Location: LEMON/LEMON-official/lemon/lp_base.h - annotation

Load file history
gravatar
ladanyi@tmit.bme.hu
Fix CMAKE build without GLPK
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r493:81627fa1b007
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r493:81627fa1b007
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r494:fb5af0411793
 r494:fb5af0411793
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r493:81627fa1b007
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r493:81627fa1b007
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r493:81627fa1b007
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r493:81627fa1b007
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r482:ed54c0d13df0
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
 r481:7afc121e0689
/* -*- mode: C++; indent-tabs-mode: nil; -*-
 *
 * This file is a part of LEMON, a generic C++ optimization library.
 *
 * Copyright (C) 2003-2008
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
 *
 * Permission to use, modify and distribute this software is granted
 * provided that this copyright notice appears in all copies. For
 * precise terms see the accompanying LICENSE file.
 *
 * This software is provided "AS IS" with no warranty of any kind,
 * express or implied, and with no claim as to its suitability for any
 * purpose.
 *
 */

#ifndef LEMON_LP_BASE_H
#define LEMON_LP_BASE_H

#include<iostream>
#include<vector>
#include<map>
#include<limits>
#include<lemon/math.h>

#include<lemon/error.h>
#include<lemon/assert.h>

#include<lemon/core.h>
#include<lemon/bits/solver_bits.h>

///\file
///\brief The interface of the LP solver interface.
///\ingroup lp_group
namespace lemon {

  ///Common base class for LP and MIP solvers

  ///Usually this class is not used directly, please use one of the concrete
  ///implementations of the solver interface.
  ///\ingroup lp_group
  class LpBase {

  protected:

    _solver_bits::VarIndex rows;
    _solver_bits::VarIndex cols;

  public:

    ///Possible outcomes of an LP solving procedure
    enum SolveExitStatus {
      ///This means that the problem has been successfully solved: either
      ///an optimal solution has been found or infeasibility/unboundedness
      ///has been proved.
      SOLVED = 0,
      ///Any other case (including the case when some user specified
      ///limit has been exceeded)
      UNSOLVED = 1
    };

    ///Direction of the optimization
    enum Sense {
      /// Minimization
      MIN,
      /// Maximization
      MAX
    };

    ///The floating point type used by the solver
    typedef double Value;
    ///The infinity constant
    static const Value INF;
    ///The not a number constant
    static const Value NaN;

    friend class Col;
    friend class ColIt;
    friend class Row;
    friend class RowIt;

    ///Refer to a column of the LP.

    ///This type is used to refer to a column of the LP.
    ///
    ///Its value remains valid and correct even after the addition or erase of
    ///other columns.
    ///
    ///\note This class is similar to other Item types in LEMON, like
    ///Node and Arc types in digraph.
    class Col {
      friend class LpBase;
    protected:
      int _id;
      explicit Col(int id) : _id(id) {}
    public:
      typedef Value ExprValue;
      typedef True LpCol;
      /// Default constructor
      
      /// \warning The default constructor sets the Col to an
      /// undefined value.
      Col() {}
      /// Invalid constructor \& conversion.
      
      /// This constructor initializes the Col to be invalid.
      /// \sa Invalid for more details.      
      Col(const Invalid&) : _id(-1) {}
      /// Equality operator

      /// Two \ref Col "Col"s are equal if and only if they point to
      /// the same LP column or both are invalid.
      bool operator==(Col c) const  {return _id == c._id;}
      /// Inequality operator

      /// \sa operator==(Col c)
      ///
      bool operator!=(Col c) const  {return _id != c._id;}
      /// Artificial ordering operator.

      /// To allow the use of this object in std::map or similar
      /// associative container we require this.
      ///
      /// \note This operator only have to define some strict ordering of
      /// the items; this order has nothing to do with the iteration
      /// ordering of the items.
      bool operator<(Col c) const  {return _id < c._id;}
    };

    ///Iterator for iterate over the columns of an LP problem

    /// Its usage is quite simple, for example you can count the number
    /// of columns in an LP \c lp:
    ///\code
    /// int count=0;
    /// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count;
    ///\endcode
    class ColIt : public Col {
      const LpBase *_solver;
    public:
      /// Default constructor
      
      /// \warning The default constructor sets the iterator
      /// to an undefined value.
      ColIt() {}
      /// Sets the iterator to the first Col
      
      /// Sets the iterator to the first Col.
      ///
      ColIt(const LpBase &solver) : _solver(&solver)
      {
        _solver->cols.firstItem(_id);
      }
      /// Invalid constructor \& conversion
      
      /// Initialize the iterator to be invalid.
      /// \sa Invalid for more details.
      ColIt(const Invalid&) : Col(INVALID) {}
      /// Next column
      
      /// Assign the iterator to the next column.
      ///
      ColIt &operator++()
      {
        _solver->cols.nextItem(_id);
        return *this;
      }
    };

    /// \brief Returns the ID of the column.
    static int id(const Col& col) { return col._id; }
    /// \brief Returns the column with the given ID.
    ///
    /// \pre The argument should be a valid column ID in the LP problem.
    static Col colFromId(int id) { return Col(id); }

    ///Refer to a row of the LP.

    ///This type is used to refer to a row of the LP.
    ///
    ///Its value remains valid and correct even after the addition or erase of
    ///other rows.
    ///
    ///\note This class is similar to other Item types in LEMON, like
    ///Node and Arc types in digraph.
    class Row {
      friend class LpBase;
    protected:
      int _id;
      explicit Row(int id) : _id(id) {}
    public:
      typedef Value ExprValue;
      typedef True LpRow;
      /// Default constructor
      
      /// \warning The default constructor sets the Row to an
      /// undefined value.
      Row() {}
      /// Invalid constructor \& conversion.
      
      /// This constructor initializes the Row to be invalid.
      /// \sa Invalid for more details.      
      Row(const Invalid&) : _id(-1) {}
      /// Equality operator

      /// Two \ref Row "Row"s are equal if and only if they point to
      /// the same LP row or both are invalid.
      bool operator==(Row r) const  {return _id == r._id;}
      /// Inequality operator
      
      /// \sa operator==(Row r)
      ///
      bool operator!=(Row r) const  {return _id != r._id;}
      /// Artificial ordering operator.

      /// To allow the use of this object in std::map or similar
      /// associative container we require this.
      ///
      /// \note This operator only have to define some strict ordering of
      /// the items; this order has nothing to do with the iteration
      /// ordering of the items.
      bool operator<(Row r) const  {return _id < r._id;}
    };

    ///Iterator for iterate over the rows of an LP problem

    /// Its usage is quite simple, for example you can count the number
    /// of rows in an LP \c lp:
    ///\code
    /// int count=0;
    /// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count;
    ///\endcode
    class RowIt : public Row {
      const LpBase *_solver;
    public:
      /// Default constructor
      
      /// \warning The default constructor sets the iterator
      /// to an undefined value.
      RowIt() {}
      /// Sets the iterator to the first Row
      
      /// Sets the iterator to the first Row.
      ///
      RowIt(const LpBase &solver) : _solver(&solver)
      {
        _solver->rows.firstItem(_id);
      }
      /// Invalid constructor \& conversion
      
      /// Initialize the iterator to be invalid.
      /// \sa Invalid for more details.
      RowIt(const Invalid&) : Row(INVALID) {}
      /// Next row
      
      /// Assign the iterator to the next row.
      ///
      RowIt &operator++()
      {
        _solver->rows.nextItem(_id);
        return *this;
      }
    };

