Location: LEMON/LEMON-official/lemon/bellman_ford.h - annotation
Load file history
Merge
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 | r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r828:6f10c6ec5a21 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r891:75e6020b19b1 r891:75e6020b19b1 r891:75e6020b19b1 r891:75e6020b19b1 r891:75e6020b19b1 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r870:4db8d5ccd26b r870:4db8d5ccd26b r870:4db8d5ccd26b r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r833:e20173729589 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r870:4db8d5ccd26b r870:4db8d5ccd26b r870:4db8d5ccd26b r870:4db8d5ccd26b r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r833:e20173729589 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r833:e20173729589 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r828:6f10c6ec5a21 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r746:75325dfccf38 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r891:75e6020b19b1 r891:75e6020b19b1 r891:75e6020b19b1 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r744:9496ed797f20 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 r743:c9b9da1a90a0 | /* -*- C++ -*-
*
* This file is a part of LEMON, a generic C++ optimization library
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_BELLMAN_FORD_H
#define LEMON_BELLMAN_FORD_H
/// \ingroup shortest_path
/// \file
/// \brief Bellman-Ford algorithm.
#include <lemon/list_graph.h>
#include <lemon/bits/path_dump.h>
#include <lemon/core.h>
#include <lemon/error.h>
#include <lemon/maps.h>
#include <lemon/path.h>
#include <limits>
namespace lemon {
/// \brief Default OperationTraits for the BellmanFord algorithm class.
///
/// This operation traits class defines all computational operations
/// and constants that are used in the Bellman-Ford algorithm.
/// The default implementation is based on the \c numeric_limits class.
/// If the numeric type does not have infinity value, then the maximum
/// value is used as extremal infinity value.
template <
typename V,
bool has_inf = std::numeric_limits<V>::has_infinity>
struct BellmanFordDefaultOperationTraits {
/// \e
typedef V Value;
/// \brief Gives back the zero value of the type.
static Value zero() {
return static_cast<Value>(0);
}
/// \brief Gives back the positive infinity value of the type.
static Value infinity() {
return std::numeric_limits<Value>::infinity();
}
/// \brief Gives back the sum of the given two elements.
static Value plus(const Value& left, const Value& right) {
return left + right;
}
/// \brief Gives back \c true only if the first value is less than
/// the second.
static bool less(const Value& left, const Value& right) {
return left < right;
}
};
template <typename V>
struct BellmanFordDefaultOperationTraits<V, false> {
typedef V Value;
static Value zero() {
return static_cast<Value>(0);
}
static Value infinity() {
return std::numeric_limits<Value>::max();
}
static Value plus(const Value& left, const Value& right) {
if (left == infinity() || right == infinity()) return infinity();
return left + right;
}
static bool less(const Value& left, const Value& right) {
return left < right;
}
};
/// \brief Default traits class of BellmanFord class.
///
/// Default traits class of BellmanFord class.
/// \param GR The type of the digraph.
/// \param LEN The type of the length map.
template<typename GR, typename LEN>
struct BellmanFordDefaultTraits {
/// The type of the digraph the algorithm runs on.
typedef GR Digraph;
/// \brief The type of the map that stores the arc lengths.
///
/// The type of the map that stores the arc lengths.
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
typedef LEN LengthMap;
/// The type of the arc lengths.
typedef typename LEN::Value Value;
/// \brief Operation traits for Bellman-Ford algorithm.
///
/// It defines the used operations and the infinity value for the
/// given \c Value type.
/// \see BellmanFordDefaultOperationTraits
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
/// \brief The type of the map that stores the last arcs of the
/// shortest paths.
///
/// The type of the map that stores the last
/// arcs of the shortest paths.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
/// \brief Instantiates a \c PredMap.
///
/// This function instantiates a \ref PredMap.
/// \param g is the digraph to which we would like to define the
/// \ref PredMap.
static PredMap *createPredMap(const GR& g) {
return new PredMap(g);
}
/// \brief The type of the map that stores the distances of the nodes.
///
/// The type of the map that stores the distances of the nodes.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
/// \brief Instantiates a \c DistMap.
///
/// This function instantiates a \ref DistMap.
/// \param g is the digraph to which we would like to define the
/// \ref DistMap.
static DistMap *createDistMap(const GR& g) {
return new DistMap(g);
}
};
/// \brief %BellmanFord algorithm class.
