# HG changeset patch # User Peter Kovacs # Date 2009-11-13 00:10:33 # Node ID aef153f430e119a38427d6ccc08570cbc0fede3b # Parent 0643a9c2c3ae4ff91e8faca9061745c21150e0af Entirely rework cycle canceling algorithms (#180) - Move the cycle canceling algorithms (CycleCanceling, CancelAndTighten) into one class (CycleCanceling). - Add a Method parameter to the run() function to be able to select the used cycle canceling method. - Use the new interface similarly to NetworkSimplex. - Rework the implementations using an efficient internal structure for handling the residual network. This improvement made the codes much faster. - Handle GEQ supply type (LEQ is not supported). - Handle infinite upper bounds. - Handle negative costs (for arcs of finite upper bound). - Extend the documentation. diff --git a/lemon/Makefile.am b/lemon/Makefile.am --- a/lemon/Makefile.am +++ b/lemon/Makefile.am @@ -62,7 +62,6 @@ lemon/bin_heap.h \ lemon/binom_heap.h \ lemon/bucket_heap.h \ - lemon/cancel_and_tighten.h \ lemon/capacity_scaling.h \ lemon/cbc.h \ lemon/circulation.h \ diff --git a/lemon/cancel_and_tighten.h b/lemon/cancel_and_tighten.h deleted file mode 100644 --- a/lemon/cancel_and_tighten.h +++ /dev/null @@ -1,797 +0,0 @@ -/* -*- C++ -*- - * - * This file is a part of LEMON, a generic C++ optimization library - * - * Copyright (C) 2003-2008 - * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport - * (Egervary Research Group on Combinatorial Optimization, EGRES). - * - * Permission to use, modify and distribute this software is granted - * provided that this copyright notice appears in all copies. For - * precise terms see the accompanying LICENSE file. - * - * This software is provided "AS IS" with no warranty of any kind, - * express or implied, and with no claim as to its suitability for any - * purpose. - * - */ - -#ifndef LEMON_CANCEL_AND_TIGHTEN_H -#define LEMON_CANCEL_AND_TIGHTEN_H - -/// \ingroup min_cost_flow -/// -/// \file -/// \brief Cancel and Tighten algorithm for finding a minimum cost flow. - -#include - -#include -#include -#include -#include -#include -#include - -#include - -namespace lemon { - - /// \addtogroup min_cost_flow - /// @{ - - /// \brief Implementation of the Cancel and Tighten algorithm for - /// finding a minimum cost flow. - /// - /// \ref CancelAndTighten implements the Cancel and Tighten algorithm for - /// finding a minimum cost flow. - /// - /// \tparam Digraph The digraph type the algorithm runs on. - /// \tparam LowerMap The type of the lower bound map. - /// \tparam CapacityMap The type of the capacity (upper bound) map. - /// \tparam CostMap The type of the cost (length) map. - /// \tparam SupplyMap The type of the supply map. - /// - /// \warning - /// - Arc capacities and costs should be \e non-negative \e integers. - /// - Supply values should be \e signed \e integers. - /// - The value types of the maps should be convertible to each other. - /// - \c CostMap::Value must be signed type. - /// - /// \author Peter Kovacs - template < typename Digraph, - typename LowerMap = typename Digraph::template ArcMap, - typename CapacityMap = typename Digraph::template ArcMap, - typename CostMap = typename Digraph::template ArcMap, - typename SupplyMap = typename Digraph::template NodeMap > - class CancelAndTighten - { - TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); - - typedef typename CapacityMap::Value Capacity; - typedef typename CostMap::Value Cost; - typedef typename SupplyMap::Value Supply; - typedef typename Digraph::template ArcMap CapacityArcMap; - typedef typename Digraph::template NodeMap SupplyNodeMap; - - typedef ResidualDigraph< const Digraph, - CapacityArcMap, CapacityArcMap > ResDigraph; - - public: - - /// The type of the flow map. - typedef typename Digraph::template ArcMap FlowMap; - /// The type of the potential map. - typedef typename Digraph::template NodeMap PotentialMap; - - private: - - /// \brief Map adaptor class for handling residual arc costs. - /// - /// Map adaptor class for handling residual arc costs. - class ResidualCostMap : public MapBase - { - typedef typename ResDigraph::Arc Arc; - - private: - - const CostMap &_cost_map; - - public: - - ///\e - ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {} - - ///\e - Cost operator[](const Arc &e) const { - return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e]; - } - - }; //class ResidualCostMap - - /// \brief Map adaptor class for handling reduced arc costs. - /// - /// Map adaptor class for handling reduced arc costs. - class ReducedCostMap : public MapBase - { - private: - - const Digraph &_gr; - const CostMap &_cost_map; - const PotentialMap &_pot_map; - - public: - - ///\e - ReducedCostMap( const Digraph &gr, - const CostMap &cost_map, - const PotentialMap &pot_map ) : - _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {} - - ///\e - inline Cost operator[](const Arc &e) const { - return _cost_map[e] + _pot_map[_gr.source(e)] - - _pot_map[_gr.target(e)]; - } - - }; //class ReducedCostMap - - struct BFOperationTraits { - static double zero() { return 0; } - - static double infinity() { - return std::numeric_limits::infinity(); - } - - static double plus(const double& left, const double& right) { - return left + right; - } - - static bool less(const double& left, const double& right) { - return left + 1e-6 < right; - } - }; // class BFOperationTraits - - private: - - // The digraph the algorithm runs on - const Digraph &_graph; - // The original lower bound map - const LowerMap *_lower; - // The modified capacity map - CapacityArcMap _capacity; - // The original cost map - const CostMap &_cost; - // The modified supply map - SupplyNodeMap _supply; - bool _valid_supply; - - // Arc map of the current flow - FlowMap *_flow; - bool _local_flow; - // Node map of the current potentials - PotentialMap *_potential; - bool _local_potential; - - // The residual digraph - ResDigraph *_res_graph; - // The residual cost map - ResidualCostMap _res_cost; - - public: - - /// \brief General constructor (with lower bounds). - /// - /// General constructor (with lower bounds). - /// - /// \param digraph The digraph the algorithm runs on. - /// \param lower The lower bounds of the arcs. - /// \param capacity The capacities (upper bounds) of the arcs. - /// \param cost The cost (length) values of the arcs. - /// \param supply The supply values of the nodes (signed). - CancelAndTighten( const Digraph &digraph, - const LowerMap &lower, - const CapacityMap &capacity, - const CostMap &cost, - const SupplyMap &supply ) : - _graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost), - _supply(digraph), _flow(NULL), _local_flow(false), - _potential(NULL), _local_potential(false), - _res_graph(NULL), _res_cost(_cost) - { - // Check the sum of supply values - Supply sum = 0; - for (NodeIt n(_graph); n != INVALID; ++n) { - _supply[n] = supply[n]; - sum += _supply[n]; - } - _valid_supply = sum == 0; - - // Remove non-zero lower bounds - for (ArcIt e(_graph); e != INVALID; ++e) { - _capacity[e] = capacity[e]; - if (lower[e] != 0) { - _capacity[e] -= lower[e]; - _supply[_graph.source(e)] -= lower[e]; - _supply[_graph.target(e)] += lower[e]; - } - } - } -/* - /// \brief General constructor (without lower bounds). - /// - /// General constructor (without lower bounds). - /// - /// \param digraph The digraph the algorithm runs on. - /// \param capacity The capacities (upper bounds) of the arcs. - /// \param cost The cost (length) values of the arcs. - /// \param supply The supply values of the nodes (signed). - CancelAndTighten( const Digraph &digraph, - const CapacityMap &capacity, - const CostMap &cost, - const SupplyMap &supply ) : - _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), - _supply(supply), _flow(NULL), _local_flow(false), - _potential(NULL), _local_potential(false), - _res_graph(NULL), _res_cost(_cost) - { - // Check the sum of supply values - Supply sum = 0; - for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; - _valid_supply = sum == 0; - } - - /// \brief Simple constructor (with lower bounds). - /// - /// Simple constructor (with lower bounds). - /// - /// \param digraph The digraph the algorithm runs on. - /// \param lower The lower bounds of the arcs. - /// \param capacity The capacities (upper bounds) of the arcs. - /// \param cost The cost (length) values of the