    /// \brief Returns the ID of the row.
    static int id(const Row& row) { return row._id; }
    /// \brief Returns the row with the given ID.
    ///
    /// \pre The argument should be a valid row ID in the LP problem.
    static Row rowFromId(int id) { return Row(id); }

  public:

    ///Linear expression of variables and a constant component

    ///This data structure stores a linear expression of the variables
    ///(\ref Col "Col"s) and also has a constant component.
    ///
    ///There are several ways to access and modify the contents of this
    ///container.
    ///\code
    ///e[v]=5;
    ///e[v]+=12;
    ///e.erase(v);
    ///\endcode
    ///or you can also iterate through its elements.
    ///\code
    ///double s=0;
    ///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i)
    ///  s+=*i * primal(i);
    ///\endcode
    ///(This code computes the primal value of the expression).
    ///- Numbers (<tt>double</tt>'s)
    ///and variables (\ref Col "Col"s) directly convert to an
    ///\ref Expr and the usual linear operations are defined, so
    ///\code
    ///v+w
    ///2*v-3.12*(v-w/2)+2
    ///v*2.1+(3*v+(v*12+w+6)*3)/2
    ///\endcode
    ///are valid expressions.
    ///The usual assignment operations are also defined.
    ///\code
    ///e=v+w;
    ///e+=2*v-3.12*(v-w/2)+2;
    ///e*=3.4;
    ///e/=5;
    ///\endcode
    ///- The constant member can be set and read by dereference
    ///  operator (unary *)
    ///
    ///\code
    ///*e=12;
    ///double c=*e;
    ///\endcode
    ///
    ///\sa Constr
    class Expr {
      friend class LpBase;
    public:
      /// The key type of the expression
      typedef LpBase::Col Key;
      /// The value type of the expression
      typedef LpBase::Value Value;

    protected:
      Value const_comp;
      std::map<int, Value> comps;

    public:
      typedef True SolverExpr;
      /// Default constructor
      
      /// Construct an empty expression, the coefficients and
      /// the constant component are initialized to zero.
      Expr() : const_comp(0) {}
      /// Construct an expression from a column

      /// Construct an expression, which has a term with \c c variable
      /// and 1.0 coefficient.
      Expr(const Col &c) : const_comp(0) {
        typedef std::map<int, Value>::value_type pair_type;
        comps.insert(pair_type(id(c), 1));
      }
      /// Construct an expression from a constant

      /// Construct an expression, which's constant component is \c v.
      ///
      Expr(const Value &v) : const_comp(v) {}
      /// Returns the coefficient of the column
      Value operator[](const Col& c) const {
        std::map<int, Value>::const_iterator it=comps.find(id(c));
        if (it != comps.end()) {
          return it->second;
        } else {
          return 0;
        }
      }
      /// Returns the coefficient of the column
      Value& operator[](const Col& c) {
        return comps[id(c)];
      }
      /// Sets the coefficient of the column
      void set(const Col &c, const Value &v) {
        if (v != 0.0) {
          typedef std::map<int, Value>::value_type pair_type;
          comps.insert(pair_type(id(c), v));
        } else {
          comps.erase(id(c));
        }
      }
      /// Returns the constant component of the expression
      Value& operator*() { return const_comp; }
      /// Returns the constant component of the expression
      const Value& operator*() const { return const_comp; }
      /// \brief Removes the coefficients which's absolute value does
      /// not exceed \c epsilon. It also sets to zero the constant
      /// component, if it does not exceed epsilon in absolute value.
      void simplify(Value epsilon = 0.0) {
        std::map<int, Value>::iterator it=comps.begin();
        while (it != comps.end()) {
          std::map<int, Value>::iterator jt=it;
          ++jt;
          if (std::fabs((*it).second) <= epsilon) comps.erase(it);
          it=jt;
        }
        if (std::fabs(const_comp) <= epsilon) const_comp = 0;
      }

      void simplify(Value epsilon = 0.0) const {
        const_cast<Expr*>(this)->simplify(epsilon);
      }

      ///Sets all coefficients and the constant component to 0.
      void clear() {
        comps.clear();
        const_comp=0;
      }

      ///Compound assignment
      Expr &operator+=(const Expr &e) {
        for (std::map<int, Value>::const_iterator it=e.comps.begin();
             it!=e.comps.end(); ++it)
          comps[it->first]+=it->second;
        const_comp+=e.const_comp;
        return *this;
      }
      ///Compound assignment
      Expr &operator-=(const Expr &e) {
        for (std::map<int, Value>::const_iterator it=e.comps.begin();
             it!=e.comps.end(); ++it)
          comps[it->first]-=it->second;
        const_comp-=e.const_comp;
        return *this;
      }
      ///Multiply with a constant
      Expr &operator*=(const Value &v) {
        for (std::map<int, Value>::iterator it=comps.begin();
             it!=comps.end(); ++it)
          it->second*=v;
        const_comp*=v;
        return *this;
      }
      ///Division with a constant
      Expr &operator/=(const Value &c) {
        for (std::map<int, Value>::iterator it=comps.begin();
             it!=comps.end(); ++it)
          it->second/=c;
        const_comp/=c;
        return *this;
      }

      ///Iterator over the expression
      
      ///The iterator iterates over the terms of the expression. 
      /// 
      ///\code
      ///double s=0;
      ///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i)
      ///  s+= *i * primal(i);
      ///\endcode
      class CoeffIt {
      private:

        std::map<int, Value>::iterator _it, _end;

      public:

        /// Sets the iterator to the first term
        
        /// Sets the iterator to the first term of the expression.
        ///
        CoeffIt(Expr& e)
          : _it(e.comps.begin()), _end(e.comps.end()){}

        /// Convert the iterator to the column of the term
        operator Col() const {
          return colFromId(_it->first);
        }

        /// Returns the coefficient of the term
        Value& operator*() { return _it->second; }

        /// Returns the coefficient of the term
        const Value& operator*() const { return _it->second; }
        /// Next term
        
        /// Assign the iterator to the next term.
        ///
        CoeffIt& operator++() { ++_it; return *this; }

        /// Equality operator
        bool operator==(Invalid) const { return _it == _end; }
        /// Inequality operator
        bool operator!=(Invalid) const { return _it != _end; }
      };

      /// Const iterator over the expression
      
      ///The iterator iterates over the terms of the expression. 
      /// 
      ///\code
      ///double s=0;
      ///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i)
      ///  s+=*i * primal(i);
      ///\endcode
      class ConstCoeffIt {
      private:

        std::map<int, Value>::const_iterator _it, _end;

      public:

        /// Sets the iterator to the first term
        
        /// Sets the iterator to the first term of the expression.
        ///
        ConstCoeffIt(const Expr& e)
          : _it(e.comps.begin()), _end(e.comps.end()){}

        /// Convert the iterator to the column of the term
        operator Col() const {
          return colFromId(_it->first);
        }

        /// Returns the coefficient of the term
        const Value& operator*() const { return _it->second; }

        /// Next term
        
        /// Assign the iterator to the next term.
        ///
        ConstCoeffIt& operator++() { ++_it; return *this; }

        /// Equality operator
        bool operator==(Invalid) const { return _it == _end; }
        /// Inequality operator
        bool operator!=(Invalid) const { return _it != _end; }
      };

    };

