraph;
typedef Digraph::Node Node;
typedef Digraph::NodeIt NodeIt;
typedef Digraph::ArcIt ArcIt;
typedef Digraph::ArcMap<int> CapMap;
typedef Digraph::ArcMap<int> FlowMap;
typedef Digraph::NodeMap<bool> CutMap;
typedef Preflow<Digraph, CapMap> PType;
Digraph g;
Node s, t;
CapMap cap(g);
std::istringstream input(test_lgf);
DigraphReader<Digraph>(g,input).
arcMap("capacity", cap).
node("source",s).
node("target",t).
run();
PType preflow_test(g, cap, s, t);
preflow_test.run();
check(checkFlow(g, preflow_test.flowMap(), cap, s, t),
"The flow is not feasible.");
CutMap min_cut(g);
preflow_test.minCutMap(min_cut);
int min_cut_value=cutValue(g,min_cut,cap);
check(preflow_test.flowValue() == min_cut_value,
"The max flow value is not equal to the three min cut values.");
FlowMap flow(g);
for(ArcIt e(g); e!=INVALID; ++e) flow[e] = preflow_test.flowMap()[e];
int flow_value=preflow_test.flowValue();
for(ArcIt e(g); e!=INVALID; ++e) cap[e]=2*cap[e];
preflow_test.init(flow);
preflow_test.startFirstPhase();
CutMap min_cut1(g);
preflow_test.minCutMap(min_cut1);
min_cut_value=cutValue(g,min_cut1,cap);
check(preflow_test.flowValue() == min_cut_value &&
min_cut_value == 2*flow_value,
"The max flow value or the min cut value is wrong.");
preflow_test.startSecondPhase();
check(checkFlow(g, preflow_test.flowMap(), cap, s, t),
"The flow is not feasible.");
CutMap min_cut2(g);
preflow_test.minCutMap(min_cut2);
min_cut_value=cutValue(g,min_cut2,cap);
check(preflow_test.flowValue() == min_cut_value &&
min_cut_value == 2*flow_value,
"The max flow value or the three min cut values were not doubled");
preflow_test.flowMap(flow);
NodeIt tmp1(g,s);
++tmp1;
if ( tmp1 != INVALID ) s=tmp1;
NodeIt tmp2(g,t);
++tmp2;
if ( tmp2 != INVALID ) t=tmp2;
preflow_test.source(s);
preflow_test.target(t);
preflow_test.run();
CutMap min_cut3(g);
preflow_test.minCutMap(min_cut3);
min_cut_value=cutValue(g,min_cut3,cap);
check(preflow_test.flowValue() == min_cut_value,
"The max flow value or the three min cut values are incorrect.");
return 0;
}