Location: LEMON/LEMON-official/lemon/adaptors.h - annotation
Load file history
SOURCE_BROWSER Doxygen switch is configurable from CMAKE (#395)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 | r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r964:141f9c0db4a3 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r566:c786cd201266 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r471:9d9990909fc8 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r471:9d9990909fc8 r471:9d9990909fc8 r471:9d9990909fc8 r471:9d9990909fc8 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r469:d369e885d196 r469:d369e885d196 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r471:9d9990909fc8 r471:9d9990909fc8 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r469:d369e885d196 r471:9d9990909fc8 r471:9d9990909fc8 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r471:9d9990909fc8 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r834:c2230649a493 r834:c2230649a493 r834:c2230649a493 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r559:9b9ffe7d9b75 r476:c246659c8b19 r664:4137ef9aacc6 r432:76287c8caa26 r476:c246659c8b19 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r964:141f9c0db4a3 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r469:d369e885d196 r559:9b9ffe7d9b75 r432:76287c8caa26 r471:9d9990909fc8 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r964:141f9c0db4a3 r964:141f9c0db4a3 r664:4137ef9aacc6 r964:141f9c0db4a3 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r664:4137ef9aacc6 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r964:141f9c0db4a3 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r469:d369e885d196 r559:9b9ffe7d9b75 r432:76287c8caa26 r471:9d9990909fc8 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r474:fbd6e04acf44 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r834:c2230649a493 r834:c2230649a493 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r476:c246659c8b19 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r476:c246659c8b19 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r476:c246659c8b19 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r476:c246659c8b19 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r474:fbd6e04acf44 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r474:fbd6e04acf44 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r472:91fcb8ed4cdc r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r432:76287c8caa26 r471:9d9990909fc8 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r469:d369e885d196 r432:76287c8caa26 r471:9d9990909fc8 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r472:91fcb8ed4cdc r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r432:76287c8caa26 r471:9d9990909fc8 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r469:d369e885d196 r432:76287c8caa26 r471:9d9990909fc8 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r964:141f9c0db4a3 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r474:fbd6e04acf44 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r834:c2230649a493 r834:c2230649a493 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r476:c246659c8b19 r474:fbd6e04acf44 r476:c246659c8b19 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r476:c246659c8b19 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r474:fbd6e04acf44 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r474:fbd6e04acf44 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r476:c246659c8b19 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r476:c246659c8b19 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r476:c246659c8b19 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r476:c246659c8b19 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r432:76287c8caa26 r474:fbd6e04acf44 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r834:c2230649a493 r834:c2230649a493 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r476:c246659c8b19 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r432:76287c8caa26 r664:4137ef9aacc6 r664:4137ef9aacc6 r664:4137ef9aacc6 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r476:c246659c8b19 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r474:fbd6e04acf44 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r476:c246659c8b19 r476:c246659c8b19 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r432:76287c8caa26 r664:4137ef9aacc6 r664:4137ef9aacc6 r664:4137ef9aacc6 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r834:c2230649a493 r834:c2230649a493 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r476:c246659c8b19 r476:c246659c8b19 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r664:4137ef9aacc6 r964:141f9c0db4a3 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r664:4137ef9aacc6 r476:c246659c8b19 r559:9b9ffe7d9b75 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r474:fbd6e04acf44 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r834:c2230649a493 r834:c2230649a493 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r664:4137ef9aacc6 r964:141f9c0db4a3 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r664:4137ef9aacc6 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r476:c246659c8b19 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r474:fbd6e04acf44 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r475:aea2dc0518ce r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r964:141f9c0db4a3 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r703:cb38ccedd2c1 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r703:cb38ccedd2c1 r703:cb38ccedd2c1 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r703:cb38ccedd2c1 r703:cb38ccedd2c1 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r703:cb38ccedd2c1 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r472:91fcb8ed4cdc r469:d369e885d196 r469:d369e885d196 r432:76287c8caa26 r469:d369e885d196 r469:d369e885d196 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r472:91fcb8ed4cdc r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r472:91fcb8ed4cdc r472:91fcb8ed4cdc r472:91fcb8ed4cdc r472:91fcb8ed4cdc r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r472:91fcb8ed4cdc r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r472:91fcb8ed4cdc r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r664:4137ef9aacc6 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r472:91fcb8ed4cdc r964:141f9c0db4a3 r626:d11bf7998905 r626:d11bf7998905 r472:91fcb8ed4cdc r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r834:c2230649a493 r834:c2230649a493 r834:c2230649a493 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r476:c246659c8b19 r664:4137ef9aacc6 r432:76287c8caa26 r476:c246659c8b19 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r472:91fcb8ed4cdc r432:76287c8caa26 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r472:91fcb8ed4cdc r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r472:91fcb8ed4cdc r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r470:3c0d39b6388c r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r470:3c0d39b6388c r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r432:76287c8caa26 r471:9d9990909fc8 r472:91fcb8ed4cdc r472:91fcb8ed4cdc r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r472:91fcb8ed4cdc r472:91fcb8ed4cdc r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r476:c246659c8b19 r474:fbd6e04acf44 r432:76287c8caa26 r834:c2230649a493 r834:c2230649a493 r834:c2230649a493 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r474:fbd6e04acf44 r664:4137ef9aacc6 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r664:4137ef9aacc6 r432:76287c8caa26 r432:76287c8caa26 r664:4137ef9aacc6 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r476:c246659c8b19 r476:c246659c8b19 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r487:acfb0f24d178 r487:acfb0f24d178 r487:acfb0f24d178 r487:acfb0f24d178 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r834:c2230649a493 r834:c2230649a493 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r487:acfb0f24d178 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r476:c246659c8b19 r476:c246659c8b19 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r476:c246659c8b19 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r432:76287c8caa26 r487:acfb0f24d178 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r476:c246659c8b19 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r475:aea2dc0518ce r432:76287c8caa26 r475:aea2dc0518ce r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r476:c246659c8b19 r432:76287c8caa26 r432:76287c8caa26 r964:141f9c0db4a3 r559:9b9ffe7d9b75 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r473:14bb8812b8af r473:14bb8812b8af r473:14bb8812b8af r473:14bb8812b8af r473:14bb8812b8af r473:14bb8812b8af r473:14bb8812b8af r432:76287c8caa26 r432:76287c8caa26 r473:14bb8812b8af r473:14bb8812b8af r559:9b9ffe7d9b75 r473:14bb8812b8af r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r473:14bb8812b8af r473:14bb8812b8af r473:14bb8812b8af r559:9b9ffe7d9b75 r432:76287c8caa26 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r469:d369e885d196 r432:76287c8caa26 r432:76287c8caa26 r472:91fcb8ed4cdc r472:91fcb8ed4cdc r472:91fcb8ed4cdc r472:91fcb8ed4cdc r432:76287c8caa26 r472:91fcb8ed4cdc r472:91fcb8ed4cdc r472:91fcb8ed4cdc r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r472:91fcb8ed4cdc r472:91fcb8ed4cdc r472:91fcb8ed4cdc r472:91fcb8ed4cdc r472:91fcb8ed4cdc r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r472:91fcb8ed4cdc r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r472:91fcb8ed4cdc r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r472:91fcb8ed4cdc r472:91fcb8ed4cdc r472:91fcb8ed4cdc r472:91fcb8ed4cdc r472:91fcb8ed4cdc r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r563:dab9e610e37d r432:76287c8caa26 r563:dab9e610e37d r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r472:91fcb8ed4cdc r559:9b9ffe7d9b75 r563:dab9e610e37d r432:76287c8caa26 r563:dab9e610e37d r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r472:91fcb8ed4cdc r559:9b9ffe7d9b75 r563:dab9e610e37d r432:76287c8caa26 r563:dab9e610e37d r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r664:4137ef9aacc6 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r664:4137ef9aacc6 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r834:c2230649a493 r834:c2230649a493 r834:c2230649a493 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r559:9b9ffe7d9b75 r476:c246659c8b19 r664:4137ef9aacc6 r664:4137ef9aacc6 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r606:c5fd2d996909 r964:141f9c0db4a3 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r472:91fcb8ed4cdc r474:fbd6e04acf44 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r472:91fcb8ed4cdc r474:fbd6e04acf44 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r606:c5fd2d996909 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r432:76287c8caa26 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r432:76287c8caa26 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r432:76287c8caa26 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r476:c246659c8b19 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r559:9b9ffe7d9b75 r559:9b9ffe7d9b75 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2010
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_ADAPTORS_H
#define LEMON_ADAPTORS_H
/// \ingroup graph_adaptors
/// \file
/// \brief Adaptor classes for digraphs and graphs
///
/// This file contains several useful adaptors for digraphs and graphs.
#include <lemon/core.h>
#include <lemon/maps.h>
#include <lemon/bits/variant.h>
#include <lemon/bits/graph_adaptor_extender.h>
#include <lemon/bits/map_extender.h>
#include <lemon/tolerance.h>
#include <algorithm>
namespace lemon {
#ifdef _MSC_VER
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED
#else
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED
#endif
template<typename DGR>
class DigraphAdaptorBase {
public:
typedef DGR Digraph;
typedef DigraphAdaptorBase Adaptor;
protected:
DGR* _digraph;
DigraphAdaptorBase() : _digraph(0) { }
void initialize(DGR& digraph) { _digraph = &digraph; }
public:
DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { }
typedef typename DGR::Node Node;
typedef typename DGR::Arc Arc;
void first(Node& i) const { _digraph->first(i); }
void first(Arc& i) const { _digraph->first(i); }
void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); }
void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); }
void next(Node& i) const { _digraph->next(i); }
void next(Arc& i) const { _digraph->next(i); }
void nextIn(Arc& i) const { _digraph->nextIn(i); }
void nextOut(Arc& i) const { _digraph->nextOut(i); }
Node source(const Arc& a) const { return _digraph->source(a); }
Node target(const Arc& a) const { return _digraph->target(a); }
typedef NodeNumTagIndicator<DGR> NodeNumTag;
int nodeNum() const { return _digraph->nodeNum(); }
typedef ArcNumTagIndicator<DGR> ArcNumTag;
int arcNum() const { return _digraph->arcNum(); }
typedef FindArcTagIndicator<DGR> FindArcTag;
Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const {
return _digraph->findArc(u, v, prev);
}
Node addNode() { return _digraph->addNode(); }
Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); }
void erase(const Node& n) { _digraph->erase(n); }
void erase(const Arc& a) { _digraph->erase(a); }
void clear() { _digraph->clear(); }
int id(const Node& n) const { return _digraph->id(n); }
int id(const Arc& a) const { return _digraph->id(a); }
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); }
int maxNodeId() const { return _digraph->maxNodeId(); }
int maxArcId() const { return _digraph->maxArcId(); }
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier;
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); }
template <typename V>
class NodeMap : public DGR::template NodeMap<V> {
typedef typename DGR::template NodeMap<V> Parent;
public:
explicit NodeMap(const Adaptor& adaptor)
: Parent(*adaptor._digraph) {}
NodeMap(const Adaptor& adaptor, const V& value)
: Parent(*adaptor._digraph, value) { }
private:
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
}
template <typename CMap>
NodeMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
template <typename V>
class ArcMap : public DGR::template ArcMap<V> {
typedef typename DGR::template ArcMap<V> Parent;
public:
explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor)
: Parent(*adaptor._digraph) {}
ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value)
: Parent(*adaptor._digraph, value) {}
private:
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
