diff --git a/cmake/FindCOIN.cmake b/cmake/FindCOIN.cmake --- a/cmake/FindCOIN.cmake +++ b/cmake/FindCOIN.cmake @@ -5,42 +5,52 @@ ) FIND_LIBRARY(COIN_CBC_LIBRARY NAMES Cbc libCbc + HINTS ${COIN_ROOT_DIR}/lib/coin HINTS ${COIN_ROOT_DIR}/lib ) FIND_LIBRARY(COIN_CBC_SOLVER_LIBRARY NAMES CbcSolver libCbcSolver + HINTS ${COIN_ROOT_DIR}/lib/coin HINTS ${COIN_ROOT_DIR}/lib ) FIND_LIBRARY(COIN_CGL_LIBRARY NAMES Cgl libCgl + HINTS ${COIN_ROOT_DIR}/lib/coin HINTS ${COIN_ROOT_DIR}/lib ) FIND_LIBRARY(COIN_CLP_LIBRARY NAMES Clp libClp + HINTS ${COIN_ROOT_DIR}/lib/coin HINTS ${COIN_ROOT_DIR}/lib ) FIND_LIBRARY(COIN_COIN_UTILS_LIBRARY NAMES CoinUtils libCoinUtils + HINTS ${COIN_ROOT_DIR}/lib/coin HINTS ${COIN_ROOT_DIR}/lib ) FIND_LIBRARY(COIN_OSI_LIBRARY NAMES Osi libOsi + HINTS ${COIN_ROOT_DIR}/lib/coin HINTS ${COIN_ROOT_DIR}/lib ) FIND_LIBRARY(COIN_OSI_CBC_LIBRARY NAMES OsiCbc libOsiCbc + HINTS ${COIN_ROOT_DIR}/lib/coin HINTS ${COIN_ROOT_DIR}/lib ) FIND_LIBRARY(COIN_OSI_CLP_LIBRARY NAMES OsiClp libOsiClp + HINTS ${COIN_ROOT_DIR}/lib/coin HINTS ${COIN_ROOT_DIR}/lib ) FIND_LIBRARY(COIN_OSI_VOL_LIBRARY NAMES OsiVol libOsiVol + HINTS ${COIN_ROOT_DIR}/lib/coin HINTS ${COIN_ROOT_DIR}/lib ) FIND_LIBRARY(COIN_VOL_LIBRARY NAMES Vol libVol + HINTS ${COIN_ROOT_DIR}/lib/coin HINTS ${COIN_ROOT_DIR}/lib ) @@ -55,13 +65,13 @@ COIN_OSI_LIBRARY COIN_OSI_CBC_LIBRARY COIN_OSI_CLP_LIBRARY - COIN_OSI_VOL_LIBRARY - COIN_VOL_LIBRARY + # COIN_OSI_VOL_LIBRARY + # COIN_VOL_LIBRARY ) IF(COIN_FOUND) SET(COIN_INCLUDE_DIRS ${COIN_INCLUDE_DIR}) - SET(COIN_LIBRARIES "${COIN_CBC_LIBRARY};${COIN_CBC_SOLVER_LIBRARY};${COIN_CGL_LIBRARY};${COIN_CLP_LIBRARY};${COIN_COIN_UTILS_LIBRARY};${COIN_OSI_LIBRARY};${COIN_OSI_CBC_LIBRARY};${COIN_OSI_CLP_LIBRARY};${COIN_OSI_VOL_LIBRARY};${COIN_VOL_LIBRARY}") + SET(COIN_LIBRARIES "${COIN_CBC_LIBRARY};${COIN_CBC_SOLVER_LIBRARY};${COIN_CGL_LIBRARY};${COIN_CLP_LIBRARY};${COIN_COIN_UTILS_LIBRARY};${COIN_OSI_LIBRARY};${COIN_OSI_CBC_LIBRARY};${COIN_OSI_CLP_LIBRARY}") SET(COIN_CLP_LIBRARIES "${COIN_CLP_LIBRARY};${COIN_COIN_UTILS_LIBRARY}") SET(COIN_CBC_LIBRARIES ${COIN_LIBRARIES}) ENDIF(COIN_FOUND) diff --git a/lemon/Makefile.am b/lemon/Makefile.am --- a/lemon/Makefile.am +++ b/lemon/Makefile.am @@ -59,6 +59,7 @@ lemon/assert.h \ lemon/bfs.h \ lemon/bin_heap.h \ + lemon/bucket_heap.h \ lemon/cbc.h \ lemon/circulation.h \ lemon/clp.h \ @@ -76,6 +77,7 @@ lemon/elevator.h \ lemon/error.h \ lemon/euler.h \ + lemon/fib_heap.h \ lemon/full_graph.h \ lemon/glpk.h \ lemon/gomory_hu.h \ @@ -98,6 +100,7 @@ lemon/network_simplex.h \ lemon/path.h \ lemon/preflow.h \ + lemon/radix_heap.h \ lemon/radix_sort.h \ lemon/random.h \ lemon/smart_graph.h \ diff --git a/lemon/bin_heap.h b/lemon/bin_heap.h --- a/lemon/bin_heap.h +++ b/lemon/bin_heap.h @@ -33,23 +33,23 @@ /// ///\brief A Binary Heap implementation. /// - ///This class implements the \e binary \e heap data structure. - /// + ///This class implements the \e binary \e heap data structure. + /// ///A \e heap is a data structure for storing items with specified values ///called \e priorities in such a way that finding the item with minimum - ///priority is efficient. \c Comp specifies the ordering of the priorities. + ///priority is efficient. \c CMP specifies the ordering of the priorities. ///In a heap one can change the priority of an item, add or erase an ///item, etc. /// ///\tparam PR Type of the priority of the items. ///\tparam IM A read and writable item map with int values, used internally ///to handle the cross references. - ///\tparam Comp A functor class for the ordering of the priorities. + ///\tparam CMP A functor class for the ordering of the priorities. ///The default is \c std::less. /// ///\sa FibHeap ///\sa Dijkstra - template > + template > class BinHeap { public: @@ -62,7 +62,7 @@ ///\e typedef std::pair Pair; ///\e - typedef Comp Compare; + typedef CMP Compare; /// \brief Type to represent the items states. /// diff --git a/lemon/bits/map_extender.h b/lemon/bits/map_extender.h --- a/lemon/bits/map_extender.h +++ b/lemon/bits/map_extender.h @@ -49,6 +49,8 @@ typedef typename Parent::Reference Reference; typedef typename Parent::ConstReference ConstReference; + typedef typename Parent::ReferenceMapTag ReferenceMapTag; + class MapIt; class ConstMapIt; @@ -191,6 +193,8 @@ typedef typename Parent::Reference Reference; typedef typename Parent::ConstReference ConstReference; + typedef typename Parent::ReferenceMapTag ReferenceMapTag; + class MapIt; class ConstMapIt; diff --git a/lemon/bucket_heap.h b/lemon/bucket_heap.h new file mode 100644 --- /dev/null +++ b/lemon/bucket_heap.h @@ -0,0 +1,567 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_BUCKET_HEAP_H +#define LEMON_BUCKET_HEAP_H + +///\ingroup auxdat +///\file +///\brief Bucket Heap implementation. + +#include +#include +#include + +namespace lemon { + + namespace _bucket_heap_bits { + + template + struct DirectionTraits { + static bool less(int left, int right) { + return left < right; + } + static void increase(int& value) { + ++value; + } + }; + + template <> + struct DirectionTraits { + static bool less(int left, int right) { + return left > right; + } + static void increase(int& value) { + --value; + } + }; + + } + + /// \ingroup auxdat + /// + /// \brief A Bucket Heap implementation. + /// + /// This class implements the \e bucket \e heap data structure. A \e heap + /// is a data structure for storing items with specified values called \e + /// priorities in such a way that