    ///Linear constraint

    ///This data stucture represents a linear constraint in the LP.
    ///Basically it is a linear expression with a lower or an upper bound
    ///(or both). These parts of the constraint can be obtained by the member
    ///functions \ref expr(), \ref lowerBound() and \ref upperBound(),
    ///respectively.
    ///There are two ways to construct a constraint.
    ///- You can set the linear expression and the bounds directly
    ///  by the functions above.
    ///- The operators <tt>\<=</tt>, <tt>==</tt> and  <tt>\>=</tt>
    ///  are defined between expressions, or even between constraints whenever
    ///  it makes sense. Therefore if \c e and \c f are linear expressions and
    ///  \c s and \c t are numbers, then the followings are valid expressions
    ///  and thus they can be used directly e.g. in \ref addRow() whenever
    ///  it makes sense.
    ///\code
    ///  e<=s
    ///  e<=f
    ///  e==f
    ///  s<=e<=t
    ///  e>=t
    ///\endcode
    ///\warning The validity of a constraint is checked only at run
    ///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will
    ///compile, but will fail an assertion.
    class Constr
    {
    public:
      typedef LpBase::Expr Expr;
      typedef Expr::Key Key;
      typedef Expr::Value Value;

    protected:
      Expr _expr;
      Value _lb,_ub;
    public:
      ///\e
      Constr() : _expr(), _lb(NaN), _ub(NaN) {}
      ///\e
      Constr(Value lb, const Expr &e, Value ub) :
        _expr(e), _lb(lb), _ub(ub) {}
      Constr(const Expr &e) :
        _expr(e), _lb(NaN), _ub(NaN) {}
      ///\e
      void clear()
      {
        _expr.clear();
        _lb=_ub=NaN;
      }

      ///Reference to the linear expression
      Expr &expr() { return _expr; }
      ///Cont reference to the linear expression
      const Expr &expr() const { return _expr; }
      ///Reference to the lower bound.

      ///\return
      ///- \ref INF "INF": the constraint is lower unbounded.
      ///- \ref NaN "NaN": lower bound has not been set.
      ///- finite number: the lower bound
      Value &lowerBound() { return _lb; }
      ///The const version of \ref lowerBound()
      const Value &lowerBound() const { return _lb; }
      ///Reference to the upper bound.

      ///\return
      ///- \ref INF "INF": the constraint is upper unbounded.
      ///- \ref NaN "NaN": upper bound has not been set.
      ///- finite number: the upper bound
      Value &upperBound() { return _ub; }
      ///The const version of \ref upperBound()
      const Value &upperBound() const { return _ub; }
      ///Is the constraint lower bounded?
      bool lowerBounded() const {
        return _lb != -INF && !isnan(_lb);
      }
      ///Is the constraint upper bounded?
      bool upperBounded() const {
        return _ub != INF && !isnan(_ub);
      }

    };

    ///Linear expression of rows

    ///This data structure represents a column of the matrix,
    ///thas is it strores a linear expression of the dual variables
    ///(\ref Row "Row"s).
    ///
    ///There are several ways to access and modify the contents of this
    ///container.
    ///\code
    ///e[v]=5;
    ///e[v]+=12;
    ///e.erase(v);
    ///\endcode
    ///or you can also iterate through its elements.
    ///\code
    ///double s=0;
    ///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i)
    ///  s+=*i;
    ///\endcode
    ///(This code computes the sum of all coefficients).
    ///- Numbers (<tt>double</tt>'s)
    ///and variables (\ref Row "Row"s) directly convert to an
    ///\ref DualExpr and the usual linear operations are defined, so
    ///\code
    ///v+w
    ///2*v-3.12*(v-w/2)
    ///v*2.1+(3*v+(v*12+w)*3)/2
    ///\endcode
    ///are valid \ref DualExpr dual expressions.
    ///The usual assignment operations are also defined.
    ///\code
    ///e=v+w;
    ///e+=2*v-3.12*(v-w/2);
    ///e*=3.4;
    ///e/=5;
    ///\endcode
    ///
    ///\sa Expr
    class DualExpr {
      friend class LpBase;
    public:
      /// The key type of the expression
      typedef LpBase::Row Key;
      /// The value type of the expression
      typedef LpBase::Value Value;

    protected:
      std::map<int, Value> comps;

    public:
      typedef True SolverExpr;
      /// Default constructor
      
      /// Construct an empty expression, the coefficients are
      /// initialized to zero.
      DualExpr() {}
      /// Construct an expression from a row

      /// Construct an expression, which has a term with \c r dual
      /// variable and 1.0 coefficient.
      DualExpr(const Row &r) {
        typedef std::map<int, Value>::value_type pair_type;
        comps.insert(pair_type(id(r), 1));
      }
      /// Returns the coefficient of the row
      Value operator[](const Row& r) const {
        std::map<int, Value>::const_iterator it = comps.find(id(r));
        if (it != comps.end()) {
          return it->second;
        } else {
          return 0;
        }
      }
      /// Returns the coefficient of the row
      Value& operator[](const Row& r) {
        return comps[id(r)];
      }
      /// Sets the coefficient of the row
      void set(const Row &r, const Value &v) {
        if (v != 0.0) {
          typedef std::map<int, Value>::value_type pair_type;
          comps.insert(pair_type(id(r), v));
        } else {
          comps.erase(id(r));
        }
      }
      /// \brief Removes the coefficients which's absolute value does
      /// not exceed \c epsilon. 
      void simplify(Value epsilon = 0.0) {
        std::map<int, Value>::iterator it=comps.begin();
        while (it != comps.end()) {
          std::map<int, Value>::iterator jt=it;
          ++jt;
          if (std::fabs((*it).second) <= epsilon) comps.erase(it);
          it=jt;
        }
      }

      void simplify(Value epsilon = 0.0) const {
        const_cast<DualExpr*>(this)->simplify(epsilon);
      }

      ///Sets all coefficients to 0.
      void clear() {
        comps.clear();
      }
      ///Compound assignment
      DualExpr &operator+=(const DualExpr &e) {
        for (std::map<int, Value>::const_iterator it=e.comps.begin();
             it!=e.comps.end(); ++it)
          comps[it->first]+=it->second;
        return *this;
      }
      ///Compound assignment
      DualExpr &operator-=(const DualExpr &e) {
        for (std::map<int, Value>::const_iterator it=e.comps.begin();
             it!=e.comps.end(); ++it)
          comps[it->first]-=it->second;
        return *this;
      }
      ///Multiply with a constant
      DualExpr &operator*=(const Value &v) {
        for (std::map<int, Value>::iterator it=comps.begin();
             it!=comps.end(); ++it)
          it->second*=v;
        return *this;
      }
      ///Division with a constant
      DualExpr &operator/=(const Value &v) {
        for (std::map<int, Value>::iterator it=comps.begin();
             it!=comps.end(); ++it)
          it->second/=v;
        return *this;
      }

      ///Iterator over the expression
      
      ///The iterator iterates over the terms of the expression. 
      /// 
      ///\code
      ///double s=0;
      ///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i)
      ///  s+= *i * dual(i);
      ///\endcode
      class CoeffIt {
      private:

        std::map<int, Value>::iterator _it, _end;

      public:

        /// Sets the iterator to the first term
        
        /// Sets the iterator to the first term of the expression.
        ///
        CoeffIt(DualExpr& e)
          : _it(e.comps.begin()), _end(e.comps.end()){}

        /// Convert the iterator to the row of the term
        operator Row() const {
          return rowFromId(_it->first);
        }

        /// Returns the coefficient of the term
        Value& operator*() { return _it->second; }

        /// Returns the coefficient of the term
        const Value& operator*() const { return _it->second; }

        /// Next term
        
        /// Assign the iterator to the next term.
        ///
        CoeffIt& operator++() { ++_it; return *this; }

