gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Port cycle canceling algorithms from SVN -r3524 (#180)
0 1 2
default
3 files changed with 1358 insertions and 0 deletions:
↑ Collapse diff ↑
Ignore white space 12 line context
1
/* -*- C++ -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_CANCEL_AND_TIGHTEN_H
20
#define LEMON_CANCEL_AND_TIGHTEN_H
21

	
22
/// \ingroup min_cost_flow
23
///
24
/// \file
25
/// \brief Cancel and Tighten algorithm for finding a minimum cost flow.
26

	
27
#include <vector>
28

	
29
#include <lemon/circulation.h>
30
#include <lemon/bellman_ford.h>
31
#include <lemon/howard.h>
32
#include <lemon/adaptors.h>
33
#include <lemon/tolerance.h>
34
#include <lemon/math.h>
35

	
36
#include <lemon/static_graph.h>
37

	
38
namespace lemon {
39

	
40
  /// \addtogroup min_cost_flow
41
  /// @{
42

	
43
  /// \brief Implementation of the Cancel and Tighten algorithm for
44
  /// finding a minimum cost flow.
45
  ///
46
  /// \ref CancelAndTighten implements the Cancel and Tighten algorithm for
47
  /// finding a minimum cost flow.
48
  ///
49
  /// \tparam Digraph The digraph type the algorithm runs on.
50
  /// \tparam LowerMap The type of the lower bound map.
51
  /// \tparam CapacityMap The type of the capacity (upper bound) map.
52
  /// \tparam CostMap The type of the cost (length) map.
53
  /// \tparam SupplyMap The type of the supply map.
54
  ///
55
  /// \warning
56
  /// - Arc capacities and costs should be \e non-negative \e integers.
57
  /// - Supply values should be \e signed \e integers.
58
  /// - The value types of the maps should be convertible to each other.
59
  /// - \c CostMap::Value must be signed type.
60
  ///
61
  /// \author Peter Kovacs
62
  template < typename Digraph,
63
             typename LowerMap = typename Digraph::template ArcMap<int>,
64
             typename CapacityMap = typename Digraph::template ArcMap<int>,
65
             typename CostMap = typename Digraph::template ArcMap<int>,
66
             typename SupplyMap = typename Digraph::template NodeMap<int> >
67
  class CancelAndTighten
68
  {
69
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
70

	
71
    typedef typename CapacityMap::Value Capacity;
72
    typedef typename CostMap::Value Cost;
73
    typedef typename SupplyMap::Value Supply;
74
    typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap;
75
    typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap;
76

	
77
    typedef ResidualDigraph< const Digraph,
78
      CapacityArcMap, CapacityArcMap > ResDigraph;
79

	
80
  public:
81

	
82
    /// The type of the flow map.
83
    typedef typename Digraph::template ArcMap<Capacity> FlowMap;
84
    /// The type of the potential map.
85
    typedef typename Digraph::template NodeMap<Cost> PotentialMap;
86

	
87
  private:
88

	
89
    /// \brief Map adaptor class for handling residual arc costs.
90
    ///
91
    /// Map adaptor class for handling residual arc costs.
92
    class ResidualCostMap : public MapBase<typename ResDigraph::Arc, Cost>
93
    {
94
      typedef typename ResDigraph::Arc Arc;
95
      
96
    private:
97

	
98
      const CostMap &_cost_map;
99

	
100
    public:
101

	
102
      ///\e
103
      ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {}
104

	
105
      ///\e
106
      Cost operator[](const Arc &e) const {
107
        return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e];
108
      }
109

	
110
    }; //class ResidualCostMap
111

	
112
    /// \brief Map adaptor class for handling reduced arc costs.
113
    ///
114
    /// Map adaptor class for handling reduced arc costs.
115
    class ReducedCostMap : public MapBase<Arc, Cost>
116
    {
117
    private:
118

	
119
      const Digraph &_gr;
120
      const CostMap &_cost_map;
121
      const PotentialMap &_pot_map;
122

	
123
    public:
124

	
125
      ///\e
126
      ReducedCostMap( const Digraph &gr,
127
                      const CostMap &cost_map,
128
                      const PotentialMap &pot_map ) :
129
        _gr(gr), _cost_map(cost_map), _pot_map(pot_map) {}
130

	
131
      ///\e
132
      inline Cost operator[](const Arc &e) const {
133
        return _cost_map[e] + _pot_map[_gr.source(e)]
134
                            - _pot_map[_gr.target(e)];
135
      }
136

	
137
    }; //class ReducedCostMap
138

	
139
    struct BFOperationTraits {
140
      static double zero() { return 0; }
141

	
142
      static double infinity() {
143
        return std::numeric_limits<double>::infinity();
144
      }
145

	
146
      static double plus(const double& left, const double& right) {
147
        return left + right;
148
      }
149

	
150
      static bool less(const double& left, const double& right) {
151
        return left + 1e-6 < right;
152
      }
153
    }; // class BFOperationTraits
154

	
155
  private:
156

	
157
    // The digraph the algorithm runs on
158
    const Digraph &_graph;
159
    // The original lower bound map
160
    const LowerMap *_lower;
161
    // The modified capacity map
162
    CapacityArcMap _capacity;
163
    // The original cost map
164
    const CostMap &_cost;
165
    // The modified supply map
166
    SupplyNodeMap _supply;
167
    bool _valid_supply;
168

	
169
    // Arc map of the current flow
170
    FlowMap *_flow;
171
    bool _local_flow;
172
    // Node map of the current potentials
173
    PotentialMap *_potential;
174
    bool _local_potential;
175

	
176
    // The residual digraph
177
    ResDigraph *_res_graph;
178
    // The residual cost map
179
    ResidualCostMap _res_cost;
180

	
181
  public:
182

	
183
    /// \brief General constructor (with lower bounds).
184
    ///
185
    /// General constructor (with lower bounds).
186
    ///
187
    /// \param digraph The digraph the algorithm runs on.
188
    /// \param lower The lower bounds of the arcs.
189
    /// \param capacity The capacities (upper bounds) of the arcs.
190
    /// \param cost The cost (length) values of the arcs.
191
    /// \param supply The supply values of the nodes (signed).
192
    CancelAndTighten( const Digraph &digraph,
193
                      const LowerMap &lower,
194
                      const CapacityMap &capacity,
195
                      const CostMap &cost,
196
                      const SupplyMap &supply ) :
197
      _graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost),
198
      _supply(digraph), _flow(NULL), _local_flow(false),
199
      _potential(NULL), _local_potential(false),
200
      _res_graph(NULL), _res_cost(_cost)
201
    {
202
      // Check the sum of supply values
203
      Supply sum = 0;
204
      for (NodeIt n(_graph); n != INVALID; ++n) {
205
        _supply[n] = supply[n];
206
        sum += _supply[n];
207
      }
208
      _valid_supply = sum == 0;
209

