Location: LEMON/LEMON-official/lemon/concepts/graph.h - annotation
Load file history
Merge
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 | r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r463:88ed40ad0d4f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r576:f5bc148f7e1f r576:f5bc148f7e1f r57:c1acf0018c0a r57:c1acf0018c0a r220:a5d8c039f218 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r78:c46b3453455f r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r78:c46b3453455f r57:c1acf0018c0a r78:c46b3453455f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r78:c46b3453455f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r78:c46b3453455f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r78:c46b3453455f r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r78:c46b3453455f r78:c46b3453455f r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r78:c46b3453455f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r78:c46b3453455f r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r263:be8a861d3bb7 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r263:be8a861d3bb7 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r263:be8a861d3bb7 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r209:765619b7cbb2 r61:d718974f1290 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r78:c46b3453455f r209:765619b7cbb2 r57:c1acf0018c0a r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r78:c46b3453455f r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r125:19e82bda606a r57:c1acf0018c0a r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r209:765619b7cbb2 r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a r57:c1acf0018c0a | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2009
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
///\ingroup graph_concepts
///\file
///\brief The concept of Undirected Graphs.
#ifndef LEMON_CONCEPTS_GRAPH_H
#define LEMON_CONCEPTS_GRAPH_H
#include <lemon/concepts/graph_components.h>
#include <lemon/core.h>
namespace lemon {
namespace concepts {
/// \ingroup graph_concepts
///
/// \brief Class describing the concept of Undirected Graphs.
///
/// This class describes the common interface of all Undirected
/// Graphs.
///
/// As all concept describing classes it provides only interface
/// without any sensible implementation. So any algorithm for
/// undirected graph should compile with this class, but it will not
/// run properly, of course.
///
/// The LEMON undirected graphs also fulfill the concept of
/// directed graphs (\ref lemon::concepts::Digraph "Digraph
/// Concept"). Each edges can be seen as two opposite
/// directed arc and consequently the undirected graph can be
/// seen as the direceted graph of these directed arcs. The
/// Graph has the Edge inner class for the edges and
/// the Arc type for the directed arcs. The Arc type is
/// convertible to Edge or inherited from it so from a directed
/// arc we can get the represented edge.
///
/// In the sense of the LEMON each edge has a default
/// direction (it should be in every computer implementation,
/// because the order of edge's nodes defines an
/// orientation). With the default orientation we can define that
/// the directed arc is forward or backward directed. With the \c
/// direction() and \c direct() function we can get the direction
/// of the directed arc and we can direct an edge.
///
/// The EdgeIt is an iterator for the edges. We can use
/// the EdgeMap to map values for the edges. The InArcIt and
/// OutArcIt iterates on the same edges but with opposite
/// direction. The IncEdgeIt iterates also on the same edges
/// as the OutArcIt and InArcIt but it is not convertible to Arc just
/// to Edge.
class Graph {
public:
/// \brief The undirected graph should be tagged by the
/// UndirectedTag.
///
/// The undirected graph should be tagged by the UndirectedTag. This
/// tag helps the enable_if technics to make compile time
/// specializations for undirected graphs.
typedef True UndirectedTag;
/// \brief The base type of node iterators,
/// or in other words, the trivial node iterator.
///
/// This is the base type of each node iterator,
/// thus each kind of node iterator converts to this.
/// More precisely each kind of node iterator should be inherited
/// from the trivial node iterator.
class Node {
public:
/// Default constructor
/// @warning The default constructor sets the iterator
/// to an undefined value.
Node() { }
/// Copy constructor.
/// Copy constructor.
///
Node(const Node&) { }
/// Invalid constructor \& conversion.
/// This constructor initializes the iterator to be invalid.
/// \sa Invalid for more details.
Node(Invalid) { }
/// Equality operator
/// Two iterators are equal if and only if they point to the
/// same object or both are invalid.
bool operator==(Node) const { return true; }
/// Inequality operator
/// \sa operator==(Node n)
///
bool operator!=(Node) const { return true; }
/// Artificial ordering operator.
/// To allow the use of graph descriptors as key type in std::map or
/// similar associative container we require this.
