/* -*- C++ -*- * * This file is a part of LEMON, a generic C++ optimization library * * Copyright (C) 2003-2008 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_HARTMANN_ORLIN_MMC_H #define LEMON_HARTMANN_ORLIN_MMC_H /// \ingroup min_mean_cycle /// /// \file /// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle. #include #include #include #include #include #include namespace lemon { /// \brief Default traits class of HartmannOrlinMmc class. /// /// Default traits class of HartmannOrlinMmc class. /// \tparam GR The type of the digraph. /// \tparam CM The type of the cost map. /// It must conform to the \ref concepts::Rea_data "Rea_data" concept. #ifdef DOXYGEN template #else template ::is_integer> #endif struct HartmannOrlinMmcDefaultTraits { /// The type of the digraph typedef GR Digraph; /// The type of the cost map typedef CM CostMap; /// The type of the arc costs typedef typename CostMap::Value Cost; /// \brief The large cost type used for internal computations /// /// The large cost type used for internal computations. /// It is \c long \c long if the \c Cost type is integer, /// otherwise it is \c double. /// \c Cost must be convertible to \c LargeCost. typedef double LargeCost; /// The tolerance type used for internal computations typedef lemon::Tolerance Tolerance; /// \brief The path type of the found cycles /// /// The path type of the found cycles. /// It must conform to the \ref lemon::concepts::Path "Path" concept /// and it must have an \c addFront() function. typedef lemon::Path Path; }; // Default traits class for integer cost types template struct HartmannOrlinMmcDefaultTraits { typedef GR Digraph; typedef CM CostMap; typedef typename CostMap::Value Cost; #ifdef LEMON_HAVE_LONG_LONG typedef long long LargeCost; #else typedef long LargeCost; #endif typedef lemon::Tolerance Tolerance; typedef lemon::Path Path; }; /// \addtogroup min_mean_cycle /// @{ /// \brief Implementation of the Hartmann-Orlin algorithm for finding /// a minimum mean cycle. /// /// This class implements the Hartmann-Orlin algorithm for finding /// a directed cycle of minimum mean cost in a digraph /// \ref amo93networkflows, \ref dasdan98minmeancycle. /// It is an improved version of \ref Karp "Karp"'s original algorithm, /// it applies an efficient early termination scheme. /// It runs in time O(ne) and uses space O(n2+e). /// /// \tparam GR The type of the digraph the algorithm runs on. /// \tparam CM The type of the cost map. The default /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap". /// \tparam TR The traits class that defines various types used by the /// algorithm. By default, it is \ref HartmannOrlinMmcDefaultTraits /// "HartmannOrlinMmcDefaultTraits". /// In most cases, this parameter should not be set directly, /// consider to use the named template parameters instead. #ifdef DOXYGEN template #else template < typename GR, typename CM = typename GR::template ArcMap, typename TR = HartmannOrlinMmcDefaultTraits > #endif class HartmannOrlinMmc { public: /// The type of the digraph typedef typename TR::Digraph Digraph; /// The type of the cost map typedef typename TR::CostMap CostMap; /// The type of the arc costs typedef typename TR::Cost Cost; /// \brief The large cost type /// /// The large cost type used for internal computations. /// By default, it is \c long \c long if the \c Cost type is integer, /// otherwise it is \c double. typedef typename TR::LargeCost LargeCost; /// The tolerance type typedef typename TR::Tolerance Tolerance; /// \brief The path type of the found cycles /// /// The path type of the found cycles. /// Using the \ref HartmannOrlinMmcDefaultTraits "default traits class", /// it is \ref lemon::Path "Path". typedef typename TR::Path Path; /// The \ref HartmannOrlinMmcDefaultTraits "traits class" of the algorithm typedef TR Traits; private: TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); // Data