Location: LEMON/LEMON-main/lemon/path.h

Load file history
gravatar
alpar (Alpar Juttner)
Path related files ported from svn -r3435 but ItemReader/Writer for Path (originally belonging to path_utils.h) hasn't ported yet.
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
/* -*- C++ -*-
*
* This file is a part of LEMON, a generic C++ optimization library
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
///\ingroup paths
///\file
///\brief Classes for representing paths in digraphs.
///
#ifndef LEMON_PATH_H
#define LEMON_PATH_H
#include <vector>
#include <algorithm>
#include <lemon/path_utils.h>
#include <lemon/error.h>
#include <lemon/bits/invalid.h>
namespace lemon {
/// \addtogroup paths
/// @{
/// \brief A structure for representing directed paths in a digraph.
///
/// A structure for representing directed path in a digraph.
/// \param Digraph The digraph type in which the path is.
///
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores just this list. As a consequence it
/// cannot enumerate the nodes in the path and the zero length paths
/// cannot store the source.
///
/// This implementation is a back and front insertable and erasable
/// path type. It can be indexed in O(1) time. The front and back
/// insertion and erasure is amortized O(1) time. The
/// impelementation is based on two opposite organized vectors.
template <typename _Digraph>
class Path {
public:
typedef _Digraph Digraph;
typedef typename Digraph::Arc Arc;
/// \brief Default constructor
///
/// Default constructor
Path() {}
/// \brief Template copy constructor
///
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
Path(const CPath& cpath) {
copyPath(*this, cpath);
}
/// \brief Template copy assignment
///
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
Path& operator=(const CPath& cpath) {
copyPath(*this, cpath);
return *this;
}
/// \brief Lemon style iterator for path arcs
///
/// This class is used to iterate on the arcs of the paths.
class ArcIt {
friend class Path;
public:
/// \brief Default constructor
ArcIt() {}
/// \brief Invalid constructor
ArcIt(Invalid) : path(0), idx(-1) {}
/// \brief Initializate the constructor to the first arc of path
ArcIt(const Path &_path)
: path(&_path), idx(_path.empty() ? -1 : 0) {}
private:
ArcIt(const Path &_path, int _idx)
: path(&_path), idx(_idx) {}
public:
/// \brief Conversion to Arc
operator const Arc&() const {
return path->nth(idx);
}
/// \brief Next arc
ArcIt& operator++() {
++idx;
if (idx >= path->length()) idx = -1;
return *this;
}
/// \brief Comparison operator
bool operator==(const ArcIt& e) const { return idx==e.idx; }
/// \brief Comparison operator
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
/// \brief Comparison operator
bool operator<(const ArcIt& e) const { return idx<e.idx; }
private:
const Path *path;
int idx;
};
/// \brief Length of the path.
int length() const { return head.size() + tail.size(); }
/// \brief Returns whether the path is empty.
bool empty() const { return head.empty() && tail.empty(); }
/// \brief Resets the path to an empty path.
void clear() { head.clear(); tail.clear(); }
/// \brief Gives back the nth arc.
