0
2
0
... | ... |
@@ -636,97 +636,97 @@ |
636 | 636 |
return _res_cap[_arc_idb[a]]; |
637 | 637 |
} |
638 | 638 |
|
639 | 639 |
/// \brief Return the flow map (the primal solution). |
640 | 640 |
/// |
641 | 641 |
/// This function copies the flow value on each arc into the given |
642 | 642 |
/// map. The \c Value type of the algorithm must be convertible to |
643 | 643 |
/// the \c Value type of the map. |
644 | 644 |
/// |
645 | 645 |
/// \pre \ref run() must be called before using this function. |
646 | 646 |
template <typename FlowMap> |
647 | 647 |
void flowMap(FlowMap &map) const { |
648 | 648 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
649 | 649 |
map.set(a, _res_cap[_arc_idb[a]]); |
650 | 650 |
} |
651 | 651 |
} |
652 | 652 |
|
653 | 653 |
/// \brief Return the potential (dual value) of the given node. |
654 | 654 |
/// |
655 | 655 |
/// This function returns the potential (dual value) of the |
656 | 656 |
/// given node. |
657 | 657 |
/// |
658 | 658 |
/// \pre \ref run() must be called before using this function. |
659 | 659 |
Cost potential(const Node& n) const { |
660 | 660 |
return _pi[_node_id[n]]; |
661 | 661 |
} |
662 | 662 |
|
663 | 663 |
/// \brief Return the potential map (the dual solution). |
664 | 664 |
/// |
665 | 665 |
/// This function copies the potential (dual value) of each node |
666 | 666 |
/// into the given map. |
667 | 667 |
/// The \c Cost type of the algorithm must be convertible to the |
668 | 668 |
/// \c Value type of the map. |
669 | 669 |
/// |
670 | 670 |
/// \pre \ref run() must be called before using this function. |
671 | 671 |
template <typename PotentialMap> |
672 | 672 |
void potentialMap(PotentialMap &map) const { |
673 | 673 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
674 | 674 |
map.set(n, _pi[_node_id[n]]); |
675 | 675 |
} |
676 | 676 |
} |
677 | 677 |
|
678 | 678 |
/// @} |
679 | 679 |
|
680 | 680 |
private: |
681 | 681 |
|
682 | 682 |
// Initialize the algorithm |
683 | 683 |
ProblemType init() { |
684 |
if (_node_num |
|
684 |
if (_node_num <= 1) return INFEASIBLE; |
|
685 | 685 |
|
686 | 686 |
// Check the sum of supply values |
687 | 687 |
_sum_supply = 0; |
688 | 688 |
for (int i = 0; i != _root; ++i) { |
689 | 689 |
_sum_supply += _supply[i]; |
690 | 690 |
} |
691 | 691 |
if (_sum_supply > 0) return INFEASIBLE; |
692 | 692 |
|
693 | 693 |
// Initialize vectors |
694 | 694 |
for (int i = 0; i != _root; ++i) { |
695 | 695 |
_pi[i] = 0; |
696 | 696 |
_excess[i] = _supply[i]; |
697 | 697 |
} |
698 | 698 |
|
699 | 699 |
// Remove non-zero lower bounds |
700 | 700 |
const Value MAX = std::numeric_limits<Value>::max(); |
701 | 701 |
int last_out; |
702 | 702 |
if (_have_lower) { |
703 | 703 |
for (int i = 0; i != _root; ++i) { |
704 | 704 |
last_out = _first_out[i+1]; |
705 | 705 |
for (int j = _first_out[i]; j != last_out; ++j) { |
706 | 706 |
if (_forward[j]) { |
707 | 707 |
Value c = _lower[j]; |
708 | 708 |
if (c >= 0) { |
709 | 709 |
_res_cap[j] = _upper[j] < MAX ? _upper[j] - c : INF; |
710 | 710 |
} else { |
711 | 711 |
_res_cap[j] = _upper[j] < MAX + c ? _upper[j] - c : INF; |
712 | 712 |
} |
713 | 713 |
_excess[i] -= c; |
714 | 714 |
_excess[_target[j]] += c; |
715 | 715 |
} else { |
716 | 716 |
_res_cap[j] = 0; |
717 | 717 |
} |
718 | 718 |
} |
719 | 719 |
} |
720 | 720 |
} else { |
721 | 721 |
for (int j = 0; j != _res_arc_num; ++j) { |
722 | 722 |
_res_cap[j] = _forward[j] ? _upper[j] : 0; |
723 | 723 |
} |
724 | 724 |
} |
725 | 725 |
|
726 | 726 |
// Handle negative costs |
727 | 727 |
for (int i = 0; i != _root; ++i) { |
728 | 728 |
last_out = _first_out[i+1] - 1; |
729 | 729 |
for (int j = _first_out[i]; j != last_out; ++j) { |
730 | 730 |
Value rc = _res_cap[j]; |
731 | 731 |
if (_cost[j] < 0 && rc > 0) { |
732 | 732 |
if (rc >= MAX) return UNBOUNDED; |
... | ... |
@@ -667,97 +667,97 @@ |
