0
13
0
70
48
59
62
55
60
60
60
2
9
143
75
12
5
231
2
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
@defgroup datas Data Structures |
23 | 23 |
This group contains the several data structures implemented in LEMON. |
24 | 24 |
*/ |
25 | 25 |
|
26 | 26 |
/** |
27 | 27 |
@defgroup graphs Graph Structures |
28 | 28 |
@ingroup datas |
29 | 29 |
\brief Graph structures implemented in LEMON. |
30 | 30 |
|
31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
35 | 35 |
|
36 | 36 |
The most efficient implementation of diverse applications require the |
37 | 37 |
usage of different physical graph implementations. These differences |
38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
39 | 39 |
limitations or in the set of operations through which the graph can be |
40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
41 | 41 |
the diverging requirements of the possible users. In order to save on |
42 | 42 |
running time or on memory usage, some structures may fail to provide |
43 | 43 |
some graph features like arc/edge or node deletion. |
44 | 44 |
|
45 | 45 |
Alteration of standard containers need a very limited number of |
46 | 46 |
operations, these together satisfy the everyday requirements. |
47 | 47 |
In the case of graph structures, different operations are needed which do |
48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
50 | 50 |
this is the case. It also may happen that in a flow implementation |
51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
52 | 52 |
is to be shrunk for another algorithm. |
53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
55 | 55 |
in conjunction with other graph representations. |
56 | 56 |
|
57 | 57 |
You are free to use the graph structure that fit your requirements |
58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
59 | 59 |
with any graph structure. |
60 | 60 |
|
61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
62 | 62 |
*/ |
63 | 63 |
|
64 | 64 |
/** |
65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
66 | 66 |
@ingroup graphs |
67 | 67 |
\brief Adaptor classes for digraphs and graphs |
68 | 68 |
|
69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
70 | 70 |
|
71 | 71 |
The main parts of LEMON are the different graph structures, generic |
72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
73 | 73 |
adaptors. While the previous notions are more or less clear, the |
74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
75 | 75 |
which serve for considering graph structures in different ways. |
76 | 76 |
|
77 | 77 |
A short example makes this much clearer. Suppose that we have an |
78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
79 | 79 |
\code |
80 | 80 |
template <typename Digraph> |
81 | 81 |
int algorithm(const Digraph&); |
82 | 82 |
\endcode |
83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
94 | 94 |
To come back to the reverse oriented graph, in this situation |
95 | 95 |
\code |
96 | 96 |
template<typename Digraph> class ReverseDigraph; |
97 | 97 |
\endcode |
98 | 98 |
template class can be used. The code looks as follows |
99 | 99 |
\code |
100 | 100 |
ListDigraph g; |
101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
102 | 102 |
int result = algorithm(rg); |
103 | 103 |
\endcode |
104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
105 | 105 |
This techniques give rise to an elegant code, and based on stable |
106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
107 | 107 |
|
108 | 108 |
In flow, circulation and matching problems, the residual |
109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
112 | 112 |
obtained. For other examples, the interested user is referred to the |
113 | 113 |
detailed documentation of particular adaptors. |
114 | 114 |
|
115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
116 | 116 |
capabilities of the original graph while in other cases this would be |
117 | 117 |
meaningless. This means that the concepts that they meet depend |
118 | 118 |
on the graph adaptor, and the wrapped graph. |
119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
121 | 121 |
adaptor modifies the original digraph. |
122 | 122 |
However in case of a residual digraph, this operation has no sense. |
123 | 123 |
|
124 | 124 |
Let us stand one more example here to simplify your work. |
125 | 125 |
ReverseDigraph has constructor |
126 | 126 |
\code |
127 | 127 |
ReverseDigraph(Digraph& digraph); |
128 | 128 |
\endcode |
129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
130 | 130 |
reference to a graph is given, then it have to be instantiated with |
131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
132 | 132 |
\code |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 | 141 |
@defgroup maps Maps |
142 | 142 |
@ingroup datas |
143 | 143 |
\brief Map structures implemented in LEMON. |
144 | 144 |
|
145 | 145 |
This group contains the map structures implemented in LEMON. |
146 | 146 |
|
147 | 147 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
148 | 148 |
new maps from existing ones. |
149 | 149 |
|
150 | 150 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
151 | 151 |
*/ |
152 | 152 |
|
153 | 153 |
/** |
154 | 154 |
@defgroup graph_maps Graph Maps |
155 | 155 |
@ingroup maps |
156 | 156 |
\brief Special graph-related maps. |
157 | 157 |
|
158 | 158 |
This group contains maps that are specifically designed to assign |
159 | 159 |
values to the nodes and arcs/edges of graphs. |
160 | 160 |
|
161 | 161 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
162 | 162 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
163 | 163 |
*/ |
164 | 164 |
|
165 | 165 |
/** |
166 | 166 |
\defgroup map_adaptors Map Adaptors |
167 | 167 |
\ingroup maps |
168 | 168 |
\brief Tools to create new maps from existing ones |
169 | 169 |
|
170 | 170 |
This group contains map adaptors that are used to create "implicit" |
171 | 171 |
maps from other maps. |
172 | 172 |
|
173 | 173 |
Most of them are \ref concepts::ReadMap "read-only maps". |
174 | 174 |
They can make arithmetic and logical operations between one or two maps |
175 | 175 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
176 | 176 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
177 | 177 |
|
178 | 178 |
The typical usage of this classes is passing implicit maps to |
179 | 179 |
algorithms. If a function type algorithm is called then the function |
180 | 180 |
type map adaptors can be used comfortable. For example let's see the |
181 | 181 |
usage of map adaptors with the \c graphToEps() function. |
182 | 182 |
\code |
183 | 183 |
Color nodeColor(int deg) { |
184 | 184 |
if (deg >= 2) { |
185 | 185 |
return Color(0.5, 0.0, 0.5); |
186 | 186 |
} else if (deg == 1) { |
187 | 187 |
return Color(1.0, 0.5, 1.0); |
188 | 188 |
} else { |
189 | 189 |
return Color(0.0, 0.0, 0.0); |
190 | 190 |
} |
191 | 191 |
} |
192 | 192 |
|
193 | 193 |
Digraph::NodeMap<int> degree_map(graph); |
194 | 194 |
|
195 | 195 |
graphToEps(graph, "graph.eps") |
196 | 196 |
.coords(coords).scaleToA4().undirected() |
197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
198 | 198 |
.run(); |
199 | 199 |
\endcode |
200 | 200 |
The \c functorToMap() function makes an \c int to \c Color map from the |
201 | 201 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
202 | 202 |
and the previously created map. The composed map is a proper function to |
203 | 203 |
get the color of each node. |
204 | 204 |
|
205 | 205 |
The usage with class type algorithms is little bit harder. In this |
206 | 206 |
case the function type map adaptors can not be used, because the |
207 | 207 |
function map adaptors give back temporary objects. |
208 | 208 |
\code |
209 | 209 |
Digraph graph; |
210 | 210 |
|
211 | 211 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
212 | 212 |
DoubleArcMap length(graph); |
213 | 213 |
DoubleArcMap speed(graph); |
214 | 214 |
|
215 | 215 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
216 | 216 |
TimeMap time(length, speed); |
217 | 217 |
|
218 | 218 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
219 | 219 |
dijkstra.run(source, target); |
220 | 220 |
\endcode |
221 | 221 |
We have a length map and a maximum speed map on the arcs of a digraph. |
222 | 222 |
The minimum time to pass the arc can be calculated as the division of |
223 | 223 |
the two maps which can be done implicitly with the \c DivMap template |
224 | 224 |
class. We use the implicit minimum time map as the length map of the |
225 | 225 |
\c Dijkstra algorithm. |
226 | 226 |
*/ |
227 | 227 |
|
228 | 228 |
/** |
229 | 229 |
@defgroup paths Path Structures |
230 | 230 |
@ingroup datas |
231 | 231 |
\brief %Path structures implemented in LEMON. |
232 | 232 |
|
233 | 233 |
This group contains the path structures implemented in LEMON. |
234 | 234 |
|
235 | 235 |
LEMON provides flexible data structures to work with paths. |
236 | 236 |
All of them have similar interfaces and they can be copied easily with |
237 | 237 |
assignment operators and copy constructors. This makes it easy and |
238 | 238 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
239 | 239 |
any kind of path structure. |
240 | 240 |
|
241 | 241 |
\sa \ref concepts::Path "Path concept" |
242 | 242 |
*/ |
243 | 243 |
|
244 | 244 |
/** |
245 | 245 |
@defgroup heaps Heap Structures |
246 | 246 |
@ingroup datas |
247 | 247 |
\brief %Heap structures implemented in LEMON. |
248 | 248 |
|
249 | 249 |
This group contains the heap structures implemented in LEMON. |
250 | 250 |
|
251 | 251 |
LEMON provides several heap classes. They are efficient implementations |
252 | 252 |
of the abstract data type \e priority \e queue. They store items with |
253 | 253 |
specified values called \e priorities in such a way that finding and |
254 | 254 |
removing the item with minimum priority are efficient. |
255 | 255 |
The basic operations are adding and erasing items, changing the priority |
256 | 256 |
of an item, etc. |
257 | 257 |
|
258 | 258 |
Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
259 | 259 |
The heap implementations have the same interface, thus any of them can be |
260 | 260 |
used easily in such algorithms. |
261 | 261 |
|
262 | 262 |
\sa \ref concepts::Heap "Heap concept" |
263 | 263 |
*/ |
264 | 264 |
|
265 | 265 |
/** |
266 | 266 |
@defgroup matrices Matrices |
267 | 267 |
@ingroup datas |
268 | 268 |
\brief Two dimensional data storages implemented in LEMON. |
269 | 269 |
|
270 | 270 |
This group contains two dimensional data storages implemented in LEMON. |
271 | 271 |
*/ |
272 | 272 |
|
273 | 273 |
/** |
274 | 274 |
@defgroup auxdat Auxiliary Data Structures |
275 | 275 |
@ingroup datas |
276 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
277 | 277 |
|
278 | 278 |
This group contains some data structures implemented in LEMON in |
279 | 279 |
order to make it easier to implement combinatorial algorithms. |
280 | 280 |
*/ |
281 | 281 |
|
282 | 282 |
/** |
283 |
@defgroup geomdat Geometric Data Structures |
|
284 |
@ingroup auxdat |
|
285 |
\brief Geometric data structures implemented in LEMON. |
|
286 |
|
|
287 |
This group contains geometric data structures implemented in LEMON. |
|
288 |
|
|
289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
|
290 |
vector with the usual operations. |
|
291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
|
292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
|
293 |
"dim2::Point"'s. |
|
294 |
*/ |
|
295 |
|
|
296 |
/** |
|
297 |
@defgroup matrices Matrices |
|
298 |
@ingroup auxdat |
|
299 |
\brief Two dimensional data storages implemented in LEMON. |
|
300 |
|
|
301 |
This group contains two dimensional data storages implemented in LEMON. |
|
302 |
*/ |
|
303 |
|
|
304 |
/** |
|
283 | 305 |
@defgroup algs Algorithms |
284 | 306 |
\brief This group contains the several algorithms |
285 | 307 |
implemented in LEMON. |
286 | 308 |
|
287 | 309 |
This group contains the several algorithms |
288 | 310 |
implemented in LEMON. |
289 | 311 |
*/ |
290 | 312 |
|
291 | 313 |
/** |
292 | 314 |
@defgroup search Graph Search |
293 | 315 |
@ingroup algs |
294 | 316 |
\brief Common graph search algorithms. |
295 | 317 |
|
296 | 318 |
This group contains the common graph search algorithms, namely |
297 | 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
298 | 320 |
*/ |
299 | 321 |
|
300 | 322 |
/** |
301 | 323 |
@defgroup shortest_path Shortest Path Algorithms |
302 | 324 |
@ingroup algs |
303 | 325 |
\brief Algorithms for finding shortest paths. |
304 | 326 |
|
305 | 327 |
This group contains the algorithms for finding shortest paths in digraphs. |
306 | 328 |
|
307 | 329 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
308 | 330 |
when all arc lengths are non-negative. |
309 | 331 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
310 | 332 |
from a source node when arc lenghts can be either positive or negative, |
311 | 333 |
but the digraph should not contain directed cycles with negative total |
312 | 334 |
length. |
313 | 335 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
314 | 336 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
315 | 337 |
lenghts can be either positive or negative, but the digraph should |
316 | 338 |
not contain directed cycles with negative total length. |
317 | 339 |
- \ref Suurballe A successive shortest path algorithm for finding |
318 | 340 |
arc-disjoint paths between two nodes having minimum total length. |
319 | 341 |
*/ |
320 | 342 |
|
321 | 343 |
/** |
344 |
@defgroup spantree Minimum Spanning Tree Algorithms |
|
345 |
@ingroup algs |
|
346 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
347 |
|
|
348 |
This group contains the algorithms for finding minimum cost spanning |
|
349 |
trees and arborescences. |
|
350 |
*/ |
|
351 |
|
|
352 |
/** |
|
322 | 353 |
@defgroup max_flow Maximum Flow Algorithms |
323 | 354 |
@ingroup algs |
324 | 355 |
\brief Algorithms for finding maximum flows. |
325 | 356 |
|
326 | 357 |
This group contains the algorithms for finding maximum flows and |
327 | 358 |
feasible circulations. |
328 | 359 |
|
329 | 360 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
330 | 361 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
331 | 362 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
332 | 363 |
\f$s, t \in V\f$ source and target nodes. |
333 | 364 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
334 | 365 |
following optimization problem. |
335 | 366 |
|
336 | 367 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
337 | 368 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
338 | 369 |
\quad \forall u\in V\setminus\{s,t\} \f] |
339 | 370 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
340 | 371 |
|
341 | 372 |
LEMON contains several algorithms for solving maximum flow problems: |
342 | 373 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
343 | 374 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
344 | 375 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
345 | 376 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
346 | 377 |
|
347 | 378 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
348 | 379 |
fastest method for computing a maximum flow. All implementations |
349 | 380 |
also provide functions to query the minimum cut, which is the dual |
350 | 381 |
problem of maximum flow. |
351 | 382 |
|
352 | 383 |
\ref Circulation is a preflow push-relabel algorithm implemented directly |
353 | 384 |
for finding feasible circulations, which is a somewhat different problem, |
354 | 385 |
but it is strongly related to maximum flow. |
355 | 386 |
For more information, see \ref Circulation. |
356 | 387 |
*/ |
357 | 388 |
|
358 | 389 |
/** |
359 | 390 |
@defgroup min_cost_flow_algs Minimum Cost Flow Algorithms |
360 | 391 |
@ingroup algs |
361 | 392 |
|
362 | 393 |
\brief Algorithms for finding minimum cost flows and circulations. |
363 | 394 |
|
364 | 395 |
This group contains the algorithms for finding minimum cost flows and |
365 | 396 |
circulations. For more information about this problem and its dual |
366 | 397 |
solution see \ref min_cost_flow "Minimum Cost Flow Problem". |
367 | 398 |
|
368 | 399 |
LEMON contains several algorithms for this problem. |
369 | 400 |
- \ref NetworkSimplex Primal Network Simplex algorithm with various |
370 | 401 |
pivot strategies. |
371 | 402 |
- \ref CostScaling Push-Relabel and Augment-Relabel algorithms based on |
372 | 403 |
cost scaling. |
373 | 404 |
- \ref CapacityScaling Successive Shortest %Path algorithm with optional |
374 | 405 |
capacity scaling. |
375 | 406 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
376 | 407 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
377 | 408 |
|
378 | 409 |
In general NetworkSimplex is the most efficient implementation, |
379 | 410 |
but in special cases other algorithms could be faster. |
380 | 411 |
For example, if the total supply and/or capacities are rather small, |
381 | 412 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
382 | 413 |
*/ |
383 | 414 |
|
384 | 415 |
/** |
385 | 416 |
@defgroup min_cut Minimum Cut Algorithms |
386 | 417 |
@ingroup algs |
387 | 418 |
|
388 | 419 |
\brief Algorithms for finding minimum cut in graphs. |
389 | 420 |
|
390 | 421 |
This group contains the algorithms for finding minimum cut in graphs. |
391 | 422 |
|
392 | 423 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
393 | 424 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
394 | 425 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
395 | 426 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
396 | 427 |
cut is the \f$X\f$ solution of the next optimization problem: |
397 | 428 |
|
398 | 429 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
399 |
\sum_{uv\in A |
|
430 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] |
|
400 | 431 |
|
401 | 432 |
LEMON contains several algorithms related to minimum cut problems: |
402 | 433 |
|
403 | 434 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
404 | 435 |
in directed graphs. |
405 | 436 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
406 | 437 |
calculating minimum cut in undirected graphs. |
407 | 438 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
408 | 439 |
all-pairs minimum cut in undirected graphs. |
409 | 440 |
|
410 | 441 |
If you want to find minimum cut just between two distinict nodes, |
411 | 442 |
see the \ref max_flow "maximum flow problem". |
412 | 443 |
*/ |
413 | 444 |
|
414 | 445 |
/** |
415 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
416 |
@ingroup algs |
|
417 |
\brief Algorithms for discovering the graph properties |
|
418 |
|
|
419 |
This group contains the algorithms for discovering the graph properties |
|
420 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
421 |
|
|
422 |
\image html edge_biconnected_components.png |
|
423 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
424 |
*/ |
|
425 |
|
|
426 |
/** |
|
427 |
@defgroup planar Planarity Embedding and Drawing |
|
428 |
@ingroup algs |
|
429 |
\brief Algorithms for planarity checking, embedding and drawing |
|
430 |
|
|
431 |
This group contains the algorithms for planarity checking, |
|
432 |
embedding and drawing. |
|
433 |
|
|
434 |
\image html planar.png |
|
435 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
436 |
*/ |
|
437 |
|
|
438 |
/** |
|
439 | 446 |
@defgroup matching Matching Algorithms |
440 | 447 |
@ingroup algs |
441 | 448 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
442 | 449 |
|
443 | 450 |
This group contains the algorithms for calculating |
444 | 451 |
matchings in graphs and bipartite graphs. The general matching problem is |
445 | 452 |
finding a subset of the edges for which each node has at most one incident |
446 | 453 |
edge. |
447 | 454 |
|
448 | 455 |
There are several different algorithms for calculate matchings in |
449 | 456 |
graphs. The matching problems in bipartite graphs are generally |
450 | 457 |
easier than in general graphs. The goal of the matching optimization |
451 | 458 |
can be finding maximum cardinality, maximum weight or minimum cost |
452 | 459 |
matching. The search can be constrained to find perfect or |
453 | 460 |
maximum cardinality matching. |
454 | 461 |
|
455 | 462 |
The matching algorithms implemented in LEMON: |
456 | 463 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
457 | 464 |
for calculating maximum cardinality matching in bipartite graphs. |
458 | 465 |
- \ref PrBipartiteMatching Push-relabel algorithm |
459 | 466 |
for calculating maximum cardinality matching in bipartite graphs. |
460 | 467 |
- \ref MaxWeightedBipartiteMatching |
461 | 468 |
Successive shortest path algorithm for calculating maximum weighted |
462 | 469 |
matching and maximum weighted bipartite matching in bipartite graphs. |
463 | 470 |
- \ref MinCostMaxBipartiteMatching |
464 | 471 |
Successive shortest path algorithm for calculating minimum cost maximum |
465 | 472 |
matching in bipartite graphs. |
466 | 473 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
467 | 474 |
maximum cardinality matching in general graphs. |
468 | 475 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
469 | 476 |
maximum weighted matching in general graphs. |
470 | 477 |
- \ref MaxWeightedPerfectMatching |
471 | 478 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
472 | 479 |
perfect matching in general graphs. |
473 | 480 |
|
474 | 481 |
\image html bipartite_matching.png |
475 | 482 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
476 | 483 |
*/ |
477 | 484 |
|
478 | 485 |
/** |
479 |
@defgroup |
|
486 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
480 | 487 |
@ingroup algs |
481 |
\brief Algorithms for |
|
488 |
\brief Algorithms for discovering the graph properties |
|
482 | 489 |
|
483 |
This group contains the algorithms for finding minimum cost spanning |
|
484 |
trees and arborescences. |
|
490 |
This group contains the algorithms for discovering the graph properties |
|
491 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
492 |
|
|
493 |
\image html connected_components.png |
|
494 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
495 |
*/ |
|
496 |
|
|
497 |
/** |
|
498 |
@defgroup planar Planarity Embedding and Drawing |
|
499 |
@ingroup algs |
|
500 |
\brief Algorithms for planarity checking, embedding and drawing |
|
501 |
|
|
502 |
This group contains the algorithms for planarity checking, |
|
503 |
embedding and drawing. |
|
504 |
|
|
505 |
\image html planar.png |
|
506 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
507 |
*/ |
|
508 |
|
|
509 |
/** |
|
510 |
@defgroup approx Approximation Algorithms |
|
511 |
@ingroup algs |
|
512 |
\brief Approximation algorithms. |
|
513 |
|
|
514 |
This group contains the approximation and heuristic algorithms |
|
515 |
implemented in LEMON. |
|
485 | 516 |
*/ |
486 | 517 |
|
487 | 518 |
/** |
488 | 519 |
@defgroup auxalg Auxiliary Algorithms |
489 | 520 |
@ingroup algs |
490 | 521 |
\brief Auxiliary algorithms implemented in LEMON. |
491 | 522 |
|
492 | 523 |
This group contains some algorithms implemented in LEMON |
493 | 524 |
in order to make it easier to implement complex algorithms. |
494 | 525 |
*/ |
495 | 526 |
|
496 | 527 |
/** |
497 |
@defgroup approx Approximation Algorithms |
|
498 |
@ingroup algs |
|
499 |
\brief Approximation algorithms. |
|
500 |
|
|
501 |
This group contains the approximation and heuristic algorithms |
|
502 |
implemented in LEMON. |
|
503 |
*/ |
|
504 |
|
|
505 |
/** |
|
506 | 528 |
@defgroup gen_opt_group General Optimization Tools |
507 | 529 |
\brief This group contains some general optimization frameworks |
508 | 530 |
implemented in LEMON. |
509 | 531 |
|
510 | 532 |
This group contains some general optimization frameworks |
511 | 533 |
implemented in LEMON. |
512 | 534 |
*/ |
513 | 535 |
|
514 | 536 |
/** |
515 | 537 |
@defgroup lp_group Lp and Mip Solvers |
516 | 538 |
@ingroup gen_opt_group |
517 | 539 |
\brief Lp and Mip solver interfaces for LEMON. |
518 | 540 |
|
519 | 541 |
This group contains Lp and Mip solver interfaces for LEMON. The |
520 | 542 |
various LP solvers could be used in the same manner with this |
521 | 543 |
interface. |
522 | 544 |
*/ |
523 | 545 |
|
524 | 546 |
/** |
525 | 547 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
526 | 548 |
@ingroup lp_group |
527 | 549 |
\brief Helper tools to the Lp and Mip solvers. |
528 | 550 |
|
529 | 551 |
This group adds some helper tools to general optimization framework |
530 | 552 |
implemented in LEMON. |
531 | 553 |
*/ |
532 | 554 |
|
533 | 555 |
/** |
534 | 556 |
@defgroup metah Metaheuristics |
535 | 557 |
@ingroup gen_opt_group |
536 | 558 |
\brief Metaheuristics for LEMON library. |
537 | 559 |
|
538 | 560 |
This group contains some metaheuristic optimization tools. |
539 | 561 |
*/ |
540 | 562 |
|
541 | 563 |
/** |
542 | 564 |
@defgroup utils Tools and Utilities |
543 | 565 |
\brief Tools and utilities for programming in LEMON |
544 | 566 |
|
545 | 567 |
Tools and utilities for programming in LEMON. |
546 | 568 |
*/ |
547 | 569 |
|
548 | 570 |
/** |
549 | 571 |
@defgroup gutils Basic Graph Utilities |
550 | 572 |
@ingroup utils |
551 | 573 |
\brief Simple basic graph utilities. |
552 | 574 |
|
553 | 575 |
This group contains some simple basic graph utilities. |
554 | 576 |
*/ |
555 | 577 |
|
556 | 578 |
/** |
557 | 579 |
@defgroup misc Miscellaneous Tools |
558 | 580 |
@ingroup utils |
559 | 581 |
\brief Tools for development, debugging and testing. |
560 | 582 |
|
561 | 583 |
This group contains several useful tools for development, |
562 | 584 |
debugging and testing. |
563 | 585 |
*/ |
564 | 586 |
|
565 | 587 |
/** |
566 | 588 |
@defgroup timecount Time Measuring and Counting |
567 | 589 |
@ingroup misc |
568 | 590 |
\brief Simple tools for measuring the performance of algorithms. |
569 | 591 |
|
570 | 592 |
This group contains simple tools for measuring the performance |
571 | 593 |
of algorithms. |
572 | 594 |
*/ |
573 | 595 |
|
574 | 596 |
/** |
575 | 597 |
@defgroup exceptions Exceptions |
576 | 598 |
@ingroup utils |
577 | 599 |
\brief Exceptions defined in LEMON. |
578 | 600 |
|
579 | 601 |
This group contains the exceptions defined in LEMON. |
580 | 602 |
*/ |
581 | 603 |
|
582 | 604 |
/** |
583 | 605 |
@defgroup io_group Input-Output |
584 | 606 |
\brief Graph Input-Output methods |
585 | 607 |
|
586 | 608 |
This group contains the tools for importing and exporting graphs |
587 | 609 |
and graph related data. Now it supports the \ref lgf-format |
588 | 610 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
589 | 611 |
postscript (EPS) format. |
590 | 612 |
*/ |
591 | 613 |
|
592 | 614 |
/** |
593 | 615 |
@defgroup lemon_io LEMON Graph Format |
594 | 616 |
@ingroup io_group |
595 | 617 |
\brief Reading and writing LEMON Graph Format. |
596 | 618 |
|
597 | 619 |
This group contains methods for reading and writing |
598 | 620 |
\ref lgf-format "LEMON Graph Format". |
599 | 621 |
*/ |
600 | 622 |
|
601 | 623 |
/** |
602 | 624 |
@defgroup eps_io Postscript Exporting |
603 | 625 |
@ingroup io_group |
604 | 626 |
\brief General \c EPS drawer and graph exporter |
605 | 627 |
|
606 | 628 |
This group contains general \c EPS drawing methods and special |
607 | 629 |
graph exporting tools. |
608 | 630 |
*/ |
609 | 631 |
|
610 | 632 |
/** |
611 |
@defgroup dimacs_group DIMACS |
|
633 |
@defgroup dimacs_group DIMACS Format |
|
612 | 634 |
@ingroup io_group |
613 | 635 |
\brief Read and write files in DIMACS format |
614 | 636 |
|
615 | 637 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
616 | 638 |
*/ |
617 | 639 |
|
618 | 640 |
/** |
619 | 641 |
@defgroup nauty_group NAUTY Format |
620 | 642 |
@ingroup io_group |
621 | 643 |
\brief Read \e Nauty format |
622 | 644 |
|
623 | 645 |
Tool to read graphs from \e Nauty format data. |
624 | 646 |
*/ |
625 | 647 |
|
626 | 648 |
/** |
627 | 649 |
@defgroup concept Concepts |
628 | 650 |
\brief Skeleton classes and concept checking classes |
629 | 651 |
|
630 | 652 |
This group contains the data/algorithm skeletons and concept checking |
631 | 653 |
classes implemented in LEMON. |
632 | 654 |
|
633 | 655 |
The purpose of the classes in this group is fourfold. |
634 | 656 |
|
635 | 657 |
- These classes contain the documentations of the %concepts. In order |
636 | 658 |
to avoid document multiplications, an implementation of a concept |
637 | 659 |
simply refers to the corresponding concept class. |
638 | 660 |
|
639 | 661 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
640 | 662 |
implementation of the %concepts should provide, however completely |
641 | 663 |
without implementations and real data structures behind the |
642 | 664 |
interface. On the other hand they should provide nothing else. All |
643 | 665 |
the algorithms working on a data structure meeting a certain concept |
644 | 666 |
should compile with these classes. (Though it will not run properly, |
645 | 667 |
of course.) In this way it is easily to check if an algorithm |
646 | 668 |
doesn't use any extra feature of a certain implementation. |
647 | 669 |
|
648 | 670 |
- The concept descriptor classes also provide a <em>checker class</em> |
649 | 671 |
that makes it possible to check whether a certain implementation of a |
650 | 672 |
concept indeed provides all the required features. |
651 | 673 |
|
652 | 674 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
653 | 675 |
*/ |
654 | 676 |
|
655 | 677 |
/** |
656 | 678 |
@defgroup graph_concepts Graph Structure Concepts |
657 | 679 |
@ingroup concept |
658 | 680 |
\brief Skeleton and concept checking classes for graph structures |
659 | 681 |
|
660 | 682 |
This group contains the skeletons and concept checking classes of LEMON's |
661 | 683 |
graph structures and helper classes used to implement these. |
662 | 684 |
*/ |
663 | 685 |
|
664 | 686 |
/** |
665 | 687 |
@defgroup map_concepts Map Concepts |
666 | 688 |
@ingroup concept |
667 | 689 |
\brief Skeleton and concept checking classes for maps |
668 | 690 |
|
669 | 691 |
This group contains the skeletons and concept checking classes of maps. |
670 | 692 |
*/ |
671 | 693 |
|
672 | 694 |
/** |
695 |
@defgroup tools Standalone Utility Applications |
|
696 |
|
|
697 |
Some utility applications are listed here. |
|
698 |
|
|
699 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
700 |
them, as well. |
|
701 |
*/ |
|
702 |
|
|
703 |
/** |
|
673 | 704 |
\anchor demoprograms |
674 | 705 |
|
675 | 706 |
@defgroup demos Demo Programs |
676 | 707 |
|
677 | 708 |
Some demo programs are listed here. Their full source codes can be found in |
678 | 709 |
the \c demo subdirectory of the source tree. |
679 | 710 |
|
680 | 711 |
In order to compile them, use the <tt>make demo</tt> or the |
681 | 712 |
<tt>make check</tt> commands. |
682 | 713 |
*/ |
683 | 714 |
|
684 |
/** |
|
685 |
@defgroup tools Standalone Utility Applications |
|
686 |
|
|
687 |
Some utility applications are listed here. |
|
688 |
|
|
689 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
690 |
them, as well. |
|
691 |
*/ |
|
692 |
|
|
693 | 715 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief BFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Bfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct BfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the shortest paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 |
///It must |
|
50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 |
///It must |
|
65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
66 |
///By default it is a NullMap. |
|
66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 | 68 |
///Instantiates a \c ProcessedMap. |
68 | 69 |
|
69 | 70 |
///This function instantiates a \ref ProcessedMap. |
70 | 71 |
///\param g is the digraph, to which |
71 | 72 |
///we would like to define the \ref ProcessedMap |
72 | 73 |
#ifdef DOXYGEN |
73 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
74 | 75 |
#else |
75 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
76 | 77 |
#endif |
77 | 78 |
{ |
78 | 79 |
return new ProcessedMap(); |
79 | 80 |
} |
80 | 81 |
|
81 | 82 |
///The type of the map that indicates which nodes are reached. |
82 | 83 |
|
83 | 84 |
///The type of the map that indicates which nodes are reached. |
84 |
///It must |
|
85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 | 87 |
///Instantiates a \c ReachedMap. |
87 | 88 |
|
88 | 89 |
///This function instantiates a \ref ReachedMap. |
89 | 90 |
///\param g is the digraph, to which |
90 | 91 |
///we would like to define the \ref ReachedMap. |
91 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
92 | 93 |
{ |
93 | 94 |
return new ReachedMap(g); |
94 | 95 |
} |
95 | 96 |
|
96 | 97 |
///The type of the map that stores the distances of the nodes. |
97 | 98 |
|
98 | 99 |
///The type of the map that stores the distances of the nodes. |
99 |
///It must |
|
100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 | 102 |
///Instantiates a \c DistMap. |
102 | 103 |
|
103 | 104 |
///This function instantiates a \ref DistMap. |
104 | 105 |
///\param g is the digraph, to which we would like to define the |
105 | 106 |
///\ref DistMap. |
106 | 107 |
static DistMap *createDistMap(const Digraph &g) |
107 | 108 |
{ |
108 | 109 |
return new DistMap(g); |
109 | 110 |
} |
110 | 111 |
}; |
111 | 112 |
|
112 | 113 |
///%BFS algorithm class. |
113 | 114 |
|
114 | 115 |
///\ingroup search |
115 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
116 | 117 |
/// |
117 | 118 |
///There is also a \ref bfs() "function-type interface" for the BFS |
118 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
119 | 120 |
///used easier. |
120 | 121 |
/// |
121 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
122 | 123 |
///The default type is \ref ListDigraph. |
123 | 124 |
#ifdef DOXYGEN |
124 | 125 |
template <typename GR, |
125 | 126 |
typename TR> |
126 | 127 |
#else |
127 | 128 |
template <typename GR=ListDigraph, |
128 | 129 |
typename TR=BfsDefaultTraits<GR> > |
129 | 130 |
#endif |
130 | 131 |
class Bfs { |
131 | 132 |
public: |
132 | 133 |
|
133 | 134 |
///The type of the digraph the algorithm runs on. |
134 | 135 |
typedef typename TR::Digraph Digraph; |
135 | 136 |
|
136 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
137 | 138 |
///shortest paths. |
138 | 139 |
typedef typename TR::PredMap PredMap; |
139 | 140 |
///The type of the map that stores the distances of the nodes. |
140 | 141 |
typedef typename TR::DistMap DistMap; |
141 | 142 |
///The type of the map that indicates which nodes are reached. |
142 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
143 | 144 |
///The type of the map that indicates which nodes are processed. |
144 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
145 | 146 |
///The type of the paths. |
146 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
147 | 148 |
|
148 | 149 |
///The \ref BfsDefaultTraits "traits class" of the algorithm. |
149 | 150 |
typedef TR Traits; |
150 | 151 |
|
151 | 152 |
private: |
152 | 153 |
|
153 | 154 |
typedef typename Digraph::Node Node; |
154 | 155 |
typedef typename Digraph::NodeIt NodeIt; |
155 | 156 |
typedef typename Digraph::Arc Arc; |
156 | 157 |
typedef typename Digraph::OutArcIt OutArcIt; |
157 | 158 |
|
158 | 159 |
//Pointer to the underlying digraph. |
159 | 160 |
const Digraph *G; |
160 | 161 |
//Pointer to the map of predecessor arcs. |
161 | 162 |
PredMap *_pred; |
162 | 163 |
//Indicates if _pred is locally allocated (true) or not. |
163 | 164 |
bool local_pred; |
164 | 165 |
//Pointer to the map of distances. |
165 | 166 |
DistMap *_dist; |
166 | 167 |
//Indicates if _dist is locally allocated (true) or not. |
167 | 168 |
bool local_dist; |
168 | 169 |
//Pointer to the map of reached status of the nodes. |
169 | 170 |
ReachedMap *_reached; |
170 | 171 |
//Indicates if _reached is locally allocated (true) or not. |
171 | 172 |
bool local_reached; |
172 | 173 |
//Pointer to the map of processed status of the nodes. |
173 | 174 |
ProcessedMap *_processed; |
174 | 175 |
//Indicates if _processed is locally allocated (true) or not. |
175 | 176 |
bool local_processed; |
176 | 177 |
|
177 | 178 |
std::vector<typename Digraph::Node> _queue; |
178 | 179 |
int _queue_head,_queue_tail,_queue_next_dist; |
179 | 180 |
int _curr_dist; |
180 | 181 |
|
181 | 182 |
//Creates the maps if necessary. |
182 | 183 |
void create_maps() |
183 | 184 |
{ |
184 | 185 |
if(!_pred) { |
185 | 186 |
local_pred = true; |
186 | 187 |
_pred = Traits::createPredMap(*G); |
187 | 188 |
} |
188 | 189 |
if(!_dist) { |
189 | 190 |
local_dist = true; |
190 | 191 |
_dist = Traits::createDistMap(*G); |
191 | 192 |
} |
192 | 193 |
if(!_reached) { |
193 | 194 |
local_reached = true; |
194 | 195 |
_reached = Traits::createReachedMap(*G); |
195 | 196 |
} |
196 | 197 |
if(!_processed) { |
197 | 198 |
local_processed = true; |
198 | 199 |
_processed = Traits::createProcessedMap(*G); |
199 | 200 |
} |
200 | 201 |
} |
201 | 202 |
|
202 | 203 |
protected: |
203 | 204 |
|
204 | 205 |
Bfs() {} |
205 | 206 |
|
206 | 207 |
public: |
207 | 208 |
|
208 | 209 |
typedef Bfs Create; |
209 | 210 |
|
210 | 211 |
///\name Named Template Parameters |
211 | 212 |
|
212 | 213 |
///@{ |
213 | 214 |
|
214 | 215 |
template <class T> |
215 | 216 |
struct SetPredMapTraits : public Traits { |
216 | 217 |
typedef T PredMap; |
217 | 218 |
static PredMap *createPredMap(const Digraph &) |
218 | 219 |
{ |
219 | 220 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
220 | 221 |
return 0; // ignore warnings |
221 | 222 |
} |
222 | 223 |
}; |
223 | 224 |
///\brief \ref named-templ-param "Named parameter" for setting |
224 | 225 |
///\c PredMap type. |
225 | 226 |
/// |
226 | 227 |
///\ref named-templ-param "Named parameter" for setting |
227 | 228 |
///\c PredMap type. |
228 |
///It must |
|
229 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
229 | 230 |
template <class T> |
230 | 231 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
231 | 232 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
232 | 233 |
}; |
233 | 234 |
|
234 | 235 |
template <class T> |
235 | 236 |
struct SetDistMapTraits : public Traits { |
236 | 237 |
typedef T DistMap; |
237 | 238 |
static DistMap *createDistMap(const Digraph &) |
238 | 239 |
{ |
239 | 240 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
240 | 241 |
return 0; // ignore warnings |
241 | 242 |
} |
242 | 243 |
}; |
243 | 244 |
///\brief \ref named-templ-param "Named parameter" for setting |
244 | 245 |
///\c DistMap type. |
245 | 246 |
/// |
246 | 247 |
///\ref named-templ-param "Named parameter" for setting |
247 | 248 |
///\c DistMap type. |
248 |
///It must |
|
249 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
249 | 250 |
template <class T> |
250 | 251 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
251 | 252 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
252 | 253 |
}; |
253 | 254 |
|
254 | 255 |
template <class T> |
255 | 256 |
struct SetReachedMapTraits : public Traits { |
256 | 257 |
typedef T ReachedMap; |
257 | 258 |
static ReachedMap *createReachedMap(const Digraph &) |
258 | 259 |
{ |
259 | 260 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
260 | 261 |
return 0; // ignore warnings |
261 | 262 |
} |
262 | 263 |
}; |
263 | 264 |
///\brief \ref named-templ-param "Named parameter" for setting |
264 | 265 |
///\c ReachedMap type. |
265 | 266 |
/// |
266 | 267 |
///\ref named-templ-param "Named parameter" for setting |
267 | 268 |
