Location: LEMON/LEMON-official/doc/groups.dox - annotation
Load file history
Merge (manually add cmake/FindGLPK.cmake to Makefile.am)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 | r209:765619b7cbb2 r40:8f4e8273a458 r209:765619b7cbb2 r40:8f4e8273a458 r463:88ed40ad0d4f r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r422:a578265aa8a6 r422:a578265aa8a6 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r83:3654324ec035 r40:8f4e8273a458 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r83:3654324ec035 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r314:2cc60866a0c9 r314:2cc60866a0c9 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r474:fbd6e04acf44 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r432:76287c8caa26 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r209:765619b7cbb2 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r209:765619b7cbb2 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r50:a34c58ff6e40 r50:a34c58ff6e40 r314:2cc60866a0c9 r40:8f4e8273a458 r314:2cc60866a0c9 r314:2cc60866a0c9 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r209:765619b7cbb2 r40:8f4e8273a458 r83:3654324ec035 r40:8f4e8273a458 r50:a34c58ff6e40 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r50:a34c58ff6e40 r40:8f4e8273a458 r422:a578265aa8a6 r83:3654324ec035 r83:3654324ec035 r83:3654324ec035 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r209:765619b7cbb2 r83:3654324ec035 r209:765619b7cbb2 r314:2cc60866a0c9 r40:8f4e8273a458 r83:3654324ec035 r40:8f4e8273a458 r209:765619b7cbb2 r83:3654324ec035 r314:2cc60866a0c9 r83:3654324ec035 r83:3654324ec035 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r83:3654324ec035 r83:3654324ec035 r83:3654324ec035 r83:3654324ec035 r83:3654324ec035 r83:3654324ec035 r83:3654324ec035 r40:8f4e8273a458 r209:765619b7cbb2 r83:3654324ec035 r40:8f4e8273a458 r40:8f4e8273a458 r83:3654324ec035 r83:3654324ec035 r83:3654324ec035 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r209:765619b7cbb2 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r318:1e2d6ca80793 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r50:a34c58ff6e40 r50:a34c58ff6e40 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r422:a578265aa8a6 r422:a578265aa8a6 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r40:8f4e8273a458 r40:8f4e8273a458 r209:765619b7cbb2 r314:2cc60866a0c9 r209:765619b7cbb2 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r40:8f4e8273a458 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r40:8f4e8273a458 r50:a34c58ff6e40 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r40:8f4e8273a458 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r209:765619b7cbb2 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r209:765619b7cbb2 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r50:a34c58ff6e40 r40:8f4e8273a458 r210:81cfc04531e8 r422:a578265aa8a6 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r40:8f4e8273a458 r40:8f4e8273a458 r422:a578265aa8a6 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r50:a34c58ff6e40 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r210:81cfc04531e8 r210:81cfc04531e8 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r83:3654324ec035 r209:765619b7cbb2 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r422:a578265aa8a6 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r422:a578265aa8a6 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r50:a34c58ff6e40 r422:a578265aa8a6 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r50:a34c58ff6e40 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r314:2cc60866a0c9 r50:a34c58ff6e40 r40:8f4e8273a458 r50:a34c58ff6e40 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r209:765619b7cbb2 r314:2cc60866a0c9 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r209:765619b7cbb2 r50:a34c58ff6e40 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r50:a34c58ff6e40 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r40:8f4e8273a458 r50:a34c58ff6e40 r50:a34c58ff6e40 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r50:a34c58ff6e40 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r209:765619b7cbb2 r314:2cc60866a0c9 r314:2cc60866a0c9 r314:2cc60866a0c9 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r363:91e68d590e61 r40:8f4e8273a458 r314:2cc60866a0c9 r40:8f4e8273a458 r210:81cfc04531e8 r236:da953e387d31 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r209:765619b7cbb2 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r403:0a3ec097a76c r403:0a3ec097a76c r403:0a3ec097a76c r403:0a3ec097a76c r403:0a3ec097a76c r403:0a3ec097a76c r403:0a3ec097a76c r403:0a3ec097a76c r363:91e68d590e61 r363:91e68d590e61 r363:91e68d590e61 r403:0a3ec097a76c r363:91e68d590e61 r363:91e68d590e61 r363:91e68d590e61 r363:91e68d590e61 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r209:765619b7cbb2 r318:1e2d6ca80793 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r318:1e2d6ca80793 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r50:a34c58ff6e40 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r314:2cc60866a0c9 r314:2cc60866a0c9 r314:2cc60866a0c9 r314:2cc60866a0c9 r314:2cc60866a0c9 r314:2cc60866a0c9 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r422:a578265aa8a6 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r41:b11737922197 r41:b11737922197 r40:8f4e8273a458 r40:8f4e8273a458 r40:8f4e8273a458 r422:a578265aa8a6 r40:8f4e8273a458 r209:765619b7cbb2 r40:8f4e8273a458 r40:8f4e8273a458 r209:765619b7cbb2 r40:8f4e8273a458 r40:8f4e8273a458 r422:a578265aa8a6 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
namespace lemon {
/**
@defgroup datas Data Structures
This group describes the several data structures implemented in LEMON.
