Location: LEMON/LEMON-official/lemon/concepts/graph_components.h - annotation

Load file history
gravatar
alpar (Alpar Juttner)
Merge Intel C++ compatibility fixes to branch 1.2
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r964:141f9c0db4a3
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r833:e20173729589
  r57:c1acf0018c0a
 r576:f5bc148f7e1f
 r576:f5bc148f7e1f
  r57:c1acf0018c0a
 r220:a5d8c039f218
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r713:1993af615e68
 r713:1993af615e68
 r713:1993af615e68
 r713:1993af615e68
 r713:1993af615e68
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
  r57:c1acf0018c0a
 r781:bd72f8d20f33
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r713:1993af615e68
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r664:4137ef9aacc6
 r664:4137ef9aacc6
 r664:4137ef9aacc6
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r664:4137ef9aacc6
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r713:1993af615e68
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r713:1993af615e68
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r713:1993af615e68
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r964:141f9c0db4a3
 r626:d11bf7998905
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r964:141f9c0db4a3
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
 r209:765619b7cbb2
 r209:765619b7cbb2
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r606:c5fd2d996909
 r209:765619b7cbb2
 r209:765619b7cbb2
 r626:d11bf7998905
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r964:141f9c0db4a3
 r626:d11bf7998905
  r57:c1acf0018c0a
 r964:141f9c0db4a3
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
 r606:c5fd2d996909
 r606:c5fd2d996909
 r606:c5fd2d996909
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
  r57:c1acf0018c0a
 r964:141f9c0db4a3
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r606:c5fd2d996909
 r209:765619b7cbb2
 r209:765619b7cbb2
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r606:c5fd2d996909
 r209:765619b7cbb2
 r209:765619b7cbb2
 r626:d11bf7998905
 r626:d11bf7998905
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r631:33c6b6e755cd
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r631:33c6b6e755cd
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r631:33c6b6e755cd
 r209:765619b7cbb2
 r626:d11bf7998905
 r626:d11bf7998905
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
 r964:141f9c0db4a3
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r964:141f9c0db4a3
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r631:33c6b6e755cd
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r78:c46b3453455f
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r78:c46b3453455f
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
 r627:2313edd0db0b
 r606:c5fd2d996909
 r627:2313edd0db0b
 r664:4137ef9aacc6
 r664:4137ef9aacc6
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
 r606:c5fd2d996909
 r627:2313edd0db0b
 r627:2313edd0db0b
 r627:2313edd0db0b
 r627:2313edd0db0b
 r627:2313edd0db0b
 r627:2313edd0db0b
 r627:2313edd0db0b
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r664:4137ef9aacc6
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r664:4137ef9aacc6
 r263:be8a861d3bb7
 r263:be8a861d3bb7
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r263:be8a861d3bb7
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r627:2313edd0db0b
 r627:2313edd0db0b
 r626:d11bf7998905
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
 r263:be8a861d3bb7
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
 r664:4137ef9aacc6
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
  r57:c1acf0018c0a
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r627:2313edd0db0b
 r606:c5fd2d996909
 r626:d11bf7998905
 r606:c5fd2d996909
  r57:c1acf0018c0a
 r664:4137ef9aacc6
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r626:d11bf7998905
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r263:be8a861d3bb7
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r627:2313edd0db0b
 r606:c5fd2d996909
 r626:d11bf7998905
 r606:c5fd2d996909
  r57:c1acf0018c0a
 r664:4137ef9aacc6
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r626:d11bf7998905
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r263:be8a861d3bb7
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
  r57:c1acf0018c0a
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r627:2313edd0db0b
 r606:c5fd2d996909
 r626:d11bf7998905
 r606:c5fd2d996909
  r57:c1acf0018c0a
 r664:4137ef9aacc6
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r626:d11bf7998905
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r263:be8a861d3bb7
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
 r626:d11bf7998905
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
 r626:d11bf7998905
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
 r626:d11bf7998905
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r964:141f9c0db4a3
 r626:d11bf7998905
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
 r964:141f9c0db4a3
 r626:d11bf7998905
 r626:d11bf7998905
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
 r626:d11bf7998905
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
 r209:765619b7cbb2
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r626:d11bf7998905
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r606:c5fd2d996909
 r606:c5fd2d996909
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r606:c5fd2d996909
  r57:c1acf0018c0a
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
 r626:d11bf7998905
  r57:c1acf0018c0a
  r57:c1acf0018c0a
 r209:765619b7cbb2
 r626:d11bf7998905
 r626:d11bf7998905
 r209:765619b7cbb2
  r57:c1acf0018c0a
 r626:d11bf7998905
r1125:b873350e6258
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
  r57:c1acf0018c0a
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2010
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

///\ingroup graph_concepts
///\file
///\brief The concepts of graph components.

#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H

#include <lemon/core.h>
#include <lemon/concepts/maps.h>

#include <lemon/bits/alteration_notifier.h>

namespace lemon {
  namespace concepts {

    /// \brief Concept class for \c Node, \c Arc and \c Edge types.
    ///
    /// This class describes the concept of \c Node, \c Arc and \c Edge
    /// subtypes of digraph and graph types.
    ///
    /// \note This class is a template class so that we can use it to
    /// create graph skeleton classes. The reason for this is that \c Node
    /// and \c Arc (or \c Edge) types should \e not derive from the same
    /// base class. For \c Node you should instantiate it with character
    /// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'.
#ifndef DOXYGEN
    template <char sel = '0'>
#endif
    class GraphItem {
    public:
      /// \brief Default constructor.
      ///
      /// Default constructor.
      /// \warning The default constructor is not required to set
      /// the item to some well-defined value. So you should consider it
      /// as uninitialized.
      GraphItem() {}

      /// \brief Copy constructor.
      ///
      /// Copy constructor.
      GraphItem(const GraphItem &) {}

      /// \brief Constructor for conversion from \c INVALID.
      ///
      /// Constructor for conversion from \c INVALID.
      /// It initializes the item to be invalid.
      /// \sa Invalid for more details.
      GraphItem(Invalid) {}

      /// \brief Assignment operator.
      ///
      /// Assignment operator for the item.
      GraphItem& operator=(const GraphItem&) { return *this; }

