Location: LEMON/LEMON-official/lemon/smart_graph.h - annotation
Load file history
Fix critical bug in preflow (#372)
The wrong transition between the bound decrease and highest active
heuristics caused the bug. The last node chosen in bound decrease mode
is used in the first iteration in highest active mode.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 | r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r463:88ed40ad0d4f r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r220:a5d8c039f218 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r664:4137ef9aacc6 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r372:75cf49ce5390 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r209:765619b7cbb2 r149:2f7ae34e1333 r209:765619b7cbb2 r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r629:7a28e215f715 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r606:c5fd2d996909 r606:c5fd2d996909 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r606:c5fd2d996909 r209:765619b7cbb2 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r382:00c8843d491d r382:00c8843d491d r382:00c8843d491d r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r313:64f8f7cc6168 r109:abddaa08b507 r209:765619b7cbb2 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r313:64f8f7cc6168 r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r664:4137ef9aacc6 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r341:d900fd1e760f r341:d900fd1e760f r238:79643f6e8c52 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r380:a7e8ad460d66 r380:a7e8ad460d66 r380:a7e8ad460d66 r380:a7e8ad460d66 r380:a7e8ad460d66 r380:a7e8ad460d66 r380:a7e8ad460d66 r209:765619b7cbb2 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r125:19e82bda606a r125:19e82bda606a r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r209:765619b7cbb2 r149:2f7ae34e1333 r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r209:765619b7cbb2 r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r138:a0f755a30cf1 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r629:7a28e215f715 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r664:4137ef9aacc6 r664:4137ef9aacc6 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r606:c5fd2d996909 r606:c5fd2d996909 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r606:c5fd2d996909 r209:765619b7cbb2 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r209:765619b7cbb2 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r149:2f7ae34e1333 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r386:5a3d689ea770 r386:5a3d689ea770 r209:765619b7cbb2 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r209:765619b7cbb2 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r313:64f8f7cc6168 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r313:64f8f7cc6168 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r209:765619b7cbb2 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 r109:abddaa08b507 | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#ifndef LEMON_SMART_GRAPH_H
#define LEMON_SMART_GRAPH_H
///\ingroup graphs
///\file
///\brief SmartDigraph and SmartGraph classes.
#include <vector>
#include <lemon/core.h>
#include <lemon/error.h>
#include <lemon/bits/graph_extender.h>
namespace lemon {
class SmartDigraph;
///Base of SmartDigraph
///Base of SmartDigraph
///
class SmartDigraphBase {
protected:
struct NodeT
{
int first_in, first_out;
NodeT() {}
};
struct ArcT
{
int target, source, next_in, next_out;
ArcT() {}
};
std::vector<NodeT> nodes;
std::vector<ArcT> arcs;
public:
typedef SmartDigraphBase Digraph;
class Node;
class Arc;
public:
SmartDigraphBase() : nodes(), arcs() { }
SmartDigraphBase(const SmartDigraphBase &_g)
: nodes(_g.nodes), arcs(_g.arcs) { }
typedef True NodeNumTag;
typedef True ArcNumTag;
int nodeNum() const { return nodes.size(); }
int arcNum() const { return arcs.size(); }
int maxNodeId() const { return nodes.size()-1; }
int maxArcId() const { return arcs.size()-1; }
Node addNode() {
int n = nodes.size();
nodes.push_back(NodeT());
nodes[n].first_in = -1;
nodes[n].first_out = -1;
return Node(n);
}
Arc addArc(Node u, Node v) {
int n = arcs.size();
arcs.push_back(ArcT());
arcs[n].source = u._id;
arcs[n].target = v._id;
arcs[n].next_out = nodes[u._id].first_out;
arcs[n].next_in = nodes[v._id].first_in;
nodes[u._id].first_out = nodes[v._id].first_in = n;
return Arc(n);
}
void clear() {
arcs.clear();
nodes.clear();
}
Node source(Arc a) const { return Node(arcs[a._id].source); }
Node target(Arc a) const { return Node(arcs[a._id].target); }
static int id(Node v) { return v._id; }
static int id(Arc a) { return a._id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