*/
/**
@defgroup graphs Graph Structures
@ingroup datas
\brief Graph structures implemented in LEMON.
The implementation of combinatorial algorithms heavily relies on
efficient graph implementations. LEMON offers data structures which are
planned to be easily used in an experimental phase of implementation studies,
and thereafter the program code can be made efficient by small modifications.
The most efficient implementation of diverse applications require the
usage of different physical graph implementations. These differences
appear in the size of graph we require to handle, memory or time usage
limitations or in the set of operations through which the graph can be
accessed. LEMON provides several physical graph structures to meet
the diverging requirements of the possible users. In order to save on
running time or on memory usage, some structures may fail to provide
some graph features like arc/edge or node deletion.
Alteration of standard containers need a very limited number of
operations, these together satisfy the everyday requirements.
In the case of graph structures, different operations are needed which do
not alter the physical graph, but gives another view. If some nodes or
arcs have to be hidden or the reverse oriented graph have to be used, then
this is the case. It also may happen that in a flow implementation
the residual graph can be accessed by another algorithm, or a node-set
is to be shrunk for another algorithm.
LEMON also provides a variety of graphs for these requirements called
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only
in conjunction with other graph representations.
You are free to use the graph structure that fit your requirements
the best, most graph algorithms and auxiliary data structures can be used
with any graph structure.
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
*/
/**
@defgroup graph_adaptors Adaptor Classes for Graphs
@ingroup graphs
\brief Adaptor classes for digraphs and graphs
This group contains several useful adaptor classes for digraphs and graphs.
The main parts of LEMON are the different graph structures, generic
graph algorithms, graph concepts, which couple them, and graph
adaptors. While the previous notions are more or less clear, the
latter one needs further explanation. Graph adaptors are graph classes
which serve for considering graph structures in different ways.
A short example makes this much clearer. Suppose that we have an
instance \c g of a directed graph type, say ListDigraph and an algorithm
\code
template <typename Digraph>
int algorithm(const Digraph&);
\endcode
is needed to run on the reverse oriented graph. It may be expensive
(in time or in memory usage) to copy \c g with the reversed
arcs. In this case, an adaptor class is used, which (according
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph.
The adaptor uses the original digraph structure and digraph operations when
methods of the reversed oriented graph are called. This means that the adaptor
have minor memory usage, and do not perform sophisticated algorithmic
actions. The purpose of it is to give a tool for the cases when a
graph have to be used in a specific alteration. If this alteration is
obtained by a usual construction like filtering the node or the arc set or
considering a new orientation, then an adaptor is worthwhile to use.
To come back to the reverse oriented graph, in this situation
\code
template<typename Digraph> class ReverseDigraph;
\endcode
template class can be used. The code looks as follows
\code
ListDigraph g;
ReverseDigraph<ListDigraph> rg(g);
int result = algorithm(rg);
\endcode
During running the algorithm, the original digraph \c g is untouched.