      /// \brief Assignment operator for INVALID.
      ///
      /// This operator makes the item invalid.
      GraphItem& operator=(Invalid) { return *this; }

      /// \brief Equality operator.
      ///
      /// Equality operator.
      bool operator==(const GraphItem&) const { return false; }

      /// \brief Inequality operator.
      ///
      /// Inequality operator.
      bool operator!=(const GraphItem&) const { return false; }

      /// \brief Ordering operator.
      ///
      /// This operator defines an ordering of the items.
      /// It makes possible to use graph item types as key types in
      /// associative containers (e.g. \c std::map).
      ///
      /// \note This operator only has to define some strict ordering of
      /// the items; this order has nothing to do with the iteration
      /// ordering of the items.
      bool operator<(const GraphItem&) const { return false; }

      template<typename _GraphItem>
      struct Constraints {
        void constraints() {
          _GraphItem i1;
          i1=INVALID;
          _GraphItem i2 = i1;
          _GraphItem i3 = INVALID;

          i1 = i2 = i3;

          bool b;
          b = (ia == ib) && (ia != ib);
          b = (ia == INVALID) && (ib != INVALID);
          b = (ia < ib);
        }

        const _GraphItem &ia;
        const _GraphItem &ib;
        Constraints() {}
      };
    };

    /// \brief Base skeleton class for directed graphs.
    ///
    /// This class describes the base interface of directed graph types.
    /// All digraph %concepts have to conform to this class.
    /// It just provides types for nodes and arcs and functions
    /// to get the source and the target nodes of arcs.
    class BaseDigraphComponent {
    public:

      typedef BaseDigraphComponent Digraph;

      /// \brief Node class of the digraph.
      ///
      /// This class represents the nodes of the digraph.
      typedef GraphItem<'n'> Node;

      /// \brief Arc class of the digraph.
      ///
      /// This class represents the arcs of the digraph.
      typedef GraphItem<'a'> Arc;

      /// \brief Return the source node of an arc.
      ///
      /// This function returns the source node of an arc.
      Node source(const Arc&) const { return INVALID; }

      /// \brief Return the target node of an arc.
      ///
      /// This function returns the target node of an arc.
      Node target(const Arc&) const { return INVALID; }

      /// \brief Return the opposite node on the given arc.
      ///
      /// This function returns the opposite node on the given arc.
      Node oppositeNode(const Node&, const Arc&) const {
        return INVALID;
      }

      template <typename _Digraph>
      struct Constraints {
        typedef typename _Digraph::Node Node;
        typedef typename _Digraph::Arc Arc;

        void constraints() {
          checkConcept<GraphItem<'n'>, Node>();
          checkConcept<GraphItem<'a'>, Arc>();
          {
            Node n;
            Arc e(INVALID);
            n = digraph.source(e);
            n = digraph.target(e);
            n = digraph.oppositeNode(n, e);
          }
        }

        const _Digraph& digraph;
        Constraints() {}
      };
    };

    /// \brief Base skeleton class for undirected graphs.
    ///
    /// This class describes the base interface of undirected graph types.
    /// All graph %concepts have to conform to this class.
    /// It extends the interface of \ref BaseDigraphComponent with an
    /// \c Edge type and functions to get the end nodes of edges,
    /// to convert from arcs to edges and to get both direction of edges.
    class BaseGraphComponent : public BaseDigraphComponent {
    public:

      typedef BaseGraphComponent Graph;

      typedef BaseDigraphComponent::Node Node;
      typedef BaseDigraphComponent::Arc Arc;

      /// \brief Undirected edge class of the graph.
      ///
      /// This class represents the undirected edges of the graph.
      /// Undirected graphs can be used as directed graphs, each edge is
      /// represented by two opposite directed arcs.
      class Edge : public GraphItem<'e'> {
        typedef GraphItem<'e'> Parent;

      public:
        /// \brief Default constructor.
        ///
        /// Default constructor.
        /// \warning The default constructor is not required to set
        /// the item to some well-defined value. So you should consider it
        /// as uninitialized.
        Edge() {}

        /// \brief Copy constructor.
        ///
        /// Copy constructor.
        Edge(const Edge &) : Parent() {}

        /// \brief Constructor for conversion from \c INVALID.
        ///
        /// Constructor for conversion from \c INVALID.
        /// It initializes the item to be invalid.
        /// \sa Invalid for more details.
        Edge(Invalid) {}

        /// \brief Constructor for conversion from an arc.
        ///
        /// Constructor for conversion from an arc.
        /// Besides the core graph item functionality each arc should
        /// be convertible to the represented edge.
        Edge(const Arc&) {}
     };

      /// \brief Return one end node of an edge.
      ///
      /// This function returns one end node of an edge.
      Node u(const Edge&) const { return INVALID; }

      /// \brief Return the other end node of an edge.
      ///
      /// This function returns the other end node of an edge.
      Node v(const Edge&) const { return INVALID; }

      /// \brief Return a directed arc related to an edge.
      ///
      /// This function returns a directed arc from its direction and the
      /// represented edge.
      Arc direct(const Edge&, bool) const { return INVALID; }

      /// \brief Return a directed arc related to an edge.
      ///
      /// This function returns a directed arc from its source node and the
      /// represented edge.
      Arc direct(const Edge&, const Node&) const { return INVALID; }

      /// \brief Return the direction of the arc.
      ///
      /// Returns the direction of the arc. Each arc represents an
      /// edge with a direction. It gives back the
      /// direction.
      bool direction(const Arc&) const { return true; }

      /// \brief Return the opposite arc.
      ///
      /// This function returns the opposite arc, i.e. the arc representing
      /// the same edge and has opposite direction.
      Arc oppositeArc(const Arc&) const { return INVALID; }

      template <typename _Graph>
      struct Constraints {
        typedef typename _Graph::Node Node;
        typedef typename _Graph::Arc Arc;
        typedef typename _Graph::Edge Edge;

        void constraints() {
          checkConcept<BaseDigraphComponent, _Graph>();
          checkConcept<GraphItem<'e'>, Edge>();
          {
            Node n;
            Edge ue(INVALID);
            Arc e;
            n = graph.u(ue);
            n = graph.v(ue);
            e = graph.direct(ue, true);
            e = graph.direct(ue, false);
            e = graph.direct(ue, n);
            e = graph.oppositeArc(e);
            ue = e;
            bool d = graph.direction(e);
            ignore_unused_variable_warning(d);
          }
        }

        const _Graph& graph;
      Constraints() {}
      };