bool valid(Node n) const {
return n._id >= 0 && n._id < static_cast<int>(nodes.size());
}
bool valid(Arc a) const {
return a._id >= 0 && a._id < static_cast<int>(arcs.size());
}
class Node {
friend class SmartDigraphBase;
friend class SmartDigraph;
protected:
int _id;
explicit Node(int id) : _id(id) {}
public:
Node() {}
Node (Invalid) : _id(-1) {}
bool operator==(const Node i) const {return _id == i._id;}
bool operator!=(const Node i) const {return _id != i._id;}
bool operator<(const Node i) const {return _id < i._id;}
};
class Arc {
friend class SmartDigraphBase;
friend class SmartDigraph;
protected:
int _id;
explicit Arc(int id) : _id(id) {}
public:
Arc() { }
Arc (Invalid) : _id(-1) {}
bool operator==(const Arc i) const {return _id == i._id;}
bool operator!=(const Arc i) const {return _id != i._id;}
bool operator<(const Arc i) const {return _id < i._id;}
};
void first(Node& node) const {
node._id = nodes.size() - 1;
}
static void next(Node& node) {
--node._id;
}
void first(Arc& arc) const {
arc._id = arcs.size() - 1;
}
static void next(Arc& arc) {
--arc._id;
}
void firstOut(Arc& arc, const Node& node) const {
arc._id = nodes[node._id].first_out;
}
void nextOut(Arc& arc) const {
arc._id = arcs[arc._id].next_out;
}
void firstIn(Arc& arc, const Node& node) const {
arc._id = nodes[node._id].first_in;
}
void nextIn(Arc& arc) const {
arc._id = arcs[arc._id].next_in;
}
};
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase;
///\ingroup graphs
///
///\brief A smart directed graph class.
///
///This is a simple and fast digraph implementation.
///It is also quite memory efficient, but at the price
///that <b> it does support only limited (only stack-like)
///node and arc deletions</b>.
///It fully conforms to the \ref concepts::Digraph "Digraph concept".
///
///\sa concepts::Digraph.
class SmartDigraph : public ExtendedSmartDigraphBase {
typedef ExtendedSmartDigraphBase Parent;
private:
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead.
///SmartDigraph is \e not copy constructible. Use DigraphCopy() instead.
///
SmartDigraph(const SmartDigraph &) : ExtendedSmartDigraphBase() {};
///\brief Assignment of SmartDigraph to another one is \e not allowed.
///Use DigraphCopy() instead.
///Assignment of SmartDigraph to another one is \e not allowed.
///Use DigraphCopy() instead.
void operator=(const SmartDigraph &) {}
public:
/// Constructor
/// Constructor.
///
SmartDigraph() {};
///Add a new node to the digraph.
/// Add a new node to the digraph.
/// \return The new node.
Node addNode() { return Parent::addNode(); }
///Add a new arc to the digraph.
///Add a new arc to the digraph with source node \c s
///and target node \c t.
///\return The new arc.
Arc addArc(const Node& s, const Node& t) {
return Parent::addArc(s, t);
}
/// \brief Using this it is possible to avoid the superfluous memory
/// allocation.
/// Using this it is possible to avoid the superfluous memory
/// allocation: if you know that the digraph you want to build will
/// be very large (e.g. it will contain millions of nodes and/or arcs)
/// then it is worth reserving space for this amount before starting
/// to build the digraph.
/// \sa reserveArc
void reserveNode(int n) { nodes.reserve(n); };
/// \brief Using this it is possible to avoid the superfluous memory
/// allocation.
/// Using this it is possible to avoid the superfluous memory
/// allocation: if you know that the digraph you want to build will
/// be very large (e.g. it will contain millions of nodes and/or arcs)
/// then it is worth reserving space for this amount before starting
/// to build the digraph.
/// \sa reserveNode
void reserveArc(int m) { arcs.reserve(m); };
/// \brief Node validity check
///
/// This function gives back true if the given node is valid,
/// ie. it is a real node of the graph.
///
/// \warning A removed node (using Snapshot) could become valid again
/// when new nodes are added to the graph.
bool valid(Node n) const { return Parent::valid(n); }
/// \brief Arc validity check
///
/// This function gives back true if the given arc is valid,
/// ie. it is a real arc of the graph.
///
/// \warning A removed arc (using Snapshot) could become valid again
/// when new arcs are added to the graph.
bool valid(Arc a) const { return Parent::valid(a); }
///Clear the digraph.
///Erase all the nodes and arcs from the digraph.
///
void clear() {
Parent::clear();
}
///Split a node.
///This function splits a node. First a new node is added to the digraph,
///then the source of each outgoing arc of \c n is moved to this new node.
///If \c connect is \c true (this is the default value), then a new arc
///from \c n to the newly created node is also added.
