Location: LEMON/LEMON-official/test/lp_test.cc - annotation
Load file history
Improve test files for some algorithms (#263)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r598:9d0d7e20f76d r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r484:08d495d48089 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r484:08d495d48089 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r484:08d495d48089 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r484:08d495d48089 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r483:76ec7bd57026 r483:76ec7bd57026 r481:7afc121e0689 r483:76ec7bd57026 r483:76ec7bd57026 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r483:76ec7bd57026 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r587:9db62975c32b r587:9db62975c32b r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r598:9d0d7e20f76d r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r485:9b082b3fb33f r482:ed54c0d13df0 r482:ed54c0d13df0 r587:9db62975c32b r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r485:9b082b3fb33f r482:ed54c0d13df0 r482:ed54c0d13df0 r598:9d0d7e20f76d r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r485:9b082b3fb33f r482:ed54c0d13df0 r482:ed54c0d13df0 r587:9db62975c32b r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r485:9b082b3fb33f r482:ed54c0d13df0 r482:ed54c0d13df0 r587:9db62975c32b r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <sstream>
#include <lemon/lp_skeleton.h>
#include "test_tools.h"
#include <lemon/tolerance.h>
#ifdef HAVE_CONFIG_H
#include <lemon/config.h>
#endif
#ifdef HAVE_GLPK
#include <lemon/glpk.h>
#endif
#ifdef HAVE_CPLEX
#include <lemon/cplex.h>
#endif
#ifdef HAVE_SOPLEX
#include <lemon/soplex.h>
#endif
#ifdef HAVE_CLP
#include <lemon/clp.h>
#endif
using namespace lemon;
void lpTest(LpSolver& lp)
{
typedef LpSolver LP;
std::vector<LP::Col> x(10);
// for(int i=0;i<10;i++) x.push_back(lp.addCol());
lp.addColSet(x);
lp.colLowerBound(x,1);
lp.colUpperBound(x,1);
lp.colBounds(x,1,2);
std::vector<LP::Col> y(10);
lp.addColSet(y);
lp.colLowerBound(y,1);
lp.colUpperBound(y,1);
lp.colBounds(y,1,2);
std::map<int,LP::Col> z;
z.insert(std::make_pair(12,INVALID));
z.insert(std::make_pair(2,INVALID));
z.insert(std::make_pair(7,INVALID));
z.insert(std::make_pair(5,INVALID));
lp.addColSet(z);
lp.colLowerBound(z,1);
lp.colUpperBound(z,1);
lp.colBounds(z,1,2);
{
LP::Expr e,f,g;
LP::Col p1,p2,p3,p4,p5;
LP::Constr c;
p1=lp.addCol();
p2=lp.addCol();
p3=lp.addCol();
p4=lp.addCol();
p5=lp.addCol();
e[p1]=2;
*e=12;
e[p1]+=2;
*e+=12;
e[p1]-=2;
*e-=12;
e=2;
e=2.2;
e=p1;
e=f;
e+=2;
e+=2.2;
e+=p1;
e+=f;
e-=2;
e-=2.2;
e-=p1;
e-=f;
e*=2;
e*=2.2;
e/=2;
e/=2.2;
e=((p1+p2)+(p1-p2)+(p1+12)+(12+p1)+(p1-12)+(12-p1)+
(f+12)+(12+f)+(p1+f)+(f+p1)+(f+g)+
(f-12)+(12-f)+(p1-f)+(f-p1)+(f-g)+
2.2*f+f*2.2+f/2.2+
2*f+f*2+f/2+
2.2*p1+p1*2.2+p1/2.2+
2*p1+p1*2+p1/2
);
c = (e <= f );
c = (e <= 2.2);
c = (e <= 2 );
c = (e <= p1 );
c = (2.2<= f );
c = (2 <= f );
c = (p1 <= f );
