# HG changeset patch # User Peter Kovacs # Date 2009-08-02 13:44:45 # Node ID 99124ea4f04829d51d1a8843cb14c64498fb4ecb # Parent 6e8c27ee907910245a2f2142e853588b989b86c1 # Parent 71939d63ae77ee88ef5f207525227357fe200c27 Merge diff --git a/lemon/Makefile.am b/lemon/Makefile.am --- a/lemon/Makefile.am +++ b/lemon/Makefile.am @@ -59,6 +59,7 @@ lemon/assert.h \ lemon/bfs.h \ lemon/bin_heap.h \ + lemon/bucket_heap.h \ lemon/cbc.h \ lemon/circulation.h \ lemon/clp.h \ @@ -76,6 +77,7 @@ lemon/elevator.h \ lemon/error.h \ lemon/euler.h \ + lemon/fib_heap.h \ lemon/full_graph.h \ lemon/glpk.h \ lemon/gomory_hu.h \ @@ -99,6 +101,7 @@ lemon/network_simplex.h \ lemon/path.h \ lemon/preflow.h \ + lemon/radix_heap.h \ lemon/radix_sort.h \ lemon/random.h \ lemon/smart_graph.h \ diff --git a/lemon/bin_heap.h b/lemon/bin_heap.h --- a/lemon/bin_heap.h +++ b/lemon/bin_heap.h @@ -33,23 +33,23 @@ /// ///\brief A Binary Heap implementation. /// - ///This class implements the \e binary \e heap data structure. - /// + ///This class implements the \e binary \e heap data structure. + /// ///A \e heap is a data structure for storing items with specified values ///called \e priorities in such a way that finding the item with minimum - ///priority is efficient. \c Comp specifies the ordering of the priorities. + ///priority is efficient. \c CMP specifies the ordering of the priorities. ///In a heap one can change the priority of an item, add or erase an ///item, etc. /// ///\tparam PR Type of the priority of the items. ///\tparam IM A read and writable item map with int values, used internally ///to handle the cross references. - ///\tparam Comp A functor class for the ordering of the priorities. + ///\tparam CMP A functor class for the ordering of the priorities. ///The default is \c std::less. /// ///\sa FibHeap ///\sa Dijkstra - template > + template > class BinHeap { public: @@ -62,7 +62,7 @@ ///\e typedef std::pair Pair; ///\e - typedef Comp Compare; + typedef CMP Compare; /// \brief Type to represent the items states. /// diff --git a/lemon/bucket_heap.h b/lemon/bucket_heap.h new file mode 100644 --- /dev/null +++ b/lemon/bucket_heap.h @@ -0,0 +1,567 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_BUCKET_HEAP_H +#define LEMON_BUCKET_HEAP_H + +///\ingroup auxdat +///\file +///\brief Bucket Heap implementation. + +#include +#include +#include + +namespace lemon { + + namespace _bucket_heap_bits { + + template + struct DirectionTraits { + static bool less(int left, int right) { + return left < right; + } + static void increase(int& value) { + ++value; + } + }; + + template <> + struct DirectionTraits { + static bool less(int left, int right) { + return left > right; + } + static void increase(int& value) { + --value; + } + }; + + } + + /// \ingroup auxdat + /// + /// \brief A Bucket Heap implementation. + /// + /// This class implements the \e bucket \e heap data structure. A \e heap + /// is a data structure for storing items with specified values called \e + /// priorities in such a way that finding the item with minimum priority is + /// efficient. The bucket heap is very simple implementation, it can store + /// only integer priorities and it stores for each priority in the + /// \f$ [0..C) \f$ range a list of items. So it should be used only when + /// the priorities are small. It is not intended to use as dijkstra heap. + /// + /// \param IM A read and write Item int map, used internally + /// to handle the cross references. + /// \param MIN If the given parameter is false then instead of the + /// minimum value the maximum can be retrivied with the top() and + /// prio() member functions. + template + class BucketHeap { + + public: + /// \e + typedef typename IM::Key Item; + /// \e + typedef int Prio; + /// \e + typedef std::pair Pair; + /// \e + typedef IM ItemIntMap; + + private: + + typedef _bucket_heap_bits::DirectionTraits Direction; + + public: + + /// \brief Type to represent the items states. + /// + /// Each Item element have a state associated to it. It may be "in heap", + /// "pre heap" or "post heap". The latter two are indifferent from the + /// heap's point of view, but may be useful to the user. + /// + /// The item-int map must be initialized in such way that it assigns + /// \c PRE_HEAP (-1) to any element to be put in the heap. + enum State { + IN_HEAP = 0, ///< = 0. + PRE_HEAP = -1, ///< = -1. + POST_HEAP = -2 ///< = -2. + }; + + public: + /// \brief The constructor. + /// + /// The constructor. + /// \param map should be given to the constructor, since it is used + /// internally to handle the cross references. The value of the map + /// should be PRE_HEAP (-1) for each element. + explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {} + + /// The number of items stored in the heap. + /// + /// \brief Returns the number of items stored in the heap. + int size() const { return _data.size(); } + + /// \brief Checks if the heap stores no items. + /// + /// Returns \c true if and only if the heap stores no items. + bool empty() const { return _data.empty(); } + + /// \brief Make empty this heap. + /// + /// Make empty this heap. It does not change the cross reference + /// map. If you want to reuse a heap what is not surely empty you + /// should first clear the heap and after that you should set the + /// cross reference map for each item to \c PRE_HEAP. + void clear() { + _data.clear(); _first.clear(); _minimum = 0; + } + + private: + + void relocate_last(int idx) { + if (idx + 1 < int(_data.size())) { + _data[idx] = _data.back(); + if (_data[idx].prev != -1) { + _data[_data[idx].prev].next = idx; + } else { + _first[_data[idx].value] = idx; + } + if (_data[idx].next != -1) { + _data[_data[idx].next].prev = idx; + } + _iim[_data[idx].item] = idx; + } + _data.pop_back(); + } + + void unlace(int idx) { + if (_data[idx].prev != -1) { + _data[_data[idx].prev].next = _data[idx].next; + } else { + _first[_data[idx].value] = _data[idx].next; + } + if (_data[idx].next != -1) { + _data[_data[idx].next].prev = _data[idx].prev; + } + } + + void lace(int idx) { + if (int(_first.size()) <= _data[idx].value) { + _first.resize(_data[idx].value + 1, -1); + } + _data[idx].next = _first[_data[idx].value]; + if (_data[idx].next != -1) { + _data[_data[idx].next].prev = idx; + } + _first[_data[idx].value] = idx; + _data[idx].prev = -1; + } + + public: + /// \brief Insert a pair of item and priority into the heap. + /// + /// Adds \c p.first to the heap with priority \c p.second. + /// \param p The pair to insert. + void push(const Pair& p) { + push(p.first, p.second); + } + + /// \brief Insert an item into the heap with the given priority. + /// + /// Adds \c i to the heap with priority \c p. + /// \param i The item to insert. + /// \param p The priority of the item. + void push(const Item &i, const Prio &p) { + int idx = _data.size(); + _iim[i] = idx; + _data.push_back(BucketItem(i, p)); + lace(idx); + if (Direction::less(p, _minimum)) { + _minimum = p; + } + } + + /// \brief Returns the item with minimum priority. + /// + /// This method returns the item with minimum priority. + /// \pre The heap must be nonempty. + Item top() const { + while (_first[_minimum] == -1) { + Direction::increase(_minimum); + } + return _data[_first[_minimum]].item; + } + + /// \brief Returns the minimum priority. + /// + /// It returns the minimum priority. + /// \pre The heap must be nonempty. + Prio prio() const { + while (_first[_minimum] == -1) { + Direction::increase(_minimum); + } + return _minimum; + } + + /// \brief Deletes the item with minimum priority. + /// + /// This method deletes the item with minimum priority from the heap. + /// \pre The heap must be non-empty. + void pop() { + while (_first[_minimum] == -1) { + Direction::increase(_minimum); + } + int idx = _first[_minimum]; + _iim[_data[idx].item] = -2; + unlace(idx); + relocate_last(idx); + } + + /// \brief Deletes \c i from the heap. + /// + /// This method deletes item \c i from the heap, if \c i was + /// already stored in the heap. + /// \param i The item to erase. + void erase(const Item &i) { + int idx = _iim[i]; + _iim[_data[idx].item] = -2; + unlace(idx); + relocate_last(idx); + } + + + /// \brief Returns the priority of \c i. + /// + /// This function returns the priority of item \c i. + /// \pre \c i must be in the heap. + /// \param i The item. + Prio operator[](const Item &i) const { + int idx = _iim[i]; + return _data[idx].value; + } + + /// \brief \c i gets to the heap with priority \c p independently + /// if \c i was already there. + /// + /// This method calls \ref push(\c i, \c p) if \c i is not stored + /// in the heap and sets the priority of \c i to \c p otherwise. + /// \param i The item. + /// \param p The priority. + void set(const Item &i, const Prio &p) { + int idx = _iim[i]; + if (idx < 