Location: LEMON/LEMON-official/tools/lgf-gen.cc - annotation
Load file history
Standard graph maps are required to be reference maps (#190)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 | r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r617:ab6da8cf5ab2 r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r571:06e0fb20a97c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r571:06e0fb20a97c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c r570:d9e43511d11c | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
/// \ingroup tools
/// \file
/// \brief Special plane digraph generator.
///
/// Graph generator application for various types of plane graphs.
///
/// See
/// \verbatim
/// lgf-gen --help
/// \endverbatim
/// for more info on the usage.
///
#include <algorithm>
#include <set>
#include <ctime>
#include <lemon/list_graph.h>
#include <lemon/random.h>
#include <lemon/dim2.h>
#include <lemon/bfs.h>
#include <lemon/counter.h>
#include <lemon/suurballe.h>
#include <lemon/graph_to_eps.h>
#include <lemon/lgf_writer.h>
#include <lemon/arg_parser.h>
#include <lemon/euler.h>
#include <lemon/math.h>
#include <lemon/kruskal.h>
#include <lemon/time_measure.h>
using namespace lemon;
typedef dim2::Point<double> Point;
GRAPH_TYPEDEFS(ListGraph);
bool progress=true;
int N;
// int girth;
ListGraph g;
std::vector<Node> nodes;
ListGraph::NodeMap<Point> coords(g);
double totalLen(){
double tlen=0;
for(EdgeIt e(g);e!=INVALID;++e)
tlen+=sqrt((coords[g.v(e)]-coords[g.u(e)]).normSquare());
return tlen;
}
int tsp_impr_num=0;
const double EPSILON=1e-8;
bool tsp_improve(Node u, Node v)
{
double luv=std::sqrt((coords[v]-coords[u]).normSquare());
Node u2=u;
Node v2=v;
do {
Node n;
for(IncEdgeIt e(g,v2);(n=g.runningNode(e))==u2;++e) { }
u2=v2;
v2=n;
if(luv+std::sqrt((coords[v2]-coords[u2]).normSquare())-EPSILON>
std::sqrt((coords[u]-coords[u2]).normSquare())+
std::sqrt((coords[v]-coords[v2]).normSquare()))
{
g.erase(findEdge(g,u,v));
g.erase(findEdge(g,u2,v2));
g.addEdge(u2,u);
g.addEdge(v,v2);
tsp_impr_num++;
return true;
}
} while(v2!=u);
return false;
}
bool tsp_improve(Node u)
{
for(IncEdgeIt e(g,u);e!=INVALID;++e)
if(tsp_improve(u,g.runningNode(e))) return true;
return false;
}
void tsp_improve()
{
bool b;
do {
b=false;
for(NodeIt n(g);n!=INVALID;++n)
if(tsp_improve(n)) b=true;
} while(b);
}
void tsp()
{
for(int i=0;i<N;i++) g.addEdge(nodes[i],nodes[(i+1)%N]);
tsp_improve();
}
class Line
{
public:
Point a;
Point b;
Line(Point _a,Point _b) :a(_a),b(_b) {}
Line(Node _a,Node _b) : a(coords[_a]),b(coords[_b]) {}
Line(const Arc &e) : a(coords[g.source(e)]),b(coords[g.target(e)]) {}
Line(const Edge &e) : a(coords[g.u(e)]),b(coords[g.v(e)]) {}
};
inline std::ostream& operator<<(std::ostream &os, const Line &l)
{
os << l.a << "->" << l.b;
return os;
}
bool cross(Line a, Line b)
{
Point ao=rot90(a.b-a.a);
Point bo=rot90(b.b-b.a);
return (ao*(b.a-a.a))*(ao*(b.b-a.a))<0 &&
(bo*(a.a-b.a))*(bo*(a.b-b.a))<0;
}
struct Parc
{
Node a;
Node b;
double len;
};
bool pedgeLess(Parc a,Parc b)
{
return a.len<b.len;
}
std::vector<Edge> arcs;
namespace _delaunay_bits {
struct Part {
int prev, curr, next;
Part(int p, int c, int n) : prev(p), curr(c), next(n) {}
};
inline std::ostream& operator<<(std::ostream& os, const Part& part) {
os << '(' << part.prev << ',' << part.curr << ',' << part.next << ')';
return os;
}
inline double circle_point(const Point& p, const Point& q, const Point& r) {
