Location: LEMON/LEMON-official/lemon/random.h - annotation
Load file history
Update NEWS file
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 | r209:765619b7cbb2 r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r39:0a01d811071f r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r110:f2d66d810c88 r177:b685e12e08c0 r10:99e499ca560b r68:a315a588a20d r10:99e499ca560b r68:a315a588a20d r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r511:879c55700cd4 r177:b685e12e08c0 r177:b685e12e08c0 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r62:4790635473ef r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r517:afd134142111 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r517:afd134142111 r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r517:afd134142111 r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r517:afd134142111 r10:99e499ca560b r517:afd134142111 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r517:afd134142111 r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r517:afd134142111 r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r517:afd134142111 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r517:afd134142111 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r49:9a556af88710 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r16:22696f89d183 r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r178:d2bac07f1742 r178:d2bac07f1742 r178:d2bac07f1742 r178:d2bac07f1742 r49:9a556af88710 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r49:9a556af88710 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r49:9a556af88710 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r102:81563e019fa4 r102:81563e019fa4 r102:81563e019fa4 r102:81563e019fa4 r102:81563e019fa4 r209:765619b7cbb2 r102:81563e019fa4 r102:81563e019fa4 r102:81563e019fa4 r102:81563e019fa4 r102:81563e019fa4 r102:81563e019fa4 r102:81563e019fa4 r102:81563e019fa4 r102:81563e019fa4 r209:765619b7cbb2 r102:81563e019fa4 r102:81563e019fa4 r102:81563e019fa4 r102:81563e019fa4 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r178:d2bac07f1742 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r209:765619b7cbb2 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r178:d2bac07f1742 r177:b685e12e08c0 r209:765619b7cbb2 r177:b685e12e08c0 r209:765619b7cbb2 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r209:765619b7cbb2 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r511:879c55700cd4 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r177:b685e12e08c0 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r49:9a556af88710 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r178:d2bac07f1742 r178:d2bac07f1742 r178:d2bac07f1742 r178:d2bac07f1742 r178:d2bac07f1742 r178:d2bac07f1742 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r391:c4aa9f097ef1 r391:c4aa9f097ef1 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r391:c4aa9f097ef1 r391:c4aa9f097ef1 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r49:9a556af88710 r49:9a556af88710 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r178:d2bac07f1742 r178:d2bac07f1742 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r49:9a556af88710 r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r177:b685e12e08c0 r177:b685e12e08c0 r49:9a556af88710 r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r23:0ba375bf5dae r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r23:0ba375bf5dae r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r11:ea5945b2da9c r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r68:a315a588a20d r10:99e499ca560b r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r10:99e499ca560b r116:b6bede534255 r10:99e499ca560b r209:765619b7cbb2 r11:ea5945b2da9c r11:ea5945b2da9c r11:ea5945b2da9c r209:765619b7cbb2 r11:ea5945b2da9c r11:ea5945b2da9c r11:ea5945b2da9c r11:ea5945b2da9c r11:ea5945b2da9c r11:ea5945b2da9c r209:765619b7cbb2 r209:765619b7cbb2 r11:ea5945b2da9c r11:ea5945b2da9c r11:ea5945b2da9c r209:765619b7cbb2 r12:435bbc8127b3 r11:ea5945b2da9c r11:ea5945b2da9c r12:435bbc8127b3 r11:ea5945b2da9c r116:b6bede534255 r209:765619b7cbb2 r209:765619b7cbb2 r92:5d4decd1b870 r92:5d4decd1b870 r92:5d4decd1b870 r92:5d4decd1b870 r209:765619b7cbb2 r92:5d4decd1b870 r92:5d4decd1b870 r92:5d4decd1b870 r92:5d4decd1b870 r92:5d4decd1b870 r209:765619b7cbb2 r92:5d4decd1b870 r92:5d4decd1b870 r92:5d4decd1b870 r92:5d4decd1b870 r92:5d4decd1b870 r92:5d4decd1b870 r209:765619b7cbb2 r209:765619b7cbb2 r92:5d4decd1b870 r92:5d4decd1b870 r209:765619b7cbb2 r209:765619b7cbb2 r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r23:0ba375bf5dae r16:22696f89d183 r16:22696f89d183 r16:22696f89d183 r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r209:765619b7cbb2 r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b r10:99e499ca560b | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
/*
* This file contains the reimplemented version of the Mersenne Twister
* Generator of Matsumoto and Nishimura.