This techniques give rise to an elegant code, and based on stable
graph adaptors, complex algorithms can be implemented easily.
In flow, circulation and matching problems, the residual
graph is of particular importance. Combining an adaptor implementing
this with shortest path algorithms or minimum mean cycle algorithms,
a range of weighted and cardinality optimization algorithms can be
obtained. For other examples, the interested user is referred to the
detailed documentation of particular adaptors.
The behavior of graph adaptors can be very different. Some of them keep
capabilities of the original graph while in other cases this would be
meaningless. This means that the concepts that they meet depend
on the graph adaptor, and the wrapped graph.
For example, if an arc of a reversed digraph is deleted, this is carried
out by deleting the corresponding arc of the original digraph, thus the
adaptor modifies the original digraph.
However in case of a residual digraph, this operation has no sense.
Let us stand one more example here to simplify your work.
ReverseDigraph has constructor
\code
ReverseDigraph(Digraph& digraph);
\endcode
This means that in a situation, when a <tt>const %ListDigraph&</tt>
reference to a graph is given, then it have to be instantiated with
<tt>Digraph=const %ListDigraph</tt>.
\code
int algorithm1(const ListDigraph& g) {
ReverseDigraph<const ListDigraph> rg(g);
return algorithm2(rg);
}
\endcode
*/
/**
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs
@ingroup graphs
\brief Graph types between real graphs and graph adaptors.
This group describes some graph types between real graphs and graph adaptors.
These classes wrap graphs to give new functionality as the adaptors do it.
On the other hand they are not light-weight structures as the adaptors.
*/
/**
@defgroup maps Maps
@ingroup datas
\brief Map structures implemented in LEMON.
This group describes the map structures implemented in LEMON.
LEMON provides several special purpose maps and map adaptors that e.g. combine
new maps from existing ones.
<b>See also:</b> \ref map_concepts "Map Concepts".
*/
/**
@defgroup graph_maps Graph Maps
@ingroup maps
\brief Special graph-related maps.
This group describes maps that are specifically designed to assign
values to the nodes and arcs/edges of graphs.
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap,
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts".
*/
/**
\defgroup map_adaptors Map Adaptors
\ingroup maps
\brief Tools to create new maps from existing ones
This group describes map adaptors that are used to create "implicit"
maps from other maps.
Most of them are \ref concepts::ReadMap "read-only maps".
They can make arithmetic and logical operations between one or two maps
(negation, shifting, addition, multiplication, logical 'and', 'or',
'not' etc.) or e.g. convert a map to another one of different Value type.
The typical usage of this classes is passing implicit maps to
algorithms. If a function type algorithm is called then the function
type map adaptors can be used comfortable. For example let's see the
usage of map adaptors with the \c graphToEps() function.
\code
Color nodeColor(int deg) {
if (deg >= 2) {
return Color(0.5, 0.0, 0.5);
} else if (deg == 1) {
return Color(1.0, 0.5, 1.0);
} else {
return Color(0.0, 0.0, 0.0);
}
}
Digraph::NodeMap<int> degree_map(graph);
graphToEps(graph, "graph.eps")
.coords(coords).scaleToA4().undirected()
.nodeColors(composeMap(functorToMap(nodeColor), degree_map))
.run();
\endcode
The \c functorToMap() function makes an \c int to \c Color map from the
\c nodeColor() function. The \c composeMap() compose the \c degree_map
and the previously created map. The composed map is a proper function to
get the color of each node.
The usage with class type algorithms is little bit harder. In this
case the function type map adaptors can not be used, because the
function map adaptors give back temporary objects.
\code
Digraph graph;
typedef Digraph::ArcMap<double> DoubleArcMap;
DoubleArcMap length(graph);
DoubleArcMap speed(graph);
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
TimeMap time(length, speed);
Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
dijkstra.run(source, target);
\endcode
We have a length map and a maximum speed map on the arcs of a digraph.