0) { + push(i, p); + } else if (Direction::less(p, _data[idx].value)) { + decrease(i, p); + } else { + increase(i, p); + } + } + + /// \brief Decreases the priority of \c i to \c p. + /// + /// This method decreases the priority of item \c i to \c p. + /// \pre \c i must be stored in the heap with priority at least \c + /// p relative to \c Compare. + /// \param i The item. + /// \param p The priority. + void decrease(const Item &i, const Prio &p) { + int idx = _iim[i]; + unlace(idx); + _data[idx].value = p; + if (Direction::less(p, _minimum)) { + _minimum = p; + } + lace(idx); + } + + /// \brief Increases the priority of \c i to \c p. + /// + /// This method sets the priority of item \c i to \c p. + /// \pre \c i must be stored in the heap with priority at most \c + /// p relative to \c Compare. + /// \param i The item. + /// \param p The priority. + void increase(const Item &i, const Prio &p) { + int idx = _iim[i]; + unlace(idx); + _data[idx].value = p; + lace(idx); + } + + /// \brief Returns if \c item is in, has already been in, or has + /// never been in the heap. + /// + /// This method returns PRE_HEAP if \c item has never been in the + /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP + /// otherwise. In the latter case it is possible that \c item will + /// get back to the heap again. + /// \param i The item. + State state(const Item &i) const { + int idx = _iim[i]; + if (idx >= 0) idx = 0; + return State(idx); + } + + /// \brief Sets the state of the \c item in the heap. + /// + /// Sets the state of the \c item in the heap. It can be used to + /// manually clear the heap when it is important to achive the + /// better time complexity. + /// \param i The item. + /// \param st The state. It should not be \c IN_HEAP. + void state(const Item& i, State st) { + switch (st) { + case POST_HEAP: + case PRE_HEAP: + if (state(i) == IN_HEAP) { + erase(i); + } + _iim[i] = st; + break; + case IN_HEAP: + break; + } + } + + private: + + struct BucketItem { + BucketItem(const Item& _item, int _value) + : item(_item), value(_value) {} + + Item item; + int value; + + int prev, next; + }; + + ItemIntMap& _iim; + std::vector _first; + std::vector _data; + mutable int _minimum; + + }; // class BucketHeap + + /// \ingroup auxdat + /// + /// \brief A Simplified Bucket Heap implementation. + /// + /// This class implements a simplified \e bucket \e heap data + /// structure. It does not provide some functionality but it faster + /// and simplier data structure than the BucketHeap. The main + /// difference is that the BucketHeap stores for every key a double + /// linked list while this class stores just simple lists. In the + /// other way it does not support erasing each elements just the + /// minimal and it does not supports key increasing, decreasing. + /// + /// \param IM A read and write Item int map, used internally + /// to handle the cross references. + /// \param MIN If the given parameter is false then instead of the + /// minimum value the maximum can be retrivied with the top() and + /// prio() member functions. + /// + /// \sa BucketHeap + template + class SimpleBucketHeap { + + public: + typedef typename IM::Key Item; + typedef int Prio; + typedef std::pair Pair; + typedef IM ItemIntMap; + + private: + + typedef _bucket_heap_bits::DirectionTraits Direction; + + public: + + /// \brief Type to represent the items states. + /// + /// Each Item element have a state associated to it. It may be "in heap", + /// "pre heap" or "post heap". The latter two are indifferent from the + /// heap's point of view, but may be useful to the user. + /// + /// The item-int map must be initialized in such way that it assigns + /// \c PRE_HEAP (-1) to any element to be put in the heap. + enum State { + IN_HEAP = 0, ///< = 0. + PRE_HEAP = -1, ///< = -1. + POST_HEAP = -2 ///< = -2. + }; + + public: + + /// \brief The constructor. + /// + /// The constructor. + /// \param map should be given to the constructor, since it is used + /// internally to handle the cross references. The value of the map + /// should be PRE_HEAP (-1) for each element. + explicit SimpleBucketHeap(ItemIntMap &map) + : _iim(map), _free(-1), _num(0), _minimum(0) {} + + /// \brief Returns the number of items stored in the heap. + /// + /// The number of items stored in the heap. + int size() const { return _num; } + + /// \brief Checks if the heap stores no items. + /// + /// Returns \c true if and only if the heap stores no items. + bool empty() const { return _num == 0; } + + /// \brief Make empty this heap. + /// + /// Make empty this heap. It does not change the cross reference + /// map. If you want to reuse a heap what is not surely empty you + /// should first clear the heap and after that you should set the + /// cross reference map for each item to \c PRE_HEAP. + void clear() { + _data.clear(); _first.clear(); _free = -1; _num = 0; _minimum = 0; + } + + /// \brief Insert a pair of item and priority into the heap. + /// + /// Adds \c p.first to the heap with priority \c p.second. + /// \param p The pair to insert. + void push(const Pair& p) { + push(p.first, p.second); + } + + /// \brief Insert an item into the heap with the given priority. + /// + /// Adds \c i to the heap with priority \c p. + /// \param i The item to insert. + /// \param p The priority of the item. + void push(const Item &i, const Prio &p) { + int idx; + if (_free == -1) { + idx = _data.size(); + _data.push_back(BucketItem(i)); + } else { + idx = _free; + _free = _data[idx].next; + _data[idx].item = i; + } + _iim[i] = idx; + if (p >= int(_first.size())) _first.resize(p + 1, -1); + _data[idx].next = _first[p]; + _first[p] = idx; + if (Direction::less(p, _minimum)) { + _minimum = p; + } + ++_num; + } + + /// \brief Returns the item with minimum priority. + /// + /// This method returns the item with minimum priority. + /// \pre The heap must be nonempty. + Item top() const { + while (_first[_minimum] == -1) { + Direction::increase(_minimum); + } + return _data[_first[_minimum]].item; + } + + /// \brief Returns the minimum priority. + /// + /// It returns the minimum priority. + /// \pre The heap must be nonempty. + Prio prio() const { + while (_first[_minimum] == -1) { + Direction::increase(_minimum); + } + return _minimum; + } + + /// \brief Deletes the item with minimum priority. + /// + /// This method deletes the item with minimum priority from the heap. + /// \pre The heap must be non-empty. + void pop() { + while (_first[_minimum] == -1) { + Direction::increase(_minimum); + } + int idx = _first[_minimum]; + _iim[_data[idx].item] = -2; + _first[_minimum] = _data[idx].next; + _data[idx].next = _free; + _free = idx; + --_num; + } + + /// \brief Returns the priority of \c i. + /// + /// This function returns the priority of item \c i. + /// \warning This operator is not a constant time function + /// because it scans the whole data structure to find the proper + /// value. + /// \pre \c i must be in the heap. + /// \param i The item. + Prio operator[](const Item &i) const { + for (int k = 0; k < _first.size(); ++k) { + int idx = _first[k]; + while (idx != -1) { + if (_data[idx].item == i) { + return k; + } + idx = _data[idx].next; + } + } + return -1; + } + + /// \brief Returns if \c item is in, has already been in, or has + /// never been in the heap. + /// + /// This method returns PRE_HEAP if \c item has never been in the + /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP + /// otherwise. In the latter case it is possible that \c item will + /// get back to the heap again. + /// \param i The item. + State state(const Item &i) const { + int idx = _iim[i]; + if (idx >= 0) idx = 0; + return State(idx); + } + + private: + + struct BucketItem { + BucketItem(const Item& _item) + : item(_item) {} + + Item item; + int next; + }; + + ItemIntMap& _iim; + std::vector _first; + std::vector _data; + int _free, _num; + mutable int _minimum; + + }; // class SimpleBucketHeap + +} + +#endif diff --git a/lemon/fib_heap.h b/lemon/fib_heap.h new file mode 100644 --- /dev/null +++ b/lemon/fib_heap.h @@ -0,0 +1,468 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_FIB_HEAP_H +#define LEMON_FIB_HEAP_H + +///\file +///\ingroup auxdat +///\brief Fibonacci Heap implementation. + +#include +#include +#include + +namespace lemon { + + /// \ingroup auxdat + /// + ///\brief Fibonacci Heap. + /// + ///This class implements the \e Fibonacci \e heap data structure. A \e heap + ///is a data structure for storing items with specified values called \e + ///priorities in such a way that finding the item with minimum priority is + ///efficient. \c CMP specifies the ordering of the priorities. In a heap + ///one can change the priority of an item, add or erase an item, etc. + /// + ///The methods \ref increase and \ref erase are not efficient in a Fibonacci + ///heap. In case of many calls to these operations, it is better to use a + ///\ref BinHeap "binary heap". + /// + ///\param PRIO Type of the priority of the items. + ///\param IM A read and writable Item int map, used internally + ///to handle the cross references. + ///\param CMP A class for the ordering of the priorities. The + ///default is \c std::less. + /// + ///\sa BinHeap + ///\sa Dijkstra +#ifdef DOXYGEN + template +#else + template > +#endif + class FibHeap { + public: + ///\e + typedef IM ItemIntMap; + ///\e + typedef PRIO Prio; + ///\e + typedef typename ItemIntMap::Key Item; + ///\e + typedef std::pair Pair; + ///\e + typedef CMP Compare; + + private: + class Store; + + std::vector _data; + int _minimum; + ItemIntMap &_iim; + Compare _comp; + int _num; + + public: + + /// \brief Type to represent the items states. + /// + /// Each Item element have a state associated to it. It may be "in heap", + /// "pre heap" or "post heap". The latter two are indifferent from the + /// heap's point of view, but may be useful to the user. + /// + /// The item-int map must be initialized in such way that it assigns + /// \c PRE_HEAP (-1) to any element to be put in the heap. + enum State { + IN_HEAP = 0, ///< = 0. + PRE_HEAP = -1, ///< = -1. + POST_HEAP = -2 ///< = -2. + }; + + /// \brief The constructor + /// + /// \c map should be given to the constructor, since it is + /// used internally to handle the cross references. + explicit FibHeap(ItemIntMap &map) + : _minimum(0), _iim(map), _num() {} + + /// \brief The constructor + /// + /// \c map should be given to the constructor, since it is used + /// internally to handle the cross references. \c comp is an + /// object for ordering of the priorities. + FibHeap(ItemIntMap &map, const Compare &comp) + : _minimum(0), _iim(map), _comp(comp), _num() {} + + /// \brief The number of items stored in the heap. + /// + /// Returns the number of items stored in the heap. + int size() const { return _num; } + + /// \brief Checks if the heap stores no items. + /// + /// Returns \c true if and only if the heap stores no items. + bool empty() const { return _num==0; } + + /// \brief Make empty this heap. + /// + /// Make empty this heap. It does not change the cross reference + /// map. If you want to reuse a heap what is not surely empty you + /// should first clear the heap and after that you should set the + /// cross reference map for each item to \c PRE_HEAP. + void clear() { + _data.clear(); _minimum = 0; _num = 0; + } + + /// \brief \c item gets to the heap with priority \c value independently + /// if \c item was already there. + /// + /// This method calls \ref push(\c item, \c value) if \c item is not + /// stored in the heap and it calls \ref decrease(\c item, \c value) or + /// \ref increase(\c item, \c value) otherwise. + void set (const Item& item, const Prio& value) { + int i=_iim[item]; + if ( i >= 0 && _data[i].in ) { + if ( _comp(value, _data[i].prio) ) decrease(item, value); + if ( _comp(_data[i].prio, value) ) increase(item, value); + } else push(item, value); + } + + /// \brief Adds \c item to the heap with priority \c value. + /// + /// Adds \c item to the heap with priority \c value. + /// \pre \c item must not be stored in the heap. + void push (const Item& item, const Prio& value) { + int i=_iim[item]; + if ( i < 0 ) { + int s=_data.size(); + _iim.set( item, s ); + Store st; + st.name=item; + _data.push_back(st); + i=s; + } else { + _data[i].parent=_data[i].child=-1; + _data[i].degree=0; + _data[i].in=true; + _data[i].marked=false; + } + + if ( _num ) { + _data[_data[_minimum].right_neighbor].left_neighbor=i; + _data[i].right_neighbor=_data[_minimum].right_neighbor; + _data[_minimum].right_neighbor=i; + _data[i].left_neighbor=_minimum; + if ( _comp( value, _data[_minimum].prio) ) _minimum=i; + } else { + _data[i].right_neighbor=_data[i].left_neighbor=i; + _minimum=i; + } + _data[i].prio=value; + ++_num; + } + + /// \brief Returns the item with minimum priority relative to \c Compare. + /// + /// This method returns the item with minimum priority relative to \c + /// Compare. + /// \pre The heap must be nonempty. + Item top() const { return _data[_minimum].name; } + + /// \brief Returns the minimum priority relative to \c Compare. + /// + /// It returns the minimum priority relative to \c Compare. + /// \pre The heap must be nonempty. + const Prio& prio() const { return _data[_minimum].prio; } + + /// \brief Returns the priority of \c item. + /// + /// It returns the priority of \c item. + /// \pre \c item must be in the heap. + const Prio& operator[](const Item& item) const { + return _data[_iim[item]].prio; + } + + /// \brief Deletes the item with minimum priority relative to \c Compare. + /// + /// This method deletes the item with minimum priority relative to \c + /// Compare from the heap. + /// \pre The heap must be non-empty. + void pop() { + /*The first case is that there are only one root.*/ + if ( _data[_minimum].left_neighbor==_minimum ) { + _data[_minimum].in=false; + if ( _data[_minimum].degree!=0 ) { + makeroot(_data[_minimum].child); + _minimum=_data[_minimum].child; + balance(); + } + } else { + int right=_data[_minimum].right_neighbor; + unlace(_minimum); + _data[_minimum].in=false; + if ( _data[_minimum].degree > 0 ) { + int left=_data[_minimum].left_neighbor; + int child=_data[_minimum].child; + int last_child=_data[child].left_neighbor; + + makeroot(child); + + _data[left].right_neighbor=child; + _data[child].left_neighbor=left; + _data[right].left_neighbor=last_child; + _data[last_child].right_neighbor=right; + } + _minimum=right; + balance(); + } // the case where there are more roots + --_num; + } + + /// \brief Deletes \c item from the heap. + /// + /// This method deletes \c item from the heap, if \c item was already + /// stored in the heap. It is quite inefficient in Fibonacci heaps. + void erase (const Item& item) { + int i=_iim[item]; + + if ( i >= 0 && _data[i].in ) { + if ( _data[i].parent!=-1 ) { + int p=_data[i].parent; + cut(i,p); + cascade(p); + } + _minimum=i; //As if its prio would be -infinity + pop(); + } + } + + /// \brief Decreases the priority of \c item to \c value. + /// + /// This method decreases the priority of \c item to \c value. + /// \pre \c item must be stored in the heap with priority at least \c + /// value relative to \c Compare. + void decrease (Item item, const Prio& value) { + int i=_iim[item]; + _data[i].prio=value; + int p=_data[i].parent; + + if ( p!=-1 && _comp(value, _data[p].prio) ) { + cut(i,p); + cascade(p); + } + if ( _comp(value, _data[_minimum].prio) ) _minimum=i; + } + + /// \brief Increases the priority of \c item to \c value. + /// + /// This method sets the priority of \c item to \c value. Though + /// there is no precondition on the priority of \c item, this + /// method should be used only if it is indeed necessary to increase + /// (relative to \c Compare) the priority of \c item, because this + /// method is inefficient. + void increase (Item item, const Prio& value) { + erase(item); + push(item, value); + } + + + /// \brief Returns if \c item is in, has already been in, or has never + /// been in the heap. + /// + /// This method returns PRE_HEAP if \c item has never been in the + /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP + /// otherwise. In the latter case it is possible that \c item will + /// get back to the heap again. + State state(const Item &item) const { + int i=_iim[item]; + if( i>=0 ) { + if ( _data[i].in ) i=0; + else i=-2; + } + return State(i); + } + + /// \brief Sets the state of the \c item in the heap. + /// + /// Sets the state of the \c item in the heap. It can be used to + /// manually clear the heap when it is important to achive the + /// better time _complexity. + /// \param i The item. + /// \param st The state. It should not be \c IN_HEAP. + void state(const Item& i, State st) { + switch (st) { + case POST_HEAP: + case PRE_HEAP: + if (state(i) == IN_HEAP) { + erase(i); + } + _iim[i] = st; + break; + case IN_HEAP: + break; + } + } + + private: + + void balance() { + + int maxdeg=int( std::floor( 2.08*log(double(_data.size()))))+1; + + std::vector A(maxdeg,-1); + + /* + *Recall that now minimum does not point to the minimum prio element. + *We set minimum to this during balance(). + */ + int anchor=_data[_minimum].left_neighbor; + int next=_minimum; + bool end=false; + + do { + int active=next; + if ( anchor==active ) end=true; + int d=_data[active].degree; + next=_data[active].right_neighbor; + + while (A[d]!