Location: LEMON/LEMON-official/lemon/lp_base.h - annotation
Load file history
Merge bugfix #372 to branch 1.1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 | r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r631:33c6b6e755cd r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r631:33c6b6e755cd r631:33c6b6e755cd r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r623:745e182d0139 r623:745e182d0139 r631:33c6b6e755cd r623:745e182d0139 r631:33c6b6e755cd r623:745e182d0139 r631:33c6b6e755cd r623:745e182d0139 r631:33c6b6e755cd r623:745e182d0139 r631:33c6b6e755cd r623:745e182d0139 r623:745e182d0139 r623:745e182d0139 r623:745e182d0139 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r558:06787db0ef5f r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r558:06787db0ef5f r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r623:745e182d0139 r623:745e182d0139 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r631:33c6b6e755cd r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r494:fb5af0411793 r494:fb5af0411793 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r481:7afc121e0689 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r481:7afc121e0689 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r561:2eb5c8ca2c91 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r623:745e182d0139 r623:745e182d0139 r623:745e182d0139 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r558:06787db0ef5f r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r558:06787db0ef5f r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r558:06787db0ef5f r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r558:06787db0ef5f r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r631:33c6b6e755cd r482:ed54c0d13df0 r631:33c6b6e755cd r482:ed54c0d13df0 r631:33c6b6e755cd r482:ed54c0d13df0 r631:33c6b6e755cd r482:ed54c0d13df0 r631:33c6b6e755cd r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r631:33c6b6e755cd r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r631:33c6b6e755cd r482:ed54c0d13df0 r631:33c6b6e755cd r482:ed54c0d13df0 r631:33c6b6e755cd r482:ed54c0d13df0 r631:33c6b6e755cd r482:ed54c0d13df0 r631:33c6b6e755cd r631:33c6b6e755cd r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r587:9db62975c32b r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r631:33c6b6e755cd r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r631:33c6b6e755cd r481:7afc121e0689 r631:33c6b6e755cd r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r631:33c6b6e755cd r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r482:ed54c0d13df0 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 r481:7afc121e0689 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2008
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_LP_BASE_H
#define LEMON_LP_BASE_H
#include<iostream>
#include<vector>
#include<map>
#include<limits>
#include<lemon/math.h>
#include<lemon/error.h>
#include<lemon/assert.h>
#include<lemon/core.h>
#include<lemon/bits/solver_bits.h>
///\file
///\brief The interface of the LP solver interface.
///\ingroup lp_group
namespace lemon {
///Common base class for LP and MIP solvers
///Usually this class is not used directly, please use one of the concrete
///implementations of the solver interface.
///\ingroup lp_group
class LpBase {
protected:
_solver_bits::VarIndex rows;
_solver_bits::VarIndex cols;
public:
///Possible outcomes of an LP solving procedure
enum SolveExitStatus {
/// = 0. It means that the problem has been successfully solved: either
///an optimal solution has been found or infeasibility/unboundedness
///has been proved.
SOLVED = 0,
/// = 1. Any other case (including the case when some user specified
///limit has been exceeded).
UNSOLVED = 1
};
///Direction of the optimization
enum Sense {
/// Minimization
MIN,
/// Maximization
MAX
};
///Enum for \c messageLevel() parameter
enum MessageLevel {
/// No output (default value).
MESSAGE_NOTHING,
/// Error messages only.
MESSAGE_ERROR,
/// Warnings.
MESSAGE_WARNING,
/// Normal output.
MESSAGE_NORMAL,
/// Verbose output.
MESSAGE_VERBOSE
};
///The floating point type used by the solver
typedef double Value;
///The infinity constant
static const Value INF;
///The not a number constant
static const Value NaN;
friend class Col;
friend class ColIt;
friend class Row;
friend class RowIt;
///Refer to a column of the LP.
///This type is used to refer to a column of the LP.
///
///Its value remains valid and correct even after the addition or erase of
///other columns.
///
///\note This class is similar to other Item types in LEMON, like
///Node and Arc types in digraph.
class Col {
friend class LpBase;
protected:
int _id;
explicit Col(int id) : _id(id) {}
public:
typedef Value ExprValue;
typedef True LpCol;
/// Default constructor
/// \warning The default constructor sets the Col to an
/// undefined value.
Col() {}
/// Invalid constructor \& conversion.
/// This constructor initializes the Col to be invalid.
/// \sa Invalid for more details.
Col(const Invalid&) : _id(-1) {}
/// Equality operator
/// Two \ref Col "Col"s are equal if and only if they point to
/// the same LP column or both are invalid.
bool operator==(Col c) const {return _id == c._id;}
/// Inequality operator
/// \sa operator==(Col c)
///
bool operator!=(Col c) const {return _id != c._id;}
/// Artificial ordering operator.
/// To allow the use of this object in std::map or similar
/// associative container we require this.
///
/// \note This operator only have to define some strict ordering of
/// the items; this order has nothing to do with the iteration
/// ordering of the items.
bool operator<(Col c) const {return _id < c._id;}
};
///Iterator for iterate over the columns of an LP problem
/// Its usage is quite simple, for example you can count the number
/// of columns in an LP \c lp:
///\code
/// int count=0;
/// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count;
///\endcode
class ColIt : public Col {
const LpBase *_solver;
public:
/// Default constructor
/// \warning The default constructor sets the iterator
/// to an undefined value.
ColIt() {}
/// Sets the iterator to the first Col
/// Sets the iterator to the first Col.
///
ColIt(const LpBase &solver) : _solver(&solver)
{
_solver->cols.firstItem(_id);
}
/// Invalid constructor \& conversion
/// Initialize the iterator to be invalid.
/// \sa Invalid for more details.
ColIt(const Invalid&) : Col(INVALID) {}
/// Next column
/// Assign the iterator to the next column.
///
ColIt &operator++()
{
_solver->cols.nextItem(_id);
return *this;
}
};
/// \brief Returns the ID of the column.
static int id(const Col& col) { return col._id; }
/// \brief Returns the column with the given ID.
///
/// \pre The argument should be a valid column ID in the LP problem.
static Col colFromId(int id) { return Col(id); }
///Refer to a row of the LP.
///This type is used to refer to a row of the LP.
///
///Its value remains valid and correct even after the addition or erase of
///other rows.
///
///\note This class is similar to other Item types in LEMON, like
///Node and Arc types in digraph.
class Row {
friend class LpBase;
protected:
int _id;
explicit Row(int id) : _id(id) {}
public:
typedef Value ExprValue;
typedef True LpRow;
/// Default constructor
/// \warning The default constructor sets the Row to an
/// undefined value.
Row() {}
/// Invalid constructor \& conversion.
/// This constructor initializes the Row to be invalid.
/// \sa Invalid for more details.
Row(const Invalid&) : _id(-1) {}
/// Equality operator
/// Two \ref Row "Row"s are equal if and only if they point to
/// the same LP row or both are invalid.
bool operator==(Row r) const {return _id == r._id;}
/// Inequality operator
/// \sa operator==(Row r)
///
bool operator!=(Row r) const {return _id != r._id;}
/// Artificial ordering operator.
