Location: LEMON/LEMON-official/lemon/random.h - annotation

Load file history
gravatar
alpar (Alpar Juttner)
SOURCE_BROWSER Doxygen switch is configurable from CMAKE (#395)
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
 r209:765619b7cbb2
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
 r463:88ed40ad0d4f
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r110:f2d66d810c88
 r177:b685e12e08c0
  r10:99e499ca560b
  r68:a315a588a20d
  r10:99e499ca560b
  r68:a315a588a20d
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r511:879c55700cd4
 r177:b685e12e08c0
 r177:b685e12e08c0
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r62:4790635473ef
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r517:afd134142111
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r517:afd134142111
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r517:afd134142111
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
 r517:afd134142111
  r10:99e499ca560b
 r517:afd134142111
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r517:afd134142111
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r517:afd134142111
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r517:afd134142111
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r517:afd134142111
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r49:9a556af88710
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r16:22696f89d183
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
  r49:9a556af88710
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r49:9a556af88710
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r49:9a556af88710
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r102:81563e019fa4
 r102:81563e019fa4
 r102:81563e019fa4
 r102:81563e019fa4
 r102:81563e019fa4
 r209:765619b7cbb2
 r102:81563e019fa4
 r102:81563e019fa4
 r102:81563e019fa4
 r102:81563e019fa4
 r102:81563e019fa4
 r102:81563e019fa4
 r102:81563e019fa4
 r102:81563e019fa4
 r102:81563e019fa4
 r209:765619b7cbb2
 r102:81563e019fa4
 r102:81563e019fa4
 r102:81563e019fa4
 r102:81563e019fa4
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r178:d2bac07f1742
 r177:b685e12e08c0
 r606:c5fd2d996909
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r209:765619b7cbb2
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r606:c5fd2d996909
 r177:b685e12e08c0
 r209:765619b7cbb2
 r177:b685e12e08c0
 r209:765619b7cbb2
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r606:c5fd2d996909
 r209:765619b7cbb2
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r511:879c55700cd4
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
 r631:33c6b6e755cd
 r177:b685e12e08c0
 r177:b685e12e08c0
 r177:b685e12e08c0
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r49:9a556af88710
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r391:c4aa9f097ef1
 r391:c4aa9f097ef1
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r391:c4aa9f097ef1
 r391:c4aa9f097ef1
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r49:9a556af88710
  r49:9a556af88710
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r49:9a556af88710
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r177:b685e12e08c0
 r177:b685e12e08c0
 r631:33c6b6e755cd
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
 r352:0badf3bb38c2
  r10:99e499ca560b
  r23:0ba375bf5dae
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r352:0badf3bb38c2
  r10:99e499ca560b
 r352:0badf3bb38c2
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r352:0badf3bb38c2
  r10:99e499ca560b
 r352:0badf3bb38c2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r352:0badf3bb38c2
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r352:0badf3bb38c2
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r351:2593e163e407
 r352:0badf3bb38c2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r11:ea5945b2da9c
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r68:a315a588a20d
  r10:99e499ca560b
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r10:99e499ca560b
 r116:b6bede534255
  r10:99e499ca560b
 r209:765619b7cbb2
  r11:ea5945b2da9c
  r11:ea5945b2da9c
  r11:ea5945b2da9c
 r209:765619b7cbb2
  r11:ea5945b2da9c
  r11:ea5945b2da9c
  r11:ea5945b2da9c
  r11:ea5945b2da9c
  r11:ea5945b2da9c
  r11:ea5945b2da9c
 r209:765619b7cbb2
 r209:765619b7cbb2
  r11:ea5945b2da9c
  r11:ea5945b2da9c
  r11:ea5945b2da9c
 r209:765619b7cbb2
  r12:435bbc8127b3
  r11:ea5945b2da9c
  r11:ea5945b2da9c
  r12:435bbc8127b3
  r11:ea5945b2da9c
 r116:b6bede534255
 r209:765619b7cbb2
 r209:765619b7cbb2
  r92:5d4decd1b870
  r92:5d4decd1b870
  r92:5d4decd1b870
  r92:5d4decd1b870
 r209:765619b7cbb2
  r92:5d4decd1b870
  r92:5d4decd1b870
  r92:5d4decd1b870
  r92:5d4decd1b870
  r92:5d4decd1b870
 r209:765619b7cbb2
  r92:5d4decd1b870
  r92:5d4decd1b870
  r92:5d4decd1b870
  r92:5d4decd1b870
  r92:5d4decd1b870
  r92:5d4decd1b870
 r209:765619b7cbb2
 r209:765619b7cbb2
  r92:5d4decd1b870
  r92:5d4decd1b870
 r209:765619b7cbb2
 r209:765619b7cbb2
  r10:99e499ca560b
 r209:765619b7cbb2
 r631:33c6b6e755cd
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r23:0ba375bf5dae
  r16:22696f89d183
  r16:22696f89d183
  r16:22696f89d183
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r352:0badf3bb38c2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
 r209:765619b7cbb2
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
  r10:99e499ca560b
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2009
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