The minimum time to pass the arc can be calculated as the division of
the two maps which can be done implicitly with the \c DivMap template
class. We use the implicit minimum time map as the length map of the
\c Dijkstra algorithm.
*/
/**
@defgroup matrices Matrices
@ingroup datas
\brief Two dimensional data storages implemented in LEMON.
This group describes two dimensional data storages implemented in LEMON.
*/
/**
@defgroup paths Path Structures
@ingroup datas
\brief %Path structures implemented in LEMON.
This group describes the path structures implemented in LEMON.
LEMON provides flexible data structures to work with paths.
All of them have similar interfaces and they can be copied easily with
assignment operators and copy constructors. This makes it easy and
efficient to have e.g. the Dijkstra algorithm to store its result in
any kind of path structure.
\sa lemon::concepts::Path
*/
/**
@defgroup auxdat Auxiliary Data Structures
@ingroup datas
\brief Auxiliary data structures implemented in LEMON.
This group describes some data structures implemented in LEMON in
order to make it easier to implement combinatorial algorithms.
*/
/**
@defgroup algs Algorithms
\brief This group describes the several algorithms
implemented in LEMON.
This group describes the several algorithms
implemented in LEMON.
*/
/**
@defgroup search Graph Search
@ingroup algs
\brief Common graph search algorithms.
This group describes the common graph search algorithms, namely
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS).
*/
/**
@defgroup shortest_path Shortest Path Algorithms
@ingroup algs
\brief Algorithms for finding shortest paths.
This group describes the algorithms for finding shortest paths in digraphs.
- \ref Dijkstra algorithm for finding shortest paths from a source node
when all arc lengths are non-negative.
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths
from a source node when arc lenghts can be either positive or negative,
but the digraph should not contain directed cycles with negative total
length.
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms
for solving the \e all-pairs \e shortest \e paths \e problem when arc
lenghts can be either positive or negative, but the digraph should
not contain directed cycles with negative total length.
- \ref Suurballe A successive shortest path algorithm for finding
arc-disjoint paths between two nodes having minimum total length.
*/
/**
@defgroup max_flow Maximum Flow Algorithms
@ingroup algs
\brief Algorithms for finding maximum flows.
This group describes the algorithms for finding maximum flows and
feasible circulations.
The \e maximum \e flow \e problem is to find a flow of maximum value between
a single source and a single target. Formally, there is a \f$G=(V,A)\f$
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and
\f$s, t \in V\f$ source and target nodes.
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the
following optimization problem.
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f]
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a)
\qquad \forall v\in V\setminus\{s,t\} \f]
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f]
LEMON contains several algorithms for solving maximum flow problems:
- \ref EdmondsKarp Edmonds-Karp algorithm.
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm.
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees.
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees.
In most cases the \ref Preflow "Preflow" algorithm provides the
fastest method for computing a maximum flow. All implementations
provides functions to also query the minimum cut, which is the dual
problem of the maximum flow.
*/
/**
@defgroup min_cost_flow Minimum Cost Flow Algorithms
@ingroup algs
\brief Algorithms for finding minimum cost flows and circulations.
This group describes the algorithms for finding minimum cost flows and
circulations.
The \e minimum \e cost \e flow \e problem is to find a feasible flow of
minimum total cost from a set of supply nodes to a set of demand nodes
in a network with capacity constraints and arc costs.
Formally, let \f$G=(V,A)\f$ be a digraph,
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and
upper bounds for the flow values on the arcs,
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow
on the arcs, and
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values
of the nodes.
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of
the following optimization problem.
\f[ \min\sum_{a\in A} f(a) cost(a) \f]
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) =
supply(v) \qquad \forall v\in V \f]
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f]
LEMON contains several algorithms for solving minimum cost flow problems:
- \ref CycleCanceling Cycle-canceling algorithms.
- \ref CapacityScaling Successive shortest path algorithm with optional
capacity scaling.
- \ref CostScaling Push-relabel and augment-relabel algorithms based on
cost scaling.
- \ref NetworkSimplex Primal network simplex algorithm with various
pivot strategies.