double a = p.x * (q.y - r.y) + q.x * (r.y - p.y) + r.x * (p.y - q.y);
if (a == 0) return std::numeric_limits<double>::quiet_NaN();
double d = (p.x * p.x + p.y * p.y) * (q.y - r.y) +
(q.x * q.x + q.y * q.y) * (r.y - p.y) +
(r.x * r.x + r.y * r.y) * (p.y - q.y);
double e = (p.x * p.x + p.y * p.y) * (q.x - r.x) +
(q.x * q.x + q.y * q.y) * (r.x - p.x) +
(r.x * r.x + r.y * r.y) * (p.x - q.x);
double f = (p.x * p.x + p.y * p.y) * (q.x * r.y - r.x * q.y) +
(q.x * q.x + q.y * q.y) * (r.x * p.y - p.x * r.y) +
(r.x * r.x + r.y * r.y) * (p.x * q.y - q.x * p.y);
return d / (2 * a) + sqrt((d * d + e * e) / (4 * a * a) + f / a);
}
inline bool circle_form(const Point& p, const Point& q, const Point& r) {
return rot90(q - p) * (r - q) < 0.0;
}
inline double intersection(const Point& p, const Point& q, double sx) {
const double epsilon = 1e-8;
if (p.x == q.x) return (p.y + q.y) / 2.0;
if (sx < p.x + epsilon) return p.y;
if (sx < q.x + epsilon) return q.y;
double a = q.x - p.x;
double b = (q.x - sx) * p.y - (p.x - sx) * q.y;
double d = (q.x - sx) * (p.x - sx) * (p - q).normSquare();
return (b - sqrt(d)) / a;
}
struct YLess {
YLess(const std::vector<Point>& points, double& sweep)
: _points(points), _sweep(sweep) {}
bool operator()(const Part& l, const Part& r) const {
const double epsilon = 1e-8;
// std::cerr << l << " vs " << r << std::endl;
double lbx = l.prev != -1 ?
intersection(_points[l.prev], _points[l.curr], _sweep) :
- std::numeric_limits<double>::infinity();
double rbx = r.prev != -1 ?
intersection(_points[r.prev], _points[r.curr], _sweep) :
- std::numeric_limits<double>::infinity();
double lex = l.next != -1 ?
intersection(_points[l.curr], _points[l.next], _sweep) :
std::numeric_limits<double>::infinity();
double rex = r.next != -1 ?
intersection(_points[r.curr], _points[r.next], _sweep) :
std::numeric_limits<double>::infinity();
if (lbx > lex) std::swap(lbx, lex);
if (rbx > rex) std::swap(rbx, rex);
if (lex < epsilon + rex && lbx + epsilon < rex) return true;
if (rex < epsilon + lex && rbx + epsilon < lex) return false;
return lex < rex;
}
const std::vector<Point>& _points;
double& _sweep;
};
struct BeachIt;
typedef std::multimap<double, BeachIt> SpikeHeap;
typedef std::multimap<Part, SpikeHeap::iterator, YLess> Beach;
struct BeachIt {
Beach::iterator it;
BeachIt(Beach::iterator iter) : it(iter) {}
};
}
inline void delaunay() {
Counter cnt("Number of arcs added: ");
using namespace _delaunay_bits;
typedef _delaunay_bits::Part Part;
typedef std::vector<std::pair<double, int> > SiteHeap;
std::vector<Point> points;
std::vector<Node> nodes;
for (NodeIt it(g); it != INVALID; ++it) {
nodes.push_back(it);
points.push_back(coords[it]);
}
SiteHeap siteheap(points.size());
double sweep;
for (int i = 0; i < int(siteheap.size()); ++i) {
siteheap[i] = std::make_pair(points[i].x, i);
}
std::sort(siteheap.begin(), siteheap.end());
sweep = siteheap.front().first;
YLess yless(points, sweep);
Beach beach(yless);
SpikeHeap spikeheap;
std::set<std::pair<int, int> > arcs;
int siteindex = 0;
{
SiteHeap front;
while (siteindex < int(siteheap.size()) &&
siteheap[0].first == siteheap[siteindex].first) {
front.push_back(std::make_pair(points[siteheap[siteindex].second].y,
siteheap[siteindex].second));
++siteindex;
}
std::sort(front.begin(), front.end());
for (int i = 0; i < int(front.size()); ++i) {
int prev = (i == 0 ? -1 : front[i - 1].second);
int curr = front[i].second;
int next = (i + 1 == int(front.size()) ? -1 : front[i + 1].second);
