Location: LEMON/LEMON-official/lemon/concepts/graph.h - annotation

Load file history
gravatar
alpar (Alpar Juttner)
Doxygen 1.5.7.1 somehow needs this to generate the graphs
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r107:31a2e6d28f61
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r220:a5d8c039f218
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r78:c46b3453455f
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r78:c46b3453455f
  r57:c1acf0018c0a
  r78:c46b3453455f
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r78:c46b3453455f
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r78:c46b3453455f
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r78:c46b3453455f
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r78:c46b3453455f
  r78:c46b3453455f
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r78:c46b3453455f
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r78:c46b3453455f
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r263:be8a861d3bb7
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r263:be8a861d3bb7
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r263:be8a861d3bb7
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
 r209:765619b7cbb2
  r61:d718974f1290
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r78:c46b3453455f
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r78:c46b3453455f
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r125:19e82bda606a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2008
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

///\ingroup graph_concepts
///\file
///\brief The concept of Undirected Graphs.

#ifndef LEMON_CONCEPT_GRAPH_H
#define LEMON_CONCEPT_GRAPH_H

#include <lemon/concepts/graph_components.h>
#include <lemon/concepts/graph.h>
#include <lemon/core.h>

namespace lemon {
  namespace concepts {

    /// \ingroup graph_concepts
    ///
    /// \brief Class describing the concept of Undirected Graphs.
    ///
    /// This class describes the common interface of all Undirected
    /// Graphs.
    ///
    /// As all concept describing classes it provides only interface
    /// without any sensible implementation. So any algorithm for
    /// undirected graph should compile with this class, but it will not
    /// run properly, of course.
    ///
    /// The LEMON undirected graphs also fulfill the concept of
    /// directed graphs (\ref lemon::concepts::Digraph "Digraph
    /// Concept"). Each edges can be seen as two opposite
    /// directed arc and consequently the undirected graph can be
    /// seen as the direceted graph of these directed arcs. The
    /// Graph has the Edge inner class for the edges and
    /// the Arc type for the directed arcs. The Arc type is
    /// convertible to Edge or inherited from it so from a directed
    /// arc we can get the represented edge.
    ///
    /// In the sense of the LEMON each edge has a default
    /// direction (it should be in every computer implementation,
    /// because the order of edge's nodes defines an
    /// orientation). With the default orientation we can define that
    /// the directed arc is forward or backward directed. With the \c
    /// direction() and \c direct() function we can get the direction
    /// of the directed arc and we can direct an edge.
    ///
    /// The EdgeIt is an iterator for the edges. We can use
    /// the EdgeMap to map values for the edges. The InArcIt and
    /// OutArcIt iterates on the same edges but with opposite
    /// direction. The IncEdgeIt iterates also on the same edges
    /// as the OutArcIt and InArcIt but it is not convertible to Arc just
    /// to Edge.
    class Graph {
    public:
      /// \brief The undirected graph should be tagged by the
      /// UndirectedTag.
      ///
      /// The undirected graph should be tagged by the UndirectedTag. This
      /// tag helps the enable_if technics to make compile time
      /// specializations for undirected graphs.
      typedef True UndirectedTag;

      /// \brief The base type of node iterators,
      /// or in other words, the trivial node iterator.
      ///
      /// This is the base type of each node iterator,
      /// thus each kind of node iterator converts to this.
      /// More precisely each kind of node iterator should be inherited
      /// from the trivial node iterator.
      class Node {
      public:
        /// Default constructor

        /// @warning The default constructor sets the iterator
        /// to an undefined value.
        Node() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        Node(const Node&) { }

        /// Invalid constructor \& conversion.

        /// This constructor initializes the iterator to be invalid.
        /// \sa Invalid for more details.
        Node(Invalid) { }
        /// Equality operator

        /// Two iterators are equal if and only if they point to the
        /// same object or both are invalid.
        bool operator==(Node) const { return true; }

        /// Inequality operator

        /// \sa operator==(Node n)
        ///
        bool operator!=(Node) const { return true; }

        /// Artificial ordering operator.

        /// To allow the use of graph descriptors as key type in std::map or
        /// similar associative container we require this.
        ///
        /// \note This operator only have to define some strict ordering of
        /// the items; this order has nothing to do with the iteration
        /// ordering of the items.
        bool operator<(Node) const { return false; }

      };

      /// This iterator goes through each node.