/// To allow the use of this object in std::map or similar
/// associative container we require this.
///
/// \note This operator only have to define some strict ordering of
/// the items; this order has nothing to do with the iteration
/// ordering of the items.
bool operator<(Row r) const {return _id < r._id;}
};
///Iterator for iterate over the rows of an LP problem
/// Its usage is quite simple, for example you can count the number
/// of rows in an LP \c lp:
///\code
/// int count=0;
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count;
///\endcode
class RowIt : public Row {
const LpBase *_solver;
public:
/// Default constructor
/// \warning The default constructor sets the iterator
/// to an undefined value.
RowIt() {}
/// Sets the iterator to the first Row
/// Sets the iterator to the first Row.
///
RowIt(const LpBase &solver) : _solver(&solver)
{
_solver->rows.firstItem(_id);
}
/// Invalid constructor \& conversion
/// Initialize the iterator to be invalid.
/// \sa Invalid for more details.
RowIt(const Invalid&) : Row(INVALID) {}
/// Next row
/// Assign the iterator to the next row.
///
RowIt &operator++()
{
_solver->rows.nextItem(_id);
return *this;
}
};
/// \brief Returns the ID of the row.
static int id(const Row& row) { return row._id; }
/// \brief Returns the row with the given ID.
///
/// \pre The argument should be a valid row ID in the LP problem.
static Row rowFromId(int id) { return Row(id); }
public:
///Linear expression of variables and a constant component
///This data structure stores a linear expression of the variables
///(\ref Col "Col"s) and also has a constant component.
///
///There are several ways to access and modify the contents of this
///container.
///\code
///e[v]=5;
///e[v]+=12;
///e.erase(v);
///\endcode
///or you can also iterate through its elements.
///\code
///double s=0;
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i)
/// s+=*i * primal(i);
///\endcode
///(This code computes the primal value of the expression).
///- Numbers (<tt>double</tt>'s)
///and variables (\ref Col "Col"s) directly convert to an
///\ref Expr and the usual linear operations are defined, so
///\code
///v+w
///2*v-3.12*(v-w/2)+2
///v*2.1+(3*v+(v*12+w+6)*3)/2
///\endcode
///are valid expressions.
///The usual assignment operations are also defined.
///\code
///e=v+w;
///e+=2*v-3.12*(v-w/2)+2;
///e*=3.4;
///e/=5;
///\endcode
///- The constant member can be set and read by dereference
/// operator (unary *)
///
///\code
///*e=12;
///double c=*e;
///\endcode
///
///\sa Constr
class Expr {
friend class LpBase;
public:
/// The key type of the expression
typedef LpBase::Col Key;
/// The value type of the expression
typedef LpBase::Value Value;
protected:
Value const_comp;
std::map<int, Value> comps;
public:
typedef True SolverExpr;
/// Default constructor
/// Construct an empty expression, the coefficients and
/// the constant component are initialized to zero.
Expr() : const_comp(0) {}
/// Construct an expression from a column
/// Construct an expression, which has a term with \c c variable
/// and 1.0 coefficient.
Expr(const Col &c) : const_comp(0) {
typedef std::map<int, Value>::value_type pair_type;
comps.insert(pair_type(id(c), 1));
}
/// Construct an expression from a constant
/// Construct an expression, which's constant component is \c v.
///
Expr(const Value &v) : const_comp(v) {}
/// Returns the coefficient of the column
Value operator[](const Col& c) const {
std::map<int, Value>::const_iterator it=comps.find(id(c));
if (it != comps.end()) {
return it->second;
} else {
return 0;
}
}
/// Returns the coefficient of the column
Value& operator[](const Col& c) {
return comps[id(c)];
}
/// Sets the coefficient of the column
void set(const Col &c, const Value &v) {
if (v != 0.0) {
typedef std::map<int, Value>::value_type pair_type;
comps.insert(pair_type(id(c), v));
} else {
comps.erase(id(c));
}
}
/// Returns the constant component of the expression
Value& operator*() { return const_comp; }
/// Returns the constant component of the expression
const Value& operator*() const { return const_comp; }
/// \brief Removes the coefficients which's absolute value does
/// not exceed \c epsilon. It also sets to zero the constant
/// component, if it does not exceed epsilon in absolute value.
void simplify(Value epsilon = 0.0) {
std::map<int, Value>::iterator it=comps.begin();
while (it != comps.end()) {
std::map<int, Value>::iterator jt=it;
++jt;
if (std::fabs((*it).second) <= epsilon) comps.erase(it);
it=jt;
}
if (std::fabs(const_comp) <= epsilon) const_comp = 0;
}
void simplify(Value epsilon = 0.0) const {
const_cast<Expr*>(this)->simplify(epsilon);
}
///Sets all coefficients and the constant component to 0.
void clear() {
comps.clear();
const_comp=0;
}
///Compound assignment
Expr &operator+=(const Expr &e) {
for (std::map<int, Value>::const_iterator it=e.comps.begin();
it!=e.comps.end(); ++it)
comps[it->first]+=it->second;
const_comp+=e.const_comp;
return *this;
}
///Compound assignment
Expr &operator-=(const Expr &e) {
for (std::map<int, Value>::const_iterator it=e.comps.begin();
it!=e.comps.end(); ++it)
comps[it->first]-=it->second;
const_comp-=e.const_comp;
return *this;
}
///Multiply with a constant
Expr &operator*=(const Value &v) {
for (std::map<int, Value>::iterator it=comps.begin();
it!=comps.end(); ++it)
it->second*=v;
const_comp*=v;
return *this;
}
///Division with a constant
Expr &operator/=(const Value &c) {
for (std::map<int, Value>::iterator it=comps.begin();
it!=comps.end(); ++it)
it->second/=c;
const_comp/=c;
return *this;
}
///Iterator over the expression
///The iterator iterates over the terms of the expression.
///
///\code
///double s=0;
///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i)
/// s+= *i * primal(i);
///\endcode
class CoeffIt {
private:
std::map<int, Value>::iterator _it, _end;
public:
/// Sets the iterator to the first term
/// Sets the iterator to the first term of the expression.
///
CoeffIt(Expr& e)
: _it(e.comps.begin()), _end(e.comps.end()){}
/// Convert the iterator to the column of the term
operator Col() const {
return colFromId(_it->first);
}
/// Returns the coefficient of the term
Value& operator*() { return _it->second; }
/// Returns the coefficient of the term
const Value& operator*() const { return _it->second; }
/// Next term
/// Assign the iterator to the next term.
///
CoeffIt& operator++() { ++_it; return *this; }
/// Equality operator
bool operator==(Invalid) const { return _it == _end; }
/// Inequality operator
bool operator!=(Invalid) const { return _it != _end; }
};
/// Const iterator over the expression
///The iterator iterates over the terms of the expression.