c = (p1 <= p2 );
c = (p1 <= 2.2);
c = (p1 <= 2 );
c = (2.2<= p2 );
c = (2 <= p2 );
c = (e >= f );
c = (e >= 2.2);
c = (e >= 2 );
c = (e >= p1 );
c = (2.2>= f );
c = (2 >= f );
c = (p1 >= f );
c = (p1 >= p2 );
c = (p1 >= 2.2);
c = (p1 >= 2 );
c = (2.2>= p2 );
c = (2 >= p2 );
c = (e == f );
c = (e == 2.2);
c = (e == 2 );
c = (e == p1 );
c = (2.2== f );
c = (2 == f );
c = (p1 == f );
//c = (p1 == p2 );
c = (p1 == 2.2);
c = (p1 == 2 );
c = (2.2== p2 );
c = (2 == p2 );
c = ((2 <= e) <= 3);
c = ((2 <= p1) <= 3);
c = ((2 >= e) >= 3);
c = ((2 >= p1) >= 3);
e[x[3]]=2;
e[x[3]]=4;
e[x[3]]=1;
*e=12;
lp.addRow(-LP::INF,e,23);
lp.addRow(-LP::INF,3.0*(x[1]+x[2]/2)-x[3],23);
lp.addRow(-LP::INF,3.0*(x[1]+x[2]*2-5*x[3]+12-x[4]/3)+2*x[4]-4,23);
lp.addRow(x[1]+x[3]<=x[5]-3);
lp.addRow((-7<=x[1]+x[3]-12)<=3);
lp.addRow(x[1]<=x[5]);
std::ostringstream buf;
e=((p1+p2)+(p1-0.99*p2));
//e.prettyPrint(std::cout);
//(e<=2).prettyPrint(std::cout);
double tolerance=0.001;
e.simplify(tolerance);
buf << "Coeff. of p2 should be 0.01";
check(e[p2]>0, buf.str());
tolerance=0.02;
e.simplify(tolerance);
buf << "Coeff. of p2 should be 0";
check(const_cast<const LpSolver::Expr&>(e)[p2]==0, buf.str());
//Test for clone/new
LP* lpnew = lp.newSolver();
LP* lpclone = lp.cloneSolver();
delete lpnew;
delete lpclone;
}
{
LP::DualExpr e,f,g;
LP::Row p1 = INVALID, p2 = INVALID, p3 = INVALID,
p4 = INVALID, p5 = INVALID;
e[p1]=2;
e[p1]+=2;
e[p1]-=2;
e=p1;
e=f;
e+=p1;
e+=f;
e-=p1;
e-=f;
e*=2;
e*=2.2;
e/=2;
e/=2.2;
e=((p1+p2)+(p1-p2)+
(p1+f)+(f+p1)+(f+g)+
(p1-f)+(f-p1)+(f-g)+
2.2*f+f*2.2+f/2.2+
2*f+f*2+f/2+
2.2*p1+p1*2.2+p1/2.2+
2*p1+p1*2+p1/2
);
}
}
void solveAndCheck(LpSolver& lp, LpSolver::ProblemType stat,
double exp_opt) {
using std::string;
lp.solve();
std::ostringstream buf;
buf << "PrimalType should be: " << int(stat) << int(lp.primalType());
check(lp.primalType()==stat, buf.str());
if (stat == LpSolver::OPTIMAL) {
std::ostringstream sbuf;
sbuf << "Wrong optimal value (" << lp.primal() <<") with "
<< lp.solverName() <<"\n the right optimum is " << exp_opt;
check(std::abs(lp.primal()-exp_opt) < 1e-3, sbuf.str());
}
}
void aTest(LpSolver & lp)
{
typedef LpSolver LP;
//The following example is very simple
typedef LpSolver::Row Row;
typedef LpSolver::Col Col;
Col x1 = lp.addCol();
Col x2 = lp.addCol();
//Constraints
Row upright=lp.addRow(x1+2*x2 <=1);
lp.addRow(x1+x2 >=-1);
lp.addRow(x1-x2 <=1);
lp.addRow(x1-x2 >=-1);
//Nonnegativity of the variables
lp.colLowerBound(x1, 0);
lp.colLowerBound(x2, 0);
//Objective function
lp.obj(x1+x2);
lp.sense(lp.MAX);
//Testing the problem retrieving routines
check(lp.objCoeff(x1)==1,"First term should be 1 in the obj function!");
check(lp.sense() == lp.MAX,"This is a maximization!");
check(lp.coeff(upright,x1)==1,"The coefficient in question is 1!");
check(lp.colLowerBound(x1)==0,
"The lower bound for variable x1 should be 0.");
check(lp.colUpperBound(x1)==LpSolver::INF,
"The upper bound for variable x1 should be infty.");