    };

    /// \brief Skeleton class for \e idable directed graphs.
    ///
    /// This class describes the interface of \e idable directed graphs.
    /// It extends \ref BaseDigraphComponent with the core ID functions.
    /// The ids of the items must be unique and immutable.
    /// This concept is part of the Digraph concept.
    template <typename BAS = BaseDigraphComponent>
    class IDableDigraphComponent : public BAS {
    public:

      typedef BAS Base;
      typedef typename Base::Node Node;
      typedef typename Base::Arc Arc;

      /// \brief Return a unique integer id for the given node.
      ///
      /// This function returns a unique integer id for the given node.
      int id(const Node&) const { return -1; }

      /// \brief Return the node by its unique id.
      ///
      /// This function returns the node by its unique id.
      /// If the digraph does not contain a node with the given id,
      /// then the result of the function is undefined.
      Node nodeFromId(int) const { return INVALID; }

      /// \brief Return a unique integer id for the given arc.
      ///
      /// This function returns a unique integer id for the given arc.
      int id(const Arc&) const { return -1; }

      /// \brief Return the arc by its unique id.
      ///
      /// This function returns the arc by its unique id.
      /// If the digraph does not contain an arc with the given id,
      /// then the result of the function is undefined.
      Arc arcFromId(int) const { return INVALID; }

      /// \brief Return an integer greater or equal to the maximum
      /// node id.
      ///
      /// This function returns an integer greater or equal to the
      /// maximum node id.
      int maxNodeId() const { return -1; }

      /// \brief Return an integer greater or equal to the maximum
      /// arc id.
      ///
      /// This function returns an integer greater or equal to the
      /// maximum arc id.
      int maxArcId() const { return -1; }

      template <typename _Digraph>
      struct Constraints {

        void constraints() {
          checkConcept<Base, _Digraph >();
          typename _Digraph::Node node;
          node=INVALID;
          int nid = digraph.id(node);
          nid = digraph.id(node);
          node = digraph.nodeFromId(nid);
          typename _Digraph::Arc arc;
          arc=INVALID;
          int eid = digraph.id(arc);
          eid = digraph.id(arc);
          arc = digraph.arcFromId(eid);

          nid = digraph.maxNodeId();
          ignore_unused_variable_warning(nid);
          eid = digraph.maxArcId();
          ignore_unused_variable_warning(eid);
        }

        const _Digraph& digraph;
        Constraints() {}
      };
    };

    /// \brief Skeleton class for \e idable undirected graphs.
    ///
    /// This class describes the interface of \e idable undirected
    /// graphs. It extends \ref IDableDigraphComponent with the core ID
    /// functions of undirected graphs.
    /// The ids of the items must be unique and immutable.
    /// This concept is part of the Graph concept.
    template <typename BAS = BaseGraphComponent>
    class IDableGraphComponent : public IDableDigraphComponent<BAS> {
    public:

      typedef BAS Base;
      typedef typename Base::Edge Edge;

      using IDableDigraphComponent<Base>::id;

      /// \brief Return a unique integer id for the given edge.
      ///
      /// This function returns a unique integer id for the given edge.
      int id(const Edge&) const { return -1; }

      /// \brief Return the edge by its unique id.
      ///
      /// This function returns the edge by its unique id.
      /// If the graph does not contain an edge with the given id,
      /// then the result of the function is undefined.
      Edge edgeFromId(int) const { return INVALID; }

      /// \brief Return an integer greater or equal to the maximum
      /// edge id.
      ///
      /// This function returns an integer greater or equal to the
      /// maximum edge id.
      int maxEdgeId() const { return -1; }

      template <typename _Graph>
      struct Constraints {

        void constraints() {
          checkConcept<IDableDigraphComponent<Base>, _Graph >();
          typename _Graph::Edge edge;
          int ueid = graph.id(edge);
          ueid = graph.id(edge);
          edge = graph.edgeFromId(ueid);
          ueid = graph.maxEdgeId();
          ignore_unused_variable_warning(ueid);
        }

        const _Graph& graph;
        Constraints() {}
      };
    };

    /// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types.
    ///
    /// This class describes the concept of \c NodeIt, \c ArcIt and
    /// \c EdgeIt subtypes of digraph and graph types.
    template <typename GR, typename Item>
    class GraphItemIt : public Item {
    public:
      /// \brief Default constructor.
      ///
      /// Default constructor.
      /// \warning The default constructor is not required to set
      /// the iterator to some well-defined value. So you should consider it
      /// as uninitialized.
      GraphItemIt() {}

      /// \brief Copy constructor.
      ///
      /// Copy constructor.
      GraphItemIt(const GraphItemIt& it) : Item(it) {}

      /// \brief Constructor that sets the iterator to the first item.
      ///
      /// Constructor that sets the iterator to the first item.
      explicit GraphItemIt(const GR&) {}

      /// \brief Constructor for conversion from \c INVALID.
      ///
      /// Constructor for conversion from \c INVALID.
      /// It initializes the iterator to be invalid.
      /// \sa Invalid for more details.
      GraphItemIt(Invalid) {}

      /// \brief Assignment operator.
      ///
      /// Assignment operator for the iterator.
      GraphItemIt& operator=(const GraphItemIt&) { return *this; }

      /// \brief Increment the iterator.
      ///
      /// This operator increments the iterator, i.e. assigns it to the
      /// next item.
      GraphItemIt& operator++() { return *this; }

      /// \brief Equality operator
      ///
      /// Equality operator.
      /// Two iterators are equal if and only if they point to the
      /// same object or both are invalid.
      bool operator==(const GraphItemIt&) const { return true;}