///\c ReachedMap type. |
268 |
///It must |
|
269 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
269 | 270 |
template <class T> |
270 | 271 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
271 | 272 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
272 | 273 |
}; |
273 | 274 |
|
274 | 275 |
template <class T> |
275 | 276 |
struct SetProcessedMapTraits : public Traits { |
276 | 277 |
typedef T ProcessedMap; |
277 | 278 |
static ProcessedMap *createProcessedMap(const Digraph &) |
278 | 279 |
{ |
279 | 280 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
280 | 281 |
return 0; // ignore warnings |
281 | 282 |
} |
282 | 283 |
}; |
283 | 284 |
///\brief \ref named-templ-param "Named parameter" for setting |
284 | 285 |
///\c ProcessedMap type. |
285 | 286 |
/// |
286 | 287 |
///\ref named-templ-param "Named parameter" for setting |
287 | 288 |
///\c ProcessedMap type. |
288 |
///It must |
|
289 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
289 | 290 |
template <class T> |
290 | 291 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
291 | 292 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
292 | 293 |
}; |
293 | 294 |
|
294 | 295 |
struct SetStandardProcessedMapTraits : public Traits { |
295 | 296 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
296 | 297 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
297 | 298 |
{ |
298 | 299 |
return new ProcessedMap(g); |
299 | 300 |
return 0; // ignore warnings |
300 | 301 |
} |
301 | 302 |
}; |
302 | 303 |
///\brief \ref named-templ-param "Named parameter" for setting |
303 | 304 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
304 | 305 |
/// |
305 | 306 |
///\ref named-templ-param "Named parameter" for setting |
306 | 307 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
307 | 308 |
///If you don't set it explicitly, it will be automatically allocated. |
308 | 309 |
struct SetStandardProcessedMap : |
309 | 310 |
public Bfs< Digraph, SetStandardProcessedMapTraits > { |
310 | 311 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
311 | 312 |
}; |
312 | 313 |
|
313 | 314 |
///@} |
314 | 315 |
|
315 | 316 |
public: |
316 | 317 |
|
317 | 318 |
///Constructor. |
318 | 319 |
|
319 | 320 |
///Constructor. |
320 | 321 |
///\param g The digraph the algorithm runs on. |
321 | 322 |
Bfs(const Digraph &g) : |
322 | 323 |
G(&g), |
323 | 324 |
_pred(NULL), local_pred(false), |
324 | 325 |
_dist(NULL), local_dist(false), |
325 | 326 |
_reached(NULL), local_reached(false), |
326 | 327 |
_processed(NULL), local_processed(false) |
327 | 328 |
{ } |
328 | 329 |
|
329 | 330 |
///Destructor. |
330 | 331 |
~Bfs() |
331 | 332 |
{ |
332 | 333 |
if(local_pred) delete _pred; |
333 | 334 |
if(local_dist) delete _dist; |
334 | 335 |
if(local_reached) delete _reached; |
335 | 336 |
if(local_processed) delete _processed; |
336 | 337 |
} |
337 | 338 |
|
338 | 339 |
///Sets the map that stores the predecessor arcs. |
339 | 340 |
|
340 | 341 |
///Sets the map that stores the predecessor arcs. |
341 | 342 |
///If you don't use this function before calling \ref run(Node) "run()" |
342 | 343 |
///or \ref init(), an instance will be allocated automatically. |
343 | 344 |
///The destructor deallocates this automatically allocated map, |
344 | 345 |
///of course. |
345 | 346 |
///\return <tt> (*this) </tt> |
346 | 347 |
Bfs &predMap(PredMap &m) |
347 | 348 |
{ |
348 | 349 |
if(local_pred) { |
349 | 350 |
delete _pred; |
350 | 351 |
local_pred=false; |
351 | 352 |
} |
352 | 353 |
_pred = &m; |
353 | 354 |
return *this; |
354 | 355 |
} |
355 | 356 |
|
356 | 357 |
///Sets the map that indicates which nodes are reached. |
357 | 358 |
|
358 | 359 |
///Sets the map that indicates which nodes are reached. |
359 | 360 |
///If you don't use this function before calling \ref run(Node) "run()" |
360 | 361 |
///or \ref init(), an instance will be allocated automatically. |
361 | 362 |
///The destructor deallocates this automatically allocated map, |
362 | 363 |
///of course. |
363 | 364 |
///\return <tt> (*this) </tt> |
364 | 365 |
Bfs &reachedMap(ReachedMap &m) |
365 | 366 |
{ |
366 | 367 |
if(local_reached) { |
367 | 368 |
delete _reached; |
368 | 369 |
local_reached=false; |
369 | 370 |
} |
370 | 371 |
_reached = &m; |
371 | 372 |
return *this; |
372 | 373 |
} |
373 | 374 |
|
374 | 375 |
///Sets the map that indicates which nodes are processed. |
375 | 376 |
|
376 | 377 |
///Sets the map that indicates which nodes are processed. |
377 | 378 |
///If you don't use this function before calling \ref run(Node) "run()" |
378 | 379 |
///or \ref init(), an instance will be allocated automatically. |
379 | 380 |
///The destructor deallocates this automatically allocated map, |
380 | 381 |
///of course. |
381 | 382 |
///\return <tt> (*this) </tt> |
382 | 383 |
Bfs &processedMap(ProcessedMap &m) |
383 | 384 |
{ |
384 | 385 |
if(local_processed) { |
385 | 386 |
delete _processed; |
386 | 387 |
local_processed=false; |
387 | 388 |
} |
388 | 389 |
_processed = &m; |
389 | 390 |
return *this; |
390 | 391 |
} |
391 | 392 |
|
392 | 393 |
///Sets the map that stores the distances of the nodes. |
393 | 394 |
|
394 | 395 |
///Sets the map that stores the distances of the nodes calculated by |
395 | 396 |
///the algorithm. |
396 | 397 |
///If you don't use this function before calling \ref run(Node) "run()" |
397 | 398 |
///or \ref init(), an instance will be allocated automatically. |
398 | 399 |
///The destructor deallocates this automatically allocated map, |
399 | 400 |
///of course. |
400 | 401 |
///\return <tt> (*this) </tt> |
401 | 402 |
Bfs &distMap(DistMap &m) |
402 | 403 |
{ |
403 | 404 |
if(local_dist) { |
404 | 405 |
delete _dist; |
405 | 406 |
local_dist=false; |
406 | 407 |
} |
407 | 408 |
_dist = &m; |
408 | 409 |
return *this; |
409 | 410 |
} |
410 | 411 |
|
411 | 412 |
public: |
412 | 413 |
|
413 | 414 |
///\name Execution Control |
414 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
415 | 416 |
///member functions called \ref run(Node) "run()".\n |
416 |
///If you need more control on the execution, first you have to call |
|
417 |
///\ref init(), then you can add several source nodes with |
|
417 |
///If you need better control on the execution, you have to call |
|
418 |
///\ref init() first, then you can add several source nodes with |
|
418 | 419 |
///\ref addSource(). Finally the actual path computation can be |
419 | 420 |
///performed with one of the \ref start() functions. |
420 | 421 |
|
421 | 422 |
///@{ |
422 | 423 |
|
423 | 424 |
///\brief Initializes the internal data structures. |
424 | 425 |
/// |
425 | 426 |
///Initializes the internal data structures. |
426 | 427 |
void init() |
427 | 428 |
{ |
428 | 429 |
create_maps(); |
429 | 430 |
_queue.resize(countNodes(*G)); |
430 | 431 |
_queue_head=_queue_tail=0; |
431 | 432 |
_curr_dist=1; |
432 | 433 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
433 | 434 |
_pred->set(u,INVALID); |
434 | 435 |
_reached->set(u,false); |
435 | 436 |
_processed->set(u,false); |
436 | 437 |
} |
437 | 438 |
} |
438 | 439 |
|
439 | 440 |
///Adds a new source node. |
440 | 441 |
|
441 | 442 |
///Adds a new source node to the set of nodes to be processed. |
442 | 443 |
/// |
443 | 444 |
void addSource(Node s) |
444 | 445 |
{ |
445 | 446 |
if(!(*_reached)[s]) |
446 | 447 |
{ |
447 | 448 |
_reached->set(s,true); |
448 | 449 |
_pred->set(s,INVALID); |
449 | 450 |
_dist->set(s,0); |
450 | 451 |
_queue[_queue_head++]=s; |
451 | 452 |
_queue_next_dist=_queue_head; |
452 | 453 |
} |
453 | 454 |
} |
454 | 455 |
|
455 | 456 |
///Processes the next node. |
456 | 457 |
|
457 | 458 |
///Processes the next node. |
458 | 459 |
/// |
459 | 460 |
///\return The processed node. |
460 | 461 |
/// |
461 | 462 |
///\pre The queue must not be empty. |
462 | 463 |
Node processNextNode() |
463 | 464 |
{ |
464 | 465 |
if(_queue_tail==_queue_next_dist) { |
465 | 466 |
_curr_dist++; |
466 | 467 |
_queue_next_dist=_queue_head; |
467 | 468 |
} |
468 | 469 |
Node n=_queue[_queue_tail++]; |
469 | 470 |
_processed->set(n,true); |
470 | 471 |
Node m; |
471 | 472 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
472 | 473 |
if(!(*_reached)[m=G->target(e)]) { |
473 | 474 |
_queue[_queue_head++]=m; |
474 | 475 |
_reached->set(m,true); |
475 | 476 |
_pred->set(m,e); |
476 | 477 |
_dist->set(m,_curr_dist); |
477 | 478 |
} |
478 | 479 |
return n; |
479 | 480 |
} |
480 | 481 |
|
481 | 482 |
///Processes the next node. |
482 | 483 |
|
483 | 484 |
///Processes the next node and checks if the given target node |
484 | 485 |
///is reached. If the target node is reachable from the processed |
485 | 486 |
///node, then the \c reach parameter will be set to \c true. |
486 | 487 |
/// |
487 | 488 |
///\param target The target node. |
488 | 489 |
///\retval reach Indicates if the target node is reached. |
489 | 490 |
///It should be initially \c false. |
490 | 491 |
/// |
491 | 492 |
///\return The processed node. |
492 | 493 |
/// |
493 | 494 |
///\pre The queue must not be empty. |
494 | 495 |
Node processNextNode(Node target, bool& reach) |
495 | 496 |
{ |
496 | 497 |
if(_queue_tail==_queue_next_dist) { |
497 | 498 |
_curr_dist++; |
498 | 499 |
_queue_next_dist=_queue_head; |
499 | 500 |
} |
500 | 501 |
Node n=_queue[_queue_tail++]; |
501 | 502 |
_processed->set(n,true); |
502 | 503 |
Node m; |
503 | 504 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
504 | 505 |
if(!(*_reached)[m=G->target(e)]) { |
505 | 506 |
_queue[_queue_head++]=m; |
506 | 507 |
_reached->set(m,true); |
507 | 508 |
_pred->set(m,e); |
508 | 509 |
_dist->set(m,_curr_dist); |
509 | 510 |
reach = reach || (target == m); |
510 | 511 |
} |
511 | 512 |
return n; |
512 | 513 |
} |
513 | 514 |
|
514 | 515 |
///Processes the next node. |
515 | 516 |
|
516 | 517 |
///Processes the next node and checks if at least one of reached |
517 | 518 |
///nodes has \c true value in the \c nm node map. If one node |
518 | 519 |
///with \c true value is reachable from the processed node, then the |
519 | 520 |
///\c rnode parameter will be set to the first of such nodes. |
520 | 521 |
/// |
521 | 522 |
///\param nm A \c bool (or convertible) node map that indicates the |
522 | 523 |
///possible targets. |
523 | 524 |
///\retval rnode The reached target node. |
524 | 525 |
///It should be initially \c INVALID. |
525 | 526 |
/// |
526 | 527 |
///\return The processed node. |
527 | 528 |
/// |
528 | 529 |
///\pre The queue must not be empty. |
529 | 530 |
template<class NM> |
530 | 531 |
Node processNextNode(const NM& nm, Node& rnode) |
531 | 532 |
{ |
532 | 533 |
if(_queue_tail==_queue_next_dist) { |
533 | 534 |
_curr_dist++; |
534 | 535 |
_queue_next_dist=_queue_head; |
535 | 536 |
} |
536 | 537 |
Node n=_queue[_queue_tail++]; |
537 | 538 |
_processed->set(n,true); |
538 | 539 |
Node m; |
539 | 540 |
for(OutArcIt e(*G,n);e!=INVALID;++e) |
540 | 541 |
if(!(*_reached)[m=G->target(e)]) { |
541 | 542 |
_queue[_queue_head++]=m; |
542 | 543 |
_reached->set(m,true); |
543 | 544 |
_pred->set(m,e); |
544 | 545 |
_dist->set(m,_curr_dist); |
545 | 546 |
if (nm[m] && rnode == INVALID) rnode = m; |
546 | 547 |
} |
547 | 548 |
return n; |
548 | 549 |
} |
549 | 550 |
|
550 | 551 |
///The next node to be processed. |
551 | 552 |
|
552 | 553 |
///Returns the next node to be processed or \c INVALID if the queue |
553 | 554 |
///is empty. |
554 | 555 |
Node nextNode() const |
555 | 556 |
{ |
556 | 557 |
return _queue_tail<_queue_head?_queue[_queue_tail]:INVALID; |
557 | 558 |
} |
558 | 559 |
|
559 | 560 |
///Returns \c false if there are nodes to be processed. |
560 | 561 |
|
561 | 562 |
///Returns \c false if there are nodes to be processed |
562 | 563 |
///in the queue. |
563 | 564 |
bool emptyQueue() const { return _queue_tail==_queue_head; } |
564 | 565 |
|
565 | 566 |
///Returns the number of the nodes to be processed. |
566 | 567 |
|
567 | 568 |
///Returns the number of the nodes to be processed |
568 | 569 |
///in the queue. |
569 | 570 |
int queueSize() const { return _queue_head-_queue_tail; } |
570 | 571 |
|
571 | 572 |
///Executes the algorithm. |
572 | 573 |
|
573 | 574 |
///Executes the algorithm. |
574 | 575 |
/// |
575 | 576 |
///This method runs the %BFS algorithm from the root node(s) |
576 | 577 |
///in order to compute the shortest path to each node. |
577 | 578 |
/// |
578 | 579 |
///The algorithm computes |
579 | 580 |
///- the shortest path tree (forest), |
580 | 581 |
///- the distance of each node from the root(s). |
581 | 582 |
/// |
582 | 583 |
///\pre init() must be called and at least one root node should be |
583 | 584 |
///added with addSource() before using this function. |
584 | 585 |
/// |
585 | 586 |
///\note <tt>b.start()</tt> is just a shortcut of the following code. |
586 | 587 |
///\code |
587 | 588 |
/// while ( !b.emptyQueue() ) { |
588 | 589 |
/// b.processNextNode(); |
589 | 590 |
/// } |
590 | 591 |
///\endcode |
591 | 592 |
void start() |
592 | 593 |
{ |
593 | 594 |
while ( !emptyQueue() ) processNextNode(); |
594 | 595 |
} |
595 | 596 |
|
596 | 597 |
///Executes the algorithm until the given target node is reached. |
597 | 598 |
|
598 | 599 |
///Executes the algorithm until the given target node is reached. |
599 | 600 |
/// |
600 | 601 |
///This method runs the %BFS algorithm from the root node(s) |
601 | 602 |
///in order to compute the shortest path to \c t. |
602 | 603 |
/// |
603 | 604 |
///The algorithm computes |
604 | 605 |
///- the shortest path to \c t, |
605 | 606 |
///- the distance of \c t from the root(s). |
606 | 607 |
/// |
607 | 608 |
///\pre init() must be called and at least one root node should be |
608 | 609 |
///added with addSource() before using this function. |
609 | 610 |
/// |
610 | 611 |
///\note <tt>b.start(t)</tt> is just a shortcut of the following code. |
611 | 612 |
///\code |
612 | 613 |
/// bool reach = false; |
613 | 614 |
/// while ( !b.emptyQueue() && !reach ) { |
614 | 615 |
/// b.processNextNode(t, reach); |
615 | 616 |
/// } |
616 | 617 |
///\endcode |
617 | 618 |
void start(Node t) |
618 | 619 |
{ |
619 | 620 |
bool reach = false; |
620 | 621 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
621 | 622 |
} |
622 | 623 |
|
623 | 624 |
///Executes the algorithm until a condition is met. |
624 | 625 |
|
625 | 626 |
///Executes the algorithm until a condition is met. |
626 | 627 |
/// |
627 | 628 |
///This method runs the %BFS algorithm from the root node(s) in |
628 | 629 |
///order to compute the shortest path to a node \c v with |
629 | 630 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
630 | 631 |
/// |
631 | 632 |
///\param nm A \c bool (or convertible) node map. The algorithm |
632 | 633 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
633 | 634 |
/// |
634 | 635 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
635 | 636 |
///\c INVALID if no such node was found. |
636 | 637 |
/// |
637 | 638 |
///\pre init() must be called and at least one root node should be |
638 | 639 |
///added with addSource() before using this function. |
639 | 640 |
/// |
640 | 641 |
///\note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
641 | 642 |
///\code |
642 | 643 |
/// Node rnode = INVALID; |
643 | 644 |
/// while ( !b.emptyQueue() && rnode == INVALID ) { |
644 | 645 |
/// b.processNextNode(nm, rnode); |
645 | 646 |
/// } |
646 | 647 |
/// return rnode; |
647 | 648 |
///\endcode |
648 | 649 |
template<class NodeBoolMap> |
649 | 650 |
Node start(const NodeBoolMap &nm) |
650 | 651 |
{ |
651 | 652 |
Node rnode = INVALID; |
652 | 653 |
while ( !emptyQueue() && rnode == INVALID ) { |
653 | 654 |
processNextNode(nm, rnode); |
654 | 655 |
} |
655 | 656 |
return rnode; |
656 | 657 |
} |
657 | 658 |
|
658 | 659 |
///Runs the algorithm from the given source node. |
659 | 660 |
|
660 | 661 |
///This method runs the %BFS algorithm from node \c s |
661 | 662 |
///in order to compute the shortest path to each node. |
662 | 663 |
/// |
663 | 664 |
///The algorithm computes |
664 | 665 |
///- the shortest path tree, |
665 | 666 |
///- the distance of each node from the root. |
666 | 667 |
/// |
667 | 668 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
668 | 669 |
///\code |
669 | 670 |
/// b.init(); |
670 | 671 |
/// b.addSource(s); |
671 | 672 |
/// b.start(); |
672 | 673 |
///\endcode |
673 | 674 |
void run(Node s) { |
674 | 675 |
init(); |
675 | 676 |
addSource(s); |
676 | 677 |
start(); |
677 | 678 |
} |
678 | 679 |
|
679 | 680 |
///Finds the shortest path between \c s and \c t. |
680 | 681 |
|
681 | 682 |
///This method runs the %BFS algorithm from node \c s |
682 | 683 |
///in order to compute the shortest path to node \c t |
683 | 684 |
///(it stops searching when \c t is processed). |
684 | 685 |
/// |
685 | 686 |
///\return \c true if \c t is reachable form \c s. |
686 | 687 |
/// |
687 | 688 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
688 | 689 |
///shortcut of the following code. |
689 | 690 |
///\code |
690 | 691 |
/// b.init(); |
691 | 692 |
/// b.addSource(s); |
692 | 693 |
/// b.start(t); |
693 | 694 |
///\endcode |
694 | 695 |
bool run(Node s,Node t) { |
695 | 696 |
init(); |
696 | 697 |
addSource(s); |
697 | 698 |
start(t); |
698 | 699 |
return reached(t); |
699 | 700 |
} |
700 | 701 |
|
701 | 702 |
///Runs the algorithm to visit all nodes in the digraph. |
702 | 703 |
|
703 | 704 |
///This method runs the %BFS algorithm in order to |
704 | 705 |
///compute the shortest path to each node. |
705 | 706 |
/// |
706 | 707 |
///The algorithm computes |
707 | 708 |
///- the shortest path tree (forest), |
708 | 709 |
///- the distance of each node from the root(s). |
709 | 710 |
/// |
710 | 711 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
711 | 712 |
///\code |
712 | 713 |
/// b.init(); |
713 | 714 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
714 | 715 |
/// if (!b.reached(n)) { |
715 | 716 |
/// b.addSource(n); |
716 | 717 |
/// b.start(); |
717 | 718 |
/// } |
718 | 719 |
/// } |
719 | 720 |
///\endcode |
720 | 721 |
void run() { |
721 | 722 |
init(); |
722 | 723 |
for (NodeIt n(*G); n != INVALID; ++n) { |
723 | 724 |
if (!reached(n)) { |
724 | 725 |
addSource(n); |
725 | 726 |
start(); |
726 | 727 |
} |
727 | 728 |
} |
728 | 729 |
} |
729 | 730 |
|
730 | 731 |
///@} |
731 | 732 |
|
732 | 733 |
///\name Query Functions |
733 | 734 |
///The results of the BFS algorithm can be obtained using these |
734 | 735 |
///functions.\n |
735 | 736 |
///Either \ref run(Node) "run()" or \ref start() should be called |
736 | 737 |
///before using them. |
737 | 738 |
|
738 | 739 |
///@{ |
739 | 740 |
|
740 |
///The shortest path to |
|
741 |
///The shortest path to the given node. |
|
741 | 742 |
|
742 |
///Returns the shortest path to |
|
743 |
///Returns the shortest path to the given node from the root(s). |
|
743 | 744 |
/// |
744 | 745 |
///\warning \c t should be reached from the root(s). |
745 | 746 |
/// |
746 | 747 |
///\pre Either \ref run(Node) "run()" or \ref init() |
747 | 748 |
///must be called before using this function. |
748 | 749 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
749 | 750 |
|
750 |
///The distance of |
|
751 |
///The distance of the given node from the root(s). |
|
751 | 752 |
|
752 |
///Returns the distance of |
|
753 |
///Returns the distance of the given node from the root(s). |
|
753 | 754 |
/// |
754 | 755 |
///\warning If node \c v is not reached from the root(s), then |
755 | 756 |
///the return value of this function is undefined. |
756 | 757 |
/// |
757 | 758 |
///\pre Either \ref run(Node) "run()" or \ref init() |
758 | 759 |
///must be called before using this function. |
759 | 760 |
int dist(Node v) const { return (*_dist)[v]; } |
760 | 761 |
|
761 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
762 |
|
|
762 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
763 |
///the given node. |
|
764 |
/// |
|
763 | 765 |
///This function returns the 'previous arc' of the shortest path |
764 | 766 |
///tree for the node \c v, i.e. it returns the last arc of a |
765 | 767 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
766 | 768 |
///is not reached from the root(s) or if \c v is a root. |
767 | 769 |
/// |
768 | 770 |
///The shortest path tree used here is equal to the shortest path |
769 |
///tree used in \ref predNode(). |
|
771 |
///tree used in \ref predNode() and \ref predMap(). |
|
770 | 772 |
/// |
771 | 773 |
///\pre Either \ref run(Node) "run()" or \ref init() |
772 | 774 |
///must be called before using this function. |
773 | 775 |
Arc predArc(Node v) const { return (*_pred)[v];} |
774 | 776 |
|
775 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
776 |
|
|
777 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
778 |
///the given node. |
|
779 |
/// |
|
777 | 780 |
///This function returns the 'previous node' of the shortest path |
778 | 781 |
///tree for the node \c v, i.e. it returns the last but one node |
779 |
/// |
|
782 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
780 | 783 |
///if \c v is not reached from the root(s) or if \c v is a root. |
781 | 784 |
/// |
782 | 785 |
///The shortest path tree used here is equal to the shortest path |
783 |
///tree used in \ref predArc(). |
|
786 |
///tree used in \ref predArc() and \ref predMap(). |
|
784 | 787 |
/// |
785 | 788 |
///\pre Either \ref run(Node) "run()" or \ref init() |
786 | 789 |
///must be called before using this function. |
787 | 790 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
788 | 791 |
G->source((*_pred)[v]); } |
789 | 792 |
|
790 | 793 |
///\brief Returns a const reference to the node map that stores the |
791 | 794 |
/// distances of the nodes. |
792 | 795 |
/// |
793 | 796 |
///Returns a const reference to the node map that stores the distances |
794 | 797 |
///of the nodes calculated by the algorithm. |
795 | 798 |
/// |
796 | 799 |
///\pre Either \ref run(Node) "run()" or \ref init() |
797 | 800 |
///must be called before using this function. |
798 | 801 |
const DistMap &distMap() const { return *_dist;} |
799 | 802 |
|
800 | 803 |
///\brief Returns a const reference to the node map that stores the |
801 | 804 |
///predecessor arcs. |
802 | 805 |
/// |
803 | 806 |
///Returns a const reference to the node map that stores the predecessor |
804 |
///arcs, which form the shortest path tree. |
|
807 |
///arcs, which form the shortest path tree (forest). |
|
805 | 808 |
/// |
806 | 809 |
///\pre Either \ref run(Node) "run()" or \ref init() |
807 | 810 |
///must be called before using this function. |
808 | 811 |
const PredMap &predMap() const { return *_pred;} |
809 | 812 |
|
810 |
///Checks if |
|
813 |
///Checks if the given node is reached from the root(s). |
|
811 | 814 |
|
812 | 815 |
///Returns \c true if \c v is reached from the root(s). |
813 | 816 |
/// |
814 | 817 |
///\pre Either \ref run(Node) "run()" or \ref init() |
815 | 818 |
///must be called before using this function. |
816 | 819 |
bool reached(Node v) const { return (*_reached)[v]; } |
817 | 820 |
|
818 | 821 |
///@} |
819 | 822 |
}; |
820 | 823 |
|
821 | 824 |
///Default traits class of bfs() function. |
822 | 825 |
|
823 | 826 |
///Default traits class of bfs() function. |
824 | 827 |
///\tparam GR Digraph type. |
825 | 828 |
template<class GR> |
826 | 829 |
struct BfsWizardDefaultTraits |
827 | 830 |
{ |
828 | 831 |
///The type of the digraph the algorithm runs on. |
829 | 832 |
typedef GR Digraph; |
830 | 833 |
|
831 | 834 |
///\brief The type of the map that stores the predecessor |
832 | 835 |
///arcs of the shortest paths. |
833 | 836 |
/// |
834 | 837 |
///The type of the map that stores the predecessor |
835 | 838 |
///arcs of the shortest paths. |
836 |
///It must |
|
839 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
837 | 840 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
838 | 841 |
///Instantiates a PredMap. |
839 | 842 |
|
840 | 843 |
///This function instantiates a PredMap. |
841 | 844 |
///\param g is the digraph, to which we would like to define the |
842 | 845 |
///PredMap. |
843 | 846 |
static PredMap *createPredMap(const Digraph &g) |
844 | 847 |
{ |
845 | 848 |
return new PredMap(g); |
846 | 849 |
} |
847 | 850 |
|
848 | 851 |
///The type of the map that indicates which nodes are processed. |
849 | 852 |
|
850 | 853 |
///The type of the map that indicates which nodes are processed. |
851 |
///It must |
|
854 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
852 | 855 |
///By default it is a NullMap. |
853 | 856 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
854 | 857 |
///Instantiates a ProcessedMap. |
855 | 858 |
|
856 | 859 |
///This function instantiates a ProcessedMap. |
857 | 860 |
///\param g is the digraph, to which |
858 | 861 |
///we would like to define the ProcessedMap. |
859 | 862 |
#ifdef DOXYGEN |
860 | 863 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
861 | 864 |
#else |
862 | 865 |
static ProcessedMap *createProcessedMap(const Digraph &) |
863 | 866 |
#endif |
864 | 867 |
{ |
865 | 868 |
return new ProcessedMap(); |
866 | 869 |
} |
867 | 870 |
|
868 | 871 |
///The type of the map that indicates which nodes are reached. |
869 | 872 |
|
870 | 873 |
///The type of the map that indicates which nodes are reached. |
871 |
///It must |
|
874 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
872 | 875 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
873 | 876 |
///Instantiates a ReachedMap. |
874 | 877 |
|
875 | 878 |
///This function instantiates a ReachedMap. |
876 | 879 |
///\param g is the digraph, to which |
877 | 880 |
///we would like to define the ReachedMap. |
878 | 881 |
static ReachedMap *createReachedMap(const Digraph &g) |
879 | 882 |
{ |
880 | 883 |
return new ReachedMap(g); |
881 | 884 |
} |
882 | 885 |
|
883 | 886 |
///The type of the map that stores the distances of the nodes. |
884 | 887 |
|
885 | 888 |
///The type of the map that stores the distances of the nodes. |
886 |
///It must |
|
889 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
887 | 890 |
typedef typename Digraph::template NodeMap<int> DistMap; |
888 | 891 |
///Instantiates a DistMap. |
889 | 892 |
|
890 | 893 |
///This function instantiates a DistMap. |
891 | 894 |
///\param g is the digraph, to which we would like to define |
892 | 895 |
///the DistMap |
893 | 896 |
static DistMap *createDistMap(const Digraph &g) |
894 | 897 |
{ |
895 | 898 |
return new DistMap(g); |
896 | 899 |
} |
897 | 900 |
|
898 | 901 |
///The type of the shortest paths. |
899 | 902 |
|
900 | 903 |
///The type of the shortest paths. |
901 |
///It must |
|
904 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
902 | 905 |
typedef lemon::Path<Digraph> Path; |
903 | 906 |
}; |
904 | 907 |
|
905 | 908 |
/// Default traits class used by BfsWizard |
906 | 909 |
|
907 |
/// To make it easier to use Bfs algorithm |
|
908 |
/// we have created a wizard class. |
|
909 |
/// This \ref BfsWizard class needs default traits, |
|
910 |
/// as well as the \ref Bfs class. |
|
911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
|
912 |
/// \ref BfsWizard class. |
|
910 |
/// Default traits class used by BfsWizard. |
|
911 |
/// \tparam GR The type of the digraph. |
|
913 | 912 |
template<class GR> |
914 | 913 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
915 | 914 |
{ |
916 | 915 |
|
917 | 916 |
typedef BfsWizardDefaultTraits<GR> Base; |
918 | 917 |
protected: |
919 | 918 |
//The type of the nodes in the digraph. |
920 | 919 |
typedef typename Base::Digraph::Node Node; |
921 | 920 |
|
922 | 921 |
//Pointer to the digraph the algorithm runs on. |
923 | 922 |
void *_g; |
924 | 923 |
//Pointer to the map of reached nodes. |
925 | 924 |
void *_reached; |
926 | 925 |
//Pointer to the map of processed nodes. |
927 | 926 |
void *_processed; |
928 | 927 |
//Pointer to the map of predecessors arcs. |
929 | 928 |
void *_pred; |
930 | 929 |
//Pointer to the map of distances. |
931 | 930 |
void *_dist; |
932 | 931 |
//Pointer to the shortest path to the target node. |
933 | 932 |
void *_path; |
934 | 933 |
//Pointer to the distance of the target node. |
935 | 934 |
int *_di; |
936 | 935 |
|
937 | 936 |
public: |
938 | 937 |
/// Constructor. |
939 | 938 |
|
940 |
/// This constructor does not require parameters, |
|
939 |
/// This constructor does not require parameters, it initiates |
|
941 | 940 |
/// all of the attributes to \c 0. |
942 | 941 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
943 | 942 |
_dist(0), _path(0), _di(0) {} |
944 | 943 |
|
945 | 944 |
/// Constructor. |
946 | 945 |
|
947 | 946 |
/// This constructor requires one parameter, |
948 | 947 |
/// others are initiated to \c 0. |
949 | 948 |
/// \param g The digraph the algorithm runs on. |
950 | 949 |
BfsWizardBase(const GR &g) : |
951 | 950 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
952 | 951 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
953 | 952 |
|
954 | 953 |
}; |
955 | 954 |
|
956 | 955 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
957 | 956 |
|
958 | 957 |
/// This auxiliary class is created to implement the |
959 | 958 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
960 | 959 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
961 | 960 |
/// functions and features of the plain \ref Bfs. |
962 | 961 |
/// |
963 | 962 |
/// This class should only be used through the \ref bfs() function, |
964 | 963 |
/// which makes it easier to use the algorithm. |
965 | 964 |
template<class TR> |
966 | 965 |
class BfsWizard : public TR |
967 | 966 |
{ |
968 | 967 |
typedef TR Base; |
969 | 968 |
|
970 |
///The type of the digraph the algorithm runs on. |
|
971 | 969 |
typedef typename TR::Digraph Digraph; |
972 | 970 |
|
973 | 971 |
typedef typename Digraph::Node Node; |
974 | 972 |
typedef typename Digraph::NodeIt NodeIt; |
975 | 973 |
typedef typename Digraph::Arc Arc; |
976 | 974 |
typedef typename Digraph::OutArcIt OutArcIt; |
977 | 975 |
|
978 |
///\brief The type of the map that stores the predecessor |
|
979 |
///arcs of the shortest paths. |
|
980 | 976 |
typedef typename TR::PredMap PredMap; |
981 |
///\brief The type of the map that stores the distances of the nodes. |
|
982 | 977 |
typedef typename TR::DistMap DistMap; |
983 |
///\brief The type of the map that indicates which nodes are reached. |
|
984 | 978 |
typedef typename TR::ReachedMap ReachedMap; |
985 |
///\brief The type of the map that indicates which nodes are processed. |
|
986 | 979 |
typedef typename TR::ProcessedMap ProcessedMap; |
987 |
///The type of the shortest paths |
|
988 | 980 |
typedef typename TR::Path Path; |
989 | 981 |
|
990 | 982 |
public: |
991 | 983 |
|
992 | 984 |
/// Constructor. |
993 | 985 |
BfsWizard() : TR() {} |
994 | 986 |
|
995 | 987 |
/// Constructor that requires parameters. |
996 | 988 |
|
997 | 989 |
/// Constructor that requires parameters. |
998 | 990 |
/// These parameters will be the default values for the traits class. |
999 | 991 |
/// \param g The digraph the algorithm runs on. |
1000 | 992 |
BfsWizard(const Digraph &g) : |
1001 | 993 |
TR(g) {} |
1002 | 994 |
|
1003 | 995 |
///Copy constructor |
1004 | 996 |
BfsWizard(const TR &b) : TR(b) {} |
1005 | 997 |
|
1006 | 998 |
~BfsWizard() {} |
1007 | 999 |
|
1008 | 1000 |
///Runs BFS algorithm from the given source node. |
1009 | 1001 |
|
1010 | 1002 |
///This method runs BFS algorithm from node \c s |
1011 | 1003 |
///in order to compute the shortest path to each node. |
1012 | 1004 |
void run(Node s) |
1013 | 1005 |
{ |
1014 | 1006 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1015 | 1007 |
if (Base::_pred) |
1016 | 1008 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1017 | 1009 |
if (Base::_dist) |
1018 | 1010 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1019 | 1011 |
if (Base::_reached) |
1020 | 1012 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1021 | 1013 |
if (Base::_processed) |
1022 | 1014 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1023 | 1015 |
if (s!=INVALID) |
1024 | 1016 |
alg.run(s); |
1025 | 1017 |
else |
1026 | 1018 |
alg.run(); |
1027 | 1019 |
} |
1028 | 1020 |
|
1029 | 1021 |
///Finds the shortest path between \c s and \c t. |
1030 | 1022 |
|
1031 | 1023 |
///This method runs BFS algorithm from node \c s |
1032 | 1024 |
///in order to compute the shortest path to node \c t |
1033 | 1025 |
///(it stops searching when \c t is processed). |
1034 | 1026 |
/// |
1035 | 1027 |
///\return \c true if \c t is reachable form \c s. |
1036 | 1028 |
bool run(Node s, Node t) |
1037 | 1029 |
{ |
1038 | 1030 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1039 | 1031 |
if (Base::_pred) |
1040 | 1032 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1041 | 1033 |
if (Base::_dist) |
1042 | 1034 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1043 | 1035 |
if (Base::_reached) |
1044 | 1036 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1045 | 1037 |
if (Base::_processed) |
1046 | 1038 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1047 | 1039 |
alg.run(s,t); |
1048 | 1040 |
if (Base::_path) |
1049 | 1041 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
1050 | 1042 |
if (Base::_di) |
1051 | 1043 |
*Base::_di = alg.dist(t); |
1052 | 1044 |
return alg.reached(t); |
1053 | 1045 |
} |
1054 | 1046 |
|
1055 | 1047 |
///Runs BFS algorithm to visit all nodes in the digraph. |
1056 | 1048 |
|
1057 | 1049 |
///This method runs BFS algorithm in order to compute |
1058 | 1050 |
///the shortest path to each node. |
1059 | 1051 |
void run() |
1060 | 1052 |
{ |
1061 | 1053 |
run(INVALID); |
1062 | 1054 |
} |
1063 | 1055 |
|
1064 | 1056 |
template<class T> |
1065 | 1057 |
struct SetPredMapBase : public Base { |
1066 | 1058 |
typedef T PredMap; |
1067 | 1059 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1068 | 1060 |
SetPredMapBase(const TR &b) : TR(b) {} |
1069 | 1061 |
}; |
1070 |
///\brief \ref named-func-param "Named parameter" |
|
1071 |
///for setting PredMap object. |
|
1062 |
|
|
1063 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1064 |
///the predecessor map. |
|
1072 | 1065 |
/// |
1073 |
///\ref named-func-param "Named parameter" |
|
1074 |
///for setting PredMap object. |
|
1066 |
///\ref named-templ-param "Named parameter" function for setting |
|
1067 |
///the map that stores the predecessor arcs of the nodes. |
|
1075 | 1068 |
template<class T> |
1076 | 1069 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1077 | 1070 |
{ |
1078 | 1071 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1079 | 1072 |
return BfsWizard<SetPredMapBase<T> >(*this); |
1080 | 1073 |
} |
1081 | 1074 |
|
1082 | 1075 |
template<class T> |
1083 | 1076 |
struct SetReachedMapBase : public Base { |
1084 | 1077 |
typedef T ReachedMap; |
1085 | 1078 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1086 | 1079 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1087 | 1080 |
}; |
1088 |
///\brief \ref named-func-param "Named parameter" |
|
1089 |
///for setting ReachedMap object. |
|
1081 |
|
|
1082 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1083 |
///the reached map. |
|
1090 | 1084 |
/// |
1091 |
/// \ref named-func-param "Named parameter" |
|
1092 |
///for setting ReachedMap object. |
|
1085 |
///\ref named-templ-param "Named parameter" function for setting |
|
1086 |
///the map that indicates which nodes are reached. |
|
1093 | 1087 |
template<class T> |
1094 | 1088 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1095 | 1089 |
{ |
1096 | 1090 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1097 | 1091 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
1098 | 1092 |
} |
1099 | 1093 |
|
1100 | 1094 |
template<class T> |
1101 | 1095 |
struct SetDistMapBase : public Base { |
1102 | 1096 |
typedef T DistMap; |
1103 | 1097 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1104 | 1098 |
SetDistMapBase(const TR &b) : TR(b) {} |
1105 | 1099 |
}; |
1106 |
///\brief \ref named-func-param "Named parameter" |
|
1107 |
///for setting DistMap object. |
|
1100 |
|
|
1101 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1102 |
///the distance map. |
|
1108 | 1103 |
/// |
1109 |
/// \ref named-func-param "Named parameter" |
|
1110 |
///for setting DistMap object. |
|
1104 |
///\ref named-templ-param "Named parameter" function for setting |
|
1105 |
///the map that stores the distances of the nodes calculated |
|
1106 |
///by the algorithm. |
|
1111 | 1107 |
template<class T> |
1112 | 1108 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1113 | 1109 |
{ |
1114 | 1110 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1115 | 1111 |
return BfsWizard<SetDistMapBase<T> >(*this); |
1116 | 1112 |
} |
1117 | 1113 |
|
1118 | 1114 |
template<class T> |
1119 | 1115 |
struct SetProcessedMapBase : public Base { |
1120 | 1116 |
typedef T ProcessedMap; |
1121 | 1117 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1122 | 1118 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1123 | 1119 |
}; |
1124 |
///\brief \ref named-func-param "Named parameter" |
|
1125 |
///for setting ProcessedMap object. |
|
1120 |
|
|
1121 |
///\brief \ref named-func-param "Named parameter" for setting |
|
1122 |
///the processed map. |
|
1126 | 1123 |
/// |
1127 |
/// \ref named-func-param "Named parameter" |
|
1128 |
///for setting ProcessedMap object. |
|
1124 |
///\ref named-templ-param "Named parameter" function for setting |
|
1125 |
///the map that indicates which nodes are processed. |
|
1129 | 1126 |
template<class T> |
1130 | 1127 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1131 | 1128 |
{ |
1132 | 1129 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1133 | 1130 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
1134 | 1131 |
} |
1135 | 1132 |
|
1136 | 1133 |
template<class T> |
1137 | 1134 |
struct SetPathBase : public Base { |
1138 | 1135 |
typedef T Path; |
1139 | 1136 |
SetPathBase(const TR &b) : TR(b) {} |
1140 | 1137 |
}; |
1141 | 1138 |
///\brief \ref named-func-param "Named parameter" |
1142 | 1139 |
///for getting the shortest path to the target node. |
1143 | 1140 |
/// |
1144 | 1141 |
///\ref named-func-param "Named parameter" |
1145 | 1142 |
///for getting the shortest path to the target node. |
1146 | 1143 |
template<class T> |
1147 | 1144 |
BfsWizard<SetPathBase<T> > path(const T &t) |
1148 | 1145 |
{ |
1149 | 1146 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1150 | 1147 |
return BfsWizard<SetPathBase<T> >(*this); |
1151 | 1148 |
} |
1152 | 1149 |
|
1153 | 1150 |
///\brief \ref named-func-param "Named parameter" |
1154 | 1151 |
///for getting the distance of the target node. |
1155 | 1152 |
/// |
1156 | 1153 |
///\ref named-func-param "Named parameter" |
1157 | 1154 |
///for getting the distance of the target node. |
1158 | 1155 |
BfsWizard dist(const int &d) |
1159 | 1156 |
{ |
1160 | 1157 |
Base::_di=const_cast<int*>(&d); |
1161 | 1158 |
return *this; |
1162 | 1159 |
} |
1163 | 1160 |
|
1164 | 1161 |
}; |
1165 | 1162 |
|
1166 | 1163 |
///Function-type interface for BFS algorithm. |
1167 | 1164 |
|
1168 | 1165 |
/// \ingroup search |
1169 | 1166 |
///Function-type interface for BFS algorithm. |
1170 | 1167 |
/// |
1171 | 1168 |
///This function also has several \ref named-func-param "named parameters", |
1172 | 1169 |
///they are declared as the members of class \ref BfsWizard. |
1173 | 1170 |
///The following examples show how to use these parameters. |
1174 | 1171 |
///\code |
1175 | 1172 |
/// // Compute shortest path from node s to each node |
1176 | 1173 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