///\return The newly created node.
///
///\note The <tt>Arc</tt>s
///referencing a moved arc remain
///valid. However <tt>InArc</tt>'s and <tt>OutArc</tt>'s
///may be invalidated.
///\warning This functionality cannot be used together with the Snapshot
///feature.
Node split(Node n, bool connect = true)
{
Node b = addNode();
nodes[b._id].first_out=nodes[n._id].first_out;
nodes[n._id].first_out=-1;
for(int i=nodes[b._id].first_out; i!=-1; i=arcs[i].next_out) {
arcs[i].source=b._id;
}
if(connect) addArc(n,b);
return b;
}
public:
class Snapshot;
protected:
void restoreSnapshot(const Snapshot &s)
{
while(s.arc_num<arcs.size()) {
Arc arc = arcFromId(arcs.size()-1);
Parent::notifier(Arc()).erase(arc);
nodes[arcs.back().source].first_out=arcs.back().next_out;
nodes[arcs.back().target].first_in=arcs.back().next_in;
arcs.pop_back();
}
while(s.node_num<nodes.size()) {
Node node = nodeFromId(nodes.size()-1);
Parent::notifier(Node()).erase(node);
nodes.pop_back();
}
}
public:
///Class to make a snapshot of the digraph and to restrore to it later.
///Class to make a snapshot of the digraph and to restrore to it later.
///
///The newly added nodes and arcs can be removed using the
///restore() function.
///\note After you restore a state, you cannot restore
///a later state, in other word you cannot add again the arcs deleted
///by restore() using another one Snapshot instance.
///
///\warning If you do not use correctly the snapshot that can cause
///either broken program, invalid state of the digraph, valid but
///not the restored digraph or no change. Because the runtime performance
///the validity of the snapshot is not stored.
class Snapshot
{
SmartDigraph *_graph;
protected:
friend class SmartDigraph;
unsigned int node_num;
unsigned int arc_num;
public:
///Default constructor.
///Default constructor.
///To actually make a snapshot you must call save().
///
Snapshot() : _graph(0) {}
///Constructor that immediately makes a snapshot
///This constructor immediately makes a snapshot of the digraph.
///\param graph The digraph we make a snapshot of.
Snapshot(SmartDigraph &graph) : _graph(&graph) {
node_num=_graph->nodes.size();
arc_num=_graph->arcs.size();
}
///Make a snapshot.
///Make a snapshot of the digraph.
///
///This function can be called more than once. In case of a repeated
///call, the previous snapshot gets lost.
///\param graph The digraph we make the snapshot of.
void save(SmartDigraph &graph)
{
_graph=&graph;
node_num=_graph->nodes.size();
arc_num=_graph->arcs.size();
}
///Undo the changes until a snapshot.
///Undo the changes until a snapshot created by save().
///
///\note After you restored a state, you cannot restore
///a later state, in other word you cannot add again the arcs deleted
///by restore().
void restore()
{
_graph->restoreSnapshot(*this);
}
};
};
class SmartGraphBase {
protected:
struct NodeT {
int first_out;
};
struct ArcT {
int target;
int next_out;
};
std::vector<NodeT> nodes;
std::vector<ArcT> arcs;
int first_free_arc;
public:
typedef SmartGraphBase Graph;
class Node;
class Arc;
class Edge;
class Node {
friend class SmartGraphBase;
protected:
int _id;
explicit Node(int id) { _id = id;}
public:
Node() {}
Node (Invalid) { _id = -1; }
bool operator==(const Node& node) const {return _id == node._id;}
bool operator!=(const Node& node) const {return _id != node._id;}
bool operator<(const Node& node) const {return _id < node._id;}
};
class Edge {
friend class SmartGraphBase;
protected:
int _id;
explicit Edge(int id) { _id = id;}
public:
Edge() {}
Edge (Invalid) { _id = -1; }
bool operator==(const Edge& arc) const {return _id == arc._id;}
bool operator!=(const Edge& arc) const {return _id != arc._id;}
bool operator<(const Edge& arc) const {return _id < arc._id;}
};
class Arc {
friend class SmartGraphBase;
protected:
int _id;
