/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_MAPS_H #define LEMON_MAPS_H #include #include #include #include #include ///\file ///\ingroup maps ///\brief Miscellaneous property maps #include namespace lemon { /// \addtogroup maps /// @{ /// Base class of maps. /// Base class of maps. It provides the necessary type definitions /// required by the map %concepts. template class MapBase { public: /// \brief The key type of the map. typedef K Key; /// \brief The value type of the map. /// (The type of objects associated with the keys). typedef V Value; }; /// Null map. (a.k.a. DoNothingMap) /// This map can be used if you have to provide a map only for /// its type definitions, or if you have to provide a writable map, /// but data written to it is not required (i.e. it will be sent to /// /dev/null). /// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. /// /// \sa ConstMap template class NullMap : public MapBase { public: ///\e typedef K Key; ///\e typedef V Value; /// Gives back a default constructed element. Value operator[](const Key&) const { return Value(); } /// Absorbs the value. void set(const Key&, const Value&) {} }; /// Returns a \c NullMap class /// This function just returns a \c NullMap class. /// \relates NullMap template NullMap nullMap() { return NullMap(); } /// Constant map. /// This \ref concepts::ReadMap "readable map" assigns a specified /// value to each key. /// /// In other aspects it is equivalent to \c NullMap. /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" /// concept, but it absorbs the data written to it. /// /// The simplest way of using this map is through the constMap() /// function. /// /// \sa NullMap /// \sa IdentityMap template class ConstMap : public MapBase { private: V _value; public: ///\e typedef K Key; ///\e typedef V Value; /// Default constructor /// Default constructor. /// The value of the map will be default constructed. ConstMap() {} /// Constructor with specified initial value /// Constructor with specified initial value. /// \param v The initial value of the map. ConstMap(const Value &v) : _value(v) {} /// Gives back the specified value. Value operator[](const Key&) const { return _value; } /// Absorbs the value. void set(const Key&, const Value&) {} /// Sets the value that is assigned to each key. void setAll(const Value &v) { _value = v; } template ConstMap(const ConstMap &, const Value &v) : _value(v) {} }; /// Returns a \c ConstMap class /// This function just returns a \c ConstMap class. /// \relates ConstMap template inline ConstMap constMap(const V &v) { return ConstMap(v); } template inline ConstMap constMap() { return ConstMap(); } template struct Const {}; /// Constant map with inlined constant value. /// This \ref concepts::ReadMap "readable map" assigns a specified /// value to each key. /// /// In other aspects it is equivalent to \c NullMap. /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" /// concept, but it absorbs the data written to it. /// /// The simplest way of using this map is through the constMap() /// function. /// /// \sa NullMap /// \sa IdentityMap template class ConstMap > : public MapBase { public: ///\e typedef K Key; ///\e typedef V Value; /// Constructor. ConstMap() {} /// Gives back the specified value. Value operator[](const Key&) const { return v; } /// Absorbs the value. void set(const Key&, const Value&) {} }; /// Returns a \c ConstMap class with inlined constant value /// This function just returns a \c ConstMap class with inlined /// constant value. /// \relates ConstMap template inline ConstMap > constMap() { return ConstMap >(); } /// Identity map. /// This \ref concepts::ReadMap "read-only map" gives back the given /// key as value without any modification. /// /// \sa ConstMap template class IdentityMap : public MapBase { public: ///\e typedef T Key; ///\e typedef T Value; /// Gives back the given value without any modification. Value operator[](const Key &k) const { return k; } }; /// Returns an \c IdentityMap class /// This function just returns an \c IdentityMap class. /// \relates IdentityMap template inline IdentityMap identityMap() { return IdentityMap(); } /// \brief Map for storing values for integer keys from the range /// [0..size-1]. /// /// This map is essentially a wrapper for \c std::vector. It assigns /// values to integer keys from the range [0..size-1]. /// It can be used with some data structures, for example /// \c UnionFind, \c BinHeap, when the used items are small /// integers. This map conforms the \ref concepts::ReferenceMap /// "ReferenceMap" concept. /// /// The simplest way of using this map is through the rangeMap() /// function. template class RangeMap : public MapBase { template friend class RangeMap; private: typedef std::vector Vector; Vector _vector; public: /// Key type typedef int Key; /// Value type typedef V Value; /// Reference type typedef typename Vector::reference Reference; /// Const reference type typedef typename Vector::const_reference ConstReference; typedef True ReferenceMapTag; public: /// Constructor with specified default value. RangeMap(int size = 0, const Value &value = Value()) : _vector(size, value) {} /// Constructs the map from an appropriate \c std::vector. template RangeMap(const std::vector& vector) : _vector(vector.begin(), vector.end()) {} /// Constructs the map from another \c RangeMap. template RangeMap(const RangeMap &c) : _vector(c._vector.begin(), c._vector.end()) {} /// Returns the size of the map. int size() { return _vector.size(); } /// Resizes the map. /// Resizes the underlying \c std::vector container, so changes the /// keyset of the map. /// \param size The new size of the map. The new keyset will be the /// range [0..size-1]. /// \param value The default value to assign to the new keys. void resize(int size, const Value &value = Value()) { _vector.resize(size, value); } private: RangeMap& operator=(const RangeMap&); public: ///\e Reference operator[](const Key &k) { return _vector[k]; } ///\e ConstReference operator[](const Key &k) const { return _vector[k]; } ///\e void set(const Key &k, const Value &v) { _vector[k] = v; } }; /// Returns a \c RangeMap class /// This function just returns a \c RangeMap class. /// \relates RangeMap template inline RangeMap rangeMap(int size = 0, const V &value = V()) { return RangeMap(size, value); } /// \brief Returns a \c RangeMap class created from an appropriate /// \c std::vector /// This function just returns a \c RangeMap class created from an /// appropriate \c std::vector. /// \relates RangeMap template inline RangeMap rangeMap(const std::vector &vector) { return RangeMap(vector); } /// Map type based on \c std::map /// This map is essentially a wrapper for \c std::map with addition /// that you can specify a default value for the keys that are not /// stored actually. This value can be different from the default /// contructed value (i.e. \c %Value()). /// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" /// concept. /// /// This map is useful if a default value should be assigned to most of /// the keys and different values should be assigned only to a few /// keys (i.e. the map is "sparse"). /// The name of this type also refers to this important usage. /// /// Apart form that this map can be used in many other cases since it /// is based on \c std::map, which is a general associative container. /// However keep in mind that it is usually not as efficient as other /// maps. /// /// The simplest way of using this map is through the sparseMap() /// function. template > class SparseMap : public MapBase { template friend class SparseMap; public: /// Key type typedef K Key; /// Value type typedef V Value; /// Reference type typedef Value& Reference; /// Const reference type typedef const Value& ConstReference; typedef True ReferenceMapTag; private: typedef std::map Map; Map _map; Value _value; public: /// \brief Constructor with specified default value. SparseMap(const Value &value = Value()) : _value(value) {} /// \brief Constructs the map from an appropriate \c std::map, and /// explicitly specifies a default value. template SparseMap(const std::map &map, const Value &value = Value()) : _map(map.begin(), map.end()), _value(value) {} /// \brief Constructs the map from another \c SparseMap. template SparseMap(const SparseMap &c) : _map(c._map.begin(), c._map.end()), _value(c._value) {} private: SparseMap& operator=(const SparseMap&); public: ///\e Reference operator[](const Key &k) { typename Map::iterator it = _map.lower_bound(k); if (it != _map.end() && !_map.key_comp()(k, it->first)) return it->second; else return _map.insert(it, std::make_pair(k, _value))->second; } ///\e ConstReference operator[](const Key &k) const { typename Map::const_iterator it = _map.find(k); if (it != _map.end()) return it->second; else return _value; } ///\e void set(const Key &k, const Value &v) { typename Map::iterator it = _map.lower_bound(k); if (it != _map.end() && !_map.key_comp()(k, it->first)) it->second = v; else _map.insert(it, std::make_pair(k, v)); } ///\e void setAll(const Value &v) { _value = v; _map.clear(); } }; /// Returns a \c SparseMap class /// This function just returns a \c SparseMap class with specified /// default value. /// \relates SparseMap template inline SparseMap sparseMap(const V& value = V()) { return SparseMap(value); } template inline SparseMap > sparseMap(const V& value = V()) { return SparseMap >(value); } /// \brief Returns a \c SparseMap class created from an appropriate /// \c std::map /// This function just returns a \c SparseMap class created from an /// appropriate \c std::map. /// \relates SparseMap template inline SparseMap sparseMap(const std::map &map, const V& value = V()) { return SparseMap(map, value); } /// @} /// \addtogroup map_adaptors /// @{ /// Composition of two maps /// This \ref concepts::ReadMap "read-only map" returns the /// composition of two given maps. That is to say, if \c m1 is of /// type \c M1 and \c m2 is of \c M2, then for /// \code /// ComposeMap cm(m1,m2); /// \endcode /// cm[x] will be equal to m1[m2[x]]. /// /// The \c Key type of the map is inherited from \c M2 and the /// \c Value type is from \c M1. /// \c M2::Value must be convertible to \c M1::Key. /// /// The simplest way of using this map is through the composeMap() /// function. /// /// \sa CombineMap template class ComposeMap : public MapBase { const M1 &_m1; const M2 &_m2; public: ///\e typedef typename M2::Key Key; ///\e typedef typename M1::Value Value; /// Constructor ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} ///\e typename MapTraits::ConstReturnValue operator[](const Key &k) const { return _m1[_m2[k]]; } }; /// Returns