	
210
      // Remove non-zero lower bounds
211
      for (ArcIt e(_graph); e != INVALID; ++e) {
212
        _capacity[e] = capacity[e];
213
        if (lower[e] != 0) {
214
          _capacity[e] -= lower[e];
215
          _supply[_graph.source(e)] -= lower[e];
216
          _supply[_graph.target(e)] += lower[e];
217
        }
218
      }
219
    }
220
/*
221
    /// \brief General constructor (without lower bounds).
222
    ///
223
    /// General constructor (without lower bounds).
224
    ///
225
    /// \param digraph The digraph the algorithm runs on.
226
    /// \param capacity The capacities (upper bounds) of the arcs.
227
    /// \param cost The cost (length) values of the arcs.
228
    /// \param supply The supply values of the nodes (signed).
229
    CancelAndTighten( const Digraph &digraph,
230
                      const CapacityMap &capacity,
231
                      const CostMap &cost,
232
                      const SupplyMap &supply ) :
233
      _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
234
      _supply(supply), _flow(NULL), _local_flow(false),
235
      _potential(NULL), _local_potential(false),
236
      _res_graph(NULL), _res_cost(_cost)
237
    {
238
      // Check the sum of supply values
239
      Supply sum = 0;
240
      for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
241
      _valid_supply = sum == 0;
242
    }
243

	
244
    /// \brief Simple constructor (with lower bounds).
245
    ///
246
    /// Simple constructor (with lower bounds).
247
    ///
248
    /// \param digraph The digraph the algorithm runs on.
249
    /// \param lower The lower bounds of the arcs.
250
    /// \param capacity The capacities (upper bounds) of the arcs.
251
    /// \param cost The cost (length) values of the arcs.
252
    /// \param s The source node.
253
    /// \param t The target node.
254
    /// \param flow_value The required amount of flow from node \c s
255
    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
256
    CancelAndTighten( const Digraph &digraph,
257
                      const LowerMap &lower,
258
                      const CapacityMap &capacity,
259
                      const CostMap &cost,
260
                      Node s, Node t,
261
                      Supply flow_value ) :
262
      _graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost),
263
      _supply(digraph, 0), _flow(NULL), _local_flow(false),
264
      _potential(NULL), _local_potential(false),
265
      _res_graph(NULL), _res_cost(_cost)
266
    {
267
      // Remove non-zero lower bounds
268
      _supply[s] =  flow_value;
269
      _supply[t] = -flow_value;
270
      for (ArcIt e(_graph); e != INVALID; ++e) {
271
        if (lower[e] != 0) {
272
          _capacity[e] -= lower[e];
273
          _supply[_graph.source(e)] -= lower[e];
274
          _supply[_graph.target(e)] += lower[e];
275
        }
276
      }
277
      _valid_supply = true;
278
    }
279

	
280
    /// \brief Simple constructor (without lower bounds).
281
    ///
282
    /// Simple constructor (without lower bounds).
283
    ///
284
    /// \param digraph The digraph the algorithm runs on.
285
    /// \param capacity The capacities (upper bounds) of the arcs.
286
    /// \param cost The cost (length) values of the arcs.
287
    /// \param s The source node.
288
    /// \param t The target node.
289
    /// \param flow_value The required amount of flow from node \c s
290
    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
291
    CancelAndTighten( const Digraph &digraph,
292
                      const CapacityMap &capacity,
293
                      const CostMap &cost,
294
                      Node s, Node t,
295
                      Supply flow_value ) :
296
      _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
297
      _supply(digraph, 0), _flow(NULL), _local_flow(false),
298
      _potential(NULL), _local_potential(false),
299
      _res_graph(NULL), _res_cost(_cost)
300
    {
301
      _supply[s] =  flow_value;
302
      _supply[t] = -flow_value;
303
      _valid_supply = true;
304
    }
305
*/
306
    /// Destructor.
307
    ~CancelAndTighten() {
308
      if (_local_flow) delete _flow;
309
      if (_local_potential) delete _potential;
310
      delete _res_graph;
311
    }
312

	
313
    /// \brief Set the flow map.
314
    ///
315
    /// Set the flow map.
316
    ///
317
    /// \return \c (*this)
318
    CancelAndTighten& flowMap(FlowMap &map) {
319
      if (_local_flow) {
320
        delete _flow;
321
        _local_flow = false;
322
      }
323
      _flow = &map;
324
      return *this;
325
    }
326

	
327
    /// \brief Set the potential map.
328
    ///
329
    /// Set the potential map.
330
    ///
331
    /// \return \c (*this)
332
    CancelAndTighten& potentialMap(PotentialMap &map) {
333
      if (_local_potential) {
334
        delete _potential;
335
        _local_potential = false;
336
      }
337
      _potential = &map;
338
      return *this;
339
    }
340

	
341
    /// \name Execution control
342

	
343
    /// @{
344

	
345
    /// \brief Run the algorithm.
346
    ///
347
    /// Run the algorithm.
348
    ///
349
    /// \return \c true if a feasible flow can be found.
350
    bool run() {
351
      return init() && start();
352
    }
353

	
354
    /// @}
355

	
356
    /// \name Query Functions
357
    /// The result of the algorithm can be obtained using these
358
    /// functions.\n
359
    /// \ref lemon::CancelAndTighten::run() "run()" must be called before
360
    /// using them.
361

	
362
    /// @{
363

	
364
    /// \brief Return a const reference to the arc map storing the
365
    /// found flow.
366
    ///
367
    /// Return a const reference to the arc map storing the found flow.
368
    ///
369
    /// \pre \ref run() must be called before using this function.
370
    const FlowMap& flowMap() const {
371
      return *_flow;
372
    }
373

	
374
    /// \brief Return a const reference to the node map storing the
375
    /// found potentials (the dual solution).
376
    ///
377
    /// Return a const reference to the node map storing the found
378
    /// potentials (the dual solution).
379
    ///
380
    /// \pre \ref run() must be called before using this function.
381
    const PotentialMap& potentialMap() const {
382
      return *_potential;
383
    }
384