        /// Equality operator
        bool operator==(Invalid) const { return _it == _end; }
        /// Inequality operator
        bool operator!=(Invalid) const { return _it != _end; }
      };

      ///Iterator over the expression
      
      ///The iterator iterates over the terms of the expression. 
      /// 
      ///\code
      ///double s=0;
      ///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i)
      ///  s+= *i * dual(i);
      ///\endcode
      class ConstCoeffIt {
      private:

        std::map<int, Value>::const_iterator _it, _end;

      public:

        /// Sets the iterator to the first term
        
        /// Sets the iterator to the first term of the expression.
        ///
        ConstCoeffIt(const DualExpr& e)
          : _it(e.comps.begin()), _end(e.comps.end()){}

        /// Convert the iterator to the row of the term
        operator Row() const {
          return rowFromId(_it->first);
        }

        /// Returns the coefficient of the term
        const Value& operator*() const { return _it->second; }

        /// Next term
        
        /// Assign the iterator to the next term.
        ///
        ConstCoeffIt& operator++() { ++_it; return *this; }

        /// Equality operator
        bool operator==(Invalid) const { return _it == _end; }
        /// Inequality operator
        bool operator!=(Invalid) const { return _it != _end; }
      };
    };


  protected:

    class InsertIterator {
    private:

      std::map<int, Value>& _host;
      const _solver_bits::VarIndex& _index;

    public:

      typedef std::output_iterator_tag iterator_category;
      typedef void difference_type;
      typedef void value_type;
      typedef void reference;
      typedef void pointer;

      InsertIterator(std::map<int, Value>& host,
                   const _solver_bits::VarIndex& index)
        : _host(host), _index(index) {}

      InsertIterator& operator=(const std::pair<int, Value>& value) {
        typedef std::map<int, Value>::value_type pair_type;
        _host.insert(pair_type(_index[value.first], value.second));
        return *this;
      }

      InsertIterator& operator*() { return *this; }
      InsertIterator& operator++() { return *this; }
      InsertIterator operator++(int) { return *this; }

    };

    class ExprIterator {
    private:
      std::map<int, Value>::const_iterator _host_it;
      const _solver_bits::VarIndex& _index;
    public:

      typedef std::bidirectional_iterator_tag iterator_category;
      typedef std::ptrdiff_t difference_type;
      typedef const std::pair<int, Value> value_type;
      typedef value_type reference;

      class pointer {
      public:
        pointer(value_type& _value) : value(_value) {}
        value_type* operator->() { return &value; }
      private:
        value_type value;
      };

      ExprIterator(const std::map<int, Value>::const_iterator& host_it,
                   const _solver_bits::VarIndex& index)
        : _host_it(host_it), _index(index) {}

      reference operator*() {
        return std::make_pair(_index(_host_it->first), _host_it->second);
      }

      pointer operator->() {
        return pointer(operator*());
      }

      ExprIterator& operator++() { ++_host_it; return *this; }
      ExprIterator operator++(int) {
        ExprIterator tmp(*this); ++_host_it; return tmp;
      }

      ExprIterator& operator--() { --_host_it; return *this; }
      ExprIterator operator--(int) {
        ExprIterator tmp(*this); --_host_it; return tmp;
      }

      bool operator==(const ExprIterator& it) const {
        return _host_it == it._host_it;
      }

      bool operator!=(const ExprIterator& it) const {
        return _host_it != it._host_it;
      }

    };

  protected:

    //Abstract virtual functions
    virtual LpBase* _newSolver() const = 0;
    virtual LpBase* _cloneSolver() const = 0;

    virtual int _addColId(int col) { return cols.addIndex(col); }
    virtual int _addRowId(int row) { return rows.addIndex(row); }

    virtual void _eraseColId(int col) { cols.eraseIndex(col); }
    virtual void _eraseRowId(int row) { rows.eraseIndex(row); }

    virtual int _addCol() = 0;
    virtual int _addRow() = 0;

    virtual void _eraseCol(int col) = 0;
    virtual void _eraseRow(int row) = 0;

    virtual void _getColName(int col, std::string& name) const = 0;
    virtual void _setColName(int col, const std::string& name) = 0;
    virtual int _colByName(const std::string& name) const = 0;

    virtual void _getRowName(int row, std::string& name) const = 0;
    virtual void _setRowName(int row, const std::string& name) = 0;
    virtual int _rowByName(const std::string& name) const = 0;

    virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e) = 0;
    virtual void _getRowCoeffs(int i, InsertIterator b) const = 0;

    virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e) = 0;
    virtual void _getColCoeffs(int i, InsertIterator b) const = 0;

    virtual void _setCoeff(int row, int col, Value value) = 0;
    virtual Value _getCoeff(int row, int col) const = 0;

    virtual void _setColLowerBound(int i, Value value) = 0;
    virtual Value _getColLowerBound(int i) const = 0;

    virtual void _setColUpperBound(int i, Value value) = 0;
    virtual Value _getColUpperBound(int i) const = 0;

    virtual void _setRowLowerBound(int i, Value value) = 0;
    virtual Value _getRowLowerBound(int i) const = 0;

    virtual void _setRowUpperBound(int i, Value value) = 0;
    virtual Value _getRowUpperBound(int i) const = 0;

    virtual void _setObjCoeffs(ExprIterator b, ExprIterator e) = 0;
    virtual void _getObjCoeffs(InsertIterator b) const = 0;

    virtual void _setObjCoeff(int i, Value obj_coef) = 0;
    virtual Value _getObjCoeff(int i) const = 0;

    virtual void _setSense(Sense) = 0;
    virtual Sense _getSense() const = 0;

    virtual void _clear() = 0;

    virtual const char* _solverName() const = 0;

    //Own protected stuff

    //Constant component of the objective function
    Value obj_const_comp;

    LpBase() : rows(), cols(), obj_const_comp(0) {}

  public:

    /// Virtual destructor
    virtual ~LpBase() {}

    ///Creates a new LP problem
    LpBase* newSolver() {return _newSolver();}
    ///Makes a copy of the LP problem
    LpBase* cloneSolver() {return _cloneSolver();}

    ///Gives back the name of the solver.
    const char* solverName() const {return _solverName();}

    ///\name Build up and modify the LP

    ///@{

    ///Add a new empty column (i.e a new variable) to the LP
    Col addCol() { Col c; c._id = _addColId(_addCol()); return c;}

    ///\brief Adds several new columns (i.e variables) at once
    ///
    ///This magic function takes a container as its argument and fills
    ///its elements with new columns (i.e. variables)
    ///\param t can be
    ///- a standard STL compatible iterable container with
    ///\ref Col as its \c values_type like
    ///\code
    ///std::vector<LpBase::Col>
    ///std::list<LpBase::Col>
    ///\endcode
    ///- a standard STL compatible iterable container with
    ///\ref Col as its \c mapped_type like
    ///\code
    ///std::map<AnyType,LpBase::Col>
    ///\endcode
    ///- an iterable lemon \ref concepts::WriteMap "write map" like
    ///\code
    ///ListGraph::NodeMap<LpBase::Col>
    ///ListGraph::ArcMap<LpBase::Col>
    ///\endcode
    ///\return The number of the created column.
#ifdef DOXYGEN
    template<class T>
    int addColSet(T &t) { return 0;}
#else
    template<class T>
    typename enable_if<typename T::value_type::LpCol,int>::type
    addColSet(T &t,dummy<0> = 0) {
      int s=0;
      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
      return s;
    }
    template<class T>
    typename enable_if<typename T::value_type::second_type::LpCol,
                       int>::type
    addColSet(T &t,dummy<1> = 1) {
      int s=0;
      for(typename T::iterator i=t.begin();i!=t.end();++i) {
        i->second=addCol();
        s++;
      }
      return s;
    }
    template<class T>
    typename enable_if<typename T::MapIt::Value::LpCol,
                       int>::type
    addColSet(T &t,dummy<2> = 2) {
      int s=0;
      for(typename T::MapIt i(t); i!=INVALID; ++i)
        {
          i.set(addCol());
          s++;
        }
      return s;
    }
#endif