}
template <typename CMap>
ArcMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
};
template<typename GR>
class GraphAdaptorBase {
public:
typedef GR Graph;
protected:
GR* _graph;
GraphAdaptorBase() : _graph(0) {}
void initialize(GR& graph) { _graph = &graph; }
public:
GraphAdaptorBase(GR& graph) : _graph(&graph) {}
typedef typename GR::Node Node;
typedef typename GR::Arc Arc;
typedef typename GR::Edge Edge;
void first(Node& i) const { _graph->first(i); }
void first(Arc& i) const { _graph->first(i); }
void first(Edge& i) const { _graph->first(i); }
void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); }
void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); }
void firstInc(Edge &i, bool &d, const Node &n) const {
_graph->firstInc(i, d, n);
}
void next(Node& i) const { _graph->next(i); }
void next(Arc& i) const { _graph->next(i); }
void next(Edge& i) const { _graph->next(i); }
void nextIn(Arc& i) const { _graph->nextIn(i); }
void nextOut(Arc& i) const { _graph->nextOut(i); }
void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); }
Node u(const Edge& e) const { return _graph->u(e); }
Node v(const Edge& e) const { return _graph->v(e); }
Node source(const Arc& a) const { return _graph->source(a); }
Node target(const Arc& a) const { return _graph->target(a); }
typedef NodeNumTagIndicator<Graph> NodeNumTag;
int nodeNum() const { return _graph->nodeNum(); }
typedef ArcNumTagIndicator<Graph> ArcNumTag;
int arcNum() const { return _graph->arcNum(); }
typedef EdgeNumTagIndicator<Graph> EdgeNumTag;
int edgeNum() const { return _graph->edgeNum(); }
typedef FindArcTagIndicator<Graph> FindArcTag;
Arc findArc(const Node& u, const Node& v,
const Arc& prev = INVALID) const {
return _graph->findArc(u, v, prev);
}
typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
Edge findEdge(const Node& u, const Node& v,
const Edge& prev = INVALID) const {
return _graph->findEdge(u, v, prev);
}
Node addNode() { return _graph->addNode(); }
Edge addEdge(const Node& u, const Node& v) { return _graph->addEdge(u, v); }
void erase(const Node& i) { _graph->erase(i); }
void erase(const Edge& i) { _graph->erase(i); }
void clear() { _graph->clear(); }
bool direction(const Arc& a) const { return _graph->direction(a); }
Arc direct(const Edge& e, bool d) const { return _graph->direct(e, d); }
int id(const Node& v) const { return _graph->id(v); }
int id(const Arc& a) const { return _graph->id(a); }
int id(const Edge& e) const { return _graph->id(e); }
Node nodeFromId(int ix) const { return _graph->nodeFromId(ix); }
Arc arcFromId(int ix) const { return _graph->arcFromId(ix); }
Edge edgeFromId(int ix) const { return _graph->edgeFromId(ix); }
int maxNodeId() const { return _graph->maxNodeId(); }
int maxArcId() const { return _graph->maxArcId(); }
int maxEdgeId() const { return _graph->maxEdgeId(); }
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
typedef typename ItemSetTraits<GR, Edge>::ItemNotifier EdgeNotifier;
EdgeNotifier& notifier(Edge) const { return _graph->notifier(Edge()); }
template <typename V>
class NodeMap : public GR::template NodeMap<V> {
typedef typename GR::template NodeMap<V> Parent;
public:
explicit NodeMap(const GraphAdaptorBase<GR>& adapter)
: Parent(*adapter._graph) {}
NodeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
: Parent(*adapter._graph, value) {}
private:
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
}
template <typename CMap>
NodeMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
template <typename V>
class ArcMap : public GR::template ArcMap<V> {
typedef typename GR::template ArcMap<V> Parent;
public:
explicit ArcMap(const GraphAdaptorBase<GR>& adapter)
: Parent(*adapter._graph) {}
ArcMap(const GraphAdaptorBase<GR>& adapter, const V& value)
: Parent(*adapter._graph, value) {}
private:
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
}
template <typename CMap>
ArcMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
template <typename V>
class EdgeMap : public GR::template EdgeMap<V> {
typedef typename GR::template EdgeMap<V> Parent;
public:
explicit EdgeMap(const GraphAdaptorBase<GR>& adapter)
: Parent(*adapter._graph) {}
EdgeMap(const GraphAdaptorBase<GR>& adapter, const V& value)
: Parent(*adapter._graph, value) {}
private:
EdgeMap& operator=(const EdgeMap& cmap) {
return operator=<EdgeMap>(cmap);
}
template <typename CMap>
EdgeMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
};
template <typename DGR>
class ReverseDigraphBase : public DigraphAdaptorBase<DGR> {
typedef DigraphAdaptorBase<DGR> Parent;
public:
typedef DGR Digraph;
protected:
ReverseDigraphBase() : Parent() { }
public:
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
void firstIn(Arc& a, const Node& n) const { Parent::firstOut(a, n); }
void firstOut(Arc& a, const Node& n ) const { Parent::firstIn(a, n); }
void nextIn(Arc& a) const { Parent::nextOut(a); }
void nextOut(Arc& a) const { Parent::nextIn(a); }
Node source(const Arc& a) const { return Parent::target(a); }
Node target(const Arc& a) const { return Parent::source(a); }
Arc addArc(const Node& u, const Node& v) { return Parent::addArc(v, u); }
typedef FindArcTagIndicator<DGR> FindArcTag;
Arc findArc(const Node& u, const Node& v,
const Arc& prev = INVALID) const {
return Parent::findArc(v, u, prev);
}
};
/// \ingroup graph_adaptors
///
/// \brief Adaptor class for reversing the orientation of the arcs in
/// a digraph.
///
/// ReverseDigraph can be used for reversing the arcs in a digraph.
/// It conforms to the \ref concepts::Digraph "Digraph" concept.
///
/// The adapted digraph can also be modified through this adaptor
/// by adding or removing nodes or arcs, unless the \c GR template
/// parameter is set to be \c const.
///
/// This class provides item counting in the same time as the adapted
/// digraph structure.
///
/// \tparam DGR The type of the adapted digraph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept.
/// It can also be specified to be \c const.
///
/// \note The \c Node and \c Arc types of this adaptor and the adapted
/// digraph are convertible to each other.
template<typename DGR>
#ifdef DOXYGEN
class ReverseDigraph {
#else
class ReverseDigraph :
public DigraphAdaptorExtender<ReverseDigraphBase<DGR> > {
#endif
typedef DigraphAdaptorExtender<ReverseDigraphBase<DGR> > Parent;
public:
/// The type of the adapted digraph.
typedef DGR Digraph;
protected:
ReverseDigraph() { }
public:
/// \brief Constructor
///
/// Creates a reverse digraph adaptor for the given digraph.
explicit ReverseDigraph(DGR& digraph) {
Parent::initialize(digraph);
}
};
/// \brief Returns a read-only ReverseDigraph adaptor
///
/// This function just returns a read-only \ref ReverseDigraph adaptor.
/// \ingroup graph_adaptors
/// \relates ReverseDigraph
template<typename DGR>
ReverseDigraph<const DGR> reverseDigraph(const DGR& digraph) {
return ReverseDigraph<const DGR>(digraph);
}
template <typename DGR, typename NF, typename AF, bool ch = true>
class SubDigraphBase : public DigraphAdaptorBase<DGR> {
typedef DigraphAdaptorBase<DGR> Parent;
public:
typedef DGR Digraph;
typedef NF NodeFilterMap;
typedef AF ArcFilterMap;
typedef SubDigraphBase Adaptor;
protected:
NF* _node_filter;
AF* _arc_filter;
SubDigraphBase()
: Parent(), _node_filter(0), _arc_filter(0) { }
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
Parent::initialize(digraph);
_node_filter = &node_filter;
_arc_filter = &arc_filter;
}
public:
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
void first(Node& i) const {
Parent::first(i);
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
}
void first(Arc& i) const {
Parent::first(i);
while (i != INVALID && (!(*_arc_filter)[i]
|| !(*_node_filter)[Parent::source(i)]
|| !(*_node_filter)[Parent::target(i)]))
Parent::next(i);
}
void firstIn(Arc& i, const Node& n) const {
Parent::firstIn(i, n);
while (i != INVALID && (!(*_arc_filter)[i]
|| !(*_node_filter)[Parent::source(i)]))
Parent::nextIn(i);
}
void firstOut(Arc& i, const Node& n) const {
Parent::firstOut(i, n);
while (i != INVALID && (!(*_arc_filter)[i]
|| !(*_node_filter)[Parent::target(i)]))
Parent::nextOut(i);
}
void next(Node& i) const {
Parent::next(i);
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i);
}
void next(Arc& i) const {
Parent::next(i);
while (i != INVALID && (!(*_arc_filter)[i]
|| !(*_node_filter)[Parent::source(i)]
|| !(*_node_filter)[Parent::target(i)]))
Parent::next(i);
}
void nextIn(Arc& i) const {
Parent::nextIn(i);
while (i != INVALID && (!(*_arc_filter)[i]
|| !(*_node_filter)[Parent::source(i)]))
Parent::nextIn(i);
}
void nextOut(Arc& i) const {
Parent::nextOut(i);
while (i != INVALID && (!(*_arc_filter)[i]
|| !(*_node_filter)[Parent::target(i)]))
Parent::nextOut(i);
}
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
bool status(const Node& n) const { return (*_node_filter)[n]; }
bool status(const Arc& a) const { return (*_arc_filter)[a]; }
typedef False NodeNumTag;
typedef False ArcNumTag;
typedef FindArcTagIndicator<DGR> FindArcTag;
Arc findArc(const Node& source, const Node& target,
const Arc& prev = INVALID) const {
if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
return INVALID;
}
Arc arc = Parent::findArc(source, target, prev);
while (arc != INVALID && !(*_arc_filter)[arc]) {
arc = Parent::findArc(source, target, arc);
}
return arc;
}
public:
template <typename V>
class NodeMap
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
public:
typedef V Value;
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
: Parent(adaptor) {}
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
: Parent(adaptor, value) {}
private:
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
}
template <typename CMap>
NodeMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
template <typename V>
class ArcMap
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
public:
typedef V Value;
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
: Parent(adaptor) {}
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value)
: Parent(adaptor, value) {}
private:
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
}
template <typename CMap>
ArcMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
};
template <typename DGR, typename NF, typename AF>
class SubDigraphBase<DGR, NF, AF, false>
: public DigraphAdaptorBase<DGR> {
typedef DigraphAdaptorBase<DGR> Parent;
public:
typedef DGR Digraph;
typedef NF NodeFilterMap;
typedef AF ArcFilterMap;
typedef SubDigraphBase Adaptor;
protected:
NF* _node_filter;
AF* _arc_filter;
SubDigraphBase()
: Parent(), _node_filter(0), _arc_filter(0) { }
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
Parent::initialize(digraph);
_node_filter = &node_filter;
_arc_filter = &arc_filter;
}
public:
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
void first(Node& i) const {
Parent::first(i);
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
}
void first(Arc& i) const {
Parent::first(i);
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
}
void firstIn(Arc& i, const Node& n) const {
Parent::firstIn(i, n);
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
}
void firstOut(Arc& i, const Node& n) const {
Parent::firstOut(i, n);
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
}
void next(Node& i) const {
Parent::next(i);
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
}
void next(Arc& i) const {
Parent::next(i);
while (i!=INVALID && !(*_arc_filter)[i]) Parent::next(i);
}
void nextIn(Arc& i) const {
Parent::nextIn(i);
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextIn(i);
}
void nextOut(Arc& i) const {
Parent::nextOut(i);
while (i!=INVALID && !(*_arc_filter)[i]) Parent::nextOut(i);
}
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
void status(const Arc& a, bool v) const { _arc_filter->set(a, v); }
bool status(const Node& n) const { return (*_node_filter)[n]; }
bool status(const Arc& a) const { return (*_arc_filter)[a]; }
typedef False NodeNumTag;
typedef False ArcNumTag;
typedef FindArcTagIndicator<DGR> FindArcTag;
Arc findArc(const Node& source, const Node& target,
const Arc& prev = INVALID) const {
if (!(*_node_filter)[source] || !(*_node_filter)[target]) {
return INVALID;
}
Arc arc = Parent::findArc(source, target, prev);
while (arc != INVALID && !(*_arc_filter)[arc]) {
arc = Parent::findArc(source, target, arc);
}
return arc;
}
template <typename V>
class NodeMap
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
public:
typedef V Value;
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
: Parent(adaptor) {}
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
: Parent(adaptor, value) {}
private:
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
}
template <typename CMap>
NodeMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
template <typename V>
class ArcMap
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
public:
typedef V Value;
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
: Parent(adaptor) {}
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value)
: Parent(adaptor, value) {}
private:
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
}
template <typename CMap>
ArcMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
};
/// \ingroup graph_adaptors
///
/// \brief Adaptor class for hiding nodes and arcs in a digraph
///
/// SubDigraph can be used for hiding nodes and arcs in a digraph.
/// A \c bool node map and a \c bool arc map must be specified, which
/// define the filters for nodes and arcs.
/// Only the nodes and arcs with \c true filter value are
/// shown in the subdigraph. The arcs that are incident to hidden
/// nodes are also filtered out.
/// This adaptor conforms to the \ref concepts::Digraph "Digraph" concept.
///
/// The adapted digraph can also be modified through this adaptor
/// by adding or removing nodes or arcs, unless the \c GR template
/// parameter is set to be \c const.
///
/// This class provides only linear time counting for nodes and arcs.
///
/// \tparam DGR The type of the adapted digraph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept.
/// It can also be specified to be \c const.
/// \tparam NF The type of the node filter map.
/// It must be a \c bool (or convertible) node map of the
/// adapted digraph. The default type is
/// \ref concepts::Digraph::NodeMap "DGR::NodeMap<bool>".
/// \tparam AF The type of the arc filter map.
/// It must be \c bool (or convertible) arc map of the
/// adapted digraph. The default type is
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
///
/// \note The \c Node and \c Arc types of this adaptor and the adapted
/// digraph are convertible to each other.