a \c ComposeMap class /// This function just returns a \c ComposeMap class. /// /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is /// convertible to the \c Key of \c m1, then composeMap(m1,m2)[x] /// will be equal to m1[m2[x]]. /// /// \relates ComposeMap template inline ComposeMap composeMap(const M1 &m1, const M2 &m2) { return ComposeMap(m1, m2); } /// Combination of two maps using an STL (binary) functor. /// This \ref concepts::ReadMap "read-only map" takes two maps and a /// binary functor and returns the combination of the two given maps /// using the functor. /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 /// and \c f is of \c F, then for /// \code /// CombineMap cm(m1,m2,f); /// \endcode /// cm[x] will be equal to f(m1[x],m2[x]). /// /// The \c Key type of the map is inherited from \c M1 (\c M1::Key /// must be convertible to \c M2::Key) and the \c Value type is \c V. /// \c M2::Value and \c M1::Value must be convertible to the /// corresponding input parameter of \c F and the return type of \c F /// must be convertible to \c V. /// /// The simplest way of using this map is through the combineMap() /// function. /// /// \sa ComposeMap template class CombineMap : public MapBase { const M1 &_m1; const M2 &_m2; F _f; public: ///\e typedef typename M1::Key Key; ///\e typedef V Value; /// Constructor CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) : _m1(m1), _m2(m2), _f(f) {} ///\e Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } }; /// Returns a \c CombineMap class /// This function just returns a \c CombineMap class. /// /// For example, if \c m1 and \c m2 are both maps with \c double /// values, then /// \code /// combineMap(m1,m2,std::plus()) /// \endcode /// is equivalent to /// \code /// addMap(m1,m2) /// \endcode /// /// This function is specialized for adaptable binary function /// classes and C++ functions. /// /// \relates CombineMap template inline CombineMap combineMap(const M1 &m1, const M2 &m2, const F &f) { return CombineMap(m1,m2,f); } template inline CombineMap combineMap(const M1 &m1, const M2 &m2, const F &f) { return combineMap(m1,m2,f); } template inline CombineMap combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { return combineMap(m1,m2,f); } /// Converts an STL style (unary) functor to a map /// This \ref concepts::ReadMap "read-only map" returns the value /// of a given functor. Actually, it just wraps the functor and /// provides the \c Key and \c Value typedefs. /// /// Template parameters \c K and \c V will become its \c Key and /// \c Value. In most cases they have to be given explicitly because /// a functor typically does not provide \c argument_type and /// \c result_type typedefs. /// Parameter \c F is the type of the used functor. /// /// The simplest way of using this map is through the functorToMap() /// function. /// /// \sa MapToFunctor template class FunctorToMap : public MapBase { F _f; public: ///\e typedef K Key; ///\e typedef V Value; /// Constructor FunctorToMap(const F &f = F()) : _f(f) {} ///\e Value operator[](const Key &k) const { return _f(k); } }; /// Returns a \c FunctorToMap class /// This function just returns a \c FunctorToMap class. /// /// This function is specialized for adaptable binary function /// classes and C++ functions. /// /// \relates FunctorToMap template inline FunctorToMap functorToMap(const F &f) { return FunctorToMap(f); } template inline FunctorToMap functorToMap(const F &f) { return FunctorToMap(f); } template inline FunctorToMap functorToMap(V (*f)(K)) { return FunctorToMap(f); } /// Converts a map to an STL style (unary) functor /// This class converts a map to an STL style (unary) functor. /// That is it provides an operator() to read its values. /// /// For the sake of convenience it also works as a usual /// \ref concepts::ReadMap "readable map", i.e. operator[] /// and the \c Key and \c Value typedefs also exist. /// /// The simplest way of using this map is through the mapToFunctor() /// function. /// ///\sa FunctorToMap template class MapToFunctor : public MapBase { const M &_m; public: ///\e typedef typename M::Key Key; ///\e typedef typename M::Value Value; typedef typename M::Key argument_type; typedef typename M::Value result_type; /// Constructor MapToFunctor(const M &m) : _m(m) {} ///\e Value operator()(const Key &k) const { return _m[k]; } ///\e Value operator[](const Key &k) const { return _m[k]; } }; /// Returns a \c MapToFunctor class /// This function just returns a \c MapToFunctor class. /// \relates MapToFunctor template inline MapToFunctor mapToFunctor(const M &m) { return MapToFunctor(m); } /// \brief Map adaptor to convert the \c Value type of a map to /// another type using the default conversion. /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap /// "readable map" to another type using the default conversion. /// The \c Key type of it is inherited from \c M and the \c Value /// type is \c V. /// This type conforms the \ref concepts::ReadMap "ReadMap" concept. /// /// The simplest way of using this map is through the convertMap() /// function. template class ConvertMap : public MapBase { const M &_m; public: ///\e typedef typename M::Key Key; ///\e typedef V Value; /// Constructor /// Constructor. /// \param m The underlying map. ConvertMap(const M &m) : _m(m) {} ///\e Value operator[](const Key &k) const { return _m[k]; } }; /// Returns a \c ConvertMap class /// This function just returns a \c ConvertMap class. /// \relates ConvertMap template inline ConvertMap convertMap(const M &map) { return ConvertMap(map); } /// Applies all map setting operations to two maps /// This map has two \ref concepts::WriteMap "writable map" parameters /// and each write request will be passed to both of them. /// If \c M1 is also \ref concepts::ReadMap "readable", then the read /// operations will return the corresponding values of \c M1. /// /// The \c Key and \c Value types are inherited from \c M1. /// The \c Key and \c Value of \c M2 must be convertible from those /// of \c M1. /// /// The simplest way of using this map is through the forkMap() /// function. template class ForkMap : public MapBase { M1 &_m1; M2 &_m2; public: ///\e typedef typename M1::Key Key; ///\e typedef typename M1::Value Value; /// Constructor ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} /// Returns the value associated with the given key in the first map. Value operator[](const Key &k) const { return _m1[k]; } /// Sets the value associated with the given key in both maps. void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } }; /// Returns a \c ForkMap class /// This function just returns a \c ForkMap class. /// \relates ForkMap template inline ForkMap forkMap(M1 &m1, M2 &m2) { return ForkMap(m1,m2); } /// Sum of two maps /// This \ref concepts::ReadMap "read-only map" returns the sum /// of the values of the two given maps. /// Its \c Key and \c Value types are inherited from \c M1. /// The \c Key and \c Value of \c M2 must be convertible to those of /// \c M1. /// /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for /// \code /// AddMap am(m1,m2); /// \endcode /// am[x] will be equal to m1[x]+m2[x]. /// /// The simplest way of using this map is through the addMap() /// function. /// /// \sa SubMap, MulMap, DivMap /// \sa ShiftMap, ShiftWriteMap template class AddMap : public MapBase { const M1 &_m1; const M2 &_m2; public: ///\e typedef typename M1::Key Key; ///\e typedef typename M1::Value Value; /// Constructor AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} ///\e Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } }; /// Returns an \c AddMap class /// This function just returns an \c AddMap class. /// /// For example, if \c m1 and \c m2 are both maps with \c double /// values, then addMap(m1,m2)[x] will be equal to /// m1[x]+m2[x]. /// /// \relates AddMap template inline AddMap addMap(const M1 &m1, const M2 &m2) { return AddMap(m1,m2); } /// Difference of two maps /// This \ref concepts::ReadMap "read-only map" returns the difference /// of the values of the two given maps. /// Its \c Key and \c Value types are inherited from \c M1. /// The \c Key and \c Value of \c M2 must be convertible to those of /// \c M1. /// /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for /// \code /// SubMap sm(m1,m2); /// \endcode /// sm[x] will be equal to m1[x]-m2[x]. /// /// The simplest way of using this map is through the subMap() /// function. /// /// \sa AddMap, MulMap, DivMap template class SubMap : public MapBase { const M1 &_m1; const M2 &_m2; public: ///\e typedef typename M1::Key Key; ///\e typedef typename M1::Value Value; /// Constructor SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} ///\e Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } }; /// Returns a \c SubMap class /// This function just returns a \c SubMap class. /// /// For example, if \c m1 and \c m2 are both maps with \c double /// values, then subMap(m1,m2)[x] will be equal to /// m1[x]-m2[x]. /// /// \relates SubMap template inline SubMap subMap(const M1 &m1, const M2 &m2) { return SubMap(m1,m2); } /// Product of two maps /// This \ref concepts::ReadMap "read-only map" returns the product /// of the values of the two given maps. /// Its \c Key and \c Value types are inherited from \c M1. /// The \c Key and \c Value of \c M2 must be convertible to those of /// \c M1. /// /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for /// \code /// MulMap mm(m1,m2); /// \endcode /// mm[x] will be equal to m1[x]*m2[x]. /// /// The simplest way of using this map is through the mulMap() /// function. /// /// \sa AddMap, SubMap, DivMap /// \sa ScaleMap, ScaleWriteMap template class MulMap : public MapBase { const M1 &_m1; const M2 &_m2; public: ///\e typedef typename M1::Key Key; ///\e typedef typename M1::Value Value; /// Constructor MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} ///\e Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } }; /// Returns a \c MulMap class /// This function just returns a \c MulMap class. /// /// For example, if \c m1 and \c m2 are both maps with \c double /// values, then mulMap(m1,m2)[x] will be equal to /// m1[x]*m2[x]. /// /// \relates MulMap template inline MulMap mulMap(const M1 &m1,const M2 &m2) { return MulMap(m1,m2); } /// Quotient of two maps /// This \ref concepts::ReadMap "read-only map" returns the quotient /// of the values of the two given maps. /// Its \c Key and \c Value types are inherited from \c M1. /// The \c Key and \c Value of \c M2 must be convertible to those of /// \c M1. /// /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for /// \code /// DivMap dm(m1,m2); /// \endcode /// dm[x] will be equal to m1[x]/m2[x]. /// /// The simplest way of using this map is through the divMap() /// function. /// /// \sa AddMap, SubMap, MulMap template class DivMap : public MapBase { const M1 &_m1; const M2 &_m2; public: ///\e typedef typename M1::Key Key; ///\e typedef typename M1::Value Value; /// Constructor DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} ///\e Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } }; /// Returns a \c DivMap class /// This function just returns a \c DivMap class. /// /// For example, if \c m1 and \c m2 are both maps with \c double /// values, then divMap(m1,m2)[x] will be equal to /// m1[x]/m2[x]. /// /// \relates DivMap template inline DivMap divMap(const M1 &m1,const M2 &m2) { return DivMap(m1,m2); } /// Shifts a map with a constant. /// This \ref concepts::ReadMap "read-only map" returns the sum of /// the given map and a constant value (i.e. it shifts the map with /// the constant). Its \c Key and \c Value are inherited from \c M. /// /// Actually, /// \code /// ShiftMap sh(m,v); /// \endcode /// is equivalent to /// \code /// ConstMap cm(v); /// AddMap > sh(m,cm); /// \endcode /// /// The simplest way of using this map is through the shiftMap() /// function. /// /// \sa ShiftWriteMap template class ShiftMap : public MapBase { const M &_m; C _v; public: ///\e typedef typename M::Key Key; ///\e typedef typename M::Value Value; /// Constructor /// Constructor. /// \param m The undelying map. /// \param v The constant value. ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} ///\e Value operator[](const Key &k) const { return _m[k]+_v; } }; /// Shifts a map with a constant (read-write version). /// This \ref concepts::ReadWriteMap "read-write map" returns the sum /// of the given map and a constant value (i.e. it shifts the map with /// the constant). Its \c Key and \c Value are inherited from \c M. /// It makes also possible to write the map. /// /// The simplest way of using this map is through the shiftWriteMap() /// function. /// /// \sa ShiftMap template class ShiftWriteMap : public MapBase { M &_m; C _v; public: ///\e typedef typename M::Key Key; ///\e typedef typename M::Value Value; /// Constructor /// Constructor. /// \param m The undelying map. /// \param v The constant value. ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} ///\e Value operator[](const Key &k) const { return _m[k]+_v; } ///\e void set(const Key &k, const Value &v) { _m.set(k, v-_v); } }; /// Returns a \c ShiftMap class /// This function just returns a \c ShiftMap class. /// /// For example, if \c m is a map with \c double values and \c v is /// \c double, then shiftMap(m,v)[x] will be equal to /// m[x]+v. /// /// \relates ShiftMap template inline ShiftMap shiftMap(const M &m, const C &v) { return ShiftMap(m,v); } /// Returns a \c ShiftWriteMap class /// This function just returns a \c ShiftWriteMap class. /// /// For example, if \c m is a map with \c double values and \c v is /// \c double, then shiftWriteMap(m,v)[x] will be equal to /// m[x]+v. /// Moreover it makes also possible to write the map. /// /// \relates ShiftWriteMap template inline ShiftWriteMap shiftWriteMap(M &m, const C &v) { return ShiftWriteMap(m,v); } /// Scales a map with a constant. /// This \ref concepts::ReadMap "read-only map" returns the value of /// the given map multiplied from the left side with a constant value. /// Its \c Key and \c Value are inherited from \c M. /// /// Actually, /// \code /// ScaleMap sc(m,v); /// \endcode /// is equivalent to /// \code /// ConstMap cm(v); /// MulMap, M> sc(cm,m); /// \endcode /// /// The simplest way of using this map is through the scaleMap() /// function. /// /// \sa ScaleWriteMap template class ScaleMap : public MapBase { const M &_m; C _v; public: ///\e typedef typename M::Key Key; ///\e typedef typename M::Value Value; /// Constructor /// Constructor. /// \param m The undelying map. /// \param v The constant value. ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} ///\e Value operator[](const Key &k) const { return _v*_m[k]; } }; /// Scales a map with a constant (read-write version). /// This \ref concepts::ReadWriteMap "read-write map" returns the value of /// the given map multiplied from the left side with a constant value. /// Its \c Key and \c Value are inherited from \c M. /// It can also be used as write map if the \c / operator is defined /// between \c Value and \c C and the given multiplier is not zero. /// /// The simplest way of using this map is through the scaleWriteMap() /// function. /// /// \sa ScaleMap template class ScaleWriteMap : public MapBase { M &_m; C _v; public: ///\e typedef typename M::Key Key; ///\e typedef typename M::Value Value; /// Constructor /// Constructor. /// \param m The undelying map. /// \param v The constant value. ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} ///\e Value operator[](const Key &k) const { return _v*_m[k]; } ///\e void set(const Key &k, const Value &v) { _m.set(k, v/_v); } }; /// Returns a \c ScaleMap class /// This function just returns a \c ScaleMap class. /// /// For example, if \c m is a map with \c double values and \c v is /// \c double, then scaleMap(m,v)[x] will be equal to /// v*m[x]. /// /// \relates ScaleMap template inline ScaleMap scaleMap(const M &m, const C &v) { return ScaleMap(m,v); } /// Returns a \c ScaleWriteMap class /// This function just returns a \c ScaleWriteMap class. /// /// For example, if \c m is a map with \c double values and \c v is /// \c double, then scaleWriteMap(m,v)[x] will be equal to /// v*m[x]. /// Moreover it makes also possible to write the map. /// /// \relates ScaleWriteMap template inline ScaleWriteMap scaleWriteMap(M &m, const C &v) { return ScaleWriteMap(m,v); } /// Negative of a map /// This \ref concepts::ReadMap "read-only map" returns the negative /// of the values of the given map (using the unary \c - operator). /// Its \c Key and \c Value are inherited from \c M. /// /// If M::Value is \c int, \c double etc., then /// \code /// NegMap neg(m); /// \endcode /// is equivalent to /// \code /// ScaleMap neg(m,-1); /// \endcode /// /// The simplest way of using this map is through the negMap() /// function. /// /// \sa NegWriteMap template class NegMap : public MapBase { const M& _m; public: ///\e typedef typename M::Key Key; ///\e typedef typename M::Value Value; /// Constructor NegMap(const M &m) : _m(m) {} ///\e Value operator[](const Key &k) const { return -_m[k]; } }; /// Negative of a map (read-write version) /// This \ref concepts::ReadWriteMap "read-write map" returns the /// negative of the values of the given map (using the unary \c - /// operator). /// Its \c Key and \c Value are inherited from \c M. /// It makes also possible to write the map. /// /// If M::Value is \c int, \c double etc., then /// \code /// NegWriteMap neg(m); /// \endcode /// is equivalent to /// \code /// ScaleWriteMap neg(m,-1); /// \endcode /// /// The simplest way of using this map is through the negWriteMap() /// function. /// /// \sa NegMap template class NegWriteMap : public MapBase { M &_m; public: ///\e typedef typename M::Key Key; ///\e typedef typename M::Value Value; /// Constructor NegWriteMap(M &m) : _m(m) {} ///\e Value operator[](const Key &k) const { return -_m[k]; } ///\e void set(const Key &k, const Value &v) { _m.set(k, -v); } }; /// Returns a \c NegMap class /// This function just returns a \c NegMap class. /// /// For example, if \c m is a map with \c double values, then /// negMap(m)[x] will be equal to -m[x]. /// /// \relates NegMap template inline NegMap negMap(const M &m) { return NegMap(m); } /// Returns a \c NegWriteMap class /// This function just returns a \c NegWriteMap class. /// /// For example, if \c m is a map with \c double values, then /// negWriteMap(m)[x] will be equal to -m[x]. /// Moreover it makes also possible to write the map. /// /// \relates NegWriteMap template inline NegWriteMap negWriteMap(M &m) { return NegWriteMap(m); } /// Absolute value of a map /// This \ref concepts::ReadMap "read-only map" returns the absolute /// value of the values of the given map. /// Its \c Key and \c Value are inherited from \c M. /// \c Value must be comparable to \c 0 and the unary \c - /// operator must be defined for it, of course. /// /// The simplest way of using this map is through the absMap() /// function. template class AbsMap : public MapBase { const M &_m; public: ///\e typedef typename M::Key Key; ///\e typedef typename M::Value Value; /// Constructor AbsMap(const M &m) : _m(m) {} ///\e Value operator[](const Key &k) const { Value tmp = _m[k]; return tmp >= 0 ? tmp : -tmp; } }; /// Returns an \c AbsMap class /// This function just returns an \c AbsMap class. /// /// For example, if \c m is a map with \c double values, then /// absMap(m)[x] will be equal to m[x] if /// it is positive or zero and -m[x] if m[x] is /// negative. /// /// \relates AbsMap template inline AbsMap absMap(const M &m) { return AbsMap(m); } /// @} // Logical maps and map adaptors: /// \addtogroup maps /// @{ /// Constant \c true map. /// This \ref concepts::ReadMap "read-only map" assigns \c true to /// each key. /// /// Note that /// \code /// TrueMap tm; /// \endcode /// is equivalent to /// \code /// ConstMap tm(true); /// \endcode /// /// \sa FalseMap /// \sa ConstMap template class TrueMap : public MapBase { public: ///\e typedef K Key; ///\e typedef bool Value; /// Gives back \c true. Value operator[](const Key&) const { return true; } }; /// Returns a \c TrueMap class /// This function just returns a \c TrueMap class. /// \relates TrueMap template inline TrueMap trueMap() { return TrueMap(); } /// Constant \c false map. /// This \ref concepts::ReadMap "read-only map" assigns \c false to /// each key. /// /// Note that /// \code /// FalseMap fm; /// \endcode /// is equivalent to /// \code /// ConstMap fm(false); /// \endcode /// /// \sa TrueMap /// \sa ConstMap template class FalseMap : public MapBase { public: ///\e typedef K Key; ///\e typedef bool Value; /// Gives back \c false. Value operator[](const Key&) const { return false; } }; /// Returns a \c FalseMap class /// This function just returns a \c FalseMap class. /// \relates FalseMap template inline FalseMap falseMap() { return FalseMap(); } /// @} /// \addtogroup map_adaptors /// @{ /// Logical 'and' of two maps /// This \ref concepts::ReadMap "read-only map" returns the logical /// 'and' of the values of the two given maps. /// Its \c Key type is inherited from \c M1 and its \c Value type is /// \c bool. \c M2::Key must be convertible to \c M1::Key. /// /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for /// \code /// AndMap am(m1,m2); /// \endcode /// am[x] will be equal to m1[x]&&m2[x]. /// /// The simplest way of using this map is through the andMap() /// function. /// /// \sa OrMap /// \sa NotMap, NotWriteMap template class AndMap : public MapBase { const M1 &_m1; const M2 &_m2; public: ///\e typedef typename M1::Key Key; ///\e typedef bool Value; /// Constructor AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} ///\e Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } }; /// Returns an \c AndMap class /// This function just returns an \c AndMap class. /// /// For example, if \c m1 and \c m2 are both maps with \c bool values, /// then andMap(m1,m2)[x] will be equal to /// m1[x]&&m2[x]. /// /// \relates AndMap template inline AndMap andMap(const M1 &m1, const M2 &m2) { return AndMap(m1,m2); } /// Logical 'or' of two maps /// This \ref concepts::ReadMap "read-only map" returns the logical /// 'or' of the values of the two given maps. /// Its \c Key type is inherited from \c M1 and its \c Value type is /// \c bool. \c M2::Key must be convertible to \c M1::Key. /// /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for /// \code /// OrMap om(m1,m2); /// \endcode /// om[x] will be equal to m1[x]||m2[x]. /// /// The simplest way of using this map is through the orMap() /// function. /// /// \sa AndMap /// \sa NotMap, NotWriteMap template class OrMap : public MapBase { const M1 &_m1; const M2 &_m2; public: ///\e typedef typename M1::Key Key; ///\e typedef bool Value; /// Constructor OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} ///\e Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } }; /// Returns an \c OrMap class /// This function just returns an \c OrMap class. /// /// For example, if \c m1 and \c m2 are both maps with \c bool values, /// then orMap(m1,m2)[x] will be equal to /// m1[x]||m2[x]. /// /// \relates OrMap template inline OrMap orMap(const M1 &m1, const M2 &m2) { return OrMap(m1,m2); } /// Logical 'not' of a map /// This \ref concepts::ReadMap "read-only map" returns the logical /// negation of the values of the given map. /// Its \c Key is inherited from \c M and its \c Value is \c bool. /// /// The simplest way of using this map is through the notMap() /// function. /// /// \sa NotWriteMap template class NotMap : public MapBase { const M &_m; public: ///\e typedef typename M::Key Key; ///\e typedef bool Value; /// Constructor NotMap(const M &m) : _m(m) {} ///\e Value operator[](const Key &k) const { return !_m[k]; } }; /// Logical 'not' of a map (read-write version) /// This \ref concepts::ReadWriteMap "read-write map" returns the /// logical negation of the values of the given map. /// Its \c Key is inherited from \c M and its \c Value is \c bool. /// It makes also possible to write the map. When a value is set, /// the opposite value is set to the original map. /// /// The simplest way of using this map is through the notWriteMap() /// function. /// /// \sa NotMap template class NotWriteMap : public MapBase { M &_m; public: ///\e typedef typename M::Key Key; ///\e typedef bool Value; /// Constructor NotWriteMap(M &m) : _m(m) {} ///\e Value operator[](const Key &k) const { return !_m[k]; } ///\e void set(const Key &k, bool v) { _m.set(k, !v); } }; /// Returns a \c NotMap class /// This function just returns a \c NotMap class. /// /// For example, if \c m is a map with \c bool values, then /// notMap(m)[x] will be equal to !m[x]. /// /// \relates NotMap template inline NotMap notMap(const M &m) { return NotMap(m); } /// Returns a \c NotWriteMap class /// This function just returns a \c NotWriteMap class. /// /// For example, if \c m is a map with \c bool values, then /// notWriteMap(m)[x] will be equal to !m[x]. /// Moreover it makes also possible to write the map. /// /// \relates NotWriteMap template inline NotWriteMap notWriteMap(M &m) { return NotWriteMap(m); } /// Combination of two maps using the \c == operator /// This \ref concepts::ReadMap "read-only map" assigns \c true to /// the keys for which the corresponding values of the two maps are /// equal. /// Its \c Key type is inherited from \c M1 and its \c Value type is /// \c bool. \c M2::Key must be convertible to \c M1::Key. /// /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for /// \code /// EqualMap em(m1,m2); /// \endcode /// em[x] will be equal to m1[x]==m2[x]. /// /// The simplest way of using this map is through the equalMap() /// function. /// /// \sa LessMap template class EqualMap : public MapBase { const M1 &_m1; const M2 &_m2; public: ///\e typedef typename M1::Key Key; ///\e typedef bool Value; /// Constructor EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} ///\e Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } }; /// Returns an \c EqualMap class /// This function just returns an \c EqualMap class. /// /// For example, if \c m1 and \c m2 are maps with keys and values of /// the same type, then equalMap(m1,m2)[x] will be equal to /// m1[x]==m2[x]. /// /// \relates EqualMap template inline EqualMap equalMap(const M1 &m1, const M2 &m2) { return EqualMap(m1,m2); } /// Combination of two maps using the \c < operator /// This \ref concepts::ReadMap "read-only map" assigns \c true to /// the keys for which the corresponding value of the first map is /// less then the value of the second map. /// Its \c Key type is inherited from \c M1 and its \c Value type is /// \c bool. \c M2::Key must be convertible to \c M1::Key. /// /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for /// \code /// LessMap lm(m1,m2); /// \endcode /// lm[x] will be equal to m1[x]. /// /// The simplest way of using this map is through the lessMap() /// function. /// /// \sa EqualMap template class LessMap : public MapBase { const M1 &_m1; const M2 &_m2; public: ///\e typedef typename M1::Key Key; ///\e typedef bool Value; /// Constructor LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} ///\e Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } }; /// Returns an \c LessMap class /// This function just returns an \c LessMap class. /// /// For example, if \c m1 and \c m2 are maps with keys and values of /// the same type, then lessMap(m1,m2)[x] will be equal to /// m1[x]. /// /// \relates LessMap template inline LessMap lessMap(const M1 &m1, const M2 &m2) { return LessMap(m1,m2); } namespace _maps_bits { template struct IteratorTraits { typedef typename std::iterator_traits<_Iterator>::value_type Value; }; template struct IteratorTraits<_Iterator, typename exists::type> { typedef typename _Iterator::container_type::value_type Value; }; } /// @} /// \addtogroup maps /// @{ /// \brief Writable bool map for logging each \c true assigned element /// /// A \ref concepts::WriteMap "writable" bool map for logging /// each \c true assigned element, i.e it copies subsequently each /// keys set to \c true to the given iterator. /// The most important usage of it is storing certain nodes or arcs /// that were marked \c true by an algorithm. /// /// There are several algorithms that provide solutions through bool /// maps and most of them assign \c true at most once for each key. /// In these cases it is a natural request to store each \c true /// assigned elements (in order of the assignment), which can be /// easily done with LoggerBoolMap. /// /// The simplest way of using this map is through the loggerBoolMap() /// function. /// /// \tparam IT The type of the iterator. /// \tparam KEY The key type of the map. The default value set /// according to the iterator type should work in most cases. /// /// \note The container of the iterator must contain enough space /// for the elements or the iterator should be an inserter iterator. #ifdef DOXYGEN template #else template ::Value> #endif class LoggerBoolMap : public MapBase { public: ///\e typedef KEY Key; ///\e typedef bool Value; ///\e typedef IT Iterator; /// Constructor LoggerBoolMap(Iterator it) : _begin(it), _end(it) {} /// Gives back the given iterator set for the first key Iterator begin() const { return _begin; } /// Gives back the the 'after the last' iterator Iterator end() const { return _end; } /// The set function of the map void set(const Key& key, Value value) { if (value) { *_end++ = key; } } private: Iterator _begin; Iterator _end; }; /// Returns a \c LoggerBoolMap class /// This function just returns a \c LoggerBoolMap class. /// /// The most important usage of it is storing certain nodes or arcs /// that were marked \c true by an algorithm. /// For example it makes easier to store the nodes in the processing /// order of Dfs algorithm, as the following examples show. /// \code /// std::vector v; /// dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run(); /// \endcode /// \code /// std::vector v(countNodes(g)); /// dfs(g,s).processedMap(loggerBoolMap(v.begin())).run(); /// \endcode /// /// \note The container of the iterator must contain enough space /// for the elements or the iterator should be an inserter iterator. /// /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so /// it cannot be used when a readable map is needed, for example as /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. /// /// \relates LoggerBoolMap template inline LoggerBoolMap loggerBoolMap(Iterator it) { return LoggerBoolMap(it); } /// @} /// \addtogroup graph_maps /// @{ /// \brief Provides an immutable and unique id for each item in a graph. /// /// IdMap provides a unique and immutable id for each item of the /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is /// - \b unique: different items get different ids, /// - \b immutable: the id of an item does not change (even if you /// delete other nodes). /// /// Using this map you get access (i.e. can read) the inner id values of /// the items stored in the graph, which is returned by the \c id() /// function of the graph. This map can be inverted with its member /// class \c InverseMap or with the \c operator() member. /// /// \tparam GR The graph type. /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or /// \c GR::Edge). /// /// \see RangeIdMap template class IdMap : public MapBase { public: /// The graph type of IdMap. typedef GR Graph; typedef GR Digraph; /// The key type of IdMap (\c Node, \c Arc or \c Edge). typedef K Item; /// The key type of IdMap (\c Node, \c Arc or \c Edge). typedef K Key; /// The value type of IdMap. typedef int Value; /// \brief Constructor. /// /// Constructor of the map. explicit IdMap(const Graph& graph) : _graph(&graph) {} /// \brief Gives back the \e id of the item. /// /// Gives back the immutable and unique \e id of the item. int operator[](const Item& item) const { return _graph->id(item);} /// \brief Gives back the \e item by its id. /// /// Gives back the \e item by its id. Item