Location: LEMON/LEMON-official/test/min_cost_flow_test.cc - annotation
Load file history
Unify sources
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r1081:f1398882a928 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r687:6c408d864fa1 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r1081:f1398882a928 r648:e8349c6f12ca r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r687:6c408d864fa1 r656:e6927fe719e6 r656:e6927fe719e6 r656:e6927fe719e6 r656:e6927fe719e6 r656:e6927fe719e6 r648:e8349c6f12ca r689:111698359429 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r1081:f1398882a928 r716:4faca85d40e6 r648:e8349c6f12ca r716:4faca85d40e6 r689:111698359429 r648:e8349c6f12ca r653:c7d160f73d52 r716:4faca85d40e6 r716:4faca85d40e6 r716:4faca85d40e6 r716:4faca85d40e6 r716:4faca85d40e6 r652:5232721b3f14 r652:5232721b3f14 r687:6c408d864fa1 r689:111698359429 r716:4faca85d40e6 r716:4faca85d40e6 r689:111698359429 r689:111698359429 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r689:111698359429 r689:111698359429 r654:9ad8d2122b50 r689:111698359429 r689:111698359429 r1081:f1398882a928 r716:4faca85d40e6 r716:4faca85d40e6 r716:4faca85d40e6 r716:4faca85d40e6 r716:4faca85d40e6 r716:4faca85d40e6 r716:4faca85d40e6 r716:4faca85d40e6 r648:e8349c6f12ca r689:111698359429 r689:111698359429 r652:5232721b3f14 r689:111698359429 r689:111698359429 r689:111698359429 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r656:e6927fe719e6 r687:6c408d864fa1 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r656:e6927fe719e6 r656:e6927fe719e6 r656:e6927fe719e6 r656:e6927fe719e6 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r652:5232721b3f14 r648:e8349c6f12ca r656:e6927fe719e6 r648:e8349c6f12ca r1081:f1398882a928 r711:cc61d09f053b r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r1081:f1398882a928 r656:e6927fe719e6 r656:e6927fe719e6 r656:e6927fe719e6 r656:e6927fe719e6 r656:e6927fe719e6 r656:e6927fe719e6 r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r656:e6927fe719e6 r1081:f1398882a928 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r1081:f1398882a928 r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r1081:f1398882a928 r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r648:e8349c6f12ca r648:e8349c6f12ca r687:6c408d864fa1 r656:e6927fe719e6 r687:6c408d864fa1 r648:e8349c6f12ca r648:e8349c6f12ca r687:6c408d864fa1 r689:111698359429 r689:111698359429 r689:111698359429 r689:111698359429 r689:111698359429 r648:e8349c6f12ca r648:e8349c6f12ca r711:cc61d09f053b r648:e8349c6f12ca r711:cc61d09f053b r711:cc61d09f053b r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r662:e3d9bff447ed r689:111698359429 r689:111698359429 r689:111698359429 r689:111698359429 r689:111698359429 r689:111698359429 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r687:6c408d864fa1 r687:6c408d864fa1 r652:5232721b3f14 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r687:6c408d864fa1 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r656:e6927fe719e6 r656:e6927fe719e6 r687:6c408d864fa1 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r1081:f1398882a928 r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r1081:f1398882a928 r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r1081:f1398882a928 r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r1081:f1398882a928 r711:cc61d09f053b r711:cc61d09f053b r1081:f1398882a928 r711:cc61d09f053b r711:cc61d09f053b r1081:f1398882a928 r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r648:e8349c6f12ca r652:5232721b3f14 r648:e8349c6f12ca r653:c7d160f73d52 r648:e8349c6f12ca r656:e6927fe719e6 r653:c7d160f73d52 r653:c7d160f73d52 r687:6c408d864fa1 r653:c7d160f73d52 r687:6c408d864fa1 r653:c7d160f73d52 r653:c7d160f73d52 r687:6c408d864fa1 r653:c7d160f73d52 r687:6c408d864fa1 r653:c7d160f73d52 r653:c7d160f73d52 r687:6c408d864fa1 r653:c7d160f73d52 r687:6c408d864fa1 r653:c7d160f73d52 r653:c7d160f73d52 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r656:e6927fe719e6 r656:e6927fe719e6 r687:6c408d864fa1 r656:e6927fe719e6 r687:6c408d864fa1 r687:6c408d864fa1 r656:e6927fe719e6 r687:6c408d864fa1 r711:cc61d09f053b r656:e6927fe719e6 r687:6c408d864fa1 r656:e6927fe719e6 r656:e6927fe719e6 r687:6c408d864fa1 r687:6c408d864fa1 r656:e6927fe719e6 r687:6c408d864fa1 r656:e6927fe719e6 r687:6c408d864fa1 r711:cc61d09f053b r656:e6927fe719e6 r687:6c408d864fa1 r687:6c408d864fa1 r687:6c408d864fa1 r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r1081:f1398882a928 r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r711:cc61d09f053b r648:e8349c6f12ca r648:e8349c6f12ca r652:5232721b3f14 r648:e8349c6f12ca r653:c7d160f73d52 r687:6c408d864fa1 r648:e8349c6f12ca r653:c7d160f73d52 r687:6c408d864fa1 r653:c7d160f73d52 r687:6c408d864fa1 r653:c7d160f73d52 r687:6c408d864fa1 r653:c7d160f73d52 r687:6c408d864fa1 r653:c7d160f73d52 r687:6c408d864fa1 r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca r648:e8349c6f12ca | /* -*- mode: C++; indent-tabs-mode: nil; -*-
*
* This file is a part of LEMON, a generic C++ optimization library.