	
385
    /// \brief Return the flow on the given arc.
386
    ///
387
    /// Return the flow on the given arc.
388
    ///
389
    /// \pre \ref run() must be called before using this function.
390
    Capacity flow(const Arc& arc) const {
391
      return (*_flow)[arc];
392
    }
393

	
394
    /// \brief Return the potential of the given node.
395
    ///
396
    /// Return the potential of the given node.
397
    ///
398
    /// \pre \ref run() must be called before using this function.
399
    Cost potential(const Node& node) const {
400
      return (*_potential)[node];
401
    }
402

	
403
    /// \brief Return the total cost of the found flow.
404
    ///
405
    /// Return the total cost of the found flow. The complexity of the
406
    /// function is \f$ O(e) \f$.
407
    ///
408
    /// \pre \ref run() must be called before using this function.
409
    Cost totalCost() const {
410
      Cost c = 0;
411
      for (ArcIt e(_graph); e != INVALID; ++e)
412
        c += (*_flow)[e] * _cost[e];
413
      return c;
414
    }
415

	
416
    /// @}
417

	
418
  private:
419

	
420
    /// Initialize the algorithm.
421
    bool init() {
422
      if (!_valid_supply) return false;
423

	
424
      // Initialize flow and potential maps
425
      if (!_flow) {
426
        _flow = new FlowMap(_graph);
427
        _local_flow = true;
428
      }
429
      if (!_potential) {
430
        _potential = new PotentialMap(_graph);
431
        _local_potential = true;
432
      }
433

	
434
      _res_graph = new ResDigraph(_graph, _capacity, *_flow);
435

	
436
      // Find a feasible flow using Circulation
437
      Circulation< Digraph, ConstMap<Arc, Capacity>,
438
                   CapacityArcMap, SupplyMap >
439
        circulation( _graph, constMap<Arc>(Capacity(0)),
440
                     _capacity, _supply );
441
      return circulation.flowMap(*_flow).run();
442
    }
443

	
444
    bool start() {
445
      const double LIMIT_FACTOR = 0.01;
446
      const int MIN_LIMIT = 3;
447

	
448
      typedef typename Digraph::template NodeMap<double> FloatPotentialMap;
449
      typedef typename Digraph::template NodeMap<int> LevelMap;
450
      typedef typename Digraph::template NodeMap<bool> BoolNodeMap;
451
      typedef typename Digraph::template NodeMap<Node> PredNodeMap;
452
      typedef typename Digraph::template NodeMap<Arc> PredArcMap;
453
      typedef typename ResDigraph::template ArcMap<double> ResShiftCostMap;
454
      FloatPotentialMap pi(_graph);
455
      LevelMap level(_graph);
456
      BoolNodeMap reached(_graph);
457
      BoolNodeMap processed(_graph);
458
      PredNodeMap pred_node(_graph);
459
      PredArcMap pred_arc(_graph);
460
      int node_num = countNodes(_graph);
461
      typedef std::pair<Arc, bool> pair;
462
      std::vector<pair> stack(node_num);
463
      std::vector<Node> proc_vector(node_num);
464
      ResShiftCostMap shift_cost(*_res_graph);
465

	
466
      Tolerance<double> tol;
467
      tol.epsilon(1e-6);
468

	
469
      Timer t1, t2, t3;
470
      t1.reset();
471
      t2.reset();
472
      t3.reset();
473

	
474
      // Initialize epsilon and the node potentials
475
      double epsilon = 0;
476
      for (ArcIt e(_graph); e != INVALID; ++e) {
477
        if (_capacity[e] - (*_flow)[e] > 0 && _cost[e] < -epsilon)
478
          epsilon = -_cost[e];
479
        else if ((*_flow)[e] > 0 && _cost[e] > epsilon)
480
          epsilon = _cost[e];
481
      }
482
      for (NodeIt v(_graph); v != INVALID; ++v) {
483
        pi[v] = 0;
484
      }
485

	
486
      // Start phases
487
      int limit = int(LIMIT_FACTOR * node_num);
488
      if (limit < MIN_LIMIT) limit = MIN_LIMIT;
489
      int iter = limit;
490
      while (epsilon * node_num >= 1) {
491
        t1.start();
492
        // Find and cancel cycles in the admissible digraph using DFS
493
        for (NodeIt n(_graph); n != INVALID; ++n) {
494
          reached[n] = false;
495
          processed[n] = false;
496
        }
497
        int stack_head = -1;
498
        int proc_head = -1;
499

	
500
        for (NodeIt start(_graph); start != INVALID; ++start) {
501
          if (reached[start]) continue;
502

	
503
          // New start node
504
          reached[start] = true;
505
          pred_arc[start] = INVALID;
506
          pred_node[start] = INVALID;
507

	
508
          // Find the first admissible residual outgoing arc
509
          double p = pi[start];
510
          Arc e;
511
          _graph.firstOut(e, start);
512
          while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 ||
513
                  !tol.negative(_cost[e] + p - pi[_graph.target(e)])) )
514
            _graph.nextOut(e);
515
          if (e != INVALID) {
516
            stack[++stack_head] = pair(e, true);
517
            goto next_step_1;
518
          }
519
          _graph.firstIn(e, start);
520
          while ( e != INVALID && ((*_flow)[e] == 0 ||
521
                  !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) )
522
            _graph.nextIn(e);
523
          if (e != INVALID) {
524
            stack[++stack_head] = pair(e, false);
525
            goto next_step_1;
526
          }
527
          processed[start] = true;
528
          proc_vector[++proc_head] = start;
529
          continue;
530
        next_step_1:
531

	
532
          while (stack_head >= 0) {
533
            Arc se = stack[stack_head].first;
534
            bool sf = stack[stack_head].second;
535
            Node u, v;
536
            if (sf) {
537
              u = _graph.source(se);
538
              v = _graph.target(se);
539
            } else {
540
              u = _graph.target(se);
541
              v = _graph.source(se);
542
            }
543