finding the item with minimum priority is + /// efficient. The bucket heap is very simple implementation, it can store + /// only integer priorities and it stores for each priority in the + /// \f$ [0..C) \f$ range a list of items. So it should be used only when + /// the priorities are small. It is not intended to use as dijkstra heap. + /// + /// \param IM A read and write Item int map, used internally + /// to handle the cross references. + /// \param MIN If the given parameter is false then instead of the + /// minimum value the maximum can be retrivied with the top() and + /// prio() member functions. + template + class BucketHeap { + + public: + /// \e + typedef typename IM::Key Item; + /// \e + typedef int Prio; + /// \e + typedef std::pair Pair; + /// \e + typedef IM ItemIntMap; + + private: + + typedef _bucket_heap_bits::DirectionTraits Direction; + + public: + + /// \brief Type to represent the items states. + /// + /// Each Item element have a state associated to it. It may be "in heap", + /// "pre heap" or "post heap". The latter two are indifferent from the + /// heap's point of view, but may be useful to the user. + /// + /// The item-int map must be initialized in such way that it assigns + /// \c PRE_HEAP (-1) to any element to be put in the heap. + enum State { + IN_HEAP = 0, ///< = 0. + PRE_HEAP = -1, ///< = -1. + POST_HEAP = -2 ///< = -2. + }; + + public: + /// \brief The constructor. + /// + /// The constructor. + /// \param map should be given to the constructor, since it is used + /// internally to handle the cross references. The value of the map + /// should be PRE_HEAP (-1) for each element. + explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {} + + /// The number of items stored in the heap. + /// + /// \brief Returns the number of items stored in the heap. + int size() const { return _data.size(); } + + /// \brief Checks if the heap stores no items. + /// + /// Returns \c true if and only if the heap stores no items. + bool empty() const { return _data.empty(); } + + /// \brief Make empty this heap. + /// + /// Make empty this heap. It does not change the cross reference + /// map. If you want to reuse a heap what is not surely empty you + /// should first clear the heap and after that you should set the + /// cross reference map for each item to \c PRE_HEAP. + void clear() { + _data.clear(); _first.clear(); _minimum = 0; + } + + private: + + void relocate_last(int idx) { + if (idx + 1 < int(_data.size())) { + _data[idx] = _data.back(); + if (_data[idx].prev != -1) { + _data[_data[idx].prev].next = idx; + } else { + _first[_data[idx].value] = idx; + } + if (_data[idx].next != -1) { + _data[_data[idx].next].prev = idx; + } + _iim[_data[idx].item] = idx; + } + _data.pop_back(); + } + + void unlace(int idx) { + if (_data[idx].prev != -1) { + _data[_data[idx].prev].next = _data[idx].next; + } else { + _first[_data[idx].value] = _data[idx].next; + } + if (_data[idx].next != -1) { + _data[_data[idx].next].prev = _data[idx].prev; + } + } + + void lace(int idx) { + if (int(_first.size()) <= _data[idx].value) { + _first.resize(_data[idx].value + 1, -1); + } + _data[idx].next = _first[_data[idx].value]; + if (_data[idx].next != -1) { + _data[_data[idx].next].prev = idx; + } + _first[_data[idx].value] = idx; + _data[idx].prev = -1; + } + + public: + /// \brief Insert a pair of item and priority into the heap. + /// + /// Adds \c p.first to the heap with priority \c p.second. + /// \param p The pair to insert. + void push(const Pair& p) { + push(p.first, p.second); + } + + /// \brief Insert an item into the heap with the given priority. + /// + /// Adds \c i to the heap with priority \c p. + /// \param i The item to insert. + /// \param p The priority of the item. + void push(const Item &i, const Prio &p) { + int idx = _data.size(); + _iim[i] = idx; + _data.push_back(BucketItem(i, p)); + lace(idx); + if (Direction::less(p, _minimum)) { + _minimum = p; + } + } + + /// \brief Returns the item with minimum priority. + /// + /// This method returns the item with minimum priority. + /// \pre The heap must be nonempty. + Item top() const { + while (_first[_minimum] == -1) { + Direction::increase(_minimum); + } + return _data[_first[_minimum]].item; + } + + /// \brief Returns the minimum priority. + /// + /// It returns the minimum priority. + /// \pre The heap must be nonempty. + Prio prio() const { + while (_first[_minimum] == -1) { + Direction::increase(_minimum); + } + return _minimum; + } + + /// \brief Deletes the item with minimum priority. + /// + /// This method deletes the item with minimum priority from the heap. + /// \pre The heap must be non-empty. + void pop() { + while (_first[_minimum] == -1) { + Direction::increase(_minimum); + } + int idx = _first[_minimum]; + _iim[_data[idx].item] = -2; + unlace(idx); + relocate_last(idx); + } + + /// \brief Deletes \c i from the heap. + /// + /// This method deletes item \c i from the heap, if \c i was + /// already stored in the heap. + /// \param i The item to erase. + void erase(const Item &i) { + int idx = _iim[i]; + _iim[_data[idx].item] = -2; + unlace(idx); + relocate_last(idx); + } + + + /// \brief Returns the priority of \c i. + /// + /// This function returns the priority of item \c i. + /// \pre \c i must be in the heap. + /// \param i The item. + Prio operator[](const Item &i) const { + int idx = _iim[i]; + return _data[idx].value; + } + + /// \brief \c i gets to the heap with priority \c p