explicit Arc(int id) { _id = id;}
public:
operator Edge() const {
return _id != -1 ? edgeFromId(_id / 2) : INVALID;
}
Arc() {}
Arc (Invalid) { _id = -1; }
bool operator==(const Arc& arc) const {return _id == arc._id;}
bool operator!=(const Arc& arc) const {return _id != arc._id;}
bool operator<(const Arc& arc) const {return _id < arc._id;}
};
SmartGraphBase()
: nodes(), arcs() {}
typedef True NodeNumTag;
typedef True EdgeNumTag;
typedef True ArcNumTag;
int nodeNum() const { return nodes.size(); }
int edgeNum() const { return arcs.size() / 2; }
int arcNum() const { return arcs.size(); }
int maxNodeId() const { return nodes.size()-1; }
int maxEdgeId() const { return arcs.size() / 2 - 1; }
int maxArcId() const { return arcs.size()-1; }
Node source(Arc e) const { return Node(arcs[e._id ^ 1].target); }
Node target(Arc e) const { return Node(arcs[e._id].target); }
Node u(Edge e) const { return Node(arcs[2 * e._id].target); }
Node v(Edge e) const { return Node(arcs[2 * e._id + 1].target); }
static bool direction(Arc e) {
return (e._id & 1) == 1;
}
static Arc direct(Edge e, bool d) {
return Arc(e._id * 2 + (d ? 1 : 0));
}
void first(Node& node) const {
node._id = nodes.size() - 1;
}
void next(Node& node) const {
--node._id;
}
void first(Arc& arc) const {
arc._id = arcs.size() - 1;
}
void next(Arc& arc) const {
--arc._id;
}
void first(Edge& arc) const {
arc._id = arcs.size() / 2 - 1;
}
void next(Edge& arc) const {
--arc._id;
}
void firstOut(Arc &arc, const Node& v) const {
arc._id = nodes[v._id].first_out;
}
void nextOut(Arc &arc) const {
arc._id = arcs[arc._id].next_out;
}
void firstIn(Arc &arc, const Node& v) const {
arc._id = ((nodes[v._id].first_out) ^ 1);
if (arc._id == -2) arc._id = -1;
}
void nextIn(Arc &arc) const {
arc._id = ((arcs[arc._id ^ 1].next_out) ^ 1);
if (arc._id == -2) arc._id = -1;
}
void firstInc(Edge &arc, bool& d, const Node& v) const {
int de = nodes[v._id].first_out;
if (de != -1) {
arc._id = de / 2;
d = ((de & 1) == 1);
} else {
arc._id = -1;
d = true;
}
}
void nextInc(Edge &arc, bool& d) const {
int de = (arcs[(arc._id * 2) | (d ? 1 : 0)].next_out);
if (de != -1) {
arc._id = de / 2;
d = ((de & 1) == 1);
} else {
arc._id = -1;
d = true;
}
}
static int id(Node v) { return v._id; }
static int id(Arc e) { return e._id; }
static int id(Edge e) { return e._id; }
static Node nodeFromId(int id) { return Node(id);}
static Arc arcFromId(int id) { return Arc(id);}
static Edge edgeFromId(int id) { return Edge(id);}
bool valid(Node n) const {
return n._id >= 0 && n._id < static_cast<int>(nodes.size());
}
bool valid(Arc a) const {
return a._id >= 0 && a._id < static_cast<int>(arcs.size());
}
bool valid(Edge e) const {
return e._id >= 0 && 2 * e._id < static_cast<int>(arcs.size());
}
Node addNode() {
int n = nodes.size();
nodes.push_back(NodeT());
nodes[n].first_out = -1;
return Node(n);
}
Edge addEdge(Node u, Node v) {
int n = arcs.size();
arcs.push_back(ArcT());
arcs.push_back(ArcT());
arcs[n].target = u._id;
arcs[n | 1].target = v._id;
arcs[n].next_out = nodes[v._id].first_out;
nodes[v._id].first_out = n;
arcs[n | 1].next_out = nodes[u._id].first_out;
nodes[u._id].first_out = (n | 1);
return Edge(n / 2);
}
void clear() {
arcs.clear();
nodes.clear();
}
};
typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase;
/// \ingroup graphs
///
/// \brief A smart undirected graph class.
///
/// This is a simple and fast graph implementation.
/// It is also quite memory efficient, but at the price
/// that <b> it does support only limited (only stack-like)
/// node and arc deletions</b>.
/// It fully conforms to the \ref concepts::Graph "Graph concept".
///
/// \sa concepts::Graph.
class SmartGraph : public ExtendedSmartGraphBase {
typedef ExtendedSmartGraphBase Parent;
private:
///SmartGraph is \e not copy constructible. Use GraphCopy() instead.