///
/// \note This operator only have to define some strict ordering of
/// the items; this order has nothing to do with the iteration
/// ordering of the items.
bool operator<(Node) const { return false; }
};
/// This iterator goes through each node.
/// This iterator goes through each node.
/// Its usage is quite simple, for example you can count the number
/// of nodes in graph \c g of type \c Graph like this:
///\code
/// int count=0;
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count;
///\endcode
class NodeIt : public Node {
public:
/// Default constructor
/// @warning The default constructor sets the iterator
/// to an undefined value.
NodeIt() { }
/// Copy constructor.
/// Copy constructor.
///
NodeIt(const NodeIt& n) : Node(n) { }
/// Invalid constructor \& conversion.
/// Initialize the iterator to be invalid.
/// \sa Invalid for more details.
NodeIt(Invalid) { }
/// Sets the iterator to the first node.
/// Sets the iterator to the first node of \c g.
///
NodeIt(const Graph&) { }
/// Node -> NodeIt conversion.
/// Sets the iterator to the node of \c the graph pointed by
/// the trivial iterator.
/// This feature necessitates that each time we
/// iterate the arc-set, the iteration order is the same.
NodeIt(const Graph&, const Node&) { }
/// Next node.
/// Assign the iterator to the next node.
///
NodeIt& operator++() { return *this; }
};
/// The base type of the edge iterators.
/// The base type of the edge iterators.
///
class Edge {
public:
/// Default constructor
/// @warning The default constructor sets the iterator
/// to an undefined value.
Edge() { }
/// Copy constructor.
/// Copy constructor.
///
Edge(const Edge&) { }
/// Initialize the iterator to be invalid.
/// Initialize the iterator to be invalid.
///
Edge(Invalid) { }
/// Equality operator
/// Two iterators are equal if and only if they point to the
/// same object or both are invalid.
bool operator==(Edge) const { return true; }
/// Inequality operator
/// \sa operator==(Edge n)
///
bool operator!=(Edge) const { return true; }
/// Artificial ordering operator.
/// To allow the use of graph descriptors as key type in std::map or
/// similar associative container we require this.
///
/// \note This operator only have to define some strict ordering of
/// the items; this order has nothing to do with the iteration
/// ordering of the items.
bool operator<(Edge) const { return false; }
};
/// This iterator goes through each edge.
/// This iterator goes through each edge of a graph.
/// Its usage is quite simple, for example you can count the number
/// of edges in a graph \c g of type \c Graph as follows:
///\code
/// int count=0;
/// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count;
///\endcode
class EdgeIt : public Edge {
public:
/// Default constructor
/// @warning The default constructor sets the iterator
/// to an undefined value.
EdgeIt() { }
/// Copy constructor.
/// Copy constructor.
///
EdgeIt(const EdgeIt& e) : Edge(e) { }
/// Initialize the iterator to be invalid.
/// Initialize the iterator to be invalid.
///
EdgeIt(Invalid) { }
/// This constructor sets the iterator to the first edge.
/// This constructor sets the iterator to the first edge.
EdgeIt(const Graph&) { }
/// Edge -> EdgeIt conversion
/// Sets the iterator to the value of the trivial iterator.
/// This feature necessitates that each time we
/// iterate the edge-set, the iteration order is the
/// same.
EdgeIt(const Graph&, const Edge&) { }
/// Next edge
/// Assign the iterator to the next edge.
EdgeIt& operator++() { return *this; }
};
/// \brief This iterator goes trough the incident undirected
/// arcs of a node.
///
/// This iterator goes trough the incident edges
/// of a certain node of a graph. You should assume that the
/// loop arcs will be iterated twice.
///
/// Its usage is quite simple, for example you can compute the
/// degree (i.e. count the number of incident arcs of a node \c n
/// in graph \c g of type \c Graph as follows.
///
///\code
/// int count=0;
/// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count;
///\endcode
class IncEdgeIt : public Edge {
public:
/// Default constructor
/// @warning The default constructor sets the iterator
/// to an undefined value.
IncEdgeIt() { }
/// Copy constructor.
/// Copy constructor.
///
IncEdgeIt(const IncEdgeIt& e) : Edge(e) { }
/// Initialize the iterator to be invalid.