independently + /// if \c i was already there. + /// + /// This method calls \ref push(\c i, \c p) if \c i is not stored + /// in the heap and sets the priority of \c i to \c p otherwise. + /// \param i The item. + /// \param p The priority. + void set(const Item &i, const Prio &p) { + int idx = _iim[i]; + if (idx < 0) { + push(i, p); + } else if (Direction::less(p, _data[idx].value)) { + decrease(i, p); + } else { + increase(i, p); + } + } + + /// \brief Decreases the priority of \c i to \c p. + /// + /// This method decreases the priority of item \c i to \c p. + /// \pre \c i must be stored in the heap with priority at least \c + /// p relative to \c Compare. + /// \param i The item. + /// \param p The priority. + void decrease(const Item &i, const Prio &p) { + int idx = _iim[i]; + unlace(idx); + _data[idx].value = p; + if (Direction::less(p, _minimum)) { + _minimum = p; + } + lace(idx); + } + + /// \brief Increases the priority of \c i to \c p. + /// + /// This method sets the priority of item \c i to \c p. + /// \pre \c i must be stored in the heap with priority at most \c + /// p relative to \c Compare. + /// \param i The item. + /// \param p The priority. + void increase(const Item &i, const Prio &p) { + int idx = _iim[i]; + unlace(idx); + _data[idx].value = p; + lace(idx); + } + + /// \brief Returns if \c item is in, has already been in, or has + /// never been in the heap. + /// + /// This method returns PRE_HEAP if \c item has never been in the + /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP + /// otherwise. In the latter case it is possible that \c item will + /// get back to the heap again. + /// \param i The item. + State state(const Item &i) const { + int idx = _iim[i]; + if (idx >= 0) idx = 0; + return State(idx); + } + + /// \brief Sets the state of the \c item in the heap. + /// + /// Sets the state of the \c item in the heap. It can be used to + /// manually clear the heap when it is important to achive the + /// better time complexity. + /// \param i The item. + /// \param st The state. It should not be \c IN_HEAP. + void state(const Item& i, State st) { + switch (st) { + case POST_HEAP: + case PRE_HEAP: + if (state(i) == IN_HEAP) { + erase(i); + } + _iim[i] = st; + break; + case IN_HEAP: + break; + } + } + + private: + + struct BucketItem { + BucketItem(const Item& _item, int _value) + : item(_item), value(_value) {} + + Item item; + int value; + + int prev, next; + }; + + ItemIntMap& _iim; + std::vector _first; + std::vector _data; + mutable int _minimum; + + }; // class BucketHeap + + /// \ingroup auxdat + /// + /// \brief A Simplified Bucket Heap implementation. + /// + /// This class implements a simplified \e bucket \e heap data + /// structure. It does not provide some functionality but it faster + /// and simplier data structure than the BucketHeap. The main + /// difference is that the BucketHeap stores for every key a double + /// linked list while this class stores just simple lists. In the + /// other way it does not support erasing each elements just the + /// minimal and it does not supports key increasing, decreasing. + /// + /// \param IM A read and write Item int map, used internally + /// to handle the cross references. + /// \param MIN If the given parameter is false then instead of the + /// minimum value the maximum can be retrivied with the top() and + /// prio() member functions. + /// + /// \sa BucketHeap + template + class SimpleBucketHeap { + + public: + typedef typename IM::Key Item; + typedef int Prio; + typedef std::pair Pair; + typedef IM ItemIntMap; + + private: + + typedef _bucket_heap_bits::DirectionTraits Direction; + + public: + + /// \brief Type to represent the items states. + /// + /// Each Item element have a state associated to it. It may be "in heap", + /// "pre heap" or "post heap". The latter two are indifferent from the + /// heap's point of view, but may be useful to the user. + /// + /// The item-int map must be initialized in such way that it assigns + /// \c PRE_HEAP (-1) to any element to be put in the heap. + enum State { + IN_HEAP = 0, ///< = 0. + PRE_HEAP = -1, ///< = -1. + POST_HEAP = -2 ///< = -2. + }; + + public: + + /// \brief The constructor. + /// + /// The constructor. + /// \param map should be given to the constructor, since it is used + /// internally to handle the cross references. The value of the map + /// should be PRE_HEAP (-1) for each element. + explicit SimpleBucketHeap(ItemIntMap &map) + : _iim(map), _free(-1), _num(0), _minimum(0) {} + + /// \brief Returns the number of items stored in the heap. + /// + /// The number of items stored in the heap. + int size() const { return _num; } + + /// \brief Checks if the heap stores no items. + /// + /// Returns \c true if and only if the heap stores no items. + bool empty() const { return _num == 0; } + + /// \brief Make empty this heap. + /// + /// Make empty this heap. It does not change the cross reference + /// map. If you want to reuse a heap what is not surely empty you + /// should first clear the heap and after that you should set the + /// cross reference map for each item to \c PRE_HEAP. + void clear() { + _data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; + } + + /// \brief Insert a pair of item and priority into the heap. + /// + /// Adds \c p.first to the heap with priority \c p.second. + /// \param p The pair to insert. + void push(const Pair& p) { + push(p.first, p.second); + } + + /// \brief Insert an item