    ///Set a column (i.e a dual constraint) of the LP

    ///\param c is the column to be modified
    ///\param e is a dual linear expression (see \ref DualExpr)
    ///a better one.
    void col(Col c, const DualExpr &e) {
      e.simplify();
      _setColCoeffs(cols(id(c)), ExprIterator(e.comps.begin(), rows),
                    ExprIterator(e.comps.end(), rows));
    }

    ///Get a column (i.e a dual constraint) of the LP

    ///\param c is the column to get
    ///\return the dual expression associated to the column
    DualExpr col(Col c) const {
      DualExpr e;
      _getColCoeffs(cols(id(c)), InsertIterator(e.comps, rows));
      return e;
    }

    ///Add a new column to the LP

    ///\param e is a dual linear expression (see \ref DualExpr)
    ///\param o is the corresponding component of the objective
    ///function. It is 0 by default.
    ///\return The created column.
    Col addCol(const DualExpr &e, Value o = 0) {
      Col c=addCol();
      col(c,e);
      objCoeff(c,o);
      return c;
    }

    ///Add a new empty row (i.e a new constraint) to the LP

    ///This function adds a new empty row (i.e a new constraint) to the LP.
    ///\return The created row
    Row addRow() { Row r; r._id = _addRowId(_addRow()); return r;}

    ///\brief Add several new rows (i.e constraints) at once
    ///
    ///This magic function takes a container as its argument and fills
    ///its elements with new row (i.e. variables)
    ///\param t can be
    ///- a standard STL compatible iterable container with
    ///\ref Row as its \c values_type like
    ///\code
    ///std::vector<LpBase::Row>
    ///std::list<LpBase::Row>
    ///\endcode
    ///- a standard STL compatible iterable container with
    ///\ref Row as its \c mapped_type like
    ///\code
    ///std::map<AnyType,LpBase::Row>
    ///\endcode
    ///- an iterable lemon \ref concepts::WriteMap "write map" like
    ///\code
    ///ListGraph::NodeMap<LpBase::Row>
    ///ListGraph::ArcMap<LpBase::Row>
    ///\endcode
    ///\return The number of rows created.
#ifdef DOXYGEN
    template<class T>
    int addRowSet(T &t) { return 0;}
#else
    template<class T>
    typename enable_if<typename T::value_type::LpRow,int>::type
    addRowSet(T &t, dummy<0> = 0) {
      int s=0;
      for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
      return s;
    }
    template<class T>
    typename enable_if<typename T::value_type::second_type::LpRow, int>::type
    addRowSet(T &t, dummy<1> = 1) {
      int s=0;
      for(typename T::iterator i=t.begin();i!=t.end();++i) {
        i->second=addRow();
        s++;
      }
      return s;
    }
    template<class T>
    typename enable_if<typename T::MapIt::Value::LpRow, int>::type
    addRowSet(T &t, dummy<2> = 2) {
      int s=0;
      for(typename T::MapIt i(t); i!=INVALID; ++i)
        {
          i.set(addRow());
          s++;
        }
      return s;
    }
#endif

    ///Set a row (i.e a constraint) of the LP

    ///\param r is the row to be modified
    ///\param l is lower bound (-\ref INF means no bound)
    ///\param e is a linear expression (see \ref Expr)
    ///\param u is the upper bound (\ref INF means no bound)
    void row(Row r, Value l, const Expr &e, Value u) {
      e.simplify();
      _setRowCoeffs(rows(id(r)), ExprIterator(e.comps.begin(), cols),
                    ExprIterator(e.comps.end(), cols));
      _setRowLowerBound(rows(id(r)),l - *e);
      _setRowUpperBound(rows(id(r)),u - *e);
    }

    ///Set a row (i.e a constraint) of the LP

    ///\param r is the row to be modified
    ///\param c is a linear expression (see \ref Constr)
    void row(Row r, const Constr &c) {
      row(r, c.lowerBounded()?c.lowerBound():-INF,
          c.expr(), c.upperBounded()?c.upperBound():INF);
    }


    ///Get a row (i.e a constraint) of the LP

    ///\param r is the row to get
    ///\return the expression associated to the row
    Expr row(Row r) const {
      Expr e;
      _getRowCoeffs(rows(id(r)), InsertIterator(e.comps, cols));
      return e;
    }

    ///Add a new row (i.e a new constraint) to the LP

    ///\param l is the lower bound (-\ref INF means no bound)
    ///\param e is a linear expression (see \ref Expr)
    ///\param u is the upper bound (\ref INF means no bound)
    ///\return The created row.
    Row addRow(Value l,const Expr &e, Value u) {
      Row r=addRow();
      row(r,l,e,u);
      return r;
    }

    ///Add a new row (i.e a new constraint) to the LP

    ///\param c is a linear expression (see \ref Constr)
    ///\return The created row.
    Row addRow(const Constr &c) {
      Row r=addRow();
      row(r,c);
      return r;
    }
    ///Erase a column (i.e a variable) from the LP

    ///\param c is the column to be deleted
    void erase(Col c) {
      _eraseCol(cols(id(c)));
      _eraseColId(cols(id(c)));
    }
    ///Erase a row (i.e a constraint) from the LP

    ///\param r is the row to be deleted
    void erase(Row r) {
      _eraseRow(rows(id(r)));
      _eraseRowId(rows(id(r)));
    }

    /// Get the name of a column

    ///\param c is the coresponding column
    ///\return The name of the colunm
    std::string colName(Col c) const {
      std::string name;
      _getColName(cols(id(c)), name);
      return name;
    }

    /// Set the name of a column

    ///\param c is the coresponding column
    ///\param name The name to be given
    void colName(Col c, const std::string& name) {
      _setColName(cols(id(c)), name);
    }

    /// Get the column by its name

    ///\param name The name of the column
    ///\return the proper column or \c INVALID
    Col colByName(const std::string& name) const {
      int k = _colByName(name);
      return k != -1 ? Col(cols[k]) : Col(INVALID);
    }

    /// Get the name of a row

    ///\param r is the coresponding row
    ///\return The name of the row
    std::string rowName(Row r) const {
      std::string name;
      _getRowName(rows(id(r)), name);
      return name;
    }

    /// Set the name of a row

    ///\param r is the coresponding row
    ///\param name The name to be given
    void rowName(Row r, const std::string& name) {
      _setRowName(rows(id(r)), name);
    }

    /// Get the row by its name

    ///\param name The name of the row
    ///\return the proper row or \c INVALID
    Row rowByName(const std::string& name) const {
      int k = _rowByName(name);
      return k != -1 ? Row(rows[k]) : Row(INVALID);
    }

    /// Set an element of the coefficient matrix of the LP

    ///\param r is the row of the element to be modified
    ///\param c is the column of the element to be modified
    ///\param val is the new value of the coefficient
    void coeff(Row r, Col c, Value val) {
      _setCoeff(rows(id(r)),cols(id(c)), val);
    }