/// Initialize the iterator to be invalid.
///
IncEdgeIt(Invalid) { }
/// This constructor sets the iterator to first incident arc.
/// This constructor set the iterator to the first incident arc of
/// the node.
IncEdgeIt(const Graph&, const Node&) { }
/// Edge -> IncEdgeIt conversion
/// Sets the iterator to the value of the trivial iterator \c e.
/// This feature necessitates that each time we
/// iterate the arc-set, the iteration order is the same.
IncEdgeIt(const Graph&, const Edge&) { }
/// Next incident arc
/// Assign the iterator to the next incident arc
/// of the corresponding node.
IncEdgeIt& operator++() { return *this; }
};
/// The directed arc type.
/// The directed arc type. It can be converted to the
/// edge or it should be inherited from the undirected
/// arc.
class Arc : public Edge {
public:
/// Default constructor
/// @warning The default constructor sets the iterator
/// to an undefined value.
Arc() { }
/// Copy constructor.
/// Copy constructor.
///
Arc(const Arc& e) : Edge(e) { }
/// Initialize the iterator to be invalid.
/// Initialize the iterator to be invalid.
///
Arc(Invalid) { }
/// Equality operator
/// Two iterators are equal if and only if they point to the
/// same object or both are invalid.
bool operator==(Arc) const { return true; }
/// Inequality operator
/// \sa operator==(Arc n)
///
bool operator!=(Arc) const { return true; }
/// Artificial ordering operator.
/// To allow the use of graph descriptors as key type in std::map or
/// similar associative container we require this.
///
/// \note This operator only have to define some strict ordering of
/// the items; this order has nothing to do with the iteration
/// ordering of the items.
bool operator<(Arc) const { return false; }
};
/// This iterator goes through each directed arc.
/// This iterator goes through each arc of a graph.
/// Its usage is quite simple, for example you can count the number
/// of arcs in a graph \c g of type \c Graph as follows:
///\code
/// int count=0;
/// for(Graph::ArcIt e(g); e!=INVALID; ++e) ++count;
///\endcode
class ArcIt : public Arc {
public:
/// Default constructor
/// @warning The default constructor sets the iterator
/// to an undefined value.
ArcIt() { }
/// Copy constructor.
/// Copy constructor.
///
ArcIt(const ArcIt& e) : Arc(e) { }
/// Initialize the iterator to be invalid.
/// Initialize the iterator to be invalid.
///
ArcIt(Invalid) { }
/// This constructor sets the iterator to the first arc.
/// This constructor sets the iterator to the first arc of \c g.
///@param g the graph
ArcIt(const Graph &g) { ignore_unused_variable_warning(g); }
/// Arc -> ArcIt conversion
/// Sets the iterator to the value of the trivial iterator \c e.
/// This feature necessitates that each time we
/// iterate the arc-set, the iteration order is the same.
ArcIt(const Graph&, const Arc&) { }
///Next arc
/// Assign the iterator to the next arc.
ArcIt& operator++() { return *this; }
};
/// This iterator goes trough the outgoing directed arcs of a node.
/// This iterator goes trough the \e outgoing arcs of a certain node
/// of a graph.
/// Its usage is quite simple, for example you can count the number
/// of outgoing arcs of a node \c n
/// in graph \c g of type \c Graph as follows.
///\code
/// int count=0;
/// for (Graph::OutArcIt e(g, n); e!=INVALID; ++e) ++count;
///\endcode
class OutArcIt : public Arc {
public:
/// Default constructor
/// @warning The default constructor sets the iterator
/// to an undefined value.
OutArcIt() { }
/// Copy constructor.
/// Copy constructor.
///
OutArcIt(const OutArcIt& e) : Arc(e) { }
/// Initialize the iterator to be invalid.
/// Initialize the iterator to be invalid.
///
OutArcIt(Invalid) { }
/// This constructor sets the iterator to the first outgoing arc.
/// This constructor sets the iterator to the first outgoing arc of
/// the node.
///@param n the node
///@param g the graph
OutArcIt(const Graph& n, const Node& g) {
ignore_unused_variable_warning(n);
ignore_unused_variable_warning(g);
}
/// Arc -> OutArcIt conversion
/// Sets the iterator to the value of the trivial iterator.