into the heap with the given priority. + /// + /// Adds \c i to the heap with priority \c p. + /// \param i The item to insert. + /// \param p The priority of the item. + void push(const Item &i, const Prio &p) { + int idx; + if (_free == -1) { + idx = _data.size(); + _data.push_back(BucketItem(i)); + } else { + idx = _free; + _free = _data[idx].next; + _data[idx].item = i; + } + _iim[i] = idx; + if (p >= int(_first.size())) _first.resize(p + 1, -1); + _data[idx].next = _first[p]; + _first[p] = idx; + if (Direction::less(p, _minimum)) { + _minimum = p; + } + ++_num; + } + + /// \brief Returns the item with minimum priority. + /// + /// This method returns the item with minimum priority. + /// \pre The heap must be nonempty. + Item top() const { + while (_first[_minimum] == -1) { + Direction::increase(_minimum); + } + return _data[_first[_minimum]].item; + } + + /// \brief Returns the minimum priority. + /// + /// It returns the minimum priority. + /// \pre The heap must be nonempty. + Prio prio() const { + while (_first[_minimum] == -1) { + Direction::increase(_minimum); + } + return _minimum; + } + + /// \brief Deletes the item with minimum priority. + /// + /// This method deletes the item with minimum priority from the heap. + /// \pre The heap must be non-empty. + void pop() { + while (_first[_minimum] == -1) { + Direction::increase(_minimum); + } + int idx = _first[_minimum]; + _iim[_data[idx].item] = -2; + _first[_minimum] = _data[idx].next; + _data[idx].next = _free; + _free = idx; + --_num; + } + + /// \brief Returns the priority of \c i. + /// + /// This function returns the priority of item \c i. + /// \warning This operator is not a constant time function + /// because it scans the whole data structure to find the proper + /// value. + /// \pre \c i must be in the heap. + /// \param i The item. + Prio operator[](const Item &i) const { + for (int k = 0; k < _first.size(); ++k) { + int idx = _first[k]; + while (idx != -1) { + if (_data[idx].item == i) { + return k; + } + idx = _data[idx].next; + } + } + return -1; + } + + /// \brief Returns if \c item is in, has already been in, or has + /// never been in the heap. + /// + /// This method returns PRE_HEAP if \c item has never been in the + /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP + /// otherwise. In the latter case it is possible that \c item will + /// get back to the heap again. + /// \param i The item. + State state(const Item &i) const { + int idx = _iim[i]; + if (idx >= 0) idx = 0; + return State(idx); + } + + private: + + struct BucketItem { + BucketItem(const Item& _item) + : item(_item) {} + + Item item; + int next; + }; + + ItemIntMap& _iim; + std::vector _first; + std::vector _data; + int _free, _num; + mutable int _minimum; + + }; // class SimpleBucketHeap + +} + +#endif diff --git a/lemon/concepts/maps.h b/lemon/concepts/maps.h --- a/lemon/concepts/maps.h +++ b/lemon/concepts/maps.h @@ -182,7 +182,8 @@ template struct Constraints { - void constraints() { + typename enable_if::type + constraints() { checkConcept, _ReferenceMap >(); ref = m[key]; m[key] = val; diff --git a/lemon/fib_heap.h b/lemon/fib_heap.h new file mode 100644 --- /dev/null +++ b/lemon/fib_heap.h @@ -0,0 +1,468 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_FIB_HEAP_H +#define LEMON_FIB_HEAP_H + +///\file +///\ingroup auxdat +///\brief Fibonacci Heap implementation. + +#include +#include +#include + +namespace lemon { + + /// \ingroup auxdat + /// + ///\brief Fibonacci Heap. + /// + ///This class implements the \e Fibonacci \e heap data structure. A \e heap + ///is a data structure for storing items with specified values called \e + ///priorities in such a way that finding the item with minimum priority is + ///efficient. \c CMP specifies the ordering of the priorities. In a heap + ///one can change the priority of an item, add or erase an item, etc. + /// + ///The methods \ref increase and \ref erase are not efficient in a Fibonacci + ///heap. In case of many calls to these operations, it is better to use a + ///\ref BinHeap "binary heap". + /// + ///\param PRIO Type of the priority of the items. + ///\param IM A read and writable Item int map, used internally + ///to handle the cross references. + ///\param CMP A class for the ordering of the priorities. The + ///default is \c std::less. + /// + ///\sa BinHeap + ///\sa Dijkstra +#ifdef DOXYGEN + template +#else + template > +#endif + class FibHeap { + public: + ///\e + typedef IM ItemIntMap; + ///\e + typedef PRIO Prio; + ///\e + typedef typename ItemIntMap::Key Item; + ///\e + typedef std::pair Pair; + ///\e + typedef CMP Compare; + + private: + class Store; + + std::vector _data; + int _minimum; + ItemIntMap &_iim; + Compare _comp; + int _num; + + public: + + /// \brief Type to represent the items states. + /// + /// Each Item element have a state associated to it. It may be "in heap", + /// "pre heap" or "post heap". The latter two are indifferent from the + /// heap's point of view, but may be useful to the user. + /// + /// The item-int map must be initialized in such way that it assigns + /// \c PRE_HEAP (-1) to any element to be put in the heap. + enum State { + IN_HEAP = 0, ///< = 0. + PRE_HEAP = -1, ///< = -1. + POST_HEAP = -2 ///< = -2. + }; + + /// \brief The constructor + /// + /// \c map should be given to the constructor, since it is + /// used internally to handle the cross references. + explicit FibHeap(ItemIntMap &map) + : _minimum(0), _iim(map), _num() {} + + /// \brief