///
/// \ingroup shortest_path
/// This class provides an efficient implementation of the Bellman-Ford
/// algorithm. The maximum time complexity of the algorithm is
/// <tt>O(ne)</tt>.
///
/// The Bellman-Ford algorithm solves the single-source shortest path
/// problem when the arcs can have negative lengths, but the digraph
/// should not contain directed cycles with negative total length.
/// If all arc costs are non-negative, consider to use the Dijkstra
/// algorithm instead, since it is more efficient.
///
/// The arc lengths are passed to the algorithm using a
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
/// kind of length. The type of the length values is determined by the
/// \ref concepts::ReadMap::Value "Value" type of the length map.
///
/// There is also a \ref bellmanFord() "function-type interface" for the
/// Bellman-Ford algorithm, which is convenient in the simplier cases and
/// it can be used easier.
///
/// \tparam GR The type of the digraph the algorithm runs on.
/// The default type is \ref ListDigraph.
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies
/// the lengths of the arcs. The default map type is
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
/// \tparam TR The traits class that defines various types used by the
/// algorithm. By default, it is \ref BellmanFordDefaultTraits
/// "BellmanFordDefaultTraits<GR, LEN>".
/// In most cases, this parameter should not be set directly,
/// consider to use the named template parameters instead.
#ifdef DOXYGEN
template <typename GR, typename LEN, typename TR>
#else
template <typename GR=ListDigraph,
typename LEN=typename GR::template ArcMap<int>,
typename TR=BellmanFordDefaultTraits<GR,LEN> >
#endif
class BellmanFord {
public:
///The type of the underlying digraph.
typedef typename TR::Digraph Digraph;
/// \brief The type of the arc lengths.
typedef typename TR::LengthMap::Value Value;
/// \brief The type of the map that stores the arc lengths.
typedef typename TR::LengthMap LengthMap;
/// \brief The type of the map that stores the last
/// arcs of the shortest paths.
typedef typename TR::PredMap PredMap;
/// \brief The type of the map that stores the distances of the nodes.
typedef typename TR::DistMap DistMap;
/// The type of the paths.
typedef PredMapPath<Digraph, PredMap> Path;
///\brief The \ref BellmanFordDefaultOperationTraits
/// "operation traits class" of the algorithm.
typedef typename TR::OperationTraits OperationTraits;
///The \ref BellmanFordDefaultTraits "traits class" of the algorithm.
typedef TR Traits;
private:
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt OutArcIt;
// Pointer to the underlying digraph.
const Digraph *_gr;
// Pointer to the length map
const LengthMap *_length;
// Pointer to the map of predecessors arcs.
PredMap *_pred;
// Indicates if _pred is locally allocated (true) or not.
bool _local_pred;
// Pointer to the map of distances.
DistMap *_dist;
// Indicates if _dist is locally allocated (true) or not.
bool _local_dist;
typedef typename Digraph::template NodeMap<bool> MaskMap;
MaskMap *_mask;
std::vector<Node> _process;
// Creates the maps if necessary.
void create_maps() {
if(!_pred) {
_local_pred = true;
_pred = Traits::createPredMap(*_gr);
}
if(!_dist) {
_local_dist = true;
_dist = Traits::createDistMap(*_gr);
}
if(!_mask) {
_mask = new MaskMap(*_gr);
}
}
public :
typedef BellmanFord Create;
/// \name Named Template Parameters
///@{
template <class T>
struct SetPredMapTraits : public Traits {
typedef T PredMap;
static PredMap *createPredMap(const Digraph&) {
LEMON_ASSERT(false, "PredMap is not initialized");
return 0; // ignore warnings
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c PredMap type.
///
/// \ref named-templ-param "Named parameter" for setting
/// \c PredMap type.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
template <class T>
struct SetPredMap
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
};
template <class T>
struct SetDistMapTraits : public Traits {
typedef T DistMap;
static DistMap *createDistMap(const Digraph&) {
LEMON_ASSERT(false, "DistMap is not initialized");
return 0; // ignore warnings
}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c DistMap type.
///
/// \ref named-templ-param "Named parameter" for setting
/// \c DistMap type.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
template <class T>
struct SetDistMap
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
};
template <class T>
struct SetOperationTraitsTraits : public Traits {
typedef T OperationTraits;
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// \c OperationTraits type.
///
/// \ref named-templ-param "Named parameter" for setting
/// \c OperationTraits type.