///SmartGraph is \e not copy constructible. Use GraphCopy() instead.
///
SmartGraph(const SmartGraph &) : ExtendedSmartGraphBase() {};
///\brief Assignment of SmartGraph to another one is \e not allowed.
///Use GraphCopy() instead.
///Assignment of SmartGraph to another one is \e not allowed.
///Use GraphCopy() instead.
void operator=(const SmartGraph &) {}
public:
/// Constructor
/// Constructor.
///
SmartGraph() {}
///Add a new node to the graph.
/// Add a new node to the graph.
/// \return The new node.
Node addNode() { return Parent::addNode(); }
///Add a new edge to the graph.
///Add a new edge to the graph with node \c s
///and \c t.
///\return The new edge.
Edge addEdge(const Node& s, const Node& t) {
return Parent::addEdge(s, t);
}
/// \brief Node validity check
///
/// This function gives back true if the given node is valid,
/// ie. it is a real node of the graph.
///
/// \warning A removed node (using Snapshot) could become valid again
/// when new nodes are added to the graph.
bool valid(Node n) const { return Parent::valid(n); }
/// \brief Arc validity check
///
/// This function gives back true if the given arc is valid,
/// ie. it is a real arc of the graph.
///
/// \warning A removed arc (using Snapshot) could become valid again
/// when new edges are added to the graph.
bool valid(Arc a) const { return Parent::valid(a); }
/// \brief Edge validity check
///
/// This function gives back true if the given edge is valid,
/// ie. it is a real edge of the graph.
///
/// \warning A removed edge (using Snapshot) could become valid again
/// when new edges are added to the graph.
bool valid(Edge e) const { return Parent::valid(e); }
///Clear the graph.
///Erase all the nodes and edges from the graph.
///
void clear() {
Parent::clear();
}
public:
class Snapshot;
protected:
void saveSnapshot(Snapshot &s)
{
s._graph = this;
s.node_num = nodes.size();
s.arc_num = arcs.size();
}
void restoreSnapshot(const Snapshot &s)
{
while(s.arc_num<arcs.size()) {
int n=arcs.size()-1;
Edge arc=edgeFromId(n/2);
Parent::notifier(Edge()).erase(arc);
std::vector<Arc> dir;
dir.push_back(arcFromId(n));
dir.push_back(arcFromId(n-1));
Parent::notifier(Arc()).erase(dir);
nodes[arcs[n-1].target].first_out=arcs[n].next_out;
nodes[arcs[n].target].first_out=arcs[n-1].next_out;
arcs.pop_back();
arcs.pop_back();
}
while(s.node_num<nodes.size()) {
int n=nodes.size()-1;
Node node = nodeFromId(n);
Parent::notifier(Node()).erase(node);
nodes.pop_back();
}
}
public:
///Class to make a snapshot of the digraph and to restrore to it later.
///Class to make a snapshot of the digraph and to restrore to it later.
///
///The newly added nodes and arcs can be removed using the
///restore() function.
///
///\note After you restore a state, you cannot restore
///a later state, in other word you cannot add again the arcs deleted
///by restore() using another one Snapshot instance.
///
///\warning If you do not use correctly the snapshot that can cause
///either broken program, invalid state of the digraph, valid but
///not the restored digraph or no change. Because the runtime performance
///the validity of the snapshot is not stored.
class Snapshot
{
SmartGraph *_graph;
protected:
friend class SmartGraph;
unsigned int node_num;
unsigned int arc_num;
public:
///Default constructor.
///Default constructor.
///To actually make a snapshot you must call save().
///
Snapshot() : _graph(0) {}
///Constructor that immediately makes a snapshot
///This constructor immediately makes a snapshot of the digraph.
///\param graph The digraph we make a snapshot of.
Snapshot(SmartGraph &graph) {
graph.saveSnapshot(*this);
}
///Make a snapshot.
///Make a snapshot of the graph.
///
///This function can be called more than once. In case of a repeated
///call, the previous snapshot gets lost.
///\param graph The digraph we make the snapshot of.
void save(SmartGraph &graph)
{
graph.saveSnapshot(*this);
}
///Undo the changes until a snapshot.
///Undo the changes until a snapshot created by save().
///
///\note After you restored a state, you cannot restore
///a later state, in other word you cannot add again the arcs deleted
///by restore().
void restore()
{
_graph->restoreSnapshot(*this);
}
};
};
} //namespace lemon
#endif //LEMON_SMART_GRAPH_H
|