///
///\code
///double s=0;
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i)
/// s+=*i * primal(i);
///\endcode
class ConstCoeffIt {
private:
std::map<int, Value>::const_iterator _it, _end;
public:
/// Sets the iterator to the first term
/// Sets the iterator to the first term of the expression.
///
ConstCoeffIt(const Expr& e)
: _it(e.comps.begin()), _end(e.comps.end()){}
/// Convert the iterator to the column of the term
operator Col() const {
return colFromId(_it->first);
}
/// Returns the coefficient of the term
const Value& operator*() const { return _it->second; }
/// Next term
/// Assign the iterator to the next term.
///
ConstCoeffIt& operator++() { ++_it; return *this; }
/// Equality operator
bool operator==(Invalid) const { return _it == _end; }
/// Inequality operator
bool operator!=(Invalid) const { return _it != _end; }
};
};
///Linear constraint
///This data stucture represents a linear constraint in the LP.
///Basically it is a linear expression with a lower or an upper bound
///(or both). These parts of the constraint can be obtained by the member
///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
///respectively.
///There are two ways to construct a constraint.
///- You can set the linear expression and the bounds directly
/// by the functions above.
///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt>
/// are defined between expressions, or even between constraints whenever
/// it makes sense. Therefore if \c e and \c f are linear expressions and
/// \c s and \c t are numbers, then the followings are valid expressions
/// and thus they can be used directly e.g. in \ref addRow() whenever
/// it makes sense.
///\code
/// e<=s
/// e<=f
/// e==f
/// s<=e<=t
/// e>=t
///\endcode
///\warning The validity of a constraint is checked only at run
///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will
///compile, but will fail an assertion.
class Constr
{
public:
typedef LpBase::Expr Expr;
typedef Expr::Key Key;
typedef Expr::Value Value;
protected:
Expr _expr;
Value _lb,_ub;
public:
///\e
Constr() : _expr(), _lb(NaN), _ub(NaN) {}
///\e
Constr(Value lb, const Expr &e, Value ub) :
_expr(e), _lb(lb), _ub(ub) {}
Constr(const Expr &e) :
_expr(e), _lb(NaN), _ub(NaN) {}
///\e
void clear()
{
_expr.clear();
_lb=_ub=NaN;
}
///Reference to the linear expression
Expr &expr() { return _expr; }
///Cont reference to the linear expression
const Expr &expr() const { return _expr; }
///Reference to the lower bound.
///\return
///- \ref INF "INF": the constraint is lower unbounded.
///- \ref NaN "NaN": lower bound has not been set.
///- finite number: the lower bound
Value &lowerBound() { return _lb; }
///The const version of \ref lowerBound()
const Value &lowerBound() const { return _lb; }
///Reference to the upper bound.
///\return
///- \ref INF "INF": the constraint is upper unbounded.
///- \ref NaN "NaN": upper bound has not been set.
///- finite number: the upper bound
Value &upperBound() { return _ub; }
///The const version of \ref upperBound()
const Value &upperBound() const { return _ub; }
///Is the constraint lower bounded?
bool lowerBounded() const {
return _lb != -INF && !isNaN(_lb);
}
///Is the constraint upper bounded?
bool upperBounded() const {
return _ub != INF && !isNaN(_ub);
}
};
///Linear expression of rows
///This data structure represents a column of the matrix,
///thas is it strores a linear expression of the dual variables
///(\ref Row "Row"s).
///
///There are several ways to access and modify the contents of this
///container.
///\code
///e[v]=5;
///e[v]+=12;
///e.erase(v);
///\endcode
///or you can also iterate through its elements.
///\code
///double s=0;
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i)
/// s+=*i;
///\endcode
///(This code computes the sum of all coefficients).
///- Numbers (<tt>double</tt>'s)
///and variables (\ref Row "Row"s) directly convert to an
///\ref DualExpr and the usual linear operations are defined, so
///\code
///v+w
///2*v-3.12*(v-w/2)
///v*2.1+(3*v+(v*12+w)*3)/2
///\endcode
///are valid \ref DualExpr dual expressions.
///The usual assignment operations are also defined.
///\code
///e=v+w;
///e+=2*v-3.12*(v-w/2);
///e*=3.4;
///e/=5;
///\endcode
///
///\sa Expr
class DualExpr {
friend class LpBase;
public:
/// The key type of the expression
typedef LpBase::Row Key;
/// The value type of the expression
typedef LpBase::Value Value;
protected:
std::map<int, Value> comps;
public:
typedef True SolverExpr;
/// Default constructor
/// Construct an empty expression, the coefficients are
/// initialized to zero.
DualExpr() {}
/// Construct an expression from a row
/// Construct an expression, which has a term with \c r dual
/// variable and 1.0 coefficient.
DualExpr(const Row &r) {
typedef std::map<int, Value>::value_type pair_type;
comps.insert(pair_type(id(r), 1));
}
/// Returns the coefficient of the row
Value operator[](const Row& r) const {
std::map<int, Value>::const_iterator it = comps.find(id(r));
if (it != comps.end()) {
return it->second;
} else {
return 0;
}
}
/// Returns the coefficient of the row
Value& operator[](const Row& r) {
return comps[id(r)];
}
/// Sets the coefficient of the row
void set(const Row &r, const Value &v) {
if (v != 0.0) {
typedef std::map<int, Value>::value_type pair_type;
comps.insert(pair_type(id(r), v));
} else {
comps.erase(id(r));
}
}
/// \brief Removes the coefficients which's absolute value does
/// not exceed \c epsilon.
void simplify(Value epsilon = 0.0) {
std::map<int, Value>::iterator it=comps.begin();
while (it != comps.end()) {
std::map<int, Value>::iterator jt=it;
++jt;
if (std::fabs((*it).second) <= epsilon) comps.erase(it);
it=jt;
}
}
void simplify(Value epsilon = 0.0) const {
const_cast<DualExpr*>(this)->simplify(epsilon);
}
///Sets all coefficients to 0.
void clear() {
comps.clear();
}
///Compound assignment
DualExpr &operator+=(const DualExpr &e) {
for (std::map<int, Value>::const_iterator it=e.comps.begin();
it!=e.comps.end(); ++it)
comps[it->first]+=it->second;
return *this;
}
///Compound assignment
DualExpr &operator-=(const DualExpr &e) {
for (std::map<int, Value>::const_iterator it=e.comps.begin();
it!=e.comps.end(); ++it)
comps[it->first]-=it->second;
return *this;
}
///Multiply with a constant
DualExpr &operator*=(const Value &v) {
for (std::map<int, Value>::iterator it=comps.begin();
it!=comps.end(); ++it)
it->second*=v;
return *this;
}
///Division with a constant
DualExpr &operator/=(const Value &v) {
for (std::map<int, Value>::iterator it=comps.begin();
it!=comps.end(); ++it)
it->second/=v;
return *this;
}
///Iterator over the expression
///The iterator iterates over the terms of the expression.