/// This feature necessitates that each time we
/// iterate the arc-set, the iteration order is the same.
OutArcIt(const Graph&, const Arc&) { }
///Next outgoing arc
/// Assign the iterator to the next
/// outgoing arc of the corresponding node.
OutArcIt& operator++() { return *this; }
};
/// This iterator goes trough the incoming directed arcs of a node.
/// This iterator goes trough the \e incoming arcs of a certain node
/// of a graph.
/// Its usage is quite simple, for example you can count the number
/// of outgoing arcs of a node \c n
/// in graph \c g of type \c Graph as follows.
///\code
/// int count=0;
/// for(Graph::InArcIt e(g, n); e!=INVALID; ++e) ++count;
///\endcode
class InArcIt : public Arc {
public:
/// Default constructor
/// @warning The default constructor sets the iterator
/// to an undefined value.
InArcIt() { }
/// Copy constructor.
/// Copy constructor.
///
InArcIt(const InArcIt& e) : Arc(e) { }
/// Initialize the iterator to be invalid.
/// Initialize the iterator to be invalid.
///
InArcIt(Invalid) { }
/// This constructor sets the iterator to first incoming arc.
/// This constructor set the iterator to the first incoming arc of
/// the node.
///@param n the node
///@param g the graph
InArcIt(const Graph& g, const Node& n) {
ignore_unused_variable_warning(n);
ignore_unused_variable_warning(g);
}
/// Arc -> InArcIt conversion
/// Sets the iterator to the value of the trivial iterator \c e.
/// This feature necessitates that each time we
/// iterate the arc-set, the iteration order is the same.
InArcIt(const Graph&, const Arc&) { }
/// Next incoming arc
/// Assign the iterator to the next inarc of the corresponding node.
///
InArcIt& operator++() { return *this; }
};
/// \brief Read write map of the nodes to type \c T.
///
/// ReadWrite map of the nodes to type \c T.
/// \sa Reference
template<class T>
class NodeMap : public ReadWriteMap< Node, T >
{
public:
///\e
NodeMap(const Graph&) { }
///\e
NodeMap(const Graph&, T) { }
private:
///Copy constructor
NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { }
///Assignment operator
template <typename CMap>
NodeMap& operator=(const CMap&) {
checkConcept<ReadMap<Node, T>, CMap>();
return *this;
}
};
/// \brief Read write map of the directed arcs to type \c T.
///
/// Reference map of the directed arcs to type \c T.
/// \sa Reference
template<class T>
class ArcMap : public ReadWriteMap<Arc,T>
{
public:
///\e
ArcMap(const Graph&) { }
///\e
ArcMap(const Graph&, T) { }
private:
///Copy constructor
ArcMap(const ArcMap& em) : ReadWriteMap<Arc,T>(em) { }
///Assignment operator
template <typename CMap>
ArcMap& operator=(const CMap&) {
checkConcept<ReadMap<Arc, T>, CMap>();
return *this;
}
};
/// Read write map of the edges to type \c T.
/// Reference map of the arcs to type \c T.
/// \sa Reference
template<class T>
class EdgeMap : public ReadWriteMap<Edge,T>
{
public:
///\e
EdgeMap(const Graph&) { }
///\e
EdgeMap(const Graph&, T) { }
private:
///Copy constructor
EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) {}
///Assignment operator
template <typename CMap>
EdgeMap& operator=(const CMap&) {
checkConcept<ReadMap<Edge, T>, CMap>();
return *this;
}
};
/// \brief Direct the given edge.
///
/// Direct the given edge. The returned arc source
/// will be the given node.
Arc direct(const Edge&, const Node&) const {
return INVALID;
}
/// \brief Direct the given edge.
///
/// Direct the given edge. The returned arc
/// represents the given edge and the direction comes
/// from the bool parameter. The source of the edge and
/// the directed arc is the same when the given bool is true.
Arc direct(const Edge&, bool) const {
return INVALID;
}
/// \brief Returns true if the arc has default orientation.