*
* See the appropriate copyright notice below.
*
* Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. The names of its contributors may not be used to endorse or promote
* products derived from this software without specific prior written
* permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
*
*
* Any feedback is very welcome.
* http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
* email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
*/
#ifndef LEMON_RANDOM_H
#define LEMON_RANDOM_H
#include <algorithm>
#include <iterator>
#include <vector>
#include <limits>
#include <fstream>
#include <lemon/math.h>
#include <lemon/dim2.h>
#ifndef WIN32
#include <sys/time.h>
#include <ctime>
#include <sys/types.h>
#include <unistd.h>
#else
#include <lemon/bits/windows.h>
#endif
///\ingroup misc
///\file
///\brief Mersenne Twister random number generator
namespace lemon {
namespace _random_bits {
template <typename _Word, int _bits = std::numeric_limits<_Word>::digits>
struct RandomTraits {};
template <typename _Word>
struct RandomTraits<_Word, 32> {
typedef _Word Word;
static const int bits = 32;
static const int length = 624;
static const int shift = 397;
static const Word mul = 0x6c078965u;
static const Word arrayInit = 0x012BD6AAu;
static const Word arrayMul1 = 0x0019660Du;
static const Word arrayMul2 = 0x5D588B65u;
static const Word mask = 0x9908B0DFu;
static const Word loMask = (1u << 31) - 1;
static const Word hiMask = ~loMask;
static Word tempering(Word rnd) {
rnd ^= (rnd >> 11);
rnd ^= (rnd << 7) & 0x9D2C5680u;
rnd ^= (rnd << 15) & 0xEFC60000u;
rnd ^= (rnd >> 18);
return rnd;
}
};
template <typename _Word>
struct RandomTraits<_Word, 64> {
typedef _Word Word;
static const int bits = 64;
static const int length = 312;
static const int shift = 156;
static const Word mul = Word(0x5851F42Du) << 32 | Word(0x4C957F2Du);
static const Word arrayInit = Word(0x00000000u) << 32 |Word(0x012BD6AAu);
static const Word arrayMul1 = Word(0x369DEA0Fu) << 32 |Word(0x31A53F85u);
static const Word arrayMul2 = Word(0x27BB2EE6u) << 32 |Word(0x87B0B0FDu);
static const Word mask = Word(0xB5026F5Au) << 32 | Word(0xA96619E9u);
static const Word loMask = (Word(1u) << 31) - 1;
static const Word hiMask = ~loMask;
static Word tempering(Word rnd) {
rnd ^= (rnd >> 29) & (Word(0x55555555u) << 32 | Word(0x55555555u));
rnd ^= (rnd << 17) & (Word(0x71D67FFFu) << 32 | Word(0xEDA60000u));
rnd ^= (rnd << 37) & (Word(0xFFF7EEE0u) << 32 | Word(0x00000000u));
rnd ^= (rnd >> 43);
return rnd;
}
};
template <typename _Word>
class RandomCore {
public:
typedef _Word Word;
private:
static const int bits = RandomTraits<Word>::bits;
static const int length = RandomTraits<Word>::length;
static const int shift = RandomTraits<Word>::shift;
public:
void initState() {
static const Word seedArray[4] = {
0x12345u, 0x23456u, 0x34567u, 0x45678u
};
initState(seedArray, seedArray + 4);
}
void initState(Word seed) {
static const Word mul = RandomTraits<Word>::mul;
current = state;
Word *curr = state + length - 1;
curr[0] = seed; --curr;
for (int i = 1; i < length; ++i) {
curr[0] = (mul * ( curr[1] ^ (curr[1] >> (bits - 2)) ) + i);
--curr;
}
}
template <typename Iterator>
void initState(Iterator begin, Iterator end) {
static const Word init = RandomTraits<Word>::arrayInit;
static const Word mul1 = RandomTraits<Word>::arrayMul1;
static const Word mul2 = RandomTraits<Word>::arrayMul2;
Word *curr = state + length - 1; --curr;
Iterator it = begin; int cnt = 0;
int num;
initState(init);
num = length > end - begin ? length : end - begin;
while (num--) {
curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul1))
