Location: LEMON/LEMON-official/test/connectivity_test.cc - annotation
Load file history
Unify sources
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r1081:f1398882a928 r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb r696:76cbcb3e9bbb | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2011
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <lemon/connectivity.h>
#include <lemon/list_graph.h>
#include <lemon/adaptors.h>
#include "test_tools.h"
using namespace lemon;
int main()
{
typedef ListDigraph Digraph;
typedef Undirector<Digraph> Graph;
{
Digraph d;
Digraph::NodeMap<int> order(d);
Graph g(d);
check(stronglyConnected(d), "The empty digraph is strongly connected");
check(countStronglyConnectedComponents(d) == 0,
"The empty digraph has 0 strongly connected component");
check(connected(g), "The empty graph is connected");
check(countConnectedComponents(g) == 0,
"The empty graph has 0 connected component");
check(biNodeConnected(g), "The empty graph is bi-node-connected");
check(countBiNodeConnectedComponents(g) == 0,
"The empty graph has 0 bi-node-connected component");
check(biEdgeConnected(g), "The empty graph is bi-edge-connected");
check(countBiEdgeConnectedComponents(g) == 0,
"The empty graph has 0 bi-edge-connected component");
check(dag(d), "The empty digraph is DAG.");
check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");
check(loopFree(d), "The empty digraph is loop-free.");
check(parallelFree(d), "The empty digraph is parallel-free.");
check(simpleGraph(d), "The empty digraph is simple.");
check(acyclic(g), "The empty graph is acyclic.");
check(tree(g), "The empty graph is tree.");
check(bipartite(g), "The empty graph is bipartite.");
check(loopFree(g), "The empty graph is loop-free.");
check(parallelFree(g), "The empty graph is parallel-free.");
check(simpleGraph(g), "The empty graph is simple.");
}
{
Digraph d;
Digraph::NodeMap<int> order(d);
Graph g(d);
Digraph::Node n = d.addNode();
check(stronglyConnected(d), "This digraph is strongly connected");
check(countStronglyConnectedComponents(d) == 1,
"This digraph has 1 strongly connected component");
check(connected(g), "This graph is connected");
check(countConnectedComponents(g) == 1,
"This graph has 1 connected component");
check(biNodeConnected(g), "This graph is bi-node-connected");
check(countBiNodeConnectedComponents(g) == 0,
"This graph has 0 bi-node-connected component");
check(biEdgeConnected(g), "This graph is bi-edge-connected");
check(countBiEdgeConnectedComponents(g) == 1,
"This graph has 1 bi-edge-connected component");
check(dag(d), "This digraph is DAG.");
check(checkedTopologicalSort(d, order), "This digraph is DAG.");
check(loopFree(d), "This digraph is loop-free.");
check(parallelFree(d), "This digraph is parallel-free.");
check(simpleGraph(d), "This digraph is simple.");
check(acyclic(g), "This graph is acyclic.");
check(tree(g), "This graph is tree.");
check(bipartite(g), "This graph is bipartite.");
check(loopFree(g), "This graph is loop-free.");
check(parallelFree(g), "This graph is parallel-free.");
check(simpleGraph(g), "This graph is simple.");
}
{
Digraph d;
Digraph::NodeMap<int> order(d);
Graph g(d);
Digraph::Node n1 = d.addNode();
Digraph::Node n2 = d.addNode();
Digraph::Node n3 = d.addNode();
Digraph::Node n4 = d.addNode();
Digraph::Node n5 = d.addNode();
Digraph::Node n6 = d.addNode();
d.addArc(n1, n3);
d.addArc(n3, n2);
d.addArc(n2, n1);
d.addArc(n4, n2);
d.addArc(n4, n3);
d.addArc(n5, n6);
d.addArc(n6, n5);
check(!stronglyConnected(d), "This digraph is not strongly connected");
check(countStronglyConnectedComponents(d) == 3,
"This digraph has 3 strongly connected components");
check(!connected(g), "This graph is not connected");
check(countConnectedComponents(g) == 2,
"This graph has 2 connected components");
check(!dag(d), "This digraph is not DAG.");
check(!checkedTopologicalSort(d, order), "This digraph is not DAG.");
check(loopFree(d), "This digraph is loop-free.");
check(parallelFree(d), "This digraph is parallel-free.");
check(simpleGraph(d), "This digraph is simple.");
check(!acyclic(g), "This graph is not acyclic.");
check(!tree(g), "This graph is not tree.");
check(!bipartite(g), "This graph is not bipartite.");
check(loopFree(g), "This graph is loop-free.");
check(!parallelFree(g), "This graph is not parallel-free.");
check(!simpleGraph(g), "This graph is not simple.");
d.addArc(n3, n3);
check(!loopFree(d), "This digraph is not loop-free.");
check(!loopFree(g), "This graph is not loop-free.");
check(!simpleGraph(d), "This digraph is not simple.");
d.addArc(n3, n2);
check(!parallelFree(d), "This digraph is not parallel-free.");