///
/// \see FilterNodes
/// \see FilterArcs
#ifdef DOXYGEN
template<typename DGR, typename NF, typename AF>
class SubDigraph {
#else
template<typename DGR,
typename NF = typename DGR::template NodeMap<bool>,
typename AF = typename DGR::template ArcMap<bool> >
class SubDigraph :
public DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> > {
#endif
public:
/// The type of the adapted digraph.
typedef DGR Digraph;
/// The type of the node filter map.
typedef NF NodeFilterMap;
/// The type of the arc filter map.
typedef AF ArcFilterMap;
typedef DigraphAdaptorExtender<SubDigraphBase<DGR, NF, AF, true> >
Parent;
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
protected:
SubDigraph() { }
public:
/// \brief Constructor
///
/// Creates a subdigraph for the given digraph with the
/// given node and arc filter maps.
SubDigraph(DGR& digraph, NF& node_filter, AF& arc_filter) {
Parent::initialize(digraph, node_filter, arc_filter);
}
/// \brief Sets the status of the given node
///
/// This function sets the status of the given node.
/// It is done by simply setting the assigned value of \c n
/// to \c v in the node filter map.
void status(const Node& n, bool v) const { Parent::status(n, v); }
/// \brief Sets the status of the given arc
///
/// This function sets the status of the given arc.
/// It is done by simply setting the assigned value of \c a
/// to \c v in the arc filter map.
void status(const Arc& a, bool v) const { Parent::status(a, v); }
/// \brief Returns the status of the given node
///
/// This function returns the status of the given node.
/// It is \c true if the given node is enabled (i.e. not hidden).
bool status(const Node& n) const { return Parent::status(n); }
/// \brief Returns the status of the given arc
///
/// This function returns the status of the given arc.
/// It is \c true if the given arc is enabled (i.e. not hidden).
bool status(const Arc& a) const { return Parent::status(a); }
/// \brief Disables the given node
///
/// This function disables the given node in the subdigraph,
/// so the iteration jumps over it.
/// It is the same as \ref status() "status(n, false)".
void disable(const Node& n) const { Parent::status(n, false); }
/// \brief Disables the given arc
///
/// This function disables the given arc in the subdigraph,
/// so the iteration jumps over it.
/// It is the same as \ref status() "status(a, false)".
void disable(const Arc& a) const { Parent::status(a, false); }
/// \brief Enables the given node
///
/// This function enables the given node in the subdigraph.
/// It is the same as \ref status() "status(n, true)".
void enable(const Node& n) const { Parent::status(n, true); }
/// \brief Enables the given arc
///
/// This function enables the given arc in the subdigraph.
/// It is the same as \ref status() "status(a, true)".
void enable(const Arc& a) const { Parent::status(a, true); }
};
/// \brief Returns a read-only SubDigraph adaptor
///
/// This function just returns a read-only \ref SubDigraph adaptor.
/// \ingroup graph_adaptors
/// \relates SubDigraph
template<typename DGR, typename NF, typename AF>
SubDigraph<const DGR, NF, AF>
subDigraph(const DGR& digraph,
NF& node_filter, AF& arc_filter) {
return SubDigraph<const DGR, NF, AF>
(digraph, node_filter, arc_filter);
}
template<typename DGR, typename NF, typename AF>
SubDigraph<const DGR, const NF, AF>
subDigraph(const DGR& digraph,
const NF& node_filter, AF& arc_filter) {
return SubDigraph<const DGR, const NF, AF>
(digraph, node_filter, arc_filter);
}
template<typename DGR, typename NF, typename AF>
SubDigraph<const DGR, NF, const AF>
subDigraph(const DGR& digraph,
NF& node_filter, const AF& arc_filter) {
return SubDigraph<const DGR, NF, const AF>
(digraph, node_filter, arc_filter);
}
template<typename DGR, typename NF, typename AF>
SubDigraph<const DGR, const NF, const AF>
subDigraph(const DGR& digraph,
const NF& node_filter, const AF& arc_filter) {
return SubDigraph<const DGR, const NF, const AF>
(digraph, node_filter, arc_filter);
}
template <typename GR, typename NF, typename EF, bool ch = true>
class SubGraphBase : public GraphAdaptorBase<GR> {
typedef GraphAdaptorBase<GR> Parent;
public:
typedef GR Graph;
typedef NF NodeFilterMap;
typedef EF EdgeFilterMap;
typedef SubGraphBase Adaptor;
protected:
NF* _node_filter;
EF* _edge_filter;
SubGraphBase()
: Parent(), _node_filter(0), _edge_filter(0) { }
void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
Parent::initialize(graph);
_node_filter = &node_filter;
_edge_filter = &edge_filter;
}
public:
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
typedef typename Parent::Edge Edge;
void first(Node& i) const {
Parent::first(i);
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
}
void first(Arc& i) const {
Parent::first(i);
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::source(i)]
|| !(*_node_filter)[Parent::target(i)]))
Parent::next(i);
}
void first(Edge& i) const {
Parent::first(i);
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::u(i)]
|| !(*_node_filter)[Parent::v(i)]))
Parent::next(i);
}
void firstIn(Arc& i, const Node& n) const {
Parent::firstIn(i, n);
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::source(i)]))
Parent::nextIn(i);
}
void firstOut(Arc& i, const Node& n) const {
Parent::firstOut(i, n);
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::target(i)]))
Parent::nextOut(i);
}
void firstInc(Edge& i, bool& d, const Node& n) const {
Parent::firstInc(i, d, n);
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::u(i)]
|| !(*_node_filter)[Parent::v(i)]))
Parent::nextInc(i, d);
}
void next(Node& i) const {
Parent::next(i);
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
}
void next(Arc& i) const {
Parent::next(i);
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::source(i)]
|| !(*_node_filter)[Parent::target(i)]))
Parent::next(i);
}
void next(Edge& i) const {
Parent::next(i);
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::u(i)]
|| !(*_node_filter)[Parent::v(i)]))
Parent::next(i);
}
void nextIn(Arc& i) const {
Parent::nextIn(i);
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::source(i)]))
Parent::nextIn(i);
}
void nextOut(Arc& i) const {
Parent::nextOut(i);
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::target(i)]))
Parent::nextOut(i);
}
void nextInc(Edge& i, bool& d) const {
Parent::nextInc(i, d);
while (i!=INVALID && (!(*_edge_filter)[i]
|| !(*_node_filter)[Parent::u(i)]
|| !(*_node_filter)[Parent::v(i)]))
Parent::nextInc(i, d);
}
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
bool status(const Node& n) const { return (*_node_filter)[n]; }
bool status(const Edge& e) const { return (*_edge_filter)[e]; }
typedef False NodeNumTag;
typedef False ArcNumTag;
typedef False EdgeNumTag;
typedef FindArcTagIndicator<Graph> FindArcTag;
Arc findArc(const Node& u, const Node& v,
const Arc& prev = INVALID) const {
if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
return INVALID;
}
Arc arc = Parent::findArc(u, v, prev);
while (arc != INVALID && !(*_edge_filter)[arc]) {
arc = Parent::findArc(u, v, arc);
}
return arc;
}
typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
Edge findEdge(const Node& u, const Node& v,
const Edge& prev = INVALID) const {
if (!(*_node_filter)[u] || !(*_node_filter)[v]) {
return INVALID;
}
Edge edge = Parent::findEdge(u, v, prev);
while (edge != INVALID && !(*_edge_filter)[edge]) {
edge = Parent::findEdge(u, v, edge);
}
return edge;
}
template <typename V>
class NodeMap
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
public:
typedef V Value;
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
: Parent(adaptor) {}
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
: Parent(adaptor, value) {}
private:
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
}
template <typename CMap>
NodeMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
template <typename V>
class ArcMap
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
public:
typedef V Value;
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
: Parent(adaptor) {}
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
: Parent(adaptor, value) {}
private:
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
}
template <typename CMap>
ArcMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
template <typename V>
class EdgeMap
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
public:
typedef V Value;
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
: Parent(adaptor) {}
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value)
: Parent(adaptor, value) {}
private:
EdgeMap& operator=(const EdgeMap& cmap) {
return operator=<EdgeMap>(cmap);
}
template <typename CMap>
EdgeMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
};
template <typename GR, typename NF, typename EF>
class SubGraphBase<GR, NF, EF, false>
: public GraphAdaptorBase<GR> {
typedef GraphAdaptorBase<GR> Parent;
public:
typedef GR Graph;
typedef NF NodeFilterMap;
typedef EF EdgeFilterMap;
typedef SubGraphBase Adaptor;
protected:
NF* _node_filter;
EF* _edge_filter;
SubGraphBase()
: Parent(), _node_filter(0), _edge_filter(0) { }
void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
Parent::initialize(graph);
_node_filter = &node_filter;
_edge_filter = &edge_filter;
}
public:
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
typedef typename Parent::Edge Edge;
void first(Node& i) const {
Parent::first(i);
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
}
void first(Arc& i) const {
Parent::first(i);
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
}
void first(Edge& i) const {
Parent::first(i);
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
}
void firstIn(Arc& i, const Node& n) const {
Parent::firstIn(i, n);
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
}
void firstOut(Arc& i, const Node& n) const {
Parent::firstOut(i, n);
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
}
void firstInc(Edge& i, bool& d, const Node& n) const {
Parent::firstInc(i, d, n);
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
}
void next(Node& i) const {
Parent::next(i);
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i);
}
void next(Arc& i) const {
Parent::next(i);
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
}
void next(Edge& i) const {
Parent::next(i);
while (i!=INVALID && !(*_edge_filter)[i]) Parent::next(i);
}
void nextIn(Arc& i) const {
Parent::nextIn(i);
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextIn(i);
}
void nextOut(Arc& i) const {
Parent::nextOut(i);
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextOut(i);
}
void nextInc(Edge& i, bool& d) const {
Parent::nextInc(i, d);
while (i!=INVALID && !(*_edge_filter)[i]) Parent::nextInc(i, d);
}
void status(const Node& n, bool v) const { _node_filter->set(n, v); }
void status(const Edge& e, bool v) const { _edge_filter->set(e, v); }
bool status(const Node& n) const { return (*_node_filter)[n]; }
bool status(const Edge& e) const { return (*_edge_filter)[e]; }
typedef False NodeNumTag;
typedef False ArcNumTag;
typedef False EdgeNumTag;
typedef FindArcTagIndicator<Graph> FindArcTag;
Arc findArc(const Node& u, const Node& v,
const Arc& prev = INVALID) const {
Arc arc = Parent::findArc(u, v, prev);
while (arc != INVALID && !(*_edge_filter)[arc]) {
arc = Parent::findArc(u, v, arc);
}
return arc;
}
typedef FindEdgeTagIndicator<Graph> FindEdgeTag;
Edge findEdge(const Node& u, const Node& v,
const Edge& prev = INVALID) const {
Edge edge = Parent::findEdge(u, v, prev);
while (edge != INVALID && !(*_edge_filter)[edge]) {
edge = Parent::findEdge(u, v, edge);
}
return edge;
}
template <typename V>
class NodeMap
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
public:
typedef V Value;
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
: Parent(adaptor) {}
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
: Parent(adaptor, value) {}
private:
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
}
template <typename CMap>
NodeMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
template <typename V>
class ArcMap
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
public:
typedef V Value;
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
: Parent(adaptor) {}
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
: Parent(adaptor, value) {}
private:
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
}
template <typename CMap>
ArcMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
template <typename V>
class EdgeMap
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
public:
typedef V Value;
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
: Parent(adaptor) {}
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value)
: Parent(adaptor, value) {}
private:
EdgeMap& operator=(const EdgeMap& cmap) {
return operator=<EdgeMap>(cmap);
}
template <typename CMap>
EdgeMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
};
/// \ingroup graph_adaptors
///
/// \brief Adaptor class for hiding nodes and edges in an undirected
/// graph.
///
/// SubGraph can be used for hiding nodes and edges in a graph.
/// A \c bool node map and a \c bool edge map must be specified, which
/// define the filters for nodes and edges.
/// Only the nodes and edges with \c true filter value are
/// shown in the subgraph. The edges that are incident to hidden
/// nodes are also filtered out.
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
///
/// The adapted graph can also be modified through this adaptor
/// by adding or removing nodes or edges, unless the \c GR template
/// parameter is set to be \c const.
///
/// This class provides only linear time counting for nodes, edges and arcs.
///
/// \tparam GR The type of the adapted graph.
/// It must conform to the \ref concepts::Graph "Graph" concept.
/// It can also be specified to be \c const.
/// \tparam NF The type of the node filter map.
/// It must be a \c bool (or convertible) node map of the
/// adapted graph. The default type is
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
/// \tparam EF The type of the edge filter map.