///
///\code
///double s=0;
///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i)
/// s+= *i * dual(i);
///\endcode
class CoeffIt {
private:
std::map<int, Value>::iterator _it, _end;
public:
/// Sets the iterator to the first term
/// Sets the iterator to the first term of the expression.
///
CoeffIt(DualExpr& e)
: _it(e.comps.begin()), _end(e.comps.end()){}
/// Convert the iterator to the row of the term
operator Row() const {
return rowFromId(_it->first);
}
/// Returns the coefficient of the term
Value& operator*() { return _it->second; }
/// Returns the coefficient of the term
const Value& operator*() const { return _it->second; }
/// Next term
/// Assign the iterator to the next term.
///
CoeffIt& operator++() { ++_it; return *this; }
/// Equality operator
bool operator==(Invalid) const { return _it == _end; }
/// Inequality operator
bool operator!=(Invalid) const { return _it != _end; }
};
///Iterator over the expression
///The iterator iterates over the terms of the expression.
///
///\code
///double s=0;
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i)
/// s+= *i * dual(i);
///\endcode
class ConstCoeffIt {
private:
std::map<int, Value>::const_iterator _it, _end;
public:
/// Sets the iterator to the first term
/// Sets the iterator to the first term of the expression.
///
ConstCoeffIt(const DualExpr& e)
: _it(e.comps.begin()), _end(e.comps.end()){}
/// Convert the iterator to the row of the term
operator Row() const {
return rowFromId(_it->first);
}
/// Returns the coefficient of the term
const Value& operator*() const { return _it->second; }
/// Next term
/// Assign the iterator to the next term.
///
ConstCoeffIt& operator++() { ++_it; return *this; }
/// Equality operator
bool operator==(Invalid) const { return _it == _end; }
/// Inequality operator
bool operator!=(Invalid) const { return _it != _end; }
};
};
protected:
class InsertIterator {
private:
std::map<int, Value>& _host;
const _solver_bits::VarIndex& _index;
public:
typedef std::output_iterator_tag iterator_category;
typedef void difference_type;
typedef void value_type;
typedef void reference;
typedef void pointer;
InsertIterator(std::map<int, Value>& host,
const _solver_bits::VarIndex& index)
: _host(host), _index(index) {}
InsertIterator& operator=(const std::pair<int, Value>& value) {
typedef std::map<int, Value>::value_type pair_type;
_host.insert(pair_type(_index[value.first], value.second));
return *this;
}
InsertIterator& operator*() { return *this; }
InsertIterator& operator++() { return *this; }
InsertIterator operator++(int) { return *this; }
};
class ExprIterator {
private:
std::map<int, Value>::const_iterator _host_it;
const _solver_bits::VarIndex& _index;
public:
typedef std::bidirectional_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
typedef const std::pair<int, Value> value_type;
typedef value_type reference;
class pointer {
public:
pointer(value_type& _value) : value(_value) {}
value_type* operator->() { return &value; }
private:
value_type value;
};
ExprIterator(const std::map<int, Value>::const_iterator& host_it,
const _solver_bits::VarIndex& index)
: _host_it(host_it), _index(index) {}
reference operator*() {
return std::make_pair(_index(_host_it->first), _host_it->second);
}
pointer operator->() {
return pointer(operator*());
}
ExprIterator& operator++() { ++_host_it; return *this; }
ExprIterator operator++(int) {
ExprIterator tmp(*this); ++_host_it; return tmp;
}
ExprIterator& operator--() { --_host_it; return *this; }
ExprIterator operator--(int) {
ExprIterator tmp(*this); --_host_it; return tmp;
}
bool operator==(const ExprIterator& it) const {
return _host_it == it._host_it;
}
bool operator!=(const ExprIterator& it) const {
return _host_it != it._host_it;
}
};
protected:
//Abstract virtual functions
virtual int _addColId(int col) { return cols.addIndex(col); }
virtual int _addRowId(int row) { return rows.addIndex(row); }
virtual void _eraseColId(int col) { cols.eraseIndex(col); }
virtual void _eraseRowId(int row) { rows.eraseIndex(row); }
virtual int _addCol() = 0;
virtual int _addRow() = 0;
virtual void _eraseCol(int col) = 0;
virtual void _eraseRow(int row) = 0;
virtual void _getColName(int col, std::string& name) const = 0;
virtual void _setColName(int col, const std::string& name) = 0;
virtual int _colByName(const std::string& name) const = 0;
virtual void _getRowName(int row, std::string& name) const = 0;
virtual void _setRowName(int row, const std::string& name) = 0;
virtual int _rowByName(const std::string& name) const = 0;
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e) = 0;
virtual void _getRowCoeffs(int i, InsertIterator b) const = 0;
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e) = 0;
virtual void _getColCoeffs(int i, InsertIterator b) const = 0;
virtual void _setCoeff(int row, int col, Value value) = 0;
virtual Value _getCoeff(int row, int col) const = 0;
virtual void _setColLowerBound(int i, Value value) = 0;
virtual Value _getColLowerBound(int i) const = 0;
virtual void _setColUpperBound(int i, Value value) = 0;
virtual Value _getColUpperBound(int i) const = 0;
virtual void _setRowLowerBound(int i, Value value) = 0;
virtual Value _getRowLowerBound(int i) const = 0;
virtual void _setRowUpperBound(int i, Value value) = 0;
virtual Value _getRowUpperBound(int i) const = 0;
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e) = 0;
virtual void _getObjCoeffs(InsertIterator b) const = 0;
virtual void _setObjCoeff(int i, Value obj_coef) = 0;
virtual Value _getObjCoeff(int i) const = 0;
virtual void _setSense(Sense) = 0;
virtual Sense _getSense() const = 0;
virtual void _clear() = 0;
virtual const char* _solverName() const = 0;
virtual void _messageLevel(MessageLevel level) = 0;
//Own protected stuff
//Constant component of the objective function
Value obj_const_comp;
LpBase() : rows(), cols(), obj_const_comp(0) {}
public:
/// Virtual destructor
virtual ~LpBase() {}
///Gives back the name of the solver.
const char* solverName() const {return _solverName();}
///\name Build Up and Modify the LP
///@{
///Add a new empty column (i.e a new variable) to the LP
Col addCol() { Col c; c._id = _addColId(_addCol()); return c;}
///\brief Adds several new columns (i.e variables) at once
///
///This magic function takes a container as its argument and fills
///its elements with new columns (i.e. variables)
///\param t can be
///- a standard STL compatible iterable container with
///\ref Col as its \c values_type like
///\code
///std::vector<LpBase::Col>
///std::list<LpBase::Col>
///\endcode
///- a standard STL compatible iterable container with
///\ref Col as its \c mapped_type like
///\code
///std::map<AnyType,LpBase::Col>
///\endcode
///- an iterable lemon \ref concepts::WriteMap "write map" like
///\code
///ListGraph::NodeMap<LpBase::Col>
///ListGraph::ArcMap<LpBase::Col>
///\endcode
///\return The number of the created column.