=-1) { + if( _comp(_data[active].prio, _data[A[d]].prio) ) { + fuse(active,A[d]); + } else { + fuse(A[d],active); + active=A[d]; + } + A[d]=-1; + ++d; + } + A[d]=active; + } while ( !end ); + + + while ( _data[_minimum].parent >=0 ) + _minimum=_data[_minimum].parent; + int s=_minimum; + int m=_minimum; + do { + if ( _comp(_data[s].prio, _data[_minimum].prio) ) _minimum=s; + s=_data[s].right_neighbor; + } while ( s != m ); + } + + void makeroot(int c) { + int s=c; + do { + _data[s].parent=-1; + s=_data[s].right_neighbor; + } while ( s != c ); + } + + void cut(int a, int b) { + /* + *Replacing a from the children of b. + */ + --_data[b].degree; + + if ( _data[b].degree !=0 ) { + int child=_data[b].child; + if ( child==a ) + _data[b].child=_data[child].right_neighbor; + unlace(a); + } + + + /*Lacing a to the roots.*/ + int right=_data[_minimum].right_neighbor; + _data[_minimum].right_neighbor=a; + _data[a].left_neighbor=_minimum; + _data[a].right_neighbor=right; + _data[right].left_neighbor=a; + + _data[a].parent=-1; + _data[a].marked=false; + } + + void cascade(int a) { + if ( _data[a].parent!=-1 ) { + int p=_data[a].parent; + + if ( _data[a].marked==false ) _data[a].marked=true; + else { + cut(a,p); + cascade(p); + } + } + } + + void fuse(int a, int b) { + unlace(b); + + /*Lacing b under a.*/ + _data[b].parent=a; + + if (_data[a].degree==0) { + _data[b].left_neighbor=b; + _data[b].right_neighbor=b; + _data[a].child=b; + } else { + int child=_data[a].child; + int last_child=_data[child].left_neighbor; + _data[child].left_neighbor=b; + _data[b].right_neighbor=child; + _data[last_child].right_neighbor=b; + _data[b].left_neighbor=last_child; + } + + ++_data[a].degree; + + _data[b].marked=false; + } + + /* + *It is invoked only if a has siblings. + */ + void unlace(int a) { + int leftn=_data[a].left_neighbor; + int rightn=_data[a].right_neighbor; + _data[leftn].right_neighbor=rightn; + _data[rightn].left_neighbor=leftn; + } + + + class Store { + friend class FibHeap; + + Item name; + int parent; + int left_neighbor; + int right_neighbor; + int child; + int degree; + bool marked; + bool in; + Prio prio; + + Store() : parent(-1), child(-1), degree(), marked(false), in(true) {} + }; + }; + +} //namespace lemon + +#endif //LEMON_FIB_HEAP_H + diff --git a/lemon/maps.h b/lemon/maps.h --- a/lemon/maps.h +++ b/lemon/maps.h @@ -22,6 +22,7 @@ #include #include #include +#include #include @@ -29,8 +30,6 @@ ///\ingroup maps ///\brief Miscellaneous property maps -#include - namespace lemon { /// \addtogroup maps @@ -1818,7 +1817,7 @@ /// \brief Provides an immutable and unique id for each item in a graph. /// /// IdMap provides a unique and immutable id for each item of the - /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is + /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is /// - \b unique: different items get different ids, /// - \b immutable: the id of an item does not change (even if you /// delete other nodes). @@ -2281,7 +2280,7 @@ } /// \brief Gives back the item belonging to a \e RangeId - /// + /// /// Gives back the item belonging to a \e RangeId. Item operator()(int id) const { return _inv_map[id]; @@ -2338,6 +2337,903 @@ } }; + /// \brief Dynamic iterable \c bool map. + /// + /// This class provides a special graph map type which can store a + /// \c bool value for graph items (\c Node, \c Arc or \c Edge). + /// For both \c true and \c false values it is possible to iterate on + /// the keys. + /// + /// This type is a reference map, so it can be modified with the + /// subscription operator. + /// + /// \tparam GR The graph type. + /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or + /// \c GR::Edge). + /// + /// \see IterableIntMap, IterableValueMap + /// \see CrossRefMap + template + class IterableBoolMap + : protected ItemSetTraits::template Map::Type { + private: + typedef GR Graph; + + typedef typename ItemSetTraits::ItemIt KeyIt; + typedef typename ItemSetTraits::template Map::Type Parent; + + std::vector _array; + int _sep; + + public: + + /// Indicates that the map is reference map. + typedef True ReferenceMapTag; + + /// The key type + typedef K Key; + /// The value type + typedef bool Value; + /// The const reference type. + typedef const Value& ConstReference; + + private: + + int position(const Key& key) const { + return Parent::operator[](key); + } + + public: + + /// \brief Reference to the value of the map. + /// + /// This class is similar to the \c bool type. It can be converted to + /// \c bool and it provides the same operators. + class Reference { + friend class IterableBoolMap; + private: + Reference(IterableBoolMap& map, const Key& key) + : _key(key), _map(map) {} + public: + + Reference& operator=(const Reference& value) { + _map.set(_key, static_cast(value)); + return *this; + } + + operator bool() const { + return static_cast(_map)[_key]; + } + + Reference& operator=(bool value) { + _map.set(_key, value); + return *this; + } + Reference& operator&=(bool value) { + _map.set(_key, _map[_key] & value); + return *this; + } + Reference& operator|=(bool value) { + _map.set(_key, _map[_key] | value); + return *this; + } + Reference& operator^=(bool value) { + _map.set(_key, _map[_key] ^ value); + return *this; + } + private: + Key _key; + IterableBoolMap& _map; + }; + + /// \brief Constructor of the map with a default value. + /// + /// Constructor of the map with a default value. + explicit IterableBoolMap(const Graph& graph, bool def = false) + : Parent(graph) { + typename Parent::Notifier* nf = Parent::notifier(); + Key it; + for (nf->first(it); it != INVALID; nf->next(it)) { + Parent::set(it, _array.size()); + _array.push_back(it); + } + _sep = (def ? _array.size() : 0); + } + + /// \brief Const subscript operator of the map. + /// + /// Const subscript operator of the map. + bool operator[](const Key& key) const { + return position(key) < _sep; + } + + /// \brief Subscript operator of the map. + /// + /// Subscript operator of the map. + Reference operator[](const Key& key) { + return Reference(*this, key); + } + + /// \brief Set operation of the map. + /// + /// Set operation of the map. + void set(const Key& key, bool value) { + int pos = position(key); + if (value) { + if (pos < _sep) return; + Key tmp = _array[_sep]; + _array[_sep] = key; + Parent::set(key, _sep); + _array[pos] = tmp; + Parent::set(tmp, pos); + ++_sep; + } else { + if (pos >= _sep) return; + --_sep; + Key tmp = _array[_sep]; + _array[_sep] = key; + Parent::set(key, _sep); + _array[pos] = tmp; + Parent::set(tmp, pos); + } + } + + /// \brief Set all items. + /// + /// Set all items in the map. + /// \note Constant time operation. + void setAll(bool value) { + _sep = (value ? _array.size() : 0); + } + + /// \brief Returns the number of the keys mapped to \c true. + /// + /// Returns the number of the keys mapped to \c true. + int trueNum() const { + return _sep; + } + + /// \brief Returns the number of the keys mapped to \c false. + /// + /// Returns the number of the keys mapped to \c false. + int falseNum() const { + return _array.size() - _sep; + } + + /// \brief Iterator for the keys mapped to \c true. + /// + /// Iterator for the keys mapped to \c true. It works + /// like a graph item iterator, it can be converted to + /// the key type of the map, incremented with \c ++ operator, and + /// if the iterator leaves the last valid key, it will be equal to + /// \c INVALID. + class TrueIt : public Key { + public: + typedef Key Parent; + + /// \brief Creates an iterator. + /// + /// Creates an iterator. It iterates on the + /// keys mapped to \c true. + /// \param map The IterableBoolMap. + explicit TrueIt(const IterableBoolMap& map) + : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID), + _map(&map) {} + + /// \brief Invalid constructor \& conversion. + /// + /// This constructor initializes the iterator to be invalid. + /// \sa Invalid for more details. + TrueIt(Invalid) : Parent(INVALID), _map(0) {} + + /// \brief Increment operator. + /// + /// Increment operator. + TrueIt& operator++() { + int pos = _map->position(*this); + Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID); + return *this; + } + + private: + const IterableBoolMap* _map; + }; + + /// \brief Iterator for the keys mapped to \c false. + /// + /// Iterator for the keys mapped to \c false. It works + /// like a graph item iterator, it can be converted to + /// the key type of the map, incremented with \c ++ operator, and + /// if the iterator leaves the last valid key, it will be equal to + /// \c INVALID. + class FalseIt : public Key { + public: + typedef Key Parent; + + /// \brief Creates an iterator. + /// + /// Creates an iterator. It iterates on the + /// keys mapped to \c false. + /// \param map The IterableBoolMap. + explicit FalseIt(const IterableBoolMap& map) + : Parent(map._sep < int(map._array.size()) ? + map._array.back() : INVALID), _map(&map) {} + + /// \brief Invalid constructor \& conversion. + /// + /// This constructor initializes the iterator to be invalid. + /// \sa Invalid for more details. + FalseIt(Invalid) : Parent(INVALID), _map(0) {} + + /// \brief