+ *it + cnt;
++it; ++cnt;
if (it == end) {
it = begin; cnt = 0;
}
if (curr == state) {
curr = state + length - 1; curr[0] = state[0];
}
--curr;
}
num = length - 1; cnt = length - (curr - state) - 1;
while (num--) {
curr[0] = (curr[0] ^ ((curr[1] ^ (curr[1] >> (bits - 2))) * mul2))
- cnt;
--curr; ++cnt;
if (curr == state) {
curr = state + length - 1; curr[0] = state[0]; --curr;
cnt = 1;
}
}
state[length - 1] = Word(1) << (bits - 1);
}
void copyState(const RandomCore& other) {
std::copy(other.state, other.state + length, state);
current = state + (other.current - other.state);
}
Word operator()() {
if (current == state) fillState();
--current;
Word rnd = *current;
return RandomTraits<Word>::tempering(rnd);
}
private:
void fillState() {
static const Word mask[2] = { 0x0ul, RandomTraits<Word>::mask };
static const Word loMask = RandomTraits<Word>::loMask;
static const Word hiMask = RandomTraits<Word>::hiMask;
current = state + length;
register Word *curr = state + length - 1;
register long num;
num = length - shift;
while (num--) {
curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
curr[- shift] ^ mask[curr[-1] & 1ul];
--curr;
}
num = shift - 1;
while (num--) {
curr[0] = (((curr[0] & hiMask) | (curr[-1] & loMask)) >> 1) ^
curr[length - shift] ^ mask[curr[-1] & 1ul];
--curr;
}
state[0] = (((state[0] & hiMask) | (curr[length - 1] & loMask)) >> 1) ^
curr[length - shift] ^ mask[curr[length - 1] & 1ul];
}
Word *current;
Word state[length];
};
template <typename Result,
int shift = (std::numeric_limits<Result>::digits + 1) / 2>
struct Masker {
static Result mask(const Result& result) {
return Masker<Result, (shift + 1) / 2>::
mask(static_cast<Result>(result | (result >> shift)));
}
};
template <typename Result>
struct Masker<Result, 1> {
static Result mask(const Result& result) {
return static_cast<Result>(result | (result >> 1));
}
};
template <typename Result, typename Word,
int rest = std::numeric_limits<Result>::digits, int shift = 0,
bool last = rest <= std::numeric_limits<Word>::digits>
struct IntConversion {
static const int bits = std::numeric_limits<Word>::digits;
static Result convert(RandomCore<Word>& rnd) {
return static_cast<Result>(rnd() >> (bits - rest)) << shift;
}
};
template <typename Result, typename Word, int rest, int shift>
struct IntConversion<Result, Word, rest, shift, false> {
static const int bits = std::numeric_limits<Word>::digits;
static Result convert(RandomCore<Word>& rnd) {
return (static_cast<Result>(rnd()) << shift) |
IntConversion<Result, Word, rest - bits, shift + bits>::convert(rnd);
}
};
template <typename Result, typename Word,
bool one_word = (std::numeric_limits<Word>::digits <
std::numeric_limits<Result>::digits) >
struct Mapping {
static Result map(RandomCore<Word>& rnd, const Result& bound) {
Word max = Word(bound - 1);
Result mask = Masker<Result>::mask(bound - 1);
Result num;
do {
num = IntConversion<Result, Word>::convert(rnd) & mask;
} while (num > max);
return num;
}
};
template <typename Result, typename Word>
struct Mapping<Result, Word, false> {
static Result map(RandomCore<Word>& rnd, const Result& bound) {
Word max = Word(bound - 1);
Word mask = Masker<Word, (std::numeric_limits<Result>::digits + 1) / 2>
::mask(max);
Word num;
do {
num = rnd() & mask;
} while (num > max);
return num;
}
};
template <typename Result, int exp>
struct ShiftMultiplier {
static const Result multiplier() {
Result res = ShiftMultiplier<Result, exp / 2>::multiplier();
res *= res;
if ((exp & 1) == 1) res *= static_cast<Result>(0.5);
return res;
}
};
template <typename Result>
struct ShiftMultiplier<Result, 0> {
static const Result multiplier() {