arcs. - /// \param s The source node. - /// \param t The target node. - /// \param flow_value The required amount of flow from node \c s - /// to node \c t (i.e. the supply of \c s and the demand of \c t). - CancelAndTighten( const Digraph &digraph, - const LowerMap &lower, - const CapacityMap &capacity, - const CostMap &cost, - Node s, Node t, - Supply flow_value ) : - _graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost), - _supply(digraph, 0), _flow(NULL), _local_flow(false), - _potential(NULL), _local_potential(false), - _res_graph(NULL), _res_cost(_cost) - { - // Remove non-zero lower bounds - _supply[s] = flow_value; - _supply[t] = -flow_value; - for (ArcIt e(_graph); e != INVALID; ++e) { - if (lower[e] != 0) { - _capacity[e] -= lower[e]; - _supply[_graph.source(e)] -= lower[e]; - _supply[_graph.target(e)] += lower[e]; - } - } - _valid_supply = true; - } - - /// \brief Simple constructor (without lower bounds). - /// - /// Simple constructor (without lower bounds). - /// - /// \param digraph The digraph the algorithm runs on. - /// \param capacity The capacities (upper bounds) of the arcs. - /// \param cost The cost (length) values of the arcs. - /// \param s The source node. - /// \param t The target node. - /// \param flow_value The required amount of flow from node \c s - /// to node \c t (i.e. the supply of \c s and the demand of \c t). - CancelAndTighten( const Digraph &digraph, - const CapacityMap &capacity, - const CostMap &cost, - Node s, Node t, - Supply flow_value ) : - _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), - _supply(digraph, 0), _flow(NULL), _local_flow(false), - _potential(NULL), _local_potential(false), - _res_graph(NULL), _res_cost(_cost) - { - _supply[s] = flow_value; - _supply[t] = -flow_value; - _valid_supply = true; - } -*/ - /// Destructor. - ~CancelAndTighten() { - if (_local_flow) delete _flow; - if (_local_potential) delete _potential; - delete _res_graph; - } - - /// \brief Set the flow map. - /// - /// Set the flow map. - /// - /// \return \c (*this) - CancelAndTighten& flowMap(FlowMap &map) { - if (_local_flow) { - delete _flow; - _local_flow = false; - } - _flow = ↦ - return *this; - } - - /// \brief Set the potential map. - /// - /// Set the potential map. - /// - /// \return \c (*this) - CancelAndTighten& potentialMap(PotentialMap &map) { - if (_local_potential) { - delete _potential; - _local_potential = false; - } - _potential = ↦ - return *this; - } - - /// \name Execution control - - /// @{ - - /// \brief Run the algorithm. - /// - /// Run the algorithm. - /// - /// \return \c true if a feasible flow can be found. - bool run() { - return init() && start(); - } - - /// @} - - /// \name Query Functions - /// The result of the algorithm can be obtained using these - /// functions.\n - /// \ref lemon::CancelAndTighten::run() "run()" must be called before - /// using them. - - /// @{ - - /// \brief Return a const reference to the arc map storing the - /// found flow. - /// - /// Return a const reference to the arc map storing the found flow. - /// - /// \pre \ref run() must be called before using this function. - const FlowMap& flowMap() const { - return *_flow; - } - - /// \brief Return a const reference to the node map storing the - /// found potentials (the dual solution). - /// - /// Return a const reference to the node map storing the found - /// potentials (the dual solution). - /// - /// \pre \ref run() must be called before using this function. - const PotentialMap& potentialMap() const { - return *_potential; - } - - /// \brief Return the flow on the given arc. - /// - /// Return the flow on the given arc. - /// - /// \pre \ref run() must be called before using this function. - Capacity flow(const Arc& arc) const { - return (*_flow)[arc]; - } - - /// \brief Return the potential of the given node. - /// - /// Return the potential of the given node. - /// - /// \pre \ref run() must be called before using this function. - Cost potential(const Node& node) const { - return (*_potential)[node]; - } - - /// \brief Return the total cost of the found flow. - /// - /// Return the total cost of the found flow. The complexity of the - /// function is \f$ O(e) \f$. - /// - /// \pre \ref run() must be called before using this function. - Cost totalCost() const { - Cost c = 0; - for (ArcIt e(_graph); e != INVALID; ++e) - c += (*_flow)[e] * _cost[e]; - return c; - } - - /// @} - - private: - - /// Initialize the algorithm. - bool init() { - if (!_valid_supply) return false; - - // Initialize flow and potential maps - if (!_flow) { - _flow = new FlowMap(_graph); - _local_flow = true; - } - if (!_potential) { - _potential = new PotentialMap(_graph); - _local_potential = true; - } - - _res_graph = new ResDigraph(_graph, _capacity, *_flow); - - // Find a feasible flow using Circulation - Circulation< Digraph, ConstMap, - CapacityArcMap, SupplyMap > - circulation( _graph, constMap(Capacity(0)), - _capacity, _supply ); - return circulation.flowMap(*_flow).run(); - } - - bool start() { - const double LIMIT_FACTOR = 0.01; - const int MIN_LIMIT = 3; - - typedef typename Digraph::template NodeMap FloatPotentialMap; - typedef typename Digraph::template NodeMap LevelMap; - typedef typename Digraph::template NodeMap BoolNodeMap; - typedef typename Digraph::template NodeMap PredNodeMap; - typedef typename Digraph::template NodeMap PredArcMap; - typedef typename ResDigraph::template ArcMap ResShiftCostMap; - FloatPotentialMap pi(_graph); - LevelMap level(_graph); - BoolNodeMap reached(_graph); - BoolNodeMap processed(_graph); - PredNodeMap pred_node(_graph); - PredArcMap pred_arc(_graph); - int node_num = countNodes(_graph); - typedef std::pair pair; - std::vector stack(node_num); - std::vector proc_vector(node_num); - ResShiftCostMap shift_cost(*_res_graph); - - Tolerance tol; - tol.epsilon(1e-6); - - Timer t1, t2, t3; - t1.reset(); - t2.reset(); - t3.reset(); - - // Initialize epsilon and the node potentials - double epsilon = 0; - for (ArcIt e(_graph); e != INVALID; ++e) { - if (_capacity[e] - (*_flow)[e] > 0 && _cost[e] < -epsilon) - epsilon = -_cost[e]; - else if ((*_flow)[e] > 0 && _cost[e] > epsilon) - epsilon = _cost[e]; - } - for (NodeIt v(_graph); v != INVALID; ++v) { - pi[v] = 0; - } - - // Start phases - int limit = int(LIMIT_FACTOR * node_num); - if (limit < MIN_LIMIT) limit = MIN_LIMIT; - int iter = limit; - while (epsilon * node_num >= 1) { - t1.start(); - // Find and cancel cycles in the admissible digraph using DFS - for (NodeIt n(_graph); n != INVALID; ++n) { - reached[n] = false; - processed[n] = false; - } - int stack_head = -1; - int proc_head = -1; - - for (NodeIt start(_graph); start != INVALID; ++start) { - if (reached[start]) continue; - - // New start node - reached[start] = true; - pred_arc[start] = INVALID; - pred_node[start] = INVALID; - - // Find the first admissible residual outgoing arc - double p = pi[start]; - Arc e; - _graph.firstOut(e, start); - while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || - !tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) - _graph.nextOut(e); - if (e != INVALID) { - stack[++stack_head] = pair(e, true); - goto next_step_1; - } - _graph.firstIn(e, start); - while ( e != INVALID && ((*_flow)[e] == 0 || - !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) - _graph.nextIn(e); - if (e != INVALID) { - stack[++stack_head] = pair(e, false); - goto next_step_1; - } - processed[start] = true; - proc_vector[++proc_head] = start; - continue; - next_step_1: - - while (stack_head >= 0) { - Arc se = stack[stack_head].first; - bool sf = stack[stack_head].second; - Node u, v; - if (sf) { - u = _graph.source(se); - v = _graph.target(se); - } else { - u = _graph.target(se); - v = _graph.source(se); - } - - if (!reached[v]) { - // A new node is reached - reached[v] = true; - pred_node[v] = u; - pred_arc[v] = se; - // Find the first admissible residual outgoing arc - double p = pi[v]; - Arc e; - _graph.firstOut(e, v); - while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || - !tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) - _graph.nextOut(e); - if (e != INVALID) { - stack[++stack_head] = pair(e, true); - goto next_step_2; - } - _graph.firstIn(e, v); - while ( e != INVALID && ((*_flow)[e] == 0 || - !