Increment operator. + /// + /// Increment operator. + FalseIt& operator++() { + int pos = _map->position(*this); + Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID); + return *this; + } + + private: + const IterableBoolMap* _map; + }; + + /// \brief Iterator for the keys mapped to a given value. + /// + /// Iterator for the keys mapped to a given value. It works + /// like a graph item iterator, it can be converted to + /// the key type of the map, incremented with \c ++ operator, and + /// if the iterator leaves the last valid key, it will be equal to + /// \c INVALID. + class ItemIt : public Key { + public: + typedef Key Parent; + + /// \brief Creates an iterator with a value. + /// + /// Creates an iterator with a value. It iterates on the + /// keys mapped to the given value. + /// \param map The IterableBoolMap. + /// \param value The value. + ItemIt(const IterableBoolMap& map, bool value) + : Parent(value ? + (map._sep > 0 ? + map._array[map._sep - 1] : INVALID) : + (map._sep < int(map._array.size()) ? + map._array.back() : INVALID)), _map(&map) {} + + /// \brief Invalid constructor \& conversion. + /// + /// This constructor initializes the iterator to be invalid. + /// \sa Invalid for more details. + ItemIt(Invalid) : Parent(INVALID), _map(0) {} + + /// \brief Increment operator. + /// + /// Increment operator. + ItemIt& operator++() { + int pos = _map->position(*this); + int _sep = pos >= _map->_sep ? _map->_sep : 0; + Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID); + return *this; + } + + private: + const IterableBoolMap* _map; + }; + + protected: + + virtual void add(const Key& key) { + Parent::add(key); + Parent::set(key, _array.size()); + _array.push_back(key); + } + + virtual void add(const std::vector& keys) { + Parent::add(keys); + for (int i = 0; i < int(keys.size()); ++i) { + Parent::set(keys[i], _array.size()); + _array.push_back(keys[i]); + } + } + + virtual void erase(const Key& key) { + int pos = position(key); + if (pos < _sep) { + --_sep; + Parent::set(_array[_sep], pos); + _array[pos] = _array[_sep]; + Parent::set(_array.back(), _sep); + _array[_sep] = _array.back(); + _array.pop_back(); + } else { + Parent::set(_array.back(), pos); + _array[pos] = _array.back(); + _array.pop_back(); + } + Parent::erase(key); + } + + virtual void erase(const std::vector& keys) { + for (int i = 0; i < int(keys.size()); ++i) { + int pos = position(keys[i]); + if (pos < _sep) { + --_sep; + Parent::set(_array[_sep], pos); + _array[pos] = _array[_sep]; + Parent::set(_array.back(), _sep); + _array[_sep] = _array.back(); + _array.pop_back(); + } else { + Parent::set(_array.back(), pos); + _array[pos] = _array.back(); + _array.pop_back(); + } + } + Parent::erase(keys); + } + + virtual void build() { + Parent::build(); + typename Parent::Notifier* nf = Parent::notifier(); + Key it; + for (nf->first(it); it != INVALID; nf->next(it)) { + Parent::set(it, _array.size()); + _array.push_back(it); + } + _sep = 0; + } + + virtual void clear() { + _array.clear(); + _sep = 0; + Parent::clear(); + } + + }; + + + namespace _maps_bits { + template + struct IterableIntMapNode { + IterableIntMapNode() : value(-1) {} + IterableIntMapNode(int _value) : value(_value) {} + Item prev, next; + int value; + }; + } + + /// \brief Dynamic iterable integer map. + /// + /// This class provides a special graph map type which can store an + /// integer value for graph items (\c Node, \c Arc or \c Edge). + /// For each non-negative value it is possible to iterate on the keys + /// mapped to the value. + /// + /// This type is a reference map, so it can be modified with the + /// subscription operator. + /// + /// \note The size of the data structure depends on the largest + /// value in the map. + /// + /// \tparam GR The graph type. + /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or + /// \c GR::Edge). + /// + /// \see IterableBoolMap, IterableValueMap + /// \see CrossRefMap + template + class IterableIntMap + : protected ItemSetTraits:: + template Map<_maps_bits::IterableIntMapNode >::Type { + public: + typedef typename ItemSetTraits:: + template Map<_maps_bits::IterableIntMapNode >::Type Parent; + + /// The key type + typedef K Key; + /// The value type + typedef int Value; + /// The graph type + typedef GR Graph; + + /// \brief Constructor of the map. + /// + /// Constructor of the map. It sets all values to -1. + explicit IterableIntMap(const Graph& graph) + : Parent(graph) {} + + /// \brief Constructor of the map with a given value. + /// + /// Constructor of the map with a given value. + explicit IterableIntMap(const Graph& graph, int value) + : Parent(graph, _maps_bits::IterableIntMapNode(value)) { + if (value >= 0) { + for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { + lace(it); + } + } + } + + private: + + void unlace(const Key& key) { + typename Parent::Value& node = Parent::operator[](key); + if (node.value < 0) return; + if (node.prev != INVALID) { + Parent::operator[](node.prev).next = node.next; + } else { + _first[node.value] = node.next; + } + if (node.next != INVALID) { + Parent::operator[](node.next).prev = node.prev; + } + while (!_first.empty() && _first.back() == INVALID) { + _first.pop_back(); + } + } + + void lace(const Key& key) { + typename Parent::Value& node = Parent::operator[](key); + if (node.value < 0) return; + if (node.value >= int(_first.size())) { + _first.resize(node.value + 1, INVALID); + } + node.prev = INVALID; + node.next = _first[node.value]; + if (node.next != INVALID) { + Parent::operator[](node.next).prev = key; + } + _first[node.value] = key; + } + + public: + + /// Indicates that the map is reference map. + typedef True ReferenceMapTag; + + /// \brief Reference to the value of the map. + /// + /// This class is similar to the \c int type. It can + /// be converted to \c int and it has the same operators. + class Reference { + friend class IterableIntMap; + private: + Reference(IterableIntMap& map, const Key& key) + : _key(key), _map(map) {} + public: + + Reference& operator=(const Reference& value) { + _map.set(_key, static_cast(value)); + return *this; + } + + operator const int&() const { + return static_cast(_map)[_key]; + } + + Reference& operator=(int value) { + _map.set(_key, value); + return *this; + } + Reference& operator++() { + _map.set(_key, _map[_key] + 1); + return *this; + } + int operator++(int) { + int value = _map[_key]; + _map.set(_key, value + 1); + return value; + } + Reference& operator--() { + _map.set(_key, _map[_key] - 1); + return *this; + } + int operator--(int) { + int value = _map[_key]; + _map.set(_key, value - 1); + return value; + } + Reference& operator+=(int value) { + _map.set(_key, _map[_key] + value); + return *this; + } + Reference& operator-=(int value) { + _map.set(_key, _map[_key] - value); + return *this; + } + Reference& operator*=(int value) { + _map.set(_key, _map[_key] * value); + return *this; + } + Reference& operator/=(int value) { + _map.set(_key, _map[_key] / value); + return *this; + } + Reference& operator%=(int value) { + _map.set(_key, _map[_key] % value); + return *this; + } + Reference& operator&=(int value) { + _map.set(_key, _map[_key] & value); + return *this; + } + Reference& operator|=(int value) { + _map.set(_key, _map[_key] | value); + return *this; + } + Reference& operator^=(int value) { + _map.set(_key, _map[_key] ^ value); + return *this; + } + Reference& operator<<=(int value) { + _map.set(_key, _map[_key] << value); + return *this; + } + Reference& operator>>=(int value) { + _map.set(_key, _map[_key] >> value); + return *this; + } + + private: + Key _key; + IterableIntMap& _map; + }; + + /// The const reference type. + typedef const Value& ConstReference; + + /// \brief Gives back the maximal value plus one. + /// + /// Gives back the maximal value plus one. + int size() const { + return _first.size(); + } + + /// \brief Set operation of the map. + /// + /// Set operation of the map. + void set(const Key& key, const Value& value) { + unlace(key); + Parent::operator[](key).value = value; + lace(key); + } + + /// \brief Const subscript operator of the map. + /// + /// Const subscript operator of the map. + const Value& operator[](const Key& key) const { + return Parent::operator[](key).value; + } + + /// \brief Subscript operator of the map. + /// + /// Subscript operator of the map. + Reference operator[](const Key& key) { + return Reference(*this, key); + } + + /// \brief Iterator for the keys with the same value. + /// + /// Iterator for the keys with the same value. It works + /// like a graph item iterator, it can be converted to + /// the item type of the map, incremented with \c ++ operator, and + /// if the iterator leaves the last valid item, it will be equal to + /// \c INVALID. + class ItemIt : public Key { + public: + typedef Key Parent; + + /// \brief Invalid constructor \& conversion. + /// + /// This constructor initializes the iterator to be invalid. + /// \sa Invalid for more details. + ItemIt(Invalid) : Parent(INVALID), _map(0) {} + + /// \brief Creates an iterator with a value. + /// + /// Creates an iterator with a value. It iterates on the + /// keys mapped to the given value. + /// \param map The IterableIntMap. + /// \param value The value. + ItemIt(const IterableIntMap& map, int value) : _map(&map) { + if (value < 0 || value >= int(_map->_first.size())) { + Parent::operator=(INVALID); + } else { + Parent::operator=(_map->_first[value]); + } + } + + /// \brief Increment operator. + /// + /// Increment operator. + ItemIt& operator++() { + Parent::operator=(_map->IterableIntMap::Parent:: + operator[](static_cast(*this)).next); + return *this; + } + + private: + const IterableIntMap* _map; + }; + + protected: + + virtual void erase(const Key& key) { + unlace(key); + Parent::erase(key); + } + + virtual void erase(const std::vector& keys) { + for (int i = 0; i < int(keys.size()); ++i) { + unlace(keys[i]); + } + Parent::erase(keys); + } + + virtual void clear() { + _first.clear(); + Parent::clear(); + } + + private: + std::vector _first; + }; + + namespace _maps_bits { + template + struct IterableValueMapNode { + IterableValueMapNode(Value _value = Value()) : value(_value) {} + Item prev, next; + Value value; + }; + } + + /// \brief Dynamic iterable map for comparable values. + /// + /// This class provides a special graph map type which can store an + /// comparable value for graph items (\c Node, \c Arc or \c Edge). + /// For each value it is possible to iterate on the keys mapped to + /// the value. + /// + /// The map stores for each value a linked list with + /// the items which mapped to the value, and the values are stored + /// in balanced binary tree. The values of the map can be accessed + /// with stl compatible forward iterator. + /// + /// This type is not reference map, so it cannot be modified with + /// the subscription operator. + /// + /// \tparam GR The graph type. + /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or + /// \c GR::Edge). + /// \tparam V The value type of the map. It can be any comparable + /// value type. + /// + /// \see IterableBoolMap, IterableIntMap + /// \see CrossRefMap + template + class IterableValueMap + : protected ItemSetTraits:: + template Map<_maps_bits::IterableValueMapNode >::Type { + public: + typedef typename ItemSetTraits:: + template Map<_maps_bits::IterableValueMapNode >::Type Parent; + + /// The key type + typedef K Key; + /// The value type + typedef V Value; + /// The graph type + typedef GR Graph; + + public: + + /// \brief Constructor of the map with a given value. + /// + /// Constructor of the map with a given value. + explicit IterableValueMap(const Graph& graph, + const Value& value = Value()) + : Parent(graph, _maps_bits::IterableValueMapNode(value)) { + for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { + lace(it); + } + } + + protected: + + void unlace(const Key& key) { + typename Parent::Value& node = Parent::operator[](key); + if (node.prev != INVALID) { + Parent::operator[](node.prev).next = node.next; + } else { + if (node.next != INVALID) { + _first[node.value] = node.next; + } else { + _first.erase(node.value); + } + } + if (node.next != INVALID) { + Parent::operator[](node.next).prev = node.prev; + } + } + + void lace(const Key& key) { + typename Parent::Value& node = Parent::operator[](key); + typename std::map::iterator it = _first.find(node.value); + if (it == _first.end()) { + node.prev = node.next = INVALID; + _first.insert(std::make_pair(node.value, key)); + } else { + node.prev = INVALID; + node.next = it->second; + if (node.next != INVALID) { + Parent::operator[](node.next).prev = key; + } + it->second = key; + } + } + + public: + + /// \brief Forward iterator for values. + /// + /// This iterator is an stl compatible forward + /// iterator on the values of the map. The values can + /// be accessed in the [beginValue, endValue) range. + class ValueIterator + : public std::iterator { + friend class IterableValueMap; + private: + ValueIterator(typename std::map::const_iterator _it) + : it(_it) {} + public: + + ValueIterator() {} + + ValueIterator& operator++() { ++it; return *this; } + ValueIterator operator++(int) { + ValueIterator tmp(*this); + operator++(); + return tmp; + } + + const Value& operator*() const { return it->first; } + const Value* operator->() const { return &(it->first); } + + bool operator==(ValueIterator jt) const { return it == jt.it; } + bool operator!=(ValueIterator jt) const { return it != jt.it; } + + private: + typename std::map::const_iterator it; + }; + + /// \brief Returns an iterator to the first value. + /// + /// Returns an stl compatible iterator to the + /// first value of the map. The values of the + /// map can be accessed in the [beginValue, endValue) + /// range. + ValueIterator beginValue() const { + return ValueIterator(_first.begin()); + } + + /// \brief Returns an iterator after the last value. + /// + /// Returns an stl compatible iterator after the + /// last value of the map. The values of the + /// map can be accessed in the [beginValue, endValue) + /// range. + ValueIterator endValue() const { + return ValueIterator(_first.end()); + } + + /// \brief Set operation of the map. + /// + /// Set operation of the map. + void set(const Key& key, const Value& value) { + unlace(key); + Parent::operator[](key).value = value; + lace(key); + } + + /// \brief Const subscript operator of the map. + /// + /// Const subscript operator of the map. + const Value& operator[](const Key& key) const { + return Parent::operator[](key).value; + } + + /// \brief Iterator for the keys with the same value. + /// + /// Iterator for the keys with the same value. It works + /// like a graph item iterator, it can be converted to + /// the item type of the map, incremented with \c ++ operator, and + /// if the iterator leaves the last valid item, it will be equal to + /// \c INVALID. + class ItemIt : public Key { + public: + typedef Key Parent; + + /// \brief Invalid constructor \& conversion. + /// + /// This constructor initializes the iterator to be invalid. + /// \sa Invalid for more details. + ItemIt(Invalid) : Parent(INVALID), _map(0) {} + + /// \brief Creates an iterator with a value. + /// + /// Creates an iterator with a value. It iterates on the + /// keys which have the given value. + /// \param map The IterableValueMap + /// \param value The value + ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) { + typename std::map::const_iterator it = + map._first.find(value); + if (it == map._first.end()) { + Parent::operator=(INVALID); + } else { + Parent::operator=(it->second); + } + } + + /// \brief Increment operator. + /// + /// Increment Operator. + ItemIt& operator++() { + Parent::operator=(_map->IterableValueMap::Parent:: + operator[](static_cast(*this)).next); + return *this; + } + + + private: + const IterableValueMap* _map; + }; + + protected: + + virtual void add(const Key& key) { + Parent::add(key); + unlace(key); + } + + virtual void add(const std::vector& keys) { + Parent::add(keys); + for (int i = 0; i < int(keys.size()); ++i) { + lace(keys[i]); + } + } + + virtual void erase(const Key& key) { + unlace(key); + Parent::erase(key); + } + + virtual void erase(const std::vector& keys) { + for (int i = 0; i < int(keys.size()); ++i) { + unlace(keys[i]); + } + Parent::erase(keys); + } + + virtual void build() { + Parent::build(); + for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { + lace(it); + } + } + + virtual void clear() { + _first.clear(); + Parent::clear(); + } + + private: + std::map _first; + }; + /// \brief Map of the source nodes of arcs in a digraph. /// /// SourceMap provides access for the source node of each arc in a digraph, @@ -2507,7 +3403,7 @@ /// in constant time. On the other hand, the values are updated automatically /// whenever the digraph changes. /// - /// \warning Besides \c addNode() and \c addArc(), a digraph structure + /// \warning Besides \c addNode() and \c addArc(), a digraph structure /// may provide alternative ways to modify the digraph. /// The correct behavior of InDegMap is not guarantied if these additional /// features are used. For example the functions @@ -2523,7 +3419,7 @@ ::ItemNotifier::ObserverBase { public: - + /// The graph type of InDegMap typedef GR Graph; typedef GR Digraph; @@ -2637,7 +3533,7 @@ /// in constant time. On the other hand, the values are updated automatically /// whenever the digraph changes. /// - /// \warning Besides \c addNode() and \c addArc(), a digraph structure + /// \warning Besides \c addNode() and \c addArc(), a digraph structure /// may provide alternative