beach.insert(std::make_pair(Part(prev, curr, next),
spikeheap.end()));
}
}
while (siteindex < int(points.size()) || !spikeheap.empty()) {
SpikeHeap::iterator spit = spikeheap.begin();
if (siteindex < int(points.size()) &&
(spit == spikeheap.end() || siteheap[siteindex].first < spit->first)) {
int site = siteheap[siteindex].second;
sweep = siteheap[siteindex].first;
Beach::iterator bit = beach.upper_bound(Part(site, site, site));
if (bit->second != spikeheap.end()) {
spikeheap.erase(bit->second);
}
int prev = bit->first.prev;
int curr = bit->first.curr;
int next = bit->first.next;
beach.erase(bit);
SpikeHeap::iterator pit = spikeheap.end();
if (prev != -1 &&
circle_form(points[prev], points[curr], points[site])) {
double x = circle_point(points[prev], points[curr], points[site]);
pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
pit->second.it =
beach.insert(std::make_pair(Part(prev, curr, site), pit));
} else {
beach.insert(std::make_pair(Part(prev, curr, site), pit));
}
beach.insert(std::make_pair(Part(curr, site, curr), spikeheap.end()));
SpikeHeap::iterator nit = spikeheap.end();
if (next != -1 &&
circle_form(points[site], points[curr],points[next])) {
double x = circle_point(points[site], points[curr], points[next]);
nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
nit->second.it =
beach.insert(std::make_pair(Part(site, curr, next), nit));
} else {
beach.insert(std::make_pair(Part(site, curr, next), nit));
}
++siteindex;
} else {
sweep = spit->first;
Beach::iterator bit = spit->second.it;
int prev = bit->first.prev;
int curr = bit->first.curr;
int next = bit->first.next;
{
std::pair<int, int> arc;
arc = prev < curr ?
std::make_pair(prev, curr) : std::make_pair(curr, prev);
if (arcs.find(arc) == arcs.end()) {
arcs.insert(arc);
g.addEdge(nodes[prev], nodes[curr]);
++cnt;
}
arc = curr < next ?
std::make_pair(curr, next) : std::make_pair(next, curr);
if (arcs.find(arc) == arcs.end()) {
arcs.insert(arc);
g.addEdge(nodes[curr], nodes[next]);
++cnt;
}
}
Beach::iterator pbit = bit; --pbit;
int ppv = pbit->first.prev;
Beach::iterator nbit = bit; ++nbit;
int nnt = nbit->first.next;
if (bit->second != spikeheap.end()) spikeheap.erase(bit->second);
if (pbit->second != spikeheap.end()) spikeheap.erase(pbit->second);
if (nbit->second != spikeheap.end()) spikeheap.erase(nbit->second);
beach.erase(nbit);
beach.erase(bit);
beach.erase(pbit);
SpikeHeap::iterator pit = spikeheap.end();
if (ppv != -1 && ppv != next &&
circle_form(points[ppv], points[prev], points[next])) {
double x = circle_point(points[ppv], points[prev], points[next]);
if (x < sweep) x = sweep;
pit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
pit->second.it =
beach.insert(std::make_pair(Part(ppv, prev, next), pit));
} else {
beach.insert(std::make_pair(Part(ppv, prev, next), pit));
}
SpikeHeap::iterator nit = spikeheap.end();
if (nnt != -1 && prev != nnt &&
circle_form(points[prev], points[next], points[nnt])) {
double x = circle_point(points[prev], points[next], points[nnt]);
if (x < sweep) x = sweep;
nit = spikeheap.insert(std::make_pair(x, BeachIt(beach.end())));
nit->second.it =
beach.insert(std::make_pair(Part(prev, next, nnt), nit));
} else {
beach.insert(std::make_pair(Part(prev, next, nnt), nit));
}
}
}
for (Beach::iterator it = beach.begin(); it != beach.end(); ++it) {
int curr = it->first.curr;
int next = it->first.next;
if (next == -1) continue;
std::pair<int, int> arc;
arc = curr < next ?