///
/// \pre n is in the [0..length() - 1] range
const Arc& nth(int n) const {
return n < int(head.size()) ? *(head.rbegin() + n) :
*(tail.begin() + (n - head.size()));
}
/// \brief Initializes arc iterator to point to the nth arc
///
/// \pre n is in the [0..length() - 1] range
ArcIt nthIt(int n) const {
return ArcIt(*this, n);
}
/// \brief Gives back the first arc of the path
const Arc& front() const {
return head.empty() ? tail.front() : head.back();
}
/// \brief Add a new arc before the current path
void addFront(const Arc& arc) {
head.push_back(arc);
}
/// \brief Erase the first arc of the path
void eraseFront() {
if (!head.empty()) {
head.pop_back();
} else {
head.clear();
int halfsize = tail.size() / 2;
head.resize(halfsize);
std::copy(tail.begin() + 1, tail.begin() + halfsize + 1,
head.rbegin());
std::copy(tail.begin() + halfsize + 1, tail.end(), tail.begin());
tail.resize(tail.size() - halfsize - 1);
}
}
/// \brief Gives back the last arc of the path
const Arc& back() const {
return tail.empty() ? head.front() : tail.back();
}
/// \brief Add a new arc behind the current path
void addBack(const Arc& arc) {
tail.push_back(arc);
}
/// \brief Erase the last arc of the path
void eraseBack() {
if (!tail.empty()) {
tail.pop_back();
} else {
int halfsize = head.size() / 2;
tail.resize(halfsize);
std::copy(head.begin() + 1, head.begin() + halfsize + 1,
tail.rbegin());
std::copy(head.begin() + halfsize + 1, head.end(), head.begin());
head.resize(head.size() - halfsize - 1);
}
}
typedef True BuildTag;
template <typename CPath>
void build(const CPath& path) {
int len = path.length();
tail.reserve(len);
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
tail.push_back(it);
}
}
template <typename CPath>
void buildRev(const CPath& path) {
int len = path.length();
head.reserve(len);
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
head.push_back(it);
}
}
protected:
typedef std::vector<Arc> Container;
Container head, tail;
};
/// \brief A structure for representing directed paths in a digraph.
///
/// A structure for representing directed path in a digraph.
/// \param Digraph The digraph type in which the path is.
///
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores just this list. As a consequence it
/// cannot enumerate the nodes in the path and the zero length paths
/// cannot store the source.
///
/// This implementation is a just back insertable and erasable path
/// type. It can be indexed in O(1) time. The back insertion and
/// erasure is amortized O(1) time. This implementation is faster
/// then the \c Path type because it use just one vector for the
/// arcs.
template <typename _Digraph>
class SimplePath {
public:
typedef _Digraph Digraph;
typedef typename Digraph::Arc Arc;
/// \brief Default constructor
///
/// Default constructor
SimplePath() {}
/// \brief Template copy constructor
///
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
SimplePath(const CPath& cpath) {
copyPath(*this, cpath);
}
/// \brief Template copy assignment
///
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
SimplePath& operator=(const CPath& cpath) {
copyPath(*this, cpath);
return *this;
}
/// \brief Iterator class to iterate on the arcs of the paths
///
/// This class is used to iterate on the arcs of the paths
///
/// Of course it converts to Digraph::Arc
class ArcIt {
friend class SimplePath;
public:
/// Default constructor
ArcIt() {}
/// Invalid constructor
ArcIt(Invalid) : path(0), idx(-1) {}
/// \brief Initializate the constructor to the first arc of path
ArcIt(const SimplePath &_path)
: path(&_path), idx(_path.empty() ? -1 : 0) {}
private:
/// Constructor with starting point
ArcIt(const SimplePath &_path, int _idx)
: idx(_idx), path(&_path) {}
public:
///Conversion to Digraph::Arc
operator const Arc&() const {
return path->nth(idx);
}
/// Next arc
ArcIt& operator++() {
++idx;
if (idx >= path->length()) idx = -1;
return *this;
}
/// Comparison operator
bool operator==(const ArcIt& e) const { return idx==e.idx; }
/// Comparison operator
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
/// Comparison operator
bool operator<(const ArcIt& e) const { return idx<e.idx; }
private:
const SimplePath *path;
int idx;
};
/// \brief Length of the path.
int length() const { return data.size(); }
/// \brief Returns whether the path is empty.
bool empty() const { return data.empty(); }
/// \brief Resets the path to an empty path.
void clear() { data.clear(); }
/// \brief Gives back the nth arc.
///
/// \pre n is in the [0..length() - 1] range
const Arc& nth(int n) const {
return data[n];
}
/// \brief Initializes arc iterator to point to the nth arc.