*
* Copyright (C) 2003-2011
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
* (Egervary Research Group on Combinatorial Optimization, EGRES).
*
* Permission to use, modify and distribute this software is granted
* provided that this copyright notice appears in all copies. For
* precise terms see the accompanying LICENSE file.
*
* This software is provided "AS IS" with no warranty of any kind,
* express or implied, and with no claim as to its suitability for any
* purpose.
*
*/
#include <iostream>
#include <fstream>
#include <limits>
#include <lemon/list_graph.h>
#include <lemon/lgf_reader.h>
#include <lemon/network_simplex.h>
#include <lemon/concepts/digraph.h>
#include <lemon/concept_check.h>
#include "test_tools.h"
using namespace lemon;
char test_lgf[] =
"@nodes\n"
"label sup1 sup2 sup3 sup4 sup5 sup6\n"
" 1 20 27 0 30 20 30\n"
" 2 -4 0 0 0 -8 -3\n"
" 3 0 0 0 0 0 0\n"
" 4 0 0 0 0 0 0\n"
" 5 9 0 0 0 6 11\n"
" 6 -6 0 0 0 -5 -6\n"
" 7 0 0 0 0 0 0\n"
" 8 0 0 0 0 0 3\n"
" 9 3 0 0 0 0 0\n"
" 10 -2 0 0 0 -7 -2\n"
" 11 0 0 0 0 -10 0\n"
" 12 -20 -27 0 -30 -30 -20\n"
"\n"
"@arcs\n"
" cost cap low1 low2 low3\n"
" 1 2 70 11 0 8 8\n"
" 1 3 150 3 0 1 0\n"
" 1 4 80 15 0 2 2\n"
" 2 8 80 12 0 0 0\n"
" 3 5 140 5 0 3 1\n"
" 4 6 60 10 0 1 0\n"
" 4 7 80 2 0 0 0\n"
" 4 8 110 3 0 0 0\n"
" 5 7 60 14 0 0 0\n"
" 5 11 120 12 0 0 0\n"
" 6 3 0 3 0 0 0\n"
" 6 9 140 4 0 0 0\n"
" 6 10 90 8 0 0 0\n"
" 7 1 30 5 0 0 -5\n"
" 8 12 60 16 0 4 3\n"
" 9 12 50 6 0 0 0\n"
"10 12 70 13 0 5 2\n"
"10 2 100 7 0 0 0\n"
"10 7 60 10 0 0 -3\n"
"11 10 20 14 0 6 -20\n"
"12 11 30 10 0 0 -10\n"
"\n"
"@attributes\n"
"source 1\n"
"target 12\n";
enum SupplyType {
EQ,
GEQ,
LEQ
};
// Check the interface of an MCF algorithm
template <typename GR, typename Value, typename Cost>
class McfClassConcept
{
public:
template <typename MCF>
struct Constraints {
void constraints() {
checkConcept<concepts::Digraph, GR>();
const Constraints& me = *this;
MCF mcf(me.g);
const MCF& const_mcf = mcf;
b = mcf.reset()
.lowerMap(me.lower)
.upperMap(me.upper)
.costMap(me.cost)
.supplyMap(me.sup)
.stSupply(me.n, me.n, me.k)
.run();
c = const_mcf.totalCost();
x = const_mcf.template totalCost<double>();
v = const_mcf.flow(me.a);
c = const_mcf.potential(me.n);
const_mcf.flowMap(fm);
const_mcf.potentialMap(pm);
}
typedef typename GR::Node Node;
typedef typename GR::Arc Arc;
typedef concepts::ReadMap<Node, Value> NM;
typedef concepts::ReadMap<Arc, Value> VAM;
typedef concepts::ReadMap<Arc, Cost> CAM;
typedef concepts::WriteMap<Arc, Value> FlowMap;
typedef concepts::WriteMap<Node, Cost> PotMap;
GR g;
VAM lower;
VAM upper;
CAM cost;
NM sup;
Node n;
Arc a;
Value k;
FlowMap fm;
PotMap pm;
bool b;
double x;
typename MCF::Value v;
typename MCF::Cost c;
};
};
// Check the feasibility of the given flow (primal soluiton)
template < typename GR, typename LM, typename UM,
typename SM, typename FM >
bool checkFlow( const GR& gr, const LM& lower, const UM& upper,
const SM& supply, const FM& flow,
SupplyType type = EQ )
{