operator()(int id) { return _graph->fromId(id, Item()); } private: const Graph* _graph; public: /// \brief This class represents the inverse of its owner (IdMap). /// /// This class represents the inverse of its owner (IdMap). /// \see inverse() class InverseMap { public: /// \brief Constructor. /// /// Constructor for creating an id-to-item map. explicit InverseMap(const Graph& graph) : _graph(&graph) {} /// \brief Constructor. /// /// Constructor for creating an id-to-item map. explicit InverseMap(const IdMap& map) : _graph(map._graph) {} /// \brief Gives back the given item from its id. /// /// Gives back the given item from its id. Item operator[](int id) const { return _graph->fromId(id, Item());} private: const Graph* _graph; }; /// \brief Gives back the inverse of the map. /// /// Gives back the inverse of the IdMap. InverseMap inverse() const { return InverseMap(*_graph);} }; /// \brief General cross reference graph map type. /// This class provides simple invertable graph maps. /// It wraps an arbitrary \ref concepts::ReadWriteMap "ReadWriteMap" /// and if a key is set to a new value then store it /// in the inverse map. /// /// The values of the map can be accessed /// with stl compatible forward iterator. /// /// \tparam GR The graph type. /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or /// \c GR::Edge). /// \tparam V The value type of the map. /// /// \see IterableValueMap template class CrossRefMap : protected ItemSetTraits::template Map::Type { private: typedef typename ItemSetTraits:: template Map::Type Map; typedef std::map Container; Container _inv_map; public: /// The graph type of CrossRefMap. typedef GR Graph; typedef GR Digraph; /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). typedef K Item; /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). typedef K Key; /// The value type of CrossRefMap. typedef V Value; /// \brief Constructor. /// /// Construct a new CrossRefMap for the given graph. explicit CrossRefMap(const Graph& graph) : Map(graph) {} /// \brief Forward iterator for values. /// /// This iterator is an stl compatible forward /// iterator on the values of the map. The values can /// be accessed in the [beginValue, endValue) range. class ValueIterator : public std::iterator { friend class CrossRefMap; private: ValueIterator(typename Container::const_iterator _it) : it(_it) {} public: ValueIterator() {} ValueIterator& operator++() { ++it; return *this; } ValueIterator operator++(int) { ValueIterator tmp(*this); operator++(); return tmp; } const Value& operator*() const { return it->first; } const Value* operator->() const { return &(it->first); } bool operator==(ValueIterator jt) const { return it == jt.it; } bool operator!=(ValueIterator jt) const { return it != jt.it; } private: typename Container::const_iterator it; }; /// \brief Returns an iterator to the first value. /// /// Returns an stl compatible iterator to the /// first value of the map. The values of the /// map can be accessed in the [beginValue, endValue) /// range. ValueIterator beginValue() const { return ValueIterator(_inv_map.begin()); } /// \brief Returns an iterator after the last value. /// /// Returns an stl compatible iterator after the /// last value of the map. The values of the /// map can be accessed in the [beginValue, endValue) /// range. ValueIterator endValue() const { return ValueIterator(_inv_map.end()); } /// \brief Sets the value associated with the given key. /// /// Sets the value associated with the given key. void set(const Key& key, const Value& val) { Value oldval = Map::operator[](key); typename Container::iterator it = _inv_map.find(oldval); if (it != _inv_map.end() && it->second == key) { _inv_map.erase(it); } _inv_map.insert(std::make_pair(val, key)); Map::set(key, val); } /// \brief Returns the value associated with the given key. /// /// Returns the value associated with the given key. typename MapTraits::ConstReturnValue operator[](const Key& key) const { return Map::operator[](key); } /// \brief Gives back the item by its value. /// /// Gives back the item by its value. Key operator()(const Value& key) const { typename Container::const_iterator it = _inv_map.find(key); return it != _inv_map.end() ? it->second : INVALID; } protected: /// \brief Erase the key from the map and the inverse map. /// /// Erase the key from the map and the inverse map. It is called by the /// \c AlterationNotifier. virtual void erase(const Key& key) { Value val = Map::operator[](key); typename Container::iterator it = _inv_map.find(val); if (it != _inv_map.end() && it->second == key) { _inv_map.erase(it); } Map::erase(key); } /// \brief Erase more keys from the map and the inverse map. /// /// Erase more keys from the map and the inverse map. It is called by the /// \c AlterationNotifier. virtual void erase(const std::vector& keys) { for (int i = 0; i < int(keys.size()); ++i) { Value val = Map::operator[](keys[i]); typename Container::iterator it = _inv_map.find(val); if (it != _inv_map.end() && it->second == keys[i]) { _inv_map.erase(it); } } Map::erase(keys); } /// \brief Clear the keys from the map and the inverse map. /// /// Clear the keys from the map and the inverse map. It is called by the /// \c AlterationNotifier. virtual void clear() { _inv_map.clear(); Map::clear(); } public: /// \brief The inverse map type. /// /// The inverse of this map. The subscript operator of the map /// gives back the item that was last assigned to the value. class InverseMap { public: /// \brief Constructor /// /// Constructor of the InverseMap. explicit InverseMap(const CrossRefMap& inverted) : _inverted(inverted) {} /// The value type of the InverseMap. typedef typename CrossRefMap::Key Value; /// The key type of the InverseMap. typedef typename CrossRefMap::Value Key; /// \brief Subscript operator. /// /// Subscript operator. It gives back the item /// that was last assigned to the given value. Value operator[](const Key& key) const { return _inverted(key); } private: const CrossRefMap& _inverted; }; /// \brief It gives back the read-only inverse map. /// /// It gives back the read-only inverse map. InverseMap inverse() const { return InverseMap(*this); } }; /// \brief Provides continuous and unique ID for the /// items of a graph. /// /// RangeIdMap provides a unique and continuous /// ID for each item of a given type (\c Node, \c Arc or /// \c Edge) in a graph. This id is /// - \b unique: different items get different ids, /// - \b continuous: the range of the ids is the set of integers /// between 0 and \c n-1, where \c n is the number of the items of /// this type (\c Node, \c Arc or \c Edge). /// - So, the ids can change when deleting an item of the same type. /// /// Thus this id is not (necessarily) the same as what can get using /// the \c id() function of the graph or \ref IdMap. /// This map can be inverted with its member class \c InverseMap, /// or with the \c operator() member. /// /// \tparam GR The graph type. /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or /// \c GR::Edge). /// /// \see IdMap template class RangeIdMap : protected ItemSetTraits::template Map::Type { typedef typename ItemSetTraits::template Map::Type Map; public: /// The graph type of RangeIdMap. typedef GR Graph; typedef GR Digraph; /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). typedef K Item; /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). typedef K Key; /// The value type of RangeIdMap. typedef int Value; /// \brief Constructor. /// /// Constructor. explicit RangeIdMap(const Graph& gr) : Map(gr) { Item it; const typename Map::Notifier* nf = Map::notifier(); for (nf->first(it); it != INVALID; nf->next(it)) { Map::set(it, _inv_map.size()); _inv_map.push_back(it); } } protected: /// \brief Adds a new key to the map. /// /// Add a new key to the map. It is called by the /// \c AlterationNotifier. virtual void add(const Item& item) { Map::add(item); Map::set(item, _inv_map.size()); _inv_map.push_back(item); } /// \brief Add more new keys to the map. /// /// Add more new keys to the map. It is called by the /// \c AlterationNotifier. virtual void add(const std::vector& items) { Map::add(items); for (int i = 0; i < int(items.size()); ++i) { Map::set(items[i], _inv_map.size()); _inv_map.push_back(items[i]); } } /// \brief Erase the key from the map. /// /// Erase the key from the map. It is called by the /// \c AlterationNotifier. virtual void erase(const Item& item) { Map::set(_inv_map.back(), Map::operator[](item)); _inv_map[Map::operator[](item)] = _inv_map.back(); _inv_map.pop_back(); Map::erase(item); } /// \brief Erase more keys from the map. /// /// Erase more keys from the map. It is called by the /// \c AlterationNotifier. virtual void erase(const std::vector& items) { for (int i = 0; i < int(items.size()); ++i) { Map::set(_inv_map.back(), Map::operator[](items[i])); _inv_map[Map::operator[](items[i])] = _inv_map.back(); _inv_map.pop_back(); } Map::erase(items); } /// \brief Build the unique map. /// /// Build the unique map. It is called by the /// \c AlterationNotifier. virtual void build() { Map::build(); Item it; const typename Map::Notifier* nf = Map::notifier(); for (nf->first(it); it != INVALID; nf->next(it)) { Map::set(it, _inv_map.size()); _inv_map.push_back(it); } } /// \brief Clear the keys from the map. /// /// Clear the keys from the map. It is called by the /// \c AlterationNotifier. virtual void clear() { _inv_map.clear(); Map::clear(); } public: /// \brief Returns the maximal value plus one. /// /// Returns the maximal value plus one in the map. unsigned int size() const { return _inv_map.size(); } /// \brief Swaps the position of the two items in the map. /// /// Swaps the position of the two items in the map. void swap(const Item& p, const Item& q) { int pi = Map::operator[](p); int qi = Map::operator[](q); Map::set(p, qi); _inv_map[qi] = p; Map::set(q, pi); _inv_map[pi] = q; } /// \brief Gives back the \e RangeId of the item /// /// Gives back the \e RangeId of the item. int operator[](const Item& item) const { return Map::operator[](item); } /// \brief Gives back the item belonging to a \e RangeId /// /// Gives back the item belonging to a \e RangeId. Item operator()(int id) const { return _inv_map[id]; } private: typedef std::vector Container; Container _inv_map; public: /// \brief The inverse map type of RangeIdMap. /// /// The inverse map type of RangeIdMap. class InverseMap { public: /// \brief Constructor /// /// Constructor of the InverseMap. explicit InverseMap(const RangeIdMap& inverted) : _inverted(inverted) {} /// The value type of the InverseMap. typedef typename RangeIdMap::Key Value; /// The key type of the