	
544
            if (!reached[v]) {
545
              // A new node is reached
546
              reached[v] = true;
547
              pred_node[v] = u;
548
              pred_arc[v] = se;
549
              // Find the first admissible residual outgoing arc
550
              double p = pi[v];
551
              Arc e;
552
              _graph.firstOut(e, v);
553
              while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 ||
554
                      !tol.negative(_cost[e] + p - pi[_graph.target(e)])) )
555
                _graph.nextOut(e);
556
              if (e != INVALID) {
557
                stack[++stack_head] = pair(e, true);
558
                goto next_step_2;
559
              }
560
              _graph.firstIn(e, v);
561
              while ( e != INVALID && ((*_flow)[e] == 0 ||
562
                      !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) )
563
                _graph.nextIn(e);
564
              stack[++stack_head] = pair(e, false);
565
            next_step_2: ;
566
            } else {
567
              if (!processed[v]) {
568
                // A cycle is found
569
                Node n, w = u;
570
                Capacity d, delta = sf ? _capacity[se] - (*_flow)[se] :
571
                                         (*_flow)[se];
572
                for (n = u; n != v; n = pred_node[n]) {
573
                  d = _graph.target(pred_arc[n]) == n ?
574
                      _capacity[pred_arc[n]] - (*_flow)[pred_arc[n]] :
575
                      (*_flow)[pred_arc[n]];
576
                  if (d <= delta) {
577
                    delta = d;
578
                    w = pred_node[n];
579
                  }
580
                }
581

	
582
/*
583
                std::cout << "CYCLE FOUND: ";
584
                if (sf)
585
                  std::cout << _cost[se] + pi[_graph.source(se)] - pi[_graph.target(se)];
586
                else
587
                  std::cout << _graph.id(se) << ":" << -(_cost[se] + pi[_graph.source(se)] - pi[_graph.target(se)]);
588
                for (n = u; n != v; n = pred_node[n]) {
589
                  if (_graph.target(pred_arc[n]) == n)
590
                    std::cout << " " << _cost[pred_arc[n]] + pi[_graph.source(pred_arc[n])] - pi[_graph.target(pred_arc[n])];
591
                  else
592
                    std::cout << " " << -(_cost[pred_arc[n]] + pi[_graph.source(pred_arc[n])] - pi[_graph.target(pred_arc[n])]);
593
                }
594
                std::cout << "\n";
595
*/
596
                // Augment along the cycle
597
                (*_flow)[se] = sf ? (*_flow)[se] + delta :
598
                                    (*_flow)[se] - delta;
599
                for (n = u; n != v; n = pred_node[n]) {
600
                  if (_graph.target(pred_arc[n]) == n)
601
                    (*_flow)[pred_arc[n]] += delta;
602
                  else
603
                    (*_flow)[pred_arc[n]] -= delta;
604
                }
605
                for (n = u; stack_head > 0 && n != w; n = pred_node[n]) {
606
                  --stack_head;
607
                  reached[n] = false;
608
                }
609
                u = w;
610
              }
611
              v = u;
612

	
613
              // Find the next admissible residual outgoing arc
614
              double p = pi[v];
615
              Arc e = stack[stack_head].first;
616
              if (!stack[stack_head].second) {
617
                _graph.nextIn(e);
618
                goto in_arc_3;
619
              }
620
              _graph.nextOut(e);
621
              while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 ||
622
                      !tol.negative(_cost[e] + p - pi[_graph.target(e)])) )
623
                _graph.nextOut(e);
624
              if (e != INVALID) {
625
                stack[stack_head] = pair(e, true);
626
                goto next_step_3;
627
              }
628
              _graph.firstIn(e, v);
629
            in_arc_3:
630
              while ( e != INVALID && ((*_flow)[e] == 0 ||
631
                      !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) )
632
                _graph.nextIn(e);
633
              stack[stack_head] = pair(e, false);
634
            next_step_3: ;
635
            }
636

	
637
            while (stack_head >= 0 && stack[stack_head].first == INVALID) {
638
              processed[v] = true;
639
              proc_vector[++proc_head] = v;
640
              if (--stack_head >= 0) {
641
                v = stack[stack_head].second ?
642
                    _graph.source(stack[stack_head].first) :
643
                    _graph.target(stack[stack_head].first);
644
                // Find the next admissible residual outgoing arc
645
                double p = pi[v];
646
                Arc e = stack[stack_head].first;
647
                if (!stack[stack_head].second) {
648
                  _graph.nextIn(e);
649
                  goto in_arc_4;
650
                }
651
                _graph.nextOut(e);
652
                while ( e != INVALID && (_capacity[e] - (*_flow)[e] == 0 ||
653
                        !tol.negative(_cost[e] + p - pi[_graph.target(e)])) )
654
                  _graph.nextOut(e);
655
                if (e != INVALID) {
656
                  stack[stack_head] = pair(e, true);
657
                  goto next_step_4;
658
                }
659
                _graph.firstIn(e, v);
660
              in_arc_4:
661
                while ( e != INVALID && ((*_flow)[e] == 0 ||
662
                        !tol.negative(-_cost[e] + p - pi[_graph.source(e)])) )
663
                  _graph.nextIn(e);
664
                stack[stack_head] = pair(e, false);
665
              next_step_4: ;
666
              }
667
            }
668
          }
669
        }
670
        t1.stop();
671

	
672
        // Tighten potentials and epsilon
673
        if (--iter > 0) {
674
          // Compute levels
675
          t2.start();
676
          for (int i = proc_head; i >= 0; --i) {
677
            Node v = proc_vector[i];
678
            double p = pi[v];
679
            int l = 0;
680
            for (InArcIt e(_graph, v); e != INVALID; ++e) {
681
              Node u = _graph.source(e);
682
              if ( _capacity[e] - (*_flow)[e] > 0 &&
683
                   tol.negative(_cost[e] + pi[u] - p) &&
684
                   level[u] + 1 > l ) l = level[u] + 1;
685
            }
686
            for (OutArcIt e(_graph, v); e != INVALID; ++e) {
687
              Node u = _graph.target(e);
688
              if ( (*_flow)[e] > 0 &&
689
                   tol.negative(-_cost[e] + pi[u] - p) &&
690
                   level[u] + 1 > l ) l = level[u] + 1;
691
            }
692
            level[v] = l;
693
          }
694