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
for (ArcIt e(gr); e != INVALID; ++e) {
if (flow[e] < lower[e] || flow[e] > upper[e]) return false;
}
for (NodeIt n(gr); n != INVALID; ++n) {
typename SM::Value sum = 0;
for (OutArcIt e(gr, n); e != INVALID; ++e)
sum += flow[e];
for (InArcIt e(gr, n); e != INVALID; ++e)
sum -= flow[e];
bool b = (type == EQ && sum == supply[n]) ||
(type == GEQ && sum >= supply[n]) ||
(type == LEQ && sum <= supply[n]);
if (!b) return false;
}
return true;
}
// Check the feasibility of the given potentials (dual soluiton)
// using the "Complementary Slackness" optimality condition
template < typename GR, typename LM, typename UM,
typename CM, typename SM, typename FM, typename PM >
bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
const CM& cost, const SM& supply, const FM& flow,
const PM& pi, SupplyType type )
{
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
bool opt = true;
for (ArcIt e(gr); opt && e != INVALID; ++e) {
typename CM::Value red_cost =
cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
opt = red_cost == 0 ||
(red_cost > 0 && flow[e] == lower[e]) ||
(red_cost < 0 && flow[e] == upper[e]);
}
for (NodeIt n(gr); opt && n != INVALID; ++n) {
typename SM::Value sum = 0;
for (OutArcIt e(gr, n); e != INVALID; ++e)
sum += flow[e];
for (InArcIt e(gr, n); e != INVALID; ++e)
sum -= flow[e];
if (type != LEQ) {
opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0);
} else {
opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0);
}
}
return opt;
}
// Check whether the dual cost is equal to the primal cost
template < typename GR, typename LM, typename UM,
typename CM, typename SM, typename PM >
bool checkDualCost( const GR& gr, const LM& lower, const UM& upper,
const CM& cost, const SM& supply, const PM& pi,
typename CM::Value total )
{
TEMPLATE_DIGRAPH_TYPEDEFS(GR);
typename CM::Value dual_cost = 0;
SM red_supply(gr);
for (NodeIt n(gr); n != INVALID; ++n) {
red_supply[n] = supply[n];
}
for (ArcIt a(gr); a != INVALID; ++a) {
if (lower[a] != 0) {
dual_cost += lower[a] * cost[a];
red_supply[gr.source(a)] -= lower[a];
red_supply[gr.target(a)] += lower[a];
}
}
for (NodeIt n(gr); n != INVALID; ++n) {
dual_cost -= red_supply[n] * pi[n];
}
for (ArcIt a(gr); a != INVALID; ++a) {
typename CM::Value red_cost =
cost[a] + pi[gr.source(a)] - pi[gr.target(a)];
dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0);
}
return dual_cost == total;
}
// Run a minimum cost flow algorithm and check the results
template < typename MCF, typename GR,
typename LM, typename UM,
typename CM, typename SM,
typename PT >
void checkMcf( const MCF& mcf, PT mcf_result,
const GR& gr, const LM& lower, const UM& upper,
const CM& cost, const SM& supply,
PT result, bool optimal, typename CM::Value total,
const std::string &test_id = "",
SupplyType type = EQ )
{
check(mcf_result == result, "Wrong result " + test_id);
if (optimal) {
typename GR::template ArcMap<typename SM::Value> flow(gr);
typename GR::template NodeMap<typename CM::Value> pi(gr);