InverseMap. typedef typename RangeIdMap::Value Key; /// \brief Subscript operator. /// /// Subscript operator. It gives back the item /// that the descriptor currently belongs to. Value operator[](const Key& key) const { return _inverted(key); } /// \brief Size of the map. /// /// Returns the size of the map. unsigned int size() const { return _inverted.size(); } private: const RangeIdMap& _inverted; }; /// \brief Gives back the inverse of the map. /// /// Gives back the inverse of the map. const InverseMap inverse() const { return InverseMap(*this); } }; /// \brief Dynamic iterable bool map. /// /// This class provides a special graph map type which can store for /// each graph item(node, arc, edge, etc.) a bool value. For both /// the true and the false values it is possible to iterate on the /// keys. /// /// \param GR The graph type. /// \param ITEM One of the graph's item types, the key of the map. template class IterableBoolMap : protected ItemSetTraits::template Map::Type { private: typedef GR Graph; typedef typename ItemSetTraits::ItemIt KeyIt; typedef typename ItemSetTraits::template Map::Type Parent; std::vector _array; int _sep; public: /// Indicates that the map if reference map. typedef True ReferenceMapTag; /// The key type typedef ITEM Key; /// The value type typedef bool Value; /// The const reference type. typedef const Value& ConstReference; private: int position(const Key& key) const { return Parent::operator[](key); } public: /// \brief Refernce to the value of the map. /// /// This class is similar to the bool type. It can be converted to /// bool and it provides the same operators. class Reference { friend class IterableBoolMap; private: Reference(IterableBoolMap& map, const Key& key) : _key(key), _map(map) {} public: Reference& operator=(const Reference& value) { _map.set(_key, static_cast(value)); return *this; } operator bool() const { return static_cast(_map)[_key]; } Reference& operator=(bool value) { _map.set(_key, value); return *this; } Reference& operator&=(bool value) { _map.set(_key, _map[_key] & value); return *this; } Reference& operator|=(bool value) { _map.set(_key, _map[_key] | value); return *this; } Reference& operator^=(bool value) { _map.set(_key, _map[_key] ^ value); return *this; } private: Key _key; IterableBoolMap& _map; }; /// \brief Constructor of the map with a default value. /// /// Constructor of the map with a default value. explicit IterableBoolMap(const Graph& graph, bool def = false) : Parent(graph) { typename Parent::Notifier* nf = Parent::notifier(); Key it; for (nf->first(it); it != INVALID; nf->next(it)) { Parent::set(it, _array.size()); _array.push_back(it); } _sep = (def ? _array.size() : 0); } /// \brief Const subscript operator of the map. /// /// Const subscript operator of the map. bool operator[](const Key& key) const { return position(key) < _sep; } /// \brief Subscript operator of the map. /// /// Subscript operator of the map. Reference operator[](const Key& key) { return Reference(*this, key); } /// \brief Set operation of the map. /// /// Set operation of the map. void set(const Key& key, bool value) { int pos = position(key); if (value) { if (pos < _sep) return; Key tmp = _array[_sep]; _array[_sep] = key; Parent::set(key, _sep); _array[pos] = tmp; Parent::set(tmp, pos); ++_sep; } else { if (pos >= _sep) return; --_sep; Key tmp = _array[_sep]; _array[_sep] = key; Parent::set(key, _sep); _array[pos] = tmp; Parent::set(tmp, pos); } } /// \brief Set all items. /// /// Set all items in the map. /// \note Constant time operation. void setAll(bool value) { _sep = (value ? _array.size() : 0); } /// \brief Returns the number of the keys mapped to true. /// /// Returns the number of the keys mapped to true. int trueNum() const { return _sep; } /// \brief Returns the number of the keys mapped to false. /// /// Returns the number of the keys mapped to false. int falseNum() const { return _array.size() - _sep; } /// \brief Iterator for the keys mapped to true. /// /// Iterator for the keys mapped to true. It works /// like a graph item iterator in the map, it can be converted /// the key type of the map, incremented with \c ++ operator, and /// if the iterator leave the last valid key it will be equal to /// \c INVALID. class TrueIt : public Key { public: typedef Key Parent; /// \brief Creates an iterator. /// /// Creates an iterator. It iterates on the /// keys which mapped to true. /// \param map The IterableIntMap explicit TrueIt(const IterableBoolMap& map) : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID), _map(&map) {} /// \brief Invalid constructor \& conversion. /// /// This constructor initializes the key to be invalid. /// \sa Invalid for more details. TrueIt(Invalid) : Parent(INVALID), _map(0) {} /// \brief Increment operator. /// /// Increment Operator. TrueIt& operator++() { int pos = _map->position(*this); Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID); return *this; } private: const IterableBoolMap* _map; }; /// \brief Iterator for the keys mapped to false. /// /// Iterator for the keys mapped to false. It works /// like a graph item iterator in the map, it can be converted /// the key type of the map, incremented with \c ++ operator, and /// if the iterator leave the last valid key it will be equal to /// \c INVALID. class FalseIt : public Key { public: typedef Key Parent; /// \brief Creates an iterator. /// /// Creates an iterator. It iterates on the /// keys which mapped to false. /// \param map The IterableIntMap explicit FalseIt(const IterableBoolMap& map) : Parent(map._sep < int(map._array.size()) ? map._array.back() : INVALID), _map(&map) {} /// \brief Invalid constructor \& conversion. /// /// This constructor initializes the key to be invalid. /// \sa Invalid for more details. FalseIt(Invalid) : Parent(INVALID), _map(0) {} /// \brief Increment operator. /// /// Increment Operator. FalseIt& operator++() { int pos = _map->position(*this); Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID); return *this; } private: const IterableBoolMap* _map; }; /// \brief Iterator for the keys mapped to a given value. /// /// Iterator for the keys mapped to a given value. It works /// like a graph item iterator in the map, it can be converted /// the key type of the map, incremented with \c ++ operator, and /// if the iterator leave the last valid key it will be equal to /// \c INVALID. class ItemIt : public Key { public: typedef Key Parent; /// \brief Creates an iterator. /// /// Creates an iterator. It iterates on the /// keys which mapped to false. /// \param map The IterableIntMap /// \param value Which elements should be iterated. ItemIt(const IterableBoolMap& map, bool value) : Parent(value ? (map._sep > 0 ? map._array[map._sep - 1] : INVALID) : (map._sep < int(map._array.size()) ? map._array.back() : INVALID)), _map(&map) {} /// \brief Invalid constructor \& conversion. /// /// This constructor initializes the key to be invalid. /// \sa Invalid for more details. ItemIt(Invalid) : Parent(INVALID), _map(0) {} /// \brief Increment operator. /// /// Increment Operator. ItemIt& operator++() { int pos = _map->position(*this); int _sep = pos >= _map->_sep ? _map->_sep : 0; Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID); return *this; } private: const IterableBoolMap* _map; }; protected: virtual void add(const Key& key) { Parent::add(key); Parent::set(key, _array.size()); _array.push_back(key); } virtual void add(const std::vector& keys) { Parent::add(keys); for (int i = 0; i < int(keys.size()); ++i) { Parent::set(keys[i], _array.size()); _array.push_back(keys[i]); } } virtual void erase(const Key& key) { int pos = position(key); if (pos < _sep) { --_sep; Parent::set(_array[_sep], pos); _array[pos] = _array[_sep]; Parent::set(_array.back(), _sep); _array[_sep] = _array.back(); _array.pop_back(); } else { Parent::set(_array.back(), pos); _array[pos] = _array.back(); _array.pop_back(); } Parent::erase(key); } virtual void erase(const std::vector& keys) { for (int i = 0; i < int(keys.size()); ++i) { int pos = position(keys[i]); if (pos < _sep) { --_sep; Parent::set(_array[_sep], pos); _array[pos] = _array[_sep]; Parent::set(_array.back(), _sep); _array[_sep] = _array.back(); _array.pop_back(); } else { Parent::set(_array.back(), pos); _array[pos] = _array.back(); _array.pop_back(); } } Parent::erase(keys); } virtual void build() { Parent::build(); typename Parent::Notifier* nf = Parent::notifier(); Key it; for (nf->first(it); it != INVALID; nf->next(it)) { Parent::set(it, _array.size()); _array.push_back(it); } _sep = 0; } virtual void clear() { _array.clear(); _sep = 0; Parent::clear(); } }; namespace _maps_bits { template struct IterableIntMapNode { IterableIntMapNode() : value(-1) {} IterableIntMapNode(int _value) : value(_value) {} Item prev, next; int value; }; } ///\ingroup graph_maps /// /// \brief Dynamic iterable integer map. /// /// This class provides a special graph map type which can store /// for each graph item(node, edge, etc.) an integer value. For each /// non negative value it is possible to iterate on the keys which /// mapped to the given value. /// /// \note The size of the data structure depends on the highest /// value in the map. /// /// \param GR The graph type. /// \param ITEM One of the graph's item type, the key of the map. template class IterableIntMap : protected ItemSetTraits:: template Map<_maps_bits::IterableIntMapNode >::Type { public: typedef typename ItemSetTraits:: template Map<_maps_bits::IterableIntMapNode >::Type Parent; /// The key type typedef ITEM Key; /// The value type typedef int Value; /// The graph type typedef GR Graph; /// \brief Constructor of the map. /// /// Constructor of the map. It set all values to -1. explicit IterableIntMap(const Graph& graph) : Parent(graph) {} /// \brief Constructor of the map with a given value. /// /// Constructor of the map with a given value. explicit IterableIntMap(const Graph& graph, int value) : Parent(graph, _maps_bits::IterableIntMapNode(value)) { if (value >= 0) { for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { lace(it); } } } private: void unlace(const Key& key) { typename Parent::Value& node = Parent::operator[](key); if (node.value < 0) return; if (node.prev != INVALID) { Parent::operator[](node.prev).next = node.next; } else { _first[node.value] = node.next; } if (node.next != INVALID) { Parent::operator[](node.next).prev = node.prev; } while (!