	
695
          // Modify potentials
696
          double p, q = -1;
697
          for (ArcIt e(_graph); e != INVALID; ++e) {
698
            Node u = _graph.source(e);
699
            Node v = _graph.target(e);
700
            if (_capacity[e] - (*_flow)[e] > 0 && level[u] - level[v] > 0) {
701
              p = (_cost[e] + pi[u] - pi[v] + epsilon) /
702
                  (level[u] - level[v] + 1);
703
              if (q < 0 || p < q) q = p;
704
            }
705
            else if ((*_flow)[e] > 0 && level[v] - level[u] > 0) {
706
              p = (-_cost[e] - pi[u] + pi[v] + epsilon) /
707
                  (level[v] - level[u] + 1);
708
              if (q < 0 || p < q) q = p;
709
            }
710
          }
711
          for (NodeIt v(_graph); v != INVALID; ++v) {
712
            pi[v] -= q * level[v];
713
          }
714

	
715
          // Modify epsilon
716
          epsilon = 0;
717
          for (ArcIt e(_graph); e != INVALID; ++e) {
718
            double curr = _cost[e] + pi[_graph.source(e)]
719
                                   - pi[_graph.target(e)];
720
            if (_capacity[e] - (*_flow)[e] > 0 && curr < -epsilon)
721
              epsilon = -curr;
722
            else if ((*_flow)[e] > 0 && curr > epsilon)
723
              epsilon = curr;
724
          }
725
          t2.stop();
726
        } else {
727
          // Set epsilon to the minimum cycle mean
728
          t3.start();
729

	
730
/**/
731
          StaticDigraph static_graph;
732
          typename ResDigraph::template NodeMap<typename StaticDigraph::Node> node_ref(*_res_graph);
733
          typename ResDigraph::template ArcMap<typename StaticDigraph::Arc> arc_ref(*_res_graph);
734
          static_graph.build(*_res_graph, node_ref, arc_ref);
735
          typename StaticDigraph::template NodeMap<double> static_pi(static_graph);
736
          typename StaticDigraph::template ArcMap<double> static_cost(static_graph);
737

	
738
          for (typename ResDigraph::ArcIt e(*_res_graph); e != INVALID; ++e)
739
            static_cost[arc_ref[e]] = _res_cost[e];
740

	
741
          Howard<StaticDigraph, typename StaticDigraph::template ArcMap<double> >
742
            mmc(static_graph, static_cost);
743
          mmc.findMinMean();
744
          epsilon = -mmc.cycleMean();
745
/**/
746

	
747
/*
748
          Howard<ResDigraph, ResidualCostMap> mmc(*_res_graph, _res_cost);
749
          mmc.findMinMean();
750
          epsilon = -mmc.cycleMean();
751
*/
752

	
753
          // Compute feasible potentials for the current epsilon
754
          for (typename StaticDigraph::ArcIt e(static_graph); e != INVALID; ++e)
755
            static_cost[e] += epsilon;
756
          typename BellmanFord<StaticDigraph, typename StaticDigraph::template ArcMap<double> >::
757
            template SetDistMap<typename StaticDigraph::template NodeMap<double> >::
758
            template SetOperationTraits<BFOperationTraits>::Create
759
              bf(static_graph, static_cost);
760
          bf.distMap(static_pi).init(0);
761
          bf.start();
762
          for (NodeIt n(_graph); n != INVALID; ++n)
763
            pi[n] = static_pi[node_ref[n]];
764
          
765
/*
766
          for (typename ResDigraph::ArcIt e(*_res_graph); e != INVALID; ++e)
767
            shift_cost[e] = _res_cost[e] + epsilon;
768
          typename BellmanFord<ResDigraph, ResShiftCostMap>::
769
            template SetDistMap<FloatPotentialMap>::
770
            template SetOperationTraits<BFOperationTraits>::Create
771
              bf(*_res_graph, shift_cost);
772
          bf.distMap(pi).init(0);
773
          bf.start();
774
*/
775

	
776
          iter = limit;
777
          t3.stop();
778
        }
779
      }
780

	
781
//      std::cout << t1.realTime() << " " << t2.realTime() << " " << t3.realTime() << "\n";
782

	
783
      // Handle non-zero lower bounds
784
      if (_lower) {
785
        for (ArcIt e(_graph); e != INVALID; ++e)
786
          (*_flow)[e] += (*_lower)[e];
787
      }
788
      return true;
789
    }
790

	
791
  }; //class CancelAndTighten
792

	
793
  ///@}
794

	
795
} //namespace lemon
796

	
797
#endif //LEMON_CANCEL_AND_TIGHTEN_H
Ignore white space 12 line context
1
/* -*- C++ -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
#ifndef LEMON_CYCLE_CANCELING_H
20
#define LEMON_CYCLE_CANCELING_H
21

	
22
/// \ingroup min_cost_flow
23
///
24
/// \file
25
/// \brief Cycle-canceling algorithm for finding a minimum cost flow.
26

	
27
#include <vector>
28
#include <lemon/adaptors.h>
29
#include <lemon/path.h>
30

	
31
#include <lemon/circulation.h>
32
#include <lemon/bellman_ford.h>
33
#include <lemon/howard.h>
34

	
35
namespace lemon {
36

	
37
  /// \addtogroup min_cost_flow
38
  /// @{
39

	
40
  /// \brief Implementation of a cycle-canceling algorithm for
41
  /// finding a minimum cost flow.
42
  ///
43
  /// \ref CycleCanceling implements a cycle-canceling algorithm for
44
  /// finding a minimum cost flow.
45
  ///
46
  /// \tparam Digraph The digraph type the algorithm runs on.
47
  /// \tparam LowerMap The type of the lower bound map.
48
  /// \tparam CapacityMap The type of the capacity (upper bound) map.
49
  /// \tparam CostMap The type of the cost (length) map.
50
  /// \tparam SupplyMap The type of the supply map.
51
  ///
52
  /// \warning
53
  /// - Arc capacities and costs should be \e non-negative \e integers.
54
  /// - Supply values should be \e signed \e integers.
55
  /// - The value types of the maps should be convertible to each other.
56
  /// - \c CostMap::Value must be signed type.
57
  ///
58
  /// \note By default the \ref BellmanFord "Bellman-Ford" algorithm is
59
  /// used for negative cycle detection with limited iteration number.
60
  /// However \ref CycleCanceling also provides the "Minimum Mean
61
  /// Cycle-Canceling" algorithm, which is \e strongly \e polynomial,
62
  /// but rather slower in practice.
63
  /// To use this version of the algorithm, call \ref run() with \c true
64
  /// parameter.
65
  ///
66
  /// \author Peter Kovacs
67
  template < typename Digraph,
68
             typename LowerMap = typename Digraph::template ArcMap<int>,
69
             typename CapacityMap = typename Digraph::template ArcMap<int>,
70
             typename CostMap = typename Digraph::template ArcMap<int>,
71
             typename SupplyMap = typename Digraph::template NodeMap<int> >
72
  class CycleCanceling
73
  {
74
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
75