/*
 * This file contains the reimplemented version of the Mersenne Twister
 * Generator of Matsumoto and Nishimura.
 *
 * See the appropriate copyright notice below.
 *
 * Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * 3. The names of its contributors may not be used to endorse or promote
 *    products derived from this software without specific prior written
 *    permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 *
 * Any feedback is very welcome.
 * http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
 * email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
 */

#ifndef LEMON_RANDOM_H
#define LEMON_RANDOM_H

#include <algorithm>
#include <iterator>
#include <vector>
#include <limits>
#include <fstream>

#include <lemon/math.h>
#include <lemon/dim2.h>

#ifndef WIN32
#include <sys/time.h>
#include <ctime>
#include <sys/types.h>
#include <unistd.h>
#else
#include <lemon/bits/windows.h>
#endif

///\ingroup misc
///\file
///\brief Mersenne Twister random number generator

namespace lemon {

  namespace _random_bits {

    template <typename _Word, int _bits = std::numeric_limits<_Word>::digits>
    struct RandomTraits {};

    template <typename _Word>
    struct RandomTraits<_Word, 32> {

      typedef _Word Word;
      static const int bits = 32;

      static const int length = 624;
      static const int shift = 397;

      static const Word mul = 0x6c078965u;
      static const Word arrayInit = 0x012BD6AAu;
      static const Word arrayMul1 = 0x0019660Du;
      static const Word arrayMul2 = 0x5D588B65u;

      static const Word mask = 0x9908B0DFu;
      static const Word loMask = (1u << 31) - 1;
      static const Word hiMask = ~loMask;


      static Word tempering(Word rnd) {
        rnd ^= (rnd >> 11);
        rnd ^= (rnd << 7) & 0x9D2C5680u;
        rnd ^= (rnd << 15) & 0xEFC60000u;
        rnd ^= (rnd >> 18);
        return rnd;
      }

    };

    template <typename _Word>
    struct RandomTraits<_Word, 64> {

      typedef _Word Word;
      static const int bits = 64;

      static const int length = 312;
      static const int shift = 156;

      static const Word mul = Word(0x5851F42Du) << 32 | Word(0x4C957F2Du);
      static const Word arrayInit = Word(0x00000000u) << 32 |Word(0x012BD6AAu);
      static const Word arrayMul1 = Word(0x369DEA0Fu) << 32 |Word(0x31A53F85u);
      static const Word arrayMul2 = Word(0x27BB2EE6u) << 32 |Word(0x87B0B0FDu);

      static const Word mask = Word(0xB5026F5Au) << 32 | Word(0xA96619E9u);
      static const Word loMask = (Word(1u) << 31) - 1;
      static const Word hiMask = ~loMask;

      static Word tempering(Word rnd) {
        rnd ^= (rnd >> 29) & (Word(0x55555555u) << 32 | Word(0x55555555u));
        rnd ^= (rnd << 17) & (Word(0x71D67FFFu) << 32 | Word(0xEDA60000u));
        rnd ^= (rnd << 37) & (Word(0xFFF7EEE0u) << 32 | Word(0x00000000u));
        rnd ^= (rnd >> 43);
        return rnd;
      }