1177 | 1174 |
/// |
1178 | 1175 |
/// // Compute shortest path from s to t |
1179 | 1176 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
1180 | 1177 |
///\endcode |
1181 | 1178 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
1182 | 1179 |
///to the end of the parameter list. |
1183 | 1180 |
///\sa BfsWizard |
1184 | 1181 |
///\sa Bfs |
1185 | 1182 |
template<class GR> |
1186 | 1183 |
BfsWizard<BfsWizardBase<GR> > |
1187 | 1184 |
bfs(const GR &digraph) |
1188 | 1185 |
{ |
1189 | 1186 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
1190 | 1187 |
} |
1191 | 1188 |
|
1192 | 1189 |
#ifdef DOXYGEN |
1193 | 1190 |
/// \brief Visitor class for BFS. |
1194 | 1191 |
/// |
1195 | 1192 |
/// This class defines the interface of the BfsVisit events, and |
1196 | 1193 |
/// it could be the base of a real visitor class. |
1197 | 1194 |
template <typename GR> |
1198 | 1195 |
struct BfsVisitor { |
1199 | 1196 |
typedef GR Digraph; |
1200 | 1197 |
typedef typename Digraph::Arc Arc; |
1201 | 1198 |
typedef typename Digraph::Node Node; |
1202 | 1199 |
/// \brief Called for the source node(s) of the BFS. |
1203 | 1200 |
/// |
1204 | 1201 |
/// This function is called for the source node(s) of the BFS. |
1205 | 1202 |
void start(const Node& node) {} |
1206 | 1203 |
/// \brief Called when a node is reached first time. |
1207 | 1204 |
/// |
1208 | 1205 |
/// This function is called when a node is reached first time. |
1209 | 1206 |
void reach(const Node& node) {} |
1210 | 1207 |
/// \brief Called when a node is processed. |
1211 | 1208 |
/// |
1212 | 1209 |
/// This function is called when a node is processed. |
1213 | 1210 |
void process(const Node& node) {} |
1214 | 1211 |
/// \brief Called when an arc reaches a new node. |
1215 | 1212 |
/// |
1216 | 1213 |
/// This function is called when the BFS finds an arc whose target node |
1217 | 1214 |
/// is not reached yet. |
1218 | 1215 |
void discover(const Arc& arc) {} |
1219 | 1216 |
/// \brief Called when an arc is examined but its target node is |
1220 | 1217 |
/// already discovered. |
1221 | 1218 |
/// |
1222 | 1219 |
/// This function is called when an arc is examined but its target node is |
1223 | 1220 |
/// already discovered. |
1224 | 1221 |
void examine(const Arc& arc) {} |
1225 | 1222 |
}; |
1226 | 1223 |
#else |
1227 | 1224 |
template <typename GR> |
1228 | 1225 |
struct BfsVisitor { |
1229 | 1226 |
typedef GR Digraph; |
1230 | 1227 |
typedef typename Digraph::Arc Arc; |
1231 | 1228 |
typedef typename Digraph::Node Node; |
1232 | 1229 |
void start(const Node&) {} |
1233 | 1230 |
void reach(const Node&) {} |
1234 | 1231 |
void process(const Node&) {} |
1235 | 1232 |
void discover(const Arc&) {} |
1236 | 1233 |
void examine(const Arc&) {} |
1237 | 1234 |
|
1238 | 1235 |
template <typename _Visitor> |
1239 | 1236 |
struct Constraints { |
1240 | 1237 |
void constraints() { |
1241 | 1238 |
Arc arc; |
1242 | 1239 |
Node node; |
1243 | 1240 |
visitor.start(node); |
1244 | 1241 |
visitor.reach(node); |
1245 | 1242 |
visitor.process(node); |
1246 | 1243 |
visitor.discover(arc); |
1247 | 1244 |
visitor.examine(arc); |
1248 | 1245 |
} |
1249 | 1246 |
_Visitor& visitor; |
1250 | 1247 |
}; |
1251 | 1248 |
}; |
1252 | 1249 |
#endif |
1253 | 1250 |
|
1254 | 1251 |
/// \brief Default traits class of BfsVisit class. |
1255 | 1252 |
/// |
1256 | 1253 |
/// Default traits class of BfsVisit class. |
1257 | 1254 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1258 | 1255 |
template<class GR> |
1259 | 1256 |
struct BfsVisitDefaultTraits { |
1260 | 1257 |
|
1261 | 1258 |
/// \brief The type of the digraph the algorithm runs on. |
1262 | 1259 |
typedef GR Digraph; |
1263 | 1260 |
|
1264 | 1261 |
/// \brief The type of the map that indicates which nodes are reached. |
1265 | 1262 |
/// |
1266 | 1263 |
/// The type of the map that indicates which nodes are reached. |
1267 |
/// It must |
|
1264 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
1268 | 1265 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1269 | 1266 |
|
1270 | 1267 |
/// \brief Instantiates a ReachedMap. |
1271 | 1268 |
/// |
1272 | 1269 |
/// This function instantiates a ReachedMap. |
1273 | 1270 |
/// \param digraph is the digraph, to which |
1274 | 1271 |
/// we would like to define the ReachedMap. |
1275 | 1272 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1276 | 1273 |
return new ReachedMap(digraph); |
1277 | 1274 |
} |
1278 | 1275 |
|
1279 | 1276 |
}; |
1280 | 1277 |
|
1281 | 1278 |
/// \ingroup search |
1282 | 1279 |
/// |
1283 | 1280 |
/// \brief BFS algorithm class with visitor interface. |
1284 | 1281 |
/// |
1285 | 1282 |
/// This class provides an efficient implementation of the BFS algorithm |
1286 | 1283 |
/// with visitor interface. |
1287 | 1284 |
/// |
1288 | 1285 |
/// The BfsVisit class provides an alternative interface to the Bfs |
1289 | 1286 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1290 | 1287 |
/// the member functions of the \c Visitor class on every BFS event. |
1291 | 1288 |
/// |
1292 | 1289 |
/// This interface of the BFS algorithm should be used in special cases |
1293 | 1290 |
/// when extra actions have to be performed in connection with certain |
1294 | 1291 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
1295 | 1292 |
/// instead. |
1296 | 1293 |
/// |
1297 | 1294 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1298 | 1295 |
/// The default type is \ref ListDigraph. |
1299 | 1296 |
/// The value of GR is not used directly by \ref BfsVisit, |
1300 | 1297 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
1301 | 1298 |
/// \tparam VS The Visitor type that is used by the algorithm. |
1302 | 1299 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
1303 | 1300 |
/// does not observe the BFS events. If you want to observe the BFS |
1304 | 1301 |
/// events, you should implement your own visitor class. |
1305 | 1302 |
/// \tparam TR Traits class to set various data types used by the |
1306 | 1303 |
/// algorithm. The default traits class is |
1307 | 1304 |
/// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<GR>". |
1308 | 1305 |
/// See \ref BfsVisitDefaultTraits for the documentation of |
1309 | 1306 |
/// a BFS visit traits class. |
1310 | 1307 |
#ifdef DOXYGEN |
1311 | 1308 |
template <typename GR, typename VS, typename TR> |
1312 | 1309 |
#else |
1313 | 1310 |
template <typename GR = ListDigraph, |
1314 | 1311 |
typename VS = BfsVisitor<GR>, |
1315 | 1312 |
typename TR = BfsVisitDefaultTraits<GR> > |
1316 | 1313 |
#endif |
1317 | 1314 |
class BfsVisit { |
1318 | 1315 |
public: |
1319 | 1316 |
|
1320 | 1317 |
///The traits class. |
1321 | 1318 |
typedef TR Traits; |
1322 | 1319 |
|
1323 | 1320 |
///The type of the digraph the algorithm runs on. |
1324 | 1321 |
typedef typename Traits::Digraph Digraph; |
1325 | 1322 |
|
1326 | 1323 |
///The visitor type used by the algorithm. |
1327 | 1324 |
typedef VS Visitor; |
1328 | 1325 |
|
1329 | 1326 |
///The type of the map that indicates which nodes are reached. |
1330 | 1327 |
typedef typename Traits::ReachedMap ReachedMap; |
1331 | 1328 |
|
1332 | 1329 |
private: |
1333 | 1330 |
|
1334 | 1331 |
typedef typename Digraph::Node Node; |
1335 | 1332 |
typedef typename Digraph::NodeIt NodeIt; |
1336 | 1333 |
typedef typename Digraph::Arc Arc; |
1337 | 1334 |
typedef typename Digraph::OutArcIt OutArcIt; |
1338 | 1335 |
|
1339 | 1336 |
//Pointer to the underlying digraph. |
1340 | 1337 |
const Digraph *_digraph; |
1341 | 1338 |
//Pointer to the visitor object. |
1342 | 1339 |
Visitor *_visitor; |
1343 | 1340 |
//Pointer to the map of reached status of the nodes. |
1344 | 1341 |
ReachedMap *_reached; |
1345 | 1342 |
//Indicates if _reached is locally allocated (true) or not. |
1346 | 1343 |
bool local_reached; |
1347 | 1344 |
|
1348 | 1345 |
std::vector<typename Digraph::Node> _list; |
1349 | 1346 |
int _list_front, _list_back; |
1350 | 1347 |
|
1351 | 1348 |
//Creates the maps if necessary. |
1352 | 1349 |
void create_maps() { |
1353 | 1350 |
if(!_reached) { |
1354 | 1351 |
local_reached = true; |
1355 | 1352 |
_reached = Traits::createReachedMap(*_digraph); |
1356 | 1353 |
} |
1357 | 1354 |
} |
1358 | 1355 |
|
1359 | 1356 |
protected: |
1360 | 1357 |
|
1361 | 1358 |
BfsVisit() {} |
1362 | 1359 |
|
1363 | 1360 |
public: |
1364 | 1361 |
|
1365 | 1362 |
typedef BfsVisit Create; |
1366 | 1363 |
|
1367 | 1364 |
/// \name Named Template Parameters |
1368 | 1365 |
|
1369 | 1366 |
///@{ |
1370 | 1367 |
template <class T> |
1371 | 1368 |
struct SetReachedMapTraits : public Traits { |
1372 | 1369 |
typedef T ReachedMap; |
1373 | 1370 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1374 | 1371 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1375 | 1372 |
return 0; // ignore warnings |
1376 | 1373 |
} |
1377 | 1374 |
}; |
1378 | 1375 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1379 | 1376 |
/// ReachedMap type. |
1380 | 1377 |
/// |
1381 | 1378 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1382 | 1379 |
template <class T> |
1383 | 1380 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
1384 | 1381 |
SetReachedMapTraits<T> > { |
1385 | 1382 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1386 | 1383 |
}; |
1387 | 1384 |
///@} |
1388 | 1385 |
|
1389 | 1386 |
public: |
1390 | 1387 |
|
1391 | 1388 |
/// \brief Constructor. |
1392 | 1389 |
/// |
1393 | 1390 |
/// Constructor. |
1394 | 1391 |
/// |
1395 | 1392 |
/// \param digraph The digraph the algorithm runs on. |
1396 | 1393 |
/// \param visitor The visitor object of the algorithm. |
1397 | 1394 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1398 | 1395 |
: _digraph(&digraph), _visitor(&visitor), |
1399 | 1396 |
_reached(0), local_reached(false) {} |
1400 | 1397 |
|
1401 | 1398 |
/// \brief Destructor. |
1402 | 1399 |
~BfsVisit() { |
1403 | 1400 |
if(local_reached) delete _reached; |
1404 | 1401 |
} |
1405 | 1402 |
|
1406 | 1403 |
/// \brief Sets the map that indicates which nodes are reached. |
1407 | 1404 |
/// |
1408 | 1405 |
/// Sets the map that indicates which nodes are reached. |
1409 | 1406 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1410 | 1407 |
/// or \ref init(), an instance will be allocated automatically. |
1411 | 1408 |
/// The destructor deallocates this automatically allocated map, |
1412 | 1409 |
/// of course. |
1413 | 1410 |
/// \return <tt> (*this) </tt> |
1414 | 1411 |
BfsVisit &reachedMap(ReachedMap &m) { |
1415 | 1412 |
if(local_reached) { |
1416 | 1413 |
delete _reached; |
1417 | 1414 |
local_reached = false; |
1418 | 1415 |
} |
1419 | 1416 |
_reached = &m; |
1420 | 1417 |
return *this; |
1421 | 1418 |
} |
1422 | 1419 |
|
1423 | 1420 |
public: |
1424 | 1421 |
|
1425 | 1422 |
/// \name Execution Control |
1426 | 1423 |
/// The simplest way to execute the BFS algorithm is to use one of the |
1427 | 1424 |
/// member functions called \ref run(Node) "run()".\n |
1428 |
/// If you need more control on the execution, first you have to call |
|
1429 |
/// \ref init(), then you can add several source nodes with |
|
1425 |
/// If you need better control on the execution, you have to call |
|
1426 |
/// \ref init() first, then you can add several source nodes with |
|
1430 | 1427 |
/// \ref addSource(). Finally the actual path computation can be |
1431 | 1428 |
/// performed with one of the \ref start() functions. |
1432 | 1429 |
|
1433 | 1430 |
/// @{ |
1434 | 1431 |
|
1435 | 1432 |
/// \brief Initializes the internal data structures. |
1436 | 1433 |
/// |
1437 | 1434 |
/// Initializes the internal data structures. |
1438 | 1435 |
void init() { |
1439 | 1436 |
create_maps(); |
1440 | 1437 |
_list.resize(countNodes(*_digraph)); |
1441 | 1438 |
_list_front = _list_back = -1; |
1442 | 1439 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1443 | 1440 |
_reached->set(u, false); |
1444 | 1441 |
} |
1445 | 1442 |
} |
1446 | 1443 |
|
1447 | 1444 |
/// \brief Adds a new source node. |
1448 | 1445 |
/// |
1449 | 1446 |
/// Adds a new source node to the set of nodes to be processed. |
1450 | 1447 |
void addSource(Node s) { |
1451 | 1448 |
if(!(*_reached)[s]) { |
1452 | 1449 |
_reached->set(s,true); |
1453 | 1450 |
_visitor->start(s); |
1454 | 1451 |
_visitor->reach(s); |
1455 | 1452 |
_list[++_list_back] = s; |
1456 | 1453 |
} |
1457 | 1454 |
} |
1458 | 1455 |
|
1459 | 1456 |
/// \brief Processes the next node. |
1460 | 1457 |
/// |
1461 | 1458 |
/// Processes the next node. |
1462 | 1459 |
/// |
1463 | 1460 |
/// \return The processed node. |
1464 | 1461 |
/// |
1465 | 1462 |
/// \pre The queue must not be empty. |
1466 | 1463 |
Node processNextNode() { |
1467 | 1464 |
Node n = _list[++_list_front]; |
1468 | 1465 |
_visitor->process(n); |
1469 | 1466 |
Arc e; |
1470 | 1467 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1471 | 1468 |
Node m = _digraph->target(e); |
1472 | 1469 |
if (!(*_reached)[m]) { |
1473 | 1470 |
_visitor->discover(e); |
1474 | 1471 |
_visitor->reach(m); |
1475 | 1472 |
_reached->set(m, true); |
1476 | 1473 |
_list[++_list_back] = m; |
1477 | 1474 |
} else { |
1478 | 1475 |
_visitor->examine(e); |
1479 | 1476 |
} |
1480 | 1477 |
} |
1481 | 1478 |
return n; |
1482 | 1479 |
} |
1483 | 1480 |
|
1484 | 1481 |
/// \brief Processes the next node. |
1485 | 1482 |
/// |
1486 | 1483 |
/// Processes the next node and checks if the given target node |
1487 | 1484 |
/// is reached. If the target node is reachable from the processed |
1488 | 1485 |
/// node, then the \c reach parameter will be set to \c true. |
1489 | 1486 |
/// |
1490 | 1487 |
/// \param target The target node. |
1491 | 1488 |
/// \retval reach Indicates if the target node is reached. |
1492 | 1489 |
/// It should be initially \c false. |
1493 | 1490 |
/// |
1494 | 1491 |
/// \return The processed node. |
1495 | 1492 |
/// |
1496 | 1493 |
/// \pre The queue must not be empty. |
1497 | 1494 |
Node processNextNode(Node target, bool& reach) { |
1498 | 1495 |
Node n = _list[++_list_front]; |
1499 | 1496 |
_visitor->process(n); |
1500 | 1497 |
Arc e; |
1501 | 1498 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1502 | 1499 |
Node m = _digraph->target(e); |
1503 | 1500 |
if (!(*_reached)[m]) { |
1504 | 1501 |
_visitor->discover(e); |
1505 | 1502 |
_visitor->reach(m); |
1506 | 1503 |
_reached->set(m, true); |
1507 | 1504 |
_list[++_list_back] = m; |
1508 | 1505 |
reach = reach || (target == m); |
1509 | 1506 |
} else { |
1510 | 1507 |
_visitor->examine(e); |
1511 | 1508 |
} |
1512 | 1509 |
} |
1513 | 1510 |
return n; |
1514 | 1511 |
} |
1515 | 1512 |
|
1516 | 1513 |
/// \brief Processes the next node. |
1517 | 1514 |
/// |
1518 | 1515 |
/// Processes the next node and checks if at least one of reached |
1519 | 1516 |
/// nodes has \c true value in the \c nm node map. If one node |
1520 | 1517 |
/// with \c true value is reachable from the processed node, then the |
1521 | 1518 |
/// \c rnode parameter will be set to the first of such nodes. |
1522 | 1519 |
/// |
1523 | 1520 |
/// \param nm A \c bool (or convertible) node map that indicates the |
1524 | 1521 |
/// possible targets. |
1525 | 1522 |
/// \retval rnode The reached target node. |
1526 | 1523 |
/// It should be initially \c INVALID. |
1527 | 1524 |
/// |
1528 | 1525 |
/// \return The processed node. |
1529 | 1526 |
/// |
1530 | 1527 |
/// \pre The queue must not be empty. |
1531 | 1528 |
template <typename NM> |
1532 | 1529 |
Node processNextNode(const NM& nm, Node& rnode) { |
1533 | 1530 |
Node n = _list[++_list_front]; |
1534 | 1531 |
_visitor->process(n); |
1535 | 1532 |
Arc e; |
1536 | 1533 |
for (_digraph->firstOut(e, n); e != INVALID; _digraph->nextOut(e)) { |
1537 | 1534 |
Node m = _digraph->target(e); |
1538 | 1535 |
if (!(*_reached)[m]) { |
1539 | 1536 |
_visitor->discover(e); |
1540 | 1537 |
_visitor->reach(m); |
1541 | 1538 |
_reached->set(m, true); |
1542 | 1539 |
_list[++_list_back] = m; |
1543 | 1540 |
if (nm[m] && rnode == INVALID) rnode = m; |
1544 | 1541 |
} else { |
1545 | 1542 |
_visitor->examine(e); |
1546 | 1543 |
} |
1547 | 1544 |
} |
1548 | 1545 |
return n; |
1549 | 1546 |
} |
1550 | 1547 |
|
1551 | 1548 |
/// \brief The next node to be processed. |
1552 | 1549 |
/// |
1553 | 1550 |
/// Returns the next node to be processed or \c INVALID if the queue |
1554 | 1551 |
/// is empty. |
1555 | 1552 |
Node nextNode() const { |
1556 | 1553 |
return _list_front != _list_back ? _list[_list_front + 1] : INVALID; |
1557 | 1554 |
} |
1558 | 1555 |
|
1559 | 1556 |
/// \brief Returns \c false if there are nodes |
1560 | 1557 |
/// to be processed. |
1561 | 1558 |
/// |
1562 | 1559 |
/// Returns \c false if there are nodes |
1563 | 1560 |
/// to be processed in the queue. |
1564 | 1561 |
bool emptyQueue() const { return _list_front == _list_back; } |
1565 | 1562 |
|
1566 | 1563 |
/// \brief Returns the number of the nodes to be processed. |
1567 | 1564 |
/// |
1568 | 1565 |
/// Returns the number of the nodes to be processed in the queue. |
1569 | 1566 |
int queueSize() const { return _list_back - _list_front; } |
1570 | 1567 |
|
1571 | 1568 |
/// \brief Executes the algorithm. |
1572 | 1569 |
/// |
1573 | 1570 |
/// Executes the algorithm. |
1574 | 1571 |
/// |
1575 | 1572 |
/// This method runs the %BFS algorithm from the root node(s) |
1576 | 1573 |
/// in order to compute the shortest path to each node. |
1577 | 1574 |
/// |
1578 | 1575 |
/// The algorithm computes |
1579 | 1576 |
/// - the shortest path tree (forest), |
1580 | 1577 |
/// - the distance of each node from the root(s). |
1581 | 1578 |
/// |
1582 | 1579 |
/// \pre init() must be called and at least one root node should be added |
1583 | 1580 |
/// with addSource() before using this function. |
1584 | 1581 |
/// |
1585 | 1582 |
/// \note <tt>b.start()</tt> is just a shortcut of the following code. |
1586 | 1583 |
/// \code |
1587 | 1584 |
/// while ( !b.emptyQueue() ) { |
1588 | 1585 |
/// b.processNextNode(); |
1589 | 1586 |
/// } |
1590 | 1587 |
/// \endcode |
1591 | 1588 |
void start() { |
1592 | 1589 |
while ( !emptyQueue() ) processNextNode(); |
1593 | 1590 |
} |
1594 | 1591 |
|
1595 | 1592 |
/// \brief Executes the algorithm until the given target node is reached. |
1596 | 1593 |
/// |
1597 | 1594 |
/// Executes the algorithm until the given target node is reached. |
1598 | 1595 |
/// |
1599 | 1596 |
/// This method runs the %BFS algorithm from the root node(s) |
1600 | 1597 |
/// in order to compute the shortest path to \c t. |
1601 | 1598 |
/// |
1602 | 1599 |
/// The algorithm computes |
1603 | 1600 |
/// - the shortest path to \c t, |
1604 | 1601 |
/// - the distance of \c t from the root(s). |
1605 | 1602 |
/// |
1606 | 1603 |
/// \pre init() must be called and at least one root node should be |
1607 | 1604 |
/// added with addSource() before using this function. |
1608 | 1605 |
/// |
1609 | 1606 |
/// \note <tt>b.start(t)</tt> is just a shortcut of the following code. |
1610 | 1607 |
/// \code |
1611 | 1608 |
/// bool reach = false; |
1612 | 1609 |
/// while ( !b.emptyQueue() && !reach ) { |
1613 | 1610 |
/// b.processNextNode(t, reach); |
1614 | 1611 |
/// } |
1615 | 1612 |
/// \endcode |
1616 | 1613 |
void start(Node t) { |
1617 | 1614 |
bool reach = false; |
1618 | 1615 |
while ( !emptyQueue() && !reach ) processNextNode(t, reach); |
1619 | 1616 |
} |
1620 | 1617 |
|
1621 | 1618 |
/// \brief Executes the algorithm until a condition is met. |
1622 | 1619 |
/// |
1623 | 1620 |
/// Executes the algorithm until a condition is met. |
1624 | 1621 |
/// |
1625 | 1622 |
/// This method runs the %BFS algorithm from the root node(s) in |
1626 | 1623 |
/// order to compute the shortest path to a node \c v with |
1627 | 1624 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
1628 | 1625 |
/// |
1629 | 1626 |
/// \param nm must be a bool (or convertible) node map. The |
1630 | 1627 |
/// algorithm will stop when it reaches a node \c v with |
1631 | 1628 |
/// <tt>nm[v]</tt> true. |
1632 | 1629 |
/// |
1633 | 1630 |
/// \return The reached node \c v with <tt>nm[v]</tt> true or |
1634 | 1631 |
/// \c INVALID if no such node was found. |
1635 | 1632 |
/// |
1636 | 1633 |
/// \pre init() must be called and at least one root node should be |
1637 | 1634 |
/// added with addSource() before using this function. |
1638 | 1635 |
/// |
1639 | 1636 |
/// \note <tt>b.start(nm)</tt> is just a shortcut of the following code. |
1640 | 1637 |
/// \code |
1641 | 1638 |
/// Node rnode = INVALID; |
1642 | 1639 |
/// while ( !b.emptyQueue() && rnode == INVALID ) { |
1643 | 1640 |
/// b.processNextNode(nm, rnode); |
1644 | 1641 |
/// } |
1645 | 1642 |
/// return rnode; |
1646 | 1643 |
/// \endcode |
1647 | 1644 |
template <typename NM> |
1648 | 1645 |
Node start(const NM &nm) { |
1649 | 1646 |
Node rnode = INVALID; |
1650 | 1647 |
while ( !emptyQueue() && rnode == INVALID ) { |
1651 | 1648 |
processNextNode(nm, rnode); |
1652 | 1649 |
} |
1653 | 1650 |
return rnode; |
1654 | 1651 |
} |
1655 | 1652 |
|
1656 | 1653 |
/// \brief Runs the algorithm from the given source node. |
1657 | 1654 |
/// |
1658 | 1655 |
/// This method runs the %BFS algorithm from node \c s |
1659 | 1656 |
/// in order to compute the shortest path to each node. |
1660 | 1657 |
/// |
1661 | 1658 |
/// The algorithm computes |
1662 | 1659 |
/// - the shortest path tree, |
1663 | 1660 |
/// - the distance of each node from the root. |
1664 | 1661 |
/// |
1665 | 1662 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1666 | 1663 |
///\code |
1667 | 1664 |
/// b.init(); |
1668 | 1665 |
/// b.addSource(s); |
1669 | 1666 |
/// b.start(); |
1670 | 1667 |
///\endcode |
1671 | 1668 |
void run(Node s) { |
1672 | 1669 |
init(); |
1673 | 1670 |
addSource(s); |
1674 | 1671 |
start(); |
1675 | 1672 |
} |
1676 | 1673 |
|
1677 | 1674 |
/// \brief Finds the shortest path between \c s and \c t. |
1678 | 1675 |
/// |
1679 | 1676 |
/// This method runs the %BFS algorithm from node \c s |
1680 | 1677 |
/// in order to compute the shortest path to node \c t |
1681 | 1678 |
/// (it stops searching when \c t is processed). |
1682 | 1679 |
/// |
1683 | 1680 |
/// \return \c true if \c t is reachable form \c s. |
1684 | 1681 |
/// |
1685 | 1682 |
/// \note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
1686 | 1683 |
/// shortcut of the following code. |
1687 | 1684 |
///\code |
1688 | 1685 |
/// b.init(); |
1689 | 1686 |
/// b.addSource(s); |
1690 | 1687 |
/// b.start(t); |
1691 | 1688 |
///\endcode |
1692 | 1689 |
bool run(Node s,Node t) { |
1693 | 1690 |
init(); |
1694 | 1691 |
addSource(s); |
1695 | 1692 |
start(t); |
1696 | 1693 |
return reached(t); |
1697 | 1694 |
} |
1698 | 1695 |
|
1699 | 1696 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1700 | 1697 |
/// |
1701 | 1698 |
/// This method runs the %BFS algorithm in order to |
1702 | 1699 |
/// compute the shortest path to each node. |
1703 | 1700 |
/// |
1704 | 1701 |
/// The algorithm computes |
1705 | 1702 |
/// - the shortest path tree (forest), |
1706 | 1703 |
/// - the distance of each node from the root(s). |
1707 | 1704 |
/// |
1708 | 1705 |
/// \note <tt>b.run(s)</tt> is just a shortcut of the following code. |
1709 | 1706 |
///\code |
1710 | 1707 |
/// b.init(); |
1711 | 1708 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
1712 | 1709 |
/// if (!b.reached(n)) { |
1713 | 1710 |
/// b.addSource(n); |
1714 | 1711 |
/// b.start(); |
1715 | 1712 |
/// } |
1716 | 1713 |
/// } |
1717 | 1714 |
///\endcode |
1718 | 1715 |
void run() { |
1719 | 1716 |
init(); |
1720 | 1717 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1721 | 1718 |
if (!reached(it)) { |
1722 | 1719 |
addSource(it); |
1723 | 1720 |
start(); |
1724 | 1721 |
} |
1725 | 1722 |
} |
1726 | 1723 |
} |
1727 | 1724 |
|
1728 | 1725 |
///@} |
1729 | 1726 |
|
1730 | 1727 |
/// \name Query Functions |
1731 | 1728 |
/// The results of the BFS algorithm can be obtained using these |
1732 | 1729 |
/// functions.\n |
1733 | 1730 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1734 | 1731 |
/// before using them. |
1735 | 1732 |
|
1736 | 1733 |
///@{ |
1737 | 1734 |
|
1738 |
/// \brief Checks if |
|
1735 |
/// \brief Checks if the given node is reached from the root(s). |
|
1739 | 1736 |
/// |
1740 | 1737 |
/// Returns \c true if \c v is reached from the root(s). |
1741 | 1738 |
/// |
1742 | 1739 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1743 | 1740 |
/// must be called before using this function. |
1744 | 1741 |
bool reached(Node v) const { return (*_reached)[v]; } |
1745 | 1742 |
|
1746 | 1743 |
///@} |
1747 | 1744 |
|
1748 | 1745 |
}; |
1749 | 1746 |
|
1750 | 1747 |
} //END OF NAMESPACE LEMON |
1751 | 1748 |
|
1752 | 1749 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_MAP_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_MAP_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
|
24 | 24 |
#include <lemon/bits/traits.h> |
25 | 25 |
|
26 | 26 |
#include <lemon/concept_check.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
//\file |
30 | 30 |
//\brief Extenders for iterable maps. |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
// \ingroup graphbits |
35 | 35 |
// |
36 | 36 |
// \brief Extender for maps |
37 | 37 |
template <typename _Map> |
38 | 38 |
class MapExtender : public _Map { |
39 | 39 |
typedef _Map Parent; |
40 | 40 |
typedef typename Parent::GraphType GraphType; |
41 | 41 |
|
42 | 42 |
public: |
43 | 43 |
|
44 | 44 |
typedef MapExtender Map; |
45 | 45 |
typedef typename Parent::Key Item; |
46 | 46 |
|
47 | 47 |
typedef typename Parent::Key Key; |
48 | 48 |
typedef typename Parent::Value Value; |
49 | 49 |
typedef typename Parent::Reference Reference; |
50 | 50 |
typedef typename Parent::ConstReference ConstReference; |
51 | 51 |
|
52 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
53 |
|
|
52 | 54 |
class MapIt; |
53 | 55 |
class ConstMapIt; |
54 | 56 |
|
55 | 57 |
friend class MapIt; |
56 | 58 |
friend class ConstMapIt; |
57 | 59 |
|
58 | 60 |
public: |
59 | 61 |
|
60 | 62 |
MapExtender(const GraphType& graph) |
61 | 63 |
: Parent(graph) {} |
62 | 64 |
|
63 | 65 |
MapExtender(const GraphType& graph, const Value& value) |
64 | 66 |
: Parent(graph, value) {} |
65 | 67 |
|
66 | 68 |
private: |
67 | 69 |
MapExtender& operator=(const MapExtender& cmap) { |
68 | 70 |
return operator=<MapExtender>(cmap); |
69 | 71 |
} |
70 | 72 |
|
71 | 73 |
template <typename CMap> |
72 | 74 |
MapExtender& operator=(const CMap& cmap) { |
73 | 75 |
Parent::operator=(cmap); |
74 | 76 |
return *this; |
75 | 77 |
} |
76 | 78 |
|
77 | 79 |
public: |
78 | 80 |
class MapIt : public Item { |
79 | 81 |
typedef Item Parent; |
80 | 82 |
|
81 | 83 |
public: |
82 | 84 |
|
83 | 85 |
typedef typename Map::Value Value; |
84 | 86 |
|
85 | 87 |
MapIt() {} |
86 | 88 |
|
87 | 89 |
MapIt(Invalid i) : Parent(i) { } |
88 | 90 |
|
89 | 91 |
explicit MapIt(Map& _map) : map(_map) { |
90 | 92 |
map.notifier()->first(*this); |
91 | 93 |
} |
92 | 94 |
|
93 | 95 |
MapIt(const Map& _map, const Item& item) |
94 | 96 |
: Parent(item), map(_map) {} |
95 | 97 |
|
96 | 98 |
MapIt& operator++() { |
97 | 99 |
map.notifier()->next(*this); |
98 | 100 |
return *this; |
99 | 101 |
} |
100 | 102 |
|
101 | 103 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
102 | 104 |
return map[*this]; |
103 | 105 |
} |
104 | 106 |
|
105 | 107 |
typename MapTraits<Map>::ReturnValue operator*() { |
106 | 108 |
return map[*this]; |
107 | 109 |
} |
108 | 110 |
|
109 | 111 |
void set(const Value& value) { |
110 | 112 |
map.set(*this, value); |
111 | 113 |
} |
112 | 114 |
|
113 | 115 |
protected: |
114 | 116 |
Map& map; |
115 | 117 |
|
116 | 118 |
}; |
117 | 119 |
|
118 | 120 |
class ConstMapIt : public Item { |
119 | 121 |
typedef Item Parent; |
120 | 122 |
|
121 | 123 |
public: |
122 | 124 |
|
123 | 125 |
typedef typename Map::Value Value; |
124 | 126 |
|
125 | 127 |
ConstMapIt() {} |
126 | 128 |
|
127 | 129 |
ConstMapIt(Invalid i) : Parent(i) { } |
128 | 130 |
|
129 | 131 |
explicit ConstMapIt(Map& _map) : map(_map) { |
130 | 132 |
map.notifier()->first(*this); |
131 | 133 |
} |
132 | 134 |
|
133 | 135 |
ConstMapIt(const Map& _map, const Item& item) |
134 | 136 |
: Parent(item), map(_map) {} |
135 | 137 |
|
136 | 138 |
ConstMapIt& operator++() { |
137 | 139 |
map.notifier()->next(*this); |
138 | 140 |
return *this; |
139 | 141 |
} |
140 | 142 |
|
141 | 143 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
142 | 144 |
return map[*this]; |
143 | 145 |
} |
144 | 146 |
|
145 | 147 |
protected: |
146 | 148 |
const Map& map; |
147 | 149 |
}; |
148 | 150 |
|
149 | 151 |
class ItemIt : public Item { |
150 | 152 |
typedef Item Parent; |
151 | 153 |
|
152 | 154 |
public: |
153 | 155 |
|
154 | 156 |
ItemIt() {} |
155 | 157 |
|
156 | 158 |
ItemIt(Invalid i) : Parent(i) { } |
157 | 159 |
|
158 | 160 |
explicit ItemIt(Map& _map) : map(_map) { |
159 | 161 |
map.notifier()->first(*this); |
160 | 162 |
} |
161 | 163 |
|
162 | 164 |
ItemIt(const Map& _map, const Item& item) |
163 | 165 |
: Parent(item), map(_map) {} |
164 | 166 |
|
165 | 167 |
ItemIt& operator++() { |
166 | 168 |
map.notifier()->next(*this); |
167 | 169 |
return *this; |
168 | 170 |
} |
169 | 171 |
|
170 | 172 |
protected: |
171 | 173 |
const Map& map; |
172 | 174 |
|
173 | 175 |
}; |
174 | 176 |
}; |
175 | 177 |
|
176 | 178 |
// \ingroup graphbits |
177 | 179 |
// |
178 | 180 |
// \brief Extender for maps which use a subset of the items. |
179 | 181 |
template <typename _Graph, typename _Map> |
180 | 182 |
class SubMapExtender : public _Map { |
181 | 183 |
typedef _Map Parent; |
182 | 184 |
typedef _Graph GraphType; |
183 | 185 |
|
184 | 186 |
public: |
185 | 187 |
|
186 | 188 |
typedef SubMapExtender Map; |
187 | 189 |
typedef typename Parent::Key Item; |
188 | 190 |
|
189 | 191 |
typedef typename Parent::Key Key; |
190 | 192 |
typedef typename Parent::Value Value; |
191 | 193 |
typedef typename Parent::Reference Reference; |
192 | 194 |
typedef typename Parent::ConstReference ConstReference; |
193 | 195 |
|
196 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
197 |
|
|
194 | 198 |
class MapIt; |
195 | 199 |
class ConstMapIt; |
196 | 200 |
|
197 | 201 |
friend class MapIt; |
198 | 202 |
friend class ConstMapIt; |
199 | 203 |
|
200 | 204 |
public: |
201 | 205 |
|
202 | 206 |
SubMapExtender(const GraphType& _graph) |
203 | 207 |
: Parent(_graph), graph(_graph) {} |
204 | 208 |
|
205 | 209 |
SubMapExtender(const GraphType& _graph, const Value& _value) |
206 | 210 |
: Parent(_graph, _value), graph(_graph) {} |
207 | 211 |
|
208 | 212 |
private: |
209 | 213 |
SubMapExtender& operator=(const SubMapExtender& cmap) { |
210 | 214 |
return operator=<MapExtender>(cmap); |
211 | 215 |
} |
212 | 216 |
|
213 | 217 |
template <typename CMap> |
214 | 218 |
SubMapExtender& operator=(const CMap& cmap) { |
215 | 219 |
checkConcept<concepts::ReadMap<Key, Value>, CMap>(); |
216 | 220 |
Item it; |
217 | 221 |
for (graph.first(it); it != INVALID; graph.next(it)) { |
218 | 222 |
Parent::set(it, cmap[it]); |
219 | 223 |
} |
220 | 224 |
return *this; |
221 | 225 |
} |
222 | 226 |
|
223 | 227 |
public: |
224 | 228 |
class MapIt : public Item { |
225 | 229 |
typedef Item Parent; |
226 | 230 |
|
227 | 231 |
public: |
228 | 232 |
typedef typename Map::Value Value; |
229 | 233 |
|
230 | 234 |
MapIt() {} |
231 | 235 |
|
232 | 236 |
MapIt(Invalid i) : Parent(i) { } |
233 | 237 |
|
234 | 238 |
explicit MapIt(Map& _map) : map(_map) { |
235 | 239 |
map.graph.first(*this); |
236 | 240 |
} |
237 | 241 |
|
238 | 242 |
MapIt(const Map& _map, const Item& item) |
239 | 243 |
: Parent(item), map(_map) {} |
240 | 244 |
|
241 | 245 |
MapIt& operator++() { |
242 | 246 |
map.graph.next(*this); |
243 | 247 |
return *this; |
244 | 248 |
} |
245 | 249 |
|
246 | 250 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
247 | 251 |
return map[*this]; |
248 | 252 |
} |
249 | 253 |
|
250 | 254 |
typename MapTraits<Map>::ReturnValue operator*() { |
251 | 255 |
return map[*this]; |
252 | 256 |
} |
253 | 257 |
|
254 | 258 |
void set(const Value& value) { |
255 | 259 |
map.set(*this, value); |
256 | 260 |
} |
257 | 261 |
|
258 | 262 |
protected: |
259 | 263 |
Map& map; |
260 | 264 |
|
261 | 265 |
}; |
262 | 266 |
|
263 | 267 |
class ConstMapIt : public Item { |
264 | 268 |
typedef Item Parent; |
265 | 269 |
|
266 | 270 |
public: |
267 | 271 |
|
268 | 272 |
typedef typename Map::Value Value; |
269 | 273 |
|
270 | 274 |
ConstMapIt() {} |
271 | 275 |
|
272 | 276 |
ConstMapIt(Invalid i) : Parent(i) { } |
273 | 277 |
|
274 | 278 |
explicit ConstMapIt(Map& _map) : map(_map) { |
275 | 279 |
map.graph.first(*this); |
276 | 280 |
} |
277 | 281 |
|
278 | 282 |
ConstMapIt(const Map& _map, const Item& item) |
279 | 283 |
: Parent(item), map(_map) {} |
280 | 284 |
|
281 | 285 |
ConstMapIt& operator++() { |
282 | 286 |
map.graph.next(*this); |
283 | 287 |
return *this; |
284 | 288 |
} |
285 | 289 |
|
286 | 290 |
typename MapTraits<Map>::ConstReturnValue operator*() const { |
287 | 291 |
return map[*this]; |
288 | 292 |
} |
289 | 293 |
|
290 | 294 |
protected: |
291 | 295 |
const Map& map; |
292 | 296 |
}; |
293 | 297 |
|
294 | 298 |
class ItemIt : public Item { |
295 | 299 |
typedef Item Parent; |
296 | 300 |
|
297 | 301 |
public: |
298 | 302 |
|
299 | 303 |
ItemIt() {} |
300 | 304 |
|
301 | 305 |
ItemIt(Invalid i) : Parent(i) { } |
302 | 306 |
|
303 | 307 |
explicit ItemIt(Map& _map) : map(_map) { |
304 | 308 |
map.graph.first(*this); |
305 | 309 |
} |
306 | 310 |
|
307 | 311 |
ItemIt(const Map& _map, const Item& item) |
308 | 312 |
: Parent(item), map(_map) {} |
309 | 313 |
|
310 | 314 |
ItemIt& operator++() { |
311 | 315 |
map.graph.next(*this); |
312 | 316 |
return *this; |
313 | 317 |
} |
314 | 318 |
|
315 | 319 |
protected: |
316 | 320 |
const Map& map; |
317 | 321 |
|
318 | 322 |
}; |
319 | 323 |
|
320 | 324 |
private: |
321 | 325 |
|
322 | 326 |
const GraphType& graph; |
323 | 327 |
|
324 | 328 |
}; |
325 | 329 |
|
326 | 330 |
} |
327 | 331 |
|
328 | 332 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CIRCULATION_H |
20 | 20 |
#define LEMON_CIRCULATION_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
#include <limits> |
25 | 25 |
|
26 | 26 |
///\ingroup max_flow |
27 | 27 |
///\file |
28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
29 | 29 |
/// |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \brief Default traits class of Circulation class. |
33 | 33 |
/// |
34 | 34 |
/// Default traits class of Circulation class. |
35 | 35 |
/// |
36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
37 | 37 |
/// \tparam LM The type of the lower bound map. |
38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
39 | 39 |
/// \tparam SM The type of the supply map. |
40 | 40 |
template <typename GR, typename LM, |
41 | 41 |
typename UM, typename SM> |
42 | 42 |
struct CirculationDefaultTraits { |
43 | 43 |
|
44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
45 | 45 |
typedef GR Digraph; |
46 | 46 |
|
47 | 47 |
/// \brief The type of the lower bound map. |
48 | 48 |
/// |
49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
51 | 51 |
typedef LM LowerMap; |
52 | 52 |
|
53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
54 | 54 |
/// |
55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
56 | 56 |
/// on the arcs. |
57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
58 | 58 |
typedef UM UpperMap; |
59 | 59 |
|
60 | 60 |
/// \brief The type of supply map. |
61 | 61 |
/// |
62 | 62 |
/// The type of the map that stores the signed supply values of the |
63 | 63 |
/// nodes. |
64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
65 | 65 |
typedef SM SupplyMap; |
66 | 66 |
|
67 | 67 |
/// \brief The type of the flow and supply values. |
68 | 68 |
typedef typename SupplyMap::Value Value; |
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 |
#ifdef DOXYGEN |
|
76 |
typedef GR::ArcMap<Value> FlowMap; |
|
77 |
#else |
|
75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
79 |
#endif |
|
76 | 80 |
|
77 | 81 |
/// \brief Instantiates a FlowMap. |
78 | 82 |
/// |
79 | 83 |
/// This function instantiates a \ref FlowMap. |
80 | 84 |
/// \param digraph The digraph for which we would like to define |
81 | 85 |
/// the flow map. |
82 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
83 | 87 |
return new FlowMap(digraph); |
84 | 88 |
} |
85 | 89 |
|
86 | 90 |
/// \brief The elevator type used by the algorithm. |
87 | 91 |
/// |
88 | 92 |
/// The elevator type used by the algorithm. |
89 | 93 |
/// |
90 |
/// \sa Elevator |
|
91 |
/// \sa LinkedElevator |
|
94 |
/// \sa Elevator, LinkedElevator |
|
95 |
#ifdef DOXYGEN |
|
96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
97 |
#else |
|
92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
99 |
#endif |
|
93 | 100 |
|
94 | 101 |
/// \brief Instantiates an Elevator. |
95 | 102 |
/// |
96 | 103 |
/// This function instantiates an \ref Elevator. |
97 | 104 |
/// \param digraph The digraph for which we would like to define |
98 | 105 |
/// the elevator. |
99 | 106 |
/// \param max_level The maximum level of the elevator. |
100 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
101 | 108 |
return new Elevator(digraph, max_level); |
102 | 109 |
} |
103 | 110 |
|
104 | 111 |
/// \brief The tolerance used by the algorithm |
105 | 112 |
/// |
106 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
107 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
108 | 115 |
|
109 | 116 |
}; |
110 | 117 |
|
111 | 118 |
/** |
112 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
113 | 120 |
|
114 | 121 |
\ingroup max_flow |
115 | 122 |
This class implements a push-relabel algorithm for the \e network |
116 | 123 |
\e circulation problem. |
117 | 124 |
It is to find a feasible circulation when lower and upper bounds |
118 | 125 |
are given for the flow values on the arcs and lower bounds are |
119 | 126 |
given for the difference between the outgoing and incoming flow |
120 | 127 |
at the nodes. |
121 | 128 |
|
122 | 129 |
The exact formulation of this problem is the following. |
123 | 130 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$ |
124 | 131 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and |
125 | 132 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
126 | 133 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
127 | 134 |
denotes the signed supply values of the nodes. |
128 | 135 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
129 | 136 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
130 | 137 |
\f$-sup(u)\f$ demand. |
131 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$ |
132 | 139 |
solution of the following problem. |
133 | 140 |
|
134 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
135 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
136 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
137 | 144 |
|
138 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
139 | 146 |
zero or negative in order to have a feasible solution (since the sum |
140 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
141 | 148 |
It means that the total demand must be greater or equal to the total |
142 | 149 |
supply and all the supplies have to be carried out from the supply nodes, |
143 | 150 |
but there could be demands that are not satisfied. |
144 | 151 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
145 | 152 |
constraints have to be satisfied with equality, i.e. all demands |
146 | 153 |
have to be satisfied and all supplies have to be used. |
147 | 154 |
|
148 | 155 |