#ifdef DOXYGEN
template<class T>
int addColSet(T &t) { return 0;}
#else
template<class T>
typename enable_if<typename T::value_type::LpCol,int>::type
addColSet(T &t,dummy<0> = 0) {
int s=0;
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
return s;
}
template<class T>
typename enable_if<typename T::value_type::second_type::LpCol,
int>::type
addColSet(T &t,dummy<1> = 1) {
int s=0;
for(typename T::iterator i=t.begin();i!=t.end();++i) {
i->second=addCol();
s++;
}
return s;
}
template<class T>
typename enable_if<typename T::MapIt::Value::LpCol,
int>::type
addColSet(T &t,dummy<2> = 2) {
int s=0;
for(typename T::MapIt i(t); i!=INVALID; ++i)
{
i.set(addCol());
s++;
}
return s;
}
#endif
///Set a column (i.e a dual constraint) of the LP
///\param c is the column to be modified
///\param e is a dual linear expression (see \ref DualExpr)
///a better one.
void col(Col c, const DualExpr &e) {
e.simplify();
_setColCoeffs(cols(id(c)), ExprIterator(e.comps.begin(), rows),
ExprIterator(e.comps.end(), rows));
}
///Get a column (i.e a dual constraint) of the LP
///\param c is the column to get
///\return the dual expression associated to the column
DualExpr col(Col c) const {
DualExpr e;
_getColCoeffs(cols(id(c)), InsertIterator(e.comps, rows));
return e;
}
///Add a new column to the LP
///\param e is a dual linear expression (see \ref DualExpr)
///\param o is the corresponding component of the objective
///function. It is 0 by default.
///\return The created column.
Col addCol(const DualExpr &e, Value o = 0) {
Col c=addCol();
col(c,e);
objCoeff(c,o);
return c;
}
///Add a new empty row (i.e a new constraint) to the LP
///This function adds a new empty row (i.e a new constraint) to the LP.
///\return The created row
Row addRow() { Row r; r._id = _addRowId(_addRow()); return r;}
///\brief Add several new rows (i.e constraints) at once
///
///This magic function takes a container as its argument and fills
///its elements with new row (i.e. variables)
///\param t can be
///- a standard STL compatible iterable container with
///\ref Row as its \c values_type like
///\code
///std::vector<LpBase::Row>
///std::list<LpBase::Row>
///\endcode
///- a standard STL compatible iterable container with
///\ref Row as its \c mapped_type like
///\code
///std::map<AnyType,LpBase::Row>
///\endcode
///- an iterable lemon \ref concepts::WriteMap "write map" like
///\code
///ListGraph::NodeMap<LpBase::Row>
///ListGraph::ArcMap<LpBase::Row>
///\endcode
///\return The number of rows created.
#ifdef DOXYGEN
template<class T>
int addRowSet(T &t) { return 0;}
#else
template<class T>
typename enable_if<typename T::value_type::LpRow,int>::type
addRowSet(T &t, dummy<0> = 0) {
int s=0;
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
return s;
}
template<class T>
typename enable_if<typename T::value_type::second_type::LpRow, int>::type
addRowSet(T &t, dummy<1> = 1) {
int s=0;
for(typename T::iterator i=t.begin();i!=t.end();++i) {
i->second=addRow();
s++;
}
return s;
}
template<class T>
typename enable_if<typename T::MapIt::Value::LpRow, int>::type
addRowSet(T &t, dummy<2> = 2) {
int s=0;
for(typename T::MapIt i(t); i!=INVALID; ++i)
{
i.set(addRow());
s++;
}
return s;
}
#endif
///Set a row (i.e a constraint) of the LP
///\param r is the row to be modified
///\param l is lower bound (-\ref INF means no bound)
///\param e is a linear expression (see \ref Expr)
///\param u is the upper bound (\ref INF means no bound)
void row(Row r, Value l, const Expr &e, Value u) {
e.simplify();
_setRowCoeffs(rows(id(r)), ExprIterator(e.comps.begin(), cols),
ExprIterator(e.comps.end(), cols));
_setRowLowerBound(rows(id(r)),l - *e);
_setRowUpperBound(rows(id(r)),u - *e);
}
///Set a row (i.e a constraint) of the LP
///\param r is the row to be modified
///\param c is a linear expression (see \ref Constr)
void row(Row r, const Constr &c) {
row(r, c.lowerBounded()?c.lowerBound():-INF,
c.expr(), c.upperBounded()?c.upperBound():INF);
}
///Get a row (i.e a constraint) of the LP
///\param r is the row to get
///\return the expression associated to the row
Expr row(Row r) const {
Expr e;
_getRowCoeffs(rows(id(r)), InsertIterator(e.comps, cols));
return e;
}
///Add a new row (i.e a new constraint) to the LP
///\param l is the lower bound (-\ref INF means no bound)
///\param e is a linear expression (see \ref Expr)
///\param u is the upper bound (\ref INF means no bound)
///\return The created row.
Row addRow(Value l,const Expr &e, Value u) {
Row r=addRow();
row(r,l,e,u);
return r;
}
///Add a new row (i.e a new constraint) to the LP
///\param c is a linear expression (see \ref Constr)
///\return The created row.
Row addRow(const Constr &c) {
Row r=addRow();
row(r,c);
return r;
}
///Erase a column (i.e a variable) from the LP
///\param c is the column to be deleted
void erase(Col c) {
_eraseCol(cols(id(c)));
_eraseColId(cols(id(c)));
}
///Erase a row (i.e a constraint) from the LP
///\param r is the row to be deleted
void erase(Row r) {
_eraseRow(rows(id(r)));
_eraseRowId(rows(id(r)));
}
/// Get the name of a column
///\param c is the coresponding column
///\return The name of the colunm
std::string colName(Col c) const {
std::string name;
_getColName(cols(id(c)), name);
return name;
}
/// Set the name of a column
///\param c is the coresponding column
///\param name The name to be given
void colName(Col c, const std::string& name) {
_setColName(cols(id(c)), name);
}
/// Get the column by its name
///\param name The name of the column
///\return the proper column or \c INVALID
Col colByName(const std::string& name) const {
int k = _colByName(name);
return k != -1 ? Col(cols[k]) : Col(INVALID);
}
/// Get the name of a row
///\param r is the coresponding row
///\return The name of the row
std::string rowName(Row r) const {
std::string name;
_getRowName(rows(id(r)), name);
return name;
}
/// Set the name of a row
///\param r is the coresponding row
///\param name The name to be given
void rowName(Row r, const std::string& name) {
_setRowName(rows(id(r)), name);
}
/// Get the row by its name
///\param name The name of the row
///\return the proper row or \c INVALID
Row rowByName(const std::string& name) const {
int k = _rowByName(name);
return k != -1 ? Row(rows[k]) : Row(INVALID);
}
/// Set an element of the coefficient matrix of the LP
///\param r is the row of the element to be modified
///\param c is the column of the element to be modified
///\param val is the new value of the coefficient
void coeff(Row r, Col c, Value val) {
_setCoeff(rows(id(r)),cols(id(c)), val);
}
/// Get an element of the coefficient matrix of the LP
///\param r is the row of the element
///\param c is the column of the element
///\return the corresponding coefficient
Value coeff(Row r, Col c) const {
return _getCoeff(rows(id(r)),cols(id(c)));
}
/// Set the lower bound of a column (i.e a variable)
/// The lower bound of a variable (column) has to be given by an
/// extended number of type Value, i.e. a finite number of type
/// Value or -\ref INF.
void colLowerBound(Col c, Value value) {
_setColLowerBound(cols(id(c)),value);
}
/// Get the lower bound of a column (i.e a variable)
/// This function returns the lower bound for column (variable) \c c
/// (this might be -\ref INF as well).