/// It must be a \c bool (or convertible) edge map of the
/// adapted graph. The default type is
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
///
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
/// adapted graph are convertible to each other.
///
/// \see FilterNodes
/// \see FilterEdges
#ifdef DOXYGEN
template<typename GR, typename NF, typename EF>
class SubGraph {
#else
template<typename GR,
typename NF = typename GR::template NodeMap<bool>,
typename EF = typename GR::template EdgeMap<bool> >
class SubGraph :
public GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> > {
#endif
public:
/// The type of the adapted graph.
typedef GR Graph;
/// The type of the node filter map.
typedef NF NodeFilterMap;
/// The type of the edge filter map.
typedef EF EdgeFilterMap;
typedef GraphAdaptorExtender<SubGraphBase<GR, NF, EF, true> >
Parent;
typedef typename Parent::Node Node;
typedef typename Parent::Edge Edge;
protected:
SubGraph() { }
public:
/// \brief Constructor
///
/// Creates a subgraph for the given graph with the given node
/// and edge filter maps.
SubGraph(GR& graph, NF& node_filter, EF& edge_filter) {
initialize(graph, node_filter, edge_filter);
}
/// \brief Sets the status of the given node
///
/// This function sets the status of the given node.
/// It is done by simply setting the assigned value of \c n
/// to \c v in the node filter map.
void status(const Node& n, bool v) const { Parent::status(n, v); }
/// \brief Sets the status of the given edge
///
/// This function sets the status of the given edge.
/// It is done by simply setting the assigned value of \c e
/// to \c v in the edge filter map.
void status(const Edge& e, bool v) const { Parent::status(e, v); }
/// \brief Returns the status of the given node
///
/// This function returns the status of the given node.
/// It is \c true if the given node is enabled (i.e. not hidden).
bool status(const Node& n) const { return Parent::status(n); }
/// \brief Returns the status of the given edge
///
/// This function returns the status of the given edge.
/// It is \c true if the given edge is enabled (i.e. not hidden).
bool status(const Edge& e) const { return Parent::status(e); }
/// \brief Disables the given node
///
/// This function disables the given node in the subdigraph,
/// so the iteration jumps over it.
/// It is the same as \ref status() "status(n, false)".
void disable(const Node& n) const { Parent::status(n, false); }
/// \brief Disables the given edge
///
/// This function disables the given edge in the subgraph,
/// so the iteration jumps over it.
/// It is the same as \ref status() "status(e, false)".
void disable(const Edge& e) const { Parent::status(e, false); }
/// \brief Enables the given node
///
/// This function enables the given node in the subdigraph.
/// It is the same as \ref status() "status(n, true)".
void enable(const Node& n) const { Parent::status(n, true); }
/// \brief Enables the given edge
///
/// This function enables the given edge in the subgraph.
/// It is the same as \ref status() "status(e, true)".
void enable(const Edge& e) const { Parent::status(e, true); }
};
/// \brief Returns a read-only SubGraph adaptor
///
/// This function just returns a read-only \ref SubGraph adaptor.
/// \ingroup graph_adaptors
/// \relates SubGraph
template<typename GR, typename NF, typename EF>
SubGraph<const GR, NF, EF>
subGraph(const GR& graph, NF& node_filter, EF& edge_filter) {
return SubGraph<const GR, NF, EF>
(graph, node_filter, edge_filter);
}
template<typename GR, typename NF, typename EF>
SubGraph<const GR, const NF, EF>
subGraph(const GR& graph, const NF& node_filter, EF& edge_filter) {
return SubGraph<const GR, const NF, EF>
(graph, node_filter, edge_filter);
}
template<typename GR, typename NF, typename EF>
SubGraph<const GR, NF, const EF>
subGraph(const GR& graph, NF& node_filter, const EF& edge_filter) {
return SubGraph<const GR, NF, const EF>
(graph, node_filter, edge_filter);
}
template<typename GR, typename NF, typename EF>
SubGraph<const GR, const NF, const EF>
subGraph(const GR& graph, const NF& node_filter, const EF& edge_filter) {
return SubGraph<const GR, const NF, const EF>
(graph, node_filter, edge_filter);
}
/// \ingroup graph_adaptors
///
/// \brief Adaptor class for hiding nodes in a digraph or a graph.
///
/// FilterNodes adaptor can be used for hiding nodes in a digraph or a
/// graph. A \c bool node map must be specified, which defines the filter
/// for the nodes. Only the nodes with \c true filter value and the
/// arcs/edges incident to nodes both with \c true filter value are shown
/// in the subgraph. This adaptor conforms to the \ref concepts::Digraph
/// "Digraph" concept or the \ref concepts::Graph "Graph" concept
/// depending on the \c GR template parameter.
///
/// The adapted (di)graph can also be modified through this adaptor
/// by adding or removing nodes or arcs/edges, unless the \c GR template
/// parameter is set to be \c const.
///
/// This class provides only linear time item counting.
///
/// \tparam GR The type of the adapted digraph or graph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept
/// or the \ref concepts::Graph "Graph" concept.
/// It can also be specified to be \c const.
/// \tparam NF The type of the node filter map.
/// It must be a \c bool (or convertible) node map of the
/// adapted (di)graph. The default type is
/// \ref concepts::Graph::NodeMap "GR::NodeMap<bool>".
///
/// \note The \c Node and <tt>Arc/Edge</tt> types of this adaptor and the
/// adapted (di)graph are convertible to each other.
#ifdef DOXYGEN
template<typename GR, typename NF>
class FilterNodes {
#else
template<typename GR,
typename NF = typename GR::template NodeMap<bool>,
typename Enable = void>
class FilterNodes :
public DigraphAdaptorExtender<
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
true> > {
#endif
typedef DigraphAdaptorExtender<
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
true> > Parent;
public:
typedef GR Digraph;
typedef NF NodeFilterMap;
typedef typename Parent::Node Node;
protected:
ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map;
FilterNodes() : const_true_map() {}
public:
/// \brief Constructor
///
/// Creates a subgraph for the given digraph or graph with the
/// given node filter map.
FilterNodes(GR& graph, NF& node_filter)
: Parent(), const_true_map()
{
Parent::initialize(graph, node_filter, const_true_map);
}
/// \brief Sets the status of the given node
///
/// This function sets the status of the given node.
/// It is done by simply setting the assigned value of \c n
/// to \c v in the node filter map.
void status(const Node& n, bool v) const { Parent::status(n, v); }
/// \brief Returns the status of the given node
///
/// This function returns the status of the given node.
/// It is \c true if the given node is enabled (i.e. not hidden).
bool status(const Node& n) const { return Parent::status(n); }
/// \brief Disables the given node
///
/// This function disables the given node, so the iteration
/// jumps over it.
/// It is the same as \ref status() "status(n, false)".
void disable(const Node& n) const { Parent::status(n, false); }
/// \brief Enables the given node
///
/// This function enables the given node.
/// It is the same as \ref status() "status(n, true)".
void enable(const Node& n) const { Parent::status(n, true); }
};
template<typename GR, typename NF>
class FilterNodes<GR, NF,
typename enable_if<UndirectedTagIndicator<GR> >::type> :
public GraphAdaptorExtender<
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
true> > {
typedef GraphAdaptorExtender<
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
true> > Parent;
public:
typedef GR Graph;
typedef NF NodeFilterMap;
typedef typename Parent::Node Node;
protected:
ConstMap<typename GR::Edge, Const<bool, true> > const_true_map;
FilterNodes() : const_true_map() {}
public:
FilterNodes(GR& graph, NodeFilterMap& node_filter) :
Parent(), const_true_map() {
Parent::initialize(graph, node_filter, const_true_map);
}
void status(const Node& n, bool v) const { Parent::status(n, v); }
bool status(const Node& n) const { return Parent::status(n); }
void disable(const Node& n) const { Parent::status(n, false); }
void enable(const Node& n) const { Parent::status(n, true); }
};
/// \brief Returns a read-only FilterNodes adaptor
///
/// This function just returns a read-only \ref FilterNodes adaptor.
/// \ingroup graph_adaptors
/// \relates FilterNodes
template<typename GR, typename NF>
FilterNodes<const GR, NF>
filterNodes(const GR& graph, NF& node_filter) {
return FilterNodes<const GR, NF>(graph, node_filter);
}
template<typename GR, typename NF>
FilterNodes<const GR, const NF>
filterNodes(const GR& graph, const NF& node_filter) {
return FilterNodes<const GR, const NF>(graph, node_filter);
}
/// \ingroup graph_adaptors
///
/// \brief Adaptor class for hiding arcs in a digraph.
///
/// FilterArcs adaptor can be used for hiding arcs in a digraph.
/// A \c bool arc map must be specified, which defines the filter for
/// the arcs. Only the arcs with \c true filter value are shown in the
/// subdigraph. This adaptor conforms to the \ref concepts::Digraph
/// "Digraph" concept.
///
/// The adapted digraph can also be modified through this adaptor
/// by adding or removing nodes or arcs, unless the \c GR template
/// parameter is set to be \c const.
///
/// This class provides only linear time counting for nodes and arcs.
///
/// \tparam DGR The type of the adapted digraph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept.
/// It can also be specified to be \c const.
/// \tparam AF The type of the arc filter map.
/// It must be a \c bool (or convertible) arc map of the
/// adapted digraph. The default type is
/// \ref concepts::Digraph::ArcMap "DGR::ArcMap<bool>".
///
/// \note The \c Node and \c Arc types of this adaptor and the adapted
/// digraph are convertible to each other.
#ifdef DOXYGEN
template<typename DGR,
typename AF>
class FilterArcs {
#else
template<typename DGR,
typename AF = typename DGR::template ArcMap<bool> >
class FilterArcs :
public DigraphAdaptorExtender<
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
AF, false> > {
#endif
typedef DigraphAdaptorExtender<
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
AF, false> > Parent;
public:
/// The type of the adapted digraph.
typedef DGR Digraph;
/// The type of the arc filter map.
typedef AF ArcFilterMap;
typedef typename Parent::Arc Arc;
protected:
ConstMap<typename DGR::Node, Const<bool, true> > const_true_map;
FilterArcs() : const_true_map() {}
public:
/// \brief Constructor
///
/// Creates a subdigraph for the given digraph with the given arc
/// filter map.
FilterArcs(DGR& digraph, ArcFilterMap& arc_filter)
: Parent(), const_true_map() {
Parent::initialize(digraph, const_true_map, arc_filter);
}
/// \brief Sets the status of the given arc
///
/// This function sets the status of the given arc.
/// It is done by simply setting the assigned value of \c a
/// to \c v in the arc filter map.
void status(const Arc& a, bool v) const { Parent::status(a, v); }
/// \brief Returns the status of the given arc
///
/// This function returns the status of the given arc.
/// It is \c true if the given arc is enabled (i.e. not hidden).
bool status(const Arc& a) const { return Parent::status(a); }
/// \brief Disables the given arc
///
/// This function disables the given arc in the subdigraph,
/// so the iteration jumps over it.
/// It is the same as \ref status() "status(a, false)".
void disable(const Arc& a) const { Parent::status(a, false); }
/// \brief Enables the given arc
///
/// This function enables the given arc in the subdigraph.
/// It is the same as \ref status() "status(a, true)".
void enable(const Arc& a) const { Parent::status(a, true); }
};
/// \brief Returns a read-only FilterArcs adaptor
///
/// This function just returns a read-only \ref FilterArcs adaptor.
/// \ingroup graph_adaptors
/// \relates FilterArcs
template<typename DGR, typename AF>
FilterArcs<const DGR, AF>
filterArcs(const DGR& digraph, AF& arc_filter) {
return FilterArcs<const DGR, AF>(digraph, arc_filter);
}
template<typename DGR, typename AF>
FilterArcs<const DGR, const AF>
filterArcs(const DGR& digraph, const AF& arc_filter) {
return FilterArcs<const DGR, const AF>(digraph, arc_filter);
}
/// \ingroup graph_adaptors
///
/// \brief Adaptor class for hiding edges in a graph.
///
/// FilterEdges adaptor can be used for hiding edges in a graph.
/// A \c bool edge map must be specified, which defines the filter for
/// the edges. Only the edges with \c true filter value are shown in the
/// subgraph. This adaptor conforms to the \ref concepts::Graph
/// "Graph" concept.
///
/// The adapted graph can also be modified through this adaptor
/// by adding or removing nodes or edges, unless the \c GR template
/// parameter is set to be \c const.
///
/// This class provides only linear time counting for nodes, edges and arcs.
///
/// \tparam GR The type of the adapted graph.
/// It must conform to the \ref concepts::Graph "Graph" concept.
/// It can also be specified to be \c const.
/// \tparam EF The type of the edge filter map.