return static_cast<Result>(1.0);
}
};
template <typename Result>
struct ShiftMultiplier<Result, 20> {
static const Result multiplier() {
return static_cast<Result>(1.0/1048576.0);
}
};
template <typename Result>
struct ShiftMultiplier<Result, 32> {
static const Result multiplier() {
return static_cast<Result>(1.0/4294967296.0);
}
};
template <typename Result>
struct ShiftMultiplier<Result, 53> {
static const Result multiplier() {
return static_cast<Result>(1.0/9007199254740992.0);
}
};
template <typename Result>
struct ShiftMultiplier<Result, 64> {
static const Result multiplier() {
return static_cast<Result>(1.0/18446744073709551616.0);
}
};
template <typename Result, int exp>
struct Shifting {
static Result shift(const Result& result) {
return result * ShiftMultiplier<Result, exp>::multiplier();
}
};
template <typename Result, typename Word,
int rest = std::numeric_limits<Result>::digits, int shift = 0,
bool last = rest <= std::numeric_limits<Word>::digits>
struct RealConversion{
static const int bits = std::numeric_limits<Word>::digits;
static Result convert(RandomCore<Word>& rnd) {
return Shifting<Result, shift + rest>::
shift(static_cast<Result>(rnd() >> (bits - rest)));
}
};
template <typename Result, typename Word, int rest, int shift>
struct RealConversion<Result, Word, rest, shift, false> {
static const int bits = std::numeric_limits<Word>::digits;
static Result convert(RandomCore<Word>& rnd) {
return Shifting<Result, shift + bits>::
shift(static_cast<Result>(rnd())) +
RealConversion<Result, Word, rest-bits, shift + bits>::
convert(rnd);
}
};
template <typename Result, typename Word>
struct Initializer {
template <typename Iterator>
static void init(RandomCore<Word>& rnd, Iterator begin, Iterator end) {
std::vector<Word> ws;
for (Iterator it = begin; it != end; ++it) {
ws.push_back(Word(*it));
}
rnd.initState(ws.begin(), ws.end());
}
static void init(RandomCore<Word>& rnd, Result seed) {
rnd.initState(seed);
}
};
template <typename Word>
struct BoolConversion {
static bool convert(RandomCore<Word>& rnd) {
return (rnd() & 1) == 1;
}
};
template <typename Word>
struct BoolProducer {
Word buffer;
int num;
BoolProducer() : num(0) {}
bool convert(RandomCore<Word>& rnd) {
if (num == 0) {
buffer = rnd();
num = RandomTraits<Word>::bits;
}
bool r = (buffer & 1);
buffer >>= 1;
--num;
return r;
}
};
}
/// \ingroup misc
///
/// \brief Mersenne Twister random number generator
///
/// The Mersenne Twister is a twisted generalized feedback
/// shift-register generator of Matsumoto and Nishimura. The period
/// of this generator is \f$ 2^{19937} - 1 \f$ and it is
/// equi-distributed in 623 dimensions for 32-bit numbers. The time
/// performance of this generator is comparable to the commonly used
/// generators.
///
/// This implementation is specialized for both 32-bit and 64-bit
/// architectures. The generators differ sligthly in the
/// initialization and generation phase so they produce two
/// completly different sequences.
///
/// The generator gives back random numbers of serveral types. To
/// get a random number from a range of a floating point type you
/// can use one form of the \c operator() or the \c real() member
/// function. If you want to get random number from the {0, 1, ...,
/// n-1} integer range use the \c operator[] or the \c integer()
/// method. And to get random number from the whole range of an
/// integer type you can use the argumentless \c integer() or \c
/// uinteger() functions. After all you can get random bool with
/// equal chance of true and false or given probability of true
/// result with the \c boolean() member functions.