ArcIt nthIt(int n) const {
return ArcIt(*this, n);
}
/// \brief Gives back the first arc of the path.
const Arc& front() const {
return data.front();
}
/// \brief Gives back the last arc of the path.
const Arc& back() const {
return data.back();
}
/// \brief Add a new arc behind the current path.
void addBack(const Arc& arc) {
data.push_back(arc);
}
/// \brief Erase the last arc of the path
void eraseBack() {
data.pop_back();
}
typedef True BuildTag;
template <typename CPath>
void build(const CPath& path) {
int len = path.length();
data.resize(len);
int index = 0;
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
data[index] = it;;
++index;
}
}
template <typename CPath>
void buildRev(const CPath& path) {
int len = path.length();
data.resize(len);
int index = len;
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
--index;
data[index] = it;;
}
}
protected:
typedef std::vector<Arc> Container;
Container data;
};
/// \brief A structure for representing directed paths in a digraph.
///
/// A structure for representing directed path in a digraph.
/// \param Digraph The digraph type in which the path is.
///
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores just this list. As a consequence it
/// cannot enumerate the nodes in the path and the zero length paths
/// cannot store the source.
///
/// This implementation is a back and front insertable and erasable
/// path type. It can be indexed in O(k) time, where k is the rank
/// of the arc in the path. The length can be computed in O(n)
/// time. The front and back insertion and erasure is O(1) time
/// and it can be splited and spliced in O(1) time.
template <typename _Digraph>
class ListPath {
public:
typedef _Digraph Digraph;
typedef typename Digraph::Arc Arc;
protected:
// the std::list<> is incompatible
// hard to create invalid iterator
struct Node {
Arc arc;
Node *next, *prev;
};
Node *first, *last;
std::allocator<Node> alloc;
public:
/// \brief Default constructor
///
/// Default constructor
ListPath() : first(0), last(0) {}
/// \brief Template copy constructor
///
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
ListPath(const CPath& cpath) : first(0), last(0) {
copyPath(*this, cpath);
}
/// \brief Destructor of the path
///
/// Destructor of the path
~ListPath() {
clear();
}
/// \brief Template copy assignment
///
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
ListPath& operator=(const CPath& cpath) {
copyPath(*this, cpath);
return *this;
}
/// \brief Iterator class to iterate on the arcs of the paths
///
/// This class is used to iterate on the arcs of the paths
///
/// Of course it converts to Digraph::Arc
class ArcIt {
friend class ListPath;
public:
/// Default constructor
ArcIt() {}
/// Invalid constructor
ArcIt(Invalid) : path(0), node(0) {}
/// \brief Initializate the constructor to the first arc of path
ArcIt(const ListPath &_path)
: path(&_path), node(_path.first) {}
protected:
ArcIt(const ListPath &_path, Node *_node)
: path(&_path), node(_node) {}
public:
///Conversion to Digraph::Arc
operator const Arc&() const {
return node->arc;
}
/// Next arc
ArcIt& operator++() {
node = node->next;
return *this;
}
/// Comparison operator
bool operator==(const ArcIt& e) const { return node==e.node; }
/// Comparison operator
bool operator!=(const ArcIt& e) const { return node!=e.node; }
/// Comparison operator
bool operator<(const ArcIt& e) const { return node<e.node; }
private:
const ListPath *path;
Node *node;
};
/// \brief Gives back the nth arc.
///
/// Gives back the nth arc in O(n) time.
/// \pre n is in the [0..length() - 1] range
const Arc& nth(int n) const {
Node *node = first;
for (int i = 0; i < n; ++i) {
node = node->next;
}
return node->arc;
}
/// \brief Initializes arc iterator to point to the nth arc.