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) - _graph.nextIn(e); - stack[++stack_head] = pair(e, false); - next_step_2: ; - } else { - if (!processed[v]) { - // A cycle is found - Node n, w = u; - Capacity d, delta = sf ? _capacity[se] - (*_flow)[se] : - (*_flow)[se]; - for (n = u; n != v; n = pred_node[n]) { - d = _graph.target(pred_arc[n]) == n ? - _capacity[pred_arc[n]] - (*_flow)[pred_arc[n]] : - (*_flow)[pred_arc[n]]; - if (d <= delta) { - delta = d; - w = pred_node[n]; - } - } - -/* - std::cout << "CYCLE FOUND: "; - if (sf) - std::cout << _cost[se] + pi[_graph.source(se)] - pi[_graph.target(se)]; - else - std::cout << _graph.id(se) << ":" << -(_cost[se] + pi[_graph.source(se)] - pi[_graph.target(se)]); - for (n = u; n != v; n = pred_node[n]) { - if (_graph.target(pred_arc[n]) == n) - std::cout << " " << _cost[pred_arc[n]] + pi[_graph.source(pred_arc[n])] - pi[_graph.target(pred_arc[n])]; - else - std::cout << " " << -(_cost[pred_arc[n]] + pi[_graph.source(pred_arc[n])] - pi[_graph.target(pred_arc[n])]); - } - std::cout << "\n"; -*/ - // Augment along the cycle - (*_flow)[se] = sf ? (*_flow)[se] + delta : - (*_flow)[se] - delta; - for (n = u; n != v; n = pred_node[n]) { - if (_graph.target(pred_arc[n]) == n) - (*_flow)[pred_arc[n]] += delta; - else - (*_flow)[pred_arc[n]] -= delta; - } - for (n = u; stack_head > 0 && n != w; n = pred_node[n]) { - --stack_head; - reached[n] = false; - } - u = w; - } - v = u; - - // Find the next admissible residual outgoing arc - double p = pi[v]; - Arc e = stack[stack_head].first; - if (!stack[stack_head].second) { - _graph.nextIn(e); - goto in_arc_3; - } - _graph.nextOut(e); - while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || - !tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) - _graph.nextOut(e); - if (e != INVALID) { - stack[stack_head] = pair(e, true); - goto next_step_3; - } - _graph.firstIn(e, v); - in_arc_3: - while ( e != INVALID && ((*_flow)[e] == 0 || - !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) - _graph.nextIn(e); - stack[stack_head] = pair(e, false); - next_step_3: ; - } - - while (stack_head >= 0 && stack[stack_head].first == INVALID) { - processed[v] = true; - proc_vector[++proc_head] = v; - if (--stack_head >= 0) { - v = stack[stack_head].second ? - _graph.source(stack[stack_head].first) : - _graph.target(stack[stack_head].first); - // Find the next admissible residual outgoing arc - double p = pi[v]; - Arc e = stack[stack_head].first; - if (!stack[stack_head].second) { - _graph.nextIn(e); - goto in_arc_4; - } - _graph.nextOut(e); - while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 || - !tol.negative(_cost[e] + p - pi[_graph.target(e)])) ) - _graph.nextOut(e); - if (e != INVALID) { - stack[stack_head] = pair(e, true); - goto next_step_4; - } - _graph.firstIn(e, v); - in_arc_4: - while ( e != INVALID && ((*_flow)[e] == 0 || - !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) ) - _graph.nextIn(e); - stack[stack_head] = pair(e, false); - next_step_4: ; - } - } - } - } - t1.stop(); - - // Tighten potentials and epsilon - if (--iter > 0) { - // Compute levels - t2.start(); - for (int i = proc_head; i >= 0; --i) { - Node v = proc_vector[i]; - double p = pi[v]; - int l = 0; - for (InArcIt e(_graph, v); e != INVALID; ++e) { - Node u = _graph.source(e); - if ( _capacity[e] - (*_flow)[e] > 0 && - tol.negative(_cost[e] + pi[u] - p) && - level[u] + 1 > l ) l = level[u] + 1; - } - for (OutArcIt e(_graph, v); e != INVALID; ++e) { - Node u = _graph.target(e); - if ( (*_flow)[e] > 0 && - tol.negative(-_cost[e] + pi[u] - p) && - level[u] + 1 > l ) l = level[u] + 1; - } - level[v] = l; - } - - // Modify potentials - double p, q = -1; - for (ArcIt e(_graph); e != INVALID; ++e) { - Node u = _graph.source(e); - Node v = _graph.target(e); - if (_capacity[e] - (*_flow)[e] > 0 && level[u] - level[v] > 0) { - p = (_cost[e] + pi[u] - pi[v] + epsilon) / - (level[u] - level[v] + 1); - if (q < 0 || p < q) q = p; - } - else if ((*_flow)[e] > 0 && level[v] - level[u] > 0) { - p = (-_cost[e] - pi[u] + pi[v] + epsilon) / - (level[v] - level[u] + 1); - if (q < 0 || p < q) q = p; - } - } - for (NodeIt v(_graph); v != INVALID; ++v) { - pi[v] -= q * level[v]; - } - - // Modify epsilon - epsilon = 0; - for (ArcIt e(_graph); e != INVALID; ++e) { - double curr = _cost[e] + pi[_graph.source(e)] - - pi[_graph.target(e)]; - if (_capacity[e] - (*_flow)[e] > 0 && curr < -epsilon) - epsilon = -curr; - else if ((*_flow)[e] > 0 && curr > epsilon) - epsilon = curr; - } - t2.stop(); - } else { - // Set epsilon to the minimum cycle mean - t3.start(); - -/**/ - StaticDigraph static_graph; - typename ResDigraph::template NodeMap node_ref(*_res_graph); - typename ResDigraph::template ArcMap arc_ref(*_res_graph); - static_graph.build(*_res_graph, node_ref, arc_ref); - typename StaticDigraph::template NodeMap static_pi(static_graph); - typename StaticDigraph::template ArcMap static_cost(static_graph); - - for (typename ResDigraph::ArcIt e(*_res_graph); e != INVALID; ++e) - static_cost[arc_ref[e]] = _res_cost[e]; - - Howard > - mmc(static_graph, static_cost); - mmc.findMinMean(); - epsilon = -mmc.cycleMean(); -/**/ - -/* - Howard mmc(*_res_graph, _res_cost); - mmc.findMinMean(); - epsilon = -mmc.cycleMean(); -*/ - - // Compute feasible potentials for the current epsilon - for (typename StaticDigraph::ArcIt e(static_graph); e != INVALID; ++e) - static_cost[e] += epsilon; - typename BellmanFord >:: - template SetDistMap >:: - template SetOperationTraits::Create - bf(static_graph, static_cost); - bf.distMap(static_pi).init(0); - bf.start(); - for (NodeIt n(_graph); n != INVALID; ++n) - pi[n] = static_pi[node_ref[n]]; - -/* - for (typename ResDigraph::ArcIt e(*_res_graph); e != INVALID; ++e) - shift_cost[e] = _res_cost[e] + epsilon; - typename BellmanFord:: - template SetDistMap:: - template SetOperationTraits::Create - bf(*_res_graph, shift_cost); - bf.distMap(pi).init(0); - bf.start(); -*/ - - iter = limit; - t3.stop(); - } - } - -// std::cout << t1.realTime() << " " << t2.realTime() << " " << t3.realTime() << "\n"; - - // Handle non-zero lower bounds - if (_lower) { - for (ArcIt e(_graph); e != INVALID; ++e) - (*_flow)[e] += (*_lower)[e]; - } - return true; - } - - }; //class CancelAndTighten - - ///@} - -} //namespace lemon - -#endif //LEMON_CANCEL_AND_TIGHTEN_H diff --git a/lemon/cycle_canceling.h b/lemon/cycle_canceling.h --- a/lemon/cycle_canceling.h +++ b/lemon/cycle_canceling.h @@ -19,441 +19,817 @@ #ifndef LEMON_CYCLE_CANCELING_H #define LEMON_CYCLE_CANCELING_H -/// \ingroup min_cost_flow -/// +/// \ingroup min_cost_flow_algs /// \file -/// \brief Cycle-canceling algorithm for finding a minimum cost flow. +/// \brief Cycle-canceling algorithms for finding a minimum cost flow. #include +#include + +#include +#include +#include +#include +#include #include -#include - #include #include #include namespace lemon { - /// \addtogroup min_cost_flow + /// \addtogroup min_cost_flow_algs /// @{ - /// \brief Implementation of a cycle-canceling algorithm for - /// finding a minimum cost flow. + /// \brief Implementation of cycle-canceling algorithms for + /// finding a \ref min_cost_flow "minimum cost flow". /// - /// \ref CycleCanceling implements a cycle-canceling algorithm for - /// finding a minimum cost flow. + /// \ref CycleCanceling implements three different cycle-canceling + /// algorithms for finding a \ref min_cost_flow "minimum cost flow". + /// The most efficent one (both theoretically and practically) + /// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm, + /// thus it is the default method. + /// It is strongly polynomial, but in practice, it is typically much + /// slower than the scaling algorithms and NetworkSimplex. /// - /// \tparam Digraph The digraph type the algorithm runs on. - /// \tparam LowerMap The type of the lower bound map. - /// \tparam CapacityMap The type of the capacity (upper bound) map. - /// \tparam CostMap The type of the cost (length) map. - /// \tparam SupplyMap The type of the supply map. + /// Most of the parameters of the problem (except for the digraph) + /// can be given using separate functions, and the algorithm can be + /// executed using the \ref run() function. If some parameters are not + /// specified, then default values will be used. /// - /// \warning - /// - Arc capacities and costs should be \e non-negative \e integers. - /// - Supply values should be \e signed \e integers. - /// - The