sturcture for path data struct PathData { LargeCost dist; Arc pred; PathData(LargeCost d, Arc p = INVALID) : dist(d), pred(p) {} }; typedef typename Digraph::template NodeMap > PathDataNodeMap; private: // The digraph the algorithm runs on const Digraph &_gr; // The cost of the arcs const CostMap &_cost; // Data for storing the strongly connected components int _comp_num; typename Digraph::template NodeMap _comp; std::vector > _comp_nodes; std::vector* _nodes; typename Digraph::template NodeMap > _out_arcs; // Data for the found cycles bool _curr_found, _best_found; LargeCost _curr_cost, _best_cost; int _curr_size, _best_size; Node _curr_node, _best_node; int _curr_level, _best_level; Path *_cycle_path; bool _local_path; // Node map for storing path data PathDataNodeMap _data; // The processed nodes in the last round std::vector _process; Tolerance _tolerance; // Infinite constant const LargeCost INF; public: /// \name Named Template Parameters /// @{ template struct SetLargeCostTraits : public Traits { typedef T LargeCost; typedef lemon::Tolerance Tolerance; }; /// \brief \ref named-templ-param "Named parameter" for setting /// \c LargeCost type. /// /// \ref named-templ-param "Named parameter" for setting \c LargeCost /// type. It is used for internal computations in the algorithm. template struct SetLargeCost : public HartmannOrlinMmc > { typedef HartmannOrlinMmc > Create; }; template struct SetPathTraits : public Traits { typedef T Path; }; /// \brief \ref named-templ-param "Named parameter" for setting /// \c %Path type. /// /// \ref named-templ-param "Named parameter" for setting the \c %Path /// type of the found cycles. /// It must conform to the \ref lemon::concepts::Path "Path" concept /// and it must have an \c addFront() function. template struct SetPath : public HartmannOrlinMmc > { typedef HartmannOrlinMmc > Create; }; /// @} protected: HartmannOrlinMmc() {} public: /// \brief Constructor. /// /// The constructor of the class. /// /// \param digraph The digraph the algorithm runs on. /// \param cost The costs of the arcs. HartmannOrlinMmc( const Digraph &digraph, const CostMap &cost ) : _gr(digraph), _cost(cost), _comp(digraph), _out_arcs(digraph), _best_found(false), _best_cost(0), _best_size(1), _cycle_path(NULL), _local_path(false), _data(digraph), INF(std::numeric_limits::has_infinity ? std::numeric_limits::infinity() : std::numeric_limits::max()) {} /// Destructor. ~HartmannOrlinMmc() { if (_local_path) delete _cycle_path; } /// \brief Set the path structure for storing the found cycle. /// /// This function sets an external path structure for storing the /// found cycle. /// /// If you don't call this function before calling \ref run() or /// \ref findCycleMean(), it will allocate a local \ref Path "path" /// structure. The destuctor deallocates this automatically /// allocated object, of course. /// /// \note The algorithm calls only the \ref lemon::Path::addFront() /// "addFront()" function of the given path structure. /// /// \return (*this) HartmannOrlinMmc& cycle(Path &path) { if (_local_path) { delete _cycle_path; _local_path = false; } _cycle_path = &path; return *this; } /// \brief Set the tolerance used by the algorithm. /// /// This function sets the tolerance object used by the algorithm. /// /// \return (*this) HartmannOrlinMmc& tolerance(const Tolerance& tolerance) { _tolerance = tolerance; return *this; } /// \brief Return a const reference to the tolerance. /// /// This function returns a const reference to the tolerance object /// used by the algorithm. const Tolerance& tolerance() const { return _tolerance; } /// \name Execution control /// The simplest way to execute the algorithm is to call the \ref run() /// function.