      /// \brief Inequality operator
      ///
      /// Inequality operator.
      /// Two iterators are equal if and only if they point to the
      /// same object or both are invalid.
      bool operator!=(const GraphItemIt&) const { return true;}

      template<typename _GraphItemIt>
      struct Constraints {
        void constraints() {
          checkConcept<GraphItem<>, _GraphItemIt>();
          _GraphItemIt it1(g);
          _GraphItemIt it2;
          _GraphItemIt it3 = it1;
          _GraphItemIt it4 = INVALID;

          it2 = ++it1;
          ++it2 = it1;
          ++(++it1);

          Item bi = it1;
          bi = it2;
        }
        const GR& g;
        Constraints() {}
      };
    };

    /// \brief Concept class for \c InArcIt, \c OutArcIt and
    /// \c IncEdgeIt types.
    ///
    /// This class describes the concept of \c InArcIt, \c OutArcIt
    /// and \c IncEdgeIt subtypes of digraph and graph types.
    ///
    /// \note Since these iterator classes do not inherit from the same
    /// base class, there is an additional template parameter (selector)
    /// \c sel. For \c InArcIt you should instantiate it with character
    /// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'.
    template <typename GR,
              typename Item = typename GR::Arc,
              typename Base = typename GR::Node,
              char sel = '0'>
    class GraphIncIt : public Item {
    public:
      /// \brief Default constructor.
      ///
      /// Default constructor.
      /// \warning The default constructor is not required to set
      /// the iterator to some well-defined value. So you should consider it
      /// as uninitialized.
      GraphIncIt() {}

      /// \brief Copy constructor.
      ///
      /// Copy constructor.
      GraphIncIt(const GraphIncIt& it) : Item(it) {}

      /// \brief Constructor that sets the iterator to the first
      /// incoming or outgoing arc.
      ///
      /// Constructor that sets the iterator to the first arc
      /// incoming to or outgoing from the given node.
      explicit GraphIncIt(const GR&, const Base&) {}

      /// \brief Constructor for conversion from \c INVALID.
      ///
      /// Constructor for conversion from \c INVALID.
      /// It initializes the iterator to be invalid.
      /// \sa Invalid for more details.
      GraphIncIt(Invalid) {}

      /// \brief Assignment operator.
      ///
      /// Assignment operator for the iterator.
      GraphIncIt& operator=(const GraphIncIt&) { return *this; }

      /// \brief Increment the iterator.
      ///
      /// This operator increments the iterator, i.e. assigns it to the
      /// next arc incoming to or outgoing from the given node.
      GraphIncIt& operator++() { return *this; }

      /// \brief Equality operator
      ///
      /// Equality operator.
      /// Two iterators are equal if and only if they point to the
      /// same object or both are invalid.
      bool operator==(const GraphIncIt&) const { return true;}

      /// \brief Inequality operator
      ///
      /// Inequality operator.
      /// Two iterators are equal if and only if they point to the
      /// same object or both are invalid.
      bool operator!=(const GraphIncIt&) const { return true;}

      template <typename _GraphIncIt>
      struct Constraints {
        void constraints() {
          checkConcept<GraphItem<sel>, _GraphIncIt>();
          _GraphIncIt it1(graph, node);
          _GraphIncIt it2;
          _GraphIncIt it3 = it1;
          _GraphIncIt it4 = INVALID;

          it2 = ++it1;
          ++it2 = it1;
          ++(++it1);
          Item e = it1;
          e = it2;
        }
        const Base& node;
        const GR& graph;
        Constraints() {}
      };
    };

    /// \brief Skeleton class for iterable directed graphs.
    ///
    /// This class describes the interface of iterable directed
    /// graphs. It extends \ref BaseDigraphComponent with the core
    /// iterable interface.
    /// This concept is part of the Digraph concept.
    template <typename BAS = BaseDigraphComponent>
    class IterableDigraphComponent : public BAS {

    public:

      typedef BAS Base;
      typedef typename Base::Node Node;
      typedef typename Base::Arc Arc;

      typedef IterableDigraphComponent Digraph;

      /// \name Base Iteration
      ///
      /// This interface provides functions for iteration on digraph items.
      ///
      /// @{

      /// \brief Return the first node.
      ///
      /// This function gives back the first node in the iteration order.
      void first(Node&) const {}

      /// \brief Return the next node.
      ///
      /// This function gives back the next node in the iteration order.
      void next(Node&) const {}

      /// \brief Return the first arc.
      ///
      /// This function gives back the first arc in the iteration order.
      void first(Arc&) const {}

      /// \brief Return the next arc.
      ///
      /// This function gives back the next arc in the iteration order.
      void next(Arc&) const {}

      /// \brief Return the first arc incomming to the given node.
      ///
      /// This function gives back the first arc incomming to the
      /// given node.
      void firstIn(Arc&, const Node&) const {}

      /// \brief Return the next arc incomming to the given node.
      ///
      /// This function gives back the next arc incomming to the
      /// given node.
      void nextIn(Arc&) const {}

      /// \brief Return the first arc outgoing form the given node.
      ///
      /// This function gives back the first arc outgoing form the
      /// given node.
      void firstOut(Arc&, const Node&) const {}

      /// \brief Return the next arc outgoing form the given node.
      ///
      /// This function gives back the next arc outgoing form the
      /// given node.
      void nextOut(Arc&) const {}

      /// @}

      /// \name Class Based Iteration
      ///
      /// This interface provides iterator classes for digraph items.
      ///
      /// @{

      /// \brief This iterator goes through each node.
      ///
      /// This iterator goes through each node.
      ///
      typedef GraphItemIt<Digraph, Node> NodeIt;

      /// \brief This iterator goes through each arc.
      ///
      /// This iterator goes through each arc.
      ///
      typedef GraphItemIt<Digraph, Arc> ArcIt;

      /// \brief This iterator goes trough the incoming arcs of a node.
      ///
      /// This iterator goes trough the \e incoming arcs of a certain node
      /// of a digraph.
      typedef GraphIncIt<Digraph, Arc, Node, 'i'> InArcIt;

      /// \brief This iterator goes trough the outgoing arcs of a node.
      ///
      /// This iterator goes trough the \e outgoing arcs of a certain node
      /// of a digraph.
      typedef GraphIncIt<Digraph, Arc, Node, 'o'> OutArcIt;