ways to modify the digraph. /// The correct behavior of OutDegMap is not guarantied if these additional /// features are used. For example the functions diff --git a/lemon/radix_heap.h b/lemon/radix_heap.h new file mode 100644 --- /dev/null +++ b/lemon/radix_heap.h @@ -0,0 +1,433 @@ +/* -*- mode: C++; indent-tabs-mode: nil; -*- + * + * This file is a part of LEMON, a generic C++ optimization library. + * + * Copyright (C) 2003-2009 + * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport + * (Egervary Research Group on Combinatorial Optimization, EGRES). + * + * Permission to use, modify and distribute this software is granted + * provided that this copyright notice appears in all copies. For + * precise terms see the accompanying LICENSE file. + * + * This software is provided "AS IS" with no warranty of any kind, + * express or implied, and with no claim as to its suitability for any + * purpose. + * + */ + +#ifndef LEMON_RADIX_HEAP_H +#define LEMON_RADIX_HEAP_H + +///\ingroup auxdat +///\file +///\brief Radix Heap implementation. + +#include +#include + +namespace lemon { + + + /// \ingroup auxdata + /// + /// \brief A Radix Heap implementation. + /// + /// This class implements the \e radix \e heap data structure. A \e heap + /// is a data structure for storing items with specified values called \e + /// priorities in such a way that finding the item with minimum priority is + /// efficient. This heap type can store only items with \e int priority. + /// In a heap one can change the priority of an item, add or erase an + /// item, but the priority cannot be decreased under the last removed + /// item's priority. + /// + /// \param IM A read and writable Item int map, used internally + /// to handle the cross references. + /// + /// \see BinHeap + /// \see Dijkstra + template + class RadixHeap { + + public: + typedef typename IM::Key Item; + typedef int Prio; + typedef IM ItemIntMap; + + /// \brief Exception thrown by RadixHeap. + /// + /// This Exception is thrown when a smaller priority + /// is inserted into the \e RadixHeap then the last time erased. + /// \see RadixHeap + + class UnderFlowPriorityError : public Exception { + public: + virtual const char* what() const throw() { + return "lemon::RadixHeap::UnderFlowPriorityError"; + } + }; + + /// \brief Type to represent the items states. + /// + /// Each Item element have a state associated to it. It may be "in heap", + /// "pre heap" or "post heap". The latter two are indifferent from the + /// heap's point of view, but may be useful to the user. + /// + /// The ItemIntMap \e should be initialized in such way that it maps + /// PRE_HEAP (-1) to any element to be put in the heap... + enum State { + IN_HEAP = 0, + PRE_HEAP = -1, + POST_HEAP = -2 + }; + + private: + + struct RadixItem { + int prev, next, box; + Item item; + int prio; + RadixItem(Item _item, int _prio) : item(_item), prio(_prio) {} + }; + + struct RadixBox { + int first; + int min, size; + RadixBox(int _min, int _size) : first(-1), min(_min), size(_size) {} + }; + + std::vector data; + std::vector boxes; + + ItemIntMap &_iim; + + + public: + /// \brief The constructor. + /// + /// The constructor. + /// + /// \param map It should be given to the constructor, since it is used + /// internally to handle the cross references. The value of the map + /// should be PRE_HEAP (-1) for each element. + /// + /// \param minimal The initial minimal value of the heap. + /// \param capacity It determines the initial capacity of the heap. + RadixHeap(ItemIntMap &map, int minimal = 0, int capacity = 0) + : _iim(map) { + boxes.push_back(RadixBox(minimal, 1)); + boxes.push_back(RadixBox(minimal + 1, 1)); + while (lower(boxes.size() - 1, capacity + minimal - 1)) { + extend(); + } + } + + /// The number of items stored in the heap. + /// + /// \brief Returns the number of items stored in the heap. + int size() const { return data.size(); } + /// \brief Checks if the heap stores no items. + /// + /// Returns \c true if and only if the heap stores no items. + bool empty() const { return data.empty(); } + + /// \brief Make empty this heap. + /// + /// Make empty this heap. It does not change the cross reference + /// map. If you want to reuse a heap what is not surely empty you + /// should first clear the heap and after that you should set the + /// cross reference map for each item to \c PRE_HEAP. + void clear(int minimal = 0, int capacity = 0) { + data.clear(); boxes.clear(); + boxes.push_back(RadixBox(minimal, 1)); + boxes.push_back(RadixBox(minimal + 1, 1)); + while (lower(boxes.size() - 1, capacity + minimal - 1)) { + extend(); + } + } + + private: + + bool upper(int box, Prio pr) { + return pr < boxes[box].min; + } + + bool lower(int box, Prio pr) { + return pr >= boxes[box].min + boxes[box].size; + } + + /// \brief Remove item from the box list. + void remove(int index) { + if (data[index].prev >= 0) { + data[data[index].prev].next = data[index].next; + } else { + boxes[data[index].box].first = data[index].next; + } + if (data[index].next >= 0) { + data[data[index].next].prev = data[index].prev; + } + } + + /// \brief Insert item into the box list. + void insert(int box, int index) { + if (boxes[box].first == -1) { + boxes[box].first = index; + data[index].next = data[index].prev = -1; + } else { + data[index].next = boxes[box].first; + data[boxes[box].first].prev = index; + data[index].prev = -1; + boxes[box].first = index; + } + data[index].box = box; + } + + /// \brief Add a new box to the box list. + void extend() { + int min = boxes.back().min + boxes.back().size; + int bs = 2 * boxes.back().size; + boxes.push_back(RadixBox(min, bs)); + } + + /// \brief Move an item up into the proper box. + void bubble_up(int index) { + if (!lower(data[index].box, data[index].prio)) return; + remove(index); + int box = findUp(data[index].box, data[index].prio); + insert(box, index); + } + + /// \brief Find up the proper box for the item with the given prio. + int findUp(int start, int pr) { + while (lower(start, pr)) { + if (++start == int(boxes.size())) { + extend(); + } + } + return start; + } + + /// \brief Move an item down into the proper box. + void bubble_down(int index) { + if (!upper(data[index].box, data[index].prio)) return; + remove(index); + int box = findDown(data[index].box, data[index].prio); + insert(box, index); + } + + /// \brief Find up the proper box for the item with the given prio. + int findDown(int start, int pr) { + while (upper(start, pr)) { + if (--start < 0) throw UnderFlowPriorityError(); + } + return start; + } + + /// \brief Find the first not empty box. + int findFirst() { + int first = 0; + while (boxes[first].first == -1) ++first; + return first; + } + + /// \brief Gives back the minimal prio of the box. + int minValue(int box) { + int min = data[boxes[box].first].prio; + for (int k = boxes[box].first; k != -1; k = data[k].next) { + if (data[k].prio < min) min = data[k].prio; + } + return min; + } + + /// \brief Rearrange the items of the heap and makes the + /// first box not empty. + void moveDown() { + int box = findFirst(); + if (box == 0) return; + int min = minValue(box); + for (int i = 0; i <= box; ++i) { + boxes[i].min = min; + min += boxes[i].size; + } + int curr = boxes[box].first, next; + while (curr != -1) { + next = data[curr].next; + bubble_down(curr); + curr = next; + } + } + + void relocate_last(int index) { + if (index != int(data.size()) - 1) { + data[index] = data.back(); + if (data[index].prev != -1) { + data[data[index].prev].next = index; + } else { + boxes[data[index].box].first = index; + } + if (data[index].next != -1) { + data[data[index].next].prev = index; + } + _iim[data[index].item] = index; + } + data.pop_back(); + } + + public: + + /// \brief Insert an item into the heap with the given priority. + /// + /// Adds \c i to the heap with priority \c p. + /// \param i The item to insert. + /// \param p The priority of the item. + void push(const Item &i, const Prio &p) { + int n = data.size(); + _iim.set(i, n); + data.push_back(RadixItem(i, p)); + while (lower(boxes.size() - 1, p)) { + extend(); + } + int box = findDown(boxes.size() - 1, p); + insert(box, n); + } + + /// \brief Returns the item with minimum priority. + /// + /// This method returns the item with minimum priority. + /// \pre The heap must be nonempty. + Item top() const { + const_cast&>(*this).moveDown(); + return data[boxes[0].first].item; + } + + /// \brief Returns the minimum priority. + /// + /// It returns the minimum priority. + /// \pre The heap must be nonempty. + Prio prio() const { + const_cast&>(*this).moveDown(); + return data[boxes[0].first].prio; + } + + /// \brief Deletes the item with minimum priority. + /// + /// This method deletes the item with minimum priority. + /// \pre The heap must be non-empty. + void