\n /// If you only need the minimum mean cost, you may call /// \ref findCycleMean(). /// @{ /// \brief Run the algorithm. /// /// This function runs the algorithm. /// It can be called more than once (e.g. if the underlying digraph /// and/or the arc costs have been modified). /// /// \return \c true if a directed cycle exists in the digraph. /// /// \note mmc.run() is just a shortcut of the following code. /// \code /// return mmc.findCycleMean() && mmc.findCycle(); /// \endcode bool run() { return findCycleMean() && findCycle(); } /// \brief Find the minimum cycle mean. /// /// This function finds the minimum mean cost of the directed /// cycles in the digraph. /// /// \return \c true if a directed cycle exists in the digraph. bool findCycleMean() { // Initialization and find strongly connected components init(); findComponents(); // Find the minimum cycle mean in the components for (int comp = 0; comp < _comp_num; ++comp) { if (!initComponent(comp)) continue; processRounds(); // Update the best cycle (global minimum mean cycle) if ( _curr_found && (!_best_found || _curr_cost * _best_size < _best_cost * _curr_size) ) { _best_found = true; _best_cost = _curr_cost; _best_size = _curr_size; _best_node = _curr_node; _best_level = _curr_level; } } return _best_found; } /// \brief Find a minimum mean directed cycle. /// /// This function finds a directed cycle of minimum mean cost /// in the digraph using the data computed by findCycleMean(). /// /// \return \c true if a directed cycle exists in the digraph. /// /// \pre \ref findCycleMean() must be called before using this function. bool findCycle() { if (!_best_found) return false; IntNodeMap reached(_gr, -1); int r = _best_level + 1; Node u = _best_node; while (reached[u] < 0) { reached[u] = --r; u = _gr.source(_data[u][r].pred); } r = reached[u]; Arc e = _data[u][r].pred; _cycle_path->addFront(e); _best_cost = _cost[e]; _best_size = 1; Node v; while ((v = _gr.source(e)) != u) { e = _data[v][--r].pred; _cycle_path->addFront(e); _best_cost += _cost[e]; ++_best_size; } return true; } /// @} /// \name Query Functions /// The results of the algorithm can be obtained using these /// functions.\n /// The algorithm should be executed before using them. /// @{ /// \brief Return the total cost of the found cycle. /// /// This function returns the total cost of the found cycle. /// /// \pre \ref run() or \ref findCycleMean() must be called before /// using this function. Cost cycleCost() const { return static_cast(_best_cost); } /// \brief Return the number of arcs on the found cycle. /// /// This function returns the number of arcs on the found cycle. /// /// \pre \ref run() or \ref findCycleMean() must be called before /// using this function. int cycleSize() const { return _best_size; } /// \brief Return the mean cost of the found cycle. /// /// This function returns the mean cost of the found cycle. /// /// \note alg.cycleMean() is just a shortcut of the /// following code. /// \code /// return static_cast(alg.cycleCost()) / alg.cycleSize(); /// \endcode /// /// \pre \ref run() or \ref findCycleMean() must be called before /// using this function. double cycleMean() const { return static_cast(_best_cost) / _best_size; } /// \brief Return the found cycle. /// /// This function returns a const reference to the path structure /// storing the found cycle. /// /// \pre \ref run() or \ref findCycle() must be called before using /// this function. const Path& cycle() const { return *_cycle_path; } ///@} private: // Initialization void init() { if (!