///
///\code
/// // The commented code is identical to the other
/// double a = rnd(); // [0.0, 1.0)
/// // double a = rnd.real(); // [0.0, 1.0)
/// double b = rnd(100.0); // [0.0, 100.0)
/// // double b = rnd.real(100.0); // [0.0, 100.0)
/// double c = rnd(1.0, 2.0); // [1.0, 2.0)
/// // double c = rnd.real(1.0, 2.0); // [1.0, 2.0)
/// int d = rnd[100000]; // 0..99999
/// // int d = rnd.integer(100000); // 0..99999
/// int e = rnd[6] + 1; // 1..6
/// // int e = rnd.integer(1, 1 + 6); // 1..6
/// int b = rnd.uinteger<int>(); // 0 .. 2^31 - 1
/// int c = rnd.integer<int>(); // - 2^31 .. 2^31 - 1
/// bool g = rnd.boolean(); // P(g = true) = 0.5
/// bool h = rnd.boolean(0.8); // P(h = true) = 0.8
///\endcode
///
/// LEMON provides a global instance of the random number
/// generator which name is \ref lemon::rnd "rnd". Usually it is a
/// good programming convenience to use this global generator to get
/// random numbers.
class Random {
private:
// Architecture word
typedef unsigned long Word;
_random_bits::RandomCore<Word> core;
_random_bits::BoolProducer<Word> bool_producer;
public:
///\name Initialization
///
/// @{
///\name Initialization
///
/// @{
/// \brief Default constructor
///
/// Constructor with constant seeding.
Random() { core.initState(); }
/// \brief Constructor with seed
///
/// Constructor with seed. The current number type will be converted
/// to the architecture word type.
template <typename Number>
Random(Number seed) {
_random_bits::Initializer<Number, Word>::init(core, seed);
}
/// \brief Constructor with array seeding
///
/// Constructor with array seeding. The given range should contain
/// any number type and the numbers will be converted to the
/// architecture word type.
template <typename Iterator>
Random(Iterator begin, Iterator end) {
typedef typename std::iterator_traits<Iterator>::value_type Number;
_random_bits::Initializer<Number, Word>::init(core, begin, end);
}
/// \brief Copy constructor
///
/// Copy constructor. The generated sequence will be identical to
/// the other sequence. It can be used to save the current state
/// of the generator and later use it to generate the same
/// sequence.
Random(const Random& other) {
core.copyState(other.core);
}
/// \brief Assign operator
///
/// Assign operator. The generated sequence will be identical to
/// the other sequence. It can be used to save the current state
/// of the generator and later use it to generate the same
/// sequence.
Random& operator=(const Random& other) {
if (&other != this) {
core.copyState(other.core);
}
return *this;
}
/// \brief Seeding random sequence
///
/// Seeding the random sequence. The current number type will be
/// converted to the architecture word type.
template <typename Number>
void seed(Number seed) {
_random_bits::Initializer<Number, Word>::init(core, seed);
}
/// \brief Seeding random sequence
///
/// Seeding the random sequence. The given range should contain
/// any number type and the numbers will be converted to the
/// architecture word type.
template <typename Iterator>
void seed(Iterator begin, Iterator end) {
typedef typename std::iterator_traits<Iterator>::value_type Number;
_random_bits::Initializer<Number, Word>::init(core, begin, end);
}
/// \brief Seeding from file or from process id and time
///
/// By default, this function calls the \c seedFromFile() member
/// function with the <tt>/dev/urandom</tt> file. If it does not success,
/// it uses the \c seedFromTime().
/// \return Currently always true.
bool seed() {
#ifndef WIN32
if (seedFromFile("/dev/urandom", 0)) return true;
#endif
if (seedFromTime()) return true;
return false;
}
/// \brief Seeding from file
///
/// Seeding the random sequence from file. The linux kernel has two
/// devices, <tt>/dev/random</tt> and <tt>/dev/urandom</tt> which
/// could give good seed values for pseudo random generators (The
/// difference between two devices is that the <tt>random</tt> may
/// block the reading operation while the kernel can give good
/// source of randomness, while the <tt>urandom</tt> does not
/// block the input, but it could give back bytes with worse
/// entropy).
/// \param file The source file
/// \param offset The offset, from the file read.
/// \return True when the seeding successes.