    };

    template <typename _Word>
    class RandomCore {
    public:

      typedef _Word Word;

    private:

      static const int bits = RandomTraits<Word>::bits;

      static const int length = RandomTraits<Word>::length;
      static const int shift = RandomTraits<Word>::shift;

    public:

      void initState() {
        static const Word seedArray[4] = {
          0x12345u, 0x23456u, 0x34567u, 0x45678u
        };

        initState(seedArray, seedArray + 4);
      }

      void initState(Word seed) {

        static const Word mul = RandomTraits<Word>::mul;

        current = state;

        Word *curr = state + length - 1;
        curr[0] = seed; --curr;
        for (int i = 1; i < length; ++i) {
          curr[0] = (mul * ( curr[1] ^ (curr[1] >> (bits - 2)) ) + i);
          --curr;
        }
      }

      template <typename Iterator>
      void initState(Iterator begin, Iterator end) {

        static const Word init = RandomTraits<Word>::arrayInit;
        static const Word mul1 = RandomTraits<Word>::arrayMul1;
        static const Word mul2 = RandomTraits<Word>::arrayMul2;


        Word *curr = state + length - 1; --curr;
        Iterator it = begin; int cnt = 0;
        int num;

        initState(init);

        num = length > end - begin ? length : end - begin;
        while (num--) {
          curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul1))
            + *it + cnt;
          ++it; ++cnt;
          if (it == end) {
            it = begin; cnt = 0;
          }
          if (curr == state) {
            curr = state + length - 1; curr[0] = state[0];
          }
          --curr;
        }

        num = length - 1; cnt = length - (curr - state) - 1;
        while (num--) {
          curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul2))
            - cnt;
          --curr; ++cnt;
          if (curr == state) {
            curr = state + length - 1; curr[0] = state[0]; --curr;
            cnt = 1;
          }
        }

        state[length - 1] = Word(1) << (bits - 1);
      }

      void copyState(const RandomCore& other) {
        std::copy(other.state, other.state + length, state);
        current = state + (other.current - other.state);
      }

      Word operator()() {
        if (current == state) fillState();
        --current;
        Word rnd = *current;
        return RandomTraits<Word>::tempering(rnd);
      }

    private:


      void fillState() {
        static const Word mask[2] = { 0x0ul, RandomTraits<Word>::mask };
        static const Word loMask = RandomTraits<Word>::loMask;
        static const Word hiMask = RandomTraits<Word>::hiMask;

        current = state + length;

        register Word *curr = state + length - 1;
        register long num;

        num = length - shift;
        while (num--) {
          curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
            curr[- shift] ^ mask[curr[-1] & 1ul];
          --curr;
        }
        num = shift - 1;
        while (num--) {
          curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
            curr[length - shift] ^ mask[curr[-1] & 1ul];
          --curr;
        }
        state[0] = (((state[0] & hiMask) | (curr[length - 1] & loMask)) >> 1) ^
          curr[length - shift] ^ mask[curr[length - 1] & 1ul];

      }


      Word *current;
      Word state[length];

    };


    template <typename Result,
              int shift = (std::numeric_limits<Result>::digits + 1) / 2>
    struct Masker {
      static Result mask(const Result& result) {
        return Masker<Result, (shift + 1) / 2>::
          mask(static_cast<Result>(result | (result >> shift)));
      }
    };

    template <typename Result>
    struct Masker<Result, 1> {
      static Result mask(const Result& result) {
        return static_cast<Result>(result | (result >> 1));
      }
    };

    template <typename Result, typename Word,
              int rest = std::numeric_limits<Result>::digits, int shift = 0,
              bool last = rest <= std::numeric_limits<Word>::digits>
    struct IntConversion {
      static const int bits = std::numeric_limits<Word>::digits;

      static Result convert(RandomCore<Word>& rnd) {
        return static_cast<Result>(rnd() >> (bits - rest)) << shift;
      }