std::make_pair(curr, next) : std::make_pair(next, curr);
if (arcs.find(arc) == arcs.end()) {
arcs.insert(arc);
g.addEdge(nodes[curr], nodes[next]);
++cnt;
}
}
}
void sparse(int d)
{
Counter cnt("Number of arcs removed: ");
Bfs<ListGraph> bfs(g);
for(std::vector<Edge>::reverse_iterator ei=arcs.rbegin();
ei!=arcs.rend();++ei)
{
Node a=g.u(*ei);
Node b=g.v(*ei);
g.erase(*ei);
bfs.run(a,b);
if(bfs.predArc(b)==INVALID || bfs.dist(b)>d)
g.addEdge(a,b);
else cnt++;
}
}
void sparse2(int d)
{
Counter cnt("Number of arcs removed: ");
for(std::vector<Edge>::reverse_iterator ei=arcs.rbegin();
ei!=arcs.rend();++ei)
{
Node a=g.u(*ei);
Node b=g.v(*ei);
g.erase(*ei);
ConstMap<Arc,int> cegy(1);
Suurballe<ListGraph,ConstMap<Arc,int> > sur(g,cegy,a,b);
int k=sur.run(2);
if(k<2 || sur.totalLength()>d)
g.addEdge(a,b);
else cnt++;
// else std::cout << "Remove arc " << g.id(a) << "-" << g.id(b) << '\n';
}
}
void sparseTriangle(int d)
{
Counter cnt("Number of arcs added: ");
std::vector<Parc> pedges;
for(NodeIt n(g);n!=INVALID;++n)
for(NodeIt m=++(NodeIt(n));m!=INVALID;++m)
{
Parc p;
p.a=n;
p.b=m;
p.len=(coords[m]-coords[n]).normSquare();
pedges.push_back(p);
}
std::sort(pedges.begin(),pedges.end(),pedgeLess);
for(std::vector<Parc>::iterator pi=pedges.begin();pi!=pedges.end();++pi)
{
Line li(pi->a,pi->b);
EdgeIt e(g);
for(;e!=INVALID && !cross(e,li);++e) ;
Edge ne;
if(e==INVALID) {
ConstMap<Arc,int> cegy(1);
Suurballe<ListGraph,ConstMap<Arc,int> >
sur(g,cegy,pi->a,pi->b);
int k=sur.run(2);
if(k<2 || sur.totalLength()>d)
{
ne=g.addEdge(pi->a,pi->b);
arcs.push_back(ne);
cnt++;
}
}
}
}
template <typename Graph, typename CoordMap>
class LengthSquareMap {
public:
typedef typename Graph::Edge Key;
typedef typename CoordMap::Value::Value Value;
LengthSquareMap(const Graph& graph, const CoordMap& coords)
: _graph(graph), _coords(coords) {}
Value operator[](const Key& key) const {
return (_coords[_graph.v(key)] -
_coords[_graph.u(key)]).normSquare();
}
private:
const Graph& _graph;
const CoordMap& _coords;
};
void minTree() {
std::vector<Parc> pedges;
Timer T;
std::cout << T.realTime() << "s: Creating delaunay triangulation...\n";
delaunay();
std::cout << T.realTime() << "s: Calculating spanning tree...\n";
LengthSquareMap<ListGraph, ListGraph::NodeMap<Point> > ls(g, coords);
ListGraph::EdgeMap<bool> tree(g);
kruskal(g, ls, tree);
std::cout << T.realTime() << "s: Removing non tree arcs...\n";
std::vector<Edge> remove;
for (EdgeIt e(g); e != INVALID; ++e) {
if (!tree[e]) remove.push_back(e);
}
for(int i = 0; i < int(remove.size()); ++i) {
g.erase(remove[i]);
}
std::cout << T.realTime() << "s: Done\n";
}
void tsp2()
{
std::cout << "Find a tree..." << std::endl;
minTree();
std::cout << "Total arc length (tree) : " << totalLen() << std::endl;
std::cout << "Make it Euler..." << std::endl;
{
std::vector<Node> leafs;
for(NodeIt n(g);n!=INVALID;++n)
if(countIncEdges(g,n)%2==1) leafs.push_back(n);
// for(unsigned int i=0;i<leafs.size();i+=2)
// g.addArc(leafs[i],leafs[i+1]);
std::vector<Parc> pedges;
for(unsigned int i=0;i<leafs.size()-1;i++)