///\return The lower bound for column \c c
Value colLowerBound(Col c) const {
return _getColLowerBound(cols(id(c)));
}
///\brief Set the lower bound of several columns
///(i.e variables) at once
///
///This magic function takes a container as its argument
///and applies the function on all of its elements.
///The lower bound of a variable (column) has to be given by an
///extended number of type Value, i.e. a finite number of type
///Value or -\ref INF.
#ifdef DOXYGEN
template<class T>
void colLowerBound(T &t, Value value) { return 0;}
#else
template<class T>
typename enable_if<typename T::value_type::LpCol,void>::type
colLowerBound(T &t, Value value,dummy<0> = 0) {
for(typename T::iterator i=t.begin();i!=t.end();++i) {
colLowerBound(*i, value);
}
}
template<class T>
typename enable_if<typename T::value_type::second_type::LpCol,
void>::type
colLowerBound(T &t, Value value,dummy<1> = 1) {
for(typename T::iterator i=t.begin();i!=t.end();++i) {
colLowerBound(i->second, value);
}
}
template<class T>
typename enable_if<typename T::MapIt::Value::LpCol,
void>::type
colLowerBound(T &t, Value value,dummy<2> = 2) {
for(typename T::MapIt i(t); i!=INVALID; ++i){
colLowerBound(*i, value);
}
}
#endif
/// Set the upper bound of a column (i.e a variable)
/// The upper bound of a variable (column) has to be given by an
/// extended number of type Value, i.e. a finite number of type
/// Value or \ref INF.
void colUpperBound(Col c, Value value) {
_setColUpperBound(cols(id(c)),value);
};
/// Get the upper bound of a column (i.e a variable)
/// This function returns the upper bound for column (variable) \c c
/// (this might be \ref INF as well).
/// \return The upper bound for column \c c
Value colUpperBound(Col c) const {
return _getColUpperBound(cols(id(c)));
}
///\brief Set the upper bound of several columns
///(i.e variables) at once
///
///This magic function takes a container as its argument
///and applies the function on all of its elements.
///The upper bound of a variable (column) has to be given by an
///extended number of type Value, i.e. a finite number of type
///Value or \ref INF.
#ifdef DOXYGEN
template<class T>
void colUpperBound(T &t, Value value) { return 0;}
#else
template<class T1>
typename enable_if<typename T1::value_type::LpCol,void>::type
colUpperBound(T1 &t, Value value,dummy<0> = 0) {
for(typename T1::iterator i=t.begin();i!=t.end();++i) {
colUpperBound(*i, value);
}
}
template<class T1>
typename enable_if<typename T1::value_type::second_type::LpCol,
void>::type
colUpperBound(T1 &t, Value value,dummy<1> = 1) {
for(typename T1::iterator i=t.begin();i!=t.end();++i) {
colUpperBound(i->second, value);
}
}
template<class T1>
typename enable_if<typename T1::MapIt::Value::LpCol,
void>::type
colUpperBound(T1 &t, Value value,dummy<2> = 2) {
for(typename T1::MapIt i(t); i!=INVALID; ++i){
colUpperBound(*i, value);
}
}
#endif
/// Set the lower and the upper bounds of a column (i.e a variable)
/// The lower and the upper bounds of
/// a variable (column) have to be given by an
/// extended number of type Value, i.e. a finite number of type
/// Value, -\ref INF or \ref INF.
void colBounds(Col c, Value lower, Value upper) {
_setColLowerBound(cols(id(c)),lower);
_setColUpperBound(cols(id(c)),upper);
}
///\brief Set the lower and the upper bound of several columns
///(i.e variables) at once
///
///This magic function takes a container as its argument
///and applies the function on all of its elements.
/// The lower and the upper bounds of
/// a variable (column) have to be given by an
/// extended number of type Value, i.e. a finite number of type
/// Value, -\ref INF or \ref INF.
#ifdef DOXYGEN
template<class T>
void colBounds(T &t, Value lower, Value upper) { return 0;}
#else
template<class T2>
typename enable_if<typename T2::value_type::LpCol,void>::type
colBounds(T2 &t, Value lower, Value upper,dummy<0> = 0) {
for(typename T2::iterator i=t.begin();i!=t.end();++i) {
colBounds(*i, lower, upper);
}
}
template<class T2>
typename enable_if<typename T2::value_type::second_type::LpCol, void>::type
colBounds(T2 &t, Value lower, Value upper,dummy<1> = 1) {
for(typename T2::iterator i=t.begin();i!=t.end();++i) {
colBounds(i->second, lower, upper);
}
}
template<class T2>
typename enable_if<typename T2::MapIt::Value::LpCol, void>::type
colBounds(T2 &t, Value lower, Value upper,dummy<2> = 2) {
for(typename T2::MapIt i(t); i!=INVALID; ++i){
colBounds(*i, lower, upper);
}
}
#endif
/// Set the lower bound of a row (i.e a constraint)
/// The lower bound of a constraint (row) has to be given by an
/// extended number of type Value, i.e. a finite number of type
/// Value or -\ref INF.
void rowLowerBound(Row r, Value value) {
_setRowLowerBound(rows(id(r)),value);
}
/// Get the lower bound of a row (i.e a constraint)
/// This function returns the lower bound for row (constraint) \c c
/// (this might be -\ref INF as well).
///\return The lower bound for row \c r
Value rowLowerBound(Row r) const {
return _getRowLowerBound(rows(id(r)));
}
/// Set the upper bound of a row (i.e a constraint)
/// The upper bound of a constraint (row) has to be given by an
/// extended number of type Value, i.e. a finite number of type
/// Value or -\ref INF.
void rowUpperBound(Row r, Value value) {
_setRowUpperBound(rows(id(r)),value);
}
/// Get the upper bound of a row (i.e a constraint)
/// This function returns the upper bound for row (constraint) \c c
/// (this might be -\ref INF as well).
///\return The upper bound for row \c r
Value rowUpperBound(Row r) const {
return _getRowUpperBound(rows(id(r)));
}
///Set an element of the objective function
void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); };
///Get an element of the objective function
Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); };
///Set the objective function
///\param e is a linear expression of type \ref Expr.