value types of the maps should be convertible to each other. - /// - \c CostMap::Value must be signed type. + /// \tparam GR The digraph type the algorithm runs on. + /// \tparam V The number type used for flow amounts, capacity bounds + /// and supply values in the algorithm. By default, it is \c int. + /// \tparam C The number type used for costs and potentials in the + /// algorithm. By default, it is the same as \c V. /// - /// \note By default the \ref BellmanFord "Bellman-Ford" algorithm is - /// used for negative cycle detection with limited iteration number. - /// However \ref CycleCanceling also provides the "Minimum Mean - /// Cycle-Canceling" algorithm, which is \e strongly \e polynomial, - /// but rather slower in practice. - /// To use this version of the algorithm, call \ref run() with \c true - /// parameter. + /// \warning Both number types must be signed and all input data must + /// be integer. + /// \warning This algorithm does not support negative costs for such + /// arcs that have infinite upper bound. /// - /// \author Peter Kovacs - template < typename Digraph, - typename LowerMap = typename Digraph::template ArcMap, - typename CapacityMap = typename Digraph::template ArcMap, - typename CostMap = typename Digraph::template ArcMap, - typename SupplyMap = typename Digraph::template NodeMap > + /// \note For more information about the three available methods, + /// see \ref Method. +#ifdef DOXYGEN + template +#else + template +#endif class CycleCanceling { - TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); + public: - typedef typename CapacityMap::Value Capacity; - typedef typename CostMap::Value Cost; - typedef typename SupplyMap::Value Supply; - typedef typename Digraph::template ArcMap CapacityArcMap; - typedef typename Digraph::template NodeMap SupplyNodeMap; - - typedef ResidualDigraph< const Digraph, - CapacityArcMap, CapacityArcMap > ResDigraph; - typedef typename ResDigraph::Node ResNode; - typedef typename ResDigraph::NodeIt ResNodeIt; - typedef typename ResDigraph::Arc ResArc; - typedef typename ResDigraph::ArcIt ResArcIt; + /// The type of the digraph + typedef GR Digraph; + /// The type of the flow amounts, capacity bounds and supply values + typedef V Value; + /// The type of the arc costs + typedef C Cost; public: - /// The type of the flow map. - typedef typename Digraph::template ArcMap FlowMap; - /// The type of the potential map. - typedef typename Digraph::template NodeMap PotentialMap; + /// \brief Problem type constants for the \c run() function. + /// + /// Enum type containing the problem type constants that can be + /// returned by the \ref run() function of the algorithm. + enum ProblemType { + /// The problem has no feasible solution (flow). + INFEASIBLE, + /// The problem has optimal solution (i.e. it is feasible and + /// bounded), and the algorithm has found optimal flow and node + /// potentials (primal and dual solutions). + OPTIMAL, + /// The digraph contains an arc of negative cost and infinite + /// upper bound. It means that the objective function is unbounded + /// on that arc, however, note that it could actually be bounded + /// over the feasible flows, but this algroithm cannot handle + /// these cases. + UNBOUNDED + }; + + /// \brief Constants for selecting the used method. + /// + /// Enum type containing constants for selecting the used method + /// for the \ref run() function. + /// + /// \ref CycleCanceling provides three different cycle-canceling + /// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" + /// is used, which proved to be the most efficient and the most robust + /// on various test inputs. + /// However, the other methods can be selected using the \ref run() + /// function with the proper parameter. + enum Method { + /// A simple cycle-canceling method, which uses the + /// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration + /// number for detecting negative cycles in the residual network. + SIMPLE_CYCLE_CANCELING, + /// The "Minimum Mean Cycle-Canceling" algorithm, which is a + /// well-known strongly polynomial method. It improves along a + /// \ref min_mean_cycle "minimum mean cycle" in each iteration. + /// Its running time complexity is O(n2m3log(n)). + MINIMUM_MEAN_CYCLE_CANCELING, + /// The "Cancel And Tighten" algorithm, which can be viewed as an + /// improved version of the previous method. + /// It is faster both in theory and in practice, its running time + /// complexity is O(n2m2log(n)). + CANCEL_AND_TIGHTEN + }; private: - /// \brief Map adaptor class for handling residual arc costs. - /// - /// Map adaptor class for handling residual arc costs. - class ResidualCostMap : public MapBase - { - private: + TEMPLATE_DIGRAPH_TYPEDEFS(GR); + + typedef std::vector IntVector; + typedef std::vector CharVector; + typedef std::vector DoubleVector; + typedef std::vector ValueVector; + typedef std::vector CostVector; - const CostMap &_cost_map; - + private: + + template + class VectorMap { public: - - ///\e - ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {} - - ///\e - Cost operator[](const ResArc &e) const { - return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e]; + typedef KT Key; + typedef VT Value; + + VectorMap(std::vector& v) : _v(v) {} + + const Value& operator[](const Key& key) const { + return _v[StaticDigraph::id(key)]; } - }; //class ResidualCostMap + Value& operator[](const Key& key) { + return _v[StaticDigraph::id(key)]; + } + + void set(const Key& key, const Value& val) { + _v[StaticDigraph::id(key)] = val; + } + + private: + std::vector& _v; + }; + + typedef VectorMap CostNodeMap; + typedef VectorMap CostArcMap; private: - // The maximum number of iterations for the first execution of the - // Bellman-Ford algorithm. It should be at least 2. - static const int BF_FIRST_LIMIT = 2; - // The iteration limit for the Bellman-Ford algorithm is multiplied - // by BF_LIMIT_FACTOR/100 in every round. - static const int BF_LIMIT_FACTOR = 150; - private: + // Data related to the underlying digraph + const GR &_graph; + int _node_num; + int _arc_num; + int _res_node_num; + int _res_arc_num; + int _root; - // The digraph the algorithm runs on - const Digraph &_graph; - // The original lower bound map - const LowerMap *_lower; - // The modified capacity map - CapacityArcMap _capacity; - // The original cost map - const CostMap &_cost; - // The modified supply map - SupplyNodeMap _supply; - bool _valid_supply; + // Parameters of the problem + bool _have_lower; + Value _sum_supply; - // Arc map of the current flow - FlowMap *_flow; - bool _local_flow; - // Node map of the current potentials - PotentialMap *_potential; - bool _local_potential; + // Data structures for storing the digraph + IntNodeMap _node_id; + IntArcMap _arc_idf; + IntArcMap _arc_idb; + IntVector _first_out; + CharVector _forward; + IntVector _source; + IntVector _target; + IntVector _reverse; - // The residual digraph - ResDigraph *_res_graph; - // The residual cost map - ResidualCostMap _res_cost; + // Node and arc data + ValueVector _lower; + ValueVector _upper; + CostVector _cost; + ValueVector _supply; + + ValueVector _res_cap; + CostVector _pi; + + // Data for a StaticDigraph structure + typedef std::pair IntPair; + StaticDigraph _sgr; + std::vector _arc_vec; + std::vector _cost_vec; + IntVector _id_vec; + CostArcMap _cost_map; + CostNodeMap _pi_map; + + public: + + /// \brief Constant for infinite upper bounds (capacities). + /// + /// Constant for infinite upper bounds (capacities). + /// It is \c std::numeric_limits::infinity() if available, + /// \c std::numeric_limits::max() otherwise. + const Value INF; public: - /// \brief General constructor (with lower bounds). + /// \brief Constructor. /// - /// General constructor (with lower bounds). + /// The constructor of the class. /// - /// \param digraph The digraph the algorithm runs on. - /// \param lower The lower bounds of the arcs. - /// \param capacity The capacities (upper bounds) of the arcs. - /// \param cost The cost (length) values of the arcs. - /// \param supply The supply values of the nodes (signed). - CycleCanceling( const Digraph &digraph, - const LowerMap &lower, - const CapacityMap &capacity, - const CostMap &cost, - const SupplyMap &supply ) : - _graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost), - _supply(digraph), _flow(NULL), _local_flow(false), - _potential(NULL), _local_potential(false), - _res_graph(NULL), _res_cost(_cost) + /// \param graph The digraph the algorithm runs on. + CycleCanceling(const GR& graph) : + _graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), + _cost_map(_cost_vec), _pi_map(_pi), + INF(std::numeric_limits::has_infinity ? + std::numeric_limits::infinity() : + std::numeric_limits::max()) { - // Check the sum of supply values - Supply sum = 0; - for (NodeIt n(_graph); n != INVALID; ++n) { - _supply[n] = supply[n]; - sum += _supply[n]; + // Check the number types + LEMON_ASSERT(std::numeric_limits::is_signed, + "The flow type of CycleCanceling must be signed"); + LEMON_ASSERT(std::numeric_limits::is_signed, + "The cost type of CycleCanceling must be signed"); + + // Resize vectors + _node_num = countNodes(_graph); + _arc_num = countArcs(_graph); + _res_node_num = _node_num + 1; + _res_arc_num = 2 * (_arc_num + _node_num); + _root = _node_num; + + _first_out.resize(_res_node_num + 1); + _forward.resize(_res_arc_num); + _source.resize(_res_arc_num); + _target.resize(_res_arc_num); + _reverse.resize(_res_arc_num); + + _lower.resize(_res_arc_num); + _upper.resize(_res_arc_num); + _cost.resize(_res_arc_num); + _supply.resize(_res_node_num); + + _res_cap.resize(_res_arc_num); + _pi.resize(_res_node_num); + + _arc_vec.reserve(_res_arc_num); + _cost_vec.reserve(_res_arc_num); + _id_vec.reserve(_res_arc_num); + + // Copy the graph + int i = 0, j = 0, k = 2 * _arc_num + _node_num; + for (NodeIt n(_graph); n != INVALID; ++n, ++i) { + _node_id[n] = i; } - _valid_supply = sum == 0; - - // Remove non-zero lower bounds - for (ArcIt e(_graph); e != INVALID; ++e) { - _capacity[e] = capacity[e]; - if (lower[e] != 0) { - _capacity[e] -= lower[e]; - _supply[_graph.source(e)] -= lower[e]; - _supply[_graph.target(e)] += lower[e]; + i = 0; + for (NodeIt n(_graph); n != INVALID; ++n, ++i) { + _first_out[i] = j; + for (OutArcIt a(_graph, n); a != INVALID; ++a, ++j) { + _arc_idf[a] = j; + _forward[j] = true; + _source[j] = i; + _target[j] = _node_id[_graph.runningNode(a)]; } + for (InArcIt a(_graph, n); a != INVALID; ++a, ++j) { + _arc_idb[a] = j; + _forward[j] = false; + _source[j] = i; + _target[j] = _node_id[_graph.runningNode(a)]; + } + _forward[j] = false; + _source[j] = i; + _target[j] = _root; + _reverse[j] = k; + _forward[k] = true; + _source[k] = _root; + _target[k] = i; + _reverse[k] = j; + ++j; ++k; } - } -/* - /// \brief General constructor (without lower bounds). - /// - /// General constructor (without lower bounds). - /// - /// \param digraph The digraph the algorithm runs on. - /// \param capacity The capacities (upper bounds) of the arcs. - /// \param cost The cost (length) values of the arcs. - /// \param supply The supply values of the nodes (signed). - CycleCanceling( const Digraph &digraph, - const CapacityMap &capacity, - const CostMap &cost, - const SupplyMap &supply ) : - _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), - _supply(supply), _flow(NULL), _local_flow(false), - _potential(NULL), _local_potential(false), _res_graph(NULL), - _res_cost(_cost) - { - // Check the sum of supply values - Supply sum = 0; - for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; - _valid_supply = sum == 0; + _first_out[i] = j; + _first_out[_res_node_num] = k; + for (ArcIt a(_graph); a != INVALID; ++a) { + int fi = _arc_idf[a]; + int bi = _arc_idb[a]; + _reverse[fi] = bi; + _reverse[bi] = fi; + } + + // Reset parameters + reset(); } - /// \brief Simple constructor (with lower bounds). + /// \name Parameters + /// The parameters of the algorithm can be specified using these + /// functions. + + /// @{ + + /// \brief Set the lower bounds on the arcs. /// - /// Simple constructor (with lower bounds). + /// This function sets the lower bounds on the arcs. + /// If it is not used before calling \ref run(), the lower bounds + /// will be set to zero on all arcs. /// - /// \param digraph The digraph the algorithm runs on. - /// \param lower The lower bounds of the arcs. - /// \param capacity The capacities (upper bounds) of the arcs. - /// \param cost The cost (length) values of the arcs. - /// \param s The source node. - /// \param t The target node. - /// \param flow_value The required amount of flow from node \c s - /// to node \c t (i.e. the supply of \c s and the demand of \c t). - CycleCanceling( const Digraph &digraph, - const LowerMap &lower, - const CapacityMap &capacity, - const CostMap &cost, - Node s, Node t, - Supply flow_value ) : - _graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost), - _supply(digraph, 0), _flow(NULL), _local_flow(false), - _potential(NULL), _local_potential(false), _res_graph(NULL), - _res_cost(_cost) - { - // Remove non-zero lower bounds - _supply[s] = flow_value; - _supply[t] = -flow_value; - for (ArcIt e(_graph); e != INVALID; ++e) { - if (lower[e] != 0) { - _capacity[e] -= lower[e]; - _supply[_graph.source(e)] -= lower[e]; - _supply[_graph.target(e)] += lower[e]; - } + /// \param map An arc map storing the lower bounds. + /// Its \c Value type must be convertible to the \c Value type + /// of the algorithm. + /// + /// \return (*this) + template + CycleCanceling& lowerMap(const LowerMap& map) { + _have_lower = true; + for (ArcIt a(_graph); a != INVALID; ++a) { + _lower[_arc_idf[a]] = map[a]; + _lower[_arc_idb[a]] = map[a]; } - _valid_supply = true; - } - - /// \brief Simple constructor (without lower bounds). - /// - /// Simple constructor (without lower bounds). - /// - /// \param digraph The digraph the algorithm runs on. - /// \param capacity The capacities (upper bounds) of the arcs. - /// \param cost The cost (length) values of the arcs. - /// \param s The source node. - /// \param t The target node. - /// \param flow_value The required amount of flow from node \c s - /// to node \c t (i.e. the supply of \c s and the demand of \c t). - CycleCanceling( const Digraph &digraph, - const CapacityMap &capacity, - const CostMap &cost, - Node s, Node t, - Supply flow_value ) : - _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost), - _supply(digraph, 0), _flow(NULL), _local_flow(false), - _potential(NULL), _local_potential(false), _res_graph(NULL), - _res_cost(_cost) - { - _supply[s] = flow_value; - _supply[t] = -flow_value; - _valid_supply = true; - } -*/ - /// Destructor. - ~CycleCanceling() { - if (_local_flow) delete _flow; - if (_local_potential) delete _potential; - delete _res_graph; - } - - /// \brief Set the flow map. - /// - /// Set the flow map. - /// - /// \return \c (*this) - CycleCanceling& flowMap(FlowMap &map) { - if (_local_flow) { - delete _flow; - _local_flow = false; - } - _flow = ↦ return *this; } - /// \brief Set the potential map. + /// \brief Set the upper bounds (capacities) on the arcs. /// - /// Set the potential map. + /// This function sets the upper bounds (capacities) on the arcs. + /// If it is not used before calling \ref run(), the upper bounds + /// will be set to \ref INF on all arcs (i.e. the flow value will be + /// unbounded from above). /// - /// \return \c (*this) - CycleCanceling& potentialMap(PotentialMap &map) { - if (_local_potential) { - delete _potential; - _local_potential = false; + /// \param map An arc map storing the upper bounds. + /// Its \c Value type must be convertible to the \c Value type + /// of the algorithm. + /// + /// \return (*this) + template + CycleCanceling& upperMap(const UpperMap& map) { + for (ArcIt a(_graph); a != INVALID; ++a) { + _upper[_arc_idf[a]] = map[a]; } - _potential = ↦ return *this; } + /// \brief Set the costs of the arcs. + /// + /// This function sets the costs of the arcs. + /// If it is not used before calling \ref run(), the costs + /// will be set to \c 1 on all arcs. + /// + /// \param map An arc map storing the costs. + /// Its \c Value type must be convertible to the \c Cost type + /// of the algorithm. + /// + /// \return (*this) + template + CycleCanceling& costMap(const CostMap& map) { + for (ArcIt a(_graph); a != INVALID; ++a) { + _cost[_arc_idf[a]] = map[a]; + _cost[_arc_idb[a]] = -map[a]; + } + return *this; + } + + /// \brief Set the supply values of the nodes. + /// + /// This function sets the supply values of the nodes. + /// If neither this function nor \ref stSupply() is used before + /// calling \ref run(), the supply of each node will be set to