mcf.flowMap(flow);
mcf.potentialMap(pi);
check(checkFlow(gr, lower, upper, supply, flow, type),
"The flow is not feasible " + test_id);
check(mcf.totalCost() == total, "The flow is not optimal " + test_id);
check(checkPotential(gr, lower, upper, cost, supply, flow, pi, type),
"Wrong potentials " + test_id);
check(checkDualCost(gr, lower, upper, cost, supply, pi, total),
"Wrong dual cost " + test_id);
}
}
int main()
{
// Check the interfaces
{
typedef concepts::Digraph GR;
checkConcept< McfClassConcept<GR, int, int>,
NetworkSimplex<GR> >();
checkConcept< McfClassConcept<GR, double, double>,
NetworkSimplex<GR, double> >();
checkConcept< McfClassConcept<GR, int, double>,
NetworkSimplex<GR, int, double> >();
}
// Run various MCF tests
typedef ListDigraph Digraph;
DIGRAPH_TYPEDEFS(ListDigraph);
// Read the test digraph
Digraph gr;
Digraph::ArcMap<int> c(gr), l1(gr), l2(gr), l3(gr), u(gr);
Digraph::NodeMap<int> s1(gr), s2(gr), s3(gr), s4(gr), s5(gr), s6(gr);
ConstMap<Arc, int> cc(1), cu(std::numeric_limits<int>::max());
Node v, w;
std::istringstream input(test_lgf);
DigraphReader<Digraph>(gr, input)
.arcMap("cost", c)
.arcMap("cap", u)
.arcMap("low1", l1)
.arcMap("low2", l2)
.arcMap("low3", l3)
.nodeMap("sup1", s1)
.nodeMap("sup2", s2)
.nodeMap("sup3", s3)
.nodeMap("sup4", s4)
.nodeMap("sup5", s5)
.nodeMap("sup6", s6)
.node("source", v)
.node("target", w)
.run();
// Build test digraphs with negative costs
Digraph neg_gr;
Node n1 = neg_gr.addNode();
Node n2 = neg_gr.addNode();
Node n3 = neg_gr.addNode();
Node n4 = neg_gr.addNode();
Node n5 = neg_gr.addNode();
Node n6 = neg_gr.addNode();
Node n7 = neg_gr.addNode();
Arc a1 = neg_gr.addArc(n1, n2);
Arc a2 = neg_gr.addArc(n1, n3);
Arc a3 = neg_gr.addArc(n2, n4);
Arc a4 = neg_gr.addArc(n3, n4);
Arc a5 = neg_gr.addArc(n3, n2);
Arc a6 = neg_gr.addArc(n5, n3);
Arc a7 = neg_gr.addArc(n5, n6);
Arc a8 = neg_gr.addArc(n6, n7);
Arc a9 = neg_gr.addArc(n7, n5);
Digraph::ArcMap<int> neg_c(neg_gr), neg_l1(neg_gr, 0), neg_l2(neg_gr, 0);
ConstMap<Arc, int> neg_u1(std::numeric_limits<int>::max()), neg_u2(5000);
Digraph::NodeMap<int> neg_s(neg_gr, 0);
neg_l2[a7] = 1000;
neg_l2[a8] = -1000;
neg_s[n1] = 100;
neg_s[n4] = -100;
neg_c[a1] = 100;
neg_c[a2] = 30;
neg_c[a3] = 20;
neg_c[a4] = 80;
neg_c[a5] = 50;
neg_c[a6] = 10;
neg_c[a7] = 80;
neg_c[a8] = 30;
neg_c[a9] = -120;
Digraph negs_gr;
Digraph::NodeMap<int> negs_s(negs_gr);
Digraph::ArcMap<int> negs_c(negs_gr);
ConstMap<Arc, int> negs_l(0), negs_u(1000);
n1 = negs_gr.addNode();
n2 = negs_gr.addNode();
negs_s[n1] = 100;
negs_s[n2] = -300;
negs_c[negs_gr.addArc(n1, n2)] = -1;
// A. Test NetworkSimplex with the default pivot rule
{
NetworkSimplex<Digraph> mcf(gr);
// Check the equality form
mcf.upperMap(u).costMap(c);
checkMcf(mcf, mcf.supplyMap(s1).run(),
gr, l1, u, c, s1, mcf.OPTIMAL, true, 5240, "#A1");
checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
gr, l1, u, c, s2, mcf.OPTIMAL, true, 7620, "#A2");
mcf.lowerMap(l2);
