# HG changeset patch # User Peter Kovacs # Date 2009-08-11 21:53:39 # Node ID 97744b6dabf8d706434e30dc3caadb99db050c06 # Parent 3b544a9c92db4c654d06009f6eb0ffacff2d5392 Add HartmannOrlin algorithm class (#179) This algorithm is an improved version of Karp's original method, it applies an efficient early termination scheme. The interface is the same as Karp's and Howard's interface. diff --git a/lemon/Makefile.am b/lemon/Makefile.am --- a/lemon/Makefile.am +++ b/lemon/Makefile.am @@ -83,6 +83,7 @@ lemon/gomory_hu.h \ lemon/graph_to_eps.h \ lemon/grid_graph.h \ + lemon/hartmann_orlin.h \ lemon/howard.h \ lemon/hypercube_graph.h \ lemon/karp.h \ diff --git a/lemon/hartmann_orlin.h b/lemon/hartmann_orlin.h new file mode 100644 --- /dev/null +++ b/lemon/hartmann_orlin.h @@ -0,0 +1,618 @@ +/* -*- C++ -*- + * + * This file is a part of LEMON, a generic C++ optimization library + * + * Copyright (C) 2003-2008 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_HARTMANN_ORLIN_H +#define LEMON_HARTMANN_ORLIN_H + +/// \ingroup shortest_path +/// +/// \file +/// \brief Hartmann-Orlin's algorithm for finding a minimum mean cycle. + +#include +#include +#include +#include +#include +#include + +namespace lemon { + + /// \brief Default traits class of HartmannOrlin algorithm. + /// + /// Default traits class of HartmannOrlin algorithm. + /// \tparam GR The type of the digraph. + /// \tparam LEN The type of the length map. + /// It must conform to the \ref concepts::Rea_data "Rea_data" concept. +#ifdef DOXYGEN + template +#else + template ::is_integer> +#endif + struct HartmannOrlinDefaultTraits + { + /// The type of the digraph + typedef GR Digraph; + /// The type of the length map + typedef LEN LengthMap; + /// The type of the arc lengths + typedef typename LengthMap::Value Value; + + /// \brief The large value type used for internal computations + /// + /// The large value type used for internal computations. + /// It is \c long \c long if the \c Value type is integer, + /// otherwise it is \c double. + /// \c Value must be convertible to \c LargeValue. + typedef double LargeValue; + + /// The tolerance type used for internal computations + typedef lemon::Tolerance Tolerance; + + /// \brief The path type of the found cycles + /// + /// The path type of the found cycles. + /// It must conform to the \ref lemon::concepts::Path "Path" concept + /// and it must have an \c addBack() function. + typedef lemon::Path Path; + }; + + // Default traits class for integer value types + template + struct HartmannOrlinDefaultTraits + { + typedef GR Digraph; + typedef LEN LengthMap; + typedef typename LengthMap::Value Value; +#ifdef LEMON_HAVE_LONG_LONG + typedef long long LargeValue; +#else + typedef long LargeValue; +#endif + typedef lemon::Tolerance Tolerance; + typedef lemon::Path Path; + }; + + + /// \addtogroup shortest_path + /// @{ + + /// \brief Implementation of the Hartmann-Orlin algorithm for finding + /// a minimum mean cycle. + /// + /// This class implements the Hartmann-Orlin algorithm for finding + /// a directed cycle of minimum mean length (cost) in a digraph. + /// It is an improved version of \ref Karp "Karp's original algorithm", + /// it applies an efficient early termination scheme. + /// + /// \tparam GR The type of the digraph the algorithm runs on. + /// \tparam LEN The type of the length map. The default + /// map type is \ref concepts::Digraph::ArcMap "GR::ArcMap". +#ifdef DOXYGEN + template +#else + template < typename GR, + typename LEN = typename GR::template ArcMap, + typename TR = HartmannOrlinDefaultTraits > +#endif + class HartmannOrlin + { + public: + + /// The type of the digraph + typedef typename TR::Digraph Digraph; + /// The type of the length map + typedef typename TR::LengthMap LengthMap; + /// The type of the arc lengths + typedef typename TR::Value Value; + + /// \brief The large value type + /// + /// The large value type used for internal computations. + /// Using the \ref HartmannOrlinDefaultTraits "default traits class", + /// it is \c long \c long if the \c Value type is integer, + /// otherwise it is \c double. + typedef typename TR::LargeValue LargeValue; + + /// The tolerance type + typedef typename TR::Tolerance Tolerance; + + /// \brief The path type of the found cycles + /// + /// The path type of the found cycles. + /// Using the \ref HartmannOrlinDefaultTraits "default traits