zero. + /// + /// \param map A node map storing the supply values. + /// Its \c Value type must be convertible to the \c Value type + /// of the algorithm. + /// + /// \return (*this) + template + CycleCanceling& supplyMap(const SupplyMap& map) { + for (NodeIt n(_graph); n != INVALID; ++n) { + _supply[_node_id[n]] = map[n]; + } + return *this; + } + + /// \brief Set single source and target nodes and a supply value. + /// + /// This function sets a single source node and a single target node + /// and the required flow value. + /// If neither this function nor \ref supplyMap() is used before + /// calling \ref run(), the supply of each node will be set to zero. + /// + /// Using this function has the same effect as using \ref supplyMap() + /// with such a map in which \c k is assigned to \c s, \c -k is + /// assigned to \c t and all other nodes have zero supply value. + /// + /// \param s The source node. + /// \param t The target node. + /// \param k The required amount of flow from node \c s to node \c t + /// (i.e. the supply of \c s and the demand of \c t). + /// + /// \return (*this) + CycleCanceling& stSupply(const Node& s, const Node& t, Value k) { + for (int i = 0; i != _res_node_num; ++i) { + _supply[i] = 0; + } + _supply[_node_id[s]] = k; + _supply[_node_id[t]] = -k; + return *this; + } + + /// @} + /// \name Execution control + /// The algorithm can be executed using \ref run(). /// @{ /// \brief Run the algorithm. /// - /// Run the algorithm. + /// This function runs the algorithm. + /// The paramters can be specified using functions \ref lowerMap(), + /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). + /// For example, + /// \code + /// CycleCanceling cc(graph); + /// cc.lowerMap(lower).upperMap(upper).costMap(cost) + /// .supplyMap(sup).run(); + /// \endcode /// - /// \param min_mean_cc Set this parameter to \c true to run the - /// "Minimum Mean Cycle-Canceling" algorithm, which is strongly - /// polynomial, but rather slower in practice. + /// This function can be called more than once. All the parameters + /// that have been given are kept for the next call, unless + /// \ref reset() is called, thus only the modified parameters + /// have to be set again. See \ref reset() for examples. + /// However, the underlying digraph must not be modified after this + /// class have been constructed, since it copies and extends the graph. /// - /// \return \c true if a feasible flow can be found. - bool run(bool min_mean_cc = false) { - return init() && start(min_mean_cc); + /// \param method The cycle-canceling method that will be used. + /// For more information, see \ref Method. + /// + /// \return \c INFEASIBLE if no feasible flow exists, + /// \n \c OPTIMAL if the problem has optimal solution + /// (i.e. it is feasible and bounded), and the algorithm has found + /// optimal flow and node potentials (primal and dual solutions), + /// \n \c UNBOUNDED if the digraph contains an arc of negative cost + /// and infinite upper bound. It means that the objective function + /// is unbounded on that arc, however, note that it could actually be + /// bounded over the feasible flows, but this algroithm cannot handle + /// these cases. + /// + /// \see ProblemType, Method + ProblemType run(Method method = CANCEL_AND_TIGHTEN) { + ProblemType pt = init(); + if (pt != OPTIMAL) return pt; + start(method); + return OPTIMAL; + } + + /// \brief Reset all the parameters that have been given before. + /// + /// This function resets all the paramaters that have been given + /// before using functions \ref lowerMap(), \ref upperMap(), + /// \ref costMap(), \ref supplyMap(), \ref stSupply(). + /// + /// It is useful for multiple run() calls. If this function is not + /// used, all the parameters given before are kept for the next + /// \ref run() call. + /// However, the underlying digraph must not be modified after this + /// class have been constructed, since it copies and extends the graph. + /// + /// For example, + /// \code + /// CycleCanceling cs(graph); + /// + /// // First run + /// cc.lowerMap(lower).upperMap(upper).costMap(cost) + /// .supplyMap(sup).run(); + /// + /// // Run again with modified cost map (reset() is not called, + /// // so only the cost map have to be set again) + /// cost[e] += 100; + /// cc.costMap(cost).run(); + /// + /// // Run again from scratch using reset() + /// // (the lower bounds will be set to zero on all arcs) + /// cc.reset(); + /// cc.upperMap(capacity).costMap(cost) + /// .supplyMap(sup).run(); + /// \endcode + /// + /// \return (*this) + CycleCanceling& reset() { + for (int i = 0; i != _res_node_num; ++i) { + _supply[i] = 0; + } + int limit = _first_out[_root]; + for (int j = 0; j != limit; ++j) { + _lower[j] = 0; + _upper[j] = INF; + _cost[j] = _forward[j] ? 1 : -1; + } + for (int j = limit; j != _res_arc_num; ++j) { + _lower[j] = 0; + _upper[j] = INF; + _cost[j] = 0; + _cost[_reverse[j]] = 0; + } + _have_lower = false; + return *this; } /// @} /// \name Query Functions - /// The result of the algorithm can be obtained using these + /// The results of the algorithm can be obtained using these /// functions.\n - /// \ref lemon::CycleCanceling::run() "run()" must be called before - /// using them. + /// The \ref run() function must be called before using them. /// @{ - /// \brief Return a const reference to the arc map storing the - /// found flow. + /// \brief Return the total cost of the found flow. /// - /// Return a const reference to the arc map storing the found flow. + /// This function returns the total cost of the found flow. + /// Its complexity is O(e). + /// + /// \note The return type of the function can be specified as a + /// template parameter. For example, + /// \code + /// cc.totalCost(); + /// \endcode + /// It is useful if the total cost cannot be stored in the \c Cost + /// type of the algorithm, which is the default return type of the + /// function. /// /// \pre \ref run() must be called before using this function. - const FlowMap& flowMap() const { - return *_flow; + template + Number totalCost() const { + Number c = 0; + for (ArcIt a(_graph); a != INVALID; ++a) { + int i = _arc_idb[a]; + c += static_cast(_res_cap[i]) * + (-static_cast(_cost[i])); + } + return c; } - /// \brief Return a const reference to the node map storing the - /// found potentials (the dual solution). - /// - /// Return a const reference to the node map storing the found - /// potentials (the dual solution). - /// - /// \pre \ref run() must be called before using this function. - const PotentialMap& potentialMap() const { - return *_potential; +#ifndef DOXYGEN + Cost totalCost() const { + return totalCost(); } +#endif /// \brief Return the flow on the given arc. /// - /// Return the flow on the given arc. + /// This function returns the flow on the given arc. /// /// \pre \ref run() must be called before using this function. - Capacity flow(const Arc& arc) const { - return (*_flow)[arc]; + Value flow(const Arc& a) const { + return _res_cap[_arc_idb[a]]; } - /// \brief Return the potential of the given node. + /// \brief Return the flow map (the primal solution). /// - /// Return the potential of the given node. + /// This function copies the flow value on each arc into the given + /// map. The \c Value type of the algorithm must be convertible to + /// the \c Value type of the map. /// /// \pre \ref run() must be called before using this function. - Cost potential(const Node& node) const { - return (*_potential)[node]; + template + void flowMap(FlowMap &map) const { + for (ArcIt a(_graph); a != INVALID; ++a) { + map.set(a, _res_cap[_arc_idb[a]]); + } } - /// \brief Return the total cost of the found flow. + /// \brief Return the potential (dual value) of the given node. /// - /// Return the total cost of the found flow. The complexity of the - /// function is \f$ O(e) \f$. + /// This function returns the potential (dual value) of the + /// given node. /// /// \pre \ref run() must be called before using this function. - Cost totalCost() const { - Cost c = 0; - for (ArcIt e(_graph); e != INVALID; ++e) - c += (*_flow)[e] * _cost[e]; - return c; + Cost potential(const Node& n) const { + return static_cast(_pi[_node_id[n]]); + } + + /// \brief Return the potential map (the dual solution). + /// + /// This function copies the potential (dual value) of each node + /// into the given map. + /// The \c Cost type of the algorithm must be convertible to the + /// \c Value type of the map. + /// + /// \pre \ref run() must be called before using this function. + template + void potentialMap(PotentialMap &map) const { + for (NodeIt n(_graph); n != INVALID; ++n) { + map.set(n, static_cast(_pi[_node_id[n]])); + } } /// @} private: - /// Initialize the algorithm. - bool init() { - if (!