	
76
    typedef typename CapacityMap::Value Capacity;
77
    typedef typename CostMap::Value Cost;
78
    typedef typename SupplyMap::Value Supply;
79
    typedef typename Digraph::template ArcMap<Capacity> CapacityArcMap;
80
    typedef typename Digraph::template NodeMap<Supply> SupplyNodeMap;
81

	
82
    typedef ResidualDigraph< const Digraph,
83
      CapacityArcMap, CapacityArcMap > ResDigraph;
84
    typedef typename ResDigraph::Node ResNode;
85
    typedef typename ResDigraph::NodeIt ResNodeIt;
86
    typedef typename ResDigraph::Arc ResArc;
87
    typedef typename ResDigraph::ArcIt ResArcIt;
88

	
89
  public:
90

	
91
    /// The type of the flow map.
92
    typedef typename Digraph::template ArcMap<Capacity> FlowMap;
93
    /// The type of the potential map.
94
    typedef typename Digraph::template NodeMap<Cost> PotentialMap;
95

	
96
  private:
97

	
98
    /// \brief Map adaptor class for handling residual arc costs.
99
    ///
100
    /// Map adaptor class for handling residual arc costs.
101
    class ResidualCostMap : public MapBase<ResArc, Cost>
102
    {
103
    private:
104

	
105
      const CostMap &_cost_map;
106

	
107
    public:
108

	
109
      ///\e
110
      ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {}
111

	
112
      ///\e
113
      Cost operator[](const ResArc &e) const {
114
        return ResDigraph::forward(e) ? _cost_map[e] : -_cost_map[e];
115
      }
116

	
117
    }; //class ResidualCostMap
118

	
119
  private:
120

	
121
    // The maximum number of iterations for the first execution of the
122
    // Bellman-Ford algorithm. It should be at least 2.
123
    static const int BF_FIRST_LIMIT  = 2;
124
    // The iteration limit for the Bellman-Ford algorithm is multiplied
125
    // by BF_LIMIT_FACTOR/100 in every round.
126
    static const int BF_LIMIT_FACTOR = 150;
127

	
128
  private:
129

	
130
    // The digraph the algorithm runs on
131
    const Digraph &_graph;
132
    // The original lower bound map
133
    const LowerMap *_lower;
134
    // The modified capacity map
135
    CapacityArcMap _capacity;
136
    // The original cost map
137
    const CostMap &_cost;
138
    // The modified supply map
139
    SupplyNodeMap _supply;
140
    bool _valid_supply;
141

	
142
    // Arc map of the current flow
143
    FlowMap *_flow;
144
    bool _local_flow;
145
    // Node map of the current potentials
146
    PotentialMap *_potential;
147
    bool _local_potential;
148

	
149
    // The residual digraph
150
    ResDigraph *_res_graph;
151
    // The residual cost map
152
    ResidualCostMap _res_cost;
153

	
154
  public:
155

	
156
    /// \brief General constructor (with lower bounds).
157
    ///
158
    /// General constructor (with lower bounds).
159
    ///
160
    /// \param digraph The digraph the algorithm runs on.
161
    /// \param lower The lower bounds of the arcs.
162
    /// \param capacity The capacities (upper bounds) of the arcs.
163
    /// \param cost The cost (length) values of the arcs.
164
    /// \param supply The supply values of the nodes (signed).
165
    CycleCanceling( const Digraph &digraph,
166
                    const LowerMap &lower,
167
                    const CapacityMap &capacity,
168
                    const CostMap &cost,
169
                    const SupplyMap &supply ) :
170
      _graph(digraph), _lower(&lower), _capacity(digraph), _cost(cost),
171
      _supply(digraph), _flow(NULL), _local_flow(false),
172
      _potential(NULL), _local_potential(false),
173
      _res_graph(NULL), _res_cost(_cost)
174
    {
175
      // Check the sum of supply values
176
      Supply sum = 0;
177
      for (NodeIt n(_graph); n != INVALID; ++n) {
178
        _supply[n] = supply[n];
179
        sum += _supply[n];
180
      }
181
      _valid_supply = sum == 0;
182

	
183
      // Remove non-zero lower bounds
184
      for (ArcIt e(_graph); e != INVALID; ++e) {
185
        _capacity[e] = capacity[e];
186
        if (lower[e] != 0) {
187
          _capacity[e] -= lower[e];
188
          _supply[_graph.source(e)] -= lower[e];
189
          _supply[_graph.target(e)] += lower[e];
190
        }
191
      }
192
    }
193
/*
194
    /// \brief General constructor (without lower bounds).
195
    ///
196
    /// General constructor (without lower bounds).
197
    ///
198
    /// \param digraph The digraph the algorithm runs on.
199
    /// \param capacity The capacities (upper bounds) of the arcs.
200
    /// \param cost The cost (length) values of the arcs.
201
    /// \param supply The supply values of the nodes (signed).
202
    CycleCanceling( const Digraph &digraph,
203
                    const CapacityMap &capacity,
204
                    const CostMap &cost,
205
                    const SupplyMap &supply ) :
206
      _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
207
      _supply(supply), _flow(NULL), _local_flow(false),
208
      _potential(NULL), _local_potential(false), _res_graph(NULL),
209
      _res_cost(_cost)
210
    {
211
      // Check the sum of supply values
212
      Supply sum = 0;
213
      for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n];
214
      _valid_supply = sum == 0;
215
    }
216

	
217
    /// \brief Simple constructor (with lower bounds).
218
    ///
219
    /// Simple constructor (with lower bounds).
220
    ///
221
    /// \param digraph The digraph the algorithm runs on.
222
    /// \param lower The lower bounds of the arcs.
223
    /// \param capacity The capacities (upper bounds) of the arcs.
224
    /// \param cost The cost (length) values of the arcs.
225
    /// \param s The source node.
226
    /// \param t The target node.
227
    /// \param flow_value The required amount of flow from node \c s
228
    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
229
    CycleCanceling( const Digraph &digraph,
230
                    const LowerMap &lower,
231
                    const CapacityMap &capacity,
232
                    const CostMap &cost,
233
                    Node s, Node t,
234
                    Supply flow_value ) :
235
      _graph(digraph), _lower(&lower), _capacity(capacity), _cost(cost),
236
      _supply(digraph, 0), _flow(NULL), _local_flow(false),
237
      _potential(NULL), _local_potential(false), _res_graph(NULL),
238
      _res_cost(_cost)
239
    {
240
      // Remove non-zero lower bounds
241
      _supply[s] =  flow_value;
242
      _supply[t] = -flow_value;
243
      for (ArcIt e(_graph); e != INVALID; ++e) {
244
        if (lower[e] != 0) {
245
          _capacity[e] -= lower[e];
246
          _supply[_graph.source(e)] -= lower[e];
247
          _supply[_graph.target(e)] += lower[e];
248
        }
249
      }
250
      _valid_supply = true;
251
    }
252