_first.empty() && _first.back() == INVALID) { _first.pop_back(); } } void lace(const Key& key) { typename Parent::Value& node = Parent::operator[](key); if (node.value < 0) return; if (node.value >= int(_first.size())) { _first.resize(node.value + 1, INVALID); } node.prev = INVALID; node.next = _first[node.value]; if (node.next != INVALID) { Parent::operator[](node.next).prev = key; } _first[node.value] = key; } public: /// Indicates that the map if reference map. typedef True ReferenceMapTag; /// \brief Refernce to the value of the map. /// /// This class is similar to the int type. It can /// be converted to int and it has the same operators. class Reference { friend class IterableIntMap; private: Reference(IterableIntMap& map, const Key& key) : _key(key), _map(map) {} public: Reference& operator=(const Reference& value) { _map.set(_key, static_cast(value)); return *this; } operator const int&() const { return static_cast(_map)[_key]; } Reference& operator=(int value) { _map.set(_key, value); return *this; } Reference& operator++() { _map.set(_key, _map[_key] + 1); return *this; } int operator++(int) { int value = _map[_key]; _map.set(_key, value + 1); return value; } Reference& operator--() { _map.set(_key, _map[_key] - 1); return *this; } int operator--(int) { int value = _map[_key]; _map.set(_key, value - 1); return value; } Reference& operator+=(int value) { _map.set(_key, _map[_key] + value); return *this; } Reference& operator-=(int value) { _map.set(_key, _map[_key] - value); return *this; } Reference& operator*=(int value) { _map.set(_key, _map[_key] * value); return *this; } Reference& operator/=(int value) { _map.set(_key, _map[_key] / value); return *this; } Reference& operator%=(int value) { _map.set(_key, _map[_key] % value); return *this; } Reference& operator&=(int value) { _map.set(_key, _map[_key] & value); return *this; } Reference& operator|=(int value) { _map.set(_key, _map[_key] | value); return *this; } Reference& operator^=(int value) { _map.set(_key, _map[_key] ^ value); return *this; } Reference& operator<<=(int value) { _map.set(_key, _map[_key] << value); return *this; } Reference& operator>>=(int value) { _map.set(_key, _map[_key] >> value); return *this; } private: Key _key; IterableIntMap& _map; }; /// The const reference type. typedef const Value& ConstReference; /// \brief Gives back the maximal value plus one. /// /// Gives back the maximal value plus one. int size() const { return _first.size(); } /// \brief Set operation of the map. /// /// Set operation of the map. void set(const Key& key, const Value& value) { unlace(key); Parent::operator[](key).value = value; lace(key); } /// \brief Const subscript operator of the map. /// /// Const subscript operator of the map. const Value& operator[](const Key& key) const { return Parent::operator[](key).value; } /// \brief Subscript operator of the map. /// /// Subscript operator of the map. Reference operator[](const Key& key) { return Reference(*this, key); } /// \brief Iterator for the keys with the same value. /// /// Iterator for the keys with the same value. It works /// like a graph item iterator in the map, it can be converted /// the item type of the map, incremented with \c ++ operator, and /// if the iterator leave the last valid item it will be equal to /// \c INVALID. class ItemIt : public ITEM { public: typedef ITEM Parent; /// \brief Invalid constructor \& conversion. /// /// This constructor initializes the item to be invalid. /// \sa Invalid for more details. ItemIt(Invalid) : Parent(INVALID), _map(0) {} /// \brief Creates an iterator with a value. /// /// Creates an iterator with a value. It iterates on the /// keys which have the given value. /// \param map The IterableIntMap /// \param value The value ItemIt(const IterableIntMap& map, int value) : _map(&map) { if (value < 0 || value >= int(_map->_first.size())) { Parent::operator=(INVALID); } else { Parent::operator=(_map->_first[value]); } } /// \brief Increment operator. /// /// Increment Operator. ItemIt& operator++() { Parent::operator=(_map->IterableIntMap::Parent:: operator[](static_cast(*this)).next); return *this; } private: const IterableIntMap* _map; }; protected: virtual void erase(const Key& key) { unlace(key); Parent::erase(key); } virtual void erase(const std::vector& keys) { for (int i = 0; i < int(keys.size()); ++i) { unlace(keys[i]); } Parent::erase(keys); } virtual void clear() { _first.clear(); Parent::clear(); } private: std::vector _first; }; namespace _maps_bits { template struct IterableValueMapNode { IterableValueMapNode(Value _value = Value()) : value(_value) {} Item prev, next; Value value; }; } ///\ingroup graph_maps /// /// \brief Dynamic iterable map for comparable values. /// /// This class provides a special graph map type which can store /// for each graph item(node, edge, etc.) a value. For each /// value it is possible to iterate on the keys which mapped to the /// given value. The type stores for each value a linked list with /// the items which mapped to the value, and the values are stored /// in balanced binary tree. The values of the map can be accessed /// with stl compatible forward iterator. /// /// This type is not reference map so it cannot be modified with /// the subscription operator. /// /// \see InvertableMap /// /// \param GR The graph type. /// \param ITEM One of the graph's item type, the key of the map. /// \param VAL Any comparable value type. template class IterableValueMap : protected ItemSetTraits:: template Map<_maps_bits::IterableValueMapNode >::Type { public: typedef typename ItemSetTraits:: template Map<_maps_bits::IterableValueMapNode >::Type Parent; /// The key type typedef ITEM Key; /// The value type typedef VAL Value; /// The graph type typedef GR Graph; public: /// \brief Constructor of the Map with a given value. /// /// Constructor of the Map with a given value. explicit IterableValueMap(const Graph& graph, const Value& value = Value()) : Parent(graph, _maps_bits::IterableValueMapNode(value)) { for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { lace(it); } } protected: void unlace(const Key& key) { typename Parent::Value& node = Parent::operator[](key); if (node.prev != INVALID) { Parent::operator[](node.prev).next = node.next; } else { if (node.next != INVALID) { _first[node.value] = node.next; } else { _first.erase(node.value); } } if (node.next != INVALID) { Parent::operator[](node.next).prev = node.prev; } } void lace(const Key& key) { typename Parent::Value& node = Parent::operator[](key); typename std::map::iterator it = _first.find(node.value); if (it == _first.end()) { node.prev = node.next = INVALID; if (node.next != INVALID) { Parent::operator[](node.next).prev = key; } _first.insert(std::make_pair(node.value, key)); } else { node.prev = INVALID; node.next = it->second; if (node.next != INVALID) { Parent::operator[](node.next).prev = key; } it->second = key; } } public: /// \brief Forward iterator for values. /// /// This iterator is an stl compatible forward /// iterator on the values of the map. The values can /// be accessed in the [beginValue, endValue) range. /// class ValueIterator : public std::iterator { friend class IterableValueMap; private: ValueIterator(typename std::map::const_iterator _it) : it(_it) {} public: ValueIterator() {} ValueIterator& operator++() { ++it; return *this; } ValueIterator operator++(int) { ValueIterator tmp(*this); operator++(); return tmp; } const Value& operator*() const { return it->first; } const Value* operator->() const { return &(it->first); } bool operator==(ValueIterator jt) const { return it == jt.it; } bool operator!=(ValueIterator jt) const { return it != jt.it; } private: typename std::map::const_iterator it; }; /// \brief Returns an iterator to the first value. /// /// Returns an stl compatible iterator to the /// first value of the map. The values of the /// map can be accessed in the [beginValue, endValue) /// range. ValueIterator beginValue() const { return ValueIterator(_first.begin()); } /// \brief Returns an iterator after the last value. /// /// Returns an stl compatible iterator after the /// last value of the map. The values of the /// map can be accessed in the [beginValue, endValue) /// range. ValueIterator endValue() const { return ValueIterator(_first.end()); } /// \brief Set operation of the map. /// /// Set operation of the map. void set(const Key& key, const Value& value) { unlace(key); Parent::operator[](key).value = value; lace(key); } /// \brief Const subscript operator of the map. /// /// Const subscript operator of the map. const Value& operator[](const Key& key) const { return Parent::operator[](key).value; } /// \brief Iterator for the keys with the same value. /// /// Iterator for the keys with the same value. It works /// like a graph item iterator in the map, it can be converted /// the item type of the map, incremented with \c ++ operator, and /// if the iterator leave the last valid item it will be equal to /// \c INVALID. class ItemIt : public ITEM { public: typedef ITEM Parent; /// \brief Invalid constructor \& conversion. /// /// This constructor initializes the item to be invalid. /// \sa Invalid for more details. ItemIt(Invalid) : Parent(INVALID), _map(0) {} /// \brief Creates an iterator with a value. /// /// Creates an iterator with a value. It iterates on the /// keys which have the given value. /// \param map The IterableValueMap /// \param value The value ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) { typename std::map::const_iterator it = map._first.find(value); if (it == map._first.end()) { Parent::operator=(INVALID); } else { Parent::operator=(it->second); } } /// \brief Increment operator. /// /// Increment Operator. ItemIt& operator++() { Parent::operator=(_map->IterableValueMap::Parent:: operator[](static_cast(*this)).next); return *this; } private: const IterableValueMap* _map; }; protected: virtual void add(const Key& key) { Parent::add(key); unlace(key); } virtual void add(const std::vector& keys) { Parent::add(keys); for (int i = 0; i < int(keys.size()); ++i) { lace(keys[i]); } } virtual void erase(const Key& key) { unlace(key); Parent::erase(key); } virtual void erase(const std::vector& keys) { for (int i = 0; i < int(keys.size()); ++i) { unlace(keys[i]); } Parent::erase(keys); } virtual void build() { Parent::build(); for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { lace(it); } } virtual void clear() { _first.clear(); Parent::clear(); } private: std::map _first; }; /// \brief Map of the source nodes of arcs in a digraph. /// /// SourceMap provides access for the source node of each arc in a digraph, /// which is returned by the \c source() function of the digraph. /// \tparam GR The digraph type. /// \see TargetMap template class SourceMap { public: ///\e typedef typename GR::Arc Key; ///\e typedef typename GR::Node Value; /// \brief Constructor /// /// Constructor. /// \param