/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_BUCKET_HEAP_H #define LEMON_BUCKET_HEAP_H ///\ingroup heaps ///\file ///\brief Bucket heap implementation. #include #include #include namespace lemon { namespace _bucket_heap_bits { template struct DirectionTraits { static bool less(int left, int right) { return left < right; } static void increase(int& value) { ++value; } }; template <> struct DirectionTraits { static bool less(int left, int right) { return left > right; } static void increase(int& value) { --value; } }; } /// \ingroup heaps /// /// \brief Bucket heap data structure. /// /// This class implements the \e bucket \e heap data structure. /// It practically conforms to the \ref concepts::Heap "heap concept", /// but it has some limitations. /// /// The bucket heap is a very simple structure. It can store only /// \c int priorities and it maintains a list of items for each priority /// in the range [0..C). So it should only be used when the /// priorities are small. It is not intended to use as a Dijkstra heap. /// /// \tparam IM A read-writable item map with \c int values, used /// internally to handle the cross references. /// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. /// The default is \e min-heap. If this parameter is set to \c false, /// then the comparison is reversed, so the top(), prio() and pop() /// functions deal with the item having maximum priority instead of the /// minimum. /// /// \sa SimpleBucketHeap template class BucketHeap { public: /// Type of the item-int map. typedef IM ItemIntMap; /// Type of the priorities. typedef int Prio; /// Type of the items stored in the heap. typedef typename ItemIntMap::Key Item; /// Type of the item-priority pairs. typedef std::pair Pair; private: typedef _bucket_heap_bits::DirectionTraits Direction; public: /// \brief Type to represent the states of the items. /// /// Each item has a state associated to it. It can be "in heap", /// "pre-heap" or "post-heap". The latter two are indifferent from the /// heap's point of view, but may be useful to the user. /// /// The item-int map must be initialized in such way that it assigns /// \c PRE_HEAP (-1) to any element to be put in the heap. enum State { IN_HEAP = 0, ///< = 0. PRE_HEAP = -1, ///< = -1. POST_HEAP = -2 ///< = -2. }; public: /// \brief Constructor. /// /// Constructor. /// \param map A map that assigns \c int values to the items. /// It is used internally to handle the cross references. /// The assigned value must be \c PRE_HEAP (-1) for each item. explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {} /// \brief The number of items stored in the heap. /// /// This function returns the number of items stored in the heap. int size() const { return _data.size(); } /// \brief Check if the heap is empty. /// /// This function returns \c true if the heap is empty. bool empty() const { return _data.empty(); } /// \brief Make the heap empty. /// /// This functon makes the heap empty. /// It does not change the cross reference map. If you want to reuse /// a heap that is not surely empty, you should first clear it and /// then you should set the cross reference map to \c PRE_HEAP /// for each item. void clear() { _data.clear(); _first.clear(); _minimum = 0; } private: void relocate_last(int idx) { if (idx + 1 < int(_data.size())) { _data[idx] = _data.back(); if (_data[idx].prev != -1) { _data[_data[idx].prev].next = idx; } else { _first[_data[idx].value] = idx; } if (_data[idx].next != -1) { _data[_data[idx].next].prev = idx; } _iim[_data[idx].item] = idx; } _data.pop_back(); } void unlace(int idx) { if (_data[idx].prev != -1) { _data[_data[idx].prev].next = _data[idx].next; } else { _first[_data[idx].value] = _data[idx].next; } if (_data[idx].next != -1) { _data[_data[idx].next].prev = _data[idx].prev; } } void lace(int idx) { if (int(_first.size()) <= _data[idx].value) { _first.resize(_data[idx].value + 1, -1); } _data[idx].next = _first[_data[idx].value]; if (_data[idx].next != -1) { _data[_data[idx].next].prev = idx; } _first[_data[idx].value] = idx; _data[idx].prev = -1; } public: /// \brief Insert a pair of item and priority into the heap. /// /// This function inserts \c p.first to the heap with priority /// \c p.second. /// \param p The pair to insert. /// \pre \c p.first must not be stored in the heap. void push(const Pair& p) { push(p.first, p.second); } /// \brief Insert an item into the heap with the given priority. /// /// This function inserts the given item into the heap with the /// given priority. /// \param i The item to insert. /// \param p The priority of the item. /// \pre \e i must not be stored in the heap. void push(const Item &i, const Prio &p) { int idx = _data.size(); _iim[i] = idx; _data.push_back(BucketItem(i, p)); lace(idx); if (Direction::less(p, _minimum)) { _minimum = p; } } /// \brief