The constructor + /// + /// \c map should be given to the constructor, since it is used + /// internally to handle the cross references. \c comp is an + /// object for ordering of the priorities. + FibHeap(ItemIntMap &map, const Compare &comp) + : _minimum(0), _iim(map), _comp(comp), _num() {} + + /// \brief The number of items stored in the heap. + /// + /// Returns the number of items stored in the heap. + int size() const { return _num; } + + /// \brief Checks if the heap stores no items. + /// + /// Returns \c true if and only if the heap stores no items. + bool empty() const { return _num==0; } + + /// \brief Make empty this heap. + /// + /// Make empty this heap. It does not change the cross reference + /// map. If you want to reuse a heap what is not surely empty you + /// should first clear the heap and after that you should set the + /// cross reference map for each item to \c PRE_HEAP. + void clear() { + _data.clear(); _minimum = 0; _num = 0; + } + + /// \brief \c item gets to the heap with priority \c value independently + /// if \c item was already there. + /// + /// This method calls \ref push(\c item, \c value) if \c item is not + /// stored in the heap and it calls \ref decrease(\c item, \c value) or + /// \ref increase(\c item, \c value) otherwise. + void set (const Item& item, const Prio& value) { + int i=_iim[item]; + if ( i >= 0 && _data[i].in ) { + if ( _comp(value, _data[i].prio) ) decrease(item, value); + if ( _comp(_data[i].prio, value) ) increase(item, value); + } else push(item, value); + } + + /// \brief Adds \c item to the heap with priority \c value. + /// + /// Adds \c item to the heap with priority \c value. + /// \pre \c item must not be stored in the heap. + void push (const Item& item, const Prio& value) { + int i=_iim[item]; + if ( i < 0 ) { + int s=_data.size(); + _iim.set( item, s ); + Store st; + st.name=item; + _data.push_back(st); + i=s; + } else { + _data[i].parent=_data[i].child=-1; + _data[i].degree=0; + _data[i].in=true; + _data[i].marked=false; + } + + if ( _num ) { + _data[_data[_minimum].right_neighbor].left_neighbor=i; + _data[i].right_neighbor=_data[_minimum].right_neighbor; + _data[_minimum].right_neighbor=i; + _data[i].left_neighbor=_minimum; + if ( _comp( value, _data[_minimum].prio) ) _minimum=i; + } else { + _data[i].right_neighbor=_data[i].left_neighbor=i; + _minimum=i; + } + _data[i].prio=value; + ++_num; + } + + /// \brief Returns the item with minimum priority relative to \c Compare. + /// + /// This method returns the item with minimum priority relative to \c + /// Compare. + /// \pre The heap must be nonempty. + Item top() const { return _data[_minimum].name; } + + /// \brief Returns the minimum priority relative to \c Compare. + /// + /// It returns the minimum priority relative to \c Compare. + /// \pre The heap must be nonempty. + const Prio& prio() const { return _data[_minimum].prio; } + + /// \brief Returns the priority of \c item. + /// + /// It returns the priority of \c item. + /// \pre \c item must be in the heap. + const Prio& operator[](const Item& item) const { + return _data[_iim[item]].prio; + } + + /// \brief Deletes the item with minimum priority relative to \c Compare. + /// + /// This method deletes the item with minimum priority relative to \c + /// Compare from the heap. + /// \pre The heap must be non-empty. + void pop() { + /*The first case is that there are only one root.*/ + if ( _data[_minimum].left_neighbor==_minimum ) { + _data[_minimum].in=false; + if ( _data[_minimum].degree!=0 ) { + makeroot(_data[_minimum].child); + _minimum=_data[_minimum].child; + balance(); + } + } else { + int right=_data[_minimum].right_neighbor; + unlace(_minimum); + _data[_minimum].in=false; + if ( _data[_minimum].degree > 0 ) { + int left=_data[_minimum].left_neighbor; + int child=_data[_minimum].child; + int last_child=_data[child].left_neighbor; + + makeroot(child); + + _data[left].right_neighbor=child; + _data[child].left_neighbor=left; + _data[right].left_neighbor=last_child; + _data[last_child].right_neighbor=right; + } + _minimum=right; + balance(); + } // the case where there are more roots + --_num; + } + + /// \brief Deletes \c item from the heap. + /// + /// This method deletes \c item from the heap, if \c item was already + /// stored in the heap. It is quite inefficient in Fibonacci heaps. + void erase (const Item& item) { + int i=_iim[item]; + + if ( i >= 0 && _data[i].in ) { + if ( _data[i].parent!=-1 ) { + int p=_data[i].parent; + cut(i,p); + cascade(p); + } + _minimum=i; //As if its prio would be -infinity + pop(); + } + } + + /// \brief Decreases the priority of \c item to \c value. + /// + /// This method decreases the priority of \c item to \c value. + /// \pre \c item must be stored in the heap with priority at least \c + /// value relative to \c Compare. + void decrease (Item item, const Prio& value) { + int i=_iim[item]; + _data[i].prio=value; + int p=_data[i].parent; + + if ( p!