      /// \brief The base node of the iterator.
      ///
      /// This function gives back the base node of the iterator.
      /// It is always the target node of the pointed arc.
      Node baseNode(const InArcIt&) const { return INVALID; }

      /// \brief The running node of the iterator.
      ///
      /// This function gives back the running node of the iterator.
      /// It is always the source node of the pointed arc.
      Node runningNode(const InArcIt&) const { return INVALID; }

      /// \brief The base node of the iterator.
      ///
      /// This function gives back the base node of the iterator.
      /// It is always the source node of the pointed arc.
      Node baseNode(const OutArcIt&) const { return INVALID; }

      /// \brief The running node of the iterator.
      ///
      /// This function gives back the running node of the iterator.
      /// It is always the target node of the pointed arc.
      Node runningNode(const OutArcIt&) const { return INVALID; }

      /// @}

      template <typename _Digraph>
      struct Constraints {
        void constraints() {
          checkConcept<Base, _Digraph>();

          {
            typename _Digraph::Node node(INVALID);
            typename _Digraph::Arc arc(INVALID);
            {
              digraph.first(node);
              digraph.next(node);
            }
            {
              digraph.first(arc);
              digraph.next(arc);
            }
            {
              digraph.firstIn(arc, node);
              digraph.nextIn(arc);
            }
            {
              digraph.firstOut(arc, node);
              digraph.nextOut(arc);
            }
          }

          {
            checkConcept<GraphItemIt<_Digraph, typename _Digraph::Arc>,
              typename _Digraph::ArcIt >();
            checkConcept<GraphItemIt<_Digraph, typename _Digraph::Node>,
              typename _Digraph::NodeIt >();
            checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc,
              typename _Digraph::Node, 'i'>, typename _Digraph::InArcIt>();
            checkConcept<GraphIncIt<_Digraph, typename _Digraph::Arc,
              typename _Digraph::Node, 'o'>, typename _Digraph::OutArcIt>();

            typename _Digraph::Node n;
            const typename _Digraph::InArcIt iait(INVALID);
            const typename _Digraph::OutArcIt oait(INVALID);
            n = digraph.baseNode(iait);
            n = digraph.runningNode(iait);
            n = digraph.baseNode(oait);
            n = digraph.runningNode(oait);
            ignore_unused_variable_warning(n);
          }
        }

        const _Digraph& digraph;
        Constraints() {}
      };
    };

    /// \brief Skeleton class for iterable undirected graphs.
    ///
    /// This class describes the interface of iterable undirected
    /// graphs. It extends \ref IterableDigraphComponent with the core
    /// iterable interface of undirected graphs.
    /// This concept is part of the Graph concept.
    template <typename BAS = BaseGraphComponent>
    class IterableGraphComponent : public IterableDigraphComponent<BAS> {
    public:

      typedef BAS Base;
      typedef typename Base::Node Node;
      typedef typename Base::Arc Arc;
      typedef typename Base::Edge Edge;


      typedef IterableGraphComponent Graph;

      /// \name Base Iteration
      ///
      /// This interface provides functions for iteration on edges.
      ///
      /// @{

      using IterableDigraphComponent<Base>::first;
      using IterableDigraphComponent<Base>::next;

      /// \brief Return the first edge.
      ///
      /// This function gives back the first edge in the iteration order.
      void first(Edge&) const {}

      /// \brief Return the next edge.
      ///
      /// This function gives back the next edge in the iteration order.
      void next(Edge&) const {}

      /// \brief Return the first edge incident to the given node.
      ///
      /// This function gives back the first edge incident to the given
      /// node. The bool parameter gives back the direction for which the
      /// source node of the directed arc representing the edge is the
      /// given node.
      void firstInc(Edge&, bool&, const Node&) const {}

      /// \brief Gives back the next of the edges from the
      /// given node.
      ///
      /// This function gives back the next edge incident to the given
      /// node. The bool parameter should be used as \c firstInc() use it.
      void nextInc(Edge&, bool&) const {}

      using IterableDigraphComponent<Base>::baseNode;
      using IterableDigraphComponent<Base>::runningNode;

      /// @}

      /// \name Class Based Iteration
      ///
      /// This interface provides iterator classes for edges.
      ///
      /// @{

      /// \brief This iterator goes through each edge.
      ///
      /// This iterator goes through each edge.
      typedef GraphItemIt<Graph, Edge> EdgeIt;

      /// \brief This iterator goes trough the incident edges of a
      /// node.
      ///
      /// This iterator goes trough the incident edges of a certain
      /// node of a graph.
      typedef GraphIncIt<Graph, Edge, Node, 'e'> IncEdgeIt;

      /// \brief The base node of the iterator.
      ///
      /// This function gives back the base node of the iterator.
      Node baseNode(const IncEdgeIt&) const { return INVALID; }

      /// \brief The running node of the iterator.
      ///
      /// This function gives back the running node of the iterator.
      Node runningNode(const IncEdgeIt&) const { return INVALID; }

      /// @}

      template <typename _Graph>
      struct Constraints {
        void constraints() {
          checkConcept<IterableDigraphComponent<Base>, _Graph>();

          {
            typename _Graph::Node node(INVALID);
            typename _Graph::Edge edge(INVALID);
            bool dir;
            {
              graph.first(edge);
              graph.next(edge);
            }
            {
              graph.firstInc(edge, dir, node);
              graph.nextInc(edge, dir);
            }

          }

          {
            checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>,
              typename _Graph::EdgeIt >();
            checkConcept<GraphIncIt<_Graph, typename _Graph::Edge,
              typename _Graph::Node, 'e'>, typename _Graph::IncEdgeIt>();

            typename _Graph::Node n;
            const typename _Graph::IncEdgeIt ieit(INVALID);
            n = graph.baseNode(ieit);
            n = graph.runningNode(ieit);
          }
        }

        const _Graph& graph;
        Constraints() {}
      };
    };