/// For more information, see \ref BellmanFordDefaultOperationTraits.
template <class T>
struct SetOperationTraits
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
Create;
};
///@}
protected:
BellmanFord() {}
public:
/// \brief Constructor.
///
/// Constructor.
/// \param g The digraph the algorithm runs on.
/// \param length The length map used by the algorithm.
BellmanFord(const Digraph& g, const LengthMap& length) :
_gr(&g), _length(&length),
_pred(0), _local_pred(false),
_dist(0), _local_dist(false), _mask(0) {}
///Destructor.
~BellmanFord() {
if(_local_pred) delete _pred;
if(_local_dist) delete _dist;
if(_mask) delete _mask;
}
/// \brief Sets the length map.
///
/// Sets the length map.
/// \return <tt>(*this)</tt>
BellmanFord &lengthMap(const LengthMap &map) {
_length = ↦
return *this;
}
/// \brief Sets the map that stores the predecessor arcs.
///
/// Sets the map that stores the predecessor arcs.
/// If you don't use this function before calling \ref run()
/// or \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated map,
/// of course.
/// \return <tt>(*this)</tt>
BellmanFord &predMap(PredMap &map) {
if(_local_pred) {
delete _pred;
_local_pred=false;
}
_pred = ↦
return *this;
}
/// \brief Sets the map that stores the distances of the nodes.
///
/// Sets the map that stores the distances of the nodes calculated
/// by the algorithm.
/// If you don't use this function before calling \ref run()
/// or \ref init(), an instance will be allocated automatically.
/// The destructor deallocates this automatically allocated map,
/// of course.
/// \return <tt>(*this)</tt>
BellmanFord &distMap(DistMap &map) {
if(_local_dist) {
delete _dist;
_local_dist=false;
}
_dist = ↦
return *this;
}
/// \name Execution Control
/// The simplest way to execute the Bellman-Ford algorithm is to use
/// one of the member functions called \ref run().\n
/// If you need better control on the execution, you have to call
/// \ref init() first, then you can add several source nodes
/// with \ref addSource(). Finally the actual path computation can be
/// performed with \ref start(), \ref checkedStart() or
/// \ref limitedStart().
///@{
/// \brief Initializes the internal data structures.
///
/// Initializes the internal data structures. The optional parameter
/// is the initial distance of each node.
void init(const Value value = OperationTraits::infinity()) {
create_maps();
for (NodeIt it(*_gr); it != INVALID; ++it) {
_pred->set(it, INVALID);
_dist->set(it, value);
}
_process.clear();
if (OperationTraits::less(value, OperationTraits::infinity())) {
for (NodeIt it(*_gr); it != INVALID; ++it) {
_process.push_back(it);
_mask->set(it, true);
}
} else {
for (NodeIt it(*_gr); it != INVALID; ++it) {
_mask->set(it, false);
}
}
}
/// \brief Adds a new source node.
///
/// This function adds a new source node. The optional second parameter
/// is the initial distance of the node.
void addSource(Node source, Value dst = OperationTraits::zero()) {
_dist->set(source, dst);
if (!(*_mask)[source]) {
_process.push_back(source);
_mask->set(source, true);
}
}
/// \brief Executes one round from the Bellman-Ford algorithm.
///
/// If the algoritm calculated the distances in the previous round
/// exactly for the paths of at most \c k arcs, then this function
/// will calculate the distances exactly for the paths of at most
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function
/// calculates the shortest path distances exactly for the paths
/// consisting of at most \c k arcs.
///
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you also
/// need the shortest paths and not only the distances, you should
/// store the \ref predMap() "predecessor map" after each iteration
/// and build the path manually.
///
/// \return \c true when the algorithm have not found more shorter
/// paths.
///
/// \see ActiveIt
bool processNextRound() {
for (int i = 0; i < int(_process.size()); ++i) {
_mask->set(_process[i], false);
}
std::vector<Node> nextProcess;
std::vector<Value> values(_process.size());
for (int i = 0; i < int(_process.size()); ++i) {
values[i] = (*_dist)[_process[i]];
}
for (int i = 0; i < int(_process.size()); ++i) {
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
Node target = _gr->target(it);
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
if (OperationTraits::less(relaxed, (*_dist)[target])) {
_pred->set(target, it);
_dist->set(target, relaxed);
if (!(*_mask)[target]) {
_mask->set(target, true);
nextProcess.push_back(target);
}
}
}
}
_process.swap(nextProcess);
return _process.empty();
}
/// \brief Executes one weak round from the Bellman-Ford algorithm.