    /// Get an element of the coefficient matrix of the LP

    ///\param r is the row of the element
    ///\param c is the column of the element
    ///\return the corresponding coefficient
    Value coeff(Row r, Col c) const {
      return _getCoeff(rows(id(r)),cols(id(c)));
    }

    /// Set the lower bound of a column (i.e a variable)

    /// The lower bound of a variable (column) has to be given by an
    /// extended number of type Value, i.e. a finite number of type
    /// Value or -\ref INF.
    void colLowerBound(Col c, Value value) {
      _setColLowerBound(cols(id(c)),value);
    }

    /// Get the lower bound of a column (i.e a variable)

    /// This function returns the lower bound for column (variable) \c c
    /// (this might be -\ref INF as well).
    ///\return The lower bound for column \c c
    Value colLowerBound(Col c) const {
      return _getColLowerBound(cols(id(c)));
    }

    ///\brief Set the lower bound of  several columns
    ///(i.e variables) at once
    ///
    ///This magic function takes a container as its argument
    ///and applies the function on all of its elements.
    ///The lower bound of a variable (column) has to be given by an
    ///extended number of type Value, i.e. a finite number of type
    ///Value or -\ref INF.
#ifdef DOXYGEN
    template<class T>
    void colLowerBound(T &t, Value value) { return 0;}
#else
    template<class T>
    typename enable_if<typename T::value_type::LpCol,void>::type
    colLowerBound(T &t, Value value,dummy<0> = 0) {
      for(typename T::iterator i=t.begin();i!=t.end();++i) {
        colLowerBound(*i, value);
      }
    }
    template<class T>
    typename enable_if<typename T::value_type::second_type::LpCol,
                       void>::type
    colLowerBound(T &t, Value value,dummy<1> = 1) {
      for(typename T::iterator i=t.begin();i!=t.end();++i) {
        colLowerBound(i->second, value);
      }
    }
    template<class T>
    typename enable_if<typename T::MapIt::Value::LpCol,
                       void>::type
    colLowerBound(T &t, Value value,dummy<2> = 2) {
      for(typename T::MapIt i(t); i!=INVALID; ++i){
        colLowerBound(*i, value);
      }
    }
#endif

    /// Set the upper bound of a column (i.e a variable)

    /// The upper bound of a variable (column) has to be given by an
    /// extended number of type Value, i.e. a finite number of type
    /// Value or \ref INF.
    void colUpperBound(Col c, Value value) {
      _setColUpperBound(cols(id(c)),value);
    };

    /// Get the upper bound of a column (i.e a variable)

    /// This function returns the upper bound for column (variable) \c c
    /// (this might be \ref INF as well).
    /// \return The upper bound for column \c c
    Value colUpperBound(Col c) const {
      return _getColUpperBound(cols(id(c)));
    }

    ///\brief Set the upper bound of  several columns
    ///(i.e variables) at once
    ///
    ///This magic function takes a container as its argument
    ///and applies the function on all of its elements.
    ///The upper bound of a variable (column) has to be given by an
    ///extended number of type Value, i.e. a finite number of type
    ///Value or \ref INF.
#ifdef DOXYGEN
    template<class T>
    void colUpperBound(T &t, Value value) { return 0;}
#else
    template<class T>
    typename enable_if<typename T::value_type::LpCol,void>::type
    colUpperBound(T &t, Value value,dummy<0> = 0) {
      for(typename T::iterator i=t.begin();i!=t.end();++i) {
        colUpperBound(*i, value);
      }
    }
    template<class T>
    typename enable_if<typename T::value_type::second_type::LpCol,
                       void>::type
    colUpperBound(T &t, Value value,dummy<1> = 1) {
      for(typename T::iterator i=t.begin();i!=t.end();++i) {
        colUpperBound(i->second, value);
      }
    }
    template<class T>
    typename enable_if<typename T::MapIt::Value::LpCol,
                       void>::type
    colUpperBound(T &t, Value value,dummy<2> = 2) {
      for(typename T::MapIt i(t); i!=INVALID; ++i){
        colUpperBound(*i, value);
      }
    }
#endif

    /// Set the lower and the upper bounds of a column (i.e a variable)

    /// The lower and the upper bounds of
    /// a variable (column) have to be given by an
    /// extended number of type Value, i.e. a finite number of type
    /// Value, -\ref INF or \ref INF.
    void colBounds(Col c, Value lower, Value upper) {
      _setColLowerBound(cols(id(c)),lower);
      _setColUpperBound(cols(id(c)),upper);
    }

    ///\brief Set the lower and the upper bound of several columns
    ///(i.e variables) at once
    ///
    ///This magic function takes a container as its argument
    ///and applies the function on all of its elements.
    /// The lower and the upper bounds of
    /// a variable (column) have to be given by an
    /// extended number of type Value, i.e. a finite number of type
    /// Value, -\ref INF or \ref INF.
#ifdef DOXYGEN
    template<class T>
    void colBounds(T &t, Value lower, Value upper) { return 0;}
#else
    template<class T>
    typename enable_if<typename T::value_type::LpCol,void>::type
    colBounds(T &t, Value lower, Value upper,dummy<0> = 0) {
      for(typename T::iterator i=t.begin();i!=t.end();++i) {
        colBounds(*i, lower, upper);
      }
    }
    template<class T>
    typename enable_if<typename T::value_type::second_type::LpCol, void>::type
    colBounds(T &t, Value lower, Value upper,dummy<1> = 1) {
      for(typename T::iterator i=t.begin();i!=t.end();++i) {
        colBounds(i->second, lower, upper);
      }
    }
    template<class T>
    typename enable_if<typename T::MapIt::Value::LpCol, void>::type
    colBounds(T &t, Value lower, Value upper,dummy<2> = 2) {
      for(typename T::MapIt i(t); i!=INVALID; ++i){
        colBounds(*i, lower, upper);
      }
    }
#endif

    /// Set the lower bound of a row (i.e a constraint)

    /// The lower bound of a constraint (row) has to be given by an
    /// extended number of type Value, i.e. a finite number of type
    /// Value or -\ref INF.
    void rowLowerBound(Row r, Value value) {
      _setRowLowerBound(rows(id(r)),value);
    }

    /// Get the lower bound of a row (i.e a constraint)

    /// This function returns the lower bound for row (constraint) \c c
    /// (this might be -\ref INF as well).
    ///\return The lower bound for row \c r
    Value rowLowerBound(Row r) const {
      return _getRowLowerBound(rows(id(r)));
    }

    /// Set the upper bound of a row (i.e a constraint)

    /// The upper bound of a constraint (row) has to be given by an
    /// extended number of type Value, i.e. a finite number of type
    /// Value or -\ref INF.
    void rowUpperBound(Row r, Value value) {
      _setRowUpperBound(rows(id(r)),value);
    }

    /// Get the upper bound of a row (i.e a constraint)

    /// This function returns the upper bound for row (constraint) \c c
    /// (this might be -\ref INF as well).
    ///\return The upper bound for row \c r
    Value rowUpperBound(Row r) const {
      return _getRowUpperBound(rows(id(r)));
    }

    ///Set an element of the objective function
    void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); };

    ///Get an element of the objective function
    Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); };

    ///Set the objective function

    ///\param e is a linear expression of type \ref Expr.
    ///
    void obj(const Expr& e) {
      _setObjCoeffs(ExprIterator(e.comps.begin(), cols),
                    ExprIterator(e.comps.end(), cols));
      obj_const_comp = *e;
    }

    ///Get the objective function

    ///\return the objective function as a linear expression of type
    ///Expr.
    Expr obj() const {
      Expr e;
      _getObjCoeffs(InsertIterator(e.comps, cols));
      *e = obj_const_comp;
      return e;
    }