#ifndef WIN32
bool seedFromFile(const std::string& file = "/dev/urandom", int offset = 0)
#else
bool seedFromFile(const std::string& file = "", int offset = 0)
#endif
{
std::ifstream rs(file.c_str());
const int size = 4;
Word buf[size];
if (offset != 0 && !rs.seekg(offset)) return false;
if (!rs.read(reinterpret_cast<char*>(buf), sizeof(buf))) return false;
seed(buf, buf + size);
return true;
}
/// \brief Seding from process id and time
///
/// Seding from process id and time. This function uses the
/// current process id and the current time for initialize the
/// random sequence.
/// \return Currently always true.
bool seedFromTime() {
#ifndef WIN32
timeval tv;
gettimeofday(&tv, 0);
seed(getpid() + tv.tv_sec + tv.tv_usec);
#else
seed(bits::getWinRndSeed());
#endif
return true;
}
/// @}
///\name Uniform distributions
///
/// @{
/// \brief Returns a random real number from the range [0, 1)
///
/// It returns a random real number from the range [0, 1). The
/// default Number type is \c double.
template <typename Number>
Number real() {
return _random_bits::RealConversion<Number, Word>::convert(core);
}
double real() {
return real<double>();
}
/// @}
///\name Uniform distributions
///
/// @{
/// \brief Returns a random real number from the range [0, 1)
///
/// It returns a random double from the range [0, 1).
double operator()() {
return real<double>();
}
/// \brief Returns a random real number from the range [0, b)
///
/// It returns a random real number from the range [0, b).
double operator()(double b) {
return real<double>() * b;
}
/// \brief Returns a random real number from the range [a, b)
///
/// It returns a random real number from the range [a, b).
double operator()(double a, double b) {
return real<double>() * (b - a) + a;
}
/// \brief Returns a random integer from a range
///
/// It returns a random integer from the range {0, 1, ..., b - 1}.
template <typename Number>
Number integer(Number b) {
return _random_bits::Mapping<Number, Word>::map(core, b);
}
/// \brief Returns a random integer from a range
///
/// It returns a random integer from the range {a, a + 1, ..., b - 1}.
template <typename Number>
Number integer(Number a, Number b) {
return _random_bits::Mapping<Number, Word>::map(core, b - a) + a;
}
/// \brief Returns a random integer from a range
///
/// It returns a random integer from the range {0, 1, ..., b - 1}.
template <typename Number>
Number operator[](Number b) {
return _random_bits::Mapping<Number, Word>::map(core, b);
}
/// \brief Returns a random non-negative integer
///
/// It returns a random non-negative integer uniformly from the
/// whole range of the current \c Number type. The default result
/// type of this function is <tt>unsigned int</tt>.
template <typename Number>
Number uinteger() {
return _random_bits::IntConversion<Number, Word>::convert(core);
}
/// @}
unsigned int uinteger() {
return uinteger<unsigned int>();
}
/// \brief Returns a random integer
///
/// It returns a random integer uniformly from the whole range of
/// the current \c Number type. The default result type of this
/// function is \c int.
template <typename Number>
Number integer() {
static const int nb = std::numeric_limits<Number>::digits +
(std::numeric_limits<Number>::is_signed ? 1 : 0);
return _random_bits::IntConversion<Number, Word, nb>::convert(core);
}
int integer() {
return integer<int>();
}
/// \brief Returns a random bool
///
/// It returns a random bool. The generator holds a buffer for
/// random bits. Every time when it become empty the generator makes
/// a new random word and fill the buffer up.
bool boolean() {
return bool_producer.convert(core);
}
/// @}
///\name Non-uniform distributions
///
///@{
/// \brief Returns a random bool
///
/// It returns a random bool with given probability of true result.
bool boolean(double p) {
return operator()() < p;
}
/// Standard Gauss distribution
/// Standard Gauss distribution.
/// \note The Cartesian form of the Box-Muller
/// transformation is used to generate a random normal distribution.
double gauss()
{
double V1,V2,S;
do {
V1=2*real<double>()-1;
V2=2*real<double>()-1;
S=V1*V1+V2*V2;
} while(S>=1);
return std::sqrt(-2*std::log(S)/S)*V1;
}
/// Gauss distribution with given mean and standard deviation
/// Gauss distribution with given mean and standard deviation.
/// \sa gauss()
double gauss(double mean,double std_dev)
{
return gauss()*std_dev+mean;
}
/// Exponential distribution with given mean
/// This function generates an exponential distribution random number
/// with mean <tt>1/lambda</tt>.