*/
/**
@defgroup min_cut Minimum Cut Algorithms
@ingroup algs
\brief Algorithms for finding minimum cut in graphs.
This group describes the algorithms for finding minimum cut in graphs.
The \e minimum \e cut \e problem is to find a non-empty and non-complete
\f$X\f$ subset of the nodes with minimum overall capacity on
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum
cut is the \f$X\f$ solution of the next optimization problem:
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}}
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f]
LEMON contains several algorithms related to minimum cut problems:
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut
in directed graphs.
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for
calculating minimum cut in undirected graphs.
- \ref GomoryHuTree "Gomory-Hu tree computation" for calculating
all-pairs minimum cut in undirected graphs.
If you want to find minimum cut just between two distinict nodes,
see the \ref max_flow "maximum flow problem".
*/
/**
@defgroup graph_prop Connectivity and Other Graph Properties
@ingroup algs
\brief Algorithms for discovering the graph properties
This group describes the algorithms for discovering the graph properties
like connectivity, bipartiteness, euler property, simplicity etc.
\image html edge_biconnected_components.png
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth
*/
/**
@defgroup planar Planarity Embedding and Drawing
@ingroup algs
\brief Algorithms for planarity checking, embedding and drawing
This group describes the algorithms for planarity checking,
embedding and drawing.
\image html planar.png
\image latex planar.eps "Plane graph" width=\textwidth
*/
/**
@defgroup matching Matching Algorithms
@ingroup algs
\brief Algorithms for finding matchings in graphs and bipartite graphs.
This group contains algorithm objects and functions to calculate
matchings in graphs and bipartite graphs. The general matching problem is
finding a subset of the arcs which does not shares common endpoints.
There are several different algorithms for calculate matchings in
graphs. The matching problems in bipartite graphs are generally
easier than in general graphs. The goal of the matching optimization
can be finding maximum cardinality, maximum weight or minimum cost
matching. The search can be constrained to find perfect or
maximum cardinality matching.
The matching algorithms implemented in LEMON:
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm
for calculating maximum cardinality matching in bipartite graphs.
- \ref PrBipartiteMatching Push-relabel algorithm
for calculating maximum cardinality matching in bipartite graphs.
- \ref MaxWeightedBipartiteMatching
Successive shortest path algorithm for calculating maximum weighted
matching and maximum weighted bipartite matching in bipartite graphs.
- \ref MinCostMaxBipartiteMatching
Successive shortest path algorithm for calculating minimum cost maximum
matching in bipartite graphs.
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating
maximum cardinality matching in general graphs.
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating
maximum weighted matching in general graphs.
- \ref MaxWeightedPerfectMatching
Edmond's blossom shrinking algorithm for calculating maximum weighted
perfect matching in general graphs.
\image html bipartite_matching.png
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth
*/
/**
@defgroup spantree Minimum Spanning Tree Algorithms
@ingroup algs
\brief Algorithms for finding a minimum cost spanning tree in a graph.
This group describes the algorithms for finding a minimum cost spanning
tree in a graph.
*/
/**
@defgroup auxalg Auxiliary Algorithms
@ingroup algs
\brief Auxiliary algorithms implemented in LEMON.
This group describes some algorithms implemented in LEMON
in order to make it easier to implement complex algorithms.
*/
/**
@defgroup approx Approximation Algorithms
@ingroup algs
\brief Approximation algorithms.
This group describes the approximation and heuristic algorithms
implemented in LEMON.
*/
/**
@defgroup gen_opt_group General Optimization Tools
\brief This group describes some general optimization frameworks
implemented in LEMON.
This group describes some general optimization frameworks
implemented in LEMON.
*/
/**
@defgroup lp_group Lp and Mip Solvers
@ingroup gen_opt_group
\brief Lp and Mip solver interfaces for LEMON.
This group describes Lp and Mip solver interfaces for LEMON. The
various LP solvers could be used in the same manner with this
interface.
*/
/**
@defgroup lp_utils Tools for Lp and Mip Solvers
@ingroup lp_group
\brief Helper tools to the Lp and Mip solvers.