    /// \brief Skeleton class for alterable directed graphs.
    ///
    /// This class describes the interface of alterable directed
    /// graphs. It extends \ref BaseDigraphComponent with the alteration
    /// notifier interface. It implements
    /// an observer-notifier pattern for each digraph item. More
    /// obsevers can be registered into the notifier and whenever an
    /// alteration occured in the digraph all the observers will be
    /// notified about it.
    template <typename BAS = BaseDigraphComponent>
    class AlterableDigraphComponent : public BAS {
    public:

      typedef BAS Base;
      typedef typename Base::Node Node;
      typedef typename Base::Arc Arc;


      /// Node alteration notifier class.
      typedef AlterationNotifier<AlterableDigraphComponent, Node>
      NodeNotifier;
      /// Arc alteration notifier class.
      typedef AlterationNotifier<AlterableDigraphComponent, Arc>
      ArcNotifier;

      /// \brief Return the node alteration notifier.
      ///
      /// This function gives back the node alteration notifier.
      NodeNotifier& notifier(Node) const {
         return NodeNotifier();
      }

      /// \brief Return the arc alteration notifier.
      ///
      /// This function gives back the arc alteration notifier.
      ArcNotifier& notifier(Arc) const {
        return ArcNotifier();
      }

      template <typename _Digraph>
      struct Constraints {
        void constraints() {
          checkConcept<Base, _Digraph>();
          typename _Digraph::NodeNotifier& nn
            = digraph.notifier(typename _Digraph::Node());

          typename _Digraph::ArcNotifier& en
            = digraph.notifier(typename _Digraph::Arc());

          ignore_unused_variable_warning(nn);
          ignore_unused_variable_warning(en);
        }

        const _Digraph& digraph;
        Constraints() {}
      };
    };

    /// \brief Skeleton class for alterable undirected graphs.
    ///
    /// This class describes the interface of alterable undirected
    /// graphs. It extends \ref AlterableDigraphComponent with the alteration
    /// notifier interface of undirected graphs. It implements
    /// an observer-notifier pattern for the edges. More
    /// obsevers can be registered into the notifier and whenever an
    /// alteration occured in the graph all the observers will be
    /// notified about it.
    template <typename BAS = BaseGraphComponent>
    class AlterableGraphComponent : public AlterableDigraphComponent<BAS> {
    public:

      typedef BAS Base;
      typedef typename Base::Edge Edge;


      /// Edge alteration notifier class.
      typedef AlterationNotifier<AlterableGraphComponent, Edge>
      EdgeNotifier;

      /// \brief Return the edge alteration notifier.
      ///
      /// This function gives back the edge alteration notifier.
      EdgeNotifier& notifier(Edge) const {
        return EdgeNotifier();
      }

      template <typename _Graph>
      struct Constraints {
        void constraints() {
          checkConcept<AlterableDigraphComponent<Base>, _Graph>();
          typename _Graph::EdgeNotifier& uen
            = graph.notifier(typename _Graph::Edge());
          ignore_unused_variable_warning(uen);
        }

        const _Graph& graph;
        Constraints() {}
      };
    };

    /// \brief Concept class for standard graph maps.
    ///
    /// This class describes the concept of standard graph maps, i.e.
    /// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and
    /// graph types, which can be used for associating data to graph items.
    /// The standard graph maps must conform to the ReferenceMap concept.
    template <typename GR, typename K, typename V>
    class GraphMap : public ReferenceMap<K, V, V&, const V&> {
      typedef ReferenceMap<K, V, V&, const V&> Parent;

    public:

      /// The key type of the map.
      typedef K Key;
      /// The value type of the map.
      typedef V Value;
      /// The reference type of the map.
      typedef Value& Reference;
      /// The const reference type of the map.
      typedef const Value& ConstReference;

      // The reference map tag.
      typedef True ReferenceMapTag;

      /// \brief Construct a new map.
      ///
      /// Construct a new map for the graph.
      explicit GraphMap(const GR&) {}
      /// \brief Construct a new map with default value.
      ///
      /// Construct a new map for the graph and initalize the values.
      GraphMap(const GR&, const Value&) {}

    private:
      /// \brief Copy constructor.
      ///
      /// Copy Constructor.
      GraphMap(const GraphMap&) : Parent() {}

      /// \brief Assignment operator.
      ///
      /// Assignment operator. It does not mofify the underlying graph,
      /// it just iterates on the current item set and set the  map
      /// with the value returned by the assigned map.
      template <typename CMap>
      GraphMap& operator=(const CMap&) {
        checkConcept<ReadMap<Key, Value>, CMap>();
        return *this;
      }

    public:
      template<typename _Map>
      struct Constraints {
        void constraints() {
          checkConcept
            <ReferenceMap<Key, Value, Value&, const Value&>, _Map>();
          _Map m1(g);
          _Map m2(g,t);

          // Copy constructor
          // _Map m3(m);

          // Assignment operator
          // ReadMap<Key, Value> cmap;
          // m3 = cmap;

          ignore_unused_variable_warning(m1);
          ignore_unused_variable_warning(m2);
          // ignore_unused_variable_warning(m3);
        }

        const _Map &m;
        const GR &g;
        const typename GraphMap::Value &t;
        Constraints() {}
      };

    };

    /// \brief Skeleton class for mappable directed graphs.
    ///
    /// This class describes the interface of mappable directed graphs.
    /// It extends \ref BaseDigraphComponent with the standard digraph
    /// map classes, namely \c NodeMap and \c ArcMap.
    /// This concept is part of the Digraph concept.
    template <typename BAS = BaseDigraphComponent>
    class MappableDigraphComponent : public BAS  {
    public:

      typedef BAS Base;
      typedef typename Base::Node Node;
      typedef typename Base::Arc Arc;

      typedef MappableDigraphComponent Digraph;

      /// \brief Standard graph map for the nodes.
      ///
      /// Standard graph map for the nodes.
      /// It conforms to the ReferenceMap concept.
      template <typename V>
      class NodeMap : public GraphMap<MappableDigraphComponent, Node, V> {
        typedef GraphMap<MappableDigraphComponent, Node, V> Parent;

      public:
        /// \brief Construct a new map.
        ///
        /// Construct a new map for the digraph.
        explicit NodeMap(const MappableDigraphComponent& digraph)
          : Parent(digraph) {}