      /// This iterator goes through each node.
      /// Its usage is quite simple, for example you can count the number
      /// of nodes in graph \c g of type \c Graph like this:
      ///\code
      /// int count=0;
      /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
      ///\endcode
      class NodeIt : public Node {
      public:
        /// Default constructor

        /// @warning The default constructor sets the iterator
        /// to an undefined value.
        NodeIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        NodeIt(const NodeIt& n) : Node(n) { }
        /// Invalid constructor \& conversion.

        /// Initialize the iterator to be invalid.
        /// \sa Invalid for more details.
        NodeIt(Invalid) { }
        /// Sets the iterator to the first node.

        /// Sets the iterator to the first node of \c g.
        ///
        NodeIt(const Graph&) { }
        /// Node -> NodeIt conversion.

        /// Sets the iterator to the node of \c the graph pointed by
        /// the trivial iterator.
        /// This feature necessitates that each time we
        /// iterate the arc-set, the iteration order is the same.
        NodeIt(const Graph&, const Node&) { }
        /// Next node.

        /// Assign the iterator to the next node.
        ///
        NodeIt& operator++() { return *this; }
      };


      /// The base type of the edge iterators.

      /// The base type of the edge iterators.
      ///
      class Edge {
      public:
        /// Default constructor

        /// @warning The default constructor sets the iterator
        /// to an undefined value.
        Edge() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        Edge(const Edge&) { }
        /// Initialize the iterator to be invalid.

        /// Initialize the iterator to be invalid.
        ///
        Edge(Invalid) { }
        /// Equality operator

        /// Two iterators are equal if and only if they point to the
        /// same object or both are invalid.
        bool operator==(Edge) const { return true; }
        /// Inequality operator

        /// \sa operator==(Edge n)
        ///
        bool operator!=(Edge) const { return true; }

        /// Artificial ordering operator.

        /// To allow the use of graph descriptors as key type in std::map or
        /// similar associative container we require this.
        ///
        /// \note This operator only have to define some strict ordering of
        /// the items; this order has nothing to do with the iteration
        /// ordering of the items.
        bool operator<(Edge) const { return false; }
      };

      /// This iterator goes through each edge.

      /// This iterator goes through each edge of a graph.
      /// Its usage is quite simple, for example you can count the number
      /// of edges in a graph \c g of type \c Graph as follows:
      ///\code
      /// int count=0;
      /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
      ///\endcode
      class EdgeIt : public Edge {
      public:
        /// Default constructor

        /// @warning The default constructor sets the iterator
        /// to an undefined value.
        EdgeIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        EdgeIt(const EdgeIt& e) : Edge(e) { }
        /// Initialize the iterator to be invalid.

        /// Initialize the iterator to be invalid.
        ///
        EdgeIt(Invalid) { }
        /// This constructor sets the iterator to the first edge.

        /// This constructor sets the iterator to the first edge.
        EdgeIt(const Graph&) { }
        /// Edge -> EdgeIt conversion

        /// Sets the iterator to the value of the trivial iterator.
        /// This feature necessitates that each time we
        /// iterate the edge-set, the iteration order is the
        /// same.
        EdgeIt(const Graph&, const Edge&) { }
        /// Next edge

        /// Assign the iterator to the next edge.
        EdgeIt& operator++() { return *this; }
      };

      /// \brief This iterator goes trough the incident undirected
      /// arcs of a node.
      ///
      /// This iterator goes trough the incident edges
      /// of a certain node of a graph. You should assume that the
      /// loop arcs will be iterated twice.
      ///
      /// Its usage is quite simple, for example you can compute the
      /// degree (i.e. count the number of incident arcs of a node \c n
      /// in graph \c g of type \c Graph as follows.
      ///
      ///\code
      /// int count=0;
      /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
      ///\endcode
      class IncEdgeIt : public Edge {
      public:
        /// Default constructor

        /// @warning The default constructor sets the iterator
        /// to an undefined value.
        IncEdgeIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
        /// Initialize the iterator to be invalid.

        /// Initialize the iterator to be invalid.
        ///
        IncEdgeIt(Invalid) { }
        /// This constructor sets the iterator to first incident arc.