/// It must be a \c bool (or convertible) edge map of the
/// adapted graph. The default type is
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
///
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the
/// adapted graph are convertible to each other.
#ifdef DOXYGEN
template<typename GR,
typename EF>
class FilterEdges {
#else
template<typename GR,
typename EF = typename GR::template EdgeMap<bool> >
class FilterEdges :
public GraphAdaptorExtender<
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >,
EF, false> > {
#endif
typedef GraphAdaptorExtender<
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >,
EF, false> > Parent;
public:
/// The type of the adapted graph.
typedef GR Graph;
/// The type of the edge filter map.
typedef EF EdgeFilterMap;
typedef typename Parent::Edge Edge;
protected:
ConstMap<typename GR::Node, Const<bool, true> > const_true_map;
FilterEdges() : const_true_map(true) {
Parent::setNodeFilterMap(const_true_map);
}
public:
/// \brief Constructor
///
/// Creates a subgraph for the given graph with the given edge
/// filter map.
FilterEdges(GR& graph, EF& edge_filter)
: Parent(), const_true_map() {
Parent::initialize(graph, const_true_map, edge_filter);
}
/// \brief Sets the status of the given edge
///
/// This function sets the status of the given edge.
/// It is done by simply setting the assigned value of \c e
/// to \c v in the edge filter map.
void status(const Edge& e, bool v) const { Parent::status(e, v); }
/// \brief Returns the status of the given edge
///
/// This function returns the status of the given edge.
/// It is \c true if the given edge is enabled (i.e. not hidden).
bool status(const Edge& e) const { return Parent::status(e); }
/// \brief Disables the given edge
///
/// This function disables the given edge in the subgraph,
/// so the iteration jumps over it.
/// It is the same as \ref status() "status(e, false)".
void disable(const Edge& e) const { Parent::status(e, false); }
/// \brief Enables the given edge
///
/// This function enables the given edge in the subgraph.
/// It is the same as \ref status() "status(e, true)".
void enable(const Edge& e) const { Parent::status(e, true); }
};
/// \brief Returns a read-only FilterEdges adaptor
///
/// This function just returns a read-only \ref FilterEdges adaptor.
/// \ingroup graph_adaptors
/// \relates FilterEdges
template<typename GR, typename EF>
FilterEdges<const GR, EF>
filterEdges(const GR& graph, EF& edge_filter) {
return FilterEdges<const GR, EF>(graph, edge_filter);
}
template<typename GR, typename EF>
FilterEdges<const GR, const EF>
filterEdges(const GR& graph, const EF& edge_filter) {
return FilterEdges<const GR, const EF>(graph, edge_filter);
}
template <typename DGR>
class UndirectorBase {
public:
typedef DGR Digraph;
typedef UndirectorBase Adaptor;
typedef True UndirectedTag;
typedef typename Digraph::Arc Edge;
typedef typename Digraph::Node Node;
class Arc {
friend class UndirectorBase;
protected:
Edge _edge;
bool _forward;
Arc(const Edge& edge, bool forward)
: _edge(edge), _forward(forward) {}
public:
Arc() {}
Arc(Invalid) : _edge(INVALID), _forward(true) {}
operator const Edge&() const { return _edge; }
bool operator==(const Arc &other) const {
return _forward == other._forward && _edge == other._edge;
}
bool operator!=(const Arc &other) const {
return _forward != other._forward || _edge != other._edge;
}
bool operator<(const Arc &other) const {
return _forward < other._forward ||
(_forward == other._forward && _edge < other._edge);
}
};
void first(Node& n) const {
_digraph->first(n);
}
void next(Node& n) const {
_digraph->next(n);
}
void first(Arc& a) const {
_digraph->first(a._edge);
a._forward = true;
}
void next(Arc& a) const {
if (a._forward) {
a._forward = false;
} else {
_digraph->next(a._edge);
a._forward = true;
}
}
void first(Edge& e) const {
_digraph->first(e);
}
void next(Edge& e) const {
_digraph->next(e);
}
void firstOut(Arc& a, const Node& n) const {
_digraph->firstIn(a._edge, n);
if (a._edge != INVALID ) {
a._forward = false;
} else {
_digraph->firstOut(a._edge, n);
a._forward = true;
}
}
void nextOut(Arc &a) const {
if (!a._forward) {
Node n = _digraph->target(a._edge);
_digraph->nextIn(a._edge);
if (a._edge == INVALID) {
_digraph->firstOut(a._edge, n);
a._forward = true;
}
}
else {
_digraph->nextOut(a._edge);
}
}
void firstIn(Arc &a, const Node &n) const {
_digraph->firstOut(a._edge, n);
if (a._edge != INVALID ) {
a._forward = false;
} else {
_digraph->firstIn(a._edge, n);
a._forward = true;
}
}
void nextIn(Arc &a) const {
if (!a._forward) {
Node n = _digraph->source(a._edge);
_digraph->nextOut(a._edge);
if (a._edge == INVALID ) {
_digraph->firstIn(a._edge, n);
a._forward = true;
}
}
else {
_digraph->nextIn(a._edge);
}
}
void firstInc(Edge &e, bool &d, const Node &n) const {
d = true;
_digraph->firstOut(e, n);
if (e != INVALID) return;
d = false;
_digraph->firstIn(e, n);
}
void nextInc(Edge &e, bool &d) const {
if (d) {
Node s = _digraph->source(e);
_digraph->nextOut(e);
if (e != INVALID) return;
d = false;
_digraph->firstIn(e, s);
} else {
_digraph->nextIn(e);
}
}
Node u(const Edge& e) const {
return _digraph->source(e);
}
Node v(const Edge& e) const {
return _digraph->target(e);
}
Node source(const Arc &a) const {
return a._forward ? _digraph->source(a._edge) : _digraph->target(a._edge);
}
Node target(const Arc &a) const {
return a._forward ? _digraph->target(a._edge) : _digraph->source(a._edge);
}
static Arc direct(const Edge &e, bool d) {
return Arc(e, d);
}
static bool direction(const Arc &a) { return a._forward; }
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); }
Arc arcFromId(int ix) const {
return direct(_digraph->arcFromId(ix >> 1), bool(ix & 1));
}
Edge edgeFromId(int ix) const { return _digraph->arcFromId(ix); }
int id(const Node &n) const { return _digraph->id(n); }
int id(const Arc &a) const {
return (_digraph->id(a) << 1) | (a._forward ? 1 : 0);
}
int id(const Edge &e) const { return _digraph->id(e); }
int maxNodeId() const { return _digraph->maxNodeId(); }
int maxArcId() const { return (_digraph->maxArcId() << 1) | 1; }
int maxEdgeId() const { return _digraph->maxArcId(); }
Node addNode() { return _digraph->addNode(); }
Edge addEdge(const Node& u, const Node& v) {
return _digraph->addArc(u, v);
}
void erase(const Node& i) { _digraph->erase(i); }
void erase(const Edge& i) { _digraph->erase(i); }
void clear() { _digraph->clear(); }
typedef NodeNumTagIndicator<Digraph> NodeNumTag;
int nodeNum() const { return _digraph->nodeNum(); }
typedef ArcNumTagIndicator<Digraph> ArcNumTag;
int arcNum() const { return 2 * _digraph->arcNum(); }
typedef ArcNumTag EdgeNumTag;
int edgeNum() const { return _digraph->arcNum(); }
typedef FindArcTagIndicator<Digraph> FindArcTag;
Arc findArc(Node s, Node t, Arc p = INVALID) const {
if (p == INVALID) {
Edge arc = _digraph->findArc(s, t);
if (arc != INVALID) return direct(arc, true);
arc = _digraph->findArc(t, s);
if (arc != INVALID) return direct(arc, false);
} else if (direction(p)) {
Edge arc = _digraph->findArc(s, t, p);
if (arc != INVALID) return direct(arc, true);
arc = _digraph->findArc(t, s);
if (arc != INVALID) return direct(arc, false);
} else {
Edge arc = _digraph->findArc(t, s, p);
if (arc != INVALID) return direct(arc, false);
}
return INVALID;
}
typedef FindArcTag FindEdgeTag;
Edge findEdge(Node s, Node t, Edge p = INVALID) const {
if (s != t) {
if (p == INVALID) {
Edge arc = _digraph->findArc(s, t);
if (arc != INVALID) return arc;
arc = _digraph->findArc(t, s);
if (arc != INVALID) return arc;
} else if (_digraph->source(p) == s) {
Edge arc = _digraph->findArc(s, t, p);
if (arc != INVALID) return arc;
arc = _digraph->findArc(t, s);
if (arc != INVALID) return arc;
} else {
Edge arc = _digraph->findArc(t, s, p);
if (arc != INVALID) return arc;
}
} else {
return _digraph->findArc(s, t, p);
}
return INVALID;
}
private:
template <typename V>
class ArcMapBase {
private:
typedef typename DGR::template ArcMap<V> MapImpl;
public:
typedef typename MapTraits<MapImpl>::ReferenceMapTag ReferenceMapTag;
typedef V Value;
typedef Arc Key;
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue;
typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue;
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference;
typedef typename MapTraits<MapImpl>::ReturnValue Reference;
ArcMapBase(const UndirectorBase<DGR>& adaptor) :
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
: _forward(*adaptor._digraph, value),
_backward(*adaptor._digraph, value) {}
void set(const Arc& a, const V& value) {
if (direction(a)) {
_forward.set(a, value);
} else {
_backward.set(a, value);
}
}
ConstReturnValue operator[](const Arc& a) const {
if (direction(a)) {
return _forward[a];
} else {
return _backward[a];
}
}
ReturnValue operator[](const Arc& a) {
if (direction(a)) {
return _forward[a];
} else {
return _backward[a];
}
}
protected:
MapImpl _forward, _backward;
};
public:
template <typename V>
class NodeMap : public DGR::template NodeMap<V> {
typedef typename DGR::template NodeMap<V> Parent;
public:
typedef V Value;
explicit NodeMap(const UndirectorBase<DGR>& adaptor)
: Parent(*adaptor._digraph) {}
NodeMap(const UndirectorBase<DGR>& adaptor, const V& value)
: Parent(*adaptor._digraph, value) { }
private:
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
}
template <typename CMap>
NodeMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
template <typename V>
class ArcMap
: public SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > {
typedef SubMapExtender<UndirectorBase<DGR>, ArcMapBase<V> > Parent;
public:
typedef V Value;
explicit ArcMap(const UndirectorBase<DGR>& adaptor)
: Parent(adaptor) {}
ArcMap(const UndirectorBase<DGR>& adaptor, const V& value)
: Parent(adaptor, value) {}
private:
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
}
template <typename CMap>
ArcMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
template <typename V>
class EdgeMap : public Digraph::template ArcMap<V> {
typedef typename Digraph::template ArcMap<V> Parent;
public:
typedef V Value;
explicit EdgeMap(const UndirectorBase<DGR>& adaptor)
: Parent(*adaptor._digraph) {}
EdgeMap(const UndirectorBase<DGR>& adaptor, const V& value)
: Parent(*adaptor._digraph, value) {}
private:
EdgeMap& operator=(const EdgeMap& cmap) {
return operator=<EdgeMap>(cmap);
}
template <typename CMap>
EdgeMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
typedef EdgeNotifier ArcNotifier;
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
protected:
UndirectorBase() : _digraph(0) {}
DGR* _digraph;
void initialize(DGR& digraph) {
_digraph = &digraph;
}
};
/// \ingroup graph_adaptors
///
/// \brief Adaptor class for viewing a digraph as an undirected graph.
///
/// Undirector adaptor can be used for viewing a digraph as an undirected
/// graph. All arcs of the underlying digraph are showed in the
/// adaptor as an edge (and also as a pair of arcs, of course).
/// This adaptor conforms to the \ref concepts::Graph "Graph" concept.
///
/// The adapted digraph can also be modified through this adaptor
/// by adding or removing nodes or edges, unless the \c GR template
/// parameter is set to be \c const.
///
/// This class provides item counting in the same time as the adapted
/// digraph structure.
///
/// \tparam DGR The type of the adapted digraph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept.
/// It can also be specified to be \c const.
///
/// \note The \c Node type of this adaptor and the adapted digraph are
/// convertible to each other, moreover the \c Edge type of the adaptor
/// and the \c Arc type of the adapted digraph are also convertible to
/// each other.
/// (Thus the \c Arc type of the adaptor is convertible to the \c Arc type
/// of the adapted digraph.)
template<typename DGR>
#ifdef DOXYGEN
class Undirector {
#else
class Undirector :
public GraphAdaptorExtender<UndirectorBase<DGR> > {
#endif
typedef GraphAdaptorExtender<UndirectorBase<DGR> > Parent;
public:
/// The type of the adapted digraph.
typedef DGR Digraph;
protected:
Undirector() { }
public:
/// \brief Constructor
///
/// Creates an undirected graph from the given digraph.