        /// \brief Construct a new map with default value.
        ///
        /// Construct a new map for the digraph and initalize the values.
        NodeMap(const MappableDigraphComponent& digraph, const V& value)
          : Parent(digraph, value) {}

      private:
        /// \brief Copy constructor.
        ///
        /// Copy Constructor.
        NodeMap(const NodeMap& nm) : Parent(nm) {}

        /// \brief Assignment operator.
        ///
        /// Assignment operator.
        template <typename CMap>
        NodeMap& operator=(const CMap&) {
          checkConcept<ReadMap<Node, V>, CMap>();
          return *this;
        }

      };

      /// \brief Standard graph map for the arcs.
      ///
      /// Standard graph map for the arcs.
      /// It conforms to the ReferenceMap concept.
      template <typename V>
      class ArcMap : public GraphMap<MappableDigraphComponent, Arc, V> {
        typedef GraphMap<MappableDigraphComponent, Arc, V> Parent;

      public:
        /// \brief Construct a new map.
        ///
        /// Construct a new map for the digraph.
        explicit ArcMap(const MappableDigraphComponent& digraph)
          : Parent(digraph) {}

        /// \brief Construct a new map with default value.
        ///
        /// Construct a new map for the digraph and initalize the values.
        ArcMap(const MappableDigraphComponent& digraph, const V& value)
          : Parent(digraph, value) {}

      private:
        /// \brief Copy constructor.
        ///
        /// Copy Constructor.
        ArcMap(const ArcMap& nm) : Parent(nm) {}

        /// \brief Assignment operator.
        ///
        /// Assignment operator.
        template <typename CMap>
        ArcMap& operator=(const CMap&) {
          checkConcept<ReadMap<Arc, V>, CMap>();
          return *this;
        }

      };


      template <typename _Digraph>
      struct Constraints {

        struct Dummy {
          int value;
          Dummy() : value(0) {}
          Dummy(int _v) : value(_v) {}
        };

        void constraints() {
          checkConcept<Base, _Digraph>();
          { // int map test
            typedef typename _Digraph::template NodeMap<int> IntNodeMap;
            checkConcept<GraphMap<_Digraph, typename _Digraph::Node, int>,
              IntNodeMap >();
          } { // bool map test
            typedef typename _Digraph::template NodeMap<bool> BoolNodeMap;
            checkConcept<GraphMap<_Digraph, typename _Digraph::Node, bool>,
              BoolNodeMap >();
          } { // Dummy map test
            typedef typename _Digraph::template NodeMap<Dummy> DummyNodeMap;
            checkConcept<GraphMap<_Digraph, typename _Digraph::Node, Dummy>,
              DummyNodeMap >();
          }

          { // int map test
            typedef typename _Digraph::template ArcMap<int> IntArcMap;
            checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, int>,
              IntArcMap >();
          } { // bool map test
            typedef typename _Digraph::template ArcMap<bool> BoolArcMap;
            checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, bool>,
              BoolArcMap >();
          } { // Dummy map test
            typedef typename _Digraph::template ArcMap<Dummy> DummyArcMap;
            checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>,
              DummyArcMap >();
          }
        }

        const _Digraph& digraph;
        Constraints() {}
      };
    };

    /// \brief Skeleton class for mappable undirected graphs.
    ///
    /// This class describes the interface of mappable undirected graphs.
    /// It extends \ref MappableDigraphComponent with the standard graph
    /// map class for edges (\c EdgeMap).
    /// This concept is part of the Graph concept.
    template <typename BAS = BaseGraphComponent>
    class MappableGraphComponent : public MappableDigraphComponent<BAS>  {
    public:

      typedef BAS Base;
      typedef typename Base::Edge Edge;

      typedef MappableGraphComponent Graph;

      /// \brief Standard graph map for the edges.
      ///
      /// Standard graph map for the edges.
      /// It conforms to the ReferenceMap concept.
      template <typename V>
      class EdgeMap : public GraphMap<MappableGraphComponent, Edge, V> {
        typedef GraphMap<MappableGraphComponent, Edge, V> Parent;

      public:
        /// \brief Construct a new map.
        ///
        /// Construct a new map for the graph.
        explicit EdgeMap(const MappableGraphComponent& graph)
          : Parent(graph) {}

        /// \brief Construct a new map with default value.
        ///
        /// Construct a new map for the graph and initalize the values.
        EdgeMap(const MappableGraphComponent& graph, const V& value)
          : Parent(graph, value) {}

      private:
        /// \brief Copy constructor.
        ///
        /// Copy Constructor.
        EdgeMap(const EdgeMap& nm) : Parent(nm) {}

        /// \brief Assignment operator.
        ///
        /// Assignment operator.
        template <typename CMap>
        EdgeMap& operator=(const CMap&) {
          checkConcept<ReadMap<Edge, V>, CMap>();
          return *this;
        }

      };


      template <typename _Graph>
      struct Constraints {

        struct Dummy {
          int value;
          Dummy() : value(0) {}
          Dummy(int _v) : value(_v) {}
        };

        void constraints() {
          checkConcept<MappableDigraphComponent<Base>, _Graph>();

          { // int map test
            typedef typename _Graph::template EdgeMap<int> IntEdgeMap;
            checkConcept<GraphMap<_Graph, typename _Graph::Edge, int>,
              IntEdgeMap >();
          } { // bool map test
            typedef typename _Graph::template EdgeMap<bool> BoolEdgeMap;
            checkConcept<GraphMap<_Graph, typename _Graph::Edge, bool>,
              BoolEdgeMap >();
          } { // Dummy map test
            typedef typename _Graph::template EdgeMap<Dummy> DummyEdgeMap;
            checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>,
              DummyEdgeMap >();
          }
        }

        const _Graph& graph;
        Constraints() {}
      };
    };

    /// \brief Skeleton class for extendable directed graphs.
    ///
    /// This class describes the interface of extendable directed graphs.
    /// It extends \ref BaseDigraphComponent with functions for adding
    /// nodes and arcs to the digraph.
    /// This concept requires \ref AlterableDigraphComponent.
    template <typename BAS = BaseDigraphComponent>
    class ExtendableDigraphComponent : public BAS {
    public:
      typedef BAS Base;

      typedef typename Base::Node Node;
      typedef typename Base::Arc Arc;

