Location: LEMON/LEMON-official/lemon/concepts/graph.h - annotation

Load file history
gravatar
alpar (Alpar Juttner)
Unify the sources (#339)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r964:141f9c0db4a3
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r576:f5bc148f7e1f
 r576:f5bc148f7e1f
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r220:a5d8c039f218
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r964:141f9c0db4a3
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r964:141f9c0db4a3
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r833:e20173729589
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r833:e20173729589
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r833:e20173729589
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r78:c46b3453455f
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r78:c46b3453455f
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r78:c46b3453455f
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r78:c46b3453455f
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r78:c46b3453455f
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r704:bf7928412136
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r704:bf7928412136
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r209:765619b7cbb2
 r781:bd72f8d20f33
 r964:141f9c0db4a3
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r704:bf7928412136
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r833:e20173729589
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r833:e20173729589
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r833:e20173729589
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r627:2313edd0db0b
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r263:be8a861d3bb7
  r57:c1acf0018c0a
 r627:2313edd0db0b
 r627:2313edd0db0b
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r627:2313edd0db0b
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r263:be8a861d3bb7
  r57:c1acf0018c0a
 r627:2313edd0db0b
 r627:2313edd0db0b
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r627:2313edd0db0b
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r263:be8a861d3bb7
  r57:c1acf0018c0a
 r627:2313edd0db0b
 r627:2313edd0db0b
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r833:e20173729589
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r606:c5fd2d996909
 r781:bd72f8d20f33
 r606:c5fd2d996909
 r833:e20173729589
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r61:d718974f1290
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r61:d718974f1290
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r61:d718974f1290
 r781:bd72f8d20f33
  r61:d718974f1290
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r61:d718974f1290
 r781:bd72f8d20f33
  r61:d718974f1290
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r61:d718974f1290
 r781:bd72f8d20f33
  r61:d718974f1290
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r61:d718974f1290
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r61:d718974f1290
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r61:d718974f1290
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
  r61:d718974f1290
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r209:765619b7cbb2
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r781:bd72f8d20f33
 r781:bd72f8d20f33
 r781:bd72f8d20f33
  r57:c1acf0018c0a
 r125:19e82bda606a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r627:2313edd0db0b
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2010
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

///\ingroup graph_concepts
///\file
///\brief The concept of undirected graphs.

#ifndef LEMON_CONCEPTS_GRAPH_H
#define LEMON_CONCEPTS_GRAPH_H

#include <lemon/concepts/graph_components.h>
#include <lemon/concepts/maps.h>
#include <lemon/concept_check.h>
#include <lemon/core.h>

namespace lemon {
  namespace concepts {

    /// \ingroup graph_concepts
    ///
    /// \brief Class describing the concept of undirected graphs.
    ///
    /// This class describes the common interface of all undirected
    /// graphs.
    ///
    /// Like all concept classes, it only provides an interface
    /// without any sensible implementation. So any general algorithm for
    /// undirected graphs should compile with this class, but it will not
    /// run properly, of course.
    /// An actual graph implementation like \ref ListGraph or
    /// \ref SmartGraph may have additional functionality.
    ///
    /// The undirected graphs also fulfill the concept of \ref Digraph
    /// "directed graphs", since each edge can also be regarded as two
    /// oppositely directed arcs.
    /// Undirected graphs provide an Edge type for the undirected edges and
    /// an Arc type for the directed arcs. The Arc type is convertible to
    /// Edge or inherited from it, i.e. the corresponding edge can be
    /// obtained from an arc.
    /// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt
    /// and ArcMap classes can be used for the arcs (just like in digraphs).
    /// Both InArcIt and OutArcIt iterates on the same edges but with
    /// opposite direction. IncEdgeIt also iterates on the same edges
    /// as OutArcIt and InArcIt, but it is not convertible to Arc,
    /// only to Edge.
    ///
    /// In LEMON, each undirected edge has an inherent orientation.
    /// Thus it can defined if an arc is forward or backward oriented in
    /// an undirected graph with respect to this default oriantation of
    /// the represented edge.
    /// With the direction() and direct() functions the direction
    /// of an arc can be obtained and set, respectively.
    ///
    /// Only nodes and edges can be added to or removed from an undirected
    /// graph and the corresponding arcs are added or removed automatically.
    ///
    /// \sa Digraph
    class Graph {
    private:
      /// Graphs are \e not copy constructible. Use DigraphCopy instead.
      Graph(const Graph&) {}
      /// \brief Assignment of a graph to another one is \e not allowed.
      /// Use DigraphCopy instead.
      void operator=(const Graph&) {}

    public:
      /// Default constructor.
      Graph() {}

      /// \brief Undirected graphs should be tagged with \c UndirectedTag.
      ///
      /// Undirected graphs should be tagged with \c UndirectedTag.
      ///
      /// This tag helps the \c enable_if technics to make compile time
      /// specializations for undirected graphs.
      typedef True UndirectedTag;