_valid_supply) return false; + // Initialize the algorithm + ProblemType init() { + if (_res_node_num <= 1) return INFEASIBLE; - // Initializing flow and potential maps - if (!_flow) { - _flow = new FlowMap(_graph); - _local_flow = true; + // Check the sum of supply values + _sum_supply = 0; + for (int i = 0; i != _root; ++i) { + _sum_supply += _supply[i]; } - if (!_potential) { - _potential = new PotentialMap(_graph); - _local_potential = true; + if (_sum_supply > 0) return INFEASIBLE; + + + // Initialize vectors + for (int i = 0; i != _res_node_num; ++i) { + _pi[i] = 0; + } + ValueVector excess(_supply); + + // Remove infinite upper bounds and check negative arcs + const Value MAX = std::numeric_limits::max(); + int last_out; + if (_have_lower) { + for (int i = 0; i != _root; ++i) { + last_out = _first_out[i+1]; + for (int j = _first_out[i]; j != last_out; ++j) { + if (_forward[j]) { + Value c = _cost[j] < 0 ? _upper[j] : _lower[j]; + if (c >= MAX) return UNBOUNDED; + excess[i] -= c; + excess[_target[j]] += c; + } + } + } + } else { + for (int i = 0; i != _root; ++i) { + last_out = _first_out[i+1]; + for (int j = _first_out[i]; j != last_out; ++j) { + if (_forward[j] && _cost[j] < 0) { + Value c = _upper[j]; + if (c >= MAX) return UNBOUNDED; + excess[i] -= c; + excess[_target[j]] += c; + } + } + } + } + Value ex, max_cap = 0; + for (int i = 0; i != _res_node_num; ++i) { + ex = excess[i]; + if (ex < 0) max_cap -= ex; + } + for (int j = 0; j != _res_arc_num; ++j) { + if (_upper[j] >= MAX) _upper[j] = max_cap; } - _res_graph = new ResDigraph(_graph, _capacity, *_flow); + // Initialize maps for Circulation and remove non-zero lower bounds + ConstMap low(0); + typedef typename Digraph::template ArcMap ValueArcMap; + typedef typename Digraph::template NodeMap ValueNodeMap; + ValueArcMap cap(_graph), flow(_graph); + ValueNodeMap sup(_graph); + for (NodeIt n(_graph); n != INVALID; ++n) { + sup[n] = _supply[_node_id[n]]; + } + if (_have_lower) { + for (ArcIt a(_graph); a != INVALID; ++a) { + int j = _arc_idf[a]; + Value c = _lower[j]; + cap[a] = _upper[j] - c; + sup[_graph.source(a)] -= c; + sup[_graph.target(a)] += c; + } + } else { + for (ArcIt a(_graph); a != INVALID; ++a) { + cap[a] = _upper[_arc_idf[a]]; + } + } - // Finding a feasible flow using Circulation - Circulation< Digraph, ConstMap, CapacityArcMap, - SupplyMap > - circulation( _graph, constMap(Capacity(0)), _capacity, - _supply ); - return circulation.flowMap(*_flow).run(); + // Find a feasible flow using Circulation + Circulation, ValueArcMap, ValueNodeMap> + circ(_graph, low, cap, sup); + if (!circ.flowMap(flow).run()) return INFEASIBLE; + + // Set residual capacities and handle GEQ supply type + if (_sum_supply < 0) { + for (ArcIt a(_graph); a != INVALID; ++a) { + Value fa = flow[a]; + _res_cap[_arc_idf[a]] = cap[a] - fa; + _res_cap[_arc_idb[a]] = fa; + sup[_graph.source(a)] -= fa; + sup[_graph.target(a)] += fa; + } + for (NodeIt n(_graph); n != INVALID; ++n) { + excess[_node_id[n]] = sup[n]; + } + for (int a = _first_out[_root]; a != _res_arc_num; ++a) { + int u = _target[a]; + int ra = _reverse[a]; + _res_cap[a] = -_sum_supply + 1; + _res_cap[ra] = -excess[u]; + _cost[a] = 0; + _cost[ra] = 0; + } + } else { + for (ArcIt a(_graph); a != INVALID; ++a) { + Value fa = flow[a]; + _res_cap[_arc_idf[a]] = cap[a] - fa; + _res_cap[_arc_idb[a]] = fa; + } + for (int a = _first_out[_root]; a != _res_arc_num; ++a) { + int ra = _reverse[a]; + _res_cap[a] = 1; + _res_cap[ra] = 0; + _cost[a] = 0; + _cost[ra] = 0; + } + } + + return OPTIMAL; + } + + // Build a StaticDigraph structure containing the current + // residual network + void buildResidualNetwork() { + _arc_vec.clear(); + _cost_vec.clear(); + _id_vec.clear(); + for (int j = 0; j != _res_arc_num; ++j) { + if (_res_cap[j] > 0) { + _arc_vec.push_back(IntPair(_source[j], _target[j])); + _cost_vec.push_back(_cost[j]); + _id_vec.push_back(j); + } + } + _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); } - bool start(bool min_mean_cc) { - if (min_mean_cc) - startMinMean(); - else - start(); + // Execute the algorithm and transform the results + void start(Method method) { + // Execute the algorithm + switch (method) { + case SIMPLE_CYCLE_CANCELING: + startSimpleCycleCanceling(); + break; + case MINIMUM_MEAN_CYCLE_CANCELING: + startMinMeanCycleCanceling(); + break; + case CANCEL_AND_TIGHTEN: + startCancelAndTighten(); + break; + } - // Handling non-zero lower bounds - if (_lower) { - for (ArcIt e(_graph); e != INVALID; ++e) - (*_flow)[e] += (*_lower)[e]; + // Compute node potentials + if (method != SIMPLE_CYCLE_CANCELING) { + buildResidualNetwork(); + typename BellmanFord + ::template SetDistMap::Create bf(_sgr, _cost_map); + bf.distMap(_pi_map); + bf.init(0); + bf.start(); } - return true; + + // Handle non-zero lower bounds + if (_have_lower) { + int limit = _first_out[_root]; + for (int j = 0; j != limit; ++j) { + if (!_forward[j]) _res_cap[j] += _lower[j]; + } + } } - /// \brief Execute the algorithm using \ref BellmanFord. - /// - /// Execute the algorithm using the \ref BellmanFord - /// "Bellman-Ford" algorithm for negative cycle detection with - /// successively larger limit for the number of iterations. - void start() { - typename BellmanFord::PredMap pred(*_res_graph); - typename ResDigraph::template NodeMap visited(*_res_graph); - std::vector cycle; - int node_num = countNodes(_graph); + // Execute the "Simple Cycle Canceling" method + void startSimpleCycleCanceling() { + // Constants for computing the iteration limits + const int BF_FIRST_LIMIT = 2; + const double BF_LIMIT_FACTOR = 1.5; + + typedef VectorMap FilterMap; + typedef FilterArcs ResDigraph; + typedef VectorMap PredMap; + typedef typename BellmanFord + ::template SetDistMap + ::template SetPredMap::Create BF; + + // Build the residual network + _arc_vec.clear(); + _cost_vec.clear(); + for (int j = 0; j != _res_arc_num; ++j) { + _arc_vec.push_back(IntPair(_source[j], _target[j])); + _cost_vec.push_back(_cost[j]); + } + _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); + + FilterMap filter_map(_res_cap); + ResDigraph rgr(_sgr, filter_map); + std::vector cycle; + std::vector pred(_res_arc_num); + PredMap pred_map(pred); + BF bf(rgr, _cost_map); + bf.distMap(_pi_map).predMap(pred_map); int length_bound = BF_FIRST_LIMIT; bool optimal = false; while (!optimal) { - BellmanFord bf(*_res_graph, _res_cost); - bf.predMap(pred); bf.init(0); int iter_num = 0; bool cycle_found = false; while (!cycle_found) { - int curr_iter_num = iter_num + length_bound <= node_num ? - length_bound : node_num - iter_num; + // Perform some iterations of the Bellman-Ford algorithm + int curr_iter_num = iter_num + length_bound <= _node_num ? + length_bound : _node_num - iter_num; iter_num += curr_iter_num; int real_iter_num = curr_iter_num; for (int i = 0; i < curr_iter_num; ++i) { @@ -465,89 +841,290 @@ if (real_iter_num < curr_iter_num) { // Optimal flow is found optimal = true; - // Setting node potentials - for (NodeIt n(_graph); n != INVALID; ++n) - (*_potential)[n] = bf.dist(n); break; } else { - // Searching for node disjoint negative cycles - for (ResNodeIt n(*_res_graph); n != INVALID; ++n) - visited[n] = 0; + // Search for node disjoint negative cycles + std::vector state(_res_node_num, 0); int id = 0; - for (ResNodeIt n(*_res_graph); n != INVALID; ++n) { - if (visited[n] > 0) continue; - visited[n] = ++id; - ResNode u = pred[n] == INVALID ? - INVALID : _res_graph->source(pred[n]); - while (u != INVALID && visited[u] == 0) { - visited[u] = id; - u = pred[u] == INVALID ? - INVALID : _res_graph->source(pred[u]); + for (int u = 0; u != _res_node_num; ++u) { + if (state[u] != 0) continue; + ++id; + int v = u; + for (; v != -1 && state[v] == 0; v = pred[v] == INVALID ? + -1 : rgr.id(rgr.source(pred[v]))) { + state[v] = id; } - if (u != INVALID && visited[u] == id) { - // Finding the negative cycle + if (v != -1 && state[v] == id) { + // A