///
void obj(const Expr& e) {
_setObjCoeffs(ExprIterator(e.comps.begin(), cols),
ExprIterator(e.comps.end(), cols));
obj_const_comp = *e;
}
///Get the objective function
///\return the objective function as a linear expression of type
///Expr.
Expr obj() const {
Expr e;
_getObjCoeffs(InsertIterator(e.comps, cols));
*e = obj_const_comp;
return e;
}
///Set the direction of optimization
void sense(Sense sense) { _setSense(sense); }
///Query the direction of the optimization
Sense sense() const {return _getSense(); }
///Set the sense to maximization
void max() { _setSense(MAX); }
///Set the sense to maximization
void min() { _setSense(MIN); }
///Clears the problem
void clear() { _clear(); }
/// Sets the message level of the solver
void messageLevel(MessageLevel level) { _messageLevel(level); }
///@}
};
/// Addition
///\relates LpBase::Expr
///
inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) {
LpBase::Expr tmp(a);
tmp+=b;
return tmp;
}
///Substraction
///\relates LpBase::Expr
///
inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) {
LpBase::Expr tmp(a);
tmp-=b;
return tmp;
}
///Multiply with constant
///\relates LpBase::Expr
///
inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) {
LpBase::Expr tmp(a);
tmp*=b;
return tmp;
}
///Multiply with constant
///\relates LpBase::Expr
///
inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) {
LpBase::Expr tmp(b);
tmp*=a;
return tmp;
}
///Divide with constant
///\relates LpBase::Expr
///
inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) {
LpBase::Expr tmp(a);
tmp/=b;
return tmp;
}
///Create constraint
///\relates LpBase::Constr
///
inline LpBase::Constr operator<=(const LpBase::Expr &e,
const LpBase::Expr &f) {
return LpBase::Constr(0, f - e, LpBase::INF);
}
///Create constraint
///\relates LpBase::Constr
///
inline LpBase::Constr operator<=(const LpBase::Value &e,
const LpBase::Expr &f) {
return LpBase::Constr(e, f, LpBase::NaN);
}
///Create constraint
///\relates LpBase::Constr
///
inline LpBase::Constr operator<=(const LpBase::Expr &e,
const LpBase::Value &f) {
return LpBase::Constr(- LpBase::INF, e, f);
}
///Create constraint
///\relates LpBase::Constr
///
inline LpBase::Constr operator>=(const LpBase::Expr &e,
const LpBase::Expr &f) {
return LpBase::Constr(0, e - f, LpBase::INF);
}
///Create constraint
///\relates LpBase::Constr
///
inline LpBase::Constr operator>=(const LpBase::Value &e,
const LpBase::Expr &f) {
return LpBase::Constr(LpBase::NaN, f, e);
}
///Create constraint
///\relates LpBase::Constr
///
inline LpBase::Constr operator>=(const LpBase::Expr &e,
const LpBase::Value &f) {
return LpBase::Constr(f, e, LpBase::INF);
}
///Create constraint
///\relates LpBase::Constr
///
inline LpBase::Constr operator==(const LpBase::Expr &e,
const LpBase::Value &f) {
return LpBase::Constr(f, e, f);
}
///Create constraint
///\relates LpBase::Constr
///
inline LpBase::Constr operator==(const LpBase::Expr &e,
const LpBase::Expr &f) {
return LpBase::Constr(0, f - e, 0);
}
///Create constraint
///\relates LpBase::Constr
///
inline LpBase::Constr operator<=(const LpBase::Value &n,
const LpBase::Constr &c) {
LpBase::Constr tmp(c);
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint");
tmp.lowerBound()=n;
return tmp;
}
///Create constraint
///\relates LpBase::Constr
///
inline LpBase::Constr operator<=(const LpBase::Constr &c,
const LpBase::Value &n)
{
LpBase::Constr tmp(c);
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint");
tmp.upperBound()=n;
return tmp;
}
///Create constraint
///\relates LpBase::Constr
///
inline LpBase::Constr operator>=(const LpBase::Value &n,
const LpBase::Constr &c) {
LpBase::Constr tmp(c);
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint");
tmp.upperBound()=n;
return tmp;
}
///Create constraint
///\relates LpBase::Constr
///
inline LpBase::Constr operator>=(const LpBase::Constr &c,
const LpBase::Value &n)
{
LpBase::Constr tmp(c);
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint");
tmp.lowerBound()=n;
return tmp;
}
///Addition
///\relates LpBase::DualExpr
///
inline LpBase::DualExpr operator+(const LpBase::DualExpr &a,
const LpBase::DualExpr &b) {
LpBase::DualExpr tmp(a);
tmp+=b;
return tmp;
}
///Substraction
///\relates LpBase::DualExpr
///
inline LpBase::DualExpr operator-(const LpBase::DualExpr &a,
const LpBase::DualExpr &b) {
LpBase::DualExpr tmp(a);
tmp-=b;
return tmp;
}
///Multiply with constant
///\relates LpBase::DualExpr
///
inline LpBase::DualExpr operator*(const LpBase::DualExpr &a,
const LpBase::Value &b) {
LpBase::DualExpr tmp(a);
tmp*=b;
return tmp;
}
///Multiply with constant
///\relates LpBase::DualExpr
///
inline LpBase::DualExpr operator*(const LpBase::Value &a,
const LpBase::DualExpr &b) {
LpBase::DualExpr tmp(b);
tmp*=a;
return tmp;
}
///Divide with constant
///\relates LpBase::DualExpr
///
inline LpBase::DualExpr operator/(const LpBase::DualExpr &a,
const LpBase::Value &b) {
LpBase::DualExpr tmp(a);
tmp/=b;
return tmp;
}
/// \ingroup lp_group
///
/// \brief Common base class for LP solvers
///
/// This class is an abstract base class for LP solvers. This class
/// provides a full interface for set and modify an LP problem,
/// solve it and retrieve the solution. You can use one of the
/// descendants as a concrete implementation, or the \c Lp
/// default LP solver. However, if you would like to handle LP
/// solvers as reference or pointer in a generic way, you can use
/// this class directly.
class LpSolver : virtual public LpBase {
public:
/// The problem types for primal and dual problems
enum ProblemType {
/// = 0. Feasible solution hasn't been found (but may exist).
UNDEFINED = 0,
/// = 1. The problem has no feasible solution.
INFEASIBLE = 1,
/// = 2. Feasible solution found.
FEASIBLE = 2,
/// = 3. Optimal solution exists and found.
OPTIMAL = 3,
/// = 4. The cost function is unbounded.