for(unsigned int j=i+1;j<leafs.size();j++)
{
Node n=leafs[i];
Node m=leafs[j];
Parc p;
p.a=n;
p.b=m;
p.len=(coords[m]-coords[n]).normSquare();
pedges.push_back(p);
}
std::sort(pedges.begin(),pedges.end(),pedgeLess);
for(unsigned int i=0;i<pedges.size();i++)
if(countIncEdges(g,pedges[i].a)%2 &&
countIncEdges(g,pedges[i].b)%2)
g.addEdge(pedges[i].a,pedges[i].b);
}
for(NodeIt n(g);n!=INVALID;++n)
if(countIncEdges(g,n)%2 || countIncEdges(g,n)==0 )
std::cout << "GEBASZ!!!" << std::endl;
for(EdgeIt e(g);e!=INVALID;++e)
if(g.u(e)==g.v(e))
std::cout << "LOOP GEBASZ!!!" << std::endl;
std::cout << "Number of arcs : " << countEdges(g) << std::endl;
std::cout << "Total arc length (euler) : " << totalLen() << std::endl;
ListGraph::EdgeMap<Arc> enext(g);
{
EulerIt<ListGraph> e(g);
Arc eo=e;
Arc ef=e;
// std::cout << "Tour arc: " << g.id(Edge(e)) << std::endl;
for(++e;e!=INVALID;++e)
{
// std::cout << "Tour arc: " << g.id(Edge(e)) << std::endl;
enext[eo]=e;
eo=e;
}
enext[eo]=ef;
}
std::cout << "Creating a tour from that..." << std::endl;
int nnum = countNodes(g);
int ednum = countEdges(g);
for(Arc p=enext[EdgeIt(g)];ednum>nnum;p=enext[p])
{
// std::cout << "Checking arc " << g.id(p) << std::endl;
Arc e=enext[p];
Arc f=enext[e];
Node n2=g.source(f);
Node n1=g.oppositeNode(n2,e);
Node n3=g.oppositeNode(n2,f);
if(countIncEdges(g,n2)>2)
{
// std::cout << "Remove an Arc" << std::endl;
Arc ff=enext[f];
g.erase(e);
g.erase(f);
if(n1!=n3)
{
Arc ne=g.direct(g.addEdge(n1,n3),n1);
enext[p]=ne;
enext[ne]=ff;
ednum--;
}
else {
enext[p]=ff;
ednum-=2;
}
}
}
std::cout << "Total arc length (tour) : " << totalLen() << std::endl;
std::cout << "2-opt the tour..." << std::endl;
tsp_improve();
std::cout << "Total arc length (2-opt tour) : " << totalLen() << std::endl;
}
int main(int argc,const char **argv)
{
ArgParser ap(argc,argv);
// bool eps;
bool disc_d, square_d, gauss_d;
// bool tsp_a,two_a,tree_a;
int num_of_cities=1;
double area=1;
N=100;
// girth=10;
std::string ndist("disc");
ap.refOption("n", "Number of nodes (default is 100)", N)
.intOption("g", "Girth parameter (default is 10)", 10)
.refOption("cities", "Number of cities (default is 1)", num_of_cities)
.refOption("area", "Full relative area of the cities (default is 1)", area)
.refOption("disc", "Nodes are evenly distributed on a unit disc (default)",disc_d)
.optionGroup("dist", "disc")
.refOption("square", "Nodes are evenly distributed on a unit square", square_d)
.optionGroup("dist", "square")
.refOption("gauss",
"Nodes are located according to a two-dim gauss distribution",
gauss_d)
.optionGroup("dist", "gauss")
// .mandatoryGroup("dist")
.onlyOneGroup("dist")
.boolOption("eps", "Also generate .eps output (prefix.eps)")
.boolOption("nonodes", "Draw the edges only in the generated .eps")
.boolOption("dir", "Directed digraph is generated (each arcs are replaced by two directed ones)")
.boolOption("2con", "Create a two connected planar digraph")
.optionGroup("alg","2con")
.boolOption("tree", "Create a min. cost spanning tree")
.optionGroup("alg","tree")
.boolOption("tsp", "Create a TSP tour")