=-1 && _comp(value, _data[p].prio) ) { + cut(i,p); + cascade(p); + } + if ( _comp(value, _data[_minimum].prio) ) _minimum=i; + } + + /// \brief Increases the priority of \c item to \c value. + /// + /// This method sets the priority of \c item to \c value. Though + /// there is no precondition on the priority of \c item, this + /// method should be used only if it is indeed necessary to increase + /// (relative to \c Compare) the priority of \c item, because this + /// method is inefficient. + void increase (Item item, const Prio& value) { + erase(item); + push(item, value); + } + + + /// \brief Returns if \c item is in, has already been in, or has never + /// been in the heap. + /// + /// This method returns PRE_HEAP if \c item has never been in the + /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP + /// otherwise. In the latter case it is possible that \c item will + /// get back to the heap again. + State state(const Item &item) const { + int i=_iim[item]; + if( i>=0 ) { + if ( _data[i].in ) i=0; + else i=-2; + } + return State(i); + } + + /// \brief Sets the state of the \c item in the heap. + /// + /// Sets the state of the \c item in the heap. It can be used to + /// manually clear the heap when it is important to achive the + /// better time _complexity. + /// \param i The item. + /// \param st The state. It should not be \c IN_HEAP. + void state(const Item& i, State st) { + switch (st) { + case POST_HEAP: + case PRE_HEAP: + if (state(i) == IN_HEAP) { + erase(i); + } + _iim[i] = st; + break; + case IN_HEAP: + break; + } + } + + private: + + void balance() { + + int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; + + std::vector A(maxdeg,-1); + + /* + *Recall that now minimum does not point to the minimum prio element. + *We set minimum to this during balance(). + */ + int anchor=_data[_minimum].left_neighbor; + int next=_minimum; + bool end=false; + + do { + int active=next; + if ( anchor==active ) end=true; + int d=_data[active].degree; + next=_data[active].right_neighbor; + + while (A[d]!=-1) { + if( _comp(_data[active].prio, _data[A[d]].prio) ) { + fuse(active,A[d]); + } else { + fuse(A[d],active); + active=A[d]; + } + A[d]=-1; + ++d; + } + A[d]=active; + } while ( !end ); + + + while ( _data[_minimum].parent >=0 ) + _minimum=_data[_minimum].parent; + int s=_minimum; + int m=_minimum; + do { + if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; + s=_data[s].right_neighbor; + } while ( s != m ); + } + + void makeroot(int c) { + int s=c; + do { + _data[s].parent=-1; + s=_data[s].right_neighbor; + } while ( s != c ); + } + + void cut(int a, int b) { + /* + *Replacing a from the children of b. + */ + --_data[b].degree; + + if ( _data[b].degree !=0 ) { + int child=_data[b].child; + if ( child==a ) + _data[b].child=_data[child].right_neighbor; + unlace(a); + } + + + /*Lacing a to the roots.*/ + int right=_data[_minimum].right_neighbor; + _data[_minimum].right_neighbor=a; + _data[a].left_neighbor=_minimum; + _data[a].right_neighbor=right; + _data[right].left_neighbor=a; + + _data[a].parent=-1; + _data[a].marked=false; + } + + void cascade(int a) { + if ( _data[a].parent!=-1 ) { + int p=_data[a].parent; + + if ( _data[a].marked==false ) _data[a].marked=true; + else { + cut(a,p); + cascade(p); + } + } + } + + void fuse(int a, int b) { + unlace(b); + + /*Lacing b under a.*/ + _data[b].parent=a; + + if (_data[a].degree==0) { + _data[b].left_neighbor=b; + _data[b].right_neighbor=b; + _data[a].child=b; + } else { + int child=_data[a].child; + int last_child=_data[child].left_neighbor; + _data[child].left_neighbor=b; + _data[b].right_neighbor=child; + _data[last_child].right_neighbor=b; + _data[b].left_neighbor=last_child; + } + + ++_data[a].degree; + + _data[b].marked=false; + } + + /* + *It is invoked only if a has siblings. + */ + void unlace(int a) { + int leftn=_data[a].left_neighbor; + int rightn=_data[a].right_neighbor; + _data[leftn].right_neighbor=rightn; + _data[rightn].left_neighbor=leftn; + } + + + class Store { + friend class FibHeap; + + Item name; + int parent; + int left_neighbor; + int right_neighbor; + int child; + int degree; + bool marked; + bool in; + Prio prio; + + Store() : parent(-1), child(-1), degree(), marked(false), in(true) {} + }; + }; + +} //namespace lemon + +#endif //LEMON_FIB_HEAP_H + diff --git a/lemon/radix_heap.h b/lemon/radix_heap.h new file mode 100644 --- /dev/null +++ b/lemon/radix_heap.h @@ -0,0 +1,433 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_RADIX_HEAP_H +#define LEMON_RADIX_HEAP_H + +///\ingroup auxdat +///\file +///\brief Radix Heap implementation. + +#include +#include + +namespace lemon { + + + /// \ingroup auxdata + /// + /// \brief A Radix Heap implementation. + /// + /// This class implements the \e radix \e heap data structure. A \e heap + /// is a data structure for storing items with specified values called \e + /// priorities in such a way that finding the item with minimum priority is + /// efficient. This heap type can store only items with \e int priority. + /// In a heap one can change the priority of an item, add or erase an + /// item, but the priority cannot be decreased under the last removed + /// item's priority. + /// + /// \param IM A read and writable Item int map, used internally + /// to handle the cross references. + /// + /// \see BinHeap + /// \see Dijkstra + template + class RadixHeap { + + public: + typedef typename IM::Key Item; + typedef int Prio; + typedef IM ItemIntMap; + + /// \brief Exception thrown by RadixHeap. + /// + /// This Exception is thrown when a smaller priority + /// is inserted into the \e RadixHeap then the last time erased. + /// \see RadixHeap + + class UnderFlowPriorityError : public Exception { + public: + virtual const char* what() const throw() { + return "lemon::RadixHeap::UnderFlowPriorityError"; + } + }; + + /// \brief Type to represent the items states. + /// + /// Each Item element have a state associated to it. It may be "in