    };

    template <typename Result, typename Word, int rest, int shift>
    struct IntConversion<Result, Word, rest, shift, false> {
      static const int bits = std::numeric_limits<Word>::digits;

      static Result convert(RandomCore<Word>& rnd) {
        return (static_cast<Result>(rnd()) << shift) |
          IntConversion<Result, Word, rest - bits, shift + bits>::convert(rnd);
      }
    };


    template <typename Result, typename Word,
              bool one_word = (std::numeric_limits<Word>::digits <
                               std::numeric_limits<Result>::digits) >
    struct Mapping {
      static Result map(RandomCore<Word>& rnd, const Result& bound) {
        Word max = Word(bound - 1);
        Result mask = Masker<Result>::mask(bound - 1);
        Result num;
        do {
          num = IntConversion<Result, Word>::convert(rnd) & mask;
        } while (num > max);
        return num;
      }
    };

    template <typename Result, typename Word>
    struct Mapping<Result, Word, false> {
      static Result map(RandomCore<Word>& rnd, const Result& bound) {
        Word max = Word(bound - 1);
        Word mask = Masker<Word, (std::numeric_limits<Result>::digits + 1) / 2>
          ::mask(max);
        Word num;
        do {
          num = rnd() & mask;
        } while (num > max);
        return num;
      }
    };

    template <typename Result, int exp>
    struct ShiftMultiplier {
      static const Result multiplier() {
        Result res = ShiftMultiplier<Result, exp / 2>::multiplier();
        res *= res;
        if ((exp & 1) == 1) res *= static_cast<Result>(0.5);
        return res;
      }
    };

    template <typename Result>
    struct ShiftMultiplier<Result, 0> {
      static const Result multiplier() {
        return static_cast<Result>(1.0);
      }
    };

    template <typename Result>
    struct ShiftMultiplier<Result, 20> {
      static const Result multiplier() {
        return static_cast<Result>(1.0/1048576.0);
      }
    };

    template <typename Result>
    struct ShiftMultiplier<Result, 32> {
      static const Result multiplier() {
        return static_cast<Result>(1.0/4294967296.0);
      }
    };

    template <typename Result>
    struct ShiftMultiplier<Result, 53> {
      static const Result multiplier() {
        return static_cast<Result>(1.0/9007199254740992.0);
      }
    };

    template <typename Result>
    struct ShiftMultiplier<Result, 64> {
      static const Result multiplier() {
        return static_cast<Result>(1.0/18446744073709551616.0);
      }
    };

    template <typename Result, int exp>
    struct Shifting {
      static Result shift(const Result& result) {
        return result * ShiftMultiplier<Result, exp>::multiplier();
      }
    };

    template <typename Result, typename Word,
              int rest = std::numeric_limits<Result>::digits, int shift = 0,
              bool last = rest <= std::numeric_limits<Word>::digits>
    struct RealConversion{
      static const int bits = std::numeric_limits<Word>::digits;

      static Result convert(RandomCore<Word>& rnd) {
        return Shifting<Result, shift + rest>::
          shift(static_cast<Result>(rnd() >> (bits - rest)));
      }
    };

    template <typename Result, typename Word, int rest, int shift>
    struct RealConversion<Result, Word, rest, shift, false> {
      static const int bits = std::numeric_limits<Word>::digits;

      static Result convert(RandomCore<Word>& rnd) {
        return Shifting<Result, shift + bits>::
          shift(static_cast<Result>(rnd())) +
          RealConversion<Result, Word, rest-bits, shift + bits>::
          convert(rnd);
      }
    };

    template <typename Result, typename Word>
    struct Initializer {

      template <typename Iterator>
      static void init(RandomCore<Word>& rnd, Iterator begin, Iterator end) {
        std::vector<Word> ws;
        for (Iterator it = begin; it != end; ++it) {
          ws.push_back(Word(*it));
        }
        rnd.initState(ws.begin(), ws.end());
      }

      static void init(RandomCore<Word>& rnd, Result seed) {
        rnd.initState(seed);
      }
    };

    template <typename Word>
    struct BoolConversion {
      static bool convert(RandomCore<Word>& rnd) {
        return (rnd() & 1) == 1;
      }
    };

    template <typename Word>
    struct BoolProducer {
      Word buffer;
      int num;

      BoolProducer() : num(0) {}

      bool convert(RandomCore<Word>& rnd) {
        if (num == 0) {
          buffer = rnd();
          num = RandomTraits<Word>::bits;
        }
        bool r = (buffer & 1);
        buffer >>= 1;
        --num;
        return r;
      }
    };