checkMcf(mcf, mcf.supplyMap(s1).run(),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#A3");
checkMcf(mcf, mcf.stSupply(v, w, 27).run(),
gr, l2, u, c, s2, mcf.OPTIMAL, true, 8010, "#A4");
mcf.reset();
checkMcf(mcf, mcf.supplyMap(s1).run(),
gr, l1, cu, cc, s1, mcf.OPTIMAL, true, 74, "#A5");
checkMcf(mcf, mcf.lowerMap(l2).stSupply(v, w, 27).run(),
gr, l2, cu, cc, s2, mcf.OPTIMAL, true, 94, "#A6");
mcf.reset();
checkMcf(mcf, mcf.run(),
gr, l1, cu, cc, s3, mcf.OPTIMAL, true, 0, "#A7");
checkMcf(mcf, mcf.lowerMap(l2).upperMap(u).run(),
gr, l2, u, cc, s3, mcf.INFEASIBLE, false, 0, "#A8");
mcf.reset().lowerMap(l3).upperMap(u).costMap(c).supplyMap(s4);
checkMcf(mcf, mcf.run(),
gr, l3, u, c, s4, mcf.OPTIMAL, true, 6360, "#A9");
// Check the GEQ form
mcf.reset().upperMap(u).costMap(c).supplyMap(s5);
checkMcf(mcf, mcf.run(),
gr, l1, u, c, s5, mcf.OPTIMAL, true, 3530, "#A10", GEQ);
mcf.supplyType(mcf.GEQ);
checkMcf(mcf, mcf.lowerMap(l2).run(),
gr, l2, u, c, s5, mcf.OPTIMAL, true, 4540, "#A11", GEQ);
mcf.supplyMap(s6);
checkMcf(mcf, mcf.run(),
gr, l2, u, c, s6, mcf.INFEASIBLE, false, 0, "#A12", GEQ);
// Check the LEQ form
mcf.reset().supplyType(mcf.LEQ);
mcf.upperMap(u).costMap(c).supplyMap(s6);
checkMcf(mcf, mcf.run(),
gr, l1, u, c, s6, mcf.OPTIMAL, true, 5080, "#A13", LEQ);
checkMcf(mcf, mcf.lowerMap(l2).run(),
gr, l2, u, c, s6, mcf.OPTIMAL, true, 5930, "#A14", LEQ);
mcf.supplyMap(s5);
checkMcf(mcf, mcf.run(),
gr, l2, u, c, s5, mcf.INFEASIBLE, false, 0, "#A15", LEQ);
// Check negative costs
NetworkSimplex<Digraph> neg_mcf(neg_gr);
neg_mcf.lowerMap(neg_l1).costMap(neg_c).supplyMap(neg_s);
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u1,
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A16");
neg_mcf.upperMap(neg_u2);
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l1, neg_u2,
neg_c, neg_s, neg_mcf.OPTIMAL, true, -40000, "#A17");
neg_mcf.reset().lowerMap(neg_l2).costMap(neg_c).supplyMap(neg_s);
checkMcf(neg_mcf, neg_mcf.run(), neg_gr, neg_l2, neg_u1,
neg_c, neg_s, neg_mcf.UNBOUNDED, false, 0, "#A18");
NetworkSimplex<Digraph> negs_mcf(negs_gr);
negs_mcf.costMap(negs_c).supplyMap(negs_s);
checkMcf(negs_mcf, negs_mcf.run(), negs_gr, negs_l, negs_u,
negs_c, negs_s, negs_mcf.OPTIMAL, true, -300, "#A19", GEQ);
}
// B. Test NetworkSimplex with each pivot rule
{
NetworkSimplex<Digraph> mcf(gr);
mcf.supplyMap(s1).costMap(c).upperMap(u).lowerMap(l2);
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::FIRST_ELIGIBLE),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B1");
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BEST_ELIGIBLE),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B2");
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::BLOCK_SEARCH),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B3");
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::CANDIDATE_LIST),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B4");
checkMcf(mcf, mcf.run(NetworkSimplex<Digraph>::ALTERING_LIST),
gr, l2, u, c, s1, mcf.OPTIMAL, true, 5970, "#B5");
}
return 0;
}
|