pop() { + moveDown(); + int index = boxes[0].first; + _iim[data[index].item] = POST_HEAP; + remove(index); + relocate_last(index); + } + + /// \brief Deletes \c i from the heap. + /// + /// This method deletes item \c i from the heap, if \c i was + /// already stored in the heap. + /// \param i The item to erase. + void erase(const Item &i) { + int index = _iim[i]; + _iim[i] = POST_HEAP; + remove(index); + relocate_last(index); + } + + /// \brief Returns the priority of \c i. + /// + /// This function returns the priority of item \c i. + /// \pre \c i must be in the heap. + /// \param i The item. + Prio operator[](const Item &i) const { + int idx = _iim[i]; + return data[idx].prio; + } + + /// \brief \c i gets to the heap with priority \c p independently + /// if \c i was already there. + /// + /// This method calls \ref push(\c i, \c p) if \c i is not stored + /// in the heap and sets the priority of \c i to \c p otherwise. + /// It may throw an \e UnderFlowPriorityException. + /// \param i The item. + /// \param p The priority. + void set(const Item &i, const Prio &p) { + int idx = _iim[i]; + if( idx < 0 ) { + push(i, p); + } + else if( p >= data[idx].prio ) { + data[idx].prio = p; + bubble_up(idx); + } else { + data[idx].prio = p; + bubble_down(idx); + } + } + + + /// \brief Decreases the priority of \c i to \c p. + /// + /// This method decreases the priority of item \c i to \c p. + /// \pre \c i must be stored in the heap with priority at least \c p, and + /// \c should be greater or equal to the last removed item's priority. + /// \param i The item. + /// \param p The priority. + void decrease(const Item &i, const Prio &p) { + int idx = _iim[i]; + data[idx].prio = p; + bubble_down(idx); + } + + /// \brief Increases the priority of \c i to \c p. + /// + /// This method sets the priority of item \c i to \c p. + /// \pre \c i must be stored in the heap with priority at most \c p + /// \param i The item. + /// \param p The priority. + void increase(const Item &i, const Prio &p) { + int idx = _iim[i]; + data[idx].prio = p; + bubble_up(idx); + } + + /// \brief Returns if \c item is in, has already been in, or has + /// never been in the heap. + /// + /// This method returns PRE_HEAP if \c item has never been in the + /// heap, IN_HEAP if it is in the heap at the moment, and POST_HEAP + /// otherwise. In the latter case it is possible that \c item will + /// get back to the heap again. + /// \param i The item. + State state(const Item &i) const { + int s = _iim[i]; + if( s >= 0 ) s = 0; + return State(s); + } + + /// \brief Sets the state of the \c item in the heap. + /// + /// Sets the state of the \c item in the heap. It can be used to + /// manually clear the heap when it is important to achive the + /// better time complexity. + /// \param i The item. + /// \param st The state. It should not be \c IN_HEAP. + void state(const Item& i, State st) { + switch (st) { + case POST_HEAP: + case PRE_HEAP: + if (state(i) == IN_HEAP) { + erase(i); + } + _iim[i] = st; + break; + case IN_HEAP: + break; + } + } + + }; // class RadixHeap + +} // namespace lemon + +#endif // LEMON_RADIX_HEAP_H diff --git a/test/heap_test.cc b/test/heap_test.cc --- a/test/heap_test.cc +++ b/test/heap_test.cc @@ -31,6 +31,9 @@ #include #include +#include +#include +#include #include "test_tools.h" @@ -183,5 +186,39 @@ dijkstraHeapTest(digraph, length, source); } + { + typedef FibHeap IntHeap; + checkConcept, IntHeap>(); + heapSortTest(); + heapIncreaseTest(); + + typedef FibHeap NodeHeap; + checkConcept, NodeHeap>(); + dijkstraHeapTest(digraph, length, source); + } + + { + typedef RadixHeap IntHeap; + checkConcept, IntHeap>(); + heapSortTest(); + heapIncreaseTest(); + + typedef RadixHeap NodeHeap; + checkConcept, NodeHeap>(); + dijkstraHeapTest(digraph, length, source); + } + + { + typedef BucketHeap IntHeap; + checkConcept, IntHeap>(); + heapSortTest(); + heapIncreaseTest(); + + typedef BucketHeap NodeHeap; + checkConcept, NodeHeap>(); + dijkstraHeapTest(digraph, length, source); + } + + return 0; } diff --git a/test/maps_test.cc b/test/maps_test.cc --- a/test/maps_test.cc +++ b/test/maps_test.cc @@ -23,6 +23,7 @@ #include #include #include +#include #include "test_tools.h" @@ -494,5 +495,192 @@ it == map.endValue(), "Wrong value iterator"); } + // Iterable bool map + { + typedef SmartGraph Graph; + typedef SmartGraph::Node Item; + + typedef IterableBoolMap Ibm; + checkConcept, Ibm>(); + + const int num = 10; + Graph g; + std::vector items; + for (int i = 0; i < num; ++i) { + items.push_back(g.addNode()); + } + + Ibm map1(g, true); + int n = 0; + for (Ibm::TrueIt it(map1); it != INVALID; ++it) { + check(map1[static_cast(it)], "Wrong TrueIt"); + ++n; + } + check(n == num, "Wrong number"); + + n = 0; + for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) { + check(map1[static_cast(it)], "Wrong ItemIt for true"); + ++n; + } + check(n == num, "Wrong number"); + check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt"); + check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false"); + + map1[items[5]] = true; + + n = 0; + for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) { + check(map1[static_cast(it)], "Wrong ItemIt for true"); + ++n; + } + check(n == num, "Wrong number"); + + map1[items[num / 2]] = false; + check(map1[items[num / 2]] == false, "Wrong map value"); + + n = 0; + for (Ibm::TrueIt it(map1); it != INVALID; ++it) { + check(map1[static_cast(it)], "Wrong TrueIt for true"); + ++n; + } + check(n == num - 1, "Wrong number"); + + n = 0; + for (Ibm::FalseIt it(map1); it != INVALID; ++it) { + check(!map1[static_cast(it)], "Wrong FalseIt for true"); + ++n; + } + check(n == 1, "Wrong number"); + + map1[items[0]] = false; + check(map1[items[0]] == false, "Wrong map value"); + + map1[items[num - 1]] = false; + check(map1[items[num - 1]] == false, "Wrong map value"); + + n = 0; + for (Ibm::TrueIt it(map1); it != INVALID; ++it) { + check(map1[static_cast(it)], "Wrong TrueIt for true"); + ++n; + } + check(n == num - 3, "Wrong number"); + check(map1.trueNum() == num - 3, "Wrong number"); + + n = 0; + for (Ibm::FalseIt it(map1); it != INVALID; ++it) { + check(!map1[static_cast(it)], "Wrong FalseIt for true"); + ++n; + } + check(n == 3, "Wrong number"); + check(map1.falseNum() == 3, "Wrong number"); + } + + // Iterable int map + { + typedef SmartGraph Graph; + typedef SmartGraph::Node Item; + typedef IterableIntMap Iim; + + checkConcept, Iim>(); + + const int num = 10; + Graph g; + std::vector items; + for (int i = 0; i < num; ++i) { + items.push_back(g.addNode()); + } + + Iim map1(g); + check(map1.size() == 0, "Wrong size"); + + for (int i = 0; i < num; ++i) { + map1[items[i]] = i; + } + check(map1.size() == num, "Wrong size"); + + for (int i = 0; i < num; ++i) { + Iim::ItemIt it(map1, i); + check(static_cast(it) == items[i], "Wrong value"); + ++it; + check(static_cast(it) == INVALID, "Wrong value"); + } + + for (int i = 0; i < num; ++i) { + map1[items[i]] = i % 2; + } + check(map1.size() == 2, "Wrong size"); + + int n = 0; + for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) { + check(map1[static_cast(it)] == 0, "Wrong value"); + ++n; + } + check(n == (num + 1) / 2, "Wrong number"); + + for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) { + check(map1[static_cast(it)] == 1, "Wrong value"); + ++n; + } + check(n == num, "Wrong number"); + + } + + // Iterable value map + { + typedef SmartGraph Graph; + typedef SmartGraph::Node Item; + typedef IterableValueMap Ivm; + + checkConcept, Ivm>(); + + const int num = 10; + Graph g; + std::vector items; + for (int i = 0; i < num; ++i) { + items.push_back(g.addNode()); + } + + Ivm map1(g, 0.0); + check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size"); + check(*map1.beginValue() == 0.0, "Wrong value"); + + for (int i = 0; i < num; ++i) { + map1.set(items[i], static_cast(i)); + } + check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size"); + + for (int i = 0; i < num; ++i) { + Ivm::ItemIt it(map1, static_cast(i)); + check(static_cast(it) == items[i], "Wrong value"); + ++it; + check(static_cast(it) == INVALID, "Wrong value"); + } + + for (Ivm::ValueIterator vit = map1.beginValue(); + vit != map1.endValue(); ++vit) { + check(map1[static_cast(Ivm::ItemIt(map1, *vit))] == *vit, + "Wrong ValueIterator"); + } + + for (int i = 0; i < num; ++i) { + map1.set(items[i], static_cast(i % 2)); + } + check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size"); + + int n = 0; + for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) { + check(map1[static_cast(it)] == 0.0, "Wrong value"); + ++n; + } + check(n == (num + 1) / 2, "Wrong number"); + + for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) { + check(map1[static_cast(it)] == 1.0, "Wrong value"); + ++n; + } + check(n == num, "Wrong number"); + + } return 0; }