digraph The digraph that the map belongs to. explicit SourceMap(const GR& digraph) : _graph(digraph) {} /// \brief Returns the source node of the given arc. /// /// Returns the source node of the given arc. Value operator[](const Key& arc) const { return _graph.source(arc); } private: const GR& _graph; }; /// \brief Returns a \c SourceMap class. /// /// This function just returns an \c SourceMap class. /// \relates SourceMap template inline SourceMap sourceMap(const GR& graph) { return SourceMap(graph); } /// \brief Map of the target nodes of arcs in a digraph. /// /// TargetMap provides access for the target node of each arc in a digraph, /// which is returned by the \c target() function of the digraph. /// \tparam GR The digraph type. /// \see SourceMap template class TargetMap { public: ///\e typedef typename GR::Arc Key; ///\e typedef typename GR::Node Value; /// \brief Constructor /// /// Constructor. /// \param digraph The digraph that the map belongs to. explicit TargetMap(const GR& digraph) : _graph(digraph) {} /// \brief Returns the target node of the given arc. /// /// Returns the target node of the given arc. Value operator[](const Key& e) const { return _graph.target(e); } private: const GR& _graph; }; /// \brief Returns a \c TargetMap class. /// /// This function just returns a \c TargetMap class. /// \relates TargetMap template inline TargetMap targetMap(const GR& graph) { return TargetMap(graph); } /// \brief Map of the "forward" directed arc view of edges in a graph. /// /// ForwardMap provides access for the "forward" directed arc view of /// each edge in a graph, which is returned by the \c direct() function /// of the graph with \c true parameter. /// \tparam GR The graph type. /// \see BackwardMap template class ForwardMap { public: typedef typename GR::Arc Value; typedef typename GR::Edge Key; /// \brief Constructor /// /// Constructor. /// \param graph The graph that the map belongs to. explicit ForwardMap(const GR& graph) : _graph(graph) {} /// \brief Returns the "forward" directed arc view of the given edge. /// /// Returns the "forward" directed arc view of the given edge. Value operator[](const Key& key) const { return _graph.direct(key, true); } private: const GR& _graph; }; /// \brief Returns a \c ForwardMap class. /// /// This function just returns an \c ForwardMap class. /// \relates ForwardMap template inline ForwardMap forwardMap(const GR& graph) { return ForwardMap(graph); } /// \brief Map of the "backward" directed arc view of edges in a graph. /// /// BackwardMap provides access for the "backward" directed arc view of /// each edge in a graph, which is returned by the \c direct() function /// of the graph with \c false parameter. /// \tparam GR The graph type. /// \see ForwardMap template class BackwardMap { public: typedef typename GR::Arc Value; typedef typename GR::Edge Key; /// \brief Constructor /// /// Constructor. /// \param graph The graph that the map belongs to. explicit BackwardMap(const GR& graph) : _graph(graph) {} /// \brief Returns the "backward" directed arc view of the given edge. /// /// Returns the "backward" directed arc view of the given edge. Value operator[](const Key& key) const { return _graph.direct(key, false); } private: const GR& _graph; }; /// \brief Returns a \c BackwardMap class /// This function just returns a \c BackwardMap class. /// \relates BackwardMap template inline BackwardMap backwardMap(const GR& graph) { return BackwardMap(graph); } /// \brief Map of the in-degrees of nodes in a digraph. /// /// This map returns the in-degree of a node. Once it is constructed, /// the degrees are stored in a standard \c NodeMap, so each query is done /// in constant time. On the other hand, the values are updated automatically /// whenever the digraph changes. /// /// \warning Besides \c addNode() and \c addArc(), a digraph structure /// may provide alternative ways to modify the digraph. /// The correct behavior of InDegMap is not guarantied if these additional /// features are used. For example the functions /// \ref ListDigraph::changeSource() "changeSource()", /// \ref ListDigraph::changeTarget() "changeTarget()" and /// \ref ListDigraph::reverseArc() "reverseArc()" /// of \ref ListDigraph will \e not update the degree values correctly. /// /// \sa OutDegMap template class InDegMap : protected ItemSetTraits ::ItemNotifier::ObserverBase { public: /// The graph type of InDegMap typedef GR Graph; typedef GR Digraph; /// The key type typedef typename Digraph::Node Key; /// The value type typedef int Value; typedef typename ItemSetTraits ::ItemNotifier::ObserverBase Parent; private: class AutoNodeMap : public ItemSetTraits::template Map::Type { public: typedef typename ItemSetTraits:: template Map::Type Parent; AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} virtual void add(const Key& key) { Parent::add(key); Parent::set(key, 0); } virtual void add(const std::vector& keys) { Parent::add(keys); for (int i = 0; i < int(keys.size()); ++i) { Parent::set(keys[i], 0); } } virtual void build() { Parent::build(); Key it; typename Parent::Notifier* nf = Parent::notifier(); for (nf->first(it); it != INVALID; nf->next(it)) { Parent::set(it, 0); } } }; public: /// \brief Constructor. /// /// Constructor for creating an in-degree map. explicit InDegMap(const Digraph& graph) : _digraph(graph), _deg(graph) { Parent::attach(_digraph.notifier(typename Digraph::Arc())); for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { _deg[it] = countInArcs(_digraph, it); } } /// \brief Gives back the in-degree of a Node. /// /// Gives back the in-degree of a Node. int operator[](const Key& key) const { return _deg[key]; } protected: typedef typename Digraph::Arc Arc; virtual void add(const Arc& arc) { ++_deg[_digraph.target(arc)]; } virtual void add(const std::vector& arcs) { for (int i = 0; i < int(arcs.size()); ++i) { ++_deg[_digraph.target(arcs[i])]; } } virtual void erase(const Arc& arc) { --_deg[_digraph.target(arc)]; } virtual void erase(const std::vector& arcs) { for (int i = 0; i < int(arcs.size()); ++i) { --_deg[_digraph.target(arcs[i])]; } } virtual void build() { for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { _deg[it] = countInArcs(_digraph, it); } } virtual void clear() { for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { _deg[it] = 0; } } private: const Digraph& _digraph; AutoNodeMap _deg; }; /// \brief Map of the out-degrees of nodes in a digraph. /// /// This map returns the out-degree of a node. Once it is constructed, /// the degrees are stored in a standard \c NodeMap, so each query is done /// in constant time. On the other hand, the values are updated automatically /// whenever the digraph changes. /// /// \warning Besides \c addNode() and \c addArc(), a digraph structure /// may provide alternative ways to modify the digraph. /// The correct behavior of OutDegMap is not guarantied if these additional /// features are used. For example the functions /// \ref ListDigraph::changeSource() "changeSource()", /// \ref ListDigraph::changeTarget() "changeTarget()" and /// \ref ListDigraph::reverseArc() "reverseArc()" /// of \ref ListDigraph will \e not update the degree values correctly. /// /// \sa InDegMap template class OutDegMap : protected ItemSetTraits ::ItemNotifier::ObserverBase { public: /// The graph type of OutDegMap typedef GR Graph; typedef GR Digraph; /// The key type typedef typename Digraph::Node Key; /// The value type typedef int Value; typedef typename ItemSetTraits ::ItemNotifier::ObserverBase Parent; private: class AutoNodeMap : public ItemSetTraits::template Map::Type { public: typedef typename ItemSetTraits:: template Map::Type Parent; AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} virtual void add(const Key& key) { Parent::add(key); Parent::set(key, 0); } virtual void add(const std::vector& keys) { Parent::add(keys); for (int i = 0; i < int(keys.size()); ++i) { Parent::set(keys[i], 0); } } virtual void build() { Parent::build(); Key it; typename Parent::Notifier* nf = Parent::notifier(); for (nf->first(it); it != INVALID; nf->next(it)) { Parent::set(it, 0); } } }; public: /// \brief Constructor. /// /// Constructor for creating an out-degree map. explicit OutDegMap(const Digraph& graph) : _digraph(graph), _deg(graph) { Parent::attach(_digraph.notifier(typename Digraph::Arc())); for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { _deg[it] = countOutArcs(_digraph, it); } } /// \brief Gives back the out-degree of a Node. /// /// Gives back the out-degree of a Node. int operator[](const Key& key) const { return _deg[key]; } protected: typedef typename Digraph::Arc Arc; virtual void add(const Arc& arc) { ++_deg[_digraph.source(arc)]; } virtual void add(const std::vector& arcs) { for (int i = 0; i < int(arcs.size()); ++i) { ++_deg[_digraph.source(arcs[i])]; } } virtual void erase(const Arc& arc) { --_deg[_digraph.source(arc)]; } virtual void erase(const std::vector& arcs) { for (int i = 0; i < int(arcs.size()); ++i) { --_deg[_digraph.source(arcs[i])]; } } virtual void build() { for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { _deg[it] = countOutArcs(_digraph, it); } } virtual void clear() { for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { _deg[it] = 0; } } private: const Digraph& _digraph; AutoNodeMap _deg; }; /// \brief Potential difference map /// /// PotentialDifferenceMap returns the difference between the potentials of /// the source and target nodes of each arc in a digraph, i.e. it returns /// \code /// potential[gr.target(arc)] - potential[gr.source(arc)]. /// \endcode /// \tparam GR The digraph type. /// \tparam POT A node map storing the potentials. template class PotentialDifferenceMap { public: /// Key type typedef typename GR::Arc Key; /// Value type typedef typename POT::Value Value; /// \brief Constructor /// /// Contructor of the map. explicit PotentialDifferenceMap(const GR& gr, const POT& potential) : _digraph(gr), _potential(potential) {} /// \brief Returns the potential difference for the given arc. /// /// Returns the potential difference for the given arc, i.e. /// \code /// potential[gr.target(arc)] - potential[gr.source(arc)]. /// \endcode Value operator[](const Key& arc) const { return _potential[_digraph.target(arc)] - _potential[_digraph.source(arc)]; } private: const GR& _digraph; const POT& _potential; }; /// \brief Returns a PotentialDifferenceMap. /// /// This function just returns a PotentialDifferenceMap. /// \relates PotentialDifferenceMap template PotentialDifferenceMap potentialDifferenceMap(const GR& gr, const POT& potential) { return PotentialDifferenceMap(gr, potential); } /// @} } #endif // LEMON_MAPS_H