///
double exponential(double lambda=1.0)
{
return -std::log(1.0-real<double>())/lambda;
}
/// Gamma distribution with given integer shape
/// This function generates a gamma distribution random number.
///
///\param k shape parameter (<tt>k>0</tt> integer)
double gamma(int k)
{
double s = 0;
for(int i=0;i<k;i++) s-=std::log(1.0-real<double>());
return s;
}
/// Gamma distribution with given shape and scale parameter
/// This function generates a gamma distribution random number.
///
///\param k shape parameter (<tt>k>0</tt>)
///\param theta scale parameter
///
double gamma(double k,double theta=1.0)
{
double xi,nu;
const double delta = k-std::floor(k);
const double v0=E/(E-delta);
do {
double V0=1.0-real<double>();
double V1=1.0-real<double>();
double V2=1.0-real<double>();
if(V2<=v0)
{
xi=std::pow(V1,1.0/delta);
nu=V0*std::pow(xi,delta-1.0);
}
else
{
xi=1.0-std::log(V1);
nu=V0*std::exp(-xi);
}
} while(nu>std::pow(xi,delta-1.0)*std::exp(-xi));
return theta*(xi+gamma(int(std::floor(k))));
}
/// Weibull distribution
/// This function generates a Weibull distribution random number.
///
///\param k shape parameter (<tt>k>0</tt>)
///\param lambda scale parameter (<tt>lambda>0</tt>)
///
double weibull(double k,double lambda)
{
return lambda*pow(-std::log(1.0-real<double>()),1.0/k);
}
/// Pareto distribution
/// This function generates a Pareto distribution random number.
///
///\param k shape parameter (<tt>k>0</tt>)
///\param x_min location parameter (<tt>x_min>0</tt>)
///
double pareto(double k,double x_min)
{
return exponential(gamma(k,1.0/x_min))+x_min;
}
/// Poisson distribution
/// This function generates a Poisson distribution random number with
/// parameter \c lambda.
///
/// The probability mass function of this distribusion is
/// \f[ \frac{e^{-\lambda}\lambda^k}{k!} \f]
/// \note The algorithm is taken from the book of Donald E. Knuth titled
/// ''Seminumerical Algorithms'' (1969). Its running time is linear in the
/// return value.
int poisson(double lambda)
{
const double l = std::exp(-lambda);
int k=0;
double p = 1.0;
do {
k++;
p*=real<double>();
} while (p>=l);
return k-1;
}
///@}
///\name Two dimensional distributions
///
///@{
/// Uniform distribution on the full unit circle
/// Uniform distribution on the full unit circle.
///
dim2::Point<double> disc()
{
double V1,V2;
do {
V1=2*real<double>()-1;
V2=2*real<double>()-1;
} while(V1*V1+V2*V2>=1);
return dim2::Point<double>(V1,V2);
}
/// A kind of two dimensional Gauss distribution
/// This function provides a turning symmetric two-dimensional distribution.
/// Both coordinates are of standard normal distribution, but they are not
/// independent.
///
/// \note The coordinates are the two random variables provided by
/// the Box-Muller method.
dim2::Point<double> gauss2()
{
double V1,V2,S;
do {
V1=2*real<double>()-1;
V2=2*real<double>()-1;
S=V1*V1+V2*V2;
} while(S>=1);
double W=std::sqrt(-2*std::log(S)/S);
return dim2::Point<double>(W*V1,W*V2);
}
/// A kind of two dimensional exponential distribution
/// This function provides a turning symmetric two-dimensional distribution.
/// The x-coordinate is of conditionally exponential distribution
/// with the condition that x is positive and y=0. If x is negative and
/// y=0 then, -x is of exponential distribution. The same is true for the
/// y-coordinate.
dim2::Point<double> exponential2()
{
double V1,V2,S;
do {
V1=2*real<double>()-1;
V2=2*real<double>()-1;
S=V1*V1+V2*V2;
} while(S>=1);
double W=-std::log(S)/S;
return dim2::Point<double>(W*V1,W*V2);
}
///@}
};
extern Random rnd;
}
#endif
|