_cycle_path) { _local_path = true; _cycle_path = new Path; } _cycle_path->clear(); _best_found = false; _best_cost = 0; _best_size = 1; _cycle_path->clear(); for (NodeIt u(_gr); u != INVALID; ++u) _data[u].clear(); } // Find strongly connected components and initialize _comp_nodes // and _out_arcs void findComponents() { _comp_num = stronglyConnectedComponents(_gr, _comp); _comp_nodes.resize(_comp_num); if (_comp_num == 1) { _comp_nodes[0].clear(); for (NodeIt n(_gr); n != INVALID; ++n) { _comp_nodes[0].push_back(n); _out_arcs[n].clear(); for (OutArcIt a(_gr, n); a != INVALID; ++a) { _out_arcs[n].push_back(a); } } } else { for (int i = 0; i < _comp_num; ++i) _comp_nodes[i].clear(); for (NodeIt n(_gr); n != INVALID; ++n) { int k = _comp[n]; _comp_nodes[k].push_back(n); _out_arcs[n].clear(); for (OutArcIt a(_gr, n); a != INVALID; ++a) { if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); } } } } // Initialize path data for the current component bool initComponent(int comp) { _nodes = &(_comp_nodes[comp]); int n = _nodes->size(); if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) { return false; } for (int i = 0; i < n; ++i) { _data[(*_nodes)[i]].resize(n + 1, PathData(INF)); } return true; } // Process all rounds of computing path data for the current component. // _data[v][k] is the cost of a shortest directed walk from the root // node to node v containing exactly k arcs. void processRounds() { Node start = (*_nodes)[0]; _data[start][0] = PathData(0); _process.clear(); _process.push_back(start); int k, n = _nodes->size(); int next_check = 4; bool terminate = false; for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) { processNextBuildRound(k); if (k == next_check || k == n) { terminate = checkTermination(k); next_check = next_check * 3 / 2; } } for ( ; k <= n && !terminate; ++k) { processNextFullRound(k); if (k == next_check || k == n) { terminate = checkTermination(k); next_check = next_check * 3 / 2; } } } // Process one round and rebuild _process void processNextBuildRound(int k) { std::vector next; Node u, v; Arc e; LargeCost d; for (int i = 0; i < int(_process.size()); ++i) { u = _process[i]; for (int j = 0; j < int(_out_arcs[u].size()); ++j) { e = _out_arcs[u][j]; v = _gr.target(e); d = _data[u][k-1].dist + _cost[e]; if (_tolerance.less(d, _data[v][k].dist)) { if (_data[v][k].dist == INF) next.push_back(v); _data[v][k] = PathData(d, e); } } } _process.swap(next); } // Process one round using _nodes instead of _process void processNextFullRound(int k) { Node u, v; Arc e; LargeCost d; for (int i = 0; i < int(_nodes->size()); ++i) { u = (*_nodes)[i]; for (int j = 0; j < int(_out_arcs[u].size()); ++j) { e = _out_arcs[u][j]; v = _gr.target(e); d = _data[u][k-1].dist + _cost[e]; if (_tolerance.less(d, _data[v][k].dist)) { _data[v][k] = PathData(d, e); } } } } // Check early termination bool checkTermination(int k) { typedef std::pair Pair; typename GR::template NodeMap level(_gr, Pair(-1, 0)); typename GR::template NodeMap pi(_gr); int n = _nodes->size(); LargeCost cost; int size; Node u; // Search for cycles that are already found _curr_found = false; for (int i = 0; i < n; ++i) { u = (*_nodes)[i]; if (_data[u][k].dist == INF) continue; for (int j = k; j >= 0; --j) { if (level[u].first == i && level[u].second > 0) { // A cycle is found cost = _data[u][level[u].second].dist - _data[u][j].dist; size = level[u].second - j; if (!_curr_found || cost * _curr_size < _curr_cost * size) { _curr_cost = cost; _curr_size = size; _curr_node = u; _curr_level = level[u].second; _curr_found = true; } } level[u] = Pair(i, j); if (j != 0) { u = _gr.source(_data[u][j].pred); } } } // If at least one cycle is found, check the optimality condition LargeCost d; if (_curr_found && k < n) { // Find node potentials for (int i = 0; i < n; ++i) { u = (*_nodes)[i]; pi[u] = INF; for (int j = 0; j <= k; ++j) { if (_data[u][j].dist < INF) { d = _data[u][j].dist * _curr_size - j * _curr_cost; if (_tolerance.less(d, pi[u])) pi[u] = d; } } } // Check the optimality condition for all arcs bool done = true; for (ArcIt a(_gr); a != INVALID; ++a) { if (_tolerance.less(_cost[a] * _curr_size - _curr_cost, pi[_gr.target(a)] - pi[_gr.source(a)]) ) { done = false; break; } } return done; } return (k == n); } }; //class HartmannOrlinMmc ///@} } //namespace lemon #endif //LEMON_HARTMANN_ORLIN_MMC_H