      /// The node type of the graph

      /// This class identifies a node of the graph. It also serves
      /// as a base class of the node iterators,
      /// thus they convert to this type.
      class Node {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the object to an undefined value.
        Node() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        Node(const Node&) { }

        /// %Invalid constructor \& conversion.

        /// Initializes the object to be invalid.
        /// \sa Invalid for more details.
        Node(Invalid) { }
        /// Equality operator

        /// Equality operator.
        ///
        /// Two iterators are equal if and only if they point to the
        /// same object or both are \c INVALID.
        bool operator==(Node) const { return true; }

        /// Inequality operator

        /// Inequality operator.
        bool operator!=(Node) const { return true; }

        /// Artificial ordering operator.

        /// Artificial ordering operator.
        ///
        /// \note This operator only has to define some strict ordering of
        /// the items; this order has nothing to do with the iteration
        /// ordering of the items.
        bool operator<(Node) const { return false; }

      };

      /// Iterator class for the nodes.

      /// This iterator goes through each node of the graph.
      /// Its usage is quite simple, for example, you can count the number
      /// of nodes in a graph \c g of type \c %Graph like this:
      ///\code
      /// int count=0;
      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
      ///\endcode
      class NodeIt : public Node {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        NodeIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        NodeIt(const NodeIt& n) : Node(n) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        NodeIt(Invalid) { }
        /// Sets the iterator to the first node.

        /// Sets the iterator to the first node of the given digraph.
        ///
        explicit NodeIt(const Graph&) { }
        /// Sets the iterator to the given node.

        /// Sets the iterator to the given node of the given digraph.
        ///
        NodeIt(const Graph&, const Node&) { }
        /// Next node.

        /// Assign the iterator to the next node.
        ///
        NodeIt& operator++() { return *this; }
      };


      /// The edge type of the graph

      /// This class identifies an edge of the graph. It also serves
      /// as a base class of the edge iterators,
      /// thus they will convert to this type.
      class Edge {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the object to an undefined value.
        Edge() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        Edge(const Edge&) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the object to be invalid.
        /// \sa Invalid for more details.
        Edge(Invalid) { }
        /// Equality operator

        /// Equality operator.
        ///
        /// Two iterators are equal if and only if they point to the
        /// same object or both are \c INVALID.
        bool operator==(Edge) const { return true; }
        /// Inequality operator

        /// Inequality operator.
        bool operator!=(Edge) const { return true; }

        /// Artificial ordering operator.

        /// Artificial ordering operator.
        ///
        /// \note This operator only has to define some strict ordering of
        /// the edges; this order has nothing to do with the iteration
        /// ordering of the edges.
        bool operator<(Edge) const { return false; }
      };

      /// Iterator class for the edges.

      /// This iterator goes through each edge of the graph.
      /// Its usage is quite simple, for example, you can count the number
      /// of edges in a graph \c g of type \c %Graph as follows:
      ///\code
      /// int count=0;
      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
      ///\endcode
      class EdgeIt : public Edge {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        EdgeIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        EdgeIt(const EdgeIt& e) : Edge(e) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        EdgeIt(Invalid) { }
        /// Sets the iterator to the first edge.

        /// Sets the iterator to the first edge of the given graph.
        ///
        explicit EdgeIt(const Graph&) { }
        /// Sets the iterator to the given edge.

        /// Sets the iterator to the given edge of the given graph.
        ///
        EdgeIt(const Graph&, const Edge&) { }
        /// Next edge

        /// Assign the iterator to the next edge.
        ///
        EdgeIt& operator++() { return *this; }
      };

      /// Iterator class for the incident edges of a node.

      /// This iterator goes trough the incident undirected edges
      /// of a certain node of a graph.
      /// Its usage is quite simple, for example, you can compute the
      /// degree (i.e. the number of incident edges) of a node \c n
      /// in a graph \c g of type \c %Graph as follows.
      ///
      ///\code
      /// int count=0;
      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
      ///\endcode
      ///
      /// \warning Loop edges will be iterated twice.
      class IncEdgeIt : public Edge {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        IncEdgeIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        IncEdgeIt(Invalid) { }
        /// Sets the iterator to the first incident edge.