///
/// Returns whether the given directed arc is same orientation as
/// the corresponding edge's default orientation.
bool direction(Arc) const { return true; }
/// \brief Returns the opposite directed arc.
///
/// Returns the opposite directed arc.
Arc oppositeArc(Arc) const { return INVALID; }
/// \brief Opposite node on an arc
///
/// \return the opposite of the given Node on the given Edge
Node oppositeNode(Node, Edge) const { return INVALID; }
/// \brief First node of the edge.
///
/// \return the first node of the given Edge.
///
/// Naturally edges don't have direction and thus
/// don't have source and target node. But we use these two methods
/// to query the two nodes of the arc. The direction of the arc
/// which arises this way is called the inherent direction of the
/// edge, and is used to define the "default" direction
/// of the directed versions of the arcs.
/// \sa direction
Node u(Edge) const { return INVALID; }
/// \brief Second node of the edge.
Node v(Edge) const { return INVALID; }
/// \brief Source node of the directed arc.
Node source(Arc) const { return INVALID; }
/// \brief Target node of the directed arc.
Node target(Arc) const { return INVALID; }
/// \brief Returns the id of the node.
int id(Node) const { return -1; }
/// \brief Returns the id of the edge.
int id(Edge) const { return -1; }
/// \brief Returns the id of the arc.
int id(Arc) const { return -1; }
/// \brief Returns the node with the given id.
///
/// \pre The argument should be a valid node id in the graph.
Node nodeFromId(int) const { return INVALID; }
/// \brief Returns the edge with the given id.
///
/// \pre The argument should be a valid edge id in the graph.
Edge edgeFromId(int) const { return INVALID; }
/// \brief Returns the arc with the given id.
///
/// \pre The argument should be a valid arc id in the graph.
Arc arcFromId(int) const { return INVALID; }
/// \brief Returns an upper bound on the node IDs.
int maxNodeId() const { return -1; }
/// \brief Returns an upper bound on the edge IDs.
int maxEdgeId() const { return -1; }
/// \brief Returns an upper bound on the arc IDs.
int maxArcId() const { return -1; }
void first(Node&) const {}
void next(Node&) const {}
void first(Edge&) const {}
void next(Edge&) const {}
void first(Arc&) const {}
void next(Arc&) const {}
void firstOut(Arc&, Node) const {}
void nextOut(Arc&) const {}
void firstIn(Arc&, Node) const {}
void nextIn(Arc&) const {}
void firstInc(Edge &, bool &, const Node &) const {}
void nextInc(Edge &, bool &) const {}
// The second parameter is dummy.
Node fromId(int, Node) const { return INVALID; }
// The second parameter is dummy.
Edge fromId(int, Edge) const { return INVALID; }
// The second parameter is dummy.
Arc fromId(int, Arc) const { return INVALID; }
// Dummy parameter.
int maxId(Node) const { return -1; }
// Dummy parameter.
int maxId(Edge) const { return -1; }
// Dummy parameter.
int maxId(Arc) const { return -1; }
/// \brief Base node of the iterator
///
/// Returns the base node (the source in this case) of the iterator
Node baseNode(OutArcIt e) const {
return source(e);
}
/// \brief Running node of the iterator
///
/// Returns the running node (the target in this case) of the
/// iterator
Node runningNode(OutArcIt e) const {
return target(e);
}
/// \brief Base node of the iterator
///
/// Returns the base node (the target in this case) of the iterator
Node baseNode(InArcIt e) const {
return target(e);
}
/// \brief Running node of the iterator
///
/// Returns the running node (the source in this case) of the
/// iterator
Node runningNode(InArcIt e) const {
return source(e);
}
/// \brief Base node of the iterator
///
/// Returns the base node of the iterator
Node baseNode(IncEdgeIt) const {
return INVALID;
}
/// \brief Running node of the iterator
///
/// Returns the running node of the iterator
Node runningNode(IncEdgeIt) const {
return INVALID;
}
template <typename _Graph>
struct Constraints {
void constraints() {
checkConcept<IterableGraphComponent<>, _Graph>();
checkConcept<IDableGraphComponent<>, _Graph>();
checkConcept<MappableGraphComponent<>, _Graph>();
}
};
};
}
}
#endif
|