ArcIt nthIt(int n) const {
Node *node = first;
for (int i = 0; i < n; ++i) {
node = node->next;
}
return ArcIt(*this, node);
}
/// \brief Length of the path.
int length() const {
int len = 0;
Node *node = first;
while (node != 0) {
node = node->next;
++len;
}
return len;
}
/// \brief Returns whether the path is empty.
bool empty() const { return first == 0; }
/// \brief Resets the path to an empty path.
void clear() {
while (first != 0) {
last = first->next;
alloc.destroy(first);
alloc.deallocate(first, 1);
first = last;
}
}
/// \brief Gives back the first arc of the path
const Arc& front() const {
return first->arc;
}
/// \brief Add a new arc before the current path
void addFront(const Arc& arc) {
Node *node = alloc.allocate(1);
alloc.construct(node, Node());
node->prev = 0;
node->next = first;
node->arc = arc;
if (first) {
first->prev = node;
first = node;
} else {
first = last = node;
}
}
/// \brief Erase the first arc of the path
void eraseFront() {
Node *node = first;
first = first->next;
if (first) {
first->prev = 0;
} else {
last = 0;
}
alloc.destroy(node);
alloc.deallocate(node, 1);
}
/// \brief Gives back the last arc of the path.
const Arc& back() const {
return last->arc;
}
/// \brief Add a new arc behind the current path.
void addBack(const Arc& arc) {
Node *node = alloc.allocate(1);
alloc.construct(node, Node());
node->next = 0;
node->prev = last;
node->arc = arc;
if (last) {
last->next = node;
last = node;
} else {
last = first = node;
}
}
/// \brief Erase the last arc of the path
void eraseBack() {
Node *node = last;
last = last->prev;
if (last) {
last->next = 0;
} else {
first = 0;
}
alloc.destroy(node);
alloc.deallocate(node, 1);
}
/// \brief Splicing the given path to the current path.
///
/// It splices the \c tpath to the back of the current path and \c
/// tpath becomes empty. The time complexity of this function is
/// O(1).
void spliceBack(ListPath& tpath) {
if (first) {
if (tpath.first) {
last->next = tpath.first;
tpath.first->prev = last;
last = tpath.last;
}
} else {
first = tpath.first;
last = tpath.last;
}
tpath.first = tpath.last = 0;
}
/// \brief Splicing the given path to the current path.
///
/// It splices the \c tpath before the current path and \c tpath
/// becomes empty. The time complexity of this function
/// is O(1).
void spliceFront(ListPath& tpath) {
if (first) {
if (tpath.first) {
first->prev = tpath.last;
tpath.last->next = first;
first = tpath.first;
}
} else {
first = tpath.first;
last = tpath.last;
}
tpath.first = tpath.last = 0;
}
/// \brief Splicing the given path into the current path.
///
/// It splices the \c tpath into the current path before the
/// position of \c it iterator and \c tpath becomes empty. The
/// time complexity of this function is O(1). If the \c it is \c
/// INVALID then it will splice behind the current path.
void splice(ArcIt it, ListPath& tpath) {
if (it.node) {
if (tpath.first) {
tpath.first->prev = it.node->prev;
if (it.node->prev) {
it.node->prev->next = tpath.first;
} else {
first = tpath.first;
}
it.node->prev = tpath.last;
tpath.last->next = it.node;
}
} else {
if (first) {
if (tpath.first) {
last->next = tpath.first;
tpath.first->prev = last;
last = tpath.last;
}
} else {
first = tpath.first;
last = tpath.last;
}
}
tpath.first = tpath.last = 0;
}
/// \brief Spliting the current path.
///
/// It splits the current path into two parts. The part before \c
/// it iterator will remain in the current path and the part from
/// the it will put into the \c tpath. If the \c tpath had arcs
/// before the operation they will be removed first. The time
/// complexity of this function is O(1) plus the clearing of \c
/// tpath. If the \c it is \c INVALID then it just clears \c
/// tpath.
void split(ArcIt it, ListPath& tpath) {
tpath.clear();
if (it.node) {
tpath.first = it.node;
tpath.last = last;
if (it.node->prev) {
last = it.node->prev;
last->next = 0;
} else {
first = last = 0;
}
it.node->prev = 0;
}
}
typedef True BuildTag;
template <typename CPath>
void build(const CPath& path) {
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
addBack(it);
}
}
template <typename CPath>
void buildRev(const CPath& path) {
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
addFront(it);
}
}
};
/// \brief A structure for representing directed paths in a digraph.