        /// Sets the iterator to the first incident edge of the given node.
        ///
        IncEdgeIt(const Graph&, const Node&) { }
        /// Sets the iterator to the given edge.

        /// Sets the iterator to the given edge of the given graph.
        ///
        IncEdgeIt(const Graph&, const Edge&) { }
        /// Next incident edge

        /// Assign the iterator to the next incident edge
        /// of the corresponding node.
        IncEdgeIt& operator++() { return *this; }
      };

      /// The arc type of the graph

      /// This class identifies a directed arc of the graph. It also serves
      /// as a base class of the arc iterators,
      /// thus they will convert to this type.
      class Arc {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the object to an undefined value.
        Arc() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        Arc(const Arc&) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the object to be invalid.
        /// \sa Invalid for more details.
        Arc(Invalid) { }
        /// Equality operator

        /// Equality operator.
        ///
        /// Two iterators are equal if and only if they point to the
        /// same object or both are \c INVALID.
        bool operator==(Arc) const { return true; }
        /// Inequality operator

        /// Inequality operator.
        bool operator!=(Arc) const { return true; }

        /// Artificial ordering operator.

        /// Artificial ordering operator.
        ///
        /// \note This operator only has to define some strict ordering of
        /// the arcs; this order has nothing to do with the iteration
        /// ordering of the arcs.
        bool operator<(Arc) const { return false; }

        /// Converison to \c Edge

        /// Converison to \c Edge.
        ///
        operator Edge() const { return Edge(); }
      };

      /// Iterator class for the arcs.

      /// This iterator goes through each directed arc of the graph.
      /// Its usage is quite simple, for example, you can count the number
      /// of arcs in a graph \c g of type \c %Graph as follows:
      ///\code
      /// int count=0;
      /// for(Graph::ArcIt a(g); a!=INVALID; ++a) ++count;
      ///\endcode
      class ArcIt : public Arc {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        ArcIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        ArcIt(const ArcIt& e) : Arc(e) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        ArcIt(Invalid) { }
        /// Sets the iterator to the first arc.

        /// Sets the iterator to the first arc of the given graph.
        ///
        explicit ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
        /// Sets the iterator to the given arc.

        /// Sets the iterator to the given arc of the given graph.
        ///
        ArcIt(const Graph&, const Arc&) { }
        /// Next arc

        /// Assign the iterator to the next arc.
        ///
        ArcIt& operator++() { return *this; }
      };

      /// Iterator class for the outgoing arcs of a node.

      /// This iterator goes trough the \e outgoing directed arcs of a
      /// certain node of a graph.
      /// Its usage is quite simple, for example, you can count the number
      /// of outgoing arcs of a node \c n
      /// in a graph \c g of type \c %Graph as follows.
      ///\code
      /// int count=0;
      /// for (Digraph::OutArcIt a(g, n); a!=INVALID; ++a) ++count;
      ///\endcode
      class OutArcIt : public Arc {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        OutArcIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        OutArcIt(const OutArcIt& e) : Arc(e) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        OutArcIt(Invalid) { }
        /// Sets the iterator to the first outgoing arc.

        /// Sets the iterator to the first outgoing arc of the given node.
        ///
        OutArcIt(const Graph& n, const Node& g) {
          ignore_unused_variable_warning(n);
          ignore_unused_variable_warning(g);
        }
        /// Sets the iterator to the given arc.

        /// Sets the iterator to the given arc of the given graph.
        ///
        OutArcIt(const Graph&, const Arc&) { }
        /// Next outgoing arc

        /// Assign the iterator to the next
        /// outgoing arc of the corresponding node.
        OutArcIt& operator++() { return *this; }
      };

      /// Iterator class for the incoming arcs of a node.

      /// This iterator goes trough the \e incoming directed arcs of a
      /// certain node of a graph.
      /// Its usage is quite simple, for example, you can count the number
      /// of incoming arcs of a node \c n
      /// in a graph \c g of type \c %Graph as follows.
      ///\code
      /// int count=0;
      /// for (Digraph::InArcIt a(g, n); a!=INVALID; ++a) ++count;
      ///\endcode
      class InArcIt : public Arc {
      public:
        /// Default constructor

        /// Default constructor.
        /// \warning It sets the iterator to an undefined value.
        InArcIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        InArcIt(const InArcIt& e) : Arc(e) { }
        /// %Invalid constructor \& conversion.

        /// Initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        InArcIt(Invalid) { }
        /// Sets the iterator to the first incoming arc.