	
253
    /// \brief Simple constructor (without lower bounds).
254
    ///
255
    /// Simple constructor (without lower bounds).
256
    ///
257
    /// \param digraph The digraph the algorithm runs on.
258
    /// \param capacity The capacities (upper bounds) of the arcs.
259
    /// \param cost The cost (length) values of the arcs.
260
    /// \param s The source node.
261
    /// \param t The target node.
262
    /// \param flow_value The required amount of flow from node \c s
263
    /// to node \c t (i.e. the supply of \c s and the demand of \c t).
264
    CycleCanceling( const Digraph &digraph,
265
                    const CapacityMap &capacity,
266
                    const CostMap &cost,
267
                    Node s, Node t,
268
                    Supply flow_value ) :
269
      _graph(digraph), _lower(NULL), _capacity(capacity), _cost(cost),
270
      _supply(digraph, 0), _flow(NULL), _local_flow(false),
271
      _potential(NULL), _local_potential(false), _res_graph(NULL),
272
      _res_cost(_cost)
273
    {
274
      _supply[s] =  flow_value;
275
      _supply[t] = -flow_value;
276
      _valid_supply = true;
277
    }
278
*/
279
    /// Destructor.
280
    ~CycleCanceling() {
281
      if (_local_flow) delete _flow;
282
      if (_local_potential) delete _potential;
283
      delete _res_graph;
284
    }
285

	
286
    /// \brief Set the flow map.
287
    ///
288
    /// Set the flow map.
289
    ///
290
    /// \return \c (*this)
291
    CycleCanceling& flowMap(FlowMap &map) {
292
      if (_local_flow) {
293
        delete _flow;
294
        _local_flow = false;
295
      }
296
      _flow = &map;
297
      return *this;
298
    }
299

	
300
    /// \brief Set the potential map.
301
    ///
302
    /// Set the potential map.
303
    ///
304
    /// \return \c (*this)
305
    CycleCanceling& potentialMap(PotentialMap &map) {
306
      if (_local_potential) {
307
        delete _potential;
308
        _local_potential = false;
309
      }
310
      _potential = &map;
311
      return *this;
312
    }
313

	
314
    /// \name Execution control
315

	
316
    /// @{
317

	
318
    /// \brief Run the algorithm.
319
    ///
320
    /// Run the algorithm.
321
    ///
322
    /// \param min_mean_cc Set this parameter to \c true to run the
323
    /// "Minimum Mean Cycle-Canceling" algorithm, which is strongly
324
    /// polynomial, but rather slower in practice.
325
    ///
326
    /// \return \c true if a feasible flow can be found.
327
    bool run(bool min_mean_cc = false) {
328
      return init() && start(min_mean_cc);
329
    }
330

	
331
    /// @}
332

	
333
    /// \name Query Functions
334
    /// The result of the algorithm can be obtained using these
335
    /// functions.\n
336
    /// \ref lemon::CycleCanceling::run() "run()" must be called before
337
    /// using them.
338

	
339
    /// @{
340

	
341
    /// \brief Return a const reference to the arc map storing the
342
    /// found flow.
343
    ///
344
    /// Return a const reference to the arc map storing the found flow.
345
    ///
346
    /// \pre \ref run() must be called before using this function.
347
    const FlowMap& flowMap() const {
348
      return *_flow;
349
    }
350

	
351
    /// \brief Return a const reference to the node map storing the
352
    /// found potentials (the dual solution).
353
    ///
354
    /// Return a const reference to the node map storing the found
355
    /// potentials (the dual solution).
356
    ///
357
    /// \pre \ref run() must be called before using this function.
358
    const PotentialMap& potentialMap() const {
359
      return *_potential;
360
    }
361

	
362
    /// \brief Return the flow on the given arc.
363
    ///
364
    /// Return the flow on the given arc.
365
    ///
366
    /// \pre \ref run() must be called before using this function.
367
    Capacity flow(const Arc& arc) const {
368
      return (*_flow)[arc];
369
    }
370

	
371
    /// \brief Return the potential of the given node.
372
    ///
373
    /// Return the potential of the given node.
374
    ///
375
    /// \pre \ref run() must be called before using this function.
376
    Cost potential(const Node& node) const {
377
      return (*_potential)[node];
378
    }
379

	
380
    /// \brief Return the total cost of the found flow.
381
    ///
382
    /// Return the total cost of the found flow. The complexity of the
383
    /// function is \f$ O(e) \f$.
384
    ///
385
    /// \pre \ref run() must be called before using this function.
386
    Cost totalCost() const {
387
      Cost c = 0;
388
      for (ArcIt e(_graph); e != INVALID; ++e)
389
        c += (*_flow)[e] * _cost[e];
390
      return c;
391
    }
392

	
393
    /// @}
394

	
395
  private:
396

	
397
    /// Initialize the algorithm.
398
    bool init() {
399
      if (!_valid_supply) return false;
400

	
401
      // Initializing flow and potential maps
402
      if (!_flow) {
403
        _flow = new FlowMap(_graph);
404
        _local_flow = true;
405
      }
406
      if (!_potential) {
407
        _potential = new PotentialMap(_graph);
408
        _local_potential = true;
409
      }
410

	
411
      _res_graph = new ResDigraph(_graph, _capacity, *_flow);
412

	
413
      // Finding a feasible flow using Circulation
414
      Circulation< Digraph, ConstMap<Arc, Capacity>, CapacityArcMap,
415
                   SupplyMap >
416
        circulation( _graph, constMap<Arc>(Capacity(0)), _capacity,
417
                     _supply );
418
      return circulation.flowMap(*_flow).run();
419
    }
420

	
421
    bool start(bool min_mean_cc) {
422
      if (min_mean_cc)
423
        startMinMean();
424
      else
425
        start();
426