Undirector(DGR& digraph) {
initialize(digraph);
}
/// \brief Arc map combined from two original arc maps
///
/// This map adaptor class adapts two arc maps of the underlying
/// digraph to get an arc map of the undirected graph.
/// Its value type is inherited from the first arc map type (\c FW).
/// \tparam FW The type of the "foward" arc map.
/// \tparam BK The type of the "backward" arc map.
template <typename FW, typename BK>
class CombinedArcMap {
public:
/// The key type of the map
typedef typename Parent::Arc Key;
/// The value type of the map
typedef typename FW::Value Value;
typedef typename MapTraits<FW>::ReferenceMapTag ReferenceMapTag;
typedef typename MapTraits<FW>::ReturnValue ReturnValue;
typedef typename MapTraits<FW>::ConstReturnValue ConstReturnValue;
typedef typename MapTraits<FW>::ReturnValue Reference;
typedef typename MapTraits<FW>::ConstReturnValue ConstReference;
/// Constructor
CombinedArcMap(FW& forward, BK& backward)
: _forward(&forward), _backward(&backward) {}
/// Sets the value associated with the given key.
void set(const Key& e, const Value& a) {
if (Parent::direction(e)) {
_forward->set(e, a);
} else {
_backward->set(e, a);
}
}
/// Returns the value associated with the given key.
ConstReturnValue operator[](const Key& e) const {
if (Parent::direction(e)) {
return (*_forward)[e];
} else {
return (*_backward)[e];
}
}
/// Returns a reference to the value associated with the given key.
ReturnValue operator[](const Key& e) {
if (Parent::direction(e)) {
return (*_forward)[e];
} else {
return (*_backward)[e];
}
}
protected:
FW* _forward;
BK* _backward;
};
/// \brief Returns a combined arc map
///
/// This function just returns a combined arc map.
template <typename FW, typename BK>
static CombinedArcMap<FW, BK>
combinedArcMap(FW& forward, BK& backward) {
return CombinedArcMap<FW, BK>(forward, backward);
}
template <typename FW, typename BK>
static CombinedArcMap<const FW, BK>
combinedArcMap(const FW& forward, BK& backward) {
return CombinedArcMap<const FW, BK>(forward, backward);
}
template <typename FW, typename BK>
static CombinedArcMap<FW, const BK>
combinedArcMap(FW& forward, const BK& backward) {
return CombinedArcMap<FW, const BK>(forward, backward);
}
template <typename FW, typename BK>
static CombinedArcMap<const FW, const BK>
combinedArcMap(const FW& forward, const BK& backward) {
return CombinedArcMap<const FW, const BK>(forward, backward);
}
};
/// \brief Returns a read-only Undirector adaptor
///
/// This function just returns a read-only \ref Undirector adaptor.
/// \ingroup graph_adaptors
/// \relates Undirector
template<typename DGR>
Undirector<const DGR> undirector(const DGR& digraph) {
return Undirector<const DGR>(digraph);
}
template <typename GR, typename DM>
class OrienterBase {
public:
typedef GR Graph;
typedef DM DirectionMap;
typedef typename GR::Node Node;
typedef typename GR::Edge Arc;
void reverseArc(const Arc& arc) {
_direction->set(arc, !(*_direction)[arc]);
}
void first(Node& i) const { _graph->first(i); }
void first(Arc& i) const { _graph->first(i); }
void firstIn(Arc& i, const Node& n) const {
bool d = true;
_graph->firstInc(i, d, n);
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
}
void firstOut(Arc& i, const Node& n ) const {
bool d = true;
_graph->firstInc(i, d, n);
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
}
void next(Node& i) const { _graph->next(i); }
void next(Arc& i) const { _graph->next(i); }
void nextIn(Arc& i) const {
bool d = !(*_direction)[i];
_graph->nextInc(i, d);
while (i != INVALID && d == (*_direction)[i]) _graph->nextInc(i, d);
}
void nextOut(Arc& i) const {
bool d = (*_direction)[i];
_graph->nextInc(i, d);
while (i != INVALID && d != (*_direction)[i]) _graph->nextInc(i, d);
}
Node source(const Arc& e) const {
return (*_direction)[e] ? _graph->u(e) : _graph->v(e);
}
Node target(const Arc& e) const {
return (*_direction)[e] ? _graph->v(e) : _graph->u(e);
}
typedef NodeNumTagIndicator<Graph> NodeNumTag;
int nodeNum() const { return _graph->nodeNum(); }
typedef EdgeNumTagIndicator<Graph> ArcNumTag;
int arcNum() const { return _graph->edgeNum(); }
typedef FindEdgeTagIndicator<Graph> FindArcTag;
Arc findArc(const Node& u, const Node& v,
const Arc& prev = INVALID) const {
Arc arc = _graph->findEdge(u, v, prev);
while (arc != INVALID && source(arc) != u) {
arc = _graph->findEdge(u, v, arc);
}
return arc;
}
Node addNode() {
return Node(_graph->addNode());
}
Arc addArc(const Node& u, const Node& v) {
Arc arc = _graph->addEdge(u, v);
_direction->set(arc, _graph->u(arc) == u);
return arc;
}
void erase(const Node& i) { _graph->erase(i); }
void erase(const Arc& i) { _graph->erase(i); }
void clear() { _graph->clear(); }
int id(const Node& v) const { return _graph->id(v); }
int id(const Arc& e) const { return _graph->id(e); }
Node nodeFromId(int idx) const { return _graph->nodeFromId(idx); }
Arc arcFromId(int idx) const { return _graph->edgeFromId(idx); }
int maxNodeId() const { return _graph->maxNodeId(); }
int maxArcId() const { return _graph->maxEdgeId(); }
typedef typename ItemSetTraits<GR, Node>::ItemNotifier NodeNotifier;
NodeNotifier& notifier(Node) const { return _graph->notifier(Node()); }
typedef typename ItemSetTraits<GR, Arc>::ItemNotifier ArcNotifier;
ArcNotifier& notifier(Arc) const { return _graph->notifier(Arc()); }
template <typename V>
class NodeMap : public GR::template NodeMap<V> {
typedef typename GR::template NodeMap<V> Parent;
public:
explicit NodeMap(const OrienterBase<GR, DM>& adapter)
: Parent(*adapter._graph) {}
NodeMap(const OrienterBase<GR, DM>& adapter, const V& value)
: Parent(*adapter._graph, value) {}
private:
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
}
template <typename CMap>
NodeMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
template <typename V>
class ArcMap : public GR::template EdgeMap<V> {
typedef typename Graph::template EdgeMap<V> Parent;
public:
explicit ArcMap(const OrienterBase<GR, DM>& adapter)
: Parent(*adapter._graph) { }
ArcMap(const OrienterBase<GR, DM>& adapter, const V& value)
: Parent(*adapter._graph, value) { }
private:
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
}
template <typename CMap>
ArcMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
protected:
Graph* _graph;
DM* _direction;
void initialize(GR& graph, DM& direction) {
_graph = &graph;
_direction = &direction;
}
};
/// \ingroup graph_adaptors
///
/// \brief Adaptor class for orienting the edges of a graph to get a digraph
///
/// Orienter adaptor can be used for orienting the edges of a graph to
/// get a digraph. A \c bool edge map of the underlying graph must be
/// specified, which define the direction of the arcs in the adaptor.
/// The arcs can be easily reversed by the \c reverseArc() member function
/// of the adaptor.
/// This class conforms to the \ref concepts::Digraph "Digraph" concept.
///
/// The adapted graph can also be modified through this adaptor
/// by adding or removing nodes or arcs, unless the \c GR template
/// parameter is set to be \c const.
///
/// This class provides item counting in the same time as the adapted
/// graph structure.
///
/// \tparam GR The type of the adapted graph.
/// It must conform to the \ref concepts::Graph "Graph" concept.
/// It can also be specified to be \c const.
/// \tparam DM The type of the direction map.
/// It must be a \c bool (or convertible) edge map of the
/// adapted graph. The default type is
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<bool>".
///
/// \note The \c Node type of this adaptor and the adapted graph are
/// convertible to each other, moreover the \c Arc type of the adaptor
/// and the \c Edge type of the adapted graph are also convertible to
/// each other.
#ifdef DOXYGEN
template<typename GR,
typename DM>
class Orienter {
#else
template<typename GR,
typename DM = typename GR::template EdgeMap<bool> >
class Orienter :
public DigraphAdaptorExtender<OrienterBase<GR, DM> > {
#endif
typedef DigraphAdaptorExtender<OrienterBase<GR, DM> > Parent;
public:
/// The type of the adapted graph.
typedef GR Graph;
/// The type of the direction edge map.
typedef DM DirectionMap;
typedef typename Parent::Arc Arc;
protected:
Orienter() { }
public:
/// \brief Constructor
///
/// Constructor of the adaptor.
Orienter(GR& graph, DM& direction) {
Parent::initialize(graph, direction);
}
/// \brief Reverses the given arc
///
/// This function reverses the given arc.
/// It is done by simply negate the assigned value of \c a
/// in the direction map.
void reverseArc(const Arc& a) {
Parent::reverseArc(a);
}
};
/// \brief Returns a read-only Orienter adaptor
///
/// This function just returns a read-only \ref Orienter adaptor.
/// \ingroup graph_adaptors
/// \relates Orienter
template<typename GR, typename DM>
Orienter<const GR, DM>
orienter(const GR& graph, DM& direction) {
return Orienter<const GR, DM>(graph, direction);
}
template<typename GR, typename DM>
Orienter<const GR, const DM>
orienter(const GR& graph, const DM& direction) {
return Orienter<const GR, const DM>(graph, direction);
}
namespace _adaptor_bits {
template <typename DGR, typename CM, typename FM, typename TL>
class ResForwardFilter {
public:
typedef typename DGR::Arc Key;
typedef bool Value;
private:
const CM* _capacity;
const FM* _flow;
TL _tolerance;
public:
ResForwardFilter(const CM& capacity, const FM& flow,
const TL& tolerance = TL())
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
bool operator[](const typename DGR::Arc& a) const {
return _tolerance.positive((*_capacity)[a] - (*_flow)[a]);
}
};
template<typename DGR,typename CM, typename FM, typename TL>
class ResBackwardFilter {
public:
typedef typename DGR::Arc Key;
typedef bool Value;
private:
const CM* _capacity;
const FM* _flow;
TL _tolerance;
public:
ResBackwardFilter(const CM& capacity, const FM& flow,
const TL& tolerance = TL())
: _capacity(&capacity), _flow(&flow), _tolerance(tolerance) { }
bool operator[](const typename DGR::Arc& a) const {
return _tolerance.positive((*_flow)[a]);
}
};
}
/// \ingroup graph_adaptors
///
/// \brief Adaptor class for composing the residual digraph for directed
/// flow and circulation problems.
///
/// ResidualDigraph can be used for composing the \e residual digraph
/// for directed flow and circulation problems. Let \f$ G=(V, A) \f$
/// be a directed graph and let \f$ F \f$ be a number type.
/// Let \f$ flow, cap: A\to F \f$ be functions on the arcs.
/// This adaptor implements a digraph structure with node set \f$ V \f$
/// and arc set \f$ A_{forward}\cup A_{backward} \f$,
/// where \f$ A_{forward}=\{uv : uv\in A, flow(uv)<cap(uv)\} \f$ and
/// \f$ A_{backward}=\{vu : uv\in A, flow(uv)>0\} \f$, i.e. the so
/// called residual digraph.
/// When the union \f$ A_{forward}\cup A_{backward} \f$ is taken,
/// multiplicities are counted, i.e. the adaptor has exactly
/// \f$ |A_{forward}| + |A_{backward}|\f$ arcs (it may have parallel
/// arcs).
/// This class conforms to the \ref concepts::Digraph "Digraph" concept.
///
/// This class provides only linear time counting for nodes and arcs.
///
/// \tparam DGR The type of the adapted digraph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept.
/// It is implicitly \c const.
/// \tparam CM The type of the capacity map.
/// It must be an arc map of some numerical type, which defines
/// the capacities in the flow problem. It is implicitly \c const.
/// The default type is
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
/// \tparam FM The type of the flow map.
/// It must be an arc map of some numerical type, which defines
/// the flow values in the flow problem. The default type is \c CM.
/// \tparam TL The tolerance type for handling inexact computation.
/// The default tolerance type depends on the value type of the
/// capacity map.
///
/// \note This adaptor is implemented using Undirector and FilterArcs
/// adaptors.
///
/// \note The \c Node type of this adaptor and the adapted digraph are
/// convertible to each other, moreover the \c Arc type of the adaptor
/// is convertible to the \c Arc type of the adapted digraph.