        /// Sets the iterator to the first incoming arc of the given node.
        ///
        InArcIt(const Graph& g, const Node& n) {
          ignore_unused_variable_warning(n);
          ignore_unused_variable_warning(g);
        }
        /// Sets the iterator to the given arc.

        /// Sets the iterator to the given arc of the given graph.
        ///
        InArcIt(const Graph&, const Arc&) { }
        /// Next incoming arc

        /// Assign the iterator to the next
        /// incoming arc of the corresponding node.
        InArcIt& operator++() { return *this; }
      };

      /// \brief Standard graph map type for the nodes.
      ///
      /// Standard graph map type for the nodes.
      /// It conforms to the ReferenceMap concept.
      template<class T>
      class NodeMap : public ReferenceMap<Node, T, T&, const T&>
      {
      public:

        /// Constructor
        explicit NodeMap(const Graph&) { }
        /// Constructor with given initial value
        NodeMap(const Graph&, T) { }

      private:
        ///Copy constructor
        NodeMap(const NodeMap& nm) :
          ReferenceMap<Node, T, T&, const T&>(nm) { }
        ///Assignment operator
        template <typename CMap>
        NodeMap& operator=(const CMap&) {
          checkConcept<ReadMap<Node, T>, CMap>();
          return *this;
        }
      };

      /// \brief Standard graph map type for the arcs.
      ///
      /// Standard graph map type for the arcs.
      /// It conforms to the ReferenceMap concept.
      template<class T>
      class ArcMap : public ReferenceMap<Arc, T, T&, const T&>
      {
      public:

        /// Constructor
        explicit ArcMap(const Graph&) { }
        /// Constructor with given initial value
        ArcMap(const Graph&, T) { }

      private:
        ///Copy constructor
        ArcMap(const ArcMap& em) :
          ReferenceMap<Arc, T, T&, const T&>(em) { }
        ///Assignment operator
        template <typename CMap>
        ArcMap& operator=(const CMap&) {
          checkConcept<ReadMap<Arc, T>, CMap>();
          return *this;
        }
      };

      /// \brief Standard graph map type for the edges.
      ///
      /// Standard graph map type for the edges.
      /// It conforms to the ReferenceMap concept.
      template<class T>
      class EdgeMap : public ReferenceMap<Edge, T, T&, const T&>
      {
      public:

        /// Constructor
        explicit EdgeMap(const Graph&) { }
        /// Constructor with given initial value
        EdgeMap(const Graph&, T) { }

      private:
        ///Copy constructor
        EdgeMap(const EdgeMap& em) :
          ReferenceMap<Edge, T, T&, const T&>(em) {}
        ///Assignment operator
        template <typename CMap>
        EdgeMap& operator=(const CMap&) {
          checkConcept<ReadMap<Edge, T>, CMap>();
          return *this;
        }
      };

      /// \brief The first node of the edge.
      ///
      /// Returns the first node of the given edge.
      ///
      /// Edges don't have source and target nodes, however, methods
      /// u() and v() are used to query the two end-nodes of an edge.
      /// The orientation of an edge that arises this way is called
      /// the inherent direction, it is used to define the default
      /// direction for the corresponding arcs.
      /// \sa v()
      /// \sa direction()
      Node u(Edge) const { return INVALID; }

      /// \brief The second node of the edge.
      ///
      /// Returns the second node of the given edge.
      ///
      /// Edges don't have source and target nodes, however, methods
      /// u() and v() are used to query the two end-nodes of an edge.
      /// The orientation of an edge that arises this way is called
      /// the inherent direction, it is used to define the default
      /// direction for the corresponding arcs.
      /// \sa u()
      /// \sa direction()
      Node v(Edge) const { return INVALID; }

      /// \brief The source node of the arc.
      ///
      /// Returns the source node of the given arc.
      Node source(Arc) const { return INVALID; }

      /// \brief The target node of the arc.
      ///
      /// Returns the target node of the given arc.
      Node target(Arc) const { return INVALID; }

      /// \brief The ID of the node.
      ///
      /// Returns the ID of the given node.
      int id(Node) const { return -1; }

      /// \brief The ID of the edge.
      ///
      /// Returns the ID of the given edge.
      int id(Edge) const { return -1; }

      /// \brief The ID of the arc.
      ///
      /// Returns the ID of the given arc.
      int id(Arc) const { return -1; }

      /// \brief The node with the given ID.
      ///
      /// Returns the node with the given ID.
      /// \pre The argument should be a valid node ID in the graph.
      Node nodeFromId(int) const { return INVALID; }