If you need the opposite inequalities in the supply/demand constraints |
149 | 156 |
(i.e. the total demand is less than the total supply and all the demands |
150 | 157 |
have to be satisfied while there could be supplies that are not used), |
151 | 158 |
then you could easily transform the problem to the above form by reversing |
152 | 159 |
the direction of the arcs and taking the negative of the supply values |
153 | 160 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
154 | 161 |
|
155 | 162 |
This algorithm either calculates a feasible circulation, or provides |
156 | 163 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
157 | 164 |
cannot exist. |
158 | 165 |
|
159 | 166 |
Note that this algorithm also provides a feasible solution for the |
160 | 167 |
\ref min_cost_flow "minimum cost flow problem". |
161 | 168 |
|
162 | 169 |
\tparam GR The type of the digraph the algorithm runs on. |
163 | 170 |
\tparam LM The type of the lower bound map. The default |
164 | 171 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
165 | 172 |
\tparam UM The type of the upper bound (capacity) map. |
166 | 173 |
The default map type is \c LM. |
167 | 174 |
\tparam SM The type of the supply map. The default map type is |
168 | 175 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
169 | 176 |
*/ |
170 | 177 |
#ifdef DOXYGEN |
171 | 178 |
template< typename GR, |
172 | 179 |
typename LM, |
173 | 180 |
typename UM, |
174 | 181 |
typename SM, |
175 | 182 |
typename TR > |
176 | 183 |
#else |
177 | 184 |
template< typename GR, |
178 | 185 |
typename LM = typename GR::template ArcMap<int>, |
179 | 186 |
typename UM = LM, |
180 | 187 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
181 | 188 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
182 | 189 |
#endif |
183 | 190 |
class Circulation { |
184 | 191 |
public: |
185 | 192 |
|
186 | 193 |
///The \ref CirculationDefaultTraits "traits class" of the algorithm. |
187 | 194 |
typedef TR Traits; |
188 | 195 |
///The type of the digraph the algorithm runs on. |
189 | 196 |
typedef typename Traits::Digraph Digraph; |
190 | 197 |
///The type of the flow and supply values. |
191 | 198 |
typedef typename Traits::Value Value; |
192 | 199 |
|
193 | 200 |
///The type of the lower bound map. |
194 | 201 |
typedef typename Traits::LowerMap LowerMap; |
195 | 202 |
///The type of the upper bound (capacity) map. |
196 | 203 |
typedef typename Traits::UpperMap UpperMap; |
197 | 204 |
///The type of the supply map. |
198 | 205 |
typedef typename Traits::SupplyMap SupplyMap; |
199 | 206 |
///The type of the flow map. |
200 | 207 |
typedef typename Traits::FlowMap FlowMap; |
201 | 208 |
|
202 | 209 |
///The type of the elevator. |
203 | 210 |
typedef typename Traits::Elevator Elevator; |
204 | 211 |
///The type of the tolerance. |
205 | 212 |
typedef typename Traits::Tolerance Tolerance; |
206 | 213 |
|
207 | 214 |
private: |
208 | 215 |
|
209 | 216 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
210 | 217 |
|
211 | 218 |
const Digraph &_g; |
212 | 219 |
int _node_num; |
213 | 220 |
|
214 | 221 |
const LowerMap *_lo; |
215 | 222 |
const UpperMap *_up; |
216 | 223 |
const SupplyMap *_supply; |
217 | 224 |
|
218 | 225 |
FlowMap *_flow; |
219 | 226 |
bool _local_flow; |
220 | 227 |
|
221 | 228 |
Elevator* _level; |
222 | 229 |
bool _local_level; |
223 | 230 |
|
224 | 231 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
225 | 232 |
ExcessMap* _excess; |
226 | 233 |
|
227 | 234 |
Tolerance _tol; |
228 | 235 |
int _el; |
229 | 236 |
|
230 | 237 |
public: |
231 | 238 |
|
232 | 239 |
typedef Circulation Create; |
233 | 240 |
|
234 | 241 |
///\name Named Template Parameters |
235 | 242 |
|
236 | 243 |
///@{ |
237 | 244 |
|
238 | 245 |
template <typename T> |
239 | 246 |
struct SetFlowMapTraits : public Traits { |
240 | 247 |
typedef T FlowMap; |
241 | 248 |
static FlowMap *createFlowMap(const Digraph&) { |
242 | 249 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
243 | 250 |
return 0; // ignore warnings |
244 | 251 |
} |
245 | 252 |
}; |
246 | 253 |
|
247 | 254 |
/// \brief \ref named-templ-param "Named parameter" for setting |
248 | 255 |
/// FlowMap type |
249 | 256 |
/// |
250 | 257 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
251 | 258 |
/// type. |
252 | 259 |
template <typename T> |
253 | 260 |
struct SetFlowMap |
254 | 261 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
255 | 262 |
SetFlowMapTraits<T> > { |
256 | 263 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
257 | 264 |
SetFlowMapTraits<T> > Create; |
258 | 265 |
}; |
259 | 266 |
|
260 | 267 |
template <typename T> |
261 | 268 |
struct SetElevatorTraits : public Traits { |
262 | 269 |
typedef T Elevator; |
263 | 270 |
static Elevator *createElevator(const Digraph&, int) { |
264 | 271 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
265 | 272 |
return 0; // ignore warnings |
266 | 273 |
} |
267 | 274 |
}; |
268 | 275 |
|
269 | 276 |
/// \brief \ref named-templ-param "Named parameter" for setting |
270 | 277 |
/// Elevator type |
271 | 278 |
/// |
272 | 279 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
273 | 280 |
/// type. If this named parameter is used, then an external |
274 | 281 |
/// elevator object must be passed to the algorithm using the |
275 | 282 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
276 | 283 |
/// \ref run() or \ref init(). |
277 | 284 |
/// \sa SetStandardElevator |
278 | 285 |
template <typename T> |
279 | 286 |
struct SetElevator |
280 | 287 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
281 | 288 |
SetElevatorTraits<T> > { |
282 | 289 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
283 | 290 |
SetElevatorTraits<T> > Create; |
284 | 291 |
}; |
285 | 292 |
|
286 | 293 |
template <typename T> |
287 | 294 |
struct SetStandardElevatorTraits : public Traits { |
288 | 295 |
typedef T Elevator; |
289 | 296 |
static Elevator *createElevator(const Digraph& digraph, int max_level) { |
290 | 297 |
return new Elevator(digraph, max_level); |
291 | 298 |
} |
292 | 299 |
}; |
293 | 300 |
|
294 | 301 |
/// \brief \ref named-templ-param "Named parameter" for setting |
295 | 302 |
/// Elevator type with automatic allocation |
296 | 303 |
/// |
297 | 304 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
298 | 305 |
/// type with automatic allocation. |
299 | 306 |
/// The Elevator should have standard constructor interface to be |
300 | 307 |
/// able to automatically created by the algorithm (i.e. the |
301 | 308 |
/// digraph and the maximum level should be passed to it). |
302 | 309 |
/// However an external elevator object could also be passed to the |
303 | 310 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
304 | 311 |
/// before calling \ref run() or \ref init(). |
305 | 312 |
/// \sa SetElevator |
306 | 313 |
template <typename T> |
307 | 314 |
struct SetStandardElevator |
308 | 315 |
: public Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
309 | 316 |
SetStandardElevatorTraits<T> > { |
310 | 317 |
typedef Circulation<Digraph, LowerMap, UpperMap, SupplyMap, |
311 | 318 |
SetStandardElevatorTraits<T> > Create; |
312 | 319 |
}; |
313 | 320 |
|
314 | 321 |
/// @} |
315 | 322 |
|
316 | 323 |
protected: |
317 | 324 |
|
318 | 325 |
Circulation() {} |
319 | 326 |
|
320 | 327 |
public: |
321 | 328 |
|
322 | 329 |
/// Constructor. |
323 | 330 |
|
324 | 331 |
/// The constructor of the class. |
325 | 332 |
/// |
326 | 333 |
/// \param graph The digraph the algorithm runs on. |
327 | 334 |
/// \param lower The lower bounds for the flow values on the arcs. |
328 | 335 |
/// \param upper The upper bounds (capacities) for the flow values |
329 | 336 |
/// on the arcs. |
330 | 337 |
/// \param supply The signed supply values of the nodes. |
331 | 338 |
Circulation(const Digraph &graph, const LowerMap &lower, |
332 | 339 |
const UpperMap &upper, const SupplyMap &supply) |
333 | 340 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
334 | 341 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
335 | 342 |
_excess(NULL) {} |
336 | 343 |
|
337 | 344 |
/// Destructor. |
338 | 345 |
~Circulation() { |
339 | 346 |
destroyStructures(); |
340 | 347 |
} |
341 | 348 |
|
342 | 349 |
|
343 | 350 |
private: |
344 | 351 |
|
345 | 352 |
bool checkBoundMaps() { |
346 | 353 |
for (ArcIt e(_g);e!=INVALID;++e) { |
347 | 354 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
348 | 355 |
} |
349 | 356 |
return true; |
350 | 357 |
} |
351 | 358 |
|
352 | 359 |
void createStructures() { |
353 | 360 |
_node_num = _el = countNodes(_g); |
354 | 361 |
|
355 | 362 |
if (!_flow) { |
356 | 363 |
_flow = Traits::createFlowMap(_g); |
357 | 364 |
_local_flow = true; |
358 | 365 |
} |
359 | 366 |
if (!_level) { |
360 | 367 |
_level = Traits::createElevator(_g, _node_num); |
361 | 368 |
_local_level = true; |
362 | 369 |
} |
363 | 370 |
if (!_excess) { |
364 | 371 |
_excess = new ExcessMap(_g); |
365 | 372 |
} |
366 | 373 |
} |
367 | 374 |
|
368 | 375 |
void destroyStructures() { |
369 | 376 |
if (_local_flow) { |
370 | 377 |
delete _flow; |
371 | 378 |
} |
372 | 379 |
if (_local_level) { |
373 | 380 |
delete _level; |
374 | 381 |
} |
375 | 382 |
if (_excess) { |
376 | 383 |
delete _excess; |
377 | 384 |
} |
378 | 385 |
} |
379 | 386 |
|
380 | 387 |
public: |
381 | 388 |
|
382 | 389 |
/// Sets the lower bound map. |
383 | 390 |
|
384 | 391 |
/// Sets the lower bound map. |
385 | 392 |
/// \return <tt>(*this)</tt> |
386 | 393 |
Circulation& lowerMap(const LowerMap& map) { |
387 | 394 |
_lo = ↦ |
388 | 395 |
return *this; |
389 | 396 |
} |
390 | 397 |
|
391 | 398 |
/// Sets the upper bound (capacity) map. |
392 | 399 |
|
393 | 400 |
/// Sets the upper bound (capacity) map. |
394 | 401 |
/// \return <tt>(*this)</tt> |
395 | 402 |
Circulation& upperMap(const UpperMap& map) { |
396 | 403 |
_up = ↦ |
397 | 404 |
return *this; |
398 | 405 |
} |
399 | 406 |
|
400 | 407 |
/// Sets the supply map. |
401 | 408 |
|
402 | 409 |
/// Sets the supply map. |
403 | 410 |
/// \return <tt>(*this)</tt> |
404 | 411 |
Circulation& supplyMap(const SupplyMap& map) { |
405 | 412 |
_supply = ↦ |
406 | 413 |
return *this; |
407 | 414 |
} |
408 | 415 |
|
409 | 416 |
/// \brief Sets the flow map. |
410 | 417 |
/// |
411 | 418 |
/// Sets the flow map. |
412 | 419 |
/// If you don't use this function before calling \ref run() or |
413 | 420 |
/// \ref init(), an instance will be allocated automatically. |
414 | 421 |
/// The destructor deallocates this automatically allocated map, |
415 | 422 |
/// of course. |
416 | 423 |
/// \return <tt>(*this)</tt> |
417 | 424 |
Circulation& flowMap(FlowMap& map) { |
418 | 425 |
if (_local_flow) { |
419 | 426 |
delete _flow; |
420 | 427 |
_local_flow = false; |
421 | 428 |
} |
422 | 429 |
_flow = ↦ |
423 | 430 |
return *this; |
424 | 431 |
} |
425 | 432 |
|
426 | 433 |
/// \brief Sets the elevator used by algorithm. |
427 | 434 |
/// |
428 | 435 |
/// Sets the elevator used by algorithm. |
429 | 436 |
/// If you don't use this function before calling \ref run() or |
430 | 437 |
/// \ref init(), an instance will be allocated automatically. |
431 | 438 |
/// The destructor deallocates this automatically allocated elevator, |
432 | 439 |
/// of course. |
433 | 440 |
/// \return <tt>(*this)</tt> |
434 | 441 |
Circulation& elevator(Elevator& elevator) { |
435 | 442 |
if (_local_level) { |
436 | 443 |
delete _level; |
437 | 444 |
_local_level = false; |
438 | 445 |
} |
439 | 446 |
_level = &elevator; |
440 | 447 |
return *this; |
441 | 448 |
} |
442 | 449 |
|
443 | 450 |
/// \brief Returns a const reference to the elevator. |
444 | 451 |
/// |
445 | 452 |
/// Returns a const reference to the elevator. |
446 | 453 |
/// |
447 | 454 |
/// \pre Either \ref run() or \ref init() must be called before |
448 | 455 |
/// using this function. |
449 | 456 |
const Elevator& elevator() const { |
450 | 457 |
return *_level; |
451 | 458 |
} |
452 | 459 |
|
453 | 460 |
/// \brief Sets the tolerance used by the algorithm. |
454 | 461 |
/// |
455 | 462 |
/// Sets the tolerance object used by the algorithm. |
456 | 463 |
/// \return <tt>(*this)</tt> |
457 | 464 |
Circulation& tolerance(const Tolerance& tolerance) { |
458 | 465 |
_tol = tolerance; |
459 | 466 |
return *this; |
460 | 467 |
} |
461 | 468 |
|
462 | 469 |
/// \brief Returns a const reference to the tolerance. |
463 | 470 |
/// |
464 | 471 |
/// Returns a const reference to the tolerance object used by |
465 | 472 |
/// the algorithm. |
466 | 473 |
const Tolerance& tolerance() const { |
467 | 474 |
return _tol; |
468 | 475 |
} |
469 | 476 |
|
470 | 477 |
/// \name Execution Control |
471 | 478 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
472 |
/// If you need more control on the initial solution or the execution, |
|
473 |
/// first you have to call one of the \ref init() functions, then |
|
479 |
/// If you need better control on the initial solution or the execution, |
|
480 |
/// you have to call one of the \ref init() functions first, then |
|
474 | 481 |
/// the \ref start() function. |
475 | 482 |
|
476 | 483 |
///@{ |
477 | 484 |
|
478 | 485 |
/// Initializes the internal data structures. |
479 | 486 |
|
480 | 487 |
/// Initializes the internal data structures and sets all flow values |
481 | 488 |
/// to the lower bound. |
482 | 489 |
void init() |
483 | 490 |
{ |
484 | 491 |
LEMON_DEBUG(checkBoundMaps(), |
485 | 492 |
"Upper bounds must be greater or equal to the lower bounds"); |
486 | 493 |
|
487 | 494 |
createStructures(); |
488 | 495 |
|
489 | 496 |
for(NodeIt n(_g);n!=INVALID;++n) { |
490 | 497 |
(*_excess)[n] = (*_supply)[n]; |
491 | 498 |
} |
492 | 499 |
|
493 | 500 |
for (ArcIt e(_g);e!=INVALID;++e) { |
494 | 501 |
_flow->set(e, (*_lo)[e]); |
495 | 502 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
496 | 503 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
497 | 504 |
} |
498 | 505 |
|
499 | 506 |
// global relabeling tested, but in general case it provides |
500 | 507 |
// worse performance for random digraphs |
501 | 508 |
_level->initStart(); |
502 | 509 |
for(NodeIt n(_g);n!=INVALID;++n) |
503 | 510 |
_level->initAddItem(n); |
504 | 511 |
_level->initFinish(); |
505 | 512 |
for(NodeIt n(_g);n!=INVALID;++n) |
506 | 513 |
if(_tol.positive((*_excess)[n])) |
507 | 514 |
_level->activate(n); |
508 | 515 |
} |
509 | 516 |
|
510 | 517 |
/// Initializes the internal data structures using a greedy approach. |
511 | 518 |
|
512 | 519 |
/// Initializes the internal data structures using a greedy approach |
513 | 520 |
/// to construct the initial solution. |
514 | 521 |
void greedyInit() |
515 | 522 |
{ |
516 | 523 |
LEMON_DEBUG(checkBoundMaps(), |
517 | 524 |
"Upper bounds must be greater or equal to the lower bounds"); |
518 | 525 |
|
519 | 526 |
createStructures(); |
520 | 527 |
|
521 | 528 |
for(NodeIt n(_g);n!=INVALID;++n) { |
522 | 529 |
(*_excess)[n] = (*_supply)[n]; |
523 | 530 |
} |
524 | 531 |
|
525 | 532 |
for (ArcIt e(_g);e!=INVALID;++e) { |
526 | 533 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) { |
527 | 534 |
_flow->set(e, (*_up)[e]); |
528 | 535 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
529 | 536 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
530 | 537 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) { |
531 | 538 |
_flow->set(e, (*_lo)[e]); |
532 | 539 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
533 | 540 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
534 | 541 |
} else { |
535 | 542 |
Value fc = -(*_excess)[_g.target(e)]; |
536 | 543 |
_flow->set(e, fc); |
537 | 544 |
(*_excess)[_g.target(e)] = 0; |
538 | 545 |
(*_excess)[_g.source(e)] -= fc; |
539 | 546 |
} |
540 | 547 |
} |
541 | 548 |
|
542 | 549 |
_level->initStart(); |
543 | 550 |
for(NodeIt n(_g);n!=INVALID;++n) |
544 | 551 |
_level->initAddItem(n); |
545 | 552 |
_level->initFinish(); |
546 | 553 |
for(NodeIt n(_g);n!=INVALID;++n) |
547 | 554 |
if(_tol.positive((*_excess)[n])) |
548 | 555 |
_level->activate(n); |
549 | 556 |
} |
550 | 557 |
|
551 | 558 |
///Executes the algorithm |
552 | 559 |
|
553 | 560 |
///This function executes the algorithm. |
554 | 561 |
/// |
555 | 562 |
///\return \c true if a feasible circulation is found. |
556 | 563 |
/// |
557 | 564 |
///\sa barrier() |
558 | 565 |
///\sa barrierMap() |
559 | 566 |
bool start() |
560 | 567 |
{ |
561 | 568 |
|
562 | 569 |
Node act; |
563 | 570 |
Node bact=INVALID; |
564 | 571 |
Node last_activated=INVALID; |
565 | 572 |
while((act=_level->highestActive())!=INVALID) { |
566 | 573 |
int actlevel=(*_level)[act]; |
567 | 574 |
int mlevel=_node_num; |
568 | 575 |
Value exc=(*_excess)[act]; |
569 | 576 |
|
570 | 577 |
for(OutArcIt e(_g,act);e!=INVALID; ++e) { |
571 | 578 |
Node v = _g.target(e); |
572 | 579 |
Value fc=(*_up)[e]-(*_flow)[e]; |
573 | 580 |
if(!_tol.positive(fc)) continue; |
574 | 581 |
if((*_level)[v]<actlevel) { |
575 | 582 |
if(!_tol.less(fc, exc)) { |
576 | 583 |
_flow->set(e, (*_flow)[e] + exc); |
577 | 584 |
(*_excess)[v] += exc; |
578 | 585 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
579 | 586 |
_level->activate(v); |
580 | 587 |
(*_excess)[act] = 0; |
581 | 588 |
_level->deactivate(act); |
582 | 589 |
goto next_l; |
583 | 590 |
} |
584 | 591 |
else { |
585 | 592 |
_flow->set(e, (*_up)[e]); |
586 | 593 |
(*_excess)[v] += fc; |
587 | 594 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
588 | 595 |
_level->activate(v); |
589 | 596 |
exc-=fc; |
590 | 597 |
} |
591 | 598 |
} |
592 | 599 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
593 | 600 |
} |
594 | 601 |
for(InArcIt e(_g,act);e!=INVALID; ++e) { |
595 | 602 |
Node v = _g.source(e); |
596 | 603 |
Value fc=(*_flow)[e]-(*_lo)[e]; |
597 | 604 |
if(!_tol.positive(fc)) continue; |
598 | 605 |
if((*_level)[v]<actlevel) { |
599 | 606 |
if(!_tol.less(fc, exc)) { |
600 | 607 |
_flow->set(e, (*_flow)[e] - exc); |
601 | 608 |
(*_excess)[v] += exc; |
602 | 609 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
603 | 610 |
_level->activate(v); |
604 | 611 |
(*_excess)[act] = 0; |
605 | 612 |
_level->deactivate(act); |
606 | 613 |
goto next_l; |
607 | 614 |
} |
608 | 615 |
else { |
609 | 616 |
_flow->set(e, (*_lo)[e]); |
610 | 617 |
(*_excess)[v] += fc; |
611 | 618 |
if(!_level->active(v) && _tol.positive((*_excess)[v])) |
612 | 619 |
_level->activate(v); |
613 | 620 |
exc-=fc; |
614 | 621 |
} |
615 | 622 |
} |
616 | 623 |
else if((*_level)[v]<mlevel) mlevel=(*_level)[v]; |
617 | 624 |
} |
618 | 625 |
|
619 | 626 |
(*_excess)[act] = exc; |
620 | 627 |
if(!_tol.positive(exc)) _level->deactivate(act); |
621 | 628 |
else if(mlevel==_node_num) { |
622 | 629 |
_level->liftHighestActiveToTop(); |
623 | 630 |
_el = _node_num; |
624 | 631 |
return false; |
625 | 632 |
} |
626 | 633 |
else { |
627 | 634 |
_level->liftHighestActive(mlevel+1); |
628 | 635 |
if(_level->onLevel(actlevel)==0) { |
629 | 636 |
_el = actlevel; |
630 | 637 |
return false; |
631 | 638 |
} |
632 | 639 |
} |
633 | 640 |
next_l: |
634 | 641 |
; |
635 | 642 |
} |
636 | 643 |
return true; |
637 | 644 |
} |
638 | 645 |
|
639 | 646 |
/// Runs the algorithm. |
640 | 647 |
|
641 | 648 |
/// This function runs the algorithm. |
642 | 649 |
/// |
643 | 650 |
/// \return \c true if a feasible circulation is found. |
644 | 651 |
/// |
645 | 652 |
/// \note Apart from the return value, c.run() is just a shortcut of |
646 | 653 |
/// the following code. |
647 | 654 |
/// \code |
648 | 655 |
/// c.greedyInit(); |
649 | 656 |
/// c.start(); |
650 | 657 |
/// \endcode |
651 | 658 |
bool run() { |
652 | 659 |
greedyInit(); |
653 | 660 |
return start(); |
654 | 661 |
} |
655 | 662 |
|
656 | 663 |
/// @} |
657 | 664 |
|
658 | 665 |
/// \name Query Functions |
659 | 666 |
/// The results of the circulation algorithm can be obtained using |
660 | 667 |
/// these functions.\n |
661 | 668 |
/// Either \ref run() or \ref start() should be called before |
662 | 669 |
/// using them. |
663 | 670 |
|
664 | 671 |
///@{ |
665 | 672 |
|
666 | 673 |
/// \brief Returns the flow value on the given arc. |
667 | 674 |
/// |
668 | 675 |
/// Returns the flow value on the given arc. |
669 | 676 |
/// |
670 | 677 |
/// \pre Either \ref run() or \ref init() must be called before |
671 | 678 |
/// using this function. |
672 | 679 |
Value flow(const Arc& arc) const { |
673 | 680 |
return (*_flow)[arc]; |
674 | 681 |
} |
675 | 682 |
|
676 | 683 |
/// \brief Returns a const reference to the flow map. |
677 | 684 |
/// |
678 | 685 |
/// Returns a const reference to the arc map storing the found flow. |
679 | 686 |
/// |
680 | 687 |
/// \pre Either \ref run() or \ref init() must be called before |
681 | 688 |
/// using this function. |
682 | 689 |
const FlowMap& flowMap() const { |
683 | 690 |
return *_flow; |
684 | 691 |
} |
685 | 692 |
|
686 | 693 |
/** |
687 | 694 |
\brief Returns \c true if the given node is in a barrier. |
688 | 695 |
|
689 | 696 |
Barrier is a set \e B of nodes for which |
690 | 697 |
|
691 | 698 |
\f[ \sum_{uv\in A: u\in B} upper(uv) - |
692 | 699 |
\sum_{uv\in A: v\in B} lower(uv) < \sum_{v\in B} sup(v) \f] |
693 | 700 |
|
694 | 701 |
holds. The existence of a set with this property prooves that a |
695 | 702 |
feasible circualtion cannot exist. |
696 | 703 |
|
697 | 704 |
This function returns \c true if the given node is in the found |
698 | 705 |
barrier. If a feasible circulation is found, the function |
699 | 706 |
gives back \c false for every node. |
700 | 707 |
|
701 | 708 |
\pre Either \ref run() or \ref init() must be called before |
702 | 709 |
using this function. |
703 | 710 |
|
704 | 711 |
\sa barrierMap() |
705 | 712 |
\sa checkBarrier() |
706 | 713 |
*/ |
707 | 714 |
bool barrier(const Node& node) const |
708 | 715 |
{ |
709 | 716 |
return (*_level)[node] >= _el; |
710 | 717 |
} |
711 | 718 |
|
712 | 719 |
/// \brief Gives back a barrier. |
713 | 720 |
/// |
714 | 721 |
/// This function sets \c bar to the characteristic vector of the |
715 | 722 |
/// found barrier. \c bar should be a \ref concepts::WriteMap "writable" |
716 | 723 |
/// node map with \c bool (or convertible) value type. |
717 | 724 |
/// |
718 | 725 |
/// If a feasible circulation is found, the function gives back an |
719 | 726 |
/// empty set, so \c bar[v] will be \c false for all nodes \c v. |
720 | 727 |
/// |
721 | 728 |
/// \note This function calls \ref barrier() for each node, |
722 | 729 |
/// so it runs in O(n) time. |
723 | 730 |
/// |
724 | 731 |
/// \pre Either \ref run() or \ref init() must be called before |
725 | 732 |
/// using this function. |
726 | 733 |
/// |
727 | 734 |
/// \sa barrier() |
728 | 735 |
/// \sa checkBarrier() |
729 | 736 |
template<class BarrierMap> |
730 | 737 |
void barrierMap(BarrierMap &bar) const |
731 | 738 |
{ |
732 | 739 |
for(NodeIt n(_g);n!=INVALID;++n) |
733 | 740 |
bar.set(n, (*_level)[n] >= _el); |
734 | 741 |
} |
735 | 742 |
|
736 | 743 |
/// @} |
737 | 744 |
|
738 | 745 |
/// \name Checker Functions |
739 | 746 |
/// The feasibility of the results can be checked using |
740 | 747 |
/// these functions.\n |
741 | 748 |
/// Either \ref run() or \ref start() should be called before |
742 | 749 |
/// using them. |
743 | 750 |
|
744 | 751 |
///@{ |
745 | 752 |
|
746 | 753 |
///Check if the found flow is a feasible circulation |
747 | 754 |
|
748 | 755 |
///Check if the found flow is a feasible circulation, |
749 | 756 |
/// |
750 | 757 |
bool checkFlow() const { |
751 | 758 |
for(ArcIt e(_g);e!=INVALID;++e) |
752 | 759 |
if((*_flow)[e]<(*_lo)[e]||(*_flow)[e]>(*_up)[e]) return false; |
753 | 760 |
for(NodeIt n(_g);n!=INVALID;++n) |
754 | 761 |
{ |
755 | 762 |
Value dif=-(*_supply)[n]; |
756 | 763 |
for(InArcIt e(_g,n);e!=INVALID;++e) dif-=(*_flow)[e]; |
757 | 764 |
for(OutArcIt e(_g,n);e!=INVALID;++e) dif+=(*_flow)[e]; |
758 | 765 |
if(_tol.negative(dif)) return false; |
759 | 766 |
} |
760 | 767 |
return true; |
761 | 768 |
} |
762 | 769 |
|
763 | 770 |
///Check whether or not the last execution provides a barrier |
764 | 771 |
|
765 | 772 |
///Check whether or not the last execution provides a barrier. |
766 | 773 |
///\sa barrier() |
767 | 774 |
///\sa barrierMap() |
768 | 775 |
bool checkBarrier() const |
769 | 776 |
{ |
770 | 777 |
Value delta=0; |
771 | 778 |
Value inf_cap = std::numeric_limits<Value>::has_infinity ? |
772 | 779 |
std::numeric_limits<Value>::infinity() : |
773 | 780 |
std::numeric_limits<Value>::max(); |
774 | 781 |
for(NodeIt n(_g);n!=INVALID;++n) |
775 | 782 |
if(barrier(n)) |
776 | 783 |
delta-=(*_supply)[n]; |
777 | 784 |
for(ArcIt e(_g);e!=INVALID;++e) |
778 | 785 |
{ |
779 | 786 |
Node s=_g.source(e); |
780 | 787 |
Node t=_g.target(e); |
781 | 788 |
if(barrier(s)&&!barrier(t)) { |
782 | 789 |
if (_tol.less(inf_cap - (*_up)[e], delta)) return false; |
783 | 790 |
delta+=(*_up)[e]; |
784 | 791 |
} |
785 | 792 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
786 | 793 |
} |
787 | 794 |
return _tol.negative(delta); |
788 | 795 |
} |
789 | 796 |
|
790 | 797 |
/// @} |
791 | 798 |
|
792 | 799 |
}; |
793 | 800 |
|
794 | 801 |
} |
795 | 802 |
|
796 | 803 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONCEPTS_MAPS_H |
20 | 20 |
#define LEMON_CONCEPTS_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/concept_check.h> |
24 | 24 |
|
25 | 25 |
///\ingroup map_concepts |
26 | 26 |
///\file |
27 | 27 |
///\brief The concept of maps. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup map_concepts |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// Readable map concept |
37 | 37 |
|
38 | 38 |
/// Readable map concept. |
39 | 39 |
/// |
40 | 40 |
template<typename K, typename T> |
41 | 41 |
class ReadMap |
42 | 42 |
{ |
43 | 43 |
public: |
44 | 44 |
/// The key type of the map. |
45 | 45 |
typedef K Key; |
46 | 46 |
/// \brief The value type of the map. |
47 | 47 |
/// (The type of objects associated with the keys). |
48 | 48 |
typedef T Value; |
49 | 49 |
|
50 | 50 |
/// Returns the value associated with the given key. |
51 | 51 |
Value operator[](const Key &) const { |
52 | 52 |
return *static_cast<Value *>(0); |
53 | 53 |
} |
54 | 54 |
|
55 | 55 |
template<typename _ReadMap> |
56 | 56 |
struct Constraints { |
57 | 57 |
void constraints() { |
58 | 58 |
Value val = m[key]; |
59 | 59 |
val = m[key]; |
60 | 60 |
typename _ReadMap::Value own_val = m[own_key]; |
61 | 61 |
own_val = m[own_key]; |
62 | 62 |
|
63 | 63 |
ignore_unused_variable_warning(key); |
64 | 64 |
ignore_unused_variable_warning(val); |
65 | 65 |
ignore_unused_variable_warning(own_key); |
66 | 66 |
ignore_unused_variable_warning(own_val); |
67 | 67 |
} |
68 | 68 |
const Key& key; |
69 | 69 |
const typename _ReadMap::Key& own_key; |
70 | 70 |
const _ReadMap& m; |
71 | 71 |
}; |
72 | 72 |
|
73 | 73 |
}; |
74 | 74 |
|
75 | 75 |
|
76 | 76 |
/// Writable map concept |
77 | 77 |
|
78 | 78 |
/// Writable map concept. |
79 | 79 |
/// |
80 | 80 |
template<typename K, typename T> |
81 | 81 |
class WriteMap |
82 | 82 |
{ |
83 | 83 |
public: |
84 | 84 |
/// The key type of the map. |
85 | 85 |
typedef K Key; |
86 | 86 |
/// \brief The value type of the map. |
87 | 87 |
/// (The type of objects associated with the keys). |
88 | 88 |
typedef T Value; |
89 | 89 |
|
90 | 90 |
/// Sets the value associated with the given key. |
91 | 91 |
void set(const Key &, const Value &) {} |
92 | 92 |
|
93 | 93 |
/// Default constructor. |
94 | 94 |
WriteMap() {} |
95 | 95 |
|
96 | 96 |
template <typename _WriteMap> |
97 | 97 |
struct Constraints { |
98 | 98 |
void constraints() { |
99 | 99 |
m.set(key, val); |
100 | 100 |
m.set(own_key, own_val); |
101 | 101 |
|
102 | 102 |
ignore_unused_variable_warning(key); |
103 | 103 |
ignore_unused_variable_warning(val); |
104 | 104 |
ignore_unused_variable_warning(own_key); |
105 | 105 |
ignore_unused_variable_warning(own_val); |
106 | 106 |
} |
107 | 107 |
const Key& key; |
108 | 108 |
const Value& val; |
109 | 109 |
const typename _WriteMap::Key& own_key; |
110 | 110 |
const typename _WriteMap::Value& own_val; |
111 | 111 |
_WriteMap& m; |
112 | 112 |
}; |
113 | 113 |
}; |
114 | 114 |
|
115 | 115 |
/// Read/writable map concept |
116 | 116 |
|
117 | 117 |
/// Read/writable map concept. |
118 | 118 |
/// |
119 | 119 |
template<typename K, typename T> |
120 | 120 |
class ReadWriteMap : public ReadMap<K,T>, |
121 | 121 |
public WriteMap<K,T> |
122 | 122 |
{ |
123 | 123 |
public: |
124 | 124 |
/// The key type of the map. |
125 | 125 |
typedef K Key; |
126 | 126 |
/// \brief The value type of the map. |
127 | 127 |
/// (The type of objects associated with the keys). |
128 | 128 |
typedef T Value; |
129 | 129 |
|
130 | 130 |
/// Returns the value associated with the given key. |
131 | 131 |
Value operator[](const Key &) const { |
132 | 132 |
return *static_cast<Value *>(0); |
133 | 133 |
} |
134 | 134 |
|
135 | 135 |
/// Sets the value associated with the given key. |
136 | 136 |
void set(const Key &, const Value &) {} |
137 | 137 |
|
138 | 138 |
template<typename _ReadWriteMap> |
139 | 139 |
struct Constraints { |
140 | 140 |
void constraints() { |
141 | 141 |
checkConcept<ReadMap<K, T>, _ReadWriteMap >(); |
142 | 142 |
checkConcept<WriteMap<K, T>, _ReadWriteMap >(); |
143 | 143 |
} |
144 | 144 |
}; |
145 | 145 |
}; |
146 | 146 |
|
147 | 147 |
|
148 | 148 |
/// Dereferable map concept |
149 | 149 |
|
150 | 150 |
/// Dereferable map concept. |
151 | 151 |
/// |
152 | 152 |
template<typename K, typename T, typename R, typename CR> |
153 | 153 |
class ReferenceMap : public ReadWriteMap<K,T> |
154 | 154 |
{ |
155 | 155 |
public: |
156 | 156 |
/// Tag for reference maps. |
157 | 157 |
typedef True ReferenceMapTag; |
158 | 158 |
/// The key type of the map. |
159 | 159 |
typedef K Key; |
160 | 160 |
/// \brief The value type of the map. |
161 | 161 |
/// (The type of objects associated with the keys). |
162 | 162 |
typedef T Value; |
163 | 163 |
/// The reference type of the map. |
164 | 164 |
typedef R Reference; |
165 | 165 |
/// The const reference type of the map. |
166 | 166 |
typedef CR ConstReference; |
167 | 167 |
|
168 | 168 |
public: |
169 | 169 |
|
170 | 170 |
/// Returns a reference to the value associated with the given key. |
171 | 171 |
Reference operator[](const Key &) { |
172 | 172 |
return *static_cast<Value *>(0); |
173 | 173 |
} |
174 | 174 |
|
175 | 175 |
/// Returns a const reference to the value associated with the given key. |
176 | 176 |
ConstReference operator[](const Key &) const { |
177 | 177 |
return *static_cast<Value *>(0); |
178 | 178 |
} |
179 | 179 |
|
180 | 180 |
/// Sets the value associated with the given key. |
181 | 181 |
void set(const Key &k,const Value &t) { operator[](k)=t; } |
182 | 182 |
|
183 | 183 |
template<typename _ReferenceMap> |
184 | 184 |
struct Constraints { |
185 |
|
|
185 |
typename enable_if<typename _ReferenceMap::ReferenceMapTag, void>::type |
|
186 |
constraints() { |
|
186 | 187 |
checkConcept<ReadWriteMap<K, T>, _ReferenceMap >(); |
187 | 188 |
ref = m[key]; |
188 | 189 |
m[key] = val; |
189 | 190 |
m[key] = ref; |
190 | 191 |
m[key] = cref; |
191 | 192 |
own_ref = m[own_key]; |
192 | 193 |
m[own_key] = own_val; |
193 | 194 |
m[own_key] = own_ref; |
194 | 195 |
m[own_key] = own_cref; |
195 | 196 |
m[key] = m[own_key]; |
196 | 197 |
m[own_key] = m[key]; |
197 | 198 |
} |
198 | 199 |
const Key& key; |
199 | 200 |
Value& val; |
200 | 201 |
Reference ref; |
201 | 202 |
ConstReference cref; |
202 | 203 |
const typename _ReferenceMap::Key& own_key; |
203 | 204 |
typename _ReferenceMap::Value& own_val; |
204 | 205 |
typename _ReferenceMap::Reference own_ref; |
205 | 206 |
typename _ReferenceMap::ConstReference own_cref; |
206 | 207 |
_ReferenceMap& m; |
207 | 208 |
}; |
208 | 209 |
}; |
209 | 210 |
|
210 | 211 |
// @} |
211 | 212 |
|
212 | 213 |
} //namespace concepts |
213 | 214 |
|
214 | 215 |
} //namespace lemon |
215 | 216 |
|
216 | 217 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DFS_H |
20 | 20 |
#define LEMON_DFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief DFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Dfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Dfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct DfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the %DFS paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the %DFS paths. |
50 |
///It must |
|
50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 |
///It must |
|
65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
66 |
///By default it is a NullMap. |
|
66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 | 68 |
///Instantiates a \c ProcessedMap. |
68 | 69 |
|
69 | 70 |
///This function instantiates a \ref ProcessedMap. |
70 | 71 |
///\param g is the digraph, to which |
71 | 72 |
///we would like to define the \ref ProcessedMap. |
72 | 73 |
#ifdef DOXYGEN |
73 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
74 | 75 |
#else |
75 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
76 | 77 |
#endif |
77 | 78 |
{ |
78 | 79 |
return new ProcessedMap(); |
79 | 80 |
} |
80 | 81 |
|
81 | 82 |
///The type of the map that indicates which nodes are reached. |
82 | 83 |
|
83 | 84 |
///The type of the map that indicates which nodes are reached. |
84 |
///It must |
|
85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 | 87 |
///Instantiates a \c ReachedMap. |
87 | 88 |
|
88 | 89 |
///This function instantiates a \ref ReachedMap. |
89 | 90 |
///\param g is the digraph, to which |
90 | 91 |
///we would like to define the \ref ReachedMap. |
91 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
92 | 93 |
{ |
93 | 94 |
return new ReachedMap(g); |
94 | 95 |
} |
95 | 96 |
|
96 | 97 |
///The type of the map that stores the distances of the nodes. |
97 | 98 |
|
98 | 99 |
///The type of the map that stores the distances of the nodes. |
99 |
///It must |
|
100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 | 102 |
///Instantiates a \c DistMap. |
102 | 103 |
|
103 | 104 |
///This function instantiates a \ref DistMap. |
104 | 105 |
///\param g is the digraph, to which we would like to define the |
105 | 106 |
///\ref DistMap. |
106 | 107 |
static DistMap *createDistMap(const Digraph &g) |
107 | 108 |
{ |
108 | 109 |
return new DistMap(g); |
109 | 110 |
} |
110 | 111 |
}; |
111 | 112 |
|
112 | 113 |
///%DFS algorithm class. |
113 | 114 |
|
114 | 115 |
///\ingroup search |
115 | 116 |
///This class provides an efficient implementation of the %DFS algorithm. |
116 | 117 |
/// |
117 | 118 |
///There is also a \ref dfs() "function-type interface" for the DFS |
118 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
119 | 120 |
///used easier. |
120 | 121 |
/// |
121 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
122 | 123 |
///The default type is \ref ListDigraph. |
123 | 124 |
#ifdef DOXYGEN |
124 | 125 |
template <typename GR, |
125 | 126 |
typename TR> |
126 | 127 |
#else |
127 | 128 |
template <typename GR=ListDigraph, |
128 | 129 |
typename TR=DfsDefaultTraits<GR> > |
129 | 130 |
#endif |
130 | 131 |
class Dfs { |
131 | 132 |
public: |
132 | 133 |
|
133 | 134 |
///The type of the digraph the algorithm runs on. |
134 | 135 |
typedef typename TR::Digraph Digraph; |
135 | 136 |
|
136 | 137 |
///\brief The type of the map that stores the predecessor arcs of the |
137 | 138 |
///DFS paths. |
138 | 139 |
typedef typename TR::PredMap PredMap; |
139 | 140 |
///The type of the map that stores the distances of the nodes. |
140 | 141 |
typedef typename TR::DistMap DistMap; |
141 | 142 |
///The type of the map that indicates which nodes are reached. |
142 | 143 |
typedef typename TR::ReachedMap ReachedMap; |
143 | 144 |
///The type of the map that indicates which nodes are processed. |
144 | 145 |
typedef typename TR::ProcessedMap ProcessedMap; |
145 | 146 |
///The type of the paths. |
146 | 147 |
typedef PredMapPath<Digraph, PredMap> Path; |
147 | 148 |
|
148 | 149 |
///The \ref DfsDefaultTraits "traits class" of the algorithm. |
149 | 150 |
typedef TR Traits; |
150 | 151 |
|
151 | 152 |
private: |
152 | 153 |
|
153 | 154 |
typedef typename Digraph::Node Node; |
154 | 155 |
typedef typename Digraph::NodeIt NodeIt; |
155 | 156 |
typedef typename Digraph::Arc Arc; |
156 | 157 |
typedef typename Digraph::OutArcIt OutArcIt; |
157 | 158 |
|
158 | 159 |
//Pointer to the underlying digraph. |
159 | 160 |
const Digraph *G; |
160 | 161 |
//Pointer to the map of predecessor arcs. |
161 | 162 |
PredMap *_pred; |
162 | 163 |
//Indicates if _pred is locally allocated (true) or not. |
163 | 164 |
bool local_pred; |
164 | 165 |
//Pointer to the map of distances. |
165 | 166 |
DistMap *_dist; |
166 | 167 |
//Indicates if _dist is locally allocated (true) or not. |
167 | 168 |
bool local_dist; |
168 | 169 |
//Pointer to the map of reached status of the nodes. |
169 | 170 |
ReachedMap *_reached; |
170 | 171 |
//Indicates if _reached is locally allocated (true) or not. |
171 | 172 |
bool local_reached; |
172 | 173 |
//Pointer to the map of processed status of the nodes. |
173 | 174 |
ProcessedMap *_processed; |
174 | 175 |
//Indicates if _processed is locally allocated (true) or not. |
175 | 176 |
bool local_processed; |
176 | 177 |
|
177 | 178 |
std::vector<typename Digraph::OutArcIt> _stack; |
178 | 179 |
int _stack_head; |
179 | 180 |
|
180 | 181 |
//Creates the maps if necessary. |
181 | 182 |
void create_maps() |
182 | 183 |
{ |
183 | 184 |
if(!_pred) { |
184 | 185 |
local_pred = true; |
185 | 186 |
_pred = Traits::createPredMap(*G); |
186 | 187 |
} |
187 | 188 |
if(!_dist) { |
188 | 189 |
local_dist = true; |
189 | 190 |
_dist = Traits::createDistMap(*G); |
190 | 191 |
} |
191 | 192 |
if(!_reached) { |
192 | 193 |
local_reached = true; |
193 | 194 |
_reached = Traits::createReachedMap(*G); |
194 | 195 |
} |
195 | 196 |
if(!_processed) { |
196 | 197 |
local_processed = true; |
197 | 198 |
_processed = Traits::createProcessedMap(*G); |
198 | 199 |
} |
199 | 200 |
} |
200 | 201 |
|
201 | 202 |
protected: |
202 | 203 |
|
203 | 204 |
Dfs() {} |
204 | 205 |
|
205 | 206 |
public: |
206 | 207 |
|
207 | 208 |
typedef Dfs Create; |
208 | 209 |
|
209 | 210 |
///\name Named Template Parameters |
210 | 211 |
|
211 | 212 |
///@{ |
212 | 213 |
|
213 | 214 |
template <class T> |
214 | 215 |
struct SetPredMapTraits : public Traits { |
215 | 216 |
typedef T PredMap; |
216 | 217 |
static PredMap *createPredMap(const Digraph &) |
217 | 218 |
{ |
218 | 219 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
219 | 220 |
return 0; // ignore warnings |
220 | 221 |
} |
221 | 222 |
}; |
222 | 223 |
///\brief \ref named-templ-param "Named parameter" for setting |
223 | 224 |
///\c PredMap type. |
224 | 225 |
/// |
225 | 226 |
///\ref named-templ-param "Named parameter" for setting |
226 | 227 |
///\c PredMap type. |
227 |
///It must |
|
228 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
228 | 229 |
template <class T> |
229 | 230 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
230 | 231 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
231 | 232 |
}; |
232 | 233 |
|
233 | 234 |
template <class T> |
234 | 235 |
struct SetDistMapTraits : public Traits { |
235 | 236 |
typedef T DistMap; |
236 | 237 |
static DistMap *createDistMap(const Digraph &) |
237 | 238 |
{ |
238 | 239 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
239 | 240 |
return 0; // ignore warnings |
240 | 241 |
} |
241 | 242 |
}; |
242 | 243 |
///\brief \ref named-templ-param "Named parameter" for setting |
243 | 244 |
///\c DistMap type. |
244 | 245 |
/// |
245 | 246 |
///\ref named-templ-param "Named parameter" for setting |
246 | 247 |