.optionGroup("alg","tsp")
.boolOption("tsp2", "Create a TSP tour (tree based)")
.optionGroup("alg","tsp2")
.boolOption("dela", "Delaunay triangulation digraph")
.optionGroup("alg","dela")
.onlyOneGroup("alg")
.boolOption("rand", "Use time seed for random number generator")
.optionGroup("rand", "rand")
.intOption("seed", "Random seed", -1)
.optionGroup("rand", "seed")
.onlyOneGroup("rand")
.other("[prefix]","Prefix of the output files. Default is 'lgf-gen-out'")
.run();
if (ap["rand"]) {
int seed = time(0);
std::cout << "Random number seed: " << seed << std::endl;
rnd = Random(seed);
}
if (ap.given("seed")) {
int seed = ap["seed"];
std::cout << "Random number seed: " << seed << std::endl;
rnd = Random(seed);
}
std::string prefix;
switch(ap.files().size())
{
case 0:
prefix="lgf-gen-out";
break;
case 1:
prefix=ap.files()[0];
break;
default:
std::cerr << "\nAt most one prefix can be given\n\n";
exit(1);
}
double sum_sizes=0;
std::vector<double> sizes;
std::vector<double> cum_sizes;
for(int s=0;s<num_of_cities;s++)
{
// sum_sizes+=rnd.exponential();
double d=rnd();
sum_sizes+=d;
sizes.push_back(d);
cum_sizes.push_back(sum_sizes);
}
int i=0;
for(int s=0;s<num_of_cities;s++)
{
Point center=(num_of_cities==1?Point(0,0):rnd.disc());
if(gauss_d)
for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
Node n=g.addNode();
nodes.push_back(n);
coords[n]=center+rnd.gauss2()*area*
std::sqrt(sizes[s]/sum_sizes);
}
else if(square_d)
for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
Node n=g.addNode();
nodes.push_back(n);
coords[n]=center+Point(rnd()*2-1,rnd()*2-1)*area*
std::sqrt(sizes[s]/sum_sizes);
}
else if(disc_d || true)
for(;i<N*(cum_sizes[s]/sum_sizes);i++) {
Node n=g.addNode();
nodes.push_back(n);
coords[n]=center+rnd.disc()*area*
std::sqrt(sizes[s]/sum_sizes);
}
}
// for (ListGraph::NodeIt n(g); n != INVALID; ++n) {
// std::cerr << coords[n] << std::endl;
// }
if(ap["tsp"]) {
tsp();
std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl;
}
if(ap["tsp2"]) {
tsp2();
std::cout << "#2-opt improvements: " << tsp_impr_num << std::endl;
}
else if(ap["2con"]) {
std::cout << "Make triangles\n";
// triangle();
sparseTriangle(ap["g"]);
std::cout << "Make it sparser\n";
sparse2(ap["g"]);
}
else if(ap["tree"]) {
minTree();
}
else if(ap["dela"]) {
delaunay();
}
std::cout << "Number of nodes : " << countNodes(g) << std::endl;
std::cout << "Number of arcs : " << countEdges(g) << std::endl;
double tlen=0;
for(EdgeIt e(g);e!=INVALID;++e)
tlen+=sqrt((coords[g.v(e)]-coords[g.u(e)]).normSquare());
std::cout << "Total arc length : " << tlen << std::endl;
if(ap["eps"])
graphToEps(g,prefix+".eps").scaleToA4().
scale(600).nodeScale(.005).arcWidthScale(.001).preScale(false).
coords(coords).hideNodes(ap.given("nonodes")).run();
if(ap["dir"])
DigraphWriter<ListGraph>(g,prefix+".lgf").
nodeMap("coordinates_x",scaleMap(xMap(coords),600)).
nodeMap("coordinates_y",scaleMap(yMap(coords),600)).
run();
else GraphWriter<ListGraph>(g,prefix+".lgf").
nodeMap("coordinates_x",scaleMap(xMap(coords),600)).
nodeMap("coordinates_y",scaleMap(yMap(coords),600)).
run();
}
|