Return the item having minimum priority. /// /// This function returns the item having minimum priority. /// \pre The heap must be non-empty. Item top() const { while (_first[_minimum] == -1) { Direction::increase(_minimum); } return _data[_first[_minimum]].item; } /// \brief The minimum priority. /// /// This function returns the minimum priority. /// \pre The heap must be non-empty. Prio prio() const { while (_first[_minimum] == -1) { Direction::increase(_minimum); } return _minimum; } /// \brief Remove the item having minimum priority. /// /// This function removes the item having minimum priority. /// \pre The heap must be non-empty. void pop() { while (_first[_minimum] == -1) { Direction::increase(_minimum); } int idx = _first[_minimum]; _iim[_data[idx].item] = -2; unlace(idx); relocate_last(idx); } /// \brief Remove the given item from the heap. /// /// This function removes the given item from the heap if it is /// already stored. /// \param i The item to delete. /// \pre \e i must be in the heap. void erase(const Item &i) { int idx = _iim[i]; _iim[_data[idx].item] = -2; unlace(idx); relocate_last(idx); } /// \brief The priority of the given item. /// /// This function returns the priority of the given item. /// \param i The item. /// \pre \e i must be in the heap. Prio operator[](const Item &i) const { int idx = _iim[i]; return _data[idx].value; } /// \brief Set the priority of an item or insert it, if it is /// not stored in the heap. /// /// This method sets the priority of the given item if it is /// already stored in the heap. Otherwise it inserts the given /// item into the heap with the given priority. /// \param i The item. /// \param p The priority. void set(const Item &i, const Prio &p) { int idx = _iim[i]; if (idx < 0) { push(i, p); } else if (Direction::less(p, _data[idx].value)) { decrease(i, p); } else { increase(i, p); } } /// \brief Decrease the priority of an item to the given value. /// /// This function decreases the priority of an item to the given value. /// \param i The item. /// \param p The priority. /// \pre \e i must be stored in the heap with priority at least \e p. void decrease(const Item &i, const Prio &p) { int idx = _iim[i]; unlace(idx); _data[idx].value = p; if (Direction::less(p, _minimum)) { _minimum = p; } lace(idx); } /// \brief Increase the priority of an item to the given value. /// /// This function increases the priority of an item to the given value. /// \param i The item. /// \param p The priority. /// \pre \e i must be stored in the heap with priority at most \e p. void increase(const Item &i, const Prio &p) { int idx = _iim[i]; unlace(idx); _data[idx].value = p; lace(idx); } /// \brief Return the state of an item. /// /// This method returns \c PRE_HEAP if the given item has never /// been in the heap, \c IN_HEAP if it is in the heap at the moment, /// and \c POST_HEAP otherwise. /// In the latter case it is possible that the item will get back /// to the heap again. /// \param i The item. State state(const Item &i) const { int idx = _iim[i]; if (idx >= 0) idx = 0; return State(idx); } /// \brief Set the state of an item in the heap. /// /// This function sets the state of the given item in the heap. /// It can be used to manually clear the heap when it is important /// to achive better time complexity. /// \param i The item. /// \param st The state. It should not be \c IN_HEAP. void state(const Item& i, State st) { switch (st) { case POST_HEAP: case PRE_HEAP: if (state(i) == IN_HEAP) { erase(i); } _iim[i] = st; break; case IN_HEAP: break; } } private: struct BucketItem { BucketItem(const Item& _item, int _value) : item(_item), value(_value) {} Item item; int value; int prev, next; }; ItemIntMap& _iim; std::vector _first; std::vector _data; mutable int _minimum; }; // class BucketHeap /// \ingroup heaps /// /// \brief Simplified bucket heap data structure. /// /// This class implements a simplified \e bucket \e heap data /// structure. It does not provide some functionality, but it is /// faster and simpler than BucketHeap. The main difference is /// that BucketHeap stores a doubly-linked list for each key while /// this class stores only simply-linked lists. It supports erasing /// only for the item having minimum priority and it does not support /// key increasing and decreasing. /// /// Note that this implementation does not conform to the /// \ref concepts::Heap "heap concept" due to the lack of some /// functionality. /// /// \tparam IM A read-writable item map with \c int values, used /// internally to handle the cross references. /// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. /// The default is \e min-heap. If this parameter is set to \c false, /// then the comparison is reversed, so the top(), prio() and pop() /// functions deal with the item having maximum