check(lp.rowLowerBound(upright) == -LpSolver::INF,
"The lower bound for the first row should be -infty.");
check(lp.rowUpperBound(upright)==1,
"The upper bound for the first row should be 1.");
LpSolver::Expr e = lp.row(upright);
check(e[x1] == 1, "The first coefficient should 1.");
check(e[x2] == 2, "The second coefficient should 1.");
lp.row(upright, x1+x2 <=1);
e = lp.row(upright);
check(e[x1] == 1, "The first coefficient should 1.");
check(e[x2] == 1, "The second coefficient should 1.");
LpSolver::DualExpr de = lp.col(x1);
check( de[upright] == 1, "The first coefficient should 1.");
LpSolver* clp = lp.cloneSolver();
//Testing the problem retrieving routines
check(clp->objCoeff(x1)==1,"First term should be 1 in the obj function!");
check(clp->sense() == clp->MAX,"This is a maximization!");
check(clp->coeff(upright,x1)==1,"The coefficient in question is 1!");
// std::cout<<lp.colLowerBound(x1)<<std::endl;
check(clp->colLowerBound(x1)==0,
"The lower bound for variable x1 should be 0.");
check(clp->colUpperBound(x1)==LpSolver::INF,
"The upper bound for variable x1 should be infty.");
check(lp.rowLowerBound(upright)==-LpSolver::INF,
"The lower bound for the first row should be -infty.");
check(lp.rowUpperBound(upright)==1,
"The upper bound for the first row should be 1.");
e = clp->row(upright);
check(e[x1] == 1, "The first coefficient should 1.");
check(e[x2] == 1, "The second coefficient should 1.");
de = clp->col(x1);
check(de[upright] == 1, "The first coefficient should 1.");
delete clp;
//Maximization of x1+x2
//over the triangle with vertices (0,0) (0,1) (1,0)
double expected_opt=1;
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt);
//Minimization
lp.sense(lp.MIN);
expected_opt=0;
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt);
//Vertex (-1,0) instead of (0,0)
lp.colLowerBound(x1, -LpSolver::INF);
expected_opt=-1;
solveAndCheck(lp, LpSolver::OPTIMAL, expected_opt);
//Erase one constraint and return to maximization
lp.erase(upright);
lp.sense(lp.MAX);
expected_opt=LpSolver::INF;
solveAndCheck(lp, LpSolver::UNBOUNDED, expected_opt);
//Infeasibilty
lp.addRow(x1+x2 <=-2);
solveAndCheck(lp, LpSolver::INFEASIBLE, expected_opt);
}
template<class LP>
void cloneTest()
{
//Test for clone/new
LP* lp = new LP();
LP* lpnew = lp->newSolver();
LP* lpclone = lp->cloneSolver();
delete lp;
delete lpnew;
delete lpclone;
}
int main()
{
LpSkeleton lp_skel;
lpTest(lp_skel);
#ifdef HAVE_GLPK
{
GlpkLp lp_glpk1,lp_glpk2;
lpTest(lp_glpk1);
aTest(lp_glpk2);
cloneTest<GlpkLp>();
}
#endif
#ifdef HAVE_CPLEX
try {
CplexLp lp_cplex1,lp_cplex2;
lpTest(lp_cplex1);
aTest(lp_cplex2);
cloneTest<CplexLp>();
} catch (CplexEnv::LicenseError& error) {
check(false, error.what());
}
#endif
#ifdef HAVE_SOPLEX
{
SoplexLp lp_soplex1,lp_soplex2;
lpTest(lp_soplex1);
aTest(lp_soplex2);
cloneTest<SoplexLp>();
}
#endif
#ifdef HAVE_CLP
{
ClpLp lp_clp1,lp_clp2;
lpTest(lp_clp1);
aTest(lp_clp2);
cloneTest<ClpLp>();
}
#endif
return 0;
}
|