heap", + /// "pre heap" or "post heap". The latter two are indifferent from the + /// heap's point of view, but may be useful to the user. + /// + /// The ItemIntMap \e should be initialized in such way that it maps + /// PRE_HEAP (-1) to any element to be put in the heap... + enum State { + IN_HEAP = 0, + PRE_HEAP = -1, + POST_HEAP = -2 + }; + + private: + + struct RadixItem { + int prev, next, box; + Item item; + int prio; + RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {} + }; + + struct RadixBox { + int first; + int min, size; + RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {} + }; + + std::vector data; + std::vector boxes; + + ItemIntMap &_iim; + + + public: + /// \brief The constructor. + /// + /// The constructor. + /// + /// \param map It should be given to the constructor, since it is used + /// internally to handle the cross references. The value of the map + /// should be PRE_HEAP (-1) for each element. + /// + /// \param minimal The initial minimal value of the heap. + /// \param capacity It determines the initial capacity of the heap. + RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0) + : _iim(map) { + boxes.push_back(RadixBox(minimal, 1)); + boxes.push_back(RadixBox(minimal + 1, 1)); + while (lower(boxes.size() - 1, capacity + minimal - 1)) { + extend(); + } + } + + /// The number of items stored in the heap. + /// + /// \brief Returns the number of items stored in the heap. + int size() const { return data.size(); } + /// \brief Checks if the heap stores no items. + /// + /// Returns \c true if and only if the heap stores no items. + bool empty() const { return data.empty(); } + + /// \brief Make empty this heap. + /// + /// Make empty this heap. It does not change the cross reference + /// map. If you want to reuse a heap what is not surely empty you + /// should first clear the heap and after that you should set the + /// cross reference map for each item to \c PRE_HEAP. + void clear(int minimal = 0, int capacity = 0) { + data.clear(); boxes.clear(); + boxes.push_back(RadixBox(minimal, 1)); + boxes.push_back(RadixBox(minimal + 1, 1)); + while (lower(boxes.size() - 1, capacity + minimal - 1)) { + extend(); + } + } + + private: + + bool upper(int box, Prio pr) { + return pr < boxes[box].min; + } + + bool lower(int box, Prio pr) { + return pr >= boxes[box].min + boxes[box].size; + } + + /// \brief Remove item from the box list. + void remove(int index) { + if (data[index].prev >= 0) { + data[data[index].prev].next = data[index].next; + } else { + boxes[data[index].box].first = data[index].next; + } + if (data[index].next >= 0) { + data[data[index].next].prev = data[index].prev; + } + } + + /// \brief Insert item into the box list. + void insert(int box, int index) { + if (boxes[box].first == -1) { + boxes[box].first = index; + data[index].next = data[index].prev = -1; + } else { + data[index].next = boxes[box].first; + data[boxes[box].first].prev = index; + data[index].prev = -1; + boxes[box].first = index; + } + data[index].box = box; + } + + /// \brief Add a new box to the box list. + void extend() { + int min = boxes.back().min + boxes.back().size; + int bs = 2 * boxes.back().size; + boxes.push_back(RadixBox(min, bs)); + } + + /// \brief Move an item up into the proper box. + void bubble_up(int index) { + if (!lower(data[index].box, data[index].prio)) return; + remove(index); + int box = findUp(data[index].box, data[index].prio); + insert(box, index); + } + + /// \brief Find up the proper box for the item with the given prio. + int findUp(int start, int pr) { + while (lower(start, pr)) { + if (++start == int(boxes.size())) { + extend(); + } + } + return start; + } + + /// \brief Move an item down into the proper box. + void bubble_down(int index) { + if (!upper(data[index].box, data[index].prio)) return; + remove(index); + int box = findDown(data[index].box, data[index].prio); + insert(box, index); + } + + /// \brief Find up the proper box for the item with the given prio. + int findDown(int start, int pr) { + while (upper(start, pr)) { + if (--start < 0) throw UnderFlowPriorityError(); + } + return start; + } + + /// \brief Find the first not empty box. + int findFirst() { + int first = 0; + while (boxes[first].first == -1) ++first; + return first; + } + + /// \brief Gives back the minimal prio of the box. + int minValue(int box) { + int min = data[boxes[box].first].prio; + for (int k = boxes[box].first; k != -1; k = data[k].next) { + if (data[k].prio < min) min = data[k].prio; + } + return min; + } + + /// \brief Rearrange the items of the heap and makes the + /// first box not empty. + void moveDown() { + int box = findFirst(); + if (box == 0) return; + int min = minValue(box); + for (int i = 0; i <= box; ++i) { + boxes[i].min = min; + min += boxes[i].size; + } + int curr = boxes[box].first, next; + while (curr != -1) { + next = data[curr].next; + bubble_down(curr); + curr = next; + } + } + + void relocate_last(int index) { + if (index != int(data.size()) - 1) { + data[index] = data.back(); + if (data[index].prev != -1) { + data[data[index].prev].next = index; + } else { + boxes[data[index].box].first = index; + } + if (data[index].next != -1) { + data[data[index].next].prev = index; + } + _iim[data[index].item] = index; + } + data.pop_back(); + } + + public: + + /// \brief Insert an item into the heap with the given priority. + /// + /// Adds \c i to the heap with priority \c p. + /// \param i The item to insert. + /// \param