This group adds some helper tools to general optimization framework
implemented in LEMON.
*/
/**
@defgroup metah Metaheuristics
@ingroup gen_opt_group
\brief Metaheuristics for LEMON library.
This group describes some metaheuristic optimization tools.
*/
/**
@defgroup utils Tools and Utilities
\brief Tools and utilities for programming in LEMON
Tools and utilities for programming in LEMON.
*/
/**
@defgroup gutils Basic Graph Utilities
@ingroup utils
\brief Simple basic graph utilities.
This group describes some simple basic graph utilities.
*/
/**
@defgroup misc Miscellaneous Tools
@ingroup utils
\brief Tools for development, debugging and testing.
This group describes several useful tools for development,
debugging and testing.
*/
/**
@defgroup timecount Time Measuring and Counting
@ingroup misc
\brief Simple tools for measuring the performance of algorithms.
This group describes simple tools for measuring the performance
of algorithms.
*/
/**
@defgroup exceptions Exceptions
@ingroup utils
\brief Exceptions defined in LEMON.
This group describes the exceptions defined in LEMON.
*/
/**
@defgroup io_group Input-Output
\brief Graph Input-Output methods
This group describes the tools for importing and exporting graphs
and graph related data. Now it supports the \ref lgf-format
"LEMON Graph Format", the \c DIMACS format and the encapsulated
postscript (EPS) format.
*/
/**
@defgroup lemon_io LEMON Graph Format
@ingroup io_group
\brief Reading and writing LEMON Graph Format.
This group describes methods for reading and writing
\ref lgf-format "LEMON Graph Format".
*/
/**
@defgroup eps_io Postscript Exporting
@ingroup io_group
\brief General \c EPS drawer and graph exporter
This group describes general \c EPS drawing methods and special
graph exporting tools.
*/
/**
@defgroup dimacs_group DIMACS format
@ingroup io_group
\brief Read and write files in DIMACS format
Tools to read a digraph from or write it to a file in DIMACS format data.
*/
/**
@defgroup nauty_group NAUTY Format
@ingroup io_group
\brief Read \e Nauty format
Tool to read graphs from \e Nauty format data.
*/
/**
@defgroup concept Concepts
\brief Skeleton classes and concept checking classes
This group describes the data/algorithm skeletons and concept checking
classes implemented in LEMON.
The purpose of the classes in this group is fourfold.
- These classes contain the documentations of the %concepts. In order
to avoid document multiplications, an implementation of a concept
simply refers to the corresponding concept class.
- These classes declare every functions, <tt>typedef</tt>s etc. an
implementation of the %concepts should provide, however completely
without implementations and real data structures behind the
interface. On the other hand they should provide nothing else. All
the algorithms working on a data structure meeting a certain concept
should compile with these classes. (Though it will not run properly,
of course.) In this way it is easily to check if an algorithm
doesn't use any extra feature of a certain implementation.
- The concept descriptor classes also provide a <em>checker class</em>
that makes it possible to check whether a certain implementation of a
concept indeed provides all the required features.
- Finally, They can serve as a skeleton of a new implementation of a concept.
*/
/**
@defgroup graph_concepts Graph Structure Concepts
@ingroup concept
\brief Skeleton and concept checking classes for graph structures
This group describes the skeletons and concept checking classes of LEMON's
graph structures and helper classes used to implement these.
*/
/**
@defgroup map_concepts Map Concepts
@ingroup concept
\brief Skeleton and concept checking classes for maps
This group describes the skeletons and concept checking classes of maps.
*/
/**
\anchor demoprograms
@defgroup demos Demo Programs
Some demo programs are listed here. Their full source codes can be found in
the \c demo subdirectory of the source tree.
It order to compile them, use <tt>--enable-demo</tt> configure option when
build the library.
*/
/**
@defgroup tools Standalone Utility Applications
Some utility applications are listed here.
The standard compilation procedure (<tt>./configure;make</tt>) will compile
them, as well.
*/
}
|