///\c DistMap type. |
247 |
///It must |
|
248 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
248 | 249 |
template <class T> |
249 | 250 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
250 | 251 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
251 | 252 |
}; |
252 | 253 |
|
253 | 254 |
template <class T> |
254 | 255 |
struct SetReachedMapTraits : public Traits { |
255 | 256 |
typedef T ReachedMap; |
256 | 257 |
static ReachedMap *createReachedMap(const Digraph &) |
257 | 258 |
{ |
258 | 259 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
259 | 260 |
return 0; // ignore warnings |
260 | 261 |
} |
261 | 262 |
}; |
262 | 263 |
///\brief \ref named-templ-param "Named parameter" for setting |
263 | 264 |
///\c ReachedMap type. |
264 | 265 |
/// |
265 | 266 |
///\ref named-templ-param "Named parameter" for setting |
266 | 267 |
///\c ReachedMap type. |
267 |
///It must |
|
268 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
268 | 269 |
template <class T> |
269 | 270 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
270 | 271 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
271 | 272 |
}; |
272 | 273 |
|
273 | 274 |
template <class T> |
274 | 275 |
struct SetProcessedMapTraits : public Traits { |
275 | 276 |
typedef T ProcessedMap; |
276 | 277 |
static ProcessedMap *createProcessedMap(const Digraph &) |
277 | 278 |
{ |
278 | 279 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
279 | 280 |
return 0; // ignore warnings |
280 | 281 |
} |
281 | 282 |
}; |
282 | 283 |
///\brief \ref named-templ-param "Named parameter" for setting |
283 | 284 |
///\c ProcessedMap type. |
284 | 285 |
/// |
285 | 286 |
///\ref named-templ-param "Named parameter" for setting |
286 | 287 |
///\c ProcessedMap type. |
287 |
///It must |
|
288 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
288 | 289 |
template <class T> |
289 | 290 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
290 | 291 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
291 | 292 |
}; |
292 | 293 |
|
293 | 294 |
struct SetStandardProcessedMapTraits : public Traits { |
294 | 295 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
295 | 296 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
296 | 297 |
{ |
297 | 298 |
return new ProcessedMap(g); |
298 | 299 |
} |
299 | 300 |
}; |
300 | 301 |
///\brief \ref named-templ-param "Named parameter" for setting |
301 | 302 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
302 | 303 |
/// |
303 | 304 |
///\ref named-templ-param "Named parameter" for setting |
304 | 305 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
305 | 306 |
///If you don't set it explicitly, it will be automatically allocated. |
306 | 307 |
struct SetStandardProcessedMap : |
307 | 308 |
public Dfs< Digraph, SetStandardProcessedMapTraits > { |
308 | 309 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
309 | 310 |
}; |
310 | 311 |
|
311 | 312 |
///@} |
312 | 313 |
|
313 | 314 |
public: |
314 | 315 |
|
315 | 316 |
///Constructor. |
316 | 317 |
|
317 | 318 |
///Constructor. |
318 | 319 |
///\param g The digraph the algorithm runs on. |
319 | 320 |
Dfs(const Digraph &g) : |
320 | 321 |
G(&g), |
321 | 322 |
_pred(NULL), local_pred(false), |
322 | 323 |
_dist(NULL), local_dist(false), |
323 | 324 |
_reached(NULL), local_reached(false), |
324 | 325 |
_processed(NULL), local_processed(false) |
325 | 326 |
{ } |
326 | 327 |
|
327 | 328 |
///Destructor. |
328 | 329 |
~Dfs() |
329 | 330 |
{ |
330 | 331 |
if(local_pred) delete _pred; |
331 | 332 |
if(local_dist) delete _dist; |
332 | 333 |
if(local_reached) delete _reached; |
333 | 334 |
if(local_processed) delete _processed; |
334 | 335 |
} |
335 | 336 |
|
336 | 337 |
///Sets the map that stores the predecessor arcs. |
337 | 338 |
|
338 | 339 |
///Sets the map that stores the predecessor arcs. |
339 | 340 |
///If you don't use this function before calling \ref run(Node) "run()" |
340 | 341 |
///or \ref init(), an instance will be allocated automatically. |
341 | 342 |
///The destructor deallocates this automatically allocated map, |
342 | 343 |
///of course. |
343 | 344 |
///\return <tt> (*this) </tt> |
344 | 345 |
Dfs &predMap(PredMap &m) |
345 | 346 |
{ |
346 | 347 |
if(local_pred) { |
347 | 348 |
delete _pred; |
348 | 349 |
local_pred=false; |
349 | 350 |
} |
350 | 351 |
_pred = &m; |
351 | 352 |
return *this; |
352 | 353 |
} |
353 | 354 |
|
354 | 355 |
///Sets the map that indicates which nodes are reached. |
355 | 356 |
|
356 | 357 |
///Sets the map that indicates which nodes are reached. |
357 | 358 |
///If you don't use this function before calling \ref run(Node) "run()" |
358 | 359 |
///or \ref init(), an instance will be allocated automatically. |
359 | 360 |
///The destructor deallocates this automatically allocated map, |
360 | 361 |
///of course. |
361 | 362 |
///\return <tt> (*this) </tt> |
362 | 363 |
Dfs &reachedMap(ReachedMap &m) |
363 | 364 |
{ |
364 | 365 |
if(local_reached) { |
365 | 366 |
delete _reached; |
366 | 367 |
local_reached=false; |
367 | 368 |
} |
368 | 369 |
_reached = &m; |
369 | 370 |
return *this; |
370 | 371 |
} |
371 | 372 |
|
372 | 373 |
///Sets the map that indicates which nodes are processed. |
373 | 374 |
|
374 | 375 |
///Sets the map that indicates which nodes are processed. |
375 | 376 |
///If you don't use this function before calling \ref run(Node) "run()" |
376 | 377 |
///or \ref init(), an instance will be allocated automatically. |
377 | 378 |
///The destructor deallocates this automatically allocated map, |
378 | 379 |
///of course. |
379 | 380 |
///\return <tt> (*this) </tt> |
380 | 381 |
Dfs &processedMap(ProcessedMap &m) |
381 | 382 |
{ |
382 | 383 |
if(local_processed) { |
383 | 384 |
delete _processed; |
384 | 385 |
local_processed=false; |
385 | 386 |
} |
386 | 387 |
_processed = &m; |
387 | 388 |
return *this; |
388 | 389 |
} |
389 | 390 |
|
390 | 391 |
///Sets the map that stores the distances of the nodes. |
391 | 392 |
|
392 | 393 |
///Sets the map that stores the distances of the nodes calculated by |
393 | 394 |
///the algorithm. |
394 | 395 |
///If you don't use this function before calling \ref run(Node) "run()" |
395 | 396 |
///or \ref init(), an instance will be allocated automatically. |
396 | 397 |
///The destructor deallocates this automatically allocated map, |
397 | 398 |
///of course. |
398 | 399 |
///\return <tt> (*this) </tt> |
399 | 400 |
Dfs &distMap(DistMap &m) |
400 | 401 |
{ |
401 | 402 |
if(local_dist) { |
402 | 403 |
delete _dist; |
403 | 404 |
local_dist=false; |
404 | 405 |
} |
405 | 406 |
_dist = &m; |
406 | 407 |
return *this; |
407 | 408 |
} |
408 | 409 |
|
409 | 410 |
public: |
410 | 411 |
|
411 | 412 |
///\name Execution Control |
412 | 413 |
///The simplest way to execute the DFS algorithm is to use one of the |
413 | 414 |
///member functions called \ref run(Node) "run()".\n |
414 |
///If you need more control on the execution, first you have to call |
|
415 |
///\ref init(), then you can add a source node with \ref addSource() |
|
415 |
///If you need better control on the execution, you have to call |
|
416 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
416 | 417 |
///and perform the actual computation with \ref start(). |
417 | 418 |
///This procedure can be repeated if there are nodes that have not |
418 | 419 |
///been reached. |
419 | 420 |
|
420 | 421 |
///@{ |
421 | 422 |
|
422 | 423 |
///\brief Initializes the internal data structures. |
423 | 424 |
/// |
424 | 425 |
///Initializes the internal data structures. |
425 | 426 |
void init() |
426 | 427 |
{ |
427 | 428 |
create_maps(); |
428 | 429 |
_stack.resize(countNodes(*G)); |
429 | 430 |
_stack_head=-1; |
430 | 431 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
431 | 432 |
_pred->set(u,INVALID); |
432 | 433 |
_reached->set(u,false); |
433 | 434 |
_processed->set(u,false); |
434 | 435 |
} |
435 | 436 |
} |
436 | 437 |
|
437 | 438 |
///Adds a new source node. |
438 | 439 |
|
439 | 440 |
///Adds a new source node to the set of nodes to be processed. |
440 | 441 |
/// |
441 | 442 |
///\pre The stack must be empty. Otherwise the algorithm gives |
442 | 443 |
///wrong results. (One of the outgoing arcs of all the source nodes |
443 | 444 |
///except for the last one will not be visited and distances will |
444 | 445 |
///also be wrong.) |
445 | 446 |
void addSource(Node s) |
446 | 447 |
{ |
447 | 448 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
448 | 449 |
if(!(*_reached)[s]) |
449 | 450 |
{ |
450 | 451 |
_reached->set(s,true); |
451 | 452 |
_pred->set(s,INVALID); |
452 | 453 |
OutArcIt e(*G,s); |
453 | 454 |
if(e!=INVALID) { |
454 | 455 |
_stack[++_stack_head]=e; |
455 | 456 |
_dist->set(s,_stack_head); |
456 | 457 |
} |
457 | 458 |
else { |
458 | 459 |
_processed->set(s,true); |
459 | 460 |
_dist->set(s,0); |
460 | 461 |
} |
461 | 462 |
} |
462 | 463 |
} |
463 | 464 |
|
464 | 465 |
///Processes the next arc. |
465 | 466 |
|
466 | 467 |
///Processes the next arc. |
467 | 468 |
/// |
468 | 469 |
///\return The processed arc. |
469 | 470 |
/// |
470 | 471 |
///\pre The stack must not be empty. |
471 | 472 |
Arc processNextArc() |
472 | 473 |
{ |
473 | 474 |
Node m; |
474 | 475 |
Arc e=_stack[_stack_head]; |
475 | 476 |
if(!(*_reached)[m=G->target(e)]) { |
476 | 477 |
_pred->set(m,e); |
477 | 478 |
_reached->set(m,true); |
478 | 479 |
++_stack_head; |
479 | 480 |
_stack[_stack_head] = OutArcIt(*G, m); |
480 | 481 |
_dist->set(m,_stack_head); |
481 | 482 |
} |
482 | 483 |
else { |
483 | 484 |
m=G->source(e); |
484 | 485 |
++_stack[_stack_head]; |
485 | 486 |
} |
486 | 487 |
while(_stack_head>=0 && _stack[_stack_head]==INVALID) { |
487 | 488 |
_processed->set(m,true); |
488 | 489 |
--_stack_head; |
489 | 490 |
if(_stack_head>=0) { |
490 | 491 |
m=G->source(_stack[_stack_head]); |
491 | 492 |
++_stack[_stack_head]; |
492 | 493 |
} |
493 | 494 |
} |
494 | 495 |
return e; |
495 | 496 |
} |
496 | 497 |
|
497 | 498 |
///Next arc to be processed. |
498 | 499 |
|
499 | 500 |
///Next arc to be processed. |
500 | 501 |
/// |
501 | 502 |
///\return The next arc to be processed or \c INVALID if the stack |
502 | 503 |
///is empty. |
503 | 504 |
OutArcIt nextArc() const |
504 | 505 |
{ |
505 | 506 |
return _stack_head>=0?_stack[_stack_head]:INVALID; |
506 | 507 |
} |
507 | 508 |
|
508 | 509 |
///Returns \c false if there are nodes to be processed. |
509 | 510 |
|
510 | 511 |
///Returns \c false if there are nodes to be processed |
511 | 512 |
///in the queue (stack). |
512 | 513 |
bool emptyQueue() const { return _stack_head<0; } |
513 | 514 |
|
514 | 515 |
///Returns the number of the nodes to be processed. |
515 | 516 |
|
516 | 517 |
///Returns the number of the nodes to be processed |
517 | 518 |
///in the queue (stack). |
518 | 519 |
int queueSize() const { return _stack_head+1; } |
519 | 520 |
|
520 | 521 |
///Executes the algorithm. |
521 | 522 |
|
522 | 523 |
///Executes the algorithm. |
523 | 524 |
/// |
524 | 525 |
///This method runs the %DFS algorithm from the root node |
525 | 526 |
///in order to compute the DFS path to each node. |
526 | 527 |
/// |
527 | 528 |
/// The algorithm computes |
528 | 529 |
///- the %DFS tree, |
529 | 530 |
///- the distance of each node from the root in the %DFS tree. |
530 | 531 |
/// |
531 | 532 |
///\pre init() must be called and a root node should be |
532 | 533 |
///added with addSource() before using this function. |
533 | 534 |
/// |
534 | 535 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
535 | 536 |
///\code |
536 | 537 |
/// while ( !d.emptyQueue() ) { |
537 | 538 |
/// d.processNextArc(); |
538 | 539 |
/// } |
539 | 540 |
///\endcode |
540 | 541 |
void start() |
541 | 542 |
{ |
542 | 543 |
while ( !emptyQueue() ) processNextArc(); |
543 | 544 |
} |
544 | 545 |
|
545 | 546 |
///Executes the algorithm until the given target node is reached. |
546 | 547 |
|
547 | 548 |
///Executes the algorithm until the given target node is reached. |
548 | 549 |
/// |
549 | 550 |
///This method runs the %DFS algorithm from the root node |
550 | 551 |
///in order to compute the DFS path to \c t. |
551 | 552 |
/// |
552 | 553 |
///The algorithm computes |
553 | 554 |
///- the %DFS path to \c t, |
554 | 555 |
///- the distance of \c t from the root in the %DFS tree. |
555 | 556 |
/// |
556 | 557 |
///\pre init() must be called and a root node should be |
557 | 558 |
///added with addSource() before using this function. |
558 | 559 |
void start(Node t) |
559 | 560 |
{ |
560 | 561 |
while ( !emptyQueue() && G->target(_stack[_stack_head])!=t ) |
561 | 562 |
processNextArc(); |
562 | 563 |
} |
563 | 564 |
|
564 | 565 |
///Executes the algorithm until a condition is met. |
565 | 566 |
|
566 | 567 |
///Executes the algorithm until a condition is met. |
567 | 568 |
/// |
568 | 569 |
///This method runs the %DFS algorithm from the root node |
569 | 570 |
///until an arc \c a with <tt>am[a]</tt> true is found. |
570 | 571 |
/// |
571 | 572 |
///\param am A \c bool (or convertible) arc map. The algorithm |
572 | 573 |
///will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
573 | 574 |
/// |
574 | 575 |
///\return The reached arc \c a with <tt>am[a]</tt> true or |
575 | 576 |
///\c INVALID if no such arc was found. |
576 | 577 |
/// |
577 | 578 |
///\pre init() must be called and a root node should be |
578 | 579 |
///added with addSource() before using this function. |
579 | 580 |
/// |
580 | 581 |
///\warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
581 | 582 |
///not a node map. |
582 | 583 |
template<class ArcBoolMap> |
583 | 584 |
Arc start(const ArcBoolMap &am) |
584 | 585 |
{ |
585 | 586 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
586 | 587 |
processNextArc(); |
587 | 588 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
588 | 589 |
} |
589 | 590 |
|
590 | 591 |
///Runs the algorithm from the given source node. |
591 | 592 |
|
592 | 593 |
///This method runs the %DFS algorithm from node \c s |
593 | 594 |
///in order to compute the DFS path to each node. |
594 | 595 |
/// |
595 | 596 |
///The algorithm computes |
596 | 597 |
///- the %DFS tree, |
597 | 598 |
///- the distance of each node from the root in the %DFS tree. |
598 | 599 |
/// |
599 | 600 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
600 | 601 |
///\code |
601 | 602 |
/// d.init(); |
602 | 603 |
/// d.addSource(s); |
603 | 604 |
/// d.start(); |
604 | 605 |
///\endcode |
605 | 606 |
void run(Node s) { |
606 | 607 |
init(); |
607 | 608 |
addSource(s); |
608 | 609 |
start(); |
609 | 610 |
} |
610 | 611 |
|
611 | 612 |
///Finds the %DFS path between \c s and \c t. |
612 | 613 |
|
613 | 614 |
///This method runs the %DFS algorithm from node \c s |
614 | 615 |
///in order to compute the DFS path to node \c t |
615 | 616 |
///(it stops searching when \c t is processed) |
616 | 617 |
/// |
617 | 618 |
///\return \c true if \c t is reachable form \c s. |
618 | 619 |
/// |
619 | 620 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is |
620 | 621 |
///just a shortcut of the following code. |
621 | 622 |
///\code |
622 | 623 |
/// d.init(); |
623 | 624 |
/// d.addSource(s); |
624 | 625 |
/// d.start(t); |
625 | 626 |
///\endcode |
626 | 627 |
bool run(Node s,Node t) { |
627 | 628 |
init(); |
628 | 629 |
addSource(s); |
629 | 630 |
start(t); |
630 | 631 |
return reached(t); |
631 | 632 |
} |
632 | 633 |
|
633 | 634 |
///Runs the algorithm to visit all nodes in the digraph. |
634 | 635 |
|
635 | 636 |
///This method runs the %DFS algorithm in order to compute the |
636 | 637 |
///%DFS path to each node. |
637 | 638 |
/// |
638 | 639 |
///The algorithm computes |
639 | 640 |
///- the %DFS tree (forest), |
640 | 641 |
///- the distance of each node from the root(s) in the %DFS tree. |
641 | 642 |
/// |
642 | 643 |
///\note <tt>d.run()</tt> is just a shortcut of the following code. |
643 | 644 |
///\code |
644 | 645 |
/// d.init(); |
645 | 646 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
646 | 647 |
/// if (!d.reached(n)) { |
647 | 648 |
/// d.addSource(n); |
648 | 649 |
/// d.start(); |
649 | 650 |
/// } |
650 | 651 |
/// } |
651 | 652 |
///\endcode |
652 | 653 |
void run() { |
653 | 654 |
init(); |
654 | 655 |
for (NodeIt it(*G); it != INVALID; ++it) { |
655 | 656 |
if (!reached(it)) { |
656 | 657 |
addSource(it); |
657 | 658 |
start(); |
658 | 659 |
} |
659 | 660 |
} |
660 | 661 |
} |
661 | 662 |
|
662 | 663 |
///@} |
663 | 664 |
|
664 | 665 |
///\name Query Functions |
665 | 666 |
///The results of the DFS algorithm can be obtained using these |
666 | 667 |
///functions.\n |
667 | 668 |
///Either \ref run(Node) "run()" or \ref start() should be called |
668 | 669 |
///before using them. |
669 | 670 |
|
670 | 671 |
///@{ |
671 | 672 |
|
672 |
///The DFS path to |
|
673 |
///The DFS path to the given node. |
|
673 | 674 |
|
674 |
///Returns the DFS path to |
|
675 |
///Returns the DFS path to the given node from the root(s). |
|
675 | 676 |
/// |
676 | 677 |
///\warning \c t should be reached from the root(s). |
677 | 678 |
/// |
678 | 679 |
///\pre Either \ref run(Node) "run()" or \ref init() |
679 | 680 |
///must be called before using this function. |
680 | 681 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
681 | 682 |
|
682 |
///The distance of |
|
683 |
///The distance of the given node from the root(s). |
|
683 | 684 |
|
684 |
///Returns the distance of |
|
685 |
///Returns the distance of the given node from the root(s). |
|
685 | 686 |
/// |
686 | 687 |
///\warning If node \c v is not reached from the root(s), then |
687 | 688 |
///the return value of this function is undefined. |
688 | 689 |
/// |
689 | 690 |
///\pre Either \ref run(Node) "run()" or \ref init() |
690 | 691 |
///must be called before using this function. |
691 | 692 |
int dist(Node v) const { return (*_dist)[v]; } |
692 | 693 |
|
693 |
///Returns the 'previous arc' of the %DFS tree for |
|
694 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
|
694 | 695 |
|
695 | 696 |
///This function returns the 'previous arc' of the %DFS tree for the |
696 | 697 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
697 | 698 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
698 | 699 |
///root(s) or if \c v is a root. |
699 | 700 |
/// |
700 | 701 |
///The %DFS tree used here is equal to the %DFS tree used in |
701 |
///\ref predNode(). |
|
702 |
///\ref predNode() and \ref predMap(). |
|
702 | 703 |
/// |
703 | 704 |
///\pre Either \ref run(Node) "run()" or \ref init() |
704 | 705 |
///must be called before using this function. |
705 | 706 |
Arc predArc(Node v) const { return (*_pred)[v];} |
706 | 707 |
|
707 |
///Returns the 'previous node' of the %DFS tree. |
|
708 |
///Returns the 'previous node' of the %DFS tree for the given node. |
|
708 | 709 |
|
709 | 710 |
///This function returns the 'previous node' of the %DFS |
710 | 711 |
///tree for the node \c v, i.e. it returns the last but one node |
711 |
/// |
|
712 |
///of a %DFS path from a root to \c v. It is \c INVALID |
|
712 | 713 |
///if \c v is not reached from the root(s) or if \c v is a root. |
713 | 714 |
/// |
714 | 715 |
///The %DFS tree used here is equal to the %DFS tree used in |
715 |
///\ref predArc(). |
|
716 |
///\ref predArc() and \ref predMap(). |
|
716 | 717 |
/// |
717 | 718 |
///\pre Either \ref run(Node) "run()" or \ref init() |
718 | 719 |
///must be called before using this function. |
719 | 720 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
720 | 721 |
G->source((*_pred)[v]); } |
721 | 722 |
|
722 | 723 |
///\brief Returns a const reference to the node map that stores the |
723 | 724 |
///distances of the nodes. |
724 | 725 |
/// |
725 | 726 |
///Returns a const reference to the node map that stores the |
726 | 727 |
///distances of the nodes calculated by the algorithm. |
727 | 728 |
/// |
728 | 729 |
///\pre Either \ref run(Node) "run()" or \ref init() |
729 | 730 |
///must be called before using this function. |
730 | 731 |
const DistMap &distMap() const { return *_dist;} |
731 | 732 |
|
732 | 733 |
///\brief Returns a const reference to the node map that stores the |
733 | 734 |
///predecessor arcs. |
734 | 735 |
/// |
735 | 736 |
///Returns a const reference to the node map that stores the predecessor |
736 |
///arcs, which form the DFS tree. |
|
737 |
///arcs, which form the DFS tree (forest). |
|
737 | 738 |
/// |
738 | 739 |
///\pre Either \ref run(Node) "run()" or \ref init() |
739 | 740 |
///must be called before using this function. |
740 | 741 |
const PredMap &predMap() const { return *_pred;} |
741 | 742 |
|
742 |
///Checks if |
|
743 |
///Checks if the given node. node is reached from the root(s). |
|
743 | 744 |
|
744 | 745 |
///Returns \c true if \c v is reached from the root(s). |
745 | 746 |
/// |
746 | 747 |
///\pre Either \ref run(Node) "run()" or \ref init() |
747 | 748 |
///must be called before using this function. |
748 | 749 |
bool reached(Node v) const { return (*_reached)[v]; } |
749 | 750 |
|
750 | 751 |
///@} |
751 | 752 |
}; |
752 | 753 |
|
753 | 754 |
///Default traits class of dfs() function. |
754 | 755 |
|
755 | 756 |
///Default traits class of dfs() function. |
756 | 757 |
///\tparam GR Digraph type. |
757 | 758 |
template<class GR> |
758 | 759 |
struct DfsWizardDefaultTraits |
759 | 760 |
{ |
760 | 761 |
///The type of the digraph the algorithm runs on. |
761 | 762 |
typedef GR Digraph; |
762 | 763 |
|
763 | 764 |
///\brief The type of the map that stores the predecessor |
764 | 765 |
///arcs of the %DFS paths. |
765 | 766 |
/// |
766 | 767 |
///The type of the map that stores the predecessor |
767 | 768 |
///arcs of the %DFS paths. |
768 |
///It must |
|
769 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
769 | 770 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
770 | 771 |
///Instantiates a PredMap. |
771 | 772 |
|
772 | 773 |
///This function instantiates a PredMap. |
773 | 774 |
///\param g is the digraph, to which we would like to define the |
774 | 775 |
///PredMap. |
775 | 776 |
static PredMap *createPredMap(const Digraph &g) |
776 | 777 |
{ |
777 | 778 |
return new PredMap(g); |
778 | 779 |
} |
779 | 780 |
|
780 | 781 |
///The type of the map that indicates which nodes are processed. |
781 | 782 |
|
782 | 783 |
///The type of the map that indicates which nodes are processed. |
783 |
///It must |
|
784 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
784 | 785 |
///By default it is a NullMap. |
785 | 786 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
786 | 787 |
///Instantiates a ProcessedMap. |
787 | 788 |
|
788 | 789 |
///This function instantiates a ProcessedMap. |
789 | 790 |
///\param g is the digraph, to which |
790 | 791 |
///we would like to define the ProcessedMap. |
791 | 792 |
#ifdef DOXYGEN |
792 | 793 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
793 | 794 |
#else |
794 | 795 |
static ProcessedMap *createProcessedMap(const Digraph &) |
795 | 796 |
#endif |
796 | 797 |
{ |
797 | 798 |
return new ProcessedMap(); |
798 | 799 |
} |
799 | 800 |
|
800 | 801 |
///The type of the map that indicates which nodes are reached. |
801 | 802 |
|
802 | 803 |
///The type of the map that indicates which nodes are reached. |
803 |
///It must |
|
804 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
804 | 805 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
805 | 806 |
///Instantiates a ReachedMap. |
806 | 807 |
|
807 | 808 |
///This function instantiates a ReachedMap. |
808 | 809 |
///\param g is the digraph, to which |
809 | 810 |
///we would like to define the ReachedMap. |
810 | 811 |
static ReachedMap *createReachedMap(const Digraph &g) |
811 | 812 |
{ |
812 | 813 |
return new ReachedMap(g); |
813 | 814 |
} |
814 | 815 |
|
815 | 816 |
///The type of the map that stores the distances of the nodes. |
816 | 817 |
|
817 | 818 |
///The type of the map that stores the distances of the nodes. |
818 |
///It must |
|
819 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
819 | 820 |
typedef typename Digraph::template NodeMap<int> DistMap; |
820 | 821 |
///Instantiates a DistMap. |
821 | 822 |
|
822 | 823 |
///This function instantiates a DistMap. |
823 | 824 |
///\param g is the digraph, to which we would like to define |
824 | 825 |
///the DistMap |
825 | 826 |
static DistMap *createDistMap(const Digraph &g) |
826 | 827 |
{ |
827 | 828 |
return new DistMap(g); |
828 | 829 |
} |
829 | 830 |
|
830 | 831 |
///The type of the DFS paths. |
831 | 832 |
|
832 | 833 |
///The type of the DFS paths. |
833 |
///It must |
|
834 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
834 | 835 |
typedef lemon::Path<Digraph> Path; |
835 | 836 |
}; |
836 | 837 |
|
837 | 838 |
/// Default traits class used by DfsWizard |
838 | 839 |
|
839 |
/// To make it easier to use Dfs algorithm |
|
840 |
/// we have created a wizard class. |
|
841 |
/// This \ref DfsWizard class needs default traits, |
|
842 |
/// as well as the \ref Dfs class. |
|
843 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
|
844 |
/// \ref DfsWizard class. |
|
840 |
/// Default traits class used by DfsWizard. |
|
841 |
/// \tparam GR The type of the digraph. |
|
845 | 842 |
template<class GR> |
846 | 843 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
847 | 844 |
{ |
848 | 845 |
|
849 | 846 |
typedef DfsWizardDefaultTraits<GR> Base; |
850 | 847 |
protected: |
851 | 848 |
//The type of the nodes in the digraph. |
852 | 849 |
typedef typename Base::Digraph::Node Node; |
853 | 850 |
|
854 | 851 |
//Pointer to the digraph the algorithm runs on. |
855 | 852 |
void *_g; |
856 | 853 |
//Pointer to the map of reached nodes. |
857 | 854 |
void *_reached; |
858 | 855 |
//Pointer to the map of processed nodes. |
859 | 856 |
void *_processed; |
860 | 857 |
//Pointer to the map of predecessors arcs. |
861 | 858 |
void *_pred; |
862 | 859 |
//Pointer to the map of distances. |
863 | 860 |
void *_dist; |
864 | 861 |
//Pointer to the DFS path to the target node. |
865 | 862 |
void *_path; |
866 | 863 |
//Pointer to the distance of the target node. |
867 | 864 |
int *_di; |
868 | 865 |
|
869 | 866 |
public: |
870 | 867 |
/// Constructor. |
871 | 868 |
|
872 |
/// This constructor does not require parameters, |
|
869 |
/// This constructor does not require parameters, it initiates |
|
873 | 870 |
/// all of the attributes to \c 0. |
874 | 871 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
875 | 872 |
_dist(0), _path(0), _di(0) {} |
876 | 873 |
|
877 | 874 |
/// Constructor. |
878 | 875 |
|
879 | 876 |
/// This constructor requires one parameter, |
880 | 877 |
/// others are initiated to \c 0. |
881 | 878 |
/// \param g The digraph the algorithm runs on. |
882 | 879 |
DfsWizardBase(const GR &g) : |
883 | 880 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
884 | 881 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
885 | 882 |
|
886 | 883 |
}; |
887 | 884 |
|
888 | 885 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
889 | 886 |
|
890 | 887 |
/// This auxiliary class is created to implement the |
891 | 888 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
892 | 889 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
893 | 890 |
/// functions and features of the plain \ref Dfs. |
894 | 891 |
/// |
895 | 892 |
/// This class should only be used through the \ref dfs() function, |
896 | 893 |
/// which makes it easier to use the algorithm. |
897 | 894 |
template<class TR> |
898 | 895 |
class DfsWizard : public TR |
899 | 896 |
{ |
900 | 897 |
typedef TR Base; |
901 | 898 |
|
902 |
///The type of the digraph the algorithm runs on. |
|
903 | 899 |
typedef typename TR::Digraph Digraph; |
904 | 900 |
|
905 | 901 |
typedef typename Digraph::Node Node; |
906 | 902 |
typedef typename Digraph::NodeIt NodeIt; |
907 | 903 |
typedef typename Digraph::Arc Arc; |
908 | 904 |
typedef typename Digraph::OutArcIt OutArcIt; |
909 | 905 |
|
910 |
///\brief The type of the map that stores the predecessor |
|
911 |
///arcs of the DFS paths. |
|
912 | 906 |
typedef typename TR::PredMap PredMap; |
913 |
///\brief The type of the map that stores the distances of the nodes. |
|
914 | 907 |
typedef typename TR::DistMap DistMap; |
915 |
///\brief The type of the map that indicates which nodes are reached. |
|
916 | 908 |
typedef typename TR::ReachedMap ReachedMap; |
917 |
///\brief The type of the map that indicates which nodes are processed. |
|
918 | 909 |
typedef typename TR::ProcessedMap ProcessedMap; |
919 |
///The type of the DFS paths |
|
920 | 910 |
typedef typename TR::Path Path; |
921 | 911 |
|
922 | 912 |
public: |
923 | 913 |
|
924 | 914 |
/// Constructor. |
925 | 915 |
DfsWizard() : TR() {} |
926 | 916 |
|
927 | 917 |
/// Constructor that requires parameters. |
928 | 918 |
|
929 | 919 |
/// Constructor that requires parameters. |
930 | 920 |
/// These parameters will be the default values for the traits class. |
931 | 921 |
/// \param g The digraph the algorithm runs on. |
932 | 922 |
DfsWizard(const Digraph &g) : |
933 | 923 |
TR(g) {} |
934 | 924 |
|
935 | 925 |
///Copy constructor |
936 | 926 |
DfsWizard(const TR &b) : TR(b) {} |
937 | 927 |
|
938 | 928 |
~DfsWizard() {} |
939 | 929 |
|
940 | 930 |
///Runs DFS algorithm from the given source node. |
941 | 931 |
|
942 | 932 |
///This method runs DFS algorithm from node \c s |
943 | 933 |
///in order to compute the DFS path to each node. |
944 | 934 |
void run(Node s) |
945 | 935 |
{ |
946 | 936 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
947 | 937 |
if (Base::_pred) |
948 | 938 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
949 | 939 |
if (Base::_dist) |
950 | 940 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
951 | 941 |
if (Base::_reached) |
952 | 942 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
953 | 943 |
if (Base::_processed) |
954 | 944 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
955 | 945 |
if (s!=INVALID) |
956 | 946 |
alg.run(s); |
957 | 947 |
else |
958 | 948 |
alg.run(); |
959 | 949 |
} |
960 | 950 |
|
961 | 951 |
///Finds the DFS path between \c s and \c t. |
962 | 952 |
|
963 | 953 |
///This method runs DFS algorithm from node \c s |
964 | 954 |
///in order to compute the DFS path to node \c t |
965 | 955 |
///(it stops searching when \c t is processed). |
966 | 956 |
/// |
967 | 957 |
///\return \c true if \c t is reachable form \c s. |
968 | 958 |
bool run(Node s, Node t) |
969 | 959 |
{ |
970 | 960 |
Dfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
971 | 961 |
if (Base::_pred) |
972 | 962 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
973 | 963 |
if (Base::_dist) |
974 | 964 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
975 | 965 |
if (Base::_reached) |
976 | 966 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
977 | 967 |
if (Base::_processed) |
978 | 968 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
979 | 969 |
alg.run(s,t); |
980 | 970 |
if (Base::_path) |
981 | 971 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
982 | 972 |
if (Base::_di) |
983 | 973 |
*Base::_di = alg.dist(t); |
984 | 974 |
return alg.reached(t); |
985 | 975 |
} |
986 | 976 |
|
987 | 977 |
///Runs DFS algorithm to visit all nodes in the digraph. |
988 | 978 |
|
989 | 979 |
///This method runs DFS algorithm in order to compute |
990 | 980 |
///the DFS path to each node. |
991 | 981 |
void run() |
992 | 982 |
{ |
993 | 983 |
run(INVALID); |
994 | 984 |
} |
995 | 985 |
|
996 | 986 |
template<class T> |
997 | 987 |
struct SetPredMapBase : public Base { |
998 | 988 |
typedef T PredMap; |
999 | 989 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1000 | 990 |
SetPredMapBase(const TR &b) : TR(b) {} |
1001 | 991 |
}; |
1002 |
///\brief \ref named-func-param "Named parameter" |
|
1003 |
///for setting PredMap object. |
|
992 |
|
|
993 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
994 |
///the predecessor map. |
|
1004 | 995 |
/// |
1005 |
///\ref named-func-param "Named parameter" |
|
1006 |
///for setting PredMap object. |
|
996 |
///\ref named-templ-param "Named parameter" function for setting |
|
997 |
///the map that stores the predecessor arcs of the nodes. |
|
1007 | 998 |
template<class T> |
1008 | 999 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1009 | 1000 |
{ |
1010 | 1001 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1011 | 1002 |
return DfsWizard<SetPredMapBase<T> >(*this); |
1012 | 1003 |
} |
1013 | 1004 |
|
1014 | 1005 |
template<class T> |
1015 | 1006 |
struct SetReachedMapBase : public Base { |
1016 | 1007 |
typedef T ReachedMap; |
1017 | 1008 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1018 | 1009 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1019 | 1010 |
}; |
1020 |
///\brief \ref named-func-param "Named parameter" |
|
1021 |
///for setting ReachedMap object. |
|
1011 |
|
|
1012 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1013 |
///the reached map. |
|
1022 | 1014 |
/// |
1023 |
/// \ref named-func-param "Named parameter" |
|
1024 |
///for setting ReachedMap object. |
|
1015 |
///\ref named-templ-param "Named parameter" function for setting |
|
1016 |
///the map that indicates which nodes are reached. |
|
1025 | 1017 |
template<class T> |
1026 | 1018 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1027 | 1019 |
{ |
1028 | 1020 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1029 | 1021 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
1030 | 1022 |
} |
1031 | 1023 |
|
1032 | 1024 |
template<class T> |
1033 | 1025 |
struct SetDistMapBase : public Base { |
1034 | 1026 |
typedef T DistMap; |
1035 | 1027 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1036 | 1028 |
SetDistMapBase(const TR &b) : TR(b) {} |
1037 | 1029 |
}; |
1038 |
///\brief \ref named-func-param "Named parameter" |
|
1039 |
///for setting DistMap object. |
|
1030 |
|
|
1031 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1032 |
///the distance map. |
|
1040 | 1033 |
/// |
1041 |
/// \ref named-func-param "Named parameter" |
|
1042 |
///for setting DistMap object. |
|
1034 |
///\ref named-templ-param "Named parameter" function for setting |
|
1035 |
///the map that stores the distances of the nodes calculated |
|
1036 |
///by the algorithm. |
|
1043 | 1037 |
template<class T> |
1044 | 1038 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1045 | 1039 |
{ |
1046 | 1040 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1047 | 1041 |
return DfsWizard<SetDistMapBase<T> >(*this); |
1048 | 1042 |
} |
1049 | 1043 |
|
1050 | 1044 |
template<class T> |
1051 | 1045 |
struct SetProcessedMapBase : public Base { |
1052 | 1046 |
typedef T ProcessedMap; |
1053 | 1047 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1054 | 1048 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1055 | 1049 |
}; |
1056 |
///\brief \ref named-func-param "Named parameter" |
|
1057 |
///for setting ProcessedMap object. |
|
1050 |
|
|
1051 |
///\brief \ref named-func-param "Named parameter" for setting |
|
1052 |
///the processed map. |
|
1058 | 1053 |
/// |
1059 |
/// \ref named-func-param "Named parameter" |
|
1060 |
///for setting ProcessedMap object. |
|
1054 |
///\ref named-templ-param "Named parameter" function for setting |
|
1055 |
///the map that indicates which nodes are processed. |
|
1061 | 1056 |
template<class T> |
1062 | 1057 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1063 | 1058 |
{ |
1064 | 1059 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1065 | 1060 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
1066 | 1061 |
} |
1067 | 1062 |
|
1068 | 1063 |
template<class T> |
1069 | 1064 |
struct SetPathBase : public Base { |
1070 | 1065 |
typedef T Path; |
1071 | 1066 |
SetPathBase(const TR &b) : TR(b) {} |
1072 | 1067 |
}; |
1073 | 1068 |
///\brief \ref named-func-param "Named parameter" |
1074 | 1069 |
///for getting the DFS path to the target node. |
1075 | 1070 |
/// |
1076 | 1071 |
///\ref named-func-param "Named parameter" |
1077 | 1072 |
///for getting the DFS path to the target node. |
1078 | 1073 |
template<class T> |
1079 | 1074 |
DfsWizard<SetPathBase<T> > path(const T &t) |
1080 | 1075 |
{ |
1081 | 1076 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1082 | 1077 |
return DfsWizard<SetPathBase<T> >(*this); |
1083 | 1078 |
} |
1084 | 1079 |
|
1085 | 1080 |
///\brief \ref named-func-param "Named parameter" |
1086 | 1081 |
///for getting the distance of the target node. |
1087 | 1082 |
/// |
1088 | 1083 |
///\ref named-func-param "Named parameter" |
1089 | 1084 |
///for getting the distance of the target node. |
1090 | 1085 |
DfsWizard dist(const int &d) |
1091 | 1086 |
{ |
1092 | 1087 |
Base::_di=const_cast<int*>(&d); |
1093 | 1088 |
return *this; |
1094 | 1089 |
} |
1095 | 1090 |
|
1096 | 1091 |
}; |
1097 | 1092 |
|
1098 | 1093 |
///Function-type interface for DFS algorithm. |
1099 | 1094 |
|
1100 | 1095 |
///\ingroup search |
1101 | 1096 |
///Function-type interface for DFS algorithm. |
1102 | 1097 |
/// |
1103 | 1098 |
///This function also has several \ref named-func-param "named parameters", |
1104 | 1099 |
///they are declared as the members of class \ref DfsWizard. |
1105 | 1100 |
///The following examples show how to use these parameters. |
1106 | 1101 |
///\code |
1107 | 1102 |
/// // Compute the DFS tree |
1108 | 1103 |
/// dfs(g).predMap(preds).distMap(dists).run(s); |
1109 | 1104 |
/// |
1110 | 1105 |
/// // Compute the DFS path from s to t |
1111 | 1106 |
/// bool reached = dfs(g).path(p).dist(d).run(s,t); |
1112 | 1107 |
///\endcode |
1113 | 1108 |
///\warning Don't forget to put the \ref DfsWizard::run(Node) "run()" |
1114 | 1109 |
///to the end of the parameter list. |
1115 | 1110 |
///\sa DfsWizard |
1116 | 1111 |
///\sa Dfs |
1117 | 1112 |
template<class GR> |
1118 | 1113 |
DfsWizard<DfsWizardBase<GR> > |
1119 | 1114 |
dfs(const GR &digraph) |
1120 | 1115 |
{ |
1121 | 1116 |
return DfsWizard<DfsWizardBase<GR> >(digraph); |
1122 | 1117 |
} |
1123 | 1118 |
|
1124 | 1119 |
#ifdef DOXYGEN |
1125 | 1120 |
/// \brief Visitor class for DFS. |
1126 | 1121 |
/// |
1127 | 1122 |
/// This class defines the interface of the DfsVisit events, and |
1128 | 1123 |
/// it could be the base of a real visitor class. |
1129 | 1124 |
template <typename GR> |
1130 | 1125 |
struct DfsVisitor { |
1131 | 1126 |
typedef GR Digraph; |
1132 | 1127 |
typedef typename Digraph::Arc Arc; |
1133 | 1128 |
typedef typename Digraph::Node Node; |
1134 | 1129 |
/// \brief Called for the source node of the DFS. |
1135 | 1130 |
/// |
1136 | 1131 |
/// This function is called for the source node of the DFS. |
1137 | 1132 |
void start(const Node& node) {} |
1138 | 1133 |
/// \brief Called when the source node is leaved. |
1139 | 1134 |
/// |
1140 | 1135 |
/// This function is called when the source node is leaved. |
1141 | 1136 |
void stop(const Node& node) {} |
1142 | 1137 |
/// \brief Called when a node is reached first time. |
1143 | 1138 |
/// |
1144 | 1139 |
/// This function is called when a node is reached first time. |
1145 | 1140 |
void reach(const Node& node) {} |
1146 | 1141 |
/// \brief Called when an arc reaches a new node. |
1147 | 1142 |
/// |
1148 | 1143 |
/// This function is called when the DFS finds an arc whose target node |
1149 | 1144 |
/// is not reached yet. |
1150 | 1145 |
void discover(const Arc& arc) {} |
1151 | 1146 |
/// \brief Called when an arc is examined but its target node is |
1152 | 1147 |
/// already discovered. |
1153 | 1148 |
/// |
1154 | 1149 |
/// This function is called when an arc is examined but its target node is |
1155 | 1150 |
/// already discovered. |