#ifdef DOXYGEN
template<typename DGR, typename CM, typename FM, typename TL>
class ResidualDigraph
#else
template<typename DGR,
typename CM = typename DGR::template ArcMap<int>,
typename FM = CM,
typename TL = Tolerance<typename CM::Value> >
class ResidualDigraph
: public SubDigraph<
Undirector<const DGR>,
ConstMap<typename DGR::Node, Const<bool, true> >,
typename Undirector<const DGR>::template CombinedArcMap<
_adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
_adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
#endif
{
public:
/// The type of the underlying digraph.
typedef DGR Digraph;
/// The type of the capacity map.
typedef CM CapacityMap;
/// The type of the flow map.
typedef FM FlowMap;
/// The tolerance type.
typedef TL Tolerance;
typedef typename CapacityMap::Value Value;
typedef ResidualDigraph Adaptor;
protected:
typedef Undirector<const Digraph> Undirected;
typedef ConstMap<typename DGR::Node, Const<bool, true> > NodeFilter;
typedef _adaptor_bits::ResForwardFilter<const DGR, CM,
FM, TL> ForwardFilter;
typedef _adaptor_bits::ResBackwardFilter<const DGR, CM,
FM, TL> BackwardFilter;
typedef typename Undirected::
template CombinedArcMap<ForwardFilter, BackwardFilter> ArcFilter;
typedef SubDigraph<Undirected, NodeFilter, ArcFilter> Parent;
const CapacityMap* _capacity;
FlowMap* _flow;
Undirected _graph;
NodeFilter _node_filter;
ForwardFilter _forward_filter;
BackwardFilter _backward_filter;
ArcFilter _arc_filter;
public:
/// \brief Constructor
///
/// Constructor of the residual digraph adaptor. The parameters are the
/// digraph, the capacity map, the flow map, and a tolerance object.
ResidualDigraph(const DGR& digraph, const CM& capacity,
FM& flow, const TL& tolerance = Tolerance())
: Parent(), _capacity(&capacity), _flow(&flow),
_graph(digraph), _node_filter(),
_forward_filter(capacity, flow, tolerance),
_backward_filter(capacity, flow, tolerance),
_arc_filter(_forward_filter, _backward_filter)
{
Parent::initialize(_graph, _node_filter, _arc_filter);
}
typedef typename Parent::Arc Arc;
/// \brief Returns the residual capacity of the given arc.
///
/// Returns the residual capacity of the given arc.
Value residualCapacity(const Arc& a) const {
if (Undirected::direction(a)) {
return (*_capacity)[a] - (*_flow)[a];
} else {
return (*_flow)[a];
}
}
/// \brief Augments on the given arc in the residual digraph.
///
/// Augments on the given arc in the residual digraph. It increases
/// or decreases the flow value on the original arc according to the
/// direction of the residual arc.
void augment(const Arc& a, const Value& v) const {
if (Undirected::direction(a)) {
_flow->set(a, (*_flow)[a] + v);
} else {
_flow->set(a, (*_flow)[a] - v);
}
}
/// \brief Returns \c true if the given residual arc is a forward arc.
///
/// Returns \c true if the given residual arc has the same orientation
/// as the original arc, i.e. it is a so called forward arc.
static bool forward(const Arc& a) {
return Undirected::direction(a);
}
/// \brief Returns \c true if the given residual arc is a backward arc.
///
/// Returns \c true if the given residual arc has the opposite orientation
/// than the original arc, i.e. it is a so called backward arc.
static bool backward(const Arc& a) {
return !Undirected::direction(a);
}
/// \brief Returns the forward oriented residual arc.
///
/// Returns the forward oriented residual arc related to the given
/// arc of the underlying digraph.
static Arc forward(const typename Digraph::Arc& a) {
return Undirected::direct(a, true);
}
/// \brief Returns the backward oriented residual arc.
///
/// Returns the backward oriented residual arc related to the given
/// arc of the underlying digraph.
static Arc backward(const typename Digraph::Arc& a) {
return Undirected::direct(a, false);
}
/// \brief Residual capacity map.
///
/// This map adaptor class can be used for obtaining the residual
/// capacities as an arc map of the residual digraph.
/// Its value type is inherited from the capacity map.
class ResidualCapacity {
protected:
const Adaptor* _adaptor;
public:
/// The key type of the map
typedef Arc Key;
/// The value type of the map
typedef typename CapacityMap::Value Value;
/// Constructor
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor)
: _adaptor(&adaptor) {}
/// Returns the value associated with the given residual arc
Value operator[](const Arc& a) const {
return _adaptor->residualCapacity(a);
}
};
/// \brief Returns a residual capacity map
///
/// This function just returns a residual capacity map.
ResidualCapacity residualCapacity() const {
return ResidualCapacity(*this);
}
};
/// \brief Returns a (read-only) Residual adaptor
///
/// This function just returns a (read-only) \ref ResidualDigraph adaptor.
/// \ingroup graph_adaptors
/// \relates ResidualDigraph
template<typename DGR, typename CM, typename FM>
ResidualDigraph<DGR, CM, FM>
residualDigraph(const DGR& digraph, const CM& capacity_map, FM& flow_map) {
return ResidualDigraph<DGR, CM, FM> (digraph, capacity_map, flow_map);
}
template <typename DGR>
class SplitNodesBase {
typedef DigraphAdaptorBase<const DGR> Parent;
public:
typedef DGR Digraph;
typedef SplitNodesBase Adaptor;
typedef typename DGR::Node DigraphNode;
typedef typename DGR::Arc DigraphArc;
class Node;
class Arc;
private:
template <typename T> class NodeMapBase;
template <typename T> class ArcMapBase;
public:
class Node : public DigraphNode {
friend class SplitNodesBase;
template <typename T> friend class NodeMapBase;
private:
bool _in;
Node(DigraphNode node, bool in)
: DigraphNode(node), _in(in) {}
public:
Node() {}
Node(Invalid) : DigraphNode(INVALID), _in(true) {}
bool operator==(const Node& node) const {
return DigraphNode::operator==(node) && _in == node._in;
}
bool operator!=(const Node& node) const {
return !(*this == node);
}
bool operator<(const Node& node) const {
return DigraphNode::operator<(node) ||
(DigraphNode::operator==(node) && _in < node._in);
}
};
class Arc {
friend class SplitNodesBase;
template <typename T> friend class ArcMapBase;
private:
typedef BiVariant<DigraphArc, DigraphNode> ArcImpl;
explicit Arc(const DigraphArc& arc) : _item(arc) {}
explicit Arc(const DigraphNode& node) : _item(node) {}
ArcImpl _item;
public:
Arc() {}
Arc(Invalid) : _item(DigraphArc(INVALID)) {}
bool operator==(const Arc& arc) const {
if (_item.firstState()) {
if (arc._item.firstState()) {
return _item.first() == arc._item.first();
}
} else {
if (arc._item.secondState()) {
return _item.second() == arc._item.second();
}
}
return false;
}
bool operator!=(const Arc& arc) const {
return !(*this == arc);
}
bool operator<(const Arc& arc) const {
if (_item.firstState()) {
if (arc._item.firstState()) {
return _item.first() < arc._item.first();
}
return false;
} else {
if (arc._item.secondState()) {
return _item.second() < arc._item.second();
}
return true;
}
}
operator DigraphArc() const { return _item.first(); }
operator DigraphNode() const { return _item.second(); }
};
void first(Node& n) const {
_digraph->first(n);
n._in = true;
}
void next(Node& n) const {
if (n._in) {
n._in = false;
} else {
n._in = true;
_digraph->next(n);
}
}
void first(Arc& e) const {
e._item.setSecond();
_digraph->first(e._item.second());
if (e._item.second() == INVALID) {
e._item.setFirst();
_digraph->first(e._item.first());
}
}
void next(Arc& e) const {
if (e._item.secondState()) {
_digraph->next(e._item.second());
if (e._item.second() == INVALID) {
e._item.setFirst();
_digraph->first(e._item.first());
}
} else {
_digraph->next(e._item.first());
}
}
void firstOut(Arc& e, const Node& n) const {
if (n._in) {
e._item.setSecond(n);
} else {
e._item.setFirst();
_digraph->firstOut(e._item.first(), n);
}
}
void nextOut(Arc& e) const {
if (!e._item.firstState()) {
e._item.setFirst(INVALID);
} else {
_digraph->nextOut(e._item.first());
}
}
void firstIn(Arc& e, const Node& n) const {
if (!n._in) {
e._item.setSecond(n);
} else {
e._item.setFirst();
_digraph->firstIn(e._item.first(), n);
}
}
void nextIn(Arc& e) const {
if (!e._item.firstState()) {
e._item.setFirst(INVALID);
} else {
_digraph->nextIn(e._item.first());
}
}
Node source(const Arc& e) const {
if (e._item.firstState()) {
return Node(_digraph->source(e._item.first()), false);
} else {
return Node(e._item.second(), true);
}
}
Node target(const Arc& e) const {
if (e._item.firstState()) {
return Node(_digraph->target(e._item.first()), true);
} else {
return Node(e._item.second(), false);
}
}
int id(const Node& n) const {
return (_digraph->id(n) << 1) | (n._in ? 0 : 1);
}
Node nodeFromId(int ix) const {
return Node(_digraph->nodeFromId(ix >> 1), (ix & 1) == 0);
}
int maxNodeId() const {
return 2 * _digraph->maxNodeId() + 1;
}
int id(const Arc& e) const {
if (e._item.firstState()) {
return _digraph->id(e._item.first()) << 1;
} else {
return (_digraph->id(e._item.second()) << 1) | 1;
}
}
Arc arcFromId(int ix) const {
if ((ix & 1) == 0) {
return Arc(_digraph->arcFromId(ix >> 1));
} else {
return Arc(_digraph->nodeFromId(ix >> 1));
}
}
int maxArcId() const {
return std::max(_digraph->maxNodeId() << 1,
(_digraph->maxArcId() << 1) | 1);
}
static bool inNode(const Node& n) {
return n._in;
}
static bool outNode(const Node& n) {
return !n._in;
}
static bool origArc(const Arc& e) {
return e._item.firstState();
}
static bool bindArc(const Arc& e) {
return e._item.secondState();
}
static Node inNode(const DigraphNode& n) {
return Node(n, true);
}
static Node outNode(const DigraphNode& n) {
return Node(n, false);
}
static Arc arc(const DigraphNode& n) {
return Arc(n);
}
static Arc arc(const DigraphArc& e) {
return Arc(e);
}
typedef True NodeNumTag;
int nodeNum() const {
return 2 * countNodes(*_digraph);
}
typedef True ArcNumTag;
int arcNum() const {
return countArcs(*_digraph) + countNodes(*_digraph);
}
typedef True FindArcTag;
Arc findArc(const Node& u, const Node& v,
const Arc& prev = INVALID) const {
if (inNode(u) && outNode(v)) {
if (static_cast<const DigraphNode&>(u) ==
static_cast<const DigraphNode&>(v) && prev == INVALID) {
return Arc(u);
}
}
else if (outNode(u) && inNode(v)) {
return Arc(::lemon::findArc(*_digraph, u, v, prev));
}
return INVALID;
}
private:
template <typename V>
class NodeMapBase
: public MapTraits<typename Parent::template NodeMap<V> > {
typedef typename Parent::template NodeMap<V> NodeImpl;
public:
typedef Node Key;
typedef V Value;
typedef typename MapTraits<NodeImpl>::ReferenceMapTag ReferenceMapTag;
typedef typename MapTraits<NodeImpl>::ReturnValue ReturnValue;
typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReturnValue;
typedef typename MapTraits<NodeImpl>::ReturnValue Reference;
typedef typename MapTraits<NodeImpl>::ConstReturnValue ConstReference;
NodeMapBase(const SplitNodesBase<DGR>& adaptor)
: _in_map(*adaptor._digraph), _out_map(*adaptor._digraph) {}
NodeMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
: _in_map(*adaptor._digraph, value),
_out_map(*adaptor._digraph, value) {}
void set(const Node& key, const V& val) {
if (SplitNodesBase<DGR>::inNode(key)) { _in_map.set(key, val); }
else {_out_map.set(key, val); }
}
ReturnValue operator[](const Node& key) {
if (SplitNodesBase<DGR>::inNode(key)) { return _in_map[key]; }
else { return _out_map[key]; }
}
ConstReturnValue operator[](const Node& key) const {
if (Adaptor::inNode(key)) { return _in_map[key]; }
else { return _out_map[key]; }
}
private:
NodeImpl _in_map, _out_map;
};
template <typename V>
class ArcMapBase
: public MapTraits<typename Parent::template ArcMap<V> > {
typedef typename Parent::template ArcMap<V> ArcImpl;
typedef typename Parent::template NodeMap<V> NodeImpl;
public:
typedef Arc Key;
typedef V Value;
typedef typename MapTraits<ArcImpl>::ReferenceMapTag ReferenceMapTag;
typedef typename MapTraits<ArcImpl>::ReturnValue ReturnValue;
typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReturnValue;
typedef typename MapTraits<ArcImpl>::ReturnValue Reference;
typedef typename MapTraits<ArcImpl>::ConstReturnValue ConstReference;
ArcMapBase(const SplitNodesBase<DGR>& adaptor)
: _arc_map(*adaptor._digraph), _node_map(*adaptor._digraph) {}
ArcMapBase(const SplitNodesBase<DGR>& adaptor, const V& value)
: _arc_map(*adaptor._digraph, value),
_node_map(*adaptor._digraph, value) {}
void set(const Arc& key, const V& val) {
if (SplitNodesBase<DGR>::origArc(key)) {
_arc_map.set(static_cast<const DigraphArc&>(key), val);
} else {
_node_map.set(static_cast<const DigraphNode&>(key), val);
}
}
ReturnValue operator[](const Arc& key) {
if (SplitNodesBase<DGR>::origArc(key)) {
return _arc_map[static_cast<const DigraphArc&>(key)];
} else {
return _node_map[static_cast<const DigraphNode&>(key)];
}
}
ConstReturnValue operator[](const Arc& key) const {
if (SplitNodesBase<DGR>::origArc(key)) {
return _arc_map[static_cast<const DigraphArc&>(key)];
} else {
return _node_map[static_cast<const DigraphNode&>(key)];
}
}
private:
ArcImpl _arc_map;
NodeImpl _node_map;
};
public:
template <typename V>
class NodeMap
: public SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > {
typedef SubMapExtender<SplitNodesBase<DGR>, NodeMapBase<V> > Parent;
public:
typedef V Value;
NodeMap(const SplitNodesBase<DGR>& adaptor)
: Parent(adaptor) {}
NodeMap(const SplitNodesBase<DGR>& adaptor, const V& value)
: Parent(adaptor, value) {}
private:
NodeMap& operator=(const NodeMap& cmap) {
return operator=<NodeMap>(cmap);
}
template <typename CMap>
NodeMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
template <typename V>
class ArcMap
: public SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > {
typedef SubMapExtender<SplitNodesBase<DGR>, ArcMapBase<V> > Parent;
public:
typedef V Value;
ArcMap(const SplitNodesBase<DGR>& adaptor)
: Parent(adaptor) {}
ArcMap(const SplitNodesBase<DGR>& adaptor, const V& value)
: Parent(adaptor, value) {}
private:
ArcMap& operator=(const ArcMap& cmap) {
return operator=<ArcMap>(cmap);
}
template <typename CMap>
ArcMap& operator=(const CMap& cmap) {
Parent::operator=(cmap);
return *this;
}
};
protected:
SplitNodesBase() : _digraph(0) {}
DGR* _digraph;
void initialize(Digraph& digraph) {
_digraph = &digraph;
}
};
/// \ingroup graph_adaptors
///
/// \brief Adaptor class for splitting the nodes of a digraph.