class", + /// it is \ref lemon::Path "Path". + typedef typename TR::Path Path; + + /// The \ref HartmannOrlinDefaultTraits "traits class" of the algorithm + typedef TR Traits; + + private: + + TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); + + // Data sturcture for path data + struct PathData + { + bool found; + LargeValue dist; + Arc pred; + PathData(bool f = false, LargeValue d = 0, Arc p = INVALID) : + found(f), dist(d), pred(p) {} + }; + + typedef typename Digraph::template NodeMap > + PathDataNodeMap; + + private: + + // The digraph the algorithm runs on + const Digraph &_gr; + // The length of the arcs + const LengthMap &_length; + + // Data for storing the strongly connected components + int _comp_num; + typename Digraph::template NodeMap _comp; + std::vector > _comp_nodes; + std::vector* _nodes; + typename Digraph::template NodeMap > _out_arcs; + + // Data for the found cycles + bool _curr_found, _best_found; + LargeValue _curr_length, _best_length; + int _curr_size, _best_size; + Node _curr_node, _best_node; + int _curr_level, _best_level; + + Path *_cycle_path; + bool _local_path; + + // Node map for storing path data + PathDataNodeMap _data; + // The processed nodes in the last round + std::vector _process; + + Tolerance _tolerance; + + public: + + /// \name Named Template Parameters + /// @{ + + template + struct SetLargeValueTraits : public Traits { + typedef T LargeValue; + typedef lemon::Tolerance Tolerance; + }; + + /// \brief \ref named-templ-param "Named parameter" for setting + /// \c LargeValue type. + /// + /// \ref named-templ-param "Named parameter" for setting \c LargeValue + /// type. It is used for internal computations in the algorithm. + template + struct SetLargeValue + : public HartmannOrlin > { + typedef HartmannOrlin > Create; + }; + + template + struct SetPathTraits : public Traits { + typedef T Path; + }; + + /// \brief \ref named-templ-param "Named parameter" for setting + /// \c %Path type. + /// + /// \ref named-templ-param "Named parameter" for setting the \c %Path + /// type of the found cycles. + /// It must conform to the \ref lemon::concepts::Path "Path" concept + /// and it must have an \c addFront() function. + template + struct SetPath + : public HartmannOrlin > { + typedef HartmannOrlin > Create; + }; + + /// @} + + public: + + /// \brief Constructor. + /// + /// The constructor of the class. + /// + /// \param digraph The digraph the algorithm runs on. + /// \param length The lengths (costs) of the arcs. + HartmannOrlin( const Digraph &digraph, + const LengthMap &length ) : + _gr(digraph), _length(length), _comp(digraph), _out_arcs(digraph), + _best_found(false), _best_length(0), _best_size(1), + _cycle_path(NULL), _local_path(false), _data(digraph) + {} + + /// Destructor. + ~HartmannOrlin() { + if (_local_path) delete _cycle_path; + } + + /// \brief Set the path structure for storing the found cycle. + /// + /// This function sets an external path structure for storing the + /// found cycle. + /// + /// If you don't call this function before calling \ref run() or + /// \ref findMinMean(), it will allocate a local \ref Path "path" + /// structure. The destuctor deallocates this automatically + /// allocated object, of course. + /// + /// \note The algorithm calls only the \ref lemon::Path::addFront() + /// "addFront()" function of the given path structure. + /// + /// \return (*this) + HartmannOrlin& cycle(Path &path) { + if (_local_path) { + delete _cycle_path; + _local_path = false; + } + _cycle_path = &path; + return *this; + } + + /// \name Execution control + /// The simplest way to execute the algorithm is to call the \ref run() + /// function.\n + /// If you only need the minimum mean length, you may call + /// \ref findMinMean(). + + /// @{ + + /// \brief Run the algorithm. + /// + /// This function runs the algorithm. + /// It can be called more than once (e.g. if the underlying digraph + /// and/or the arc lengths have been modified). + /// + /// \return \c true if a directed cycle exists in the digraph. + /// + /// \note mmc.run() is just a shortcut of the following code. + /// \code + /// return mmc.findMinMean() && mmc.findCycle(); + /// \endcode + bool run() { + return findMinMean() && findCycle(); + } + + /// \brief Find the minimum cycle mean. + /// + /// This function finds the minimum mean length of the directed + /// cycles in the digraph. + /// + /// \return \c true if a directed cycle exists in the digraph. + bool findMinMean() { + // Initialization and find strongly connected components + init(); + findComponents(); + + // Find the minimum cycle mean in the components + for (int comp = 0; comp < _comp_num; ++comp) { + if (!initComponent(comp)) continue; + processRounds(); + + // Update the best cycle (global minimum mean cycle) + if ( _curr_found && (!