UNBOUNDED = 4
};
///The basis status of variables
enum VarStatus {
/// The variable is in the basis
BASIC,
/// The variable is free, but not basic
FREE,
/// The variable has active lower bound
LOWER,
/// The variable has active upper bound
UPPER,
/// The variable is non-basic and fixed
FIXED
};
protected:
virtual SolveExitStatus _solve() = 0;
virtual Value _getPrimal(int i) const = 0;
virtual Value _getDual(int i) const = 0;
virtual Value _getPrimalRay(int i) const = 0;
virtual Value _getDualRay(int i) const = 0;
virtual Value _getPrimalValue() const = 0;
virtual VarStatus _getColStatus(int i) const = 0;
virtual VarStatus _getRowStatus(int i) const = 0;
virtual ProblemType _getPrimalType() const = 0;
virtual ProblemType _getDualType() const = 0;
public:
///Allocate a new LP problem instance
virtual LpSolver* newSolver() const = 0;
///Make a copy of the LP problem
virtual LpSolver* cloneSolver() const = 0;
///\name Solve the LP
///@{
///\e Solve the LP problem at hand
///
///\return The result of the optimization procedure. Possible
///values and their meanings can be found in the documentation of
///\ref SolveExitStatus.
SolveExitStatus solve() { return _solve(); }
///@}
///\name Obtain the Solution
///@{
/// The type of the primal problem
ProblemType primalType() const {
return _getPrimalType();
}
/// The type of the dual problem
ProblemType dualType() const {
return _getDualType();
}
/// Return the primal value of the column
/// Return the primal value of the column.
/// \pre The problem is solved.
Value primal(Col c) const { return _getPrimal(cols(id(c))); }
/// Return the primal value of the expression
/// Return the primal value of the expression, i.e. the dot
/// product of the primal solution and the expression.
/// \pre The problem is solved.
Value primal(const Expr& e) const {
double res = *e;
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
res += *c * primal(c);
}
return res;
}
/// Returns a component of the primal ray
/// The primal ray is solution of the modified primal problem,
/// where we change each finite bound to 0, and we looking for a
/// negative objective value in case of minimization, and positive
/// objective value for maximization. If there is such solution,
/// that proofs the unsolvability of the dual problem, and if a
/// feasible primal solution exists, then the unboundness of
/// primal problem.
///
/// \pre The problem is solved and the dual problem is infeasible.
/// \note Some solvers does not provide primal ray calculation
/// functions.
Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); }
/// Return the dual value of the row
/// Return the dual value of the row.
/// \pre The problem is solved.
Value dual(Row r) const { return _getDual(rows(id(r))); }
/// Return the dual value of the dual expression
/// Return the dual value of the dual expression, i.e. the dot
/// product of the dual solution and the dual expression.
/// \pre The problem is solved.
Value dual(const DualExpr& e) const {
double res = 0.0;
for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) {
res += *r * dual(r);
}
return res;
}
/// Returns a component of the dual ray
/// The dual ray is solution of the modified primal problem, where
/// we change each finite bound to 0 (i.e. the objective function
/// coefficients in the primal problem), and we looking for a
/// ositive objective value. If there is such solution, that
/// proofs the unsolvability of the primal problem, and if a
/// feasible dual solution exists, then the unboundness of
/// dual problem.
///
/// \pre The problem is solved and the primal problem is infeasible.
/// \note Some solvers does not provide dual ray calculation
/// functions.
Value dualRay(Row r) const { return _getDualRay(rows(id(r))); }
/// Return the basis status of the column
/// \see VarStatus
VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); }
/// Return the basis status of the row
/// \see VarStatus
VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); }
///The value of the objective function
///\return
///- \ref INF or -\ref INF means either infeasibility or unboundedness
/// of the primal problem, depending on whether we minimize or maximize.
///- \ref NaN if no primal solution is found.
///- The (finite) objective value if an optimal solution is found.
Value primal() const { return _getPrimalValue()+obj_const_comp;}
///@}
protected:
};
/// \ingroup lp_group
///
/// \brief Common base class for MIP solvers
///
/// This class is an abstract base class for MIP solvers. This class
/// provides a full interface for set and modify an MIP problem,
/// solve it and retrieve the solution. You can use one of the
/// descendants as a concrete implementation, or the \c Lp
/// default MIP solver. However, if you would like to handle MIP
/// solvers as reference or pointer in a generic way, you can use
/// this class directly.
class MipSolver : virtual public LpBase {
public:
/// The problem types for MIP problems
enum ProblemType {
/// = 0. Feasible solution hasn't been found (but may exist).
UNDEFINED = 0,
/// = 1. The problem has no feasible solution.
INFEASIBLE = 1,
/// = 2. Feasible solution found.
FEASIBLE = 2,
/// = 3. Optimal solution exists and found.
OPTIMAL = 3,
/// = 4. The cost function is unbounded.
///The Mip or at least the relaxed problem is unbounded.
UNBOUNDED = 4
};
///Allocate a new MIP problem instance
virtual MipSolver* newSolver() const = 0;
///Make a copy of the MIP problem
virtual MipSolver* cloneSolver() const = 0;
///\name Solve the MIP
///@{
/// Solve the MIP problem at hand
///
///\return The result of the optimization procedure. Possible
///values and their meanings can be found in the documentation of
///\ref SolveExitStatus.
SolveExitStatus solve() { return _solve(); }
///@}
///\name Set Column Type
///@{
///Possible variable (column) types (e.g. real, integer, binary etc.)
enum ColTypes {
/// = 0. Continuous variable (default).
REAL = 0,
/// = 1. Integer variable.
INTEGER = 1
};
///Sets the type of the given column to the given type
///Sets the type of the given column to the given type.
///
void colType(Col c, ColTypes col_type) {
_setColType(cols(id(c)),col_type);
}
///Gives back the type of the column.
///Gives back the type of the column.
///
ColTypes colType(Col c) const {
return _getColType(cols(id(c)));
}
///@}
///\name Obtain the Solution
///@{
/// The type of the MIP problem
ProblemType type() const {
return _getType();
}
/// Return the value of the row in the solution
/// Return the value of the row in the solution.
/// \pre The problem is solved.
Value sol(Col c) const { return _getSol(cols(id(c))); }
/// Return the value of the expression in the solution
/// Return the value of the expression in the solution, i.e. the
/// dot product of the solution and the expression.
/// \pre The problem is solved.
Value sol(const Expr& e) const {
double res = *e;
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
res += *c * sol(c);
}
return res;
}
///The value of the objective function
///\return
///- \ref INF or -\ref INF means either infeasibility or unboundedness
/// of the problem, depending on whether we minimize or maximize.
///- \ref NaN if no primal solution is found.
///- The (finite) objective value if an optimal solution is found.
Value solValue() const { return _getSolValue()+obj_const_comp;}
///@}
protected:
virtual SolveExitStatus _solve() = 0;
virtual ColTypes _getColType(int col) const = 0;
virtual void _setColType(int col, ColTypes col_type) = 0;
virtual ProblemType _getType() const = 0;
virtual Value _getSol(int i) const = 0;
virtual Value _getSolValue() const = 0;
};
} //namespace lemon
#endif //LEMON_LP_BASE_H
|