1156 | 1151 |
void examine(const Arc& arc) {} |
1157 | 1152 |
/// \brief Called when the DFS steps back from a node. |
1158 | 1153 |
/// |
1159 | 1154 |
/// This function is called when the DFS steps back from a node. |
1160 | 1155 |
void leave(const Node& node) {} |
1161 | 1156 |
/// \brief Called when the DFS steps back on an arc. |
1162 | 1157 |
/// |
1163 | 1158 |
/// This function is called when the DFS steps back on an arc. |
1164 | 1159 |
void backtrack(const Arc& arc) {} |
1165 | 1160 |
}; |
1166 | 1161 |
#else |
1167 | 1162 |
template <typename GR> |
1168 | 1163 |
struct DfsVisitor { |
1169 | 1164 |
typedef GR Digraph; |
1170 | 1165 |
typedef typename Digraph::Arc Arc; |
1171 | 1166 |
typedef typename Digraph::Node Node; |
1172 | 1167 |
void start(const Node&) {} |
1173 | 1168 |
void stop(const Node&) {} |
1174 | 1169 |
void reach(const Node&) {} |
1175 | 1170 |
void discover(const Arc&) {} |
1176 | 1171 |
void examine(const Arc&) {} |
1177 | 1172 |
void leave(const Node&) {} |
1178 | 1173 |
void backtrack(const Arc&) {} |
1179 | 1174 |
|
1180 | 1175 |
template <typename _Visitor> |
1181 | 1176 |
struct Constraints { |
1182 | 1177 |
void constraints() { |
1183 | 1178 |
Arc arc; |
1184 | 1179 |
Node node; |
1185 | 1180 |
visitor.start(node); |
1186 | 1181 |
visitor.stop(arc); |
1187 | 1182 |
visitor.reach(node); |
1188 | 1183 |
visitor.discover(arc); |
1189 | 1184 |
visitor.examine(arc); |
1190 | 1185 |
visitor.leave(node); |
1191 | 1186 |
visitor.backtrack(arc); |
1192 | 1187 |
} |
1193 | 1188 |
_Visitor& visitor; |
1194 | 1189 |
}; |
1195 | 1190 |
}; |
1196 | 1191 |
#endif |
1197 | 1192 |
|
1198 | 1193 |
/// \brief Default traits class of DfsVisit class. |
1199 | 1194 |
/// |
1200 | 1195 |
/// Default traits class of DfsVisit class. |
1201 | 1196 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1202 | 1197 |
template<class GR> |
1203 | 1198 |
struct DfsVisitDefaultTraits { |
1204 | 1199 |
|
1205 | 1200 |
/// \brief The type of the digraph the algorithm runs on. |
1206 | 1201 |
typedef GR Digraph; |
1207 | 1202 |
|
1208 | 1203 |
/// \brief The type of the map that indicates which nodes are reached. |
1209 | 1204 |
/// |
1210 | 1205 |
/// The type of the map that indicates which nodes are reached. |
1211 |
/// It must |
|
1206 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
1212 | 1207 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1213 | 1208 |
|
1214 | 1209 |
/// \brief Instantiates a ReachedMap. |
1215 | 1210 |
/// |
1216 | 1211 |
/// This function instantiates a ReachedMap. |
1217 | 1212 |
/// \param digraph is the digraph, to which |
1218 | 1213 |
/// we would like to define the ReachedMap. |
1219 | 1214 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1220 | 1215 |
return new ReachedMap(digraph); |
1221 | 1216 |
} |
1222 | 1217 |
|
1223 | 1218 |
}; |
1224 | 1219 |
|
1225 | 1220 |
/// \ingroup search |
1226 | 1221 |
/// |
1227 | 1222 |
/// \brief DFS algorithm class with visitor interface. |
1228 | 1223 |
/// |
1229 | 1224 |
/// This class provides an efficient implementation of the DFS algorithm |
1230 | 1225 |
/// with visitor interface. |
1231 | 1226 |
/// |
1232 | 1227 |
/// The DfsVisit class provides an alternative interface to the Dfs |
1233 | 1228 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1234 | 1229 |
/// the member functions of the \c Visitor class on every DFS event. |
1235 | 1230 |
/// |
1236 | 1231 |
/// This interface of the DFS algorithm should be used in special cases |
1237 | 1232 |
/// when extra actions have to be performed in connection with certain |
1238 | 1233 |
/// events of the DFS algorithm. Otherwise consider to use Dfs or dfs() |
1239 | 1234 |
/// instead. |
1240 | 1235 |
/// |
1241 | 1236 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1242 | 1237 |
/// The default type is \ref ListDigraph. |
1243 | 1238 |
/// The value of GR is not used directly by \ref DfsVisit, |
1244 | 1239 |
/// it is only passed to \ref DfsVisitDefaultTraits. |
1245 | 1240 |
/// \tparam VS The Visitor type that is used by the algorithm. |
1246 | 1241 |
/// \ref DfsVisitor "DfsVisitor<GR>" is an empty visitor, which |
1247 | 1242 |
/// does not observe the DFS events. If you want to observe the DFS |
1248 | 1243 |
/// events, you should implement your own visitor class. |
1249 | 1244 |
/// \tparam TR Traits class to set various data types used by the |
1250 | 1245 |
/// algorithm. The default traits class is |
1251 | 1246 |
/// \ref DfsVisitDefaultTraits "DfsVisitDefaultTraits<GR>". |
1252 | 1247 |
/// See \ref DfsVisitDefaultTraits for the documentation of |
1253 | 1248 |
/// a DFS visit traits class. |
1254 | 1249 |
#ifdef DOXYGEN |
1255 | 1250 |
template <typename GR, typename VS, typename TR> |
1256 | 1251 |
#else |
1257 | 1252 |
template <typename GR = ListDigraph, |
1258 | 1253 |
typename VS = DfsVisitor<GR>, |
1259 | 1254 |
typename TR = DfsVisitDefaultTraits<GR> > |
1260 | 1255 |
#endif |
1261 | 1256 |
class DfsVisit { |
1262 | 1257 |
public: |
1263 | 1258 |
|
1264 | 1259 |
///The traits class. |
1265 | 1260 |
typedef TR Traits; |
1266 | 1261 |
|
1267 | 1262 |
///The type of the digraph the algorithm runs on. |
1268 | 1263 |
typedef typename Traits::Digraph Digraph; |
1269 | 1264 |
|
1270 | 1265 |
///The visitor type used by the algorithm. |
1271 | 1266 |
typedef VS Visitor; |
1272 | 1267 |
|
1273 | 1268 |
///The type of the map that indicates which nodes are reached. |
1274 | 1269 |
typedef typename Traits::ReachedMap ReachedMap; |
1275 | 1270 |
|
1276 | 1271 |
private: |
1277 | 1272 |
|
1278 | 1273 |
typedef typename Digraph::Node Node; |
1279 | 1274 |
typedef typename Digraph::NodeIt NodeIt; |
1280 | 1275 |
typedef typename Digraph::Arc Arc; |
1281 | 1276 |
typedef typename Digraph::OutArcIt OutArcIt; |
1282 | 1277 |
|
1283 | 1278 |
//Pointer to the underlying digraph. |
1284 | 1279 |
const Digraph *_digraph; |
1285 | 1280 |
//Pointer to the visitor object. |
1286 | 1281 |
Visitor *_visitor; |
1287 | 1282 |
//Pointer to the map of reached status of the nodes. |
1288 | 1283 |
ReachedMap *_reached; |
1289 | 1284 |
//Indicates if _reached is locally allocated (true) or not. |
1290 | 1285 |
bool local_reached; |
1291 | 1286 |
|
1292 | 1287 |
std::vector<typename Digraph::Arc> _stack; |
1293 | 1288 |
int _stack_head; |
1294 | 1289 |
|
1295 | 1290 |
//Creates the maps if necessary. |
1296 | 1291 |
void create_maps() { |
1297 | 1292 |
if(!_reached) { |
1298 | 1293 |
local_reached = true; |
1299 | 1294 |
_reached = Traits::createReachedMap(*_digraph); |
1300 | 1295 |
} |
1301 | 1296 |
} |
1302 | 1297 |
|
1303 | 1298 |
protected: |
1304 | 1299 |
|
1305 | 1300 |
DfsVisit() {} |
1306 | 1301 |
|
1307 | 1302 |
public: |
1308 | 1303 |
|
1309 | 1304 |
typedef DfsVisit Create; |
1310 | 1305 |
|
1311 | 1306 |
/// \name Named Template Parameters |
1312 | 1307 |
|
1313 | 1308 |
///@{ |
1314 | 1309 |
template <class T> |
1315 | 1310 |
struct SetReachedMapTraits : public Traits { |
1316 | 1311 |
typedef T ReachedMap; |
1317 | 1312 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1318 | 1313 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1319 | 1314 |
return 0; // ignore warnings |
1320 | 1315 |
} |
1321 | 1316 |
}; |
1322 | 1317 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1323 | 1318 |
/// ReachedMap type. |
1324 | 1319 |
/// |
1325 | 1320 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1326 | 1321 |
template <class T> |
1327 | 1322 |
struct SetReachedMap : public DfsVisit< Digraph, Visitor, |
1328 | 1323 |
SetReachedMapTraits<T> > { |
1329 | 1324 |
typedef DfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1330 | 1325 |
}; |
1331 | 1326 |
///@} |
1332 | 1327 |
|
1333 | 1328 |
public: |
1334 | 1329 |
|
1335 | 1330 |
/// \brief Constructor. |
1336 | 1331 |
/// |
1337 | 1332 |
/// Constructor. |
1338 | 1333 |
/// |
1339 | 1334 |
/// \param digraph The digraph the algorithm runs on. |
1340 | 1335 |
/// \param visitor The visitor object of the algorithm. |
1341 | 1336 |
DfsVisit(const Digraph& digraph, Visitor& visitor) |
1342 | 1337 |
: _digraph(&digraph), _visitor(&visitor), |
1343 | 1338 |
_reached(0), local_reached(false) {} |
1344 | 1339 |
|
1345 | 1340 |
/// \brief Destructor. |
1346 | 1341 |
~DfsVisit() { |
1347 | 1342 |
if(local_reached) delete _reached; |
1348 | 1343 |
} |
1349 | 1344 |
|
1350 | 1345 |
/// \brief Sets the map that indicates which nodes are reached. |
1351 | 1346 |
/// |
1352 | 1347 |
/// Sets the map that indicates which nodes are reached. |
1353 | 1348 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1354 | 1349 |
/// or \ref init(), an instance will be allocated automatically. |
1355 | 1350 |
/// The destructor deallocates this automatically allocated map, |
1356 | 1351 |
/// of course. |
1357 | 1352 |
/// \return <tt> (*this) </tt> |
1358 | 1353 |
DfsVisit &reachedMap(ReachedMap &m) { |
1359 | 1354 |
if(local_reached) { |
1360 | 1355 |
delete _reached; |
1361 | 1356 |
local_reached=false; |
1362 | 1357 |
} |
1363 | 1358 |
_reached = &m; |
1364 | 1359 |
return *this; |
1365 | 1360 |
} |
1366 | 1361 |
|
1367 | 1362 |
public: |
1368 | 1363 |
|
1369 | 1364 |
/// \name Execution Control |
1370 | 1365 |
/// The simplest way to execute the DFS algorithm is to use one of the |
1371 | 1366 |
/// member functions called \ref run(Node) "run()".\n |
1372 |
/// If you need more control on the execution, first you have to call |
|
1373 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
1367 |
/// If you need better control on the execution, you have to call |
|
1368 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
1374 | 1369 |
/// and perform the actual computation with \ref start(). |
1375 | 1370 |
/// This procedure can be repeated if there are nodes that have not |
1376 | 1371 |
/// been reached. |
1377 | 1372 |
|
1378 | 1373 |
/// @{ |
1379 | 1374 |
|
1380 | 1375 |
/// \brief Initializes the internal data structures. |
1381 | 1376 |
/// |
1382 | 1377 |
/// Initializes the internal data structures. |
1383 | 1378 |
void init() { |
1384 | 1379 |
create_maps(); |
1385 | 1380 |
_stack.resize(countNodes(*_digraph)); |
1386 | 1381 |
_stack_head = -1; |
1387 | 1382 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1388 | 1383 |
_reached->set(u, false); |
1389 | 1384 |
} |
1390 | 1385 |
} |
1391 | 1386 |
|
1392 | 1387 |
/// \brief Adds a new source node. |
1393 | 1388 |
/// |
1394 | 1389 |
/// Adds a new source node to the set of nodes to be processed. |
1395 | 1390 |
/// |
1396 | 1391 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
1397 | 1392 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
1398 | 1393 |
/// except for the last one will not be visited and distances will |
1399 | 1394 |
/// also be wrong.) |
1400 | 1395 |
void addSource(Node s) |
1401 | 1396 |
{ |
1402 | 1397 |
LEMON_DEBUG(emptyQueue(), "The stack is not empty."); |
1403 | 1398 |
if(!(*_reached)[s]) { |
1404 | 1399 |
_reached->set(s,true); |
1405 | 1400 |
_visitor->start(s); |
1406 | 1401 |
_visitor->reach(s); |
1407 | 1402 |
Arc e; |
1408 | 1403 |
_digraph->firstOut(e, s); |
1409 | 1404 |
if (e != INVALID) { |
1410 | 1405 |
_stack[++_stack_head] = e; |
1411 | 1406 |
} else { |
1412 | 1407 |
_visitor->leave(s); |
1413 | 1408 |
_visitor->stop(s); |
1414 | 1409 |
} |
1415 | 1410 |
} |
1416 | 1411 |
} |
1417 | 1412 |
|
1418 | 1413 |
/// \brief Processes the next arc. |
1419 | 1414 |
/// |
1420 | 1415 |
/// Processes the next arc. |
1421 | 1416 |
/// |
1422 | 1417 |
/// \return The processed arc. |
1423 | 1418 |
/// |
1424 | 1419 |
/// \pre The stack must not be empty. |
1425 | 1420 |
Arc processNextArc() { |
1426 | 1421 |
Arc e = _stack[_stack_head]; |
1427 | 1422 |
Node m = _digraph->target(e); |
1428 | 1423 |
if(!(*_reached)[m]) { |
1429 | 1424 |
_visitor->discover(e); |
1430 | 1425 |
_visitor->reach(m); |
1431 | 1426 |
_reached->set(m, true); |
1432 | 1427 |
_digraph->firstOut(_stack[++_stack_head], m); |
1433 | 1428 |
} else { |
1434 | 1429 |
_visitor->examine(e); |
1435 | 1430 |
m = _digraph->source(e); |
1436 | 1431 |
_digraph->nextOut(_stack[_stack_head]); |
1437 | 1432 |
} |
1438 | 1433 |
while (_stack_head>=0 && _stack[_stack_head] == INVALID) { |
1439 | 1434 |
_visitor->leave(m); |
1440 | 1435 |
--_stack_head; |
1441 | 1436 |
if (_stack_head >= 0) { |
1442 | 1437 |
_visitor->backtrack(_stack[_stack_head]); |
1443 | 1438 |
m = _digraph->source(_stack[_stack_head]); |
1444 | 1439 |
_digraph->nextOut(_stack[_stack_head]); |
1445 | 1440 |
} else { |
1446 | 1441 |
_visitor->stop(m); |
1447 | 1442 |
} |
1448 | 1443 |
} |
1449 | 1444 |
return e; |
1450 | 1445 |
} |
1451 | 1446 |
|
1452 | 1447 |
/// \brief Next arc to be processed. |
1453 | 1448 |
/// |
1454 | 1449 |
/// Next arc to be processed. |
1455 | 1450 |
/// |
1456 | 1451 |
/// \return The next arc to be processed or INVALID if the stack is |
1457 | 1452 |
/// empty. |
1458 | 1453 |
Arc nextArc() const { |
1459 | 1454 |
return _stack_head >= 0 ? _stack[_stack_head] : INVALID; |
1460 | 1455 |
} |
1461 | 1456 |
|
1462 | 1457 |
/// \brief Returns \c false if there are nodes |
1463 | 1458 |
/// to be processed. |
1464 | 1459 |
/// |
1465 | 1460 |
/// Returns \c false if there are nodes |
1466 | 1461 |
/// to be processed in the queue (stack). |
1467 | 1462 |
bool emptyQueue() const { return _stack_head < 0; } |
1468 | 1463 |
|
1469 | 1464 |
/// \brief Returns the number of the nodes to be processed. |
1470 | 1465 |
/// |
1471 | 1466 |
/// Returns the number of the nodes to be processed in the queue (stack). |
1472 | 1467 |
int queueSize() const { return _stack_head + 1; } |
1473 | 1468 |
|
1474 | 1469 |
/// \brief Executes the algorithm. |
1475 | 1470 |
/// |
1476 | 1471 |
/// Executes the algorithm. |
1477 | 1472 |
/// |
1478 | 1473 |
/// This method runs the %DFS algorithm from the root node |
1479 | 1474 |
/// in order to compute the %DFS path to each node. |
1480 | 1475 |
/// |
1481 | 1476 |
/// The algorithm computes |
1482 | 1477 |
/// - the %DFS tree, |
1483 | 1478 |
/// - the distance of each node from the root in the %DFS tree. |
1484 | 1479 |
/// |
1485 | 1480 |
/// \pre init() must be called and a root node should be |
1486 | 1481 |
/// added with addSource() before using this function. |
1487 | 1482 |
/// |
1488 | 1483 |
/// \note <tt>d.start()</tt> is just a shortcut of the following code. |
1489 | 1484 |
/// \code |
1490 | 1485 |
/// while ( !d.emptyQueue() ) { |
1491 | 1486 |
/// d.processNextArc(); |
1492 | 1487 |
/// } |
1493 | 1488 |
/// \endcode |
1494 | 1489 |
void start() { |
1495 | 1490 |
while ( !emptyQueue() ) processNextArc(); |
1496 | 1491 |
} |
1497 | 1492 |
|
1498 | 1493 |
/// \brief Executes the algorithm until the given target node is reached. |
1499 | 1494 |
/// |
1500 | 1495 |
/// Executes the algorithm until the given target node is reached. |
1501 | 1496 |
/// |
1502 | 1497 |
/// This method runs the %DFS algorithm from the root node |
1503 | 1498 |
/// in order to compute the DFS path to \c t. |
1504 | 1499 |
/// |
1505 | 1500 |
/// The algorithm computes |
1506 | 1501 |
/// - the %DFS path to \c t, |
1507 | 1502 |
/// - the distance of \c t from the root in the %DFS tree. |
1508 | 1503 |
/// |
1509 | 1504 |
/// \pre init() must be called and a root node should be added |
1510 | 1505 |
/// with addSource() before using this function. |
1511 | 1506 |
void start(Node t) { |
1512 | 1507 |
while ( !emptyQueue() && _digraph->target(_stack[_stack_head]) != t ) |
1513 | 1508 |
processNextArc(); |
1514 | 1509 |
} |
1515 | 1510 |
|
1516 | 1511 |
/// \brief Executes the algorithm until a condition is met. |
1517 | 1512 |
/// |
1518 | 1513 |
/// Executes the algorithm until a condition is met. |
1519 | 1514 |
/// |
1520 | 1515 |
/// This method runs the %DFS algorithm from the root node |
1521 | 1516 |
/// until an arc \c a with <tt>am[a]</tt> true is found. |
1522 | 1517 |
/// |
1523 | 1518 |
/// \param am A \c bool (or convertible) arc map. The algorithm |
1524 | 1519 |
/// will stop when it reaches an arc \c a with <tt>am[a]</tt> true. |
1525 | 1520 |
/// |
1526 | 1521 |
/// \return The reached arc \c a with <tt>am[a]</tt> true or |
1527 | 1522 |
/// \c INVALID if no such arc was found. |
1528 | 1523 |
/// |
1529 | 1524 |
/// \pre init() must be called and a root node should be added |
1530 | 1525 |
/// with addSource() before using this function. |
1531 | 1526 |
/// |
1532 | 1527 |
/// \warning Contrary to \ref Bfs and \ref Dijkstra, \c am is an arc map, |
1533 | 1528 |
/// not a node map. |
1534 | 1529 |
template <typename AM> |
1535 | 1530 |
Arc start(const AM &am) { |
1536 | 1531 |
while ( !emptyQueue() && !am[_stack[_stack_head]] ) |
1537 | 1532 |
processNextArc(); |
1538 | 1533 |
return emptyQueue() ? INVALID : _stack[_stack_head]; |
1539 | 1534 |
} |
1540 | 1535 |
|
1541 | 1536 |
/// \brief Runs the algorithm from the given source node. |
1542 | 1537 |
/// |
1543 | 1538 |
/// This method runs the %DFS algorithm from node \c s. |
1544 | 1539 |
/// in order to compute the DFS path to each node. |
1545 | 1540 |
/// |
1546 | 1541 |
/// The algorithm computes |
1547 | 1542 |
/// - the %DFS tree, |
1548 | 1543 |
/// - the distance of each node from the root in the %DFS tree. |
1549 | 1544 |
/// |
1550 | 1545 |
/// \note <tt>d.run(s)</tt> is just a shortcut of the following code. |
1551 | 1546 |
///\code |
1552 | 1547 |
/// d.init(); |
1553 | 1548 |
/// d.addSource(s); |
1554 | 1549 |
/// d.start(); |
1555 | 1550 |
///\endcode |
1556 | 1551 |
void run(Node s) { |
1557 | 1552 |
init(); |
1558 | 1553 |
addSource(s); |
1559 | 1554 |
start(); |
1560 | 1555 |
} |
1561 | 1556 |
|
1562 | 1557 |
/// \brief Finds the %DFS path between \c s and \c t. |
1563 | 1558 |
|
1564 | 1559 |
/// This method runs the %DFS algorithm from node \c s |
1565 | 1560 |
/// in order to compute the DFS path to node \c t |
1566 | 1561 |
/// (it stops searching when \c t is processed). |
1567 | 1562 |
/// |
1568 | 1563 |
/// \return \c true if \c t is reachable form \c s. |
1569 | 1564 |
/// |
1570 | 1565 |
/// \note Apart from the return value, <tt>d.run(s,t)</tt> is |
1571 | 1566 |
/// just a shortcut of the following code. |
1572 | 1567 |
///\code |
1573 | 1568 |
/// d.init(); |
1574 | 1569 |
/// d.addSource(s); |
1575 | 1570 |
/// d.start(t); |
1576 | 1571 |
///\endcode |
1577 | 1572 |
bool run(Node s,Node t) { |
1578 | 1573 |
init(); |
1579 | 1574 |
addSource(s); |
1580 | 1575 |
start(t); |
1581 | 1576 |
return reached(t); |
1582 | 1577 |
} |
1583 | 1578 |
|
1584 | 1579 |
/// \brief Runs the algorithm to visit all nodes in the digraph. |
1585 | 1580 |
|
1586 | 1581 |
/// This method runs the %DFS algorithm in order to |
1587 | 1582 |
/// compute the %DFS path to each node. |
1588 | 1583 |
/// |
1589 | 1584 |
/// The algorithm computes |
1590 | 1585 |
/// - the %DFS tree (forest), |
1591 | 1586 |
/// - the distance of each node from the root(s) in the %DFS tree. |
1592 | 1587 |
/// |
1593 | 1588 |
/// \note <tt>d.run()</tt> is just a shortcut of the following code. |
1594 | 1589 |
///\code |
1595 | 1590 |
/// d.init(); |
1596 | 1591 |
/// for (NodeIt n(digraph); n != INVALID; ++n) { |
1597 | 1592 |
/// if (!d.reached(n)) { |
1598 | 1593 |
/// d.addSource(n); |
1599 | 1594 |
/// d.start(); |
1600 | 1595 |
/// } |
1601 | 1596 |
/// } |
1602 | 1597 |
///\endcode |
1603 | 1598 |
void run() { |
1604 | 1599 |
init(); |
1605 | 1600 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1606 | 1601 |
if (!reached(it)) { |
1607 | 1602 |
addSource(it); |
1608 | 1603 |
start(); |
1609 | 1604 |
} |
1610 | 1605 |
} |
1611 | 1606 |
} |
1612 | 1607 |
|
1613 | 1608 |
///@} |
1614 | 1609 |
|
1615 | 1610 |
/// \name Query Functions |
1616 | 1611 |
/// The results of the DFS algorithm can be obtained using these |
1617 | 1612 |
/// functions.\n |
1618 | 1613 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1619 | 1614 |
/// before using them. |
1620 | 1615 |
|
1621 | 1616 |
///@{ |
1622 | 1617 |
|
1623 |
/// \brief Checks if |
|
1618 |
/// \brief Checks if the given node is reached from the root(s). |
|
1624 | 1619 |
/// |
1625 | 1620 |
/// Returns \c true if \c v is reached from the root(s). |
1626 | 1621 |
/// |
1627 | 1622 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1628 | 1623 |
/// must be called before using this function. |
1629 | 1624 |
bool reached(Node v) const { return (*_reached)[v]; } |
1630 | 1625 |
|
1631 | 1626 |
///@} |
1632 | 1627 |
|
1633 | 1628 |
}; |
1634 | 1629 |
|
1635 | 1630 |
} //END OF NAMESPACE LEMON |
1636 | 1631 |
|
1637 | 1632 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIJKSTRA_H |
20 | 20 |
#define LEMON_DIJKSTRA_H |
21 | 21 |
|
22 | 22 |
///\ingroup shortest_path |
23 | 23 |
///\file |
24 | 24 |
///\brief Dijkstra algorithm. |
25 | 25 |
|
26 | 26 |
#include <limits> |
27 | 27 |
#include <lemon/list_graph.h> |
28 | 28 |
#include <lemon/bin_heap.h> |
29 | 29 |
#include <lemon/bits/path_dump.h> |
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/error.h> |
32 | 32 |
#include <lemon/maps.h> |
33 | 33 |
#include <lemon/path.h> |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
/// \brief Default operation traits for the Dijkstra algorithm class. |
38 | 38 |
/// |
39 | 39 |
/// This operation traits class defines all computational operations and |
40 | 40 |
/// constants which are used in the Dijkstra algorithm. |
41 | 41 |
template <typename V> |
42 | 42 |
struct DijkstraDefaultOperationTraits { |
43 | 43 |
/// \e |
44 | 44 |
typedef V Value; |
45 | 45 |
/// \brief Gives back the zero value of the type. |
46 | 46 |
static Value zero() { |
47 | 47 |
return static_cast<Value>(0); |
48 | 48 |
} |
49 | 49 |
/// \brief Gives back the sum of the given two elements. |
50 | 50 |
static Value plus(const Value& left, const Value& right) { |
51 | 51 |
return left + right; |
52 | 52 |
} |
53 | 53 |
/// \brief Gives back true only if the first value is less than the second. |
54 | 54 |
static bool less(const Value& left, const Value& right) { |
55 | 55 |
return left < right; |
56 | 56 |
} |
57 | 57 |
}; |
58 | 58 |
|
59 | 59 |
///Default traits class of Dijkstra class. |
60 | 60 |
|
61 | 61 |
///Default traits class of Dijkstra class. |
62 | 62 |
///\tparam GR The type of the digraph. |
63 | 63 |
///\tparam LEN The type of the length map. |
64 | 64 |
template<typename GR, typename LEN> |
65 | 65 |
struct DijkstraDefaultTraits |
66 | 66 |
{ |
67 | 67 |
///The type of the digraph the algorithm runs on. |
68 | 68 |
typedef GR Digraph; |
69 | 69 |
|
70 | 70 |
///The type of the map that stores the arc lengths. |
71 | 71 |
|
72 | 72 |
///The type of the map that stores the arc lengths. |
73 |
///It must |
|
73 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
74 | 74 |
typedef LEN LengthMap; |
75 |
///The type of the |
|
75 |
///The type of the arc lengths. |
|
76 | 76 |
typedef typename LEN::Value Value; |
77 | 77 |
|
78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
79 | 79 |
|
80 | 80 |
/// This class defines the operations that are used in the algorithm. |
81 | 81 |
/// \see DijkstraDefaultOperationTraits |
82 | 82 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
83 | 83 |
|
84 | 84 |
/// The cross reference type used by the heap. |
85 | 85 |
|
86 | 86 |
/// The cross reference type used by the heap. |
87 | 87 |
/// Usually it is \c Digraph::NodeMap<int>. |
88 | 88 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
89 | 89 |
///Instantiates a \c HeapCrossRef. |
90 | 90 |
|
91 | 91 |
///This function instantiates a \ref HeapCrossRef. |
92 | 92 |
/// \param g is the digraph, to which we would like to define the |
93 | 93 |
/// \ref HeapCrossRef. |
94 | 94 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
95 | 95 |
{ |
96 | 96 |
return new HeapCrossRef(g); |
97 | 97 |
} |
98 | 98 |
|
99 | 99 |
///The heap type used by the %Dijkstra algorithm. |
100 | 100 |
|
101 | 101 |
///The heap type used by the Dijkstra algorithm. |
102 | 102 |
/// |
103 | 103 |
///\sa BinHeap |
104 | 104 |
///\sa Dijkstra |
105 | 105 |
typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap; |
106 | 106 |
///Instantiates a \c Heap. |
107 | 107 |
|
108 | 108 |
///This function instantiates a \ref Heap. |
109 | 109 |
static Heap *createHeap(HeapCrossRef& r) |
110 | 110 |
{ |
111 | 111 |
return new Heap(r); |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
///\brief The type of the map that stores the predecessor |
115 | 115 |
///arcs of the shortest paths. |
116 | 116 |
/// |
117 | 117 |
///The type of the map that stores the predecessor |
118 | 118 |
///arcs of the shortest paths. |
119 |
///It must |
|
119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
121 | 121 |
///Instantiates a \c PredMap. |
122 | 122 |
|
123 | 123 |
///This function instantiates a \ref PredMap. |
124 | 124 |
///\param g is the digraph, to which we would like to define the |
125 | 125 |
///\ref PredMap. |
126 | 126 |
static PredMap *createPredMap(const Digraph &g) |
127 | 127 |
{ |
128 | 128 |
return new PredMap(g); |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
///The type of the map that indicates which nodes are processed. |
132 | 132 |
|
133 | 133 |
///The type of the map that indicates which nodes are processed. |
134 |
///It must |
|
134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
135 | 135 |
///By default it is a NullMap. |
136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
137 | 137 |
///Instantiates a \c ProcessedMap. |
138 | 138 |
|
139 | 139 |
///This function instantiates a \ref ProcessedMap. |
140 | 140 |
///\param g is the digraph, to which |
141 | 141 |
///we would like to define the \ref ProcessedMap. |
142 | 142 |
#ifdef DOXYGEN |
143 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
144 | 144 |
#else |
145 | 145 |
static ProcessedMap *createProcessedMap(const Digraph &) |
146 | 146 |
#endif |
147 | 147 |
{ |
148 | 148 |
return new ProcessedMap(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
///The type of the map that stores the distances of the nodes. |
152 | 152 |
|
153 | 153 |
///The type of the map that stores the distances of the nodes. |
154 |
///It must |
|
154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
156 | 156 |
///Instantiates a \c DistMap. |
157 | 157 |
|
158 | 158 |
///This function instantiates a \ref DistMap. |
159 | 159 |
///\param g is the digraph, to which we would like to define |
160 | 160 |
///the \ref DistMap. |
161 | 161 |
static DistMap *createDistMap(const Digraph &g) |
162 | 162 |
{ |
163 | 163 |
return new DistMap(g); |
164 | 164 |
} |
165 | 165 |
}; |
166 | 166 |
|
167 | 167 |
///%Dijkstra algorithm class. |
168 | 168 |
|
169 | 169 |
/// \ingroup shortest_path |
170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
171 | 171 |
/// |
172 |
///The %Dijkstra algorithm solves the single-source shortest path problem |
|
173 |
///when all arc lengths are non-negative. If there are negative lengths, |
|
174 |
///the BellmanFord algorithm should be used instead. |
|
175 |
/// |
|
172 | 176 |
///The arc lengths are passed to the algorithm using a |
173 | 177 |
///\ref concepts::ReadMap "ReadMap", |
174 | 178 |
///so it is easy to change it to any kind of length. |
175 | 179 |
///The type of the length is determined by the |
176 | 180 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
177 | 181 |
///It is also possible to change the underlying priority heap. |
178 | 182 |
/// |
179 | 183 |
///There is also a \ref dijkstra() "function-type interface" for the |
180 | 184 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
181 | 185 |
///it can be used easier. |
182 | 186 |
/// |
183 | 187 |
///\tparam GR The type of the digraph the algorithm runs on. |
184 | 188 |
///The default type is \ref ListDigraph. |
185 | 189 |
///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
186 | 190 |
///the lengths of the arcs. |
187 | 191 |
///It is read once for each arc, so the map may involve in |
188 | 192 |
///relatively time consuming process to compute the arc lengths if |
189 | 193 |
///it is necessary. The default map type is \ref |
190 | 194 |
///concepts::Digraph::ArcMap "GR::ArcMap<int>". |
191 | 195 |
#ifdef DOXYGEN |
192 | 196 |
template <typename GR, typename LEN, typename TR> |
193 | 197 |
#else |
194 | 198 |
template <typename GR=ListDigraph, |
195 | 199 |
typename LEN=typename GR::template ArcMap<int>, |
196 | 200 |
typename TR=DijkstraDefaultTraits<GR,LEN> > |
197 | 201 |
#endif |
198 | 202 |
class Dijkstra { |
199 | 203 |
public: |
200 | 204 |
|
201 | 205 |
///The type of the digraph the algorithm runs on. |
202 | 206 |
typedef typename TR::Digraph Digraph; |
203 | 207 |
|
204 |
///The type of the |
|
208 |
///The type of the arc lengths. |
|
205 | 209 |
typedef typename TR::LengthMap::Value Value; |
206 | 210 |
///The type of the map that stores the arc lengths. |
207 | 211 |
typedef typename TR::LengthMap LengthMap; |
208 | 212 |
///\brief The type of the map that stores the predecessor arcs of the |
209 | 213 |
///shortest paths. |
210 | 214 |
typedef typename TR::PredMap PredMap; |
211 | 215 |
///The type of the map that stores the distances of the nodes. |
212 | 216 |
typedef typename TR::DistMap DistMap; |
213 | 217 |
///The type of the map that indicates which nodes are processed. |
214 | 218 |
typedef typename TR::ProcessedMap ProcessedMap; |
215 | 219 |
///The type of the paths. |
216 | 220 |
typedef PredMapPath<Digraph, PredMap> Path; |
217 | 221 |
///The cross reference type used for the current heap. |
218 | 222 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
219 | 223 |
///The heap type used by the algorithm. |
220 | 224 |
typedef typename TR::Heap Heap; |
221 | 225 |
///\brief The \ref DijkstraDefaultOperationTraits "operation traits class" |
222 | 226 |
///of the algorithm. |
223 | 227 |
typedef typename TR::OperationTraits OperationTraits; |
224 | 228 |
|
225 | 229 |
///The \ref DijkstraDefaultTraits "traits class" of the algorithm. |
226 | 230 |
typedef TR Traits; |
227 | 231 |
|
228 | 232 |
private: |
229 | 233 |
|
230 | 234 |
typedef typename Digraph::Node Node; |
231 | 235 |
typedef typename Digraph::NodeIt NodeIt; |
232 | 236 |
typedef typename Digraph::Arc Arc; |
233 | 237 |
typedef typename Digraph::OutArcIt OutArcIt; |
234 | 238 |
|
235 | 239 |
//Pointer to the underlying digraph. |
236 | 240 |
const Digraph *G; |
237 | 241 |
//Pointer to the length map. |
238 | 242 |
const LengthMap *_length; |
239 | 243 |
//Pointer to the map of predecessors arcs. |
240 | 244 |
PredMap *_pred; |
241 | 245 |
//Indicates if _pred is locally allocated (true) or not. |
242 | 246 |
bool local_pred; |
243 | 247 |
//Pointer to the map of distances. |
244 | 248 |
DistMap *_dist; |
245 | 249 |
//Indicates if _dist is locally allocated (true) or not. |
246 | 250 |
bool local_dist; |
247 | 251 |
//Pointer to the map of processed status of the nodes. |
248 | 252 |
ProcessedMap *_processed; |
249 | 253 |
//Indicates if _processed is locally allocated (true) or not. |
250 | 254 |
bool local_processed; |
251 | 255 |
//Pointer to the heap cross references. |
252 | 256 |
HeapCrossRef *_heap_cross_ref; |
253 | 257 |
//Indicates if _heap_cross_ref is locally allocated (true) or not. |
254 | 258 |
bool local_heap_cross_ref; |
255 | 259 |
//Pointer to the heap. |
256 | 260 |
Heap *_heap; |
257 | 261 |
//Indicates if _heap is locally allocated (true) or not. |
258 | 262 |
bool local_heap; |
259 | 263 |
|
260 | 264 |
//Creates the maps if necessary. |
261 | 265 |
void create_maps() |
262 | 266 |
{ |
263 | 267 |
if(!_pred) { |
264 | 268 |
local_pred = true; |
265 | 269 |
_pred = Traits::createPredMap(*G); |
266 | 270 |
} |
267 | 271 |
if(!_dist) { |
268 | 272 |
local_dist = true; |
269 | 273 |
_dist = Traits::createDistMap(*G); |
270 | 274 |
} |
271 | 275 |
if(!_processed) { |
272 | 276 |
local_processed = true; |
273 | 277 |
_processed = Traits::createProcessedMap(*G); |
274 | 278 |
} |
275 | 279 |
if (!_heap_cross_ref) { |
276 | 280 |
local_heap_cross_ref = true; |
277 | 281 |
_heap_cross_ref = Traits::createHeapCrossRef(*G); |
278 | 282 |
} |
279 | 283 |
if (!_heap) { |
280 | 284 |
local_heap = true; |
281 | 285 |
_heap = Traits::createHeap(*_heap_cross_ref); |
282 | 286 |
} |
283 | 287 |
} |
284 | 288 |
|
285 | 289 |
public: |
286 | 290 |
|
287 | 291 |
typedef Dijkstra Create; |
288 | 292 |
|
289 | 293 |
///\name Named Template Parameters |
290 | 294 |
|
291 | 295 |
///@{ |
292 | 296 |
|
293 | 297 |
template <class T> |
294 | 298 |
struct SetPredMapTraits : public Traits { |
295 | 299 |
typedef T PredMap; |
296 | 300 |
static PredMap *createPredMap(const Digraph &) |
297 | 301 |
{ |
298 | 302 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
299 | 303 |
return 0; // ignore warnings |
300 | 304 |
} |
301 | 305 |
}; |
302 | 306 |
///\brief \ref named-templ-param "Named parameter" for setting |
303 | 307 |
///\c PredMap type. |
304 | 308 |
/// |
305 | 309 |
///\ref named-templ-param "Named parameter" for setting |
306 | 310 |
///\c PredMap type. |
307 |
///It must |
|
311 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
308 | 312 |
template <class T> |
309 | 313 |
struct SetPredMap |
310 | 314 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > { |
311 | 315 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
312 | 316 |
}; |
313 | 317 |
|
314 | 318 |
template <class T> |
315 | 319 |
struct SetDistMapTraits : public Traits { |
316 | 320 |
typedef T DistMap; |
317 | 321 |
static DistMap *createDistMap(const Digraph &) |
318 | 322 |
{ |
319 | 323 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
320 | 324 |
return 0; // ignore warnings |
321 | 325 |
} |
322 | 326 |
}; |
323 | 327 |
///\brief \ref named-templ-param "Named parameter" for setting |
324 | 328 |
///\c DistMap type. |
325 | 329 |
/// |
326 | 330 |
///\ref named-templ-param "Named parameter" for setting |
327 | 331 |
///\c DistMap type. |
328 |
///It must |
|
332 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
329 | 333 |
template <class T> |
330 | 334 |
struct SetDistMap |
331 | 335 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
332 | 336 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
333 | 337 |
}; |
334 | 338 |
|
335 | 339 |
template <class T> |
336 | 340 |
struct SetProcessedMapTraits : public Traits { |
337 | 341 |
typedef T ProcessedMap; |
338 | 342 |
static ProcessedMap *createProcessedMap(const Digraph &) |
339 | 343 |
{ |
340 | 344 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
341 | 345 |
return 0; // ignore warnings |
342 | 346 |
} |
343 | 347 |
}; |
344 | 348 |
///\brief \ref named-templ-param "Named parameter" for setting |
345 | 349 |
///\c ProcessedMap type. |
346 | 350 |
/// |
347 | 351 |
///\ref named-templ-param "Named parameter" for setting |
348 | 352 |
///\c ProcessedMap type. |
349 |
///It must |
|
353 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
350 | 354 |
template <class T> |
351 | 355 |
struct SetProcessedMap |
352 | 356 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
353 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
354 | 358 |
}; |
355 | 359 |
|
356 | 360 |
struct SetStandardProcessedMapTraits : public Traits { |
357 | 361 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
358 | 362 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
359 | 363 |
{ |
360 | 364 |
return new ProcessedMap(g); |
361 | 365 |
} |
362 | 366 |
}; |
363 | 367 |
///\brief \ref named-templ-param "Named parameter" for setting |
364 | 368 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
365 | 369 |
/// |
366 | 370 |
///\ref named-templ-param "Named parameter" for setting |
367 | 371 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
368 | 372 |
///If you don't set it explicitly, it will be automatically allocated. |
369 | 373 |
struct SetStandardProcessedMap |
370 | 374 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { |
371 | 375 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
372 | 376 |
Create; |
373 | 377 |
}; |
374 | 378 |
|
375 | 379 |
template <class H, class CR> |
376 | 380 |
struct SetHeapTraits : public Traits { |
377 | 381 |
typedef CR HeapCrossRef; |
378 | 382 |
typedef H Heap; |
379 | 383 |
static HeapCrossRef *createHeapCrossRef(const Digraph &) { |
380 | 384 |
LEMON_ASSERT(false, "HeapCrossRef is not initialized"); |
381 | 385 |
return 0; // ignore warnings |
382 | 386 |
} |
383 | 387 |
static Heap *createHeap(HeapCrossRef &) |
384 | 388 |
{ |
385 | 389 |
LEMON_ASSERT(false, "Heap is not initialized"); |
386 | 390 |
return 0; // ignore warnings |
387 | 391 |
} |
388 | 392 |
}; |
389 | 393 |
///\brief \ref named-templ-param "Named parameter" for setting |
390 | 394 |
///heap and cross reference types |
391 | 395 |
/// |
392 | 396 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
393 | 397 |
///reference types. If this named parameter is used, then external |
394 | 398 |
///heap and cross reference objects must be passed to the algorithm |
395 | 399 |
///using the \ref heap() function before calling \ref run(Node) "run()" |
396 | 400 |
///or \ref init(). |
397 | 401 |
///\sa SetStandardHeap |
398 | 402 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
399 | 403 |
struct SetHeap |
400 | 404 |
: public Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > { |
401 | 405 |
typedef Dijkstra< Digraph, LengthMap, SetHeapTraits<H, CR> > Create; |
402 | 406 |
}; |
403 | 407 |
|
404 | 408 |
template <class H, class CR> |
405 | 409 |
struct SetStandardHeapTraits : public Traits { |
406 | 410 |
typedef CR HeapCrossRef; |
407 | 411 |
typedef H Heap; |
408 | 412 |
static HeapCrossRef *createHeapCrossRef(const Digraph &G) { |
409 | 413 |
return new HeapCrossRef(G); |
410 | 414 |
} |
411 | 415 |
static Heap *createHeap(HeapCrossRef &R) |
412 | 416 |
{ |
413 | 417 |
return new Heap(R); |
414 | 418 |
} |
415 | 419 |
}; |
416 | 420 |
///\brief \ref named-templ-param "Named parameter" for setting |
417 | 421 |
///heap and cross reference types with automatic allocation |
418 | 422 |
/// |
419 | 423 |
///\ref named-templ-param "Named parameter" for setting heap and cross |
420 | 424 |
///reference types with automatic allocation. |
421 | 425 |
///They should have standard constructor interfaces to be able to |
422 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
423 | 427 |
///passed to the constructor of the cross reference and the cross |
424 | 428 |
///reference should be passed to the constructor of the heap). |
425 | 429 |
///However external heap and cross reference objects could also be |
426 | 430 |
///passed to the algorithm using the \ref heap() function before |
427 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
428 | 432 |
///\sa SetHeap |
429 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
430 | 434 |
struct SetStandardHeap |
431 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
432 | 436 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
433 | 437 |
Create; |
434 | 438 |
}; |
435 | 439 |
|
436 | 440 |
template <class T> |
437 | 441 |
struct SetOperationTraitsTraits : public Traits { |
438 | 442 |
typedef T OperationTraits; |
439 | 443 |
}; |
440 | 444 |
|
441 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
442 | 446 |
///\c OperationTraits type |
443 | 447 |
/// |
444 | 448 |
///\ref named-templ-param "Named parameter" for setting |
445 | 449 |
///\c OperationTraits type. |
450 |
/// For more information see \ref DijkstraDefaultOperationTraits. |
|
446 | 451 |
template <class T> |
447 | 452 |
struct SetOperationTraits |
448 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