        /// This constructor set the iterator to the first incident arc of
        /// the node.
        IncEdgeIt(const Graph&, const Node&) { }
        /// Edge -> IncEdgeIt conversion

        /// Sets the iterator to the value of the trivial iterator \c e.
        /// This feature necessitates that each time we
        /// iterate the arc-set, the iteration order is the same.
        IncEdgeIt(const Graph&, const Edge&) { }
        /// Next incident arc

        /// Assign the iterator to the next incident arc
        /// of the corresponding node.
        IncEdgeIt& operator++() { return *this; }
      };

      /// The directed arc type.

      /// The directed arc type. It can be converted to the
      /// edge or it should be inherited from the undirected
      /// arc.
      class Arc : public Edge {
      public:
        /// Default constructor

        /// @warning The default constructor sets the iterator
        /// to an undefined value.
        Arc() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        Arc(const Arc& e) : Edge(e) { }
        /// Initialize the iterator to be invalid.

        /// Initialize the iterator to be invalid.
        ///
        Arc(Invalid) { }
        /// Equality operator

        /// Two iterators are equal if and only if they point to the
        /// same object or both are invalid.
        bool operator==(Arc) const { return true; }
        /// Inequality operator

        /// \sa operator==(Arc n)
        ///
        bool operator!=(Arc) const { return true; }

        /// Artificial ordering operator.

        /// To allow the use of graph descriptors as key type in std::map or
        /// similar associative container we require this.
        ///
        /// \note This operator only have to define some strict ordering of
        /// the items; this order has nothing to do with the iteration
        /// ordering of the items.
        bool operator<(Arc) const { return false; }

      };
      /// This iterator goes through each directed arc.

      /// This iterator goes through each arc of a graph.
      /// Its usage is quite simple, for example you can count the number
      /// of arcs in a graph \c g of type \c Graph as follows:
      ///\code
      /// int count=0;
      /// for(Graph::ArcIt e(g); e!=INVALID; ++e) ++count;
      ///\endcode
      class ArcIt : public Arc {
      public:
        /// Default constructor

        /// @warning The default constructor sets the iterator
        /// to an undefined value.
        ArcIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        ArcIt(const ArcIt& e) : Arc(e) { }
        /// Initialize the iterator to be invalid.

        /// Initialize the iterator to be invalid.
        ///
        ArcIt(Invalid) { }
        /// This constructor sets the iterator to the first arc.

        /// This constructor sets the iterator to the first arc of \c g.
        ///@param g the graph
        ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
        /// Arc -> ArcIt conversion

        /// Sets the iterator to the value of the trivial iterator \c e.
        /// This feature necessitates that each time we
        /// iterate the arc-set, the iteration order is the same.
        ArcIt(const Graph&, const Arc&) { }
        ///Next arc

        /// Assign the iterator to the next arc.
        ArcIt& operator++() { return *this; }
      };

      /// This iterator goes trough the outgoing directed arcs of a node.

      /// This iterator goes trough the \e outgoing arcs of a certain node
      /// of a graph.
      /// Its usage is quite simple, for example you can count the number
      /// of outgoing arcs of a node \c n
      /// in graph \c g of type \c Graph as follows.
      ///\code
      /// int count=0;
      /// for (Graph::OutArcIt e(g, n); e!=INVALID; ++e) ++count;
      ///\endcode

      class OutArcIt : public Arc {
      public:
        /// Default constructor

        /// @warning The default constructor sets the iterator
        /// to an undefined value.
        OutArcIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        OutArcIt(const OutArcIt& e) : Arc(e) { }
        /// Initialize the iterator to be invalid.

        /// Initialize the iterator to be invalid.
        ///
        OutArcIt(Invalid) { }
        /// This constructor sets the iterator to the first outgoing arc.

        /// This constructor sets the iterator to the first outgoing arc of
        /// the node.
        ///@param n the node
        ///@param g the graph
        OutArcIt(const Graph& n, const Node& g) {
          ignore_unused_variable_warning(n);
          ignore_unused_variable_warning(g);
        }
        /// Arc -> OutArcIt conversion

        /// Sets the iterator to the value of the trivial iterator.
        /// This feature necessitates that each time we
        /// iterate the arc-set, the iteration order is the same.
        OutArcIt(const Graph&, const Arc&) { }
        ///Next outgoing arc

        /// Assign the iterator to the next
        /// outgoing arc of the corresponding node.
        OutArcIt& operator++() { return *this; }
      };

      /// This iterator goes trough the incoming directed arcs of a node.