  }

  /// \ingroup misc
  ///
  /// \brief Mersenne Twister random number generator
  ///
  /// The Mersenne Twister is a twisted generalized feedback
  /// shift-register generator of Matsumoto and Nishimura. The period
  /// of this generator is \f$ 2^{19937} - 1 \f$ and it is
  /// equi-distributed in 623 dimensions for 32-bit numbers. The time
  /// performance of this generator is comparable to the commonly used
  /// generators.
  ///
  /// This implementation is specialized for both 32-bit and 64-bit
  /// architectures. The generators differ sligthly in the
  /// initialization and generation phase so they produce two
  /// completly different sequences.
  ///
  /// The generator gives back random numbers of serveral types. To
  /// get a random number from a range of a floating point type you
  /// can use one form of the \c operator() or the \c real() member
  /// function. If you want to get random number from the {0, 1, ...,
  /// n-1} integer range use the \c operator[] or the \c integer()
  /// method. And to get random number from the whole range of an
  /// integer type you can use the argumentless \c integer() or \c
  /// uinteger() functions. After all you can get random bool with
  /// equal chance of true and false or given probability of true
  /// result with the \c boolean() member functions.
  ///
  ///\code
  /// // The commented code is identical to the other
  /// double a = rnd();                     // [0.0, 1.0)
  /// // double a = rnd.real();             // [0.0, 1.0)
  /// double b = rnd(100.0);                // [0.0, 100.0)
  /// // double b = rnd.real(100.0);        // [0.0, 100.0)
  /// double c = rnd(1.0, 2.0);             // [1.0, 2.0)
  /// // double c = rnd.real(1.0, 2.0);     // [1.0, 2.0)
  /// int d = rnd[100000];                  // 0..99999
  /// // int d = rnd.integer(100000);       // 0..99999
  /// int e = rnd[6] + 1;                   // 1..6
  /// // int e = rnd.integer(1, 1 + 6);     // 1..6
  /// int b = rnd.uinteger<int>();          // 0 .. 2^31 - 1
  /// int c = rnd.integer<int>();           // - 2^31 .. 2^31 - 1
  /// bool g = rnd.boolean();               // P(g = true) = 0.5
  /// bool h = rnd.boolean(0.8);            // P(h = true) = 0.8
  ///\endcode
  ///
  /// LEMON provides a global instance of the random number
  /// generator which name is \ref lemon::rnd "rnd". Usually it is a
  /// good programming convenience to use this global generator to get
  /// random numbers.
  class Random {
  private:

    // Architecture word
    typedef unsigned long Word;

    _random_bits::RandomCore<Word> core;
    _random_bits::BoolProducer<Word> bool_producer;


  public:

    ///\name Initialization
    ///
    /// @{

    /// \brief Default constructor
    ///
    /// Constructor with constant seeding.
    Random() { core.initState(); }

    /// \brief Constructor with seed
    ///
    /// Constructor with seed. The current number type will be converted
    /// to the architecture word type.
    template <typename Number>
    Random(Number seed) {
      _random_bits::Initializer<Number, Word>::init(core, seed);
    }

    /// \brief Constructor with array seeding
    ///
    /// Constructor with array seeding. The given range should contain
    /// any number type and the numbers will be converted to the
    /// architecture word type.
    template <typename Iterator>
    Random(Iterator begin, Iterator end) {
      typedef typename std::iterator_traits<Iterator>::value_type Number;
      _random_bits::Initializer<Number, Word>::init(core, begin, end);
    }

    /// \brief Copy constructor
    ///
    /// Copy constructor. The generated sequence will be identical to
    /// the other sequence. It can be used to save the current state
    /// of the generator and later use it to generate the same
    /// sequence.
    Random(const Random& other) {
      core.copyState(other.core);
    }

    /// \brief Assign operator
    ///
    /// Assign operator. The generated sequence will be identical to
    /// the other sequence. It can be used to save the current state
    /// of the generator and later use it to generate the same
    /// sequence.
    Random& operator=(const Random& other) {
      if (&other != this) {
        core.copyState(other.core);
      }
      return *this;
    }