    ///Set the direction of optimization
    void sense(Sense sense) { _setSense(sense); }

    ///Query the direction of the optimization
    Sense sense() const {return _getSense(); }

    ///Set the sense to maximization
    void max() { _setSense(MAX); }

    ///Set the sense to maximization
    void min() { _setSense(MIN); }

    ///Clears the problem
    void clear() { _clear(); }

    ///@}

  };

  /// Addition

  ///\relates LpBase::Expr
  ///
  inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) {
    LpBase::Expr tmp(a);
    tmp+=b;
    return tmp;
  }
  ///Substraction

  ///\relates LpBase::Expr
  ///
  inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) {
    LpBase::Expr tmp(a);
    tmp-=b;
    return tmp;
  }
  ///Multiply with constant

  ///\relates LpBase::Expr
  ///
  inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) {
    LpBase::Expr tmp(a);
    tmp*=b;
    return tmp;
  }

  ///Multiply with constant

  ///\relates LpBase::Expr
  ///
  inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) {
    LpBase::Expr tmp(b);
    tmp*=a;
    return tmp;
  }
  ///Divide with constant

  ///\relates LpBase::Expr
  ///
  inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) {
    LpBase::Expr tmp(a);
    tmp/=b;
    return tmp;
  }

  ///Create constraint

  ///\relates LpBase::Constr
  ///
  inline LpBase::Constr operator<=(const LpBase::Expr &e,
                                   const LpBase::Expr &f) {
    return LpBase::Constr(0, f - e, LpBase::INF);
  }

  ///Create constraint

  ///\relates LpBase::Constr
  ///
  inline LpBase::Constr operator<=(const LpBase::Value &e,
                                   const LpBase::Expr &f) {
    return LpBase::Constr(e, f, LpBase::NaN);
  }

  ///Create constraint

  ///\relates LpBase::Constr
  ///
  inline LpBase::Constr operator<=(const LpBase::Expr &e,
                                   const LpBase::Value &f) {
    return LpBase::Constr(- LpBase::INF, e, f);
  }

  ///Create constraint

  ///\relates LpBase::Constr
  ///
  inline LpBase::Constr operator>=(const LpBase::Expr &e,
                                   const LpBase::Expr &f) {
    return LpBase::Constr(0, e - f, LpBase::INF);
  }


  ///Create constraint

  ///\relates LpBase::Constr
  ///
  inline LpBase::Constr operator>=(const LpBase::Value &e,
                                   const LpBase::Expr &f) {
    return LpBase::Constr(LpBase::NaN, f, e);
  }


  ///Create constraint

  ///\relates LpBase::Constr
  ///
  inline LpBase::Constr operator>=(const LpBase::Expr &e,
                                   const LpBase::Value &f) {
    return LpBase::Constr(f, e, LpBase::INF);
  }

  ///Create constraint

  ///\relates LpBase::Constr
  ///
  inline LpBase::Constr operator==(const LpBase::Expr &e,
                                   const LpBase::Value &f) {
    return LpBase::Constr(f, e, f);
  }

  ///Create constraint

  ///\relates LpBase::Constr
  ///
  inline LpBase::Constr operator==(const LpBase::Expr &e,
                                   const LpBase::Expr &f) {
    return LpBase::Constr(0, f - e, 0);
  }

  ///Create constraint

  ///\relates LpBase::Constr
  ///
  inline LpBase::Constr operator<=(const LpBase::Value &n,
                                   const LpBase::Constr &c) {
    LpBase::Constr tmp(c);
    LEMON_ASSERT(isnan(tmp.lowerBound()), "Wrong LP constraint");
    tmp.lowerBound()=n;
    return tmp;
  }
  ///Create constraint

  ///\relates LpBase::Constr
  ///
  inline LpBase::Constr operator<=(const LpBase::Constr &c,
                                   const LpBase::Value &n)
  {
    LpBase::Constr tmp(c);
    LEMON_ASSERT(isnan(tmp.upperBound()), "Wrong LP constraint");
    tmp.upperBound()=n;
    return tmp;
  }

  ///Create constraint

  ///\relates LpBase::Constr
  ///
  inline LpBase::Constr operator>=(const LpBase::Value &n,
                                   const LpBase::Constr &c) {
    LpBase::Constr tmp(c);
    LEMON_ASSERT(isnan(tmp.upperBound()), "Wrong LP constraint");
    tmp.upperBound()=n;
    return tmp;
  }
  ///Create constraint

  ///\relates LpBase::Constr
  ///
  inline LpBase::Constr operator>=(const LpBase::Constr &c,
                                   const LpBase::Value &n)
  {
    LpBase::Constr tmp(c);
    LEMON_ASSERT(isnan(tmp.lowerBound()), "Wrong LP constraint");
    tmp.lowerBound()=n;
    return tmp;
  }

  ///Addition

  ///\relates LpBase::DualExpr
  ///
  inline LpBase::DualExpr operator+(const LpBase::DualExpr &a,
                                    const LpBase::DualExpr &b) {
    LpBase::DualExpr tmp(a);
    tmp+=b;
    return tmp;
  }
  ///Substraction

  ///\relates LpBase::DualExpr
  ///
  inline LpBase::DualExpr operator-(const LpBase::DualExpr &a,
                                    const LpBase::DualExpr &b) {
    LpBase::DualExpr tmp(a);
    tmp-=b;
    return tmp;
  }
  ///Multiply with constant

  ///\relates LpBase::DualExpr
  ///
  inline LpBase::DualExpr operator*(const LpBase::DualExpr &a,
                                    const LpBase::Value &b) {
    LpBase::DualExpr tmp(a);
    tmp*=b;
    return tmp;
  }

  ///Multiply with constant

  ///\relates LpBase::DualExpr
  ///
  inline LpBase::DualExpr operator*(const LpBase::Value &a,
                                    const LpBase::DualExpr &b) {
    LpBase::DualExpr tmp(b);
    tmp*=a;
    return tmp;
  }
  ///Divide with constant

  ///\relates LpBase::DualExpr
  ///
  inline LpBase::DualExpr operator/(const LpBase::DualExpr &a,
                                    const LpBase::Value &b) {
    LpBase::DualExpr tmp(a);
    tmp/=b;
    return tmp;
  }

  /// \ingroup lp_group
  ///
  /// \brief Common base class for LP solvers
  ///
  /// This class is an abstract base class for LP solvers. This class
  /// provides a full interface for set and modify an LP problem,
  /// solve it and retrieve the solution. You can use one of the
  /// descendants as a concrete implementation, or the \c Lp
  /// default LP solver. However, if you would like to handle LP
  /// solvers as reference or pointer in a generic way, you can use
  /// this class directly.
  class LpSolver : virtual public LpBase {
  public:

    /// The problem types for primal and dual problems
    enum ProblemType {
      ///Feasible solution hasn't been found (but may exist).
      UNDEFINED = 0,
      ///The problem has no feasible solution
      INFEASIBLE = 1,
      ///Feasible solution found
      FEASIBLE = 2,
      ///Optimal solution exists and found
      OPTIMAL = 3,
      ///The cost function is unbounded
      UNBOUNDED = 4
    };