///
/// If the algorithm calculated the distances in the previous round
/// at least for the paths of at most \c k arcs, then this function
/// will calculate the distances at least for the paths of at most
/// <tt>k+1</tt> arcs.
/// This function does not make it possible to calculate the shortest
/// path distances exactly for paths consisting of at most \c k arcs,
/// this is why it is called weak round.
///
/// \return \c true when the algorithm have not found more shorter
/// paths.
///
/// \see ActiveIt
bool processNextWeakRound() {
for (int i = 0; i < int(_process.size()); ++i) {
_mask->set(_process[i], false);
}
std::vector<Node> nextProcess;
for (int i = 0; i < int(_process.size()); ++i) {
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
Node target = _gr->target(it);
Value relaxed =
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
if (OperationTraits::less(relaxed, (*_dist)[target])) {
_pred->set(target, it);
_dist->set(target, relaxed);
if (!(*_mask)[target]) {
_mask->set(target, true);
nextProcess.push_back(target);
}
}
}
}
_process.swap(nextProcess);
return _process.empty();
}
/// \brief Executes the algorithm.
///
/// Executes the algorithm.
///
/// This method runs the Bellman-Ford algorithm from the root node(s)
/// in order to compute the shortest path to each node.
///
/// The algorithm computes
/// - the shortest path tree (forest),
/// - the distance of each node from the root(s).
///
/// \pre init() must be called and at least one root node should be
/// added with addSource() before using this function.
void start() {
int num = countNodes(*_gr) - 1;
for (int i = 0; i < num; ++i) {
if (processNextWeakRound()) break;
}
}
/// \brief Executes the algorithm and checks the negative cycles.
///
/// Executes the algorithm and checks the negative cycles.
///
/// This method runs the Bellman-Ford algorithm from the root node(s)
/// in order to compute the shortest path to each node and also checks
/// if the digraph contains cycles with negative total length.
///
/// The algorithm computes
/// - the shortest path tree (forest),
/// - the distance of each node from the root(s).
///
/// \return \c false if there is a negative cycle in the digraph.
///
/// \pre init() must be called and at least one root node should be
/// added with addSource() before using this function.
bool checkedStart() {
int num = countNodes(*_gr);
for (int i = 0; i < num; ++i) {
if (processNextWeakRound()) return true;
}
return _process.empty();
}
/// \brief Executes the algorithm with arc number limit.
///
/// Executes the algorithm with arc number limit.
///
/// This method runs the Bellman-Ford algorithm from the root node(s)
/// in order to compute the shortest path distance for each node
/// using only the paths consisting of at most \c num arcs.
///
/// The algorithm computes
/// - the limited distance of each node from the root(s),
/// - the predecessor arc for each node.
///
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you also
/// need the shortest paths and not only the distances, you should
/// store the \ref predMap() "predecessor map" after each iteration
/// and build the path manually.
///
/// \pre init() must be called and at least one root node should be
/// added with addSource() before using this function.
void limitedStart(int num) {
for (int i = 0; i < num; ++i) {
if (processNextRound()) break;
}
}
/// \brief Runs the algorithm from the given root node.
///
/// This method runs the Bellman-Ford algorithm from the given root
/// node \c s in order to compute the shortest path to each node.
///
/// The algorithm computes
/// - the shortest path tree (forest),
/// - the distance of each node from the root(s).
///
/// \note bf.run(s) is just a shortcut of the following code.
/// \code
/// bf.init();
/// bf.addSource(s);
/// bf.start();
/// \endcode
void run(Node s) {
init();
addSource(s);
start();
}
/// \brief Runs the algorithm from the given root node with arc
/// number limit.
///
/// This method runs the Bellman-Ford algorithm from the given root
/// node \c s in order to compute the shortest path distance for each
/// node using only the paths consisting of at most \c num arcs.
///
/// The algorithm computes
/// - the limited distance of each node from the root(s),
/// - the predecessor arc for each node.
///
/// \warning The paths with limited arc number cannot be retrieved
/// easily with \ref path() or \ref predArc() functions. If you also
/// need the shortest paths and not only the distances, you should
/// store the \ref predMap() "predecessor map" after each iteration
/// and build the path manually.