449 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
450 | 455 |
Create; |
451 | 456 |
}; |
452 | 457 |
|
453 | 458 |
///@} |
454 | 459 |
|
455 | 460 |
protected: |
456 | 461 |
|
457 | 462 |
Dijkstra() {} |
458 | 463 |
|
459 | 464 |
public: |
460 | 465 |
|
461 | 466 |
///Constructor. |
462 | 467 |
|
463 | 468 |
///Constructor. |
464 | 469 |
///\param g The digraph the algorithm runs on. |
465 | 470 |
///\param length The length map used by the algorithm. |
466 | 471 |
Dijkstra(const Digraph& g, const LengthMap& length) : |
467 | 472 |
G(&g), _length(&length), |
468 | 473 |
_pred(NULL), local_pred(false), |
469 | 474 |
_dist(NULL), local_dist(false), |
470 | 475 |
_processed(NULL), local_processed(false), |
471 | 476 |
_heap_cross_ref(NULL), local_heap_cross_ref(false), |
472 | 477 |
_heap(NULL), local_heap(false) |
473 | 478 |
{ } |
474 | 479 |
|
475 | 480 |
///Destructor. |
476 | 481 |
~Dijkstra() |
477 | 482 |
{ |
478 | 483 |
if(local_pred) delete _pred; |
479 | 484 |
if(local_dist) delete _dist; |
480 | 485 |
if(local_processed) delete _processed; |
481 | 486 |
if(local_heap_cross_ref) delete _heap_cross_ref; |
482 | 487 |
if(local_heap) delete _heap; |
483 | 488 |
} |
484 | 489 |
|
485 | 490 |
///Sets the length map. |
486 | 491 |
|
487 | 492 |
///Sets the length map. |
488 | 493 |
///\return <tt> (*this) </tt> |
489 | 494 |
Dijkstra &lengthMap(const LengthMap &m) |
490 | 495 |
{ |
491 | 496 |
_length = &m; |
492 | 497 |
return *this; |
493 | 498 |
} |
494 | 499 |
|
495 | 500 |
///Sets the map that stores the predecessor arcs. |
496 | 501 |
|
497 | 502 |
///Sets the map that stores the predecessor arcs. |
498 | 503 |
///If you don't use this function before calling \ref run(Node) "run()" |
499 | 504 |
///or \ref init(), an instance will be allocated automatically. |
500 | 505 |
///The destructor deallocates this automatically allocated map, |
501 | 506 |
///of course. |
502 | 507 |
///\return <tt> (*this) </tt> |
503 | 508 |
Dijkstra &predMap(PredMap &m) |
504 | 509 |
{ |
505 | 510 |
if(local_pred) { |
506 | 511 |
delete _pred; |
507 | 512 |
local_pred=false; |
508 | 513 |
} |
509 | 514 |
_pred = &m; |
510 | 515 |
return *this; |
511 | 516 |
} |
512 | 517 |
|
513 | 518 |
///Sets the map that indicates which nodes are processed. |
514 | 519 |
|
515 | 520 |
///Sets the map that indicates which nodes are processed. |
516 | 521 |
///If you don't use this function before calling \ref run(Node) "run()" |
517 | 522 |
///or \ref init(), an instance will be allocated automatically. |
518 | 523 |
///The destructor deallocates this automatically allocated map, |
519 | 524 |
///of course. |
520 | 525 |
///\return <tt> (*this) </tt> |
521 | 526 |
Dijkstra &processedMap(ProcessedMap &m) |
522 | 527 |
{ |
523 | 528 |
if(local_processed) { |
524 | 529 |
delete _processed; |
525 | 530 |
local_processed=false; |
526 | 531 |
} |
527 | 532 |
_processed = &m; |
528 | 533 |
return *this; |
529 | 534 |
} |
530 | 535 |
|
531 | 536 |
///Sets the map that stores the distances of the nodes. |
532 | 537 |
|
533 | 538 |
///Sets the map that stores the distances of the nodes calculated by the |
534 | 539 |
///algorithm. |
535 | 540 |
///If you don't use this function before calling \ref run(Node) "run()" |
536 | 541 |
///or \ref init(), an instance will be allocated automatically. |
537 | 542 |
///The destructor deallocates this automatically allocated map, |
538 | 543 |
///of course. |
539 | 544 |
///\return <tt> (*this) </tt> |
540 | 545 |
Dijkstra &distMap(DistMap &m) |
541 | 546 |
{ |
542 | 547 |
if(local_dist) { |
543 | 548 |
delete _dist; |
544 | 549 |
local_dist=false; |
545 | 550 |
} |
546 | 551 |
_dist = &m; |
547 | 552 |
return *this; |
548 | 553 |
} |
549 | 554 |
|
550 | 555 |
///Sets the heap and the cross reference used by algorithm. |
551 | 556 |
|
552 | 557 |
///Sets the heap and the cross reference used by algorithm. |
553 | 558 |
///If you don't use this function before calling \ref run(Node) "run()" |
554 | 559 |
///or \ref init(), heap and cross reference instances will be |
555 | 560 |
///allocated automatically. |
556 | 561 |
///The destructor deallocates these automatically allocated objects, |
557 | 562 |
///of course. |
558 | 563 |
///\return <tt> (*this) </tt> |
559 | 564 |
Dijkstra &heap(Heap& hp, HeapCrossRef &cr) |
560 | 565 |
{ |
561 | 566 |
if(local_heap_cross_ref) { |
562 | 567 |
delete _heap_cross_ref; |
563 | 568 |
local_heap_cross_ref=false; |
564 | 569 |
} |
565 | 570 |
_heap_cross_ref = &cr; |
566 | 571 |
if(local_heap) { |
567 | 572 |
delete _heap; |
568 | 573 |
local_heap=false; |
569 | 574 |
} |
570 | 575 |
_heap = &hp; |
571 | 576 |
return *this; |
572 | 577 |
} |
573 | 578 |
|
574 | 579 |
private: |
575 | 580 |
|
576 | 581 |
void finalizeNodeData(Node v,Value dst) |
577 | 582 |
{ |
578 | 583 |
_processed->set(v,true); |
579 | 584 |
_dist->set(v, dst); |
580 | 585 |
} |
581 | 586 |
|
582 | 587 |
public: |
583 | 588 |
|
584 | 589 |
///\name Execution Control |
585 | 590 |
///The simplest way to execute the %Dijkstra algorithm is to use |
586 | 591 |
///one of the member functions called \ref run(Node) "run()".\n |
587 |
///If you need more control on the execution, first you have to call |
|
588 |
///\ref init(), then you can add several source nodes with |
|
592 |
///If you need better control on the execution, you have to call |
|
593 |
///\ref init() first, then you can add several source nodes with |
|
589 | 594 |
///\ref addSource(). Finally the actual path computation can be |
590 | 595 |
///performed with one of the \ref start() functions. |
591 | 596 |
|
592 | 597 |
///@{ |
593 | 598 |
|
594 | 599 |
///\brief Initializes the internal data structures. |
595 | 600 |
/// |
596 | 601 |
///Initializes the internal data structures. |
597 | 602 |
void init() |
598 | 603 |
{ |
599 | 604 |
create_maps(); |
600 | 605 |
_heap->clear(); |
601 | 606 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
602 | 607 |
_pred->set(u,INVALID); |
603 | 608 |
_processed->set(u,false); |
604 | 609 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
605 | 610 |
} |
606 | 611 |
} |
607 | 612 |
|
608 | 613 |
///Adds a new source node. |
609 | 614 |
|
610 | 615 |
///Adds a new source node to the priority heap. |
611 | 616 |
///The optional second parameter is the initial distance of the node. |
612 | 617 |
/// |
613 | 618 |
///The function checks if the node has already been added to the heap and |
614 | 619 |
///it is pushed to the heap only if either it was not in the heap |
615 | 620 |
///or the shortest path found till then is shorter than \c dst. |
616 | 621 |
void addSource(Node s,Value dst=OperationTraits::zero()) |
617 | 622 |
{ |
618 | 623 |
if(_heap->state(s) != Heap::IN_HEAP) { |
619 | 624 |
_heap->push(s,dst); |
620 | 625 |
} else if(OperationTraits::less((*_heap)[s], dst)) { |
621 | 626 |
_heap->set(s,dst); |
622 | 627 |
_pred->set(s,INVALID); |
623 | 628 |
} |
624 | 629 |
} |
625 | 630 |
|
626 | 631 |
///Processes the next node in the priority heap |
627 | 632 |
|
628 | 633 |
///Processes the next node in the priority heap. |
629 | 634 |
/// |
630 | 635 |
///\return The processed node. |
631 | 636 |
/// |
632 | 637 |
///\warning The priority heap must not be empty. |
633 | 638 |
Node processNextNode() |
634 | 639 |
{ |
635 | 640 |
Node v=_heap->top(); |
636 | 641 |
Value oldvalue=_heap->prio(); |
637 | 642 |
_heap->pop(); |
638 | 643 |
finalizeNodeData(v,oldvalue); |
639 | 644 |
|
640 | 645 |
for(OutArcIt e(*G,v); e!=INVALID; ++e) { |
641 | 646 |
Node w=G->target(e); |
642 | 647 |
switch(_heap->state(w)) { |
643 | 648 |
case Heap::PRE_HEAP: |
644 | 649 |
_heap->push(w,OperationTraits::plus(oldvalue, (*_length)[e])); |
645 | 650 |
_pred->set(w,e); |
646 | 651 |
break; |
647 | 652 |
case Heap::IN_HEAP: |
648 | 653 |
{ |
649 | 654 |
Value newvalue = OperationTraits::plus(oldvalue, (*_length)[e]); |
650 | 655 |
if ( OperationTraits::less(newvalue, (*_heap)[w]) ) { |
651 | 656 |
_heap->decrease(w, newvalue); |
652 | 657 |
_pred->set(w,e); |
653 | 658 |
} |
654 | 659 |
} |
655 | 660 |
break; |
656 | 661 |
case Heap::POST_HEAP: |
657 | 662 |
break; |
658 | 663 |
} |
659 | 664 |
} |
660 | 665 |
return v; |
661 | 666 |
} |
662 | 667 |
|
663 | 668 |
///The next node to be processed. |
664 | 669 |
|
665 | 670 |
///Returns the next node to be processed or \c INVALID if the |
666 | 671 |
///priority heap is empty. |
667 | 672 |
Node nextNode() const |
668 | 673 |
{ |
669 | 674 |
return !_heap->empty()?_heap->top():INVALID; |
670 | 675 |
} |
671 | 676 |
|
672 | 677 |
///Returns \c false if there are nodes to be processed. |
673 | 678 |
|
674 | 679 |
///Returns \c false if there are nodes to be processed |
675 | 680 |
///in the priority heap. |
676 | 681 |
bool emptyQueue() const { return _heap->empty(); } |
677 | 682 |
|
678 | 683 |
///Returns the number of the nodes to be processed. |
679 | 684 |
|
680 | 685 |
///Returns the number of the nodes to be processed |
681 | 686 |
///in the priority heap. |
682 | 687 |
int queueSize() const { return _heap->size(); } |
683 | 688 |
|
684 | 689 |
///Executes the algorithm. |
685 | 690 |
|
686 | 691 |
///Executes the algorithm. |
687 | 692 |
/// |
688 | 693 |
///This method runs the %Dijkstra algorithm from the root node(s) |
689 | 694 |
///in order to compute the shortest path to each node. |
690 | 695 |
/// |
691 | 696 |
///The algorithm computes |
692 | 697 |
///- the shortest path tree (forest), |
693 | 698 |
///- the distance of each node from the root(s). |
694 | 699 |
/// |
695 | 700 |
///\pre init() must be called and at least one root node should be |
696 | 701 |
///added with addSource() before using this function. |
697 | 702 |
/// |
698 | 703 |
///\note <tt>d.start()</tt> is just a shortcut of the following code. |
699 | 704 |
///\code |
700 | 705 |
/// while ( !d.emptyQueue() ) { |
701 | 706 |
/// d.processNextNode(); |
702 | 707 |
/// } |
703 | 708 |
///\endcode |
704 | 709 |
void start() |
705 | 710 |
{ |
706 | 711 |
while ( !emptyQueue() ) processNextNode(); |
707 | 712 |
} |
708 | 713 |
|
709 | 714 |
///Executes the algorithm until the given target node is processed. |
710 | 715 |
|
711 | 716 |
///Executes the algorithm until the given target node is processed. |
712 | 717 |
/// |
713 | 718 |
///This method runs the %Dijkstra algorithm from the root node(s) |
714 | 719 |
///in order to compute the shortest path to \c t. |
715 | 720 |
/// |
716 | 721 |
///The algorithm computes |
717 | 722 |
///- the shortest path to \c t, |
718 | 723 |
///- the distance of \c t from the root(s). |
719 | 724 |
/// |
720 | 725 |
///\pre init() must be called and at least one root node should be |
721 | 726 |
///added with addSource() before using this function. |
722 | 727 |
void start(Node t) |
723 | 728 |
{ |
724 | 729 |
while ( !_heap->empty() && _heap->top()!=t ) processNextNode(); |
725 | 730 |
if ( !_heap->empty() ) { |
726 | 731 |
finalizeNodeData(_heap->top(),_heap->prio()); |
727 | 732 |
_heap->pop(); |
728 | 733 |
} |
729 | 734 |
} |
730 | 735 |
|
731 | 736 |
///Executes the algorithm until a condition is met. |
732 | 737 |
|
733 | 738 |
///Executes the algorithm until a condition is met. |
734 | 739 |
/// |
735 | 740 |
///This method runs the %Dijkstra algorithm from the root node(s) in |
736 | 741 |
///order to compute the shortest path to a node \c v with |
737 | 742 |
/// <tt>nm[v]</tt> true, if such a node can be found. |
738 | 743 |
/// |
739 | 744 |
///\param nm A \c bool (or convertible) node map. The algorithm |
740 | 745 |
///will stop when it reaches a node \c v with <tt>nm[v]</tt> true. |
741 | 746 |
/// |
742 | 747 |
///\return The reached node \c v with <tt>nm[v]</tt> true or |
743 | 748 |
///\c INVALID if no such node was found. |
744 | 749 |
/// |
745 | 750 |
///\pre init() must be called and at least one root node should be |
746 | 751 |
///added with addSource() before using this function. |
747 | 752 |
template<class NodeBoolMap> |
748 | 753 |
Node start(const NodeBoolMap &nm) |
749 | 754 |
{ |
750 | 755 |
while ( !_heap->empty() && !nm[_heap->top()] ) processNextNode(); |
751 | 756 |
if ( _heap->empty() ) return INVALID; |
752 | 757 |
finalizeNodeData(_heap->top(),_heap->prio()); |
753 | 758 |
return _heap->top(); |
754 | 759 |
} |
755 | 760 |
|
756 | 761 |
///Runs the algorithm from the given source node. |
757 | 762 |
|
758 | 763 |
///This method runs the %Dijkstra algorithm from node \c s |
759 | 764 |
///in order to compute the shortest path to each node. |
760 | 765 |
/// |
761 | 766 |
///The algorithm computes |
762 | 767 |
///- the shortest path tree, |
763 | 768 |
///- the distance of each node from the root. |
764 | 769 |
/// |
765 | 770 |
///\note <tt>d.run(s)</tt> is just a shortcut of the following code. |
766 | 771 |
///\code |
767 | 772 |
/// d.init(); |
768 | 773 |
/// d.addSource(s); |
769 | 774 |
/// d.start(); |
770 | 775 |
///\endcode |
771 | 776 |
void run(Node s) { |
772 | 777 |
init(); |
773 | 778 |
addSource(s); |
774 | 779 |
start(); |
775 | 780 |
} |
776 | 781 |
|
777 | 782 |
///Finds the shortest path between \c s and \c t. |
778 | 783 |
|
779 | 784 |
///This method runs the %Dijkstra algorithm from node \c s |
780 | 785 |
///in order to compute the shortest path to node \c t |
781 | 786 |
///(it stops searching when \c t is processed). |
782 | 787 |
/// |
783 | 788 |
///\return \c true if \c t is reachable form \c s. |
784 | 789 |
/// |
785 | 790 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
786 | 791 |
///shortcut of the following code. |
787 | 792 |
///\code |
788 | 793 |
/// d.init(); |
789 | 794 |
/// d.addSource(s); |
790 | 795 |
/// d.start(t); |
791 | 796 |
///\endcode |
792 | 797 |
bool run(Node s,Node t) { |
793 | 798 |
init(); |
794 | 799 |
addSource(s); |
795 | 800 |
start(t); |
796 | 801 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
797 | 802 |
} |
798 | 803 |
|
799 | 804 |
///@} |
800 | 805 |
|
801 | 806 |
///\name Query Functions |
802 | 807 |
///The results of the %Dijkstra algorithm can be obtained using these |
803 | 808 |
///functions.\n |
804 |
///Either \ref run(Node) "run()" or \ref |
|
809 |
///Either \ref run(Node) "run()" or \ref init() should be called |
|
805 | 810 |
///before using them. |
806 | 811 |
|
807 | 812 |
///@{ |
808 | 813 |
|
809 |
///The shortest path to |
|
814 |
///The shortest path to the given node. |
|
810 | 815 |
|
811 |
///Returns the shortest path to |
|
816 |
///Returns the shortest path to the given node from the root(s). |
|
812 | 817 |
/// |
813 | 818 |
///\warning \c t should be reached from the root(s). |
814 | 819 |
/// |
815 | 820 |
///\pre Either \ref run(Node) "run()" or \ref init() |
816 | 821 |
///must be called before using this function. |
817 | 822 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
818 | 823 |
|
819 |
///The distance of |
|
824 |
///The distance of the given node from the root(s). |
|
820 | 825 |
|
821 |
///Returns the distance of |
|
826 |
///Returns the distance of the given node from the root(s). |
|
822 | 827 |
/// |
823 | 828 |
///\warning If node \c v is not reached from the root(s), then |
824 | 829 |
///the return value of this function is undefined. |
825 | 830 |
/// |
826 | 831 |
///\pre Either \ref run(Node) "run()" or \ref init() |
827 | 832 |
///must be called before using this function. |
828 | 833 |
Value dist(Node v) const { return (*_dist)[v]; } |
829 | 834 |
|
830 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
831 |
|
|
835 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
836 |
///the given node. |
|
837 |
/// |
|
832 | 838 |
///This function returns the 'previous arc' of the shortest path |
833 | 839 |
///tree for the node \c v, i.e. it returns the last arc of a |
834 | 840 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
835 | 841 |
///is not reached from the root(s) or if \c v is a root. |
836 | 842 |
/// |
837 | 843 |
///The shortest path tree used here is equal to the shortest path |
838 |
///tree used in \ref predNode(). |
|
844 |
///tree used in \ref predNode() and \ref predMap(). |
|
839 | 845 |
/// |
840 | 846 |
///\pre Either \ref run(Node) "run()" or \ref init() |
841 | 847 |
///must be called before using this function. |
842 | 848 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
843 | 849 |
|
844 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
845 |
|
|
850 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
851 |
///the given node. |
|
852 |
/// |
|
846 | 853 |
///This function returns the 'previous node' of the shortest path |
847 | 854 |
///tree for the node \c v, i.e. it returns the last but one node |
848 |
/// |
|
855 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
849 | 856 |
///if \c v is not reached from the root(s) or if \c v is a root. |
850 | 857 |
/// |
851 | 858 |
///The shortest path tree used here is equal to the shortest path |
852 |
///tree used in \ref predArc(). |
|
859 |
///tree used in \ref predArc() and \ref predMap(). |
|
853 | 860 |
/// |
854 | 861 |
///\pre Either \ref run(Node) "run()" or \ref init() |
855 | 862 |
///must be called before using this function. |
856 | 863 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
857 | 864 |
G->source((*_pred)[v]); } |
858 | 865 |
|
859 | 866 |
///\brief Returns a const reference to the node map that stores the |
860 | 867 |
///distances of the nodes. |
861 | 868 |
/// |
862 | 869 |
///Returns a const reference to the node map that stores the distances |
863 | 870 |
///of the nodes calculated by the algorithm. |
864 | 871 |
/// |
865 | 872 |
///\pre Either \ref run(Node) "run()" or \ref init() |
866 | 873 |
///must be called before using this function. |
867 | 874 |
const DistMap &distMap() const { return *_dist;} |
868 | 875 |
|
869 | 876 |
///\brief Returns a const reference to the node map that stores the |
870 | 877 |
///predecessor arcs. |
871 | 878 |
/// |
872 | 879 |
///Returns a const reference to the node map that stores the predecessor |
873 |
///arcs, which form the shortest path tree. |
|
880 |
///arcs, which form the shortest path tree (forest). |
|
874 | 881 |
/// |
875 | 882 |
///\pre Either \ref run(Node) "run()" or \ref init() |
876 | 883 |
///must be called before using this function. |
877 | 884 |
const PredMap &predMap() const { return *_pred;} |
878 | 885 |
|
879 |
///Checks if |
|
886 |
///Checks if the given node is reached from the root(s). |
|
880 | 887 |
|
881 | 888 |
///Returns \c true if \c v is reached from the root(s). |
882 | 889 |
/// |
883 | 890 |
///\pre Either \ref run(Node) "run()" or \ref init() |
884 | 891 |
///must be called before using this function. |
885 | 892 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] != |
886 | 893 |
Heap::PRE_HEAP; } |
887 | 894 |
|
888 | 895 |
///Checks if a node is processed. |
889 | 896 |
|
890 | 897 |
///Returns \c true if \c v is processed, i.e. the shortest |
891 | 898 |
///path to \c v has already found. |
892 | 899 |
/// |
893 | 900 |
///\pre Either \ref run(Node) "run()" or \ref init() |
894 | 901 |
///must be called before using this function. |
895 | 902 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] == |
896 | 903 |
Heap::POST_HEAP; } |
897 | 904 |
|
898 |
///The current distance of |
|
905 |
///The current distance of the given node from the root(s). |
|
899 | 906 |
|
900 |
///Returns the current distance of |
|
907 |
///Returns the current distance of the given node from the root(s). |
|
901 | 908 |
///It may be decreased in the following processes. |
902 | 909 |
/// |
903 | 910 |
///\pre Either \ref run(Node) "run()" or \ref init() |
904 | 911 |
///must be called before using this function and |
905 | 912 |
///node \c v must be reached but not necessarily processed. |
906 | 913 |
Value currentDist(Node v) const { |
907 | 914 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
908 | 915 |
} |
909 | 916 |
|
910 | 917 |
///@} |
911 | 918 |
}; |
912 | 919 |
|
913 | 920 |
|
914 | 921 |
///Default traits class of dijkstra() function. |
915 | 922 |
|
916 | 923 |
///Default traits class of dijkstra() function. |
917 | 924 |
///\tparam GR The type of the digraph. |
918 | 925 |
///\tparam LEN The type of the length map. |
919 | 926 |
template<class GR, class LEN> |
920 | 927 |
struct DijkstraWizardDefaultTraits |
921 | 928 |
{ |
922 | 929 |
///The type of the digraph the algorithm runs on. |
923 | 930 |
typedef GR Digraph; |
924 | 931 |
///The type of the map that stores the arc lengths. |
925 | 932 |
|
926 | 933 |
///The type of the map that stores the arc lengths. |
927 |
///It must |
|
934 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
928 | 935 |
typedef LEN LengthMap; |
929 |
///The type of the |
|
936 |
///The type of the arc lengths. |
|
930 | 937 |
typedef typename LEN::Value Value; |
931 | 938 |
|
932 | 939 |
/// Operation traits for Dijkstra algorithm. |
933 | 940 |
|
934 | 941 |
/// This class defines the operations that are used in the algorithm. |
935 | 942 |
/// \see DijkstraDefaultOperationTraits |
936 | 943 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
937 | 944 |
|
938 | 945 |
/// The cross reference type used by the heap. |
939 | 946 |
|
940 | 947 |
/// The cross reference type used by the heap. |
941 | 948 |
/// Usually it is \c Digraph::NodeMap<int>. |
942 | 949 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
943 | 950 |
///Instantiates a \ref HeapCrossRef. |
944 | 951 |
|
945 | 952 |
///This function instantiates a \ref HeapCrossRef. |
946 | 953 |
/// \param g is the digraph, to which we would like to define the |
947 | 954 |
/// HeapCrossRef. |
948 | 955 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
949 | 956 |
{ |
950 | 957 |
return new HeapCrossRef(g); |
951 | 958 |
} |
952 | 959 |
|
953 | 960 |
///The heap type used by the Dijkstra algorithm. |
954 | 961 |
|
955 | 962 |
///The heap type used by the Dijkstra algorithm. |
956 | 963 |
/// |
957 | 964 |
///\sa BinHeap |
958 | 965 |
///\sa Dijkstra |
959 | 966 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
960 | 967 |
std::less<Value> > Heap; |
961 | 968 |
|
962 | 969 |
///Instantiates a \ref Heap. |
963 | 970 |
|
964 | 971 |
///This function instantiates a \ref Heap. |
965 | 972 |
/// \param r is the HeapCrossRef which is used. |
966 | 973 |
static Heap *createHeap(HeapCrossRef& r) |
967 | 974 |
{ |
968 | 975 |
return new Heap(r); |
969 | 976 |
} |
970 | 977 |
|
971 | 978 |
///\brief The type of the map that stores the predecessor |
972 | 979 |
///arcs of the shortest paths. |
973 | 980 |
/// |
974 | 981 |
///The type of the map that stores the predecessor |
975 | 982 |
///arcs of the shortest paths. |
976 |
///It must |
|
983 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
977 | 984 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
978 | 985 |
///Instantiates a PredMap. |
979 | 986 |
|
980 | 987 |
///This function instantiates a PredMap. |
981 | 988 |
///\param g is the digraph, to which we would like to define the |
982 | 989 |
///PredMap. |
983 | 990 |
static PredMap *createPredMap(const Digraph &g) |
984 | 991 |
{ |
985 | 992 |
return new PredMap(g); |
986 | 993 |
} |
987 | 994 |
|
988 | 995 |
///The type of the map that indicates which nodes are processed. |
989 | 996 |
|
990 | 997 |
///The type of the map that indicates which nodes are processed. |
991 |
///It must |
|
998 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
992 | 999 |
///By default it is a NullMap. |
993 | 1000 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
994 | 1001 |
///Instantiates a ProcessedMap. |
995 | 1002 |
|
996 | 1003 |
///This function instantiates a ProcessedMap. |
997 | 1004 |
///\param g is the digraph, to which |
998 | 1005 |
///we would like to define the ProcessedMap. |
999 | 1006 |
#ifdef DOXYGEN |
1000 | 1007 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
1001 | 1008 |
#else |
1002 | 1009 |
static ProcessedMap *createProcessedMap(const Digraph &) |
1003 | 1010 |
#endif |
1004 | 1011 |
{ |
1005 | 1012 |
return new ProcessedMap(); |
1006 | 1013 |
} |
1007 | 1014 |
|
1008 | 1015 |
///The type of the map that stores the distances of the nodes. |
1009 | 1016 |
|
1010 | 1017 |
///The type of the map that stores the distances of the nodes. |
1011 |
///It must |
|
1018 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
1012 | 1019 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
1013 | 1020 |
///Instantiates a DistMap. |
1014 | 1021 |
|
1015 | 1022 |
///This function instantiates a DistMap. |
1016 | 1023 |
///\param g is the digraph, to which we would like to define |
1017 | 1024 |
///the DistMap |
1018 | 1025 |
static DistMap *createDistMap(const Digraph &g) |
1019 | 1026 |
{ |
1020 | 1027 |
return new DistMap(g); |
1021 | 1028 |
} |
1022 | 1029 |
|
1023 | 1030 |
///The type of the shortest paths. |
1024 | 1031 |
|
1025 | 1032 |
///The type of the shortest paths. |
1026 |
///It must |
|
1033 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
1027 | 1034 |
typedef lemon::Path<Digraph> Path; |
1028 | 1035 |
}; |
1029 | 1036 |
|
1030 | 1037 |
/// Default traits class used by DijkstraWizard |
1031 | 1038 |
|
1032 |
/// To make it easier to use Dijkstra algorithm |
|
1033 |
/// we have created a wizard class. |
|
1034 |
/// This \ref DijkstraWizard class needs default traits, |
|
1035 |
/// as well as the \ref Dijkstra class. |
|
1036 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
|
1037 |
/// \ref DijkstraWizard class. |
|
1039 |
/// Default traits class used by DijkstraWizard. |
|
1040 |
/// \tparam GR The type of the digraph. |
|
1041 |
/// \tparam LEN The type of the length map. |
|
1038 | 1042 |
template<typename GR, typename LEN> |
1039 | 1043 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN> |
1040 | 1044 |
{ |
1041 | 1045 |
typedef DijkstraWizardDefaultTraits<GR,LEN> Base; |
1042 | 1046 |
protected: |
1043 | 1047 |
//The type of the nodes in the digraph. |
1044 | 1048 |
typedef typename Base::Digraph::Node Node; |
1045 | 1049 |
|
1046 | 1050 |
//Pointer to the digraph the algorithm runs on. |
1047 | 1051 |
void *_g; |
1048 | 1052 |
//Pointer to the length map. |
1049 | 1053 |
void *_length; |
1050 | 1054 |
//Pointer to the map of processed nodes. |
1051 | 1055 |
void *_processed; |
1052 | 1056 |
//Pointer to the map of predecessors arcs. |
1053 | 1057 |
void *_pred; |
1054 | 1058 |
//Pointer to the map of distances. |
1055 | 1059 |
void *_dist; |
1056 | 1060 |
//Pointer to the shortest path to the target node. |
1057 | 1061 |
void *_path; |
1058 | 1062 |
//Pointer to the distance of the target node. |
1059 | 1063 |
void *_di; |
1060 | 1064 |
|
1061 | 1065 |
public: |
1062 | 1066 |
/// Constructor. |
1063 | 1067 |
|
1064 | 1068 |
/// This constructor does not require parameters, therefore it initiates |
1065 | 1069 |
/// all of the attributes to \c 0. |
1066 | 1070 |
DijkstraWizardBase() : _g(0), _length(0), _processed(0), _pred(0), |
1067 | 1071 |
_dist(0), _path(0), _di(0) {} |
1068 | 1072 |
|
1069 | 1073 |
/// Constructor. |
1070 | 1074 |
|
1071 | 1075 |
/// This constructor requires two parameters, |
1072 | 1076 |
/// others are initiated to \c 0. |
1073 | 1077 |
/// \param g The digraph the algorithm runs on. |
1074 | 1078 |
/// \param l The length map. |
1075 | 1079 |
DijkstraWizardBase(const GR &g,const LEN &l) : |
1076 | 1080 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
1077 | 1081 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&l))), |
1078 | 1082 |
_processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
1079 | 1083 |
|
1080 | 1084 |
}; |
1081 | 1085 |
|
1082 | 1086 |
/// Auxiliary class for the function-type interface of Dijkstra algorithm. |
1083 | 1087 |
|
1084 | 1088 |
/// This auxiliary class is created to implement the |
1085 | 1089 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
1086 | 1090 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
1087 | 1091 |
/// functions and features of the plain \ref Dijkstra. |
1088 | 1092 |
/// |
1089 | 1093 |
/// This class should only be used through the \ref dijkstra() function, |
1090 | 1094 |
/// which makes it easier to use the algorithm. |
1091 | 1095 |
template<class TR> |
1092 | 1096 |
class DijkstraWizard : public TR |
1093 | 1097 |
{ |
1094 | 1098 |
typedef TR Base; |
1095 | 1099 |
|
1096 |
///The type of the digraph the algorithm runs on. |
|
1097 | 1100 |
typedef typename TR::Digraph Digraph; |
1098 | 1101 |
|
1099 | 1102 |
typedef typename Digraph::Node Node; |
1100 | 1103 |
typedef typename Digraph::NodeIt NodeIt; |
1101 | 1104 |
typedef typename Digraph::Arc Arc; |
1102 | 1105 |
typedef typename Digraph::OutArcIt OutArcIt; |
1103 | 1106 |
|
1104 |
///The type of the map that stores the arc lengths. |
|
1105 | 1107 |
typedef typename TR::LengthMap LengthMap; |
1106 |
///The type of the length of the arcs. |
|
1107 | 1108 |
typedef typename LengthMap::Value Value; |
1108 |
///\brief The type of the map that stores the predecessor |
|
1109 |
///arcs of the shortest paths. |
|
1110 | 1109 |
typedef typename TR::PredMap PredMap; |
1111 |
///The type of the map that stores the distances of the nodes. |
|
1112 | 1110 |
typedef typename TR::DistMap DistMap; |
1113 |
///The type of the map that indicates which nodes are processed. |
|
1114 | 1111 |
typedef typename TR::ProcessedMap ProcessedMap; |
1115 |
///The type of the shortest paths |
|
1116 | 1112 |
typedef typename TR::Path Path; |
1117 |
///The heap type used by the dijkstra algorithm. |
|
1118 | 1113 |
typedef typename TR::Heap Heap; |
1119 | 1114 |
|
1120 | 1115 |
public: |
1121 | 1116 |
|
1122 | 1117 |
/// Constructor. |
1123 | 1118 |
DijkstraWizard() : TR() {} |
1124 | 1119 |
|
1125 | 1120 |
/// Constructor that requires parameters. |
1126 | 1121 |
|
1127 | 1122 |
/// Constructor that requires parameters. |
1128 | 1123 |
/// These parameters will be the default values for the traits class. |
1129 | 1124 |
/// \param g The digraph the algorithm runs on. |
1130 | 1125 |
/// \param l The length map. |
1131 | 1126 |
DijkstraWizard(const Digraph &g, const LengthMap &l) : |
1132 | 1127 |
TR(g,l) {} |
1133 | 1128 |
|
1134 | 1129 |
///Copy constructor |
1135 | 1130 |
DijkstraWizard(const TR &b) : TR(b) {} |
1136 | 1131 |
|
1137 | 1132 |
~DijkstraWizard() {} |
1138 | 1133 |
|
1139 | 1134 |
///Runs Dijkstra algorithm from the given source node. |
1140 | 1135 |
|
1141 | 1136 |
///This method runs %Dijkstra algorithm from the given source node |
1142 | 1137 |
///in order to compute the shortest path to each node. |
1143 | 1138 |
void run(Node s) |
1144 | 1139 |
{ |
1145 | 1140 |
Dijkstra<Digraph,LengthMap,TR> |
1146 | 1141 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
1147 | 1142 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1148 | 1143 |
if (Base::_pred) |
1149 | 1144 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1150 | 1145 |
if (Base::_dist) |
1151 | 1146 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1152 | 1147 |
if (Base::_processed) |
1153 | 1148 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1154 | 1149 |
dijk.run(s); |
1155 | 1150 |
} |
1156 | 1151 |
|
1157 | 1152 |
///Finds the shortest path between \c s and \c t. |
1158 | 1153 |
|
1159 | 1154 |
///This method runs the %Dijkstra algorithm from node \c s |
1160 | 1155 |
///in order to compute the shortest path to node \c t |
1161 | 1156 |
///(it stops searching when \c t is processed). |
1162 | 1157 |
/// |
1163 | 1158 |
///\return \c true if \c t is reachable form \c s. |
1164 | 1159 |
bool run(Node s, Node t) |
1165 | 1160 |
{ |
1166 | 1161 |
Dijkstra<Digraph,LengthMap,TR> |
1167 | 1162 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
1168 | 1163 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1169 | 1164 |
if (Base::_pred) |
1170 | 1165 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1171 | 1166 |
if (Base::_dist) |
1172 | 1167 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1173 | 1168 |
if (Base::_processed) |
1174 | 1169 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1175 | 1170 |
dijk.run(s,t); |
1176 | 1171 |
if (Base::_path) |
1177 | 1172 |
*reinterpret_cast<Path*>(Base::_path) = dijk.path(t); |
1178 | 1173 |
if (Base::_di) |
1179 | 1174 |
*reinterpret_cast<Value*>(Base::_di) = dijk.dist(t); |
1180 | 1175 |
return dijk.reached(t); |
1181 | 1176 |
} |
1182 | 1177 |
|
1183 | 1178 |
template<class T> |
1184 | 1179 |
struct SetPredMapBase : public Base { |
1185 | 1180 |
typedef T PredMap; |
1186 | 1181 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1187 | 1182 |
SetPredMapBase(const TR &b) : TR(b) {} |
1188 | 1183 |
}; |
1189 |
///\brief \ref named-func-param "Named parameter" |
|
1190 |
///for setting PredMap object. |
|
1184 |
|
|
1185 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1186 |
///the predecessor map. |
|
1191 | 1187 |
/// |
1192 |
///\ref named-func-param "Named parameter" |
|
1193 |
///for setting PredMap object. |
|
1188 |
///\ref named-templ-param "Named parameter" function for setting |
|
1189 |
///the map that stores the predecessor arcs of the nodes. |
|
1194 | 1190 |
template<class T> |
1195 | 1191 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
1196 | 1192 |
{ |
1197 | 1193 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1198 | 1194 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
1199 | 1195 |
} |
1200 | 1196 |
|
1201 | 1197 |
template<class T> |
1202 | 1198 |
struct SetDistMapBase : public Base { |
1203 | 1199 |
typedef T DistMap; |
1204 | 1200 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1205 | 1201 |
SetDistMapBase(const TR &b) : TR(b) {} |
1206 | 1202 |
}; |
1207 |
///\brief \ref named-func-param "Named parameter" |
|
1208 |
///for setting DistMap object. |
|
1203 |
|
|
1204 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1205 |
///the distance map. |
|
1209 | 1206 |
/// |
1210 |
///\ref named-func-param "Named parameter" |
|
1211 |
///for setting DistMap object. |
|
1207 |
///\ref named-templ-param "Named parameter" function for setting |
|
1208 |
///the map that stores the distances of the nodes calculated |
|
1209 |
///by the algorithm. |
|
1212 | 1210 |
template<class T> |
1213 | 1211 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
1214 | 1212 |
{ |
1215 | 1213 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1216 | 1214 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
1217 | 1215 |
} |
1218 | 1216 |
|
1219 | 1217 |
template<class T> |
1220 | 1218 |
struct SetProcessedMapBase : public Base { |
1221 | 1219 |
typedef T ProcessedMap; |
1222 | 1220 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1223 | 1221 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1224 | 1222 |
}; |
1225 |
///\brief \ref named-func-param "Named parameter" |
|
1226 |
///for setting ProcessedMap object. |
|
1223 |
|
|
1224 |
///\brief \ref named-func-param "Named parameter" for setting |
|
1225 |
///the processed map. |
|
1227 | 1226 |
/// |
1228 |
/// \ref named-func-param "Named parameter" |
|
1229 |
///for setting ProcessedMap object. |
|
1227 |
///\ref named-templ-param "Named parameter" function for setting |
|
1228 |
///the map that indicates which nodes are processed. |
|
1230 | 1229 |
template<class T> |
1231 | 1230 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1232 | 1231 |
{ |
1233 | 1232 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1234 | 1233 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
1235 | 1234 |
} |
1236 | 1235 |
|
1237 | 1236 |
template<class T> |
1238 | 1237 |
struct SetPathBase : public Base { |
1239 | 1238 |
typedef T Path; |
1240 | 1239 |
SetPathBase(const TR &b) : TR(b) {} |
1241 | 1240 |
}; |
1241 |
|
|
1242 | 1242 |
///\brief \ref named-func-param "Named parameter" |
1243 | 1243 |
///for getting the shortest path to the target node. |
1244 | 1244 |
/// |
1245 | 1245 |
///\ref named-func-param "Named parameter" |
1246 | 1246 |
///for getting the shortest path to the target node. |
1247 | 1247 |
template<class T> |
1248 | 1248 |
DijkstraWizard<SetPathBase<T> > path(const T &t) |
1249 | 1249 |
{ |
1250 | 1250 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1251 | 1251 |
return DijkstraWizard<SetPathBase<T> >(*this); |
1252 | 1252 |
} |
1253 | 1253 |
|
1254 | 1254 |
///\brief \ref named-func-param "Named parameter" |
1255 | 1255 |
///for getting the distance of the target node. |
1256 | 1256 |
/// |
1257 | 1257 |
///\ref named-func-param "Named parameter" |
1258 | 1258 |
///for getting the distance of the target node. |
1259 | 1259 |
DijkstraWizard dist(const Value &d) |
1260 | 1260 |
{ |
1261 | 1261 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
1262 | 1262 |
return *this; |
1263 | 1263 |
} |
1264 | 1264 |
|
1265 | 1265 |
}; |
1266 | 1266 |
|
1267 | 1267 |
///Function-type interface for Dijkstra algorithm. |
1268 | 1268 |
|
1269 | 1269 |
/// \ingroup shortest_path |
1270 | 1270 |
///Function-type interface for Dijkstra algorithm. |
1271 | 1271 |
/// |
1272 | 1272 |
///This function also has several \ref named-func-param "named parameters", |
1273 | 1273 |
///they are declared as the members of class \ref DijkstraWizard. |
1274 | 1274 |
///The following examples show how to use these parameters. |
1275 | 1275 |
///\code |
1276 | 1276 |
/// // Compute shortest path from node s to each node |
1277 | 1277 |
/// dijkstra(g,length).predMap(preds).distMap(dists).run(s); |
1278 | 1278 |
/// |
1279 | 1279 |
/// // Compute shortest path from s to t |
1280 | 1280 |
/// bool reached = dijkstra(g,length).path(p).dist(d).run(s,t); |
1281 | 1281 |
///\endcode |
1282 | 1282 |
///\warning Don't forget to put the \ref DijkstraWizard::run(Node) "run()" |
1283 | 1283 |
///to the end of the parameter list. |
1284 | 1284 |
///\sa DijkstraWizard |
1285 | 1285 |
///\sa Dijkstra |
1286 | 1286 |
template<typename GR, typename LEN> |
1287 | 1287 |
DijkstraWizard<DijkstraWizardBase<GR,LEN> > |
1288 | 1288 |
dijkstra(const GR &digraph, const LEN &length) |
1289 | 1289 |
{ |
1290 | 1290 |
return DijkstraWizard<DijkstraWizardBase<GR,LEN> >(digraph,length); |
1291 | 1291 |
} |
1292 | 1292 |
|
1293 | 1293 |
} //END OF NAMESPACE LEMON |
1294 | 1294 |
|
1295 | 1295 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIM2_H |
20 | 20 |
#define LEMON_DIM2_H |
21 | 21 |
|
22 | 22 |
#include <iostream> |
23 | 23 |
|
24 |
///\ingroup |
|
24 |
///\ingroup geomdat |
|
25 | 25 |
///\file |
26 | 26 |
///\brief A simple two dimensional vector and a bounding box implementation |
27 |
/// |
|
28 |
/// The class \ref lemon::dim2::Point "dim2::Point" implements |
|
29 |
/// a two dimensional vector with the usual operations. |
|
30 |
/// |
|
31 |
/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine |
|
32 |
/// the rectangular bounding box of a set of |
|
33 |
/// \ref lemon::dim2::Point "dim2::Point"'s. |
|
34 | 27 |
|
35 | 28 |
namespace lemon { |
36 | 29 |
|
37 | 30 |
///Tools for handling two dimensional coordinates |
38 | 31 |
|
39 | 32 |
///This namespace is a storage of several |
40 | 33 |
///tools for handling two dimensional coordinates |
41 | 34 |
namespace dim2 { |
42 | 35 |
|
43 |
/// \addtogroup |
|
36 |
/// \addtogroup geomdat |
|
44 | 37 |
/// @{ |
45 | 38 |
|
46 | 39 |
/// Two dimensional vector (plain vector) |
47 | 40 |
|
48 | 41 |
/// A simple two dimensional vector (plain vector) implementation |
49 | 42 |
/// with the usual vector operations. |
50 | 43 |
template<typename T> |
51 | 44 |
class Point { |
52 | 45 |
|
53 | 46 |
public: |
54 | 47 |
|
55 | 48 |
typedef T Value; |
56 | 49 |
|
57 | 50 |
///First coordinate |
58 | 51 |
T x; |
59 | 52 |
///Second coordinate |
60 | 53 |
T y; |