///
/// A structure for representing directed path in a digraph.
/// \param Digraph The digraph type in which the path is.
///
/// In a sense, the path can be treated as a list of arcs. The
/// lemon path type stores just this list. As a consequence it
/// cannot enumerate the nodes in the path and the zero length paths
/// cannot store the source.
///
/// This implementation is completly static, so it cannot be
/// modified exclude the assign an other path. It is intented to be
/// used when you want to store a large number of paths because it is
/// the most memory efficient path type in the lemon.
template <typename _Digraph>
class StaticPath {
public:
typedef _Digraph Digraph;
typedef typename Digraph::Arc Arc;
/// \brief Default constructor
///
/// Default constructor
StaticPath() : len(0), arcs(0) {}
/// \brief Template copy constructor
///
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
StaticPath(const CPath& cpath) : arcs(0) {
copyPath(*this, cpath);
}
/// \brief Destructor of the path
///
/// Destructor of the path
~StaticPath() {
if (arcs) delete[] arcs;
}
/// \brief Template copy assignment
///
/// This path can be initialized with any other path type. It just
/// makes a copy of the given path.
template <typename CPath>
StaticPath& operator=(const CPath& cpath) {
copyPath(*this, cpath);
return *this;
}
/// \brief Iterator class to iterate on the arcs of the paths
///
/// This class is used to iterate on the arcs of the paths
///
/// Of course it converts to Digraph::Arc
class ArcIt {
friend class StaticPath;
public:
/// Default constructor
ArcIt() {}
/// Invalid constructor
ArcIt(Invalid) : path(0), idx(-1) {}
/// Initializate the constructor to the first arc of path
ArcIt(const StaticPath &_path)
: path(&_path), idx(_path.empty() ? -1 : 0) {}
private:
/// Constructor with starting point
ArcIt(const StaticPath &_path, int _idx)
: idx(_idx), path(&_path) {}
public:
///Conversion to Digraph::Arc
operator const Arc&() const {
return path->nth(idx);
}
/// Next arc
ArcIt& operator++() {
++idx;
if (idx >= path->length()) idx = -1;
return *this;
}
/// Comparison operator
bool operator==(const ArcIt& e) const { return idx==e.idx; }
/// Comparison operator
bool operator!=(const ArcIt& e) const { return idx!=e.idx; }
/// Comparison operator
bool operator<(const ArcIt& e) const { return idx<e.idx; }
private:
const StaticPath *path;
int idx;
};
/// \brief Gives back the nth arc.
///
/// \pre n is in the [0..length() - 1] range
const Arc& nth(int n) const {
return arcs[n];
}
/// \brief Initializes arc iterator to point to the nth arc.
ArcIt nthIt(int n) const {
return ArcIt(*this, n);
}
/// \brief Gives back the length of the path.
int length() const { return len; }
/// \brief Returns true when the path is empty.
int empty() const { return len == 0; }
/// \break Erase all arc in the digraph.
void clear() {
len = 0;
if (arcs) delete[] arcs;
arcs = 0;
}
/// \brief Gives back the first arc of the path.
const Arc& front() const {
return arcs[0];
}
/// \brief Gives back the last arc of the path.
const Arc& back() const {
return arcs[len - 1];
}
typedef True BuildTag;
template <typename CPath>
void build(const CPath& path) {
len = path.length();
arcs = new Arc[len];
int index = 0;
for (typename CPath::ArcIt it(path); it != INVALID; ++it) {
arcs[index] = it;
++index;
}
}
template <typename CPath>
void buildRev(const CPath& path) {
len = path.length();
arcs = new Arc[len];
int index = len;
for (typename CPath::RevArcIt it(path); it != INVALID; ++it) {
--index;
arcs[index] = it;
}
}
private:
int len;
Arc* arcs;
};
///@}
} // namespace lemon
#endif // LEMON_PATH_H