///
/// \note bf.run(s, num) is just a shortcut of the following code.
/// \code
/// bf.init();
/// bf.addSource(s);
/// bf.limitedStart(num);
/// \endcode
void run(Node s, int num) {
init();
addSource(s);
limitedStart(num);
}
///@}
/// \brief LEMON iterator for getting the active nodes.
///
/// This class provides a common style LEMON iterator that traverses
/// the active nodes of the Bellman-Ford algorithm after the last
/// phase. These nodes should be checked in the next phase to
/// find augmenting arcs outgoing from them.
class ActiveIt {
public:
/// \brief Constructor.
///
/// Constructor for getting the active nodes of the given BellmanFord
/// instance.
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
{
_index = _algorithm->_process.size() - 1;
}
/// \brief Invalid constructor.
///
/// Invalid constructor.
ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
/// \brief Conversion to \c Node.
///
/// Conversion to \c Node.
operator Node() const {
return _index >= 0 ? _algorithm->_process[_index] : INVALID;
}
/// \brief Increment operator.
///
/// Increment operator.
ActiveIt& operator++() {
--_index;
return *this;
}
bool operator==(const ActiveIt& it) const {
return static_cast<Node>(*this) == static_cast<Node>(it);
}
bool operator!=(const ActiveIt& it) const {
return static_cast<Node>(*this) != static_cast<Node>(it);
}
bool operator<(const ActiveIt& it) const {
return static_cast<Node>(*this) < static_cast<Node>(it);
}
private:
const BellmanFord* _algorithm;
int _index;
};
/// \name Query Functions
/// The result of the Bellman-Ford algorithm can be obtained using these
/// functions.\n
/// Either \ref run() or \ref init() should be called before using them.
///@{
/// \brief The shortest path to the given node.
///
/// Gives back the shortest path to the given node from the root(s).
///
/// \warning \c t should be reached from the root(s).
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Path path(Node t) const
{
return Path(*_gr, *_pred, t);
}
/// \brief The distance of the given node from the root(s).
///
/// Returns the distance of the given node from the root(s).
///
/// \warning If node \c v is not reached from the root(s), then
/// the return value of this function is undefined.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Value dist(Node v) const { return (*_dist)[v]; }
/// \brief Returns the 'previous arc' of the shortest path tree for
/// the given node.
///
/// This function returns the 'previous arc' of the shortest path
/// tree for node \c v, i.e. it returns the last arc of a
/// shortest path from a root to \c v. It is \c INVALID if \c v
/// is not reached from the root(s) or if \c v is a root.
///
/// The shortest path tree used here is equal to the shortest path
/// tree used in \ref predNode() and \ref predMap().
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Arc predArc(Node v) const { return (*_pred)[v]; }
/// \brief Returns the 'previous node' of the shortest path tree for
/// the given node.
///
/// This function returns the 'previous node' of the shortest path
/// tree for node \c v, i.e. it returns the last but one node of
/// a shortest path from a root to \c v. It is \c INVALID if \c v
/// is not reached from the root(s) or if \c v is a root.
///
/// The shortest path tree used here is equal to the shortest path
/// tree used in \ref predArc() and \ref predMap().
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
Node predNode(Node v) const {
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]);
}
/// \brief Returns a const reference to the node map that stores the
/// distances of the nodes.
///
/// Returns a const reference to the node map that stores the distances
/// of the nodes calculated by the algorithm.
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
const DistMap &distMap() const { return *_dist;}
/// \brief Returns a const reference to the node map that stores the
/// predecessor arcs.
///
/// Returns a const reference to the node map that stores the predecessor
/// arcs, which form the shortest path tree (forest).
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
const PredMap &predMap() const { return *_pred; }
/// \brief Checks if a node is reached from the root(s).
///
/// Returns \c true if \c v is reached from the root(s).
///
/// \pre Either \ref run() or \ref init() must be called before
/// using this function.
bool reached(Node v) const {
return (*_dist)[v] != OperationTraits::infinity();
}
/// \brief Gives back a negative cycle.
///
/// This function gives back a directed cycle with negative total
/// length if the algorithm has already found one.