    /// \brief Seeding random sequence
    ///
    /// Seeding the random sequence. The current number type will be
    /// converted to the architecture word type.
    template <typename Number>
    void seed(Number seed) {
      _random_bits::Initializer<Number, Word>::init(core, seed);
    }

    /// \brief Seeding random sequence
    ///
    /// Seeding the random sequence. The given range should contain
    /// any number type and the numbers will be converted to the
    /// architecture word type.
    template <typename Iterator>
    void seed(Iterator begin, Iterator end) {
      typedef typename std::iterator_traits<Iterator>::value_type Number;
      _random_bits::Initializer<Number, Word>::init(core, begin, end);
    }

    /// \brief Seeding from file or from process id and time
    ///
    /// By default, this function calls the \c seedFromFile() member
    /// function with the <tt>/dev/urandom</tt> file. If it does not success,
    /// it uses the \c seedFromTime().
    /// \return Currently always \c true.
    bool seed() {
#ifndef WIN32
      if (seedFromFile("/dev/urandom", 0)) return true;
#endif
      if (seedFromTime()) return true;
      return false;
    }

    /// \brief Seeding from file
    ///
    /// Seeding the random sequence from file. The linux kernel has two
    /// devices, <tt>/dev/random</tt> and <tt>/dev/urandom</tt> which
    /// could give good seed values for pseudo random generators (The
    /// difference between two devices is that the <tt>random</tt> may
    /// block the reading operation while the kernel can give good
    /// source of randomness, while the <tt>urandom</tt> does not
    /// block the input, but it could give back bytes with worse
    /// entropy).
    /// \param file The source file
    /// \param offset The offset, from the file read.
    /// \return \c true when the seeding successes.
#ifndef WIN32
    bool seedFromFile(const std::string& file = "/dev/urandom", int offset = 0)
#else
    bool seedFromFile(const std::string& file = "", int offset = 0)
#endif
    {
      std::ifstream rs(file.c_str());
      const int size = 4;
      Word buf[size];
      if (offset != 0 && !rs.seekg(offset)) return false;
      if (!rs.read(reinterpret_cast<char*>(buf), sizeof(buf))) return false;
      seed(buf, buf + size);
      return true;
    }

    /// \brief Seding from process id and time
    ///
    /// Seding from process id and time. This function uses the
    /// current process id and the current time for initialize the
    /// random sequence.
    /// \return Currently always \c true.
    bool seedFromTime() {
#ifndef WIN32
      timeval tv;
      gettimeofday(&tv, 0);
      seed(getpid() + tv.tv_sec + tv.tv_usec);
#else
      seed(bits::getWinRndSeed());
#endif
      return true;
    }

    /// @}

    ///\name Uniform Distributions
    ///
    /// @{

    /// \brief Returns a random real number from the range [0, 1)
    ///
    /// It returns a random real number from the range [0, 1). The
    /// default Number type is \c double.
    template <typename Number>
    Number real() {
      return _random_bits::RealConversion<Number, Word>::convert(core);
    }

    double real() {
      return real<double>();
    }

    /// \brief Returns a random real number from the range [0, 1)
    ///
    /// It returns a random double from the range [0, 1).
    double operator()() {
      return real<double>();
    }

    /// \brief Returns a random real number from the range [0, b)
    ///
    /// It returns a random real number from the range [0, b).
    double operator()(double b) {
      return real<double>() * b;
    }

    /// \brief Returns a random real number from the range [a, b)
    ///
    /// It returns a random real number from the range [a, b).
    double operator()(double a, double b) {
      return real<double>() * (b - a) + a;
    }

    /// \brief Returns a random integer from a range
    ///
    /// It returns a random integer from the range {0, 1, ..., b - 1}.
    template <typename Number>
    Number integer(Number b) {
      return _random_bits::Mapping<Number, Word>::map(core, b);
    }

    /// \brief Returns a random integer from a range
    ///
    /// It returns a random integer from the range {a, a + 1, ..., b - 1}.
    template <typename Number>
    Number integer(Number a, Number b) {
      return _random_bits::Mapping<Number, Word>::map(core, b - a) + a;
    }