	
427
      // Handling non-zero lower bounds
428
      if (_lower) {
429
        for (ArcIt e(_graph); e != INVALID; ++e)
430
          (*_flow)[e] += (*_lower)[e];
431
      }
432
      return true;
433
    }
434

	
435
    /// \brief Execute the algorithm using \ref BellmanFord.
436
    ///
437
    /// Execute the algorithm using the \ref BellmanFord
438
    /// "Bellman-Ford" algorithm for negative cycle detection with
439
    /// successively larger limit for the number of iterations.
440
    void start() {
441
      typename BellmanFord<ResDigraph, ResidualCostMap>::PredMap pred(*_res_graph);
442
      typename ResDigraph::template NodeMap<int> visited(*_res_graph);
443
      std::vector<ResArc> cycle;
444
      int node_num = countNodes(_graph);
445

	
446
      int length_bound = BF_FIRST_LIMIT;
447
      bool optimal = false;
448
      while (!optimal) {
449
        BellmanFord<ResDigraph, ResidualCostMap> bf(*_res_graph, _res_cost);
450
        bf.predMap(pred);
451
        bf.init(0);
452
        int iter_num = 0;
453
        bool cycle_found = false;
454
        while (!cycle_found) {
455
          int curr_iter_num = iter_num + length_bound <= node_num ?
456
                              length_bound : node_num - iter_num;
457
          iter_num += curr_iter_num;
458
          int real_iter_num = curr_iter_num;
459
          for (int i = 0; i < curr_iter_num; ++i) {
460
            if (bf.processNextWeakRound()) {
461
              real_iter_num = i;
462
              break;
463
            }
464
          }
465
          if (real_iter_num < curr_iter_num) {
466
            // Optimal flow is found
467
            optimal = true;
468
            // Setting node potentials
469
            for (NodeIt n(_graph); n != INVALID; ++n)
470
              (*_potential)[n] = bf.dist(n);
471
            break;
472
          } else {
473
            // Searching for node disjoint negative cycles
474
            for (ResNodeIt n(*_res_graph); n != INVALID; ++n)
475
              visited[n] = 0;
476
            int id = 0;
477
            for (ResNodeIt n(*_res_graph); n != INVALID; ++n) {
478
              if (visited[n] > 0) continue;
479
              visited[n] = ++id;
480
              ResNode u = pred[n] == INVALID ?
481
                          INVALID : _res_graph->source(pred[n]);
482
              while (u != INVALID && visited[u] == 0) {
483
                visited[u] = id;
484
                u = pred[u] == INVALID ?
485
                    INVALID : _res_graph->source(pred[u]);
486
              }
487
              if (u != INVALID && visited[u] == id) {
488
                // Finding the negative cycle
489
                cycle_found = true;
490
                cycle.clear();
491
                ResArc e = pred[u];
492
                cycle.push_back(e);
493
                Capacity d = _res_graph->residualCapacity(e);
494
                while (_res_graph->source(e) != u) {
495
                  cycle.push_back(e = pred[_res_graph->source(e)]);
496
                  if (_res_graph->residualCapacity(e) < d)
497
                    d = _res_graph->residualCapacity(e);
498
                }
499

	
500
                // Augmenting along the cycle
501
                for (int i = 0; i < int(cycle.size()); ++i)
502
                  _res_graph->augment(cycle[i], d);
503
              }
504
            }
505
          }
506

	
507
          if (!cycle_found)
508
            length_bound = length_bound * BF_LIMIT_FACTOR / 100;
509
        }
510
      }
511
    }
512

	
513
    /// \brief Execute the algorithm using \ref Howard.
514
    ///
515
    /// Execute the algorithm using \ref Howard for negative
516
    /// cycle detection.
517
    void startMinMean() {
518
      typedef Path<ResDigraph> ResPath;
519
      Howard<ResDigraph, ResidualCostMap> mmc(*_res_graph, _res_cost);
520
      ResPath cycle;
521

	
522
      mmc.cycle(cycle);
523
      if (mmc.findMinMean()) {
524
        while (mmc.cycleLength() < 0) {
525
          // Finding the cycle
526
          mmc.findCycle();
527

	
528
          // Finding the largest flow amount that can be augmented
529
          // along the cycle
530
          Capacity delta = 0;
531
          for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e) {
532
            if (delta == 0 || _res_graph->residualCapacity(e) < delta)
533
              delta = _res_graph->residualCapacity(e);
534
          }
535

	
536
          // Augmenting along the cycle
537
          for (typename ResPath::ArcIt e(cycle); e != INVALID; ++e)
538
            _res_graph->augment(e, delta);
539

	
540
          // Finding the minimum cycle mean for the modified residual
541
          // digraph
542
          if (!mmc.findMinMean()) break;
543
        }
544
      }
545

	
546
      // Computing node potentials
547
      BellmanFord<ResDigraph, ResidualCostMap> bf(*_res_graph, _res_cost);
548
      bf.init(0); bf.start();
549
      for (NodeIt n(_graph); n != INVALID; ++n)
550
        (*_potential)[n] = bf.dist(n);
551
    }
552

	
553
  }; //class CycleCanceling
554

	
555
  ///@}
556

	
557
} //namespace lemon
558

	
559
#endif //LEMON_CYCLE_CANCELING_H
Ignore white space 12 line context
... ...
@@ -59,23 +59,25 @@
59 59
	lemon/assert.h \
60 60
	lemon/bellman_ford.h \
61 61
	lemon/bfs.h \
62 62
	lemon/bin_heap.h \
63 63
	lemon/binom_heap.h \
64 64
	lemon/bucket_heap.h \
65
	lemon/cancel_and_tighten.h \
65 66
	lemon/capacity_scaling.h \
66 67
	lemon/cbc.h \
67 68
	lemon/circulation.h \
68 69
	lemon/clp.h \
69 70
	lemon/color.h \
70 71
	lemon/concept_check.h \
71 72
	lemon/connectivity.h \
72 73
	lemon/core.h \
73 74
	lemon/cost_scaling.h \
74 75
	lemon/counter.h \
75 76
	lemon/cplex.h \
77
	lemon/cycle_canceling.h \
76 78
	lemon/dfs.h \
77 79
	lemon/dijkstra.h \
78 80
	lemon/dim2.h \
79 81
	lemon/dimacs.h \
80 82
	lemon/edge_set.h \
81 83
	lemon/elevator.h \
0 comments (0 inline)