///
/// SplitNodes adaptor can be used for splitting each node into an
/// \e in-node and an \e out-node in a digraph. Formaly, the adaptor
/// replaces each node \f$ u \f$ in the digraph with two nodes,
/// namely node \f$ u_{in} \f$ and node \f$ u_{out} \f$.
/// If there is a \f$ (v, u) \f$ arc in the original digraph, then the
/// new target of the arc will be \f$ u_{in} \f$ and similarly the
/// source of each original \f$ (u, v) \f$ arc will be \f$ u_{out} \f$.
/// The adaptor adds an additional \e bind \e arc from \f$ u_{in} \f$
/// to \f$ u_{out} \f$ for each node \f$ u \f$ of the original digraph.
///
/// The aim of this class is running an algorithm with respect to node
/// costs or capacities if the algorithm considers only arc costs or
/// capacities directly.
/// In this case you can use \c SplitNodes adaptor, and set the node
/// costs/capacities of the original digraph to the \e bind \e arcs
/// in the adaptor.
///
/// This class provides item counting in the same time as the adapted
/// digraph structure.
///
/// \tparam DGR The type of the adapted digraph.
/// It must conform to the \ref concepts::Digraph "Digraph" concept.
/// It is implicitly \c const.
///
/// \note The \c Node type of this adaptor is converible to the \c Node
/// type of the adapted digraph.
template <typename DGR>
#ifdef DOXYGEN
class SplitNodes {
#else
class SplitNodes
: public DigraphAdaptorExtender<SplitNodesBase<const DGR> > {
#endif
typedef DigraphAdaptorExtender<SplitNodesBase<const DGR> > Parent;
public:
typedef DGR Digraph;
typedef typename DGR::Node DigraphNode;
typedef typename DGR::Arc DigraphArc;
typedef typename Parent::Node Node;
typedef typename Parent::Arc Arc;
/// \brief Constructor
///
/// Constructor of the adaptor.
SplitNodes(const DGR& g) {
Parent::initialize(g);
}
/// \brief Returns \c true if the given node is an in-node.
///
/// Returns \c true if the given node is an in-node.
static bool inNode(const Node& n) {
return Parent::inNode(n);
}
/// \brief Returns \c true if the given node is an out-node.
///
/// Returns \c true if the given node is an out-node.
static bool outNode(const Node& n) {
return Parent::outNode(n);
}
/// \brief Returns \c true if the given arc is an original arc.
///
/// Returns \c true if the given arc is one of the arcs in the
/// original digraph.
static bool origArc(const Arc& a) {
return Parent::origArc(a);
}
/// \brief Returns \c true if the given arc is a bind arc.
///
/// Returns \c true if the given arc is a bind arc, i.e. it connects
/// an in-node and an out-node.
static bool bindArc(const Arc& a) {
return Parent::bindArc(a);
}
/// \brief Returns the in-node created from the given original node.
///
/// Returns the in-node created from the given original node.
static Node inNode(const DigraphNode& n) {
return Parent::inNode(n);
}
/// \brief Returns the out-node created from the given original node.
///
/// Returns the out-node created from the given original node.
static Node outNode(const DigraphNode& n) {
return Parent::outNode(n);
}
/// \brief Returns the bind arc that corresponds to the given
/// original node.
///
/// Returns the bind arc in the adaptor that corresponds to the given
/// original node, i.e. the arc connecting the in-node and out-node
/// of \c n.
static Arc arc(const DigraphNode& n) {
return Parent::arc(n);
}
/// \brief Returns the arc that corresponds to the given original arc.
///
/// Returns the arc in the adaptor that corresponds to the given
/// original arc.
static Arc arc(const DigraphArc& a) {
return Parent::arc(a);
}
/// \brief Node map combined from two original node maps
///
/// This map adaptor class adapts two node maps of the original digraph
/// to get a node map of the split digraph.
/// Its value type is inherited from the first node map type (\c IN).
/// \tparam IN The type of the node map for the in-nodes.
/// \tparam OUT The type of the node map for the out-nodes.
template <typename IN, typename OUT>
class CombinedNodeMap {
public:
/// The key type of the map
typedef Node Key;
/// The value type of the map
typedef typename IN::Value Value;
typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag;
typedef typename MapTraits<IN>::ReturnValue ReturnValue;
typedef typename MapTraits<IN>::ConstReturnValue ConstReturnValue;
typedef typename MapTraits<IN>::ReturnValue Reference;
typedef typename MapTraits<IN>::ConstReturnValue ConstReference;
/// Constructor
CombinedNodeMap(IN& in_map, OUT& out_map)
: _in_map(in_map), _out_map(out_map) {}
/// Returns the value associated with the given key.
Value operator[](const Key& key) const {
if (SplitNodesBase<const DGR>::inNode(key)) {
return _in_map[key];
} else {
return _out_map[key];
}
}
/// Returns a reference to the value associated with the given key.
Value& operator[](const Key& key) {
if (SplitNodesBase<const DGR>::inNode(key)) {
return _in_map[key];
} else {
return _out_map[key];
}
}
/// Sets the value associated with the given key.
void set(const Key& key, const Value& value) {
if (SplitNodesBase<const DGR>::inNode(key)) {
_in_map.set(key, value);
} else {
_out_map.set(key, value);
}
}
private:
IN& _in_map;
OUT& _out_map;
};
/// \brief Returns a combined node map
///
/// This function just returns a combined node map.
template <typename IN, typename OUT>
static CombinedNodeMap<IN, OUT>
combinedNodeMap(IN& in_map, OUT& out_map) {
return CombinedNodeMap<IN, OUT>(in_map, out_map);
}
template <typename IN, typename OUT>
static CombinedNodeMap<const IN, OUT>
combinedNodeMap(const IN& in_map, OUT& out_map) {
return CombinedNodeMap<const IN, OUT>(in_map, out_map);
}
template <typename IN, typename OUT>
static CombinedNodeMap<IN, const OUT>
combinedNodeMap(IN& in_map, const OUT& out_map) {
return CombinedNodeMap<IN, const OUT>(in_map, out_map);
}
template <typename IN, typename OUT>
static CombinedNodeMap<const IN, const OUT>
combinedNodeMap(const IN& in_map, const OUT& out_map) {
return CombinedNodeMap<const IN, const OUT>(in_map, out_map);
}
/// \brief Arc map combined from an arc map and a node map of the
/// original digraph.
///
/// This map adaptor class adapts an arc map and a node map of the
/// original digraph to get an arc map of the split digraph.
/// Its value type is inherited from the original arc map type (\c AM).
/// \tparam AM The type of the arc map.
/// \tparam NM the type of the node map.
template <typename AM, typename NM>
class CombinedArcMap {
public:
/// The key type of the map
typedef Arc Key;
/// The value type of the map
typedef typename AM::Value Value;
typedef typename MapTraits<AM>::ReferenceMapTag ReferenceMapTag;
typedef typename MapTraits<AM>::ReturnValue ReturnValue;
typedef typename MapTraits<AM>::ConstReturnValue ConstReturnValue;
typedef typename MapTraits<AM>::ReturnValue Reference;
typedef typename MapTraits<AM>::ConstReturnValue ConstReference;
/// Constructor
CombinedArcMap(AM& arc_map, NM& node_map)
: _arc_map(arc_map), _node_map(node_map) {}
/// Returns the value associated with the given key.
Value operator[](const Key& arc) const {
if (SplitNodesBase<const DGR>::origArc(arc)) {
return _arc_map[arc];
} else {
return _node_map[arc];
}
}
/// Returns a reference to the value associated with the given key.
Value& operator[](const Key& arc) {
if (SplitNodesBase<const DGR>::origArc(arc)) {
return _arc_map[arc];
} else {
return _node_map[arc];
}
}
/// Sets the value associated with the given key.
void set(const Arc& arc, const Value& val) {
if (SplitNodesBase<const DGR>::origArc(arc)) {
_arc_map.set(arc, val);
} else {
_node_map.set(arc, val);
}
}
private:
AM& _arc_map;
NM& _node_map;
};
/// \brief Returns a combined arc map
///
/// This function just returns a combined arc map.
template <typename ArcMap, typename NodeMap>
static CombinedArcMap<ArcMap, NodeMap>
combinedArcMap(ArcMap& arc_map, NodeMap& node_map) {
return CombinedArcMap<ArcMap, NodeMap>(arc_map, node_map);
}
template <typename ArcMap, typename NodeMap>
static CombinedArcMap<const ArcMap, NodeMap>
combinedArcMap(const ArcMap& arc_map, NodeMap& node_map) {
return CombinedArcMap<const ArcMap, NodeMap>(arc_map, node_map);
}
template <typename ArcMap, typename NodeMap>
static CombinedArcMap<ArcMap, const NodeMap>
combinedArcMap(ArcMap& arc_map, const NodeMap& node_map) {
return CombinedArcMap<ArcMap, const NodeMap>(arc_map, node_map);
}
template <typename ArcMap, typename NodeMap>
static CombinedArcMap<const ArcMap, const NodeMap>
combinedArcMap(const ArcMap& arc_map, const NodeMap& node_map) {
return CombinedArcMap<const ArcMap, const NodeMap>(arc_map, node_map);
}
};
/// \brief Returns a (read-only) SplitNodes adaptor
///
/// This function just returns a (read-only) \ref SplitNodes adaptor.
/// \ingroup graph_adaptors
/// \relates SplitNodes
template<typename DGR>
SplitNodes<DGR>
splitNodes(const DGR& digraph) {
return SplitNodes<DGR>(digraph);
}
#undef LEMON_SCOPE_FIX
} //namespace lemon
#endif //LEMON_ADAPTORS_H
|