    /// \brief Returns a random integer from a range
    ///
    /// It returns a random integer from the range {0, 1, ..., b - 1}.
    template <typename Number>
    Number operator[](Number b) {
      return _random_bits::Mapping<Number, Word>::map(core, b);
    }

    /// \brief Returns a random non-negative integer
    ///
    /// It returns a random non-negative integer uniformly from the
    /// whole range of the current \c Number type. The default result
    /// type of this function is <tt>unsigned int</tt>.
    template <typename Number>
    Number uinteger() {
      return _random_bits::IntConversion<Number, Word>::convert(core);
    }

    unsigned int uinteger() {
      return uinteger<unsigned int>();
    }

    /// \brief Returns a random integer
    ///
    /// It returns a random integer uniformly from the whole range of
    /// the current \c Number type. The default result type of this
    /// function is \c int.
    template <typename Number>
    Number integer() {
      static const int nb = std::numeric_limits<Number>::digits +
        (std::numeric_limits<Number>::is_signed ? 1 : 0);
      return _random_bits::IntConversion<Number, Word, nb>::convert(core);
    }

    int integer() {
      return integer<int>();
    }

    /// \brief Returns a random bool
    ///
    /// It returns a random bool. The generator holds a buffer for
    /// random bits. Every time when it become empty the generator makes
    /// a new random word and fill the buffer up.
    bool boolean() {
      return bool_producer.convert(core);
    }

    /// @}

    ///\name Non-uniform Distributions
    ///
    ///@{

    /// \brief Returns a random bool with given probability of true result.
    ///
    /// It returns a random bool with given probability of true result.
    bool boolean(double p) {
      return operator()() < p;
    }

    /// Standard normal (Gauss) distribution

    /// Standard normal (Gauss) distribution.
    /// \note The Cartesian form of the Box-Muller
    /// transformation is used to generate a random normal distribution.
    double gauss()
    {
      double V1,V2,S;
      do {
        V1=2*real<double>()-1;
        V2=2*real<double>()-1;
        S=V1*V1+V2*V2;
      } while(S>=1);
      return std::sqrt(-2*std::log(S)/S)*V1;
    }
    /// Normal (Gauss) distribution with given mean and standard deviation

    /// Normal (Gauss) distribution with given mean and standard deviation.
    /// \sa gauss()
    double gauss(double mean,double std_dev)
    {
      return gauss()*std_dev+mean;
    }

    /// Lognormal distribution

    /// Lognormal distribution. The parameters are the mean and the standard
    /// deviation of <tt>exp(X)</tt>.
    ///
    double lognormal(double n_mean,double n_std_dev)
    {
      return std::exp(gauss(n_mean,n_std_dev));
    }
    /// Lognormal distribution

    /// Lognormal distribution. The parameter is an <tt>std::pair</tt> of
    /// the mean and the standard deviation of <tt>exp(X)</tt>.
    ///
    double lognormal(const std::pair<double,double> &params)
    {
      return std::exp(gauss(params.first,params.second));
    }
    /// Compute the lognormal parameters from mean and standard deviation

    /// This function computes the lognormal parameters from mean and
    /// standard deviation. The return value can direcly be passed to
    /// lognormal().
    std::pair<double,double> lognormalParamsFromMD(double mean,
                                                   double std_dev)
    {
      double fr=std_dev/mean;
      fr*=fr;
      double lg=std::log(1+fr);
      return std::pair<double,double>(std::log(mean)-lg/2.0,std::sqrt(lg));
    }
    /// Lognormal distribution with given mean and standard deviation

    /// Lognormal distribution with given mean and standard deviation.
    ///
    double lognormalMD(double mean,double std_dev)
    {
      return lognormal(lognormalParamsFromMD(mean,std_dev));
    }

    /// Exponential distribution with given mean

    /// This function generates an exponential distribution random number
    /// with mean <tt>1/lambda</tt>.
    ///
    double exponential(double lambda=1.0)
    {
      return -std::log(1.0-real<double>())/lambda;
    }