negative cycle is found cycle_found = true; cycle.clear(); - ResArc e = pred[u]; - cycle.push_back(e); - Capacity d = _res_graph->residualCapacity(e); - while (_res_graph->source(e) != u) { - cycle.push_back(e = pred[_res_graph->source(e)]); - if (_res_graph->residualCapacity(e) < d) - d = _res_graph->residualCapacity(e); + StaticDigraph::Arc a = pred[v]; + Value d, delta = _res_cap[rgr.id(a)]; + cycle.push_back(rgr.id(a)); + while (rgr.id(rgr.source(a)) != v) { + a = pred_map[rgr.source(a)]; + d = _res_cap[rgr.id(a)]; + if (d < delta) delta = d; + cycle.push_back(rgr.id(a)); } - // Augmenting along the cycle - for (int i = 0; i < int(cycle.size()); ++i) - _res_graph->augment(cycle[i], d); + // Augment along the cycle + for (int i = 0; i < int(cycle.size()); ++i) { + int j = cycle[i]; + _res_cap[j] -= delta; + _res_cap[_reverse[j]] += delta; + } } } } - if (!cycle_found) - length_bound = length_bound * BF_LIMIT_FACTOR / 100; + // Increase iteration limit if no cycle is found + if (!cycle_found) { + length_bound = static_cast(length_bound * BF_LIMIT_FACTOR); + } } } } - /// \brief Execute the algorithm using \ref Howard. - /// - /// Execute the algorithm using \ref Howard for negative - /// cycle detection. - void startMinMean() { - typedef Path ResPath; - Howard mmc(*_res_graph, _res_cost); - ResPath cycle; + // Execute the "Minimum Mean Cycle Canceling" method + void startMinMeanCycleCanceling() { + typedef SimplePath SPath; + typedef typename SPath::ArcIt SPathArcIt; + typedef typename Howard + ::template SetPath::Create MMC; + + SPath cycle; + MMC mmc(_sgr, _cost_map); + mmc.cycle(cycle); + buildResidualNetwork(); + while (mmc.findMinMean() && mmc.cycleLength() < 0) { + // Find the cycle + mmc.findCycle(); - mmc.cycle(cycle); - if (mmc.findMinMean()) { - while (mmc.cycleLength() < 0) { - // Finding the cycle - mmc.findCycle(); + // Compute delta value + Value delta = INF; + for (SPathArcIt a(cycle); a != INVALID; ++a) { + Value d = _res_cap[_id_vec[_sgr.id(a)]]; + if (d < delta) delta = d; + } - // Finding the largest flow amount that can be augmented - // along the cycle - Capacity delta = 0; - for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e) { - if (delta == 0 || _res_graph->residualCapacity(e) < delta) - delta = _res_graph->residualCapacity(e); + // Augment along the cycle + for (SPathArcIt a(cycle); a != INVALID; ++a) { + int j = _id_vec[_sgr.id(a)]; + _res_cap[j] -= delta; + _res_cap[_reverse[j]] += delta; + } + + // Rebuild the residual network + buildResidualNetwork(); + } + } + + // Execute the "Cancel And Tighten" method + void startCancelAndTighten() { + // Constants for the min mean cycle computations + const double LIMIT_FACTOR = 1.0; + const int MIN_LIMIT = 5; + + // Contruct auxiliary data vectors + DoubleVector pi(_res_node_num, 0.0); + IntVector level(_res_node_num); + CharVector reached(_res_node_num); + CharVector processed(_res_node_num); + IntVector pred_node(_res_node_num); + IntVector pred_arc(_res_node_num); + std::vector stack(_res_node_num); + std::vector proc_vector(_res_node_num); + + // Initialize epsilon + double epsilon = 0; + for (int a = 0; a != _res_arc_num; ++a) { + if (_res_cap[a] > 0 && -_cost[a] > epsilon) + epsilon = -_cost[a]; + } + + // Start phases + Tolerance tol; + tol.epsilon(1e-6); + int limit = int(LIMIT_FACTOR * std::sqrt(double(_res_node_num))); + if (limit < MIN_LIMIT) limit = MIN_LIMIT; + int iter = limit; + while (epsilon * _res_node_num >= 1) { + // Find and cancel cycles in the admissible network using DFS + for (int u = 0; u != _res_node_num; ++u) { + reached[u] = false; + processed[u] = false; + } + int stack_head = -1; + int proc_head = -1; + for (int start = 0; start != _res_node_num; ++start) { + if (reached[start]) continue; + + // New start node + reached[start] = true; + pred_arc[start] = -1; + pred_node[start] = -1; + + // Find the first admissible outgoing arc + double p = pi[start]; + int a = _first_out[start]; + int last_out = _first_out[start+1]; + for (; a != last_out && (_res_cap[a] == 0 || + !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; + if (a == last_out) { + processed[start] = true; + proc_vector[++proc_head] = start; + continue; + } + stack[++stack_head] = a; + + while (stack_head >= 0) { + int sa = stack[stack_head]; + int u = _source[sa]; + int v = _target[sa]; + + if (!reached[v]) { + // A new node is reached + reached[v] = true; + pred_node[v] = u; + pred_arc[v] = sa; + p = pi[v]; + a = _first_out[v]; + last_out = _first_out[v+1]; + for (; a != last_out && (_res_cap[a] == 0 || + !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; + stack[++stack_head] = a == last_out ? -1 : a; + } else { + if (!processed[v]) { + // A cycle is found + int n, w = u; + Value d, delta = _res_cap[sa]; + for (n = u; n != v; n = pred_node[n]) { + d = _res_cap[pred_arc[n]]; + if (d <= delta) { + delta = d; + w = pred_node[n]; + } + } + + // Augment along the cycle + _res_cap[sa] -= delta; + _res_cap[_reverse[sa]] += delta; + for (n = u; n != v; n = pred_node[n]) { + int pa = pred_arc[n]; + _res_cap[pa] -= delta; + _res_cap[_reverse[pa]] += delta; + } + for (n = u; stack_head > 0 && n != w; n = pred_node[n]) { + --stack_head; + reached[n] = false; + } + u = w; + } + v = u; + + // Find the next admissible outgoing arc + p = pi[v]; + a = stack[stack_head] + 1; + last_out = _first_out[v+1]; + for (; a != last_out && (_res_cap[a] == 0 || + !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; + stack[stack_head] = a == last_out ? -1 : a; + } + + while (stack_head >= 0 && stack[stack_head] == -1) { + processed[v] = true; + proc_vector[++proc_head] = v; + if (--stack_head >= 0) { + // Find the next admissible outgoing arc + v = _source[stack[stack_head]]; + p = pi[v]; + a = stack[stack_head] + 1; + last_out = _first_out[v+1]; + for (; a != last_out && (_res_cap[a] == 0 || + !tol.negative(_cost[a] + p - pi[_target[a]])); ++a) ; + stack[stack_head] = a == last_out ? -1 : a; + } + } + } + } + + // Tighten potentials and epsilon + if (--iter > 0) { + for (int u = 0; u != _res_node_num; ++u) { + level[u] = 0; + } + for (int i = proc_head; i > 0; --i) { + int u = proc_vector[i]; + double p = pi[u]; + int l = level[u] + 1; + int last_out = _first_out[u+1]; + for (int a = _first_out[u]; a != last_out; ++a) { + int v = _target[a]; + if (_res_cap[a] > 0 && tol.negative(_cost[a] + p - pi[v]) && + l > level[v]) level[v] = l; + } } - // Augmenting along the cycle - for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e) - _res_graph->augment(e, delta); + // Modify potentials + double q = std::numeric_limits::max(); + for (int u = 0; u != _res_node_num; ++u) { + int lu = level[u]; + double p, pu = pi[u]; + int last_out = _first_out[u+1]; + for (int a = _first_out[u]; a != last_out; ++a) { + if (_res_cap[a] == 0) continue; + int v = _target[a]; + int ld = lu - level[v]; + if (ld > 0) { + p = (_cost[a] + pu - pi[v] + epsilon) / (ld + 1); + if (p < q) q = p; + } + } + } + for (int u = 0; u != _res_node_num; ++u) { + pi[u] -= q * level[u]; + } - // Finding the minimum cycle mean for the modified residual - // digraph - if (!mmc.findMinMean()) break; + // Modify epsilon + epsilon = 0; + for (int u = 0; u != _res_node_num; ++u) { + double curr, pu = pi[u]; + int last_out = _first_out[u+1]; + for (int a = _first_out[u]; a != last_out; ++a) { + if (_res_cap[a] == 0) continue; + curr = _cost[a] + pu - pi[_target[a]]; + if (-curr > epsilon) epsilon = -curr; + } + } + } else { + typedef Howard MMC; + typedef typename BellmanFord + ::template SetDistMap::Create BF; + + // Set epsilon to the minimum cycle mean + buildResidualNetwork(); + MMC mmc(_sgr, _cost_map); + mmc.findMinMean(); + epsilon = -mmc.cycleMean(); + Cost cycle_cost = mmc.cycleLength(); + int cycle_size = mmc.cycleArcNum(); + + // Compute feasible potentials for the current epsilon + for (int i = 0; i != int(_cost_vec.size()); ++i) { + _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost; + } + BF bf(_sgr, _cost_map); + bf.distMap(_pi_map); + bf.init(0); + bf.start(); + for (int u = 0; u != _res_node_num; ++u) { + pi[u] = static_cast(_pi[u]) / cycle_size; + } + + iter = limit; } } - - // Computing node potentials - BellmanFord bf(*_res_graph, _res_cost); - bf.init(0); bf.start(); - for (NodeIt n(_graph); n != INVALID; ++n) - (*_potential)[n] = bf.dist(n); } }; //class CycleCanceling