/// Otherwise it gives back an empty path.
lemon::Path<Digraph> negativeCycle() const {
typename Digraph::template NodeMap<int> state(*_gr, -1);
lemon::Path<Digraph> cycle;
for (int i = 0; i < int(_process.size()); ++i) {
if (state[_process[i]] != -1) continue;
for (Node v = _process[i]; (*_pred)[v] != INVALID;
v = _gr->source((*_pred)[v])) {
if (state[v] == i) {
cycle.addFront((*_pred)[v]);
for (Node u = _gr->source((*_pred)[v]); u != v;
u = _gr->source((*_pred)[u])) {
cycle.addFront((*_pred)[u]);
}
return cycle;
}
else if (state[v] >= 0) {
break;
}
state[v] = i;
}
}
return cycle;
}
///@}
};
/// \brief Default traits class of bellmanFord() function.
///
/// Default traits class of bellmanFord() function.
/// \tparam GR The type of the digraph.
/// \tparam LEN The type of the length map.
template <typename GR, typename LEN>
struct BellmanFordWizardDefaultTraits {
/// The type of the digraph the algorithm runs on.
typedef GR Digraph;
/// \brief The type of the map that stores the arc lengths.
///
/// The type of the map that stores the arc lengths.
/// It must meet the \ref concepts::ReadMap "ReadMap" concept.
typedef LEN LengthMap;
/// The type of the arc lengths.
typedef typename LEN::Value Value;
/// \brief Operation traits for Bellman-Ford algorithm.
///
/// It defines the used operations and the infinity value for the
/// given \c Value type.
/// \see BellmanFordDefaultOperationTraits
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
/// \brief The type of the map that stores the last
/// arcs of the shortest paths.
///
/// The type of the map that stores the last arcs of the shortest paths.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
/// \brief Instantiates a \c PredMap.
///
/// This function instantiates a \ref PredMap.
/// \param g is the digraph to which we would like to define the
/// \ref PredMap.
static PredMap *createPredMap(const GR &g) {
return new PredMap(g);
}
/// \brief The type of the map that stores the distances of the nodes.
///
/// The type of the map that stores the distances of the nodes.
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
typedef typename GR::template NodeMap<Value> DistMap;
/// \brief Instantiates a \c DistMap.
///
/// This function instantiates a \ref DistMap.
/// \param g is the digraph to which we would like to define the
/// \ref DistMap.
static DistMap *createDistMap(const GR &g) {
return new DistMap(g);
}
///The type of the shortest paths.
///The type of the shortest paths.
///It must meet the \ref concepts::Path "Path" concept.
typedef lemon::Path<Digraph> Path;
};
/// \brief Default traits class used by BellmanFordWizard.
///
/// Default traits class used by BellmanFordWizard.
/// \tparam GR The type of the digraph.
/// \tparam LEN The type of the length map.
template <typename GR, typename LEN>
class BellmanFordWizardBase
: public BellmanFordWizardDefaultTraits<GR, LEN> {
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
protected:
// Type of the nodes in the digraph.
typedef typename Base::Digraph::Node Node;
// Pointer to the underlying digraph.
void *_graph;
// Pointer to the length map
void *_length;
// Pointer to the map of predecessors arcs.
void *_pred;
// Pointer to the map of distances.
void *_dist;
//Pointer to the shortest path to the target node.
void *_path;
//Pointer to the distance of the target node.
void *_di;
public:
/// Constructor.
/// This constructor does not require parameters, it initiates
/// all of the attributes to default values \c 0.
BellmanFordWizardBase() :
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
/// Constructor.
/// This constructor requires two parameters,
/// others are initiated to \c 0.
/// \param gr The digraph the algorithm runs on.
/// \param len The length map.
BellmanFordWizardBase(const GR& gr,
const LEN& len) :
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))),
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))),
_pred(0), _dist(0), _path(0), _di(0) {}
};
/// \brief Auxiliary class for the function-type interface of the
/// \ref BellmanFord "Bellman-Ford" algorithm.
///
/// This auxiliary class is created to implement the
/// \ref bellmanFord() "function-type interface" of the
/// \ref BellmanFord "Bellman-Ford" algorithm.
/// It does not have own \ref run() method, it uses the
/// functions and features of the plain \ref BellmanFord.
///
/// This class should only be used through the \ref bellmanFord()
/// function, which makes it easier to use the algorithm.