667 | 667 |
return _res_cap[_arc_idb[a]]; |
668 | 668 |
} |
669 | 669 |
|
670 | 670 |
/// \brief Return the flow map (the primal solution). |
671 | 671 |
/// |
672 | 672 |
/// This function copies the flow value on each arc into the given |
673 | 673 |
/// map. The \c Value type of the algorithm must be convertible to |
674 | 674 |
/// the \c Value type of the map. |
675 | 675 |
/// |
676 | 676 |
/// \pre \ref run() must be called before using this function. |
677 | 677 |
template <typename FlowMap> |
678 | 678 |
void flowMap(FlowMap &map) const { |
679 | 679 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
680 | 680 |
map.set(a, _res_cap[_arc_idb[a]]); |
681 | 681 |
} |
682 | 682 |
} |
683 | 683 |
|
684 | 684 |
/// \brief Return the potential (dual value) of the given node. |
685 | 685 |
/// |
686 | 686 |
/// This function returns the potential (dual value) of the |
687 | 687 |
/// given node. |
688 | 688 |
/// |
689 | 689 |
/// \pre \ref run() must be called before using this function. |
690 | 690 |
Cost potential(const Node& n) const { |
691 | 691 |
return static_cast<Cost>(_pi[_node_id[n]]); |
692 | 692 |
} |
693 | 693 |
|
694 | 694 |
/// \brief Return the potential map (the dual solution). |
695 | 695 |
/// |
696 | 696 |
/// This function copies the potential (dual value) of each node |
697 | 697 |
/// into the given map. |
698 | 698 |
/// The \c Cost type of the algorithm must be convertible to the |
699 | 699 |
/// \c Value type of the map. |
700 | 700 |
/// |
701 | 701 |
/// \pre \ref run() must be called before using this function. |
702 | 702 |
template <typename PotentialMap> |
703 | 703 |
void potentialMap(PotentialMap &map) const { |
704 | 704 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
705 | 705 |
map.set(n, static_cast<Cost>(_pi[_node_id[n]])); |
706 | 706 |
} |
707 | 707 |
} |
708 | 708 |
|
709 | 709 |
/// @} |
710 | 710 |
|
711 | 711 |
private: |
712 | 712 |
|
713 | 713 |
// Initialize the algorithm |
714 | 714 |
ProblemType init() { |
715 |
if (_res_node_num |
|
715 |
if (_res_node_num <= 1) return INFEASIBLE; |
|
716 | 716 |
|
717 | 717 |
// Check the sum of supply values |
718 | 718 |
_sum_supply = 0; |
719 | 719 |
for (int i = 0; i != _root; ++i) { |
720 | 720 |
_sum_supply += _supply[i]; |
721 | 721 |
} |
722 | 722 |
if (_sum_supply > 0) return INFEASIBLE; |
723 | 723 |
|
724 | 724 |
|
725 | 725 |
// Initialize vectors |
726 | 726 |
for (int i = 0; i != _res_node_num; ++i) { |
727 | 727 |
_pi[i] = 0; |
728 | 728 |
_excess[i] = _supply[i]; |
729 | 729 |
} |
730 | 730 |
|
731 | 731 |
// Remove infinite upper bounds and check negative arcs |
732 | 732 |
const Value MAX = std::numeric_limits<Value>::max(); |
733 | 733 |
int last_out; |
734 | 734 |
if (_have_lower) { |
735 | 735 |
for (int i = 0; i != _root; ++i) { |
736 | 736 |
last_out = _first_out[i+1]; |
737 | 737 |
for (int j = _first_out[i]; j != last_out; ++j) { |
738 | 738 |
if (_forward[j]) { |
739 | 739 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j]; |
740 | 740 |
if (c >= MAX) return UNBOUNDED; |
741 | 741 |
_excess[i] -= c; |
742 | 742 |
_excess[_target[j]] += c; |
743 | 743 |
} |
744 | 744 |
} |
745 | 745 |
} |
746 | 746 |
} else { |
747 | 747 |
for (int i = 0; i != _root; ++i) { |
748 | 748 |
last_out = _first_out[i+1]; |
749 | 749 |
for (int j = _first_out[i]; j != last_out; ++j) { |
750 | 750 |
if (_forward[j] && _scost[j] < 0) { |
751 | 751 |
Value c = _upper[j]; |
752 | 752 |
if (c >= MAX) return UNBOUNDED; |
753 | 753 |
_excess[i] -= c; |
754 | 754 |
_excess[_target[j]] += c; |
755 | 755 |
} |
756 | 756 |
} |
757 | 757 |
} |
758 | 758 |
} |
759 | 759 |
Value ex, max_cap = 0; |
760 | 760 |
for (int i = 0; i != _res_node_num; ++i) { |
761 | 761 |
ex = _excess[i]; |
762 | 762 |
_excess[i] = 0; |
763 | 763 |
if (ex < 0) max_cap -= ex; |
0 comments (0 inline)