    ///The basis status of variables
    enum VarStatus {
      /// The variable is in the basis
      BASIC, 
      /// The variable is free, but not basic
      FREE,
      /// The variable has active lower bound 
      LOWER,
      /// The variable has active upper bound
      UPPER,
      /// The variable is non-basic and fixed
      FIXED
    };

  protected:

    virtual SolveExitStatus _solve() = 0;

    virtual Value _getPrimal(int i) const = 0;
    virtual Value _getDual(int i) const = 0;

    virtual Value _getPrimalRay(int i) const = 0;
    virtual Value _getDualRay(int i) const = 0;

    virtual Value _getPrimalValue() const = 0;

    virtual VarStatus _getColStatus(int i) const = 0;
    virtual VarStatus _getRowStatus(int i) const = 0;

    virtual ProblemType _getPrimalType() const = 0;
    virtual ProblemType _getDualType() const = 0;

  public:

    ///\name Solve the LP

    ///@{

    ///\e Solve the LP problem at hand
    ///
    ///\return The result of the optimization procedure. Possible
    ///values and their meanings can be found in the documentation of
    ///\ref SolveExitStatus.
    SolveExitStatus solve() { return _solve(); }

    ///@}

    ///\name Obtain the solution

    ///@{

    /// The type of the primal problem
    ProblemType primalType() const {
      return _getPrimalType();
    }

    /// The type of the dual problem
    ProblemType dualType() const {
      return _getDualType();
    }

    /// Return the primal value of the column

    /// Return the primal value of the column.
    /// \pre The problem is solved.
    Value primal(Col c) const { return _getPrimal(cols(id(c))); }

    /// Return the primal value of the expression

    /// Return the primal value of the expression, i.e. the dot
    /// product of the primal solution and the expression.
    /// \pre The problem is solved.
    Value primal(const Expr& e) const {
      double res = *e;
      for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
        res += *c * primal(c);
      }
      return res;
    }
    /// Returns a component of the primal ray
    
    /// The primal ray is solution of the modified primal problem,
    /// where we change each finite bound to 0, and we looking for a
    /// negative objective value in case of minimization, and positive
    /// objective value for maximization. If there is such solution,
    /// that proofs the unsolvability of the dual problem, and if a
    /// feasible primal solution exists, then the unboundness of
    /// primal problem.
    ///
    /// \pre The problem is solved and the dual problem is infeasible.
    /// \note Some solvers does not provide primal ray calculation
    /// functions.
    Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); }

    /// Return the dual value of the row

    /// Return the dual value of the row.
    /// \pre The problem is solved.
    Value dual(Row r) const { return _getDual(rows(id(r))); }

    /// Return the dual value of the dual expression

    /// Return the dual value of the dual expression, i.e. the dot
    /// product of the dual solution and the dual expression.
    /// \pre The problem is solved.
    Value dual(const DualExpr& e) const {
      double res = 0.0;
      for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) {
        res += *r * dual(r);
      }
      return res;
    }

    /// Returns a component of the dual ray
    
    /// The dual ray is solution of the modified primal problem, where
    /// we change each finite bound to 0 (i.e. the objective function
    /// coefficients in the primal problem), and we looking for a
    /// ositive objective value. If there is such solution, that
    /// proofs the unsolvability of the primal problem, and if a
    /// feasible dual solution exists, then the unboundness of
    /// dual problem.
    ///
    /// \pre The problem is solved and the primal problem is infeasible.
    /// \note Some solvers does not provide dual ray calculation
    /// functions.
    Value dualRay(Row r) const { return _getDualRay(rows(id(r))); }

    /// Return the basis status of the column

    /// \see VarStatus
    VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); }

    /// Return the basis status of the row

    /// \see VarStatus
    VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); }

    ///The value of the objective function

    ///\return
    ///- \ref INF or -\ref INF means either infeasibility or unboundedness
    /// of the primal problem, depending on whether we minimize or maximize.
    ///- \ref NaN if no primal solution is found.
    ///- The (finite) objective value if an optimal solution is found.
    Value primal() const { return _getPrimalValue()+obj_const_comp;}
    ///@}

    LpSolver* newSolver() {return _newSolver();}
    LpSolver* cloneSolver() {return _cloneSolver();}

  protected:

    virtual LpSolver* _newSolver() const = 0;
    virtual LpSolver* _cloneSolver() const = 0;
  };


  /// \ingroup lp_group
  ///
  /// \brief Common base class for MIP solvers
  ///
  /// This class is an abstract base class for MIP solvers. This class
  /// provides a full interface for set and modify an MIP problem,
  /// solve it and retrieve the solution. You can use one of the
  /// descendants as a concrete implementation, or the \c Lp
  /// default MIP solver. However, if you would like to handle MIP
  /// solvers as reference or pointer in a generic way, you can use
  /// this class directly.
  class MipSolver : virtual public LpBase {
  public:

    /// The problem types for MIP problems
    enum ProblemType {
      ///Feasible solution hasn't been found (but may exist).
      UNDEFINED = 0,
      ///The problem has no feasible solution
      INFEASIBLE = 1,
      ///Feasible solution found
      FEASIBLE = 2,
      ///Optimal solution exists and found
      OPTIMAL = 3,
      ///The cost function is unbounded
      ///
      ///The Mip or at least the relaxed problem is unbounded
      UNBOUNDED = 4
    };

    ///\name Solve the MIP

    ///@{

    /// Solve the MIP problem at hand
    ///
    ///\return The result of the optimization procedure. Possible
    ///values and their meanings can be found in the documentation of
    ///\ref SolveExitStatus.
    SolveExitStatus solve() { return _solve(); }

    ///@}

    ///\name Setting column type
    ///@{

    ///Possible variable (column) types (e.g. real, integer, binary etc.)
    enum ColTypes {
      ///Continuous variable (default)
      REAL = 0,
      ///Integer variable
      INTEGER = 1
    };

    ///Sets the type of the given column to the given type

    ///Sets the type of the given column to the given type.
    ///
    void colType(Col c, ColTypes col_type) {
      _setColType(cols(id(c)),col_type);
    }

    ///Gives back the type of the column.

    ///Gives back the type of the column.
    ///
    ColTypes colType(Col c) const {
      return _getColType(cols(id(c)));
    }
    ///@}

    ///\name Obtain the solution

    ///@{

    /// The type of the MIP problem
    ProblemType type() const {
      return _getType();
    }

    /// Return the value of the row in the solution

    ///  Return the value of the row in the solution.
    /// \pre The problem is solved.
    Value sol(Col c) const { return _getSol(cols(id(c))); }

    /// Return the value of the expression in the solution

    /// Return the value of the expression in the solution, i.e. the
    /// dot product of the solution and the expression.
    /// \pre The problem is solved.
    Value sol(const Expr& e) const {
      double res = *e;
      for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
        res += *c * sol(c);
      }
      return res;
    }
    ///The value of the objective function
    
    ///\return
    ///- \ref INF or -\ref INF means either infeasibility or unboundedness
    /// of the problem, depending on whether we minimize or maximize.
    ///- \ref NaN if no primal solution is found.
    ///- The (finite) objective value if an optimal solution is found.
    Value solValue() const { return _getSolValue()+obj_const_comp;}
    ///@}

  protected:

    virtual SolveExitStatus _solve() = 0;
    virtual ColTypes _getColType(int col) const = 0;
    virtual void _setColType(int col, ColTypes col_type) = 0;
    virtual ProblemType _getType() const = 0;
    virtual Value _getSol(int i) const = 0;
    virtual Value _getSolValue() const = 0;

  public:

    MipSolver* newSolver() {return _newSolver();}
    MipSolver* cloneSolver() {return _cloneSolver();}

  protected:

    virtual MipSolver* _newSolver() const = 0;
    virtual MipSolver* _cloneSolver() const = 0;
  };



} //namespace lemon

#endif //LEMON_LP_BASE_H