///
/// \tparam TR The traits class that defines various types used by the
/// algorithm.
template<class TR>
class BellmanFordWizard : public TR {
typedef TR Base;
typedef typename TR::Digraph Digraph;
typedef typename Digraph::Node Node;
typedef typename Digraph::NodeIt NodeIt;
typedef typename Digraph::Arc Arc;
typedef typename Digraph::OutArcIt ArcIt;
typedef typename TR::LengthMap LengthMap;
typedef typename LengthMap::Value Value;
typedef typename TR::PredMap PredMap;
typedef typename TR::DistMap DistMap;
typedef typename TR::Path Path;
public:
/// Constructor.
BellmanFordWizard() : TR() {}
/// \brief Constructor that requires parameters.
///
/// Constructor that requires parameters.
/// These parameters will be the default values for the traits class.
/// \param gr The digraph the algorithm runs on.
/// \param len The length map.
BellmanFordWizard(const Digraph& gr, const LengthMap& len)
: TR(gr, len) {}
/// \brief Copy constructor
BellmanFordWizard(const TR &b) : TR(b) {}
~BellmanFordWizard() {}
/// \brief Runs the Bellman-Ford algorithm from the given source node.
///
/// This method runs the Bellman-Ford algorithm from the given source
/// node in order to compute the shortest path to each node.
void run(Node s) {
BellmanFord<Digraph,LengthMap,TR>
bf(*reinterpret_cast<const Digraph*>(Base::_graph),
*reinterpret_cast<const LengthMap*>(Base::_length));
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
bf.run(s);
}
/// \brief Runs the Bellman-Ford algorithm to find the shortest path
/// between \c s and \c t.
///
/// This method runs the Bellman-Ford algorithm from node \c s
/// in order to compute the shortest path to node \c t.
/// Actually, it computes the shortest path to each node, but using
/// this function you can retrieve the distance and the shortest path
/// for a single target node easier.
///
/// \return \c true if \c t is reachable form \c s.
bool run(Node s, Node t) {
BellmanFord<Digraph,LengthMap,TR>
bf(*reinterpret_cast<const Digraph*>(Base::_graph),
*reinterpret_cast<const LengthMap*>(Base::_length));
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
bf.run(s);
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t);
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t);
return bf.reached(t);
}
template<class T>
struct SetPredMapBase : public Base {
typedef T PredMap;
static PredMap *createPredMap(const Digraph &) { return 0; };
SetPredMapBase(const TR &b) : TR(b) {}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// the predecessor map.
///
/// \ref named-templ-param "Named parameter" for setting
/// the map that stores the predecessor arcs of the nodes.
template<class T>
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<SetPredMapBase<T> >(*this);
}
template<class T>
struct SetDistMapBase : public Base {
typedef T DistMap;
static DistMap *createDistMap(const Digraph &) { return 0; };
SetDistMapBase(const TR &b) : TR(b) {}
};
/// \brief \ref named-templ-param "Named parameter" for setting
/// the distance map.
///
/// \ref named-templ-param "Named parameter" for setting
/// the map that stores the distances of the nodes calculated
/// by the algorithm.
template<class T>
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) {
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<SetDistMapBase<T> >(*this);
}
template<class T>
struct SetPathBase : public Base {
typedef T Path;
SetPathBase(const TR &b) : TR(b) {}
};
/// \brief \ref named-func-param "Named parameter" for getting
/// the shortest path to the target node.
///
/// \ref named-func-param "Named parameter" for getting
/// the shortest path to the target node.
template<class T>
BellmanFordWizard<SetPathBase<T> > path(const T &t)
{
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
return BellmanFordWizard<SetPathBase<T> >(*this);
}
/// \brief \ref named-func-param "Named parameter" for getting
/// the distance of the target node.
///
/// \ref named-func-param "Named parameter" for getting
/// the distance of the target node.
BellmanFordWizard dist(const Value &d)
{
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
return *this;
}
};
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
/// algorithm.
///
/// \ingroup shortest_path
/// Function type interface for the \ref BellmanFord "Bellman-Ford"
/// algorithm.
///
/// This function also has several \ref named-templ-func-param
/// "named parameters", they are declared as the members of class
/// \ref BellmanFordWizard.
/// The following examples show how to use these parameters.
/// \code
/// // Compute shortest path from node s to each node
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
///
/// // Compute shortest path from s to t
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t);
/// \endcode
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()"
/// to the end of the parameter list.
/// \sa BellmanFordWizard
/// \sa BellmanFord
template<typename GR, typename LEN>
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
bellmanFord(const GR& digraph,
const LEN& length)
{
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
}
} //END OF NAMESPACE LEMON
#endif
|