priority instead of the /// minimum. /// /// \sa BucketHeap template class SimpleBucketHeap { public: /// Type of the item-int map. typedef IM ItemIntMap; /// Type of the priorities. typedef int Prio; /// Type of the items stored in the heap. typedef typename ItemIntMap::Key Item; /// Type of the item-priority pairs. typedef std::pair Pair; private: typedef _bucket_heap_bits::DirectionTraits Direction; public: /// \brief Type to represent the states of the items. /// /// Each item has a state associated to it. It can be "in heap", /// "pre-heap" or "post-heap". The latter two are indifferent from the /// heap's point of view, but may be useful to the user. /// /// The item-int map must be initialized in such way that it assigns /// \c PRE_HEAP (-1) to any element to be put in the heap. enum State { IN_HEAP = 0, ///< = 0. PRE_HEAP = -1, ///< = -1. POST_HEAP = -2 ///< = -2. }; public: /// \brief Constructor. /// /// Constructor. /// \param map A map that assigns \c int values to the items. /// It is used internally to handle the cross references. /// The assigned value must be \c PRE_HEAP (-1) for each item. explicit SimpleBucketHeap(ItemIntMap &map) : _iim(map), _free(-1), _num(0), _minimum(0) {} /// \brief The number of items stored in the heap. /// /// This function returns the number of items stored in the heap. int size() const { return _num; } /// \brief Check if the heap is empty. /// /// This function returns \c true if the heap is empty. bool empty() const { return _num == 0; } /// \brief Make the heap empty. /// /// This functon makes the heap empty. /// It does not change the cross reference map. If you want to reuse /// a heap that is not surely empty, you should first clear it and /// then you should set the cross reference map to \c PRE_HEAP /// for each item. void clear() { _data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; } /// \brief Insert a pair of item and priority into the heap. /// /// This function inserts \c p.first to the heap with priority /// \c p.second. /// \param p The pair to insert. /// \pre \c p.first must not be stored in the heap. void push(const Pair& p) { push(p.first, p.second); } /// \brief Insert an item into the heap with the given priority. /// /// This function inserts the given item into the heap with the /// given priority. /// \param i The item to insert. /// \param p The priority of the item. /// \pre \e i must not be stored in the heap. void push(const Item &i, const Prio &p) { int idx; if (_free == -1) { idx = _data.size(); _data.push_back(BucketItem(i)); } else { idx = _free; _free = _data[idx].next; _data[idx].item = i; } _iim[i] = idx; if (p >= int(_first.size())) _first.resize(p + 1, -1); _data[idx].next = _first[p]; _first[p] = idx; if (Direction::less(p, _minimum)) { _minimum = p; } ++_num; } /// \brief Return the item having minimum priority. /// /// This function returns the item having minimum priority. /// \pre The heap must be non-empty. Item top() const { while (_first[_minimum] == -1) { Direction::increase(_minimum); } return _data[_first[_minimum]].item; } /// \brief The minimum priority. /// /// This function returns the minimum priority. /// \pre The heap must be non-empty. Prio prio() const { while (_first[_minimum] == -1) { Direction::increase(_minimum); } return _minimum; } /// \brief Remove the item having minimum priority. /// /// This function removes the item having minimum priority. /// \pre The heap must be non-empty. void pop() { while (_first[_minimum] == -1) { Direction::increase(_minimum); } int idx = _first[_minimum]; _iim[_data[idx].item] = -2; _first[_minimum] = _data[idx].next; _data[idx].next = _free; _free = idx; --_num; } /// \brief The priority of the given item. /// /// This function returns the priority of the given item. /// \param i The item. /// \pre \e i must be in the heap. /// \warning This operator is not a constant time function because /// it scans the whole data structure to find the proper value. Prio operator[](const Item &i) const { for (int k = 0; k < int(_first.size()); ++k) { int idx = _first[k]; while (idx != -1) { if (_data[idx].item == i) { return k; } idx = _data[idx].next; } } return -1; } /// \brief Return the state of an item. /// /// This method returns \c PRE_HEAP if the given item has never /// been in the heap, \c IN_HEAP if it is in the heap at the moment, /// and \c POST_HEAP otherwise. /// In the latter case it is possible that the item will get back /// to the heap again. /// \param i The item. State state(const Item &i) const { int idx = _iim[i]; if (idx >= 0) idx = 0; return State(idx); } private: struct BucketItem { BucketItem(const Item& _item) : item(_item) {} Item item; int next; }; ItemIntMap& _iim; std::vector _first; std::vector _data; int _free, _num; mutable int _minimum; }; // class SimpleBucketHeap } #endif