      /// \brief The edge with the given ID.
      ///
      /// Returns the edge with the given ID.
      /// \pre The argument should be a valid edge ID in the graph.
      Edge edgeFromId(int) const { return INVALID; }

      /// \brief The arc with the given ID.
      ///
      /// Returns the arc with the given ID.
      /// \pre The argument should be a valid arc ID in the graph.
      Arc arcFromId(int) const { return INVALID; }

      /// \brief An upper bound on the node IDs.
      ///
      /// Returns an upper bound on the node IDs.
      int maxNodeId() const { return -1; }

      /// \brief An upper bound on the edge IDs.
      ///
      /// Returns an upper bound on the edge IDs.
      int maxEdgeId() const { return -1; }

      /// \brief An upper bound on the arc IDs.
      ///
      /// Returns an upper bound on the arc IDs.
      int maxArcId() const { return -1; }

      /// \brief The direction of the arc.
      ///
      /// Returns \c true if the direction of the given arc is the same as
      /// the inherent orientation of the represented edge.
      bool direction(Arc) const { return true; }

      /// \brief Direct the edge.
      ///
      /// Direct the given edge. The returned arc
      /// represents the given edge and its direction comes
      /// from the bool parameter. If it is \c true, then the direction
      /// of the arc is the same as the inherent orientation of the edge.
      Arc direct(Edge, bool) const {
        return INVALID;
      }

      /// \brief Direct the edge.
      ///
      /// Direct the given edge. The returned arc represents the given
      /// edge and its source node is the given node.
      Arc direct(Edge, Node) const {
        return INVALID;
      }

      /// \brief The oppositely directed arc.
      ///
      /// Returns the oppositely directed arc representing the same edge.
      Arc oppositeArc(Arc) const { return INVALID; }

      /// \brief The opposite node on the edge.
      ///
      /// Returns the opposite node on the given edge.
      Node oppositeNode(Node, Edge) const { return INVALID; }

      void first(Node&) const {}
      void next(Node&) const {}

      void first(Edge&) const {}
      void next(Edge&) const {}

      void first(Arc&) const {}
      void next(Arc&) const {}

      void firstOut(Arc&, Node) const {}
      void nextOut(Arc&) const {}

      void firstIn(Arc&, Node) const {}
      void nextIn(Arc&) const {}

      void firstInc(Edge &, bool &, const Node &) const {}
      void nextInc(Edge &, bool &) const {}

      // The second parameter is dummy.
      Node fromId(int, Node) const { return INVALID; }
      // The second parameter is dummy.
      Edge fromId(int, Edge) const { return INVALID; }
      // The second parameter is dummy.
      Arc fromId(int, Arc) const { return INVALID; }

      // Dummy parameter.
      int maxId(Node) const { return -1; }
      // Dummy parameter.
      int maxId(Edge) const { return -1; }
      // Dummy parameter.
      int maxId(Arc) const { return -1; }

      /// \brief The base node of the iterator.
      ///
      /// Returns the base node of the given incident edge iterator.
      Node baseNode(IncEdgeIt) const { return INVALID; }

      /// \brief The running node of the iterator.
      ///
      /// Returns the running node of the given incident edge iterator.
      Node runningNode(IncEdgeIt) const { return INVALID; }

      /// \brief The base node of the iterator.
      ///
      /// Returns the base node of the given outgoing arc iterator
      /// (i.e. the source node of the corresponding arc).
      Node baseNode(OutArcIt) const { return INVALID; }

      /// \brief The running node of the iterator.
      ///
      /// Returns the running node of the given outgoing arc iterator
      /// (i.e. the target node of the corresponding arc).
      Node runningNode(OutArcIt) const { return INVALID; }

      /// \brief The base node of the iterator.
      ///
      /// Returns the base node of the given incomming arc iterator
      /// (i.e. the target node of the corresponding arc).
      Node baseNode(InArcIt) const { return INVALID; }

      /// \brief The running node of the iterator.
      ///
      /// Returns the running node of the given incomming arc iterator
      /// (i.e. the source node of the corresponding arc).
      Node runningNode(InArcIt) const { return INVALID; }

      template <typename _Graph>
      struct Constraints {
        void constraints() {
          checkConcept<BaseGraphComponent, _Graph>();
          checkConcept<IterableGraphComponent<>, _Graph>();
          checkConcept<IDableGraphComponent<>, _Graph>();
          checkConcept<MappableGraphComponent<>, _Graph>();
        }
      };

    };

  }

}

#endif