      /// \brief Add a new node to the digraph.
      ///
      /// This function adds a new node to the digraph.
      Node addNode() {
        return INVALID;
      }

      /// \brief Add a new arc connecting the given two nodes.
      ///
      /// This function adds a new arc connecting the given two nodes
      /// of the digraph.
      Arc addArc(const Node&, const Node&) {
        return INVALID;
      }

      template <typename _Digraph>
      struct Constraints {
        void constraints() {
          checkConcept<Base, _Digraph>();
          typename _Digraph::Node node_a, node_b;
          node_a = digraph.addNode();
          node_b = digraph.addNode();
          typename _Digraph::Arc arc;
          arc = digraph.addArc(node_a, node_b);
        }

        _Digraph& digraph;
        Constraints() {}
      };
    };

    /// \brief Skeleton class for extendable undirected graphs.
    ///
    /// This class describes the interface of extendable undirected graphs.
    /// It extends \ref BaseGraphComponent with functions for adding
    /// nodes and edges to the graph.
    /// This concept requires \ref AlterableGraphComponent.
    template <typename BAS = BaseGraphComponent>
    class ExtendableGraphComponent : public BAS {
    public:

      typedef BAS Base;
      typedef typename Base::Node Node;
      typedef typename Base::Edge Edge;

      /// \brief Add a new node to the digraph.
      ///
      /// This function adds a new node to the digraph.
      Node addNode() {
        return INVALID;
      }

      /// \brief Add a new edge connecting the given two nodes.
      ///
      /// This function adds a new edge connecting the given two nodes
      /// of the graph.
      Edge addEdge(const Node&, const Node&) {
        return INVALID;
      }

      template <typename _Graph>
      struct Constraints {
        void constraints() {
          checkConcept<Base, _Graph>();
          typename _Graph::Node node_a, node_b;
          node_a = graph.addNode();
          node_b = graph.addNode();
          typename _Graph::Edge edge;
          edge = graph.addEdge(node_a, node_b);
        }

        _Graph& graph;
        Constraints() {}
      };
    };

    /// \brief Skeleton class for erasable directed graphs.
    ///
    /// This class describes the interface of erasable directed graphs.
    /// It extends \ref BaseDigraphComponent with functions for removing
    /// nodes and arcs from the digraph.
    /// This concept requires \ref AlterableDigraphComponent.
    template <typename BAS = BaseDigraphComponent>
    class ErasableDigraphComponent : public BAS {
    public:

      typedef BAS Base;
      typedef typename Base::Node Node;
      typedef typename Base::Arc Arc;

      /// \brief Erase a node from the digraph.
      ///
      /// This function erases the given node from the digraph and all arcs
      /// connected to the node.
      void erase(const Node&) {}

      /// \brief Erase an arc from the digraph.
      ///
      /// This function erases the given arc from the digraph.
      void erase(const Arc&) {}

      template <typename _Digraph>
      struct Constraints {
        void constraints() {
          checkConcept<Base, _Digraph>();
          const typename _Digraph::Node node(INVALID);
          digraph.erase(node);
          const typename _Digraph::Arc arc(INVALID);
          digraph.erase(arc);
        }

        _Digraph& digraph;
        Constraints() {}
      };
    };

    /// \brief Skeleton class for erasable undirected graphs.
    ///
    /// This class describes the interface of erasable undirected graphs.
    /// It extends \ref BaseGraphComponent with functions for removing
    /// nodes and edges from the graph.
    /// This concept requires \ref AlterableGraphComponent.
    template <typename BAS = BaseGraphComponent>
    class ErasableGraphComponent : public BAS {
    public:

      typedef BAS Base;
      typedef typename Base::Node Node;
      typedef typename Base::Edge Edge;

      /// \brief Erase a node from the graph.
      ///
      /// This function erases the given node from the graph and all edges
      /// connected to the node.
      void erase(const Node&) {}

      /// \brief Erase an edge from the digraph.
      ///
      /// This function erases the given edge from the digraph.
      void erase(const Edge&) {}

      template <typename _Graph>
      struct Constraints {
        void constraints() {
          checkConcept<Base, _Graph>();
          const typename _Graph::Node node(INVALID);
          graph.erase(node);
          const typename _Graph::Edge edge(INVALID);
          graph.erase(edge);
        }

        _Graph& graph;
        Constraints() {}
      };
    };

    /// \brief Skeleton class for clearable directed graphs.
    ///
    /// This class describes the interface of clearable directed graphs.
    /// It extends \ref BaseDigraphComponent with a function for clearing
    /// the digraph.
    /// This concept requires \ref AlterableDigraphComponent.
    template <typename BAS = BaseDigraphComponent>
    class ClearableDigraphComponent : public BAS {
    public:

      typedef BAS Base;

      /// \brief Erase all nodes and arcs from the digraph.
      ///
      /// This function erases all nodes and arcs from the digraph.
      void clear() {}

      template <typename _Digraph>
      struct Constraints {
        void constraints() {
          checkConcept<Base, _Digraph>();
          digraph.clear();
        }

        _Digraph& digraph;
        Constraints() {}
      };
    };

    /// \brief Skeleton class for clearable undirected graphs.
    ///
    /// This class describes the interface of clearable undirected graphs.
    /// It extends \ref BaseGraphComponent with a function for clearing
    /// the graph.
    /// This concept requires \ref AlterableGraphComponent.
    template <typename BAS = BaseGraphComponent>
    class ClearableGraphComponent : public ClearableDigraphComponent<BAS> {
    public:

      typedef BAS Base;

      /// \brief Erase all nodes and edges from the graph.
      ///
      /// This function erases all nodes and edges from the graph.
      void clear() {}

      template <typename _Graph>
      struct Constraints {
        void constraints() {
          checkConcept<Base, _Graph>();
          graph.clear();
        }

        _Graph& graph;
        Constraints() {}
      };
    };

  }

}

#endif