_best_found || + _curr_length * _best_size < _best_length * _curr_size) ) { + _best_found = true; + _best_length = _curr_length; + _best_size = _curr_size; + _best_node = _curr_node; + _best_level = _curr_level; + } + } + return _best_found; + } + + /// \brief Find a minimum mean directed cycle. + /// + /// This function finds a directed cycle of minimum mean length + /// in the digraph using the data computed by findMinMean(). + /// + /// \return \c true if a directed cycle exists in the digraph. + /// + /// \pre \ref findMinMean() must be called before using this function. + bool findCycle() { + if (!_best_found) return false; + IntNodeMap reached(_gr, -1); + int r = _best_level + 1; + Node u = _best_node; + while (reached[u] < 0) { + reached[u] = --r; + u = _gr.source(_data[u][r].pred); + } + r = reached[u]; + Arc e = _data[u][r].pred; + _cycle_path->addFront(e); + _best_length = _length[e]; + _best_size = 1; + Node v; + while ((v = _gr.source(e)) != u) { + e = _data[v][--r].pred; + _cycle_path->addFront(e); + _best_length += _length[e]; + ++_best_size; + } + return true; + } + + /// @} + + /// \name Query Functions + /// The results of the algorithm can be obtained using these + /// functions.\n + /// The algorithm should be executed before using them. + + /// @{ + + /// \brief Return the total length of the found cycle. + /// + /// This function returns the total length of the found cycle. + /// + /// \pre \ref run() or \ref findMinMean() must be called before + /// using this function. + LargeValue cycleLength() const { + return _best_length; + } + + /// \brief Return the number of arcs on the found cycle. + /// + /// This function returns the number of arcs on the found cycle. + /// + /// \pre \ref run() or \ref findMinMean() must be called before + /// using this function. + int cycleArcNum() const { + return _best_size; + } + + /// \brief Return the mean length of the found cycle. + /// + /// This function returns the mean length of the found cycle. + /// + /// \note alg.cycleMean() is just a shortcut of the + /// following code. + /// \code + /// return static_cast(alg.cycleLength()) / alg.cycleArcNum(); + /// \endcode + /// + /// \pre \ref run() or \ref findMinMean() must be called before + /// using this function. + double cycleMean() const { + return static_cast(_best_length) / _best_size; + } + + /// \brief Return the found cycle. + /// + /// This function returns a const reference to the path structure + /// storing the found cycle. + /// + /// \pre \ref run() or \ref findCycle() must be called before using + /// this function. + const Path& cycle() const { + return *_cycle_path; + } + + ///@} + + private: + + // Initialization + void init() { + if (!_cycle_path) { + _local_path = true; + _cycle_path = new Path; + } + _cycle_path->clear(); + _best_found = false; + _best_length = 0; + _best_size = 1; + _cycle_path->clear(); + for (NodeIt u(_gr); u != INVALID; ++u) + _data[u].clear(); + } + + // Find strongly connected components and initialize _comp_nodes + // and _out_arcs + void findComponents() { + _comp_num = stronglyConnectedComponents(_gr, _comp); + _comp_nodes.resize(_comp_num); + if (_comp_num == 1) { + _comp_nodes[0].clear(); + for (NodeIt n(_gr); n != INVALID; ++n) { + _comp_nodes[0].push_back(n); + _out_arcs[n].clear(); + for (OutArcIt a(_gr, n); a != INVALID; ++a) { + _out_arcs[n].push_back(a); + } + } + } else { + for (int i = 0; i < _comp_num; ++i) + _comp_nodes[i].clear(); + for (NodeIt n(_gr); n != INVALID; ++n) { + int k = _comp[n]; + _comp_nodes[k].push_back(n); + _out_arcs[n].clear(); + for (OutArcIt a(_gr, n); a != INVALID; ++a) { + if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); + } + } + } + } + + // Initialize path data for the current component + bool initComponent(int comp) { + _nodes = &(_comp_nodes[comp]); + int n = _nodes->size(); + if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) { + return false; + } + for (int i = 0; i < n; ++i) { + _data[(*_nodes)[i]].resize(n + 1); + } + return true; + } + + // Process all rounds of computing path data for the current component. + // _data[v][k] is the length of a shortest directed walk from the root + // node to node v containing exactly k arcs. + void processRounds() { + Node start = (*_nodes)[0]; + _data[start][0] = PathData(true, 0); + _process.clear(); + _process.push_back(start); + + int k, n = _nodes->size(); + int next_check = 4; + bool terminate = false; + for (k = 1; k <= n && int(_process.size()) < n && !terminate; ++k) { + processNextBuildRound(k); + if (k == next_check || k == n) { + terminate = checkTermination(k); + next_check = next_check * 3 / 2; + } + } + for ( ; k <= n && !terminate; ++k) { + processNextFullRound(k); + if (k == next_check || k == n) { + terminate = checkTermination(k); + next_check = next_check * 3 / 2; + } + } + } + + // Process one round and rebuild _process + void processNextBuildRound(int k) { + std::vector next; + Node u, v; + Arc e; + LargeValue d; + for (int i = 0; i < int(_process.size()); ++i) { + u = _process[i]; + for (int j = 0; j < int(_out_arcs[u].size()); ++j) { + e = _out_arcs[u][j]; + v = _gr.target(e); + d = _data[u][k-1].dist + _length[e]; + if (!_data[v][k].found) { + next.push_back(v); + _data[v][k] = PathData(true, _data[u][k-1].dist + _length[e], e); + } + else if (_tolerance.less(d, _data[v][k].dist)) { + _data[v][k] = PathData(true, d, e); + } + } + } + _process.swap(next); + } + + // Process one round using _nodes instead of _process + void processNextFullRound(int k) { + Node u, v; + Arc e; + LargeValue d; + for (int i = 0; i < int(_nodes->size()); ++i) { + u = (*_nodes)[i]; + for (int j = 0; j < int(_out_arcs[u].size()); ++j) { + e = _out_arcs[u][j]; + v = _gr.target(e); + d = _data[u][k-1].dist + _length[e]; + if (!_data[v][k].found || _tolerance.less(d, _data[v][k].dist)) { + _data[v][k] = PathData(true, d, e); + } + } + } + } + + // Check early termination + bool checkTermination(int k) { + typedef std::pair Pair; + typename GR::template NodeMap level(_gr, Pair(-1, 0)); + typename GR::template NodeMap pi(_gr); + int n = _nodes->size(); + LargeValue length; + int size; + Node u; + + // Search for cycles that are already found + _curr_found = false; + for (int i = 0; i < n; ++i) { + u = (*_nodes)[i]; + if (!_data[u][k].found) continue; + for (int j = k; j >= 0; --j) { + if (level[u].first == i && level[u].second > 0) { + // A cycle is found + length = _data[u][level[u].second].dist - _data[u][j].dist; + size = level[u].second - j; + if (!_curr_found || length * _curr_size < _curr_length * size) { + _curr_length = length; + _curr_size = size; + _curr_node = u; + _curr_level = level[u].second; + _curr_found = true; + } + } + level[u] = Pair(i, j); + u = _gr.source(_data[u][j].pred); + } + } + + // If at least one cycle is found, check the optimality condition + LargeValue d; + if (_curr_found && k < n) { + // Find node potentials + for (int i = 0; i < n; ++i) { + u = (*_nodes)[i]; + pi[u] = std::numeric_limits::max(); + for (int j = 0; j <= k; ++j) { + d = _data[u][j].dist * _curr_size - j * _curr_length; + if (_data[u][j].found && _tolerance.less(d, pi[u])) { + pi[u] = d; + } + } + } + + // Check the optimality condition for all arcs + bool done = true; + for (ArcIt a(_gr); a != INVALID; ++a) { + if (_tolerance.less(_length[a] * _curr_size - _curr_length, + pi[_gr.target(a)] - pi[_gr.source(a)]) ) { + done = false; + break; + } + } + return done; + } + return (k == n); + } + + }; //class HartmannOrlin + + ///@} + +} //namespace lemon + +#endif //LEMON_HARTMANN_ORLIN_H diff --git a/test/min_mean_cycle_test.cc b/test/min_mean_cycle_test.cc --- a/test/min_mean_cycle_test.cc +++ b/test/min_mean_cycle_test.cc @@ -26,6 +26,7 @@ #include #include +#include #include #include "test_tools.h" @@ -150,6 +151,12 @@ checkConcept< MmcClassConcept, Karp > >(); + // HartmannOrlin + checkConcept< MmcClassConcept, + HartmannOrlin > >(); + checkConcept< MmcClassConcept, + HartmannOrlin > >(); + // Howard checkConcept< MmcClassConcept, Howard > >(); @@ -189,6 +196,12 @@ checkMmcAlg >(gr, l3, c3, 0, 1); checkMmcAlg >(gr, l4, c4, -1, 1); + // HartmannOrlin + checkMmcAlg >(gr, l1, c1, 6, 3); + checkMmcAlg >(gr, l2, c2, 5, 2); + checkMmcAlg >(gr, l3, c3, 0, 1); + checkMmcAlg >(gr, l4, c4, -1, 1); + // Howard checkMmcAlg >(gr, l1, c1, 6, 3); checkMmcAlg >(gr, l2, c2, 5, 2);