      /// This iterator goes trough the \e incoming arcs of a certain node
      /// of a graph.
      /// Its usage is quite simple, for example you can count the number
      /// of outgoing arcs of a node \c n
      /// in graph \c g of type \c Graph as follows.
      ///\code
      /// int count=0;
      /// for(Graph::InArcIt e(g, n); e!=INVALID; ++e) ++count;
      ///\endcode

      class InArcIt : public Arc {
      public:
        /// Default constructor

        /// @warning The default constructor sets the iterator
        /// to an undefined value.
        InArcIt() { }
        /// Copy constructor.

        /// Copy constructor.
        ///
        InArcIt(const InArcIt& e) : Arc(e) { }
        /// Initialize the iterator to be invalid.

        /// Initialize the iterator to be invalid.
        ///
        InArcIt(Invalid) { }
        /// This constructor sets the iterator to first incoming arc.

        /// This constructor set the iterator to the first incoming arc of
        /// the node.
        ///@param n the node
        ///@param g the graph
        InArcIt(const Graph& g, const Node& n) {
          ignore_unused_variable_warning(n);
          ignore_unused_variable_warning(g);
        }
        /// Arc -> InArcIt conversion

        /// Sets the iterator to the value of the trivial iterator \c e.
        /// This feature necessitates that each time we
        /// iterate the arc-set, the iteration order is the same.
        InArcIt(const Graph&, const Arc&) { }
        /// Next incoming arc

        /// Assign the iterator to the next inarc of the corresponding node.
        ///
        InArcIt& operator++() { return *this; }
      };

      /// \brief Read write map of the nodes to type \c T.
      ///
      /// ReadWrite map of the nodes to type \c T.
      /// \sa Reference
      template<class T>
      class NodeMap : public ReadWriteMap< Node, T >
      {
      public:

        ///\e
        NodeMap(const Graph&) { }
        ///\e
        NodeMap(const Graph&, T) { }

      private:
        ///Copy constructor
        NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
        ///Assignment operator
        template <typename CMap>
        NodeMap& operator=(const CMap&) {
          checkConcept<ReadMap<Node, T>, CMap>();
          return *this;
        }
      };

      /// \brief Read write map of the directed arcs to type \c T.
      ///
      /// Reference map of the directed arcs to type \c T.
      /// \sa Reference
      template<class T>
      class ArcMap : public ReadWriteMap<Arc,T>
      {
      public:

        ///\e
        ArcMap(const Graph&) { }
        ///\e
        ArcMap(const Graph&, T) { }
      private:
        ///Copy constructor
        ArcMap(const ArcMap& em) : ReadWriteMap<Arc,T>(em) { }
        ///Assignment operator
        template <typename CMap>
        ArcMap& operator=(const CMap&) {
          checkConcept<ReadMap<Arc, T>, CMap>();
          return *this;
        }
      };

      /// Read write map of the edges to type \c T.

      /// Reference map of the arcs to type \c T.
      /// \sa Reference
      template<class T>
      class EdgeMap : public ReadWriteMap<Edge,T>
      {
      public:

        ///\e
        EdgeMap(const Graph&) { }
        ///\e
        EdgeMap(const Graph&, T) { }
      private:
        ///Copy constructor
        EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) {}
        ///Assignment operator
        template <typename CMap>
        EdgeMap& operator=(const CMap&) {
          checkConcept<ReadMap<Edge, T>, CMap>();
          return *this;
        }
      };

      /// \brief Direct the given edge.
      ///
      /// Direct the given edge. The returned arc source
      /// will be the given node.
      Arc direct(const Edge&, const Node&) const {
        return INVALID;
      }

      /// \brief Direct the given edge.
      ///
      /// Direct the given edge. The returned arc
      /// represents the given edge and the direction comes
      /// from the bool parameter. The source of the edge and
      /// the directed arc is the same when the given bool is true.
      Arc direct(const Edge&, bool) const {
        return INVALID;
      }

      /// \brief Returns true if the arc has default orientation.
      ///
      /// Returns whether the given directed arc is same orientation as
      /// the corresponding edge's default orientation.
      bool direction(Arc) const { return true; }

      /// \brief Returns the opposite directed arc.
      ///
      /// Returns the opposite directed arc.
      Arc oppositeArc(Arc) const { return INVALID; }