}
{
Digraph d;
Digraph::ArcMap<bool> cutarcs(d, false);
Graph g(d);
Digraph::Node n1 = d.addNode();
Digraph::Node n2 = d.addNode();
Digraph::Node n3 = d.addNode();
Digraph::Node n4 = d.addNode();
Digraph::Node n5 = d.addNode();
Digraph::Node n6 = d.addNode();
Digraph::Node n7 = d.addNode();
Digraph::Node n8 = d.addNode();
d.addArc(n1, n2);
d.addArc(n5, n1);
d.addArc(n2, n8);
d.addArc(n8, n5);
d.addArc(n6, n4);
d.addArc(n4, n6);
d.addArc(n2, n5);
d.addArc(n1, n8);
d.addArc(n6, n7);
d.addArc(n7, n6);
check(!stronglyConnected(d), "This digraph is not strongly connected");
check(countStronglyConnectedComponents(d) == 3,
"This digraph has 3 strongly connected components");
Digraph::NodeMap<int> scomp1(d);
check(stronglyConnectedComponents(d, scomp1) == 3,
"This digraph has 3 strongly connected components");
check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] &&
scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()");
check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] &&
scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()");
check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7],
"Wrong stronglyConnectedComponents()");
Digraph::ArcMap<bool> scut1(d, false);
check(stronglyConnectedCutArcs(d, scut1) == 0,
"This digraph has 0 strongly connected cut arc.");
for (Digraph::ArcIt a(d); a != INVALID; ++a) {
check(!scut1[a], "Wrong stronglyConnectedCutArcs()");
}
check(!connected(g), "This graph is not connected");
check(countConnectedComponents(g) == 3,
"This graph has 3 connected components");
Graph::NodeMap<int> comp(g);
check(connectedComponents(g, comp) == 3,
"This graph has 3 connected components");
check(comp[n1] != comp[n3] && comp[n1] != comp[n4] &&
comp[n3] != comp[n4], "Wrong connectedComponents()");
check(comp[n1] == comp[n2] && comp[n1] == comp[n5] &&
comp[n1] == comp[n8], "Wrong connectedComponents()");
check(comp[n4] == comp[n6] && comp[n4] == comp[n7],
"Wrong connectedComponents()");
cutarcs[d.addArc(n3, n1)] = true;
cutarcs[d.addArc(n3, n5)] = true;
cutarcs[d.addArc(n3, n8)] = true;
cutarcs[d.addArc(n8, n6)] = true;
cutarcs[d.addArc(n8, n7)] = true;
check(!stronglyConnected(d), "This digraph is not strongly connected");
check(countStronglyConnectedComponents(d) == 3,
"This digraph has 3 strongly connected components");
Digraph::NodeMap<int> scomp2(d);
check(stronglyConnectedComponents(d, scomp2) == 3,
"This digraph has 3 strongly connected components");
check(scomp2[n3] == 0, "Wrong stronglyConnectedComponents()");
check(scomp2[n1] == 1 && scomp2[n2] == 1 && scomp2[n5] == 1 &&
scomp2[n8] == 1, "Wrong stronglyConnectedComponents()");
check(scomp2[n4] == 2 && scomp2[n6] == 2 && scomp2[n7] == 2,
"Wrong stronglyConnectedComponents()");
Digraph::ArcMap<bool> scut2(d, false);
check(stronglyConnectedCutArcs(d, scut2) == 5,
"This digraph has 5 strongly connected cut arcs.");
for (Digraph::ArcIt a(d); a != INVALID; ++a) {
check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()");
}
}
{
// DAG example for topological sort from the book New Algorithms
// (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)
Digraph d;
Digraph::NodeMap<int> order(d);
Digraph::Node belt = d.addNode();
Digraph::Node trousers = d.addNode();
Digraph::Node necktie = d.addNode();
Digraph::Node coat = d.addNode();
Digraph::Node socks = d.addNode();
Digraph::Node shirt = d.addNode();
Digraph::Node shoe = d.addNode();
Digraph::Node watch = d.addNode();
Digraph::Node pants = d.addNode();
d.addArc(socks, shoe);
d.addArc(pants, shoe);
d.addArc(pants, trousers);
d.addArc(trousers, shoe);
d.addArc(trousers, belt);
d.addArc(belt, coat);
d.addArc(shirt, belt);
d.addArc(shirt, necktie);
d.addArc(necktie, coat);
check(dag(d), "This digraph is DAG.");
topologicalSort(d, order);
for (Digraph::ArcIt a(d); a != INVALID; ++a) {
check(order[d.source(a)] < order[d.target(a)],
"Wrong topologicalSort()");
}
}
{
ListGraph g;
ListGraph::NodeMap<bool> map(g);
ListGraph::Node n1 = g.addNode();
ListGraph::Node n2 = g.addNode();
ListGraph::Node n3 = g.addNode();
ListGraph::Node n4 = g.addNode();
ListGraph::Node n5 = g.addNode();
ListGraph::Node n6 = g.addNode();
ListGraph::Node n7 = g.addNode();
g.addEdge(n1, n3);
g.addEdge(n1, n4);
g.addEdge(n2, n5);
g.addEdge(n3, n6);
g.addEdge(n4, n6);
g.addEdge(n4, n7);
g.addEdge(n5, n7);
check(bipartite(g), "This graph is bipartite");
check(bipartitePartitions(g, map), "This graph is bipartite");
check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7],
"Wrong bipartitePartitions()");
check(map[n3] == map[n4] && map[n3] == map[n5],
"Wrong bipartitePartitions()");
}
return 0;
}
|