    /// Gamma distribution with given integer shape

    /// This function generates a gamma distribution random number.
    ///
    ///\param k shape parameter (<tt>k>0</tt> integer)
    double gamma(int k)
    {
      double s = 0;
      for(int i=0;i<k;i++) s-=std::log(1.0-real<double>());
      return s;
    }

    /// Gamma distribution with given shape and scale parameter

    /// This function generates a gamma distribution random number.
    ///
    ///\param k shape parameter (<tt>k>0</tt>)
    ///\param theta scale parameter
    ///
    double gamma(double k,double theta=1.0)
    {
      double xi,nu;
      const double delta = k-std::floor(k);
      const double v0=E/(E-delta);
      do {
        double V0=1.0-real<double>();
        double V1=1.0-real<double>();
        double V2=1.0-real<double>();
        if(V2<=v0)
          {
            xi=std::pow(V1,1.0/delta);
            nu=V0*std::pow(xi,delta-1.0);
          }
        else
          {
            xi=1.0-std::log(V1);
            nu=V0*std::exp(-xi);
          }
      } while(nu>std::pow(xi,delta-1.0)*std::exp(-xi));
      return theta*(xi+gamma(int(std::floor(k))));
    }

    /// Weibull distribution

    /// This function generates a Weibull distribution random number.
    ///
    ///\param k shape parameter (<tt>k>0</tt>)
    ///\param lambda scale parameter (<tt>lambda>0</tt>)
    ///
    double weibull(double k,double lambda)
    {
      return lambda*pow(-std::log(1.0-real<double>()),1.0/k);
    }

    /// Pareto distribution

    /// This function generates a Pareto distribution random number.
    ///
    ///\param k shape parameter (<tt>k>0</tt>)
    ///\param x_min location parameter (<tt>x_min>0</tt>)
    ///
    double pareto(double k,double x_min)
    {
      return exponential(gamma(k,1.0/x_min))+x_min;
    }

    /// Poisson distribution

    /// This function generates a Poisson distribution random number with
    /// parameter \c lambda.
    ///
    /// The probability mass function of this distribusion is
    /// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f]
    /// \note The algorithm is taken from the book of Donald E. Knuth titled
    /// ''Seminumerical Algorithms'' (1969). Its running time is linear in the
    /// return value.

    int poisson(double lambda)
    {
      const double l = std::exp(-lambda);
      int k=0;
      double p = 1.0;
      do {
        k++;
        p*=real<double>();
      } while (p>=l);
      return k-1;
    }

    ///@}

    ///\name Two Dimensional Distributions
    ///
    ///@{

    /// Uniform distribution on the full unit circle

    /// Uniform distribution on the full unit circle.
    ///
    dim2::Point<double> disc()
    {
      double V1,V2;
      do {
        V1=2*real<double>()-1;
        V2=2*real<double>()-1;

      } while(V1*V1+V2*V2>=1);
      return dim2::Point<double>(V1,V2);
    }
    /// A kind of two dimensional normal (Gauss) distribution

    /// This function provides a turning symmetric two-dimensional distribution.
    /// Both coordinates are of standard normal distribution, but they are not
    /// independent.
    ///
    /// \note The coordinates are the two random variables provided by
    /// the Box-Muller method.
    dim2::Point<double> gauss2()
    {
      double V1,V2,S;
      do {
        V1=2*real<double>()-1;
        V2=2*real<double>()-1;
        S=V1*V1+V2*V2;
      } while(S>=1);
      double W=std::sqrt(-2*std::log(S)/S);
      return dim2::Point<double>(W*V1,W*V2);
    }
    /// A kind of two dimensional exponential distribution

    /// This function provides a turning symmetric two-dimensional distribution.
    /// The x-coordinate is of conditionally exponential distribution
    /// with the condition that x is positive and y=0. If x is negative and
    /// y=0 then, -x is of exponential distribution. The same is true for the
    /// y-coordinate.
    dim2::Point<double> exponential2()
    {
      double V1,V2,S;
      do {
        V1=2*real<double>()-1;
        V2=2*real<double>()-1;
        S=V1*V1+V2*V2;
      } while(S>=1);
      double W=-std::log(S)/S;
      return dim2::Point<double>(W*V1,W*V2);
    }

    ///@}
  };


  extern Random rnd;

}

#endif