p The priority of the item. + void push(const Item &i, const Prio &p) { + int n = data.size(); + _iim.set(i, n); + data.push_back(RadixItem(i, p)); + while (lower(boxes.size() - 1, p)) { + extend(); + } + int box = findDown(boxes.size() - 1, p); + insert(box, n); + } + + /// \brief Returns the item with minimum priority. + /// + /// This method returns the item with minimum priority. + /// \pre The heap must be nonempty. + Item top() const { + const_cast&>(*this).moveDown(); + return data[boxes[0].first].item; + } + + /// \brief Returns the minimum priority. + /// + /// It returns the minimum priority. + /// \pre The heap must be nonempty. + Prio prio() const { + const_cast&>(*this).moveDown(); + return data[boxes[0].first].prio; + } + + /// \brief Deletes the item with minimum priority. + /// + /// This method deletes the item with minimum priority. + /// \pre The heap must be non-empty. + void pop() { + moveDown(); + int index = boxes[0].first; + _iim[data[index].item] = POST_HEAP; + remove(index); + relocate_last(index); + } + + /// \brief Deletes \c i from the heap. + /// + /// This method deletes item \c i from the heap, if \c i was + /// already stored in the heap. + /// \param i The item to erase. + void erase(const Item &i) { + int index = _iim[i]; + _iim[i] = POST_HEAP; + remove(index); + relocate_last(index); + } + + /// \brief Returns the priority of \c i. + /// + /// This function returns the priority of item \c i. + /// \pre \c i must be in the heap. + /// \param i The item. + Prio operator[](const Item &i) const { + int idx = _iim[i]; + return data[idx].prio; + } + + /// \brief \c i gets to the heap with priority \c p independently + /// if \c i was already there. + /// + /// This method calls \ref push(\c i, \c p) if \c i is not stored + /// in the heap and sets the priority of \c i to \c p otherwise. + /// It may throw an \e UnderFlowPriorityException. + /// \param i The item. + /// \param p The priority. + void set(const Item &i, const Prio &p) { + int idx = _iim[i]; + if( idx < 0 ) { + push(i, p); + } + else if( p >= data[idx].prio ) { + data[idx].prio = p; + bubble_up(idx); + } else { + data[idx].prio = p; + bubble_down(idx); + } + } + + + /// \brief Decreases the priority of \c i to \c p. + /// + /// This method decreases the priority of item \c i to \c p. + /// \pre \c i must be stored in the heap with priority at least \c p, and + /// \c should be greater or equal to the last removed item's priority. + /// \param i The item. + /// \param p The priority. + void decrease(const Item &i, const Prio &p) { + int idx = _iim[i]; + data[idx].prio = p; + bubble_down(idx); + } + + /// \brief Increases the priority of \c i to \c p. + /// + /// This method sets the priority of item \c i to \c p. + /// \pre \c i must be stored in the heap with priority at most \c p + /// \param i The item. + /// \param p The priority. + void increase(const Item &i, const Prio &p) { + int idx = _iim[i]; + data[idx].prio = p; + bubble_up(idx); + } + + /// \brief Returns if \c item is in, has already been in, or has + /// never been in the heap. + /// + /// This method returns PRE_HEAP if \c item has never been in the + /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP + /// otherwise. In the latter case it is possible that \c item will + /// get back to the heap again. + /// \param i The item. + State state(const Item &i) const { + int s = _iim[i]; + if( s >= 0 ) s = 0; + return State(s); + } + + /// \brief Sets the state of the \c item in the heap. + /// + /// Sets the state of the \c item in the heap. It can be used to + /// manually clear the heap when it is important to achive the + /// better time complexity. + /// \param i The item. + /// \param st The state. It should not be \c IN_HEAP. + void state(const Item& i, State st) { + switch (st) { + case POST_HEAP: + case PRE_HEAP: + if (state(i) == IN_HEAP) { + erase(i); + } + _iim[i] = st; + break; + case IN_HEAP: + break; + } + } + + }; // class RadixHeap + +} // namespace lemon + +#endif // LEMON_RADIX_HEAP_H diff --git a/test/CMakeLists.txt b/test/CMakeLists.txt --- a/test/CMakeLists.txt +++ b/test/CMakeLists.txt @@ -65,6 +65,7 @@ TARGET_LINK_LIBRARIES(lp_test ${LP_TEST_LIBS}) ADD_TEST(lp_test lp_test) + ADD_DEPENDENCIES(check lp_test) IF(WIN32 AND LEMON_HAVE_GLPK) GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) @@ -106,6 +107,7 @@ TARGET_LINK_LIBRARIES(mip_test ${MIP_TEST_LIBS}) ADD_TEST(mip_test mip_test) + ADD_DEPENDENCIES(check mip_test) IF(WIN32 AND LEMON_HAVE_GLPK) GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) diff --git a/test/heap_test.cc b/test/heap_test.cc --- a/test/heap_test.cc +++ b/test/heap_test.cc @@ -31,6 +31,9 @@ #include #include +#include +#include +#include #include "test_tools.h" @@ -183,5 +186,39 @@ dijkstraHeapTest(digraph, length, source); } + { + typedef FibHeap IntHeap; + checkConcept, IntHeap>(); + heapSortTest(); + heapIncreaseTest(); + + typedef FibHeap NodeHeap; + checkConcept, NodeHeap>(); + dijkstraHeapTest(digraph, length, source); + } + + { + typedef RadixHeap IntHeap; + checkConcept, IntHeap>(); + heapSortTest(); + heapIncreaseTest(); + + typedef RadixHeap NodeHeap; + checkConcept, NodeHeap>(); + dijkstraHeapTest(digraph, length, source); + } + + { + typedef BucketHeap IntHeap; + checkConcept, IntHeap>(); + heapSortTest(); + heapIncreaseTest(); + + typedef BucketHeap NodeHeap; + checkConcept, NodeHeap>(); + dijkstraHeapTest(digraph, length, source); + } + + return 0; }