      /// \brief Opposite node on an arc
      ///
      /// \return the opposite of the given Node on the given Edge
      Node oppositeNode(Node, Edge) const { return INVALID; }

      /// \brief First node of the edge.
      ///
      /// \return the first node of the given Edge.
      ///
      /// Naturally edges don't have direction and thus
      /// don't have source and target node. But we use these two methods
      /// to query the two nodes of the arc. The direction of the arc
      /// which arises this way is called the inherent direction of the
      /// edge, and is used to define the "default" direction
      /// of the directed versions of the arcs.
      /// \sa direction
      Node u(Edge) const { return INVALID; }

      /// \brief Second node of the edge.
      Node v(Edge) const { return INVALID; }

      /// \brief Source node of the directed arc.
      Node source(Arc) const { return INVALID; }

      /// \brief Target node of the directed arc.
      Node target(Arc) const { return INVALID; }

      /// \brief Returns the id of the node.
      int id(Node) const { return -1; }

      /// \brief Returns the id of the edge.
      int id(Edge) const { return -1; }

      /// \brief Returns the id of the arc.
      int id(Arc) const { return -1; }

      /// \brief Returns the node with the given id.
      ///
      /// \pre The argument should be a valid node id in the graph.
      Node nodeFromId(int) const { return INVALID; }

      /// \brief Returns the edge with the given id.
      ///
      /// \pre The argument should be a valid edge id in the graph.
      Edge edgeFromId(int) const { return INVALID; }

      /// \brief Returns the arc with the given id.
      ///
      /// \pre The argument should be a valid arc id in the graph.
      Arc arcFromId(int) const { return INVALID; }

      /// \brief Returns an upper bound on the node IDs.
      int maxNodeId() const { return -1; }

      /// \brief Returns an upper bound on the edge IDs.
      int maxEdgeId() const { return -1; }

      /// \brief Returns an upper bound on the arc IDs.
      int maxArcId() const { return -1; }

      void first(Node&) const {}
      void next(Node&) const {}

      void first(Edge&) const {}
      void next(Edge&) const {}

      void first(Arc&) const {}
      void next(Arc&) const {}

      void firstOut(Arc&, Node) const {}
      void nextOut(Arc&) const {}

      void firstIn(Arc&, Node) const {}
      void nextIn(Arc&) const {}

      void firstInc(Edge &, bool &, const Node &) const {}
      void nextInc(Edge &, bool &) const {}

      // The second parameter is dummy.
      Node fromId(int, Node) const { return INVALID; }
      // The second parameter is dummy.
      Edge fromId(int, Edge) const { return INVALID; }
      // The second parameter is dummy.
      Arc fromId(int, Arc) const { return INVALID; }

      // Dummy parameter.
      int maxId(Node) const { return -1; }
      // Dummy parameter.
      int maxId(Edge) const { return -1; }
      // Dummy parameter.
      int maxId(Arc) const { return -1; }

      /// \brief Base node of the iterator
      ///
      /// Returns the base node (the source in this case) of the iterator
      Node baseNode(OutArcIt e) const {
        return source(e);
      }
      /// \brief Running node of the iterator
      ///
      /// Returns the running node (the target in this case) of the
      /// iterator
      Node runningNode(OutArcIt e) const {
        return target(e);
      }

      /// \brief Base node of the iterator
      ///
      /// Returns the base node (the target in this case) of the iterator
      Node baseNode(InArcIt e) const {
        return target(e);
      }
      /// \brief Running node of the iterator
      ///
      /// Returns the running node (the source in this case) of the
      /// iterator
      Node runningNode(InArcIt e) const {
        return source(e);
      }

      /// \brief Base node of the iterator
      ///
      /// Returns the base node of the iterator
      Node baseNode(IncEdgeIt) const {
        return INVALID;
      }

      /// \brief Running node of the iterator
      ///
      /// Returns the running node of the iterator
      Node runningNode(IncEdgeIt) const {
        return INVALID;
      }

      template <typename _Graph>
      struct Constraints {
        void constraints() {
          checkConcept<IterableGraphComponent<>, _Graph>();
          checkConcept<IDableGraphComponent<>, _Graph>();
          checkConcept<MappableGraphComponent<>, _Graph>();
        }
      };

    };

  }

}

#endif