61 | 54 |
|
62 | 55 |
///Default constructor |
63 | 56 |
Point() {} |
64 | 57 |
|
65 | 58 |
///Construct an instance from coordinates |
66 | 59 |
Point(T a, T b) : x(a), y(b) { } |
67 | 60 |
|
68 | 61 |
///Returns the dimension of the vector (i.e. returns 2). |
69 | 62 |
|
70 | 63 |
///The dimension of the vector. |
71 | 64 |
///This function always returns 2. |
72 | 65 |
int size() const { return 2; } |
73 | 66 |
|
74 | 67 |
///Subscripting operator |
75 | 68 |
|
76 | 69 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
77 | 70 |
/// |
78 | 71 |
T& operator[](int idx) { return idx == 0 ? x : y; } |
79 | 72 |
|
80 | 73 |
///Const subscripting operator |
81 | 74 |
|
82 | 75 |
///\c p[0] is \c p.x and \c p[1] is \c p.y |
83 | 76 |
/// |
84 | 77 |
const T& operator[](int idx) const { return idx == 0 ? x : y; } |
85 | 78 |
|
86 | 79 |
///Conversion constructor |
87 | 80 |
template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {} |
88 | 81 |
|
89 | 82 |
///Give back the square of the norm of the vector |
90 | 83 |
T normSquare() const { |
91 | 84 |
return x*x+y*y; |
92 | 85 |
} |
93 | 86 |
|
94 | 87 |
///Increment the left hand side by \c u |
95 | 88 |
Point<T>& operator +=(const Point<T>& u) { |
96 | 89 |
x += u.x; |
97 | 90 |
y += u.y; |
98 | 91 |
return *this; |
99 | 92 |
} |
100 | 93 |
|
101 | 94 |
///Decrement the left hand side by \c u |
102 | 95 |
Point<T>& operator -=(const Point<T>& u) { |
103 | 96 |
x -= u.x; |
104 | 97 |
y -= u.y; |
105 | 98 |
return *this; |
106 | 99 |
} |
107 | 100 |
|
108 | 101 |
///Multiply the left hand side with a scalar |
109 | 102 |
Point<T>& operator *=(const T &u) { |
110 | 103 |
x *= u; |
111 | 104 |
y *= u; |
112 | 105 |
return *this; |
113 | 106 |
} |
114 | 107 |
|
115 | 108 |
///Divide the left hand side by a scalar |
116 | 109 |
Point<T>& operator /=(const T &u) { |
117 | 110 |
x /= u; |
118 | 111 |
y /= u; |
119 | 112 |
return *this; |
120 | 113 |
} |
121 | 114 |
|
122 | 115 |
///Return the scalar product of two vectors |
123 | 116 |
T operator *(const Point<T>& u) const { |
124 | 117 |
return x*u.x+y*u.y; |
125 | 118 |
} |
126 | 119 |
|
127 | 120 |
///Return the sum of two vectors |
128 | 121 |
Point<T> operator+(const Point<T> &u) const { |
129 | 122 |
Point<T> b=*this; |
130 | 123 |
return b+=u; |
131 | 124 |
} |
132 | 125 |
|
133 | 126 |
///Return the negative of the vector |
134 | 127 |
Point<T> operator-() const { |
135 | 128 |
Point<T> b=*this; |
136 | 129 |
b.x=-b.x; b.y=-b.y; |
137 | 130 |
return b; |
138 | 131 |
} |
139 | 132 |
|
140 | 133 |
///Return the difference of two vectors |
141 | 134 |
Point<T> operator-(const Point<T> &u) const { |
142 | 135 |
Point<T> b=*this; |
143 | 136 |
return b-=u; |
144 | 137 |
} |
145 | 138 |
|
146 | 139 |
///Return a vector multiplied by a scalar |
147 | 140 |
Point<T> operator*(const T &u) const { |
148 | 141 |
Point<T> b=*this; |
149 | 142 |
return b*=u; |
150 | 143 |
} |
151 | 144 |
|
152 | 145 |
///Return a vector divided by a scalar |
153 | 146 |
Point<T> operator/(const T &u) const { |
154 | 147 |
Point<T> b=*this; |
155 | 148 |
return b/=u; |
156 | 149 |
} |
157 | 150 |
|
158 | 151 |
///Test equality |
159 | 152 |
bool operator==(const Point<T> &u) const { |
160 | 153 |
return (x==u.x) && (y==u.y); |
161 | 154 |
} |
162 | 155 |
|
163 | 156 |
///Test inequality |
164 | 157 |
bool operator!=(Point u) const { |
165 | 158 |
return (x!=u.x) || (y!=u.y); |
166 | 159 |
} |
167 | 160 |
|
168 | 161 |
}; |
169 | 162 |
|
170 | 163 |
///Return a Point |
171 | 164 |
|
172 | 165 |
///Return a Point. |
173 | 166 |
///\relates Point |
174 | 167 |
template <typename T> |
175 | 168 |
inline Point<T> makePoint(const T& x, const T& y) { |
176 | 169 |
return Point<T>(x, y); |
177 | 170 |
} |
178 | 171 |
|
179 | 172 |
///Return a vector multiplied by a scalar |
180 | 173 |
|
181 | 174 |
///Return a vector multiplied by a scalar. |
182 | 175 |
///\relates Point |
183 | 176 |
template<typename T> Point<T> operator*(const T &u,const Point<T> &x) { |
184 | 177 |
return x*u; |
185 | 178 |
} |
186 | 179 |
|
187 | 180 |
///Read a plain vector from a stream |
188 | 181 |
|
189 | 182 |
///Read a plain vector from a stream. |
190 | 183 |
///\relates Point |
191 | 184 |
/// |
192 | 185 |
template<typename T> |
193 | 186 |
inline std::istream& operator>>(std::istream &is, Point<T> &z) { |
194 | 187 |
char c; |
195 | 188 |
if (is >> c) { |
196 | 189 |
if (c != '(') is.putback(c); |
197 | 190 |
} else { |
198 | 191 |
is.clear(); |
199 | 192 |
} |
200 | 193 |
if (!(is >> z.x)) return is; |
201 | 194 |
if (is >> c) { |
202 | 195 |
if (c != ',') is.putback(c); |
203 | 196 |
} else { |
204 | 197 |
is.clear(); |
205 | 198 |
} |
206 | 199 |
if (!(is >> z.y)) return is; |
207 | 200 |
if (is >> c) { |
208 | 201 |
if (c != ')') is.putback(c); |
209 | 202 |
} else { |
210 | 203 |
is.clear(); |
211 | 204 |
} |
212 | 205 |
return is; |
213 | 206 |
} |
214 | 207 |
|
215 | 208 |
///Write a plain vector to a stream |
216 | 209 |
|
217 | 210 |
///Write a plain vector to a stream. |
218 | 211 |
///\relates Point |
219 | 212 |
/// |
220 | 213 |
template<typename T> |
221 | 214 |
inline std::ostream& operator<<(std::ostream &os, const Point<T>& z) |
222 | 215 |
{ |
223 | 216 |
os << "(" << z.x << "," << z.y << ")"; |
224 | 217 |
return os; |
225 | 218 |
} |
226 | 219 |
|
227 | 220 |
///Rotate by 90 degrees |
228 | 221 |
|
229 | 222 |
///Returns the parameter rotated by 90 degrees in positive direction. |
230 | 223 |
///\relates Point |
231 | 224 |
/// |
232 | 225 |
template<typename T> |
233 | 226 |
inline Point<T> rot90(const Point<T> &z) |
234 | 227 |
{ |
235 | 228 |
return Point<T>(-z.y,z.x); |
236 | 229 |
} |
237 | 230 |
|
238 | 231 |
///Rotate by 180 degrees |
239 | 232 |
|
240 | 233 |
///Returns the parameter rotated by 180 degrees. |
241 | 234 |
///\relates Point |
242 | 235 |
/// |
243 | 236 |
template<typename T> |
244 | 237 |
inline Point<T> rot180(const Point<T> &z) |
245 | 238 |
{ |
246 | 239 |
return Point<T>(-z.x,-z.y); |
247 | 240 |
} |
248 | 241 |
|
249 | 242 |
///Rotate by 270 degrees |
250 | 243 |
|
251 | 244 |
///Returns the parameter rotated by 90 degrees in negative direction. |
252 | 245 |
///\relates Point |
253 | 246 |
/// |
254 | 247 |
template<typename T> |
255 | 248 |
inline Point<T> rot270(const Point<T> &z) |
256 | 249 |
{ |
257 | 250 |
return Point<T>(z.y,-z.x); |
258 | 251 |
} |
259 | 252 |
|
260 | 253 |
|
261 | 254 |
|
262 | 255 |
/// Bounding box of plain vectors (points). |
263 | 256 |
|
264 | 257 |
/// A class to calculate or store the bounding box of plain vectors |
265 | 258 |
/// (\ref Point "points"). |
266 | 259 |
template<typename T> |
267 | 260 |
class Box { |
268 | 261 |
Point<T> _bottom_left, _top_right; |
269 | 262 |
bool _empty; |
270 | 263 |
public: |
271 | 264 |
|
272 | 265 |
///Default constructor: creates an empty box |
273 | 266 |
Box() { _empty = true; } |
274 | 267 |
|
275 | 268 |
///Construct a box from one point |
276 | 269 |
Box(Point<T> a) { |
277 | 270 |
_bottom_left = _top_right = a; |
278 | 271 |
_empty = false; |
279 | 272 |
} |
280 | 273 |
|
281 | 274 |
///Construct a box from two points |
282 | 275 |
|
283 | 276 |
///Construct a box from two points. |
284 | 277 |
///\param a The bottom left corner. |
285 | 278 |
///\param b The top right corner. |
286 | 279 |
///\warning The coordinates of the bottom left corner must be no more |
287 | 280 |
///than those of the top right one. |
288 | 281 |
Box(Point<T> a,Point<T> b) |
289 | 282 |
{ |
290 | 283 |
_bottom_left = a; |
291 | 284 |
_top_right = b; |
292 | 285 |
_empty = false; |
293 | 286 |
} |
294 | 287 |
|
295 | 288 |
///Construct a box from four numbers |
296 | 289 |
|
297 | 290 |
///Construct a box from four numbers. |
298 | 291 |
///\param l The left side of the box. |
299 | 292 |
///\param b The bottom of the box. |
300 | 293 |
///\param r The right side of the box. |
301 | 294 |
///\param t The top of the box. |
302 | 295 |
///\warning The left side must be no more than the right side and |
303 | 296 |
///bottom must be no more than the top. |
304 | 297 |
Box(T l,T b,T r,T t) |
305 | 298 |
{ |
306 | 299 |
_bottom_left=Point<T>(l,b); |
307 | 300 |
_top_right=Point<T>(r,t); |
308 | 301 |
_empty = false; |
309 | 302 |
} |
310 | 303 |
|
311 | 304 |
///Return \c true if the box is empty. |
312 | 305 |
|
313 | 306 |
///Return \c true if the box is empty (i.e. return \c false |
314 | 307 |
///if at least one point was added to the box or the coordinates of |
315 | 308 |
///the box were set). |
316 | 309 |
/// |
317 | 310 |
///The coordinates of an empty box are not defined. |
318 | 311 |
bool empty() const { |
319 | 312 |
return _empty; |
320 | 313 |
} |
321 | 314 |
|
322 | 315 |
///Make the box empty |
323 | 316 |
void clear() { |
324 | 317 |
_empty = true; |
325 | 318 |
} |
326 | 319 |
|
327 | 320 |
///Give back the bottom left corner of the box |
328 | 321 |
|
329 | 322 |
///Give back the bottom left corner of the box. |
330 | 323 |
///If the box is empty, then the return value is not defined. |
331 | 324 |
Point<T> bottomLeft() const { |
332 | 325 |
return _bottom_left; |
333 | 326 |
} |
334 | 327 |
|
335 | 328 |
///Set the bottom left corner of the box |
336 | 329 |
|
337 | 330 |
///Set the bottom left corner of the box. |
338 | 331 |
///\pre The box must not be empty. |
339 | 332 |
void bottomLeft(Point<T> p) { |
340 | 333 |
_bottom_left = p; |
341 | 334 |
} |
342 | 335 |
|
343 | 336 |
///Give back the top right corner of the box |
344 | 337 |
|
345 | 338 |
///Give back the top right corner of the box. |
346 | 339 |
///If the box is empty, then the return value is not defined. |
347 | 340 |
Point<T> topRight() const { |
348 | 341 |
return _top_right; |
349 | 342 |
} |
350 | 343 |
|
351 | 344 |
///Set the top right corner of the box |
352 | 345 |
|
353 | 346 |
///Set the top right corner of the box. |
354 | 347 |
///\pre The box must not be empty. |
355 | 348 |
void topRight(Point<T> p) { |
356 | 349 |
_top_right = p; |
357 | 350 |
} |
358 | 351 |
|
359 | 352 |
///Give back the bottom right corner of the box |
360 | 353 |
|
361 | 354 |
///Give back the bottom right corner of the box. |
362 | 355 |
///If the box is empty, then the return value is not defined. |
363 | 356 |
Point<T> bottomRight() const { |
364 | 357 |
return Point<T>(_top_right.x,_bottom_left.y); |
365 | 358 |
} |
366 | 359 |
|
367 | 360 |
///Set the bottom right corner of the box |
368 | 361 |
|
369 | 362 |
///Set the bottom right corner of the box. |
370 | 363 |
///\pre The box must not be empty. |
371 | 364 |
void bottomRight(Point<T> p) { |
372 | 365 |
_top_right.x = p.x; |
373 | 366 |
_bottom_left.y = p.y; |
374 | 367 |
} |
375 | 368 |
|
376 | 369 |
///Give back the top left corner of the box |
377 | 370 |
|
378 | 371 |
///Give back the top left corner of the box. |
379 | 372 |
///If the box is empty, then the return value is not defined. |
380 | 373 |
Point<T> topLeft() const { |
381 | 374 |
return Point<T>(_bottom_left.x,_top_right.y); |
382 | 375 |
} |
383 | 376 |
|
384 | 377 |
///Set the top left corner of the box |
385 | 378 |
|
386 | 379 |
///Set the top left corner of the box. |
387 | 380 |
///\pre The box must not be empty. |
388 | 381 |
void topLeft(Point<T> p) { |
389 | 382 |
_top_right.y = p.y; |
390 | 383 |
_bottom_left.x = p.x; |
391 | 384 |
} |
392 | 385 |
|
393 | 386 |
///Give back the bottom of the box |
394 | 387 |
|
395 | 388 |
///Give back the bottom of the box. |
396 | 389 |
///If the box is empty, then the return value is not defined. |
397 | 390 |
T bottom() const { |
398 | 391 |
return _bottom_left.y; |
399 | 392 |
} |
400 | 393 |
|
401 | 394 |
///Set the bottom of the box |
402 | 395 |
|
403 | 396 |
///Set the bottom of the box. |
404 | 397 |
///\pre The box must not be empty. |
405 | 398 |
void bottom(T t) { |
406 | 399 |
_bottom_left.y = t; |
407 | 400 |
} |
408 | 401 |
|
409 | 402 |
///Give back the top of the box |
410 | 403 |
|
411 | 404 |
///Give back the top of the box. |
412 | 405 |
///If the box is empty, then the return value is not defined. |
413 | 406 |
T top() const { |
414 | 407 |
return _top_right.y; |
415 | 408 |
} |
416 | 409 |
|
417 | 410 |
///Set the top of the box |
418 | 411 |
|
419 | 412 |
///Set the top of the box. |
420 | 413 |
///\pre The box must not be empty. |
421 | 414 |
void top(T t) { |
422 | 415 |
_top_right.y = t; |
423 | 416 |
} |
424 | 417 |
|
425 | 418 |
///Give back the left side of the box |
426 | 419 |
|
427 | 420 |
///Give back the left side of the box. |
428 | 421 |
///If the box is empty, then the return value is not defined. |
429 | 422 |
T left() const { |
430 | 423 |
return _bottom_left.x; |
431 | 424 |
} |
432 | 425 |
|
433 | 426 |
///Set the left side of the box |
434 | 427 |
|
435 | 428 |
///Set the left side of the box. |
436 | 429 |
///\pre The box must not be empty. |
437 | 430 |
void left(T t) { |
438 | 431 |
_bottom_left.x = t; |
439 | 432 |
} |
440 | 433 |
|
441 | 434 |
/// Give back the right side of the box |
442 | 435 |
|
443 | 436 |
/// Give back the right side of the box. |
444 | 437 |
///If the box is empty, then the return value is not defined. |
445 | 438 |
T right() const { |
446 | 439 |
return _top_right.x; |
447 | 440 |
} |
448 | 441 |
|
449 | 442 |
///Set the right side of the box |
450 | 443 |
|
451 | 444 |
///Set the right side of the box. |
452 | 445 |
///\pre The box must not be empty. |
453 | 446 |
void right(T t) { |
454 | 447 |
_top_right.x = t; |
455 | 448 |
} |
456 | 449 |
|
457 | 450 |
///Give back the height of the box |
458 | 451 |
|
459 | 452 |
///Give back the height of the box. |
460 | 453 |
///If the box is empty, then the return value is not defined. |
461 | 454 |
T height() const { |
462 | 455 |
return _top_right.y-_bottom_left.y; |
463 | 456 |
} |
464 | 457 |
|
465 | 458 |
///Give back the width of the box |
466 | 459 |
|
467 | 460 |
///Give back the width of the box. |
468 | 461 |
///If the box is empty, then the return value is not defined. |
469 | 462 |
T width() const { |
470 | 463 |
return _top_right.x-_bottom_left.x; |
471 | 464 |
} |
472 | 465 |
|
473 | 466 |
///Checks whether a point is inside the box |
474 | 467 |
bool inside(const Point<T>& u) const { |
475 | 468 |
if (_empty) |
476 | 469 |
return false; |
477 | 470 |
else { |
478 | 471 |
return ( (u.x-_bottom_left.x)*(_top_right.x-u.x) >= 0 && |
479 | 472 |
(u.y-_bottom_left.y)*(_top_right.y-u.y) >= 0 ); |
480 | 473 |
} |
481 | 474 |
} |
482 | 475 |
|
483 | 476 |
///Increments the box with a point |
484 | 477 |
|
485 | 478 |
///Increments the box with a point. |
486 | 479 |
/// |
487 | 480 |
Box& add(const Point<T>& u){ |
488 | 481 |
if (_empty) { |
489 | 482 |
_bottom_left = _top_right = u; |
490 | 483 |
_empty = false; |
491 | 484 |
} |
492 | 485 |
else { |
493 | 486 |
if (_bottom_left.x > u.x) _bottom_left.x = u.x; |
494 | 487 |
if (_bottom_left.y > u.y) _bottom_left.y = u.y; |
495 | 488 |
if (_top_right.x < u.x) _top_right.x = u.x; |
496 | 489 |
if (_top_right.y < u.y) _top_right.y = u.y; |
497 | 490 |
} |
498 | 491 |
return *this; |
499 | 492 |
} |
500 | 493 |
|
501 | 494 |
///Increments the box to contain another box |
502 | 495 |
|
503 | 496 |
///Increments the box to contain another box. |
504 | 497 |
/// |
505 | 498 |
Box& add(const Box &u){ |
506 | 499 |
if ( !u.empty() ){ |
507 | 500 |
add(u._bottom_left); |
508 | 501 |
add(u._top_right); |
509 | 502 |
} |
510 | 503 |
return *this; |
511 | 504 |
} |
512 | 505 |
|
513 | 506 |
///Intersection of two boxes |
514 | 507 |
|
515 | 508 |
///Intersection of two boxes. |
516 | 509 |
/// |
517 | 510 |
Box operator&(const Box& u) const { |
518 | 511 |
Box b; |
519 | 512 |
if (_empty || u._empty) { |
520 | 513 |
b._empty = true; |
521 | 514 |
} else { |
522 | 515 |
b._bottom_left.x = std::max(_bottom_left.x, u._bottom_left.x); |
523 | 516 |
b._bottom_left.y = std::max(_bottom_left.y, u._bottom_left.y); |
524 | 517 |
b._top_right.x = std::min(_top_right.x, u._top_right.x); |
525 | 518 |
b._top_right.y = std::min(_top_right.y, u._top_right.y); |
526 | 519 |
b._empty = b._bottom_left.x > b._top_right.x || |
527 | 520 |
b._bottom_left.y > b._top_right.y; |
528 | 521 |
} |
529 | 522 |
return b; |
530 | 523 |
} |
531 | 524 |
|
532 | 525 |
};//class Box |
533 | 526 |
|
534 | 527 |
|
535 | 528 |
///Read a box from a stream |
536 | 529 |
|
537 | 530 |
///Read a box from a stream. |
538 | 531 |
///\relates Box |
539 | 532 |
template<typename T> |
540 | 533 |
inline std::istream& operator>>(std::istream &is, Box<T>& b) { |
541 | 534 |
char c; |
542 | 535 |
Point<T> p; |
543 | 536 |
if (is >> c) { |
544 | 537 |
if (c != '(') is.putback(c); |
545 | 538 |
} else { |
546 | 539 |
is.clear(); |
547 | 540 |
} |
548 | 541 |
if (!(is >> p)) return is; |
549 | 542 |
b.bottomLeft(p); |
550 | 543 |
if (is >> c) { |
551 | 544 |
if (c != ',') is.putback(c); |
552 | 545 |
} else { |
553 | 546 |
is.clear(); |
554 | 547 |
} |
555 | 548 |
if (!(is >> p)) return is; |
556 | 549 |
b.topRight(p); |
557 | 550 |
if (is >> c) { |
558 | 551 |
if (c != ')') is.putback(c); |
559 | 552 |
} else { |
560 | 553 |
is.clear(); |
561 | 554 |
} |
562 | 555 |
return is; |
563 | 556 |
} |
564 | 557 |
|
565 | 558 |
///Write a box to a stream |
566 | 559 |
|
567 | 560 |
///Write a box to a stream. |
568 | 561 |
///\relates Box |
569 | 562 |
template<typename T> |
570 | 563 |
inline std::ostream& operator<<(std::ostream &os, const Box<T>& b) |
571 | 564 |
{ |
572 | 565 |
os << "(" << b.bottomLeft() << "," << b.topRight() << ")"; |
573 | 566 |
return os; |
574 | 567 |
} |
575 | 568 |
|
576 | 569 |
///Map of x-coordinates of a <tt>Point</tt>-map |
577 | 570 |
|
578 | 571 |
///Map of x-coordinates of a \ref Point "Point"-map. |
579 | 572 |
/// |
580 | 573 |
template<class M> |
581 | 574 |
class XMap |
582 | 575 |
{ |
583 | 576 |
M& _map; |
584 | 577 |
public: |
585 | 578 |
|
586 | 579 |
typedef typename M::Value::Value Value; |
587 | 580 |
typedef typename M::Key Key; |
588 | 581 |
///\e |
589 | 582 |
XMap(M& map) : _map(map) {} |
590 | 583 |
Value operator[](Key k) const {return _map[k].x;} |
591 | 584 |
void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));} |
592 | 585 |
}; |
593 | 586 |
|
594 | 587 |
///Returns an XMap class |
595 | 588 |
|
596 | 589 |
///This function just returns an XMap class. |
597 | 590 |
///\relates XMap |
598 | 591 |
template<class M> |
599 | 592 |
inline XMap<M> xMap(M &m) |
600 | 593 |
{ |
601 | 594 |
return XMap<M>(m); |
602 | 595 |
} |
603 | 596 |
|
604 | 597 |
template<class M> |
605 | 598 |
inline XMap<M> xMap(const M &m) |
606 | 599 |
{ |
607 | 600 |
return XMap<M>(m); |
608 | 601 |
} |
609 | 602 |
|
610 | 603 |
///Constant (read only) version of XMap |
611 | 604 |
|
612 | 605 |
///Constant (read only) version of XMap. |
613 | 606 |
/// |
614 | 607 |
template<class M> |
615 | 608 |
class ConstXMap |
616 | 609 |
{ |
617 | 610 |
const M& _map; |
618 | 611 |
public: |
619 | 612 |
|
620 | 613 |
typedef typename M::Value::Value Value; |
621 | 614 |
typedef typename M::Key Key; |
622 | 615 |
///\e |
623 | 616 |
ConstXMap(const M &map) : _map(map) {} |
624 | 617 |
Value operator[](Key k) const {return _map[k].x;} |
625 | 618 |
}; |
626 | 619 |
|
627 | 620 |
///Returns a ConstXMap class |
628 | 621 |
|
629 | 622 |
///This function just returns a ConstXMap class. |
630 | 623 |
///\relates ConstXMap |
631 | 624 |
template<class M> |
632 | 625 |
inline ConstXMap<M> xMap(const M &m) |
633 | 626 |
{ |
634 | 627 |
return ConstXMap<M>(m); |
635 | 628 |
} |
636 | 629 |
|
637 | 630 |
///Map of y-coordinates of a <tt>Point</tt>-map |
638 | 631 |
|
639 | 632 |
///Map of y-coordinates of a \ref Point "Point"-map. |
640 | 633 |
/// |
641 | 634 |
template<class M> |
642 | 635 |
class YMap |
643 | 636 |
{ |
644 | 637 |
M& _map; |
645 | 638 |
public: |
646 | 639 |
|
647 | 640 |
typedef typename M::Value::Value Value; |
648 | 641 |
typedef typename M::Key Key; |
649 | 642 |
///\e |
650 | 643 |
YMap(M& map) : _map(map) {} |
651 | 644 |
Value operator[](Key k) const {return _map[k].y;} |
652 | 645 |
void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));} |
653 | 646 |
}; |
654 | 647 |
|
655 | 648 |
///Returns a YMap class |
656 | 649 |
|
657 | 650 |
///This function just returns a YMap class. |
658 | 651 |
///\relates YMap |
659 | 652 |
template<class M> |
660 | 653 |
inline YMap<M> yMap(M &m) |
661 | 654 |
{ |
662 | 655 |
return YMap<M>(m); |
663 | 656 |
} |
664 | 657 |
|
665 | 658 |
template<class M> |
666 | 659 |
inline YMap<M> yMap(const M &m) |
667 | 660 |
{ |
668 | 661 |
return YMap<M>(m); |
669 | 662 |
} |
670 | 663 |
|
671 | 664 |
///Constant (read only) version of YMap |
672 | 665 |
|
673 | 666 |
///Constant (read only) version of YMap. |
674 | 667 |
/// |
675 | 668 |
template<class M> |
676 | 669 |
class ConstYMap |
677 | 670 |
{ |
678 | 671 |
const M& _map; |
679 | 672 |
public: |
680 | 673 |
|
681 | 674 |
typedef typename M::Value::Value Value; |
682 | 675 |
typedef typename M::Key Key; |
683 | 676 |
///\e |
684 | 677 |
ConstYMap(const M &map) : _map(map) {} |
685 | 678 |
Value operator[](Key k) const {return _map[k].y;} |
686 | 679 |
}; |
687 | 680 |
|
688 | 681 |
///Returns a ConstYMap class |
689 | 682 |
|
690 | 683 |
///This function just returns a ConstYMap class. |
691 | 684 |
///\relates ConstYMap |
692 | 685 |
template<class M> |
693 | 686 |
inline ConstYMap<M> yMap(const M &m) |
694 | 687 |
{ |
695 | 688 |
return ConstYMap<M>(m); |
696 | 689 |
} |
697 | 690 |
|
698 | 691 |
|
699 | 692 |
///\brief Map of the normSquare() of a <tt>Point</tt>-map |
700 | 693 |
/// |
701 | 694 |
///Map of the \ref Point::normSquare() "normSquare()" |
702 | 695 |
///of a \ref Point "Point"-map. |
703 | 696 |
template<class M> |
704 | 697 |
class NormSquareMap |
705 | 698 |
{ |
706 | 699 |
const M& _map; |
707 | 700 |
public: |
708 | 701 |
|
709 | 702 |
typedef typename M::Value::Value Value; |
710 | 703 |
typedef typename M::Key Key; |
711 | 704 |
///\e |
712 | 705 |
NormSquareMap(const M &map) : _map(map) {} |
713 | 706 |
Value operator[](Key k) const {return _map[k].normSquare();} |
714 | 707 |
}; |
715 | 708 |
|
716 | 709 |
///Returns a NormSquareMap class |
717 | 710 |
|
718 | 711 |
///This function just returns a NormSquareMap class. |
719 | 712 |
///\relates NormSquareMap |
720 | 713 |
template<class M> |
721 | 714 |
inline NormSquareMap<M> normSquareMap(const M &m) |
722 | 715 |
{ |
723 | 716 |
return NormSquareMap<M>(m); |
724 | 717 |
} |
725 | 718 |
|
726 | 719 |
/// @} |
727 | 720 |
|
728 | 721 |
} //namespce dim2 |
729 | 722 |
|
730 | 723 |
} //namespace lemon |
731 | 724 |
|
732 | 725 |
#endif //LEMON_DIM2_H |
1 | 1 |
/* -*- C++ -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GOMORY_HU_TREE_H |
20 | 20 |
#define LEMON_GOMORY_HU_TREE_H |
21 | 21 |
|
22 | 22 |
#include <limits> |
23 | 23 |
|
24 | 24 |
#include <lemon/core.h> |
25 | 25 |
#include <lemon/preflow.h> |
26 | 26 |
#include <lemon/concept_check.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
/// \ingroup min_cut |
30 | 30 |
/// \file |
31 | 31 |
/// \brief Gomory-Hu cut tree in graphs. |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
/// \ingroup min_cut |
36 | 36 |
/// |
37 | 37 |
/// \brief Gomory-Hu cut tree algorithm |
38 | 38 |
/// |
39 | 39 |
/// The Gomory-Hu tree is a tree on the node set of a given graph, but it |
40 | 40 |
/// may contain edges which are not in the original graph. It has the |
41 | 41 |
/// property that the minimum capacity edge of the path between two nodes |
42 | 42 |
/// in this tree has the same weight as the minimum cut in the graph |
43 | 43 |
/// between these nodes. Moreover the components obtained by removing |
44 | 44 |
/// this edge from the tree determine the corresponding minimum cut. |
45 | 45 |
/// Therefore once this tree is computed, the minimum cut between any pair |
46 | 46 |
/// of nodes can easily be obtained. |
47 | 47 |
/// |
48 | 48 |
/// The algorithm calculates \e n-1 distinct minimum cuts (currently with |
49 | 49 |
/// the \ref Preflow algorithm), thus it has \f$O(n^3\sqrt{e})\f$ overall |
50 | 50 |
/// time complexity. It calculates a rooted Gomory-Hu tree. |
51 | 51 |
/// The structure of the tree and the edge weights can be |
52 | 52 |
/// obtained using \c predNode(), \c predValue() and \c rootDist(). |
53 | 53 |
/// The functions \c minCutMap() and \c minCutValue() calculate |
54 | 54 |
/// the minimum cut and the minimum cut value between any two nodes |
55 | 55 |
/// in the graph. You can also list (iterate on) the nodes and the |
56 | 56 |
/// edges of the cuts using \c MinCutNodeIt and \c MinCutEdgeIt. |
57 | 57 |
/// |
58 | 58 |
/// \tparam GR The type of the undirected graph the algorithm runs on. |
59 | 59 |
/// \tparam CAP The type of the edge map containing the capacities. |
60 | 60 |
/// The default map type is \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
61 | 61 |
#ifdef DOXYGEN |
62 | 62 |
template <typename GR, |
63 | 63 |
typename CAP> |
64 | 64 |
#else |
65 | 65 |
template <typename GR, |
66 | 66 |
typename CAP = typename GR::template EdgeMap<int> > |
67 | 67 |
#endif |
68 | 68 |
class GomoryHu { |
69 | 69 |
public: |
70 | 70 |
|
71 | 71 |
/// The graph type of the algorithm |
72 | 72 |
typedef GR Graph; |
73 | 73 |
/// The capacity map type of the algorithm |
74 | 74 |
typedef CAP Capacity; |
75 | 75 |
/// The value type of capacities |
76 | 76 |
typedef typename Capacity::Value Value; |
77 | 77 |
|
78 | 78 |
private: |
79 | 79 |
|
80 | 80 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
81 | 81 |
|
82 | 82 |
const Graph& _graph; |
83 | 83 |
const Capacity& _capacity; |
84 | 84 |
|
85 | 85 |
Node _root; |
86 | 86 |
typename Graph::template NodeMap<Node>* _pred; |
87 | 87 |
typename Graph::template NodeMap<Value>* _weight; |
88 | 88 |
typename Graph::template NodeMap<int>* _order; |
89 | 89 |
|
90 | 90 |
void createStructures() { |
91 | 91 |
if (!_pred) { |
92 | 92 |
_pred = new typename Graph::template NodeMap<Node>(_graph); |
93 | 93 |
} |
94 | 94 |
if (!_weight) { |
95 | 95 |
_weight = new typename Graph::template NodeMap<Value>(_graph); |
96 | 96 |
} |
97 | 97 |
if (!_order) { |
98 | 98 |
_order = new typename Graph::template NodeMap<int>(_graph); |
99 | 99 |
} |
100 | 100 |
} |
101 | 101 |
|
102 | 102 |
void destroyStructures() { |
103 | 103 |
if (_pred) { |
104 | 104 |
delete _pred; |
105 | 105 |
} |
106 | 106 |
if (_weight) { |
107 | 107 |
delete _weight; |
108 | 108 |
} |
109 | 109 |
if (_order) { |
110 | 110 |
delete _order; |
111 | 111 |
} |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
public: |
115 | 115 |
|
116 | 116 |
/// \brief Constructor |
117 | 117 |
/// |
118 | 118 |
/// Constructor. |
119 | 119 |
/// \param graph The undirected graph the algorithm runs on. |
120 | 120 |
/// \param capacity The edge capacity map. |
121 | 121 |
GomoryHu(const Graph& graph, const Capacity& capacity) |
122 | 122 |
: _graph(graph), _capacity(capacity), |
123 | 123 |
_pred(0), _weight(0), _order(0) |
124 | 124 |
{ |
125 | 125 |
checkConcept<concepts::ReadMap<Edge, Value>, Capacity>(); |
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
|
129 | 129 |
/// \brief Destructor |
130 | 130 |
/// |
131 | 131 |
/// Destructor. |
132 | 132 |
~GomoryHu() { |
133 | 133 |
destroyStructures(); |
134 | 134 |
} |
135 | 135 |
|
136 | 136 |
private: |
137 | 137 |
|
138 | 138 |
// Initialize the internal data structures |
139 | 139 |
void init() { |
140 | 140 |
createStructures(); |
141 | 141 |
|
142 | 142 |
_root = NodeIt(_graph); |
143 | 143 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
144 | 144 |
(*_pred)[n] = _root; |
145 | 145 |
(*_order)[n] = -1; |
146 | 146 |
} |
147 | 147 |
(*_pred)[_root] = INVALID; |
148 | 148 |
(*_weight)[_root] = std::numeric_limits<Value>::max(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
|
152 | 152 |
// Start the algorithm |
153 | 153 |
void start() { |
154 | 154 |
Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID); |
155 | 155 |
|
156 | 156 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
157 | 157 |
if (n == _root) continue; |
158 | 158 |
|
159 | 159 |
Node pn = (*_pred)[n]; |
160 | 160 |
fa.source(n); |
161 | 161 |
fa.target(pn); |
162 | 162 |
|
163 | 163 |
fa.runMinCut(); |
164 | 164 |
|
165 | 165 |
(*_weight)[n] = fa.flowValue(); |
166 | 166 |
|
167 | 167 |
for (NodeIt nn(_graph); nn != INVALID; ++nn) { |
168 | 168 |
if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) { |
169 | 169 |
(*_pred)[nn] = n; |
170 | 170 |
} |
171 | 171 |
} |
172 | 172 |
if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) { |
173 | 173 |
(*_pred)[n] = (*_pred)[pn]; |
174 | 174 |
(*_pred)[pn] = n; |
175 | 175 |
(*_weight)[n] = (*_weight)[pn]; |
176 | 176 |
(*_weight)[pn] = fa.flowValue(); |
177 | 177 |
} |
178 | 178 |
} |
179 | 179 |
|
180 | 180 |
(*_order)[_root] = 0; |
181 | 181 |
int index = 1; |
182 | 182 |
|
183 | 183 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
184 | 184 |
std::vector<Node> st; |
185 | 185 |
Node nn = n; |
186 | 186 |
while ((*_order)[nn] == -1) { |
187 | 187 |
st.push_back(nn); |
188 | 188 |
nn = (*_pred)[nn]; |
189 | 189 |
} |
190 | 190 |
while (!st.empty()) { |
191 | 191 |
(*_order)[st.back()] = index++; |
192 | 192 |
st.pop_back(); |
193 | 193 |
} |
194 | 194 |
} |
195 | 195 |
} |
196 | 196 |
|
197 | 197 |
public: |
198 | 198 |
|
199 | 199 |
///\name Execution Control |
200 | 200 |
|
201 | 201 |
///@{ |
202 | 202 |
|
203 | 203 |
/// \brief Run the Gomory-Hu algorithm. |
204 | 204 |
/// |
205 | 205 |
/// This function runs the Gomory-Hu algorithm. |
206 | 206 |
void run() { |
207 | 207 |
init(); |
208 | 208 |
start(); |
209 | 209 |
} |
210 | 210 |
|
211 | 211 |
/// @} |
212 | 212 |
|
213 | 213 |
///\name Query Functions |
214 | 214 |
///The results of the algorithm can be obtained using these |
215 | 215 |
///functions.\n |
216 | 216 |
///\ref run() should be called before using them.\n |
217 | 217 |
///See also \ref MinCutNodeIt and \ref MinCutEdgeIt. |
218 | 218 |
|
219 | 219 |
///@{ |
220 | 220 |
|
221 | 221 |
/// \brief Return the predecessor node in the Gomory-Hu tree. |
222 | 222 |
/// |
223 | 223 |
/// This function returns the predecessor node of the given node |
224 | 224 |
/// in the Gomory-Hu tree. |
225 | 225 |
/// If \c node is the root of the tree, then it returns \c INVALID. |
226 | 226 |
/// |
227 | 227 |
/// \pre \ref run() must be called before using this function. |
228 | 228 |
Node predNode(const Node& node) const { |
229 | 229 |
return (*_pred)[node]; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
/// \brief Return the weight of the predecessor edge in the |
233 | 233 |
/// Gomory-Hu tree. |
234 | 234 |
/// |
235 | 235 |
/// This function returns the weight of the predecessor edge of the |
236 | 236 |
/// given node in the Gomory-Hu tree. |
237 | 237 |
/// If \c node is the root of the tree, the result is undefined. |
238 | 238 |
/// |
239 | 239 |
/// \pre \ref run() must be called before using this function. |
240 | 240 |
Value predValue(const Node& node) const { |
241 | 241 |
return (*_weight)[node]; |
242 | 242 |
} |
243 | 243 |
|
244 | 244 |
/// \brief Return the distance from the root node in the Gomory-Hu tree. |
245 | 245 |
/// |
246 | 246 |
/// This function returns the distance of the given node from the root |
247 | 247 |
/// node in the Gomory-Hu tree. |
248 | 248 |
/// |
249 | 249 |
/// \pre \ref run() must be called before using this function. |
250 | 250 |
int rootDist(const Node& node) const { |
251 | 251 |
return (*_order)[node]; |
252 | 252 |
} |
253 | 253 |
|
254 | 254 |
/// \brief Return the minimum cut value between two nodes |
255 | 255 |
/// |
256 | 256 |
/// This function returns the minimum cut value between the nodes |
257 | 257 |
/// \c s and \c t. |
258 | 258 |
/// It finds the nearest common ancestor of the given nodes in the |
259 | 259 |
/// Gomory-Hu tree and calculates the minimum weight edge on the |
260 | 260 |
/// paths to the ancestor. |
261 | 261 |
/// |
262 | 262 |
/// \pre \ref run() must be called before using this function. |
263 | 263 |
Value minCutValue(const Node& s, const Node& t) const { |
264 | 264 |
Node sn = s, tn = t; |
265 | 265 |
Value value = std::numeric_limits<Value>::max(); |
266 | 266 |
|
267 | 267 |
while (sn != tn) { |
268 | 268 |
if ((*_order)[sn] < (*_order)[tn]) { |
269 | 269 |
if ((*_weight)[tn] <= value) value = (*_weight)[tn]; |
270 | 270 |
tn = (*_pred)[tn]; |
271 | 271 |
} else { |
272 | 272 |
if ((*_weight)[sn] <= value) value = (*_weight)[sn]; |
273 | 273 |
sn = (*_pred)[sn]; |
274 | 274 |
} |
275 | 275 |
} |
276 | 276 |
return value; |
277 | 277 |
} |
278 | 278 |
|
279 | 279 |
/// \brief Return the minimum cut between two nodes |
280 | 280 |
/// |
281 | 281 |
/// This function returns the minimum cut between the nodes \c s and \c t |
282 | 282 |
/// in the \c cutMap parameter by setting the nodes in the component of |
283 | 283 |
/// \c s to \c true and the other nodes to \c false. |
284 | 284 |
/// |
285 | 285 |
/// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt. |
286 | 286 |
/// |
287 | 287 |
/// \param s The base node. |
288 | 288 |
/// \param t The node you want to separate from node \c s. |
289 | 289 |
/// \param cutMap The cut will be returned in this map. |
290 | 290 |
/// It must be a \c bool (or convertible) \ref concepts::ReadWriteMap |
291 | 291 |
/// "ReadWriteMap" on the graph nodes. |
292 | 292 |
/// |
293 | 293 |
/// \return The value of the minimum cut between \c s and \c t. |
294 | 294 |
/// |
295 | 295 |
/// \pre \ref run() must be called before using this function. |
296 | 296 |
template <typename CutMap> |
297 | 297 |
Value minCutMap(const Node& s, ///< |
298 | 298 |
const Node& t, |
299 | 299 |
///< |
300 | 300 |
CutMap& cutMap |
301 | 301 |
///< |
302 | 302 |
) const { |
303 | 303 |
Node sn = s, tn = t; |
304 | 304 |
bool s_root=false; |
305 | 305 |
Node rn = INVALID; |
306 | 306 |
Value value = std::numeric_limits<Value>::max(); |
307 | 307 |
|
308 | 308 |
while (sn != tn) { |
309 | 309 |
if ((*_order)[sn] < (*_order)[tn]) { |
310 | 310 |
if ((*_weight)[tn] <= value) { |
311 | 311 |
rn = tn; |
312 | 312 |
s_root = false; |
313 | 313 |
value = (*_weight)[tn]; |
314 | 314 |
} |
315 | 315 |
tn = (*_pred)[tn]; |
316 | 316 |
} else { |
317 | 317 |
if ((*_weight)[sn] <= value) { |
318 | 318 |
rn = sn; |
319 | 319 |
s_root = true; |
320 | 320 |
value = (*_weight)[sn]; |
321 | 321 |
} |
322 | 322 |
sn = (*_pred)[sn]; |
323 | 323 |
} |
324 | 324 |
} |
325 | 325 |
|
326 | 326 |
typename Graph::template NodeMap<bool> reached(_graph, false); |
327 | 327 |
reached[_root] = true; |
328 | 328 |
cutMap.set(_root, !s_root); |
329 | 329 |
reached[rn] = true; |
330 | 330 |
cutMap.set(rn, s_root); |
331 | 331 |
|
332 | 332 |
std::vector<Node> st; |
333 | 333 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
334 | 334 |
st.clear(); |
335 | 335 |
Node nn = n; |
336 | 336 |
while (!reached[nn]) { |
337 | 337 |
st.push_back(nn); |
338 | 338 |
nn = (*_pred)[nn]; |
339 | 339 |
} |
340 | 340 |
while (!st.empty()) { |
341 | 341 |
cutMap.set(st.back(), cutMap[nn]); |
342 | 342 |
st.pop_back(); |
343 | 343 |
} |
344 | 344 |
} |
345 | 345 |
|
346 | 346 |
return value; |
347 | 347 |
} |
348 | 348 |
|
349 | 349 |
///@} |
350 | 350 |
|
351 | 351 |
friend class MinCutNodeIt; |
352 | 352 |
|
353 | 353 |
/// Iterate on the nodes of a minimum cut |
354 | 354 |
|
355 | 355 |
/// This iterator class lists the nodes of a minimum cut found by |
356 | 356 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
357 | 357 |
/// and call its \ref GomoryHu::run() "run()" method. |
358 | 358 |
/// |
359 | 359 |
/// This example counts the nodes in the minimum cut separating \c s from |
360 | 360 |
/// \c t. |
361 | 361 |
/// \code |
362 |
/// |
|
362 |
/// GomoryHu<Graph> gom(g, capacities); |
|
363 | 363 |
/// gom.run(); |
364 | 364 |
/// int cnt=0; |
365 |
/// for( |
|
365 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
366 | 366 |
/// \endcode |
367 | 367 |
class MinCutNodeIt |
368 | 368 |
{ |
369 | 369 |
bool _side; |
370 | 370 |
typename Graph::NodeIt _node_it; |
371 | 371 |
typename Graph::template NodeMap<bool> _cut; |
372 | 372 |
public: |
373 | 373 |
/// Constructor |
374 | 374 |
|
375 | 375 |
/// Constructor. |
376 | 376 |
/// |
377 | 377 |
MinCutNodeIt(GomoryHu const &gomory, |
378 | 378 |
///< The GomoryHu class. You must call its |
379 | 379 |
/// run() method |
380 | 380 |
/// before initializing this iterator. |
381 | 381 |
const Node& s, ///< The base node. |
382 | 382 |
const Node& t, |
383 | 383 |
///< The node you want to separate from node \c s. |
384 | 384 |
bool side=true |
385 | 385 |
///< If it is \c true (default) then the iterator lists |
386 | 386 |
/// the nodes of the component containing \c s, |
387 | 387 |
/// otherwise it lists the other component. |
388 | 388 |
/// \note As the minimum cut is not always unique, |
389 | 389 |
/// \code |
390 | 390 |
/// MinCutNodeIt(gomory, s, t, true); |
391 | 391 |
/// \endcode |
392 | 392 |
/// and |
393 | 393 |
/// \code |
394 | 394 |
/// MinCutNodeIt(gomory, t, s, false); |
395 | 395 |
/// \endcode |
396 | 396 |
/// does not necessarily give the same set of nodes. |
397 | 397 |
/// However it is ensured that |
398 | 398 |
/// \code |
399 | 399 |
/// MinCutNodeIt(gomory, s, t, true); |
400 | 400 |
/// \endcode |
401 | 401 |
/// and |
402 | 402 |
/// \code |
403 | 403 |
/// MinCutNodeIt(gomory, s, t, false); |
404 | 404 |
/// \endcode |
405 | 405 |
/// together list each node exactly once. |
406 | 406 |
) |
407 | 407 |
: _side(side), _cut(gomory._graph) |
408 | 408 |
{ |
409 | 409 |
gomory.minCutMap(s,t,_cut); |
410 | 410 |
for(_node_it=typename Graph::NodeIt(gomory._graph); |
411 | 411 |
_node_it!=INVALID && _cut[_node_it]!=_side; |
412 | 412 |
++_node_it) {} |
413 | 413 |
} |
414 | 414 |
/// Conversion to \c Node |
415 | 415 |
|
416 | 416 |
/// Conversion to \c Node. |
417 | 417 |
/// |
418 | 418 |
operator typename Graph::Node() const |
419 | 419 |
{ |
420 | 420 |
return _node_it; |
421 | 421 |
} |
422 | 422 |
bool operator==(Invalid) { return _node_it==INVALID; } |
423 | 423 |
bool operator!=(Invalid) { return _node_it!=INVALID; } |
424 | 424 |
/// Next node |
425 | 425 |
|
426 | 426 |
/// Next node. |
427 | 427 |
/// |
428 | 428 |
MinCutNodeIt &operator++() |
429 | 429 |
{ |
430 | 430 |
for(++_node_it;_node_it!=INVALID&&_cut[_node_it]!=_side;++_node_it) {} |
431 | 431 |
return *this; |
432 | 432 |
} |
433 | 433 |
/// Postfix incrementation |
434 | 434 |
|
435 | 435 |
/// Postfix incrementation. |
436 | 436 |
/// |
437 | 437 |
/// \warning This incrementation |
438 | 438 |
/// returns a \c Node, not a \c MinCutNodeIt, as one may |
439 | 439 |
/// expect. |
440 | 440 |
typename Graph::Node operator++(int) |
441 | 441 |
{ |
442 | 442 |
typename Graph::Node n=*this; |
443 | 443 |
++(*this); |
444 | 444 |
return n; |
445 | 445 |
} |
446 | 446 |
}; |
447 | 447 |
|
448 | 448 |
friend class MinCutEdgeIt; |
449 | 449 |
|
450 | 450 |
/// Iterate on the edges of a minimum cut |
451 | 451 |
|
452 | 452 |
/// This iterator class lists the edges of a minimum cut found by |
453 | 453 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
454 | 454 |
/// and call its \ref GomoryHu::run() "run()" method. |
455 | 455 |
/// |
456 | 456 |
/// This example computes the value of the minimum cut separating \c s from |
457 | 457 |
/// \c t. |
458 | 458 |
/// \code |
459 |
/// |
|
459 |
/// GomoryHu<Graph> gom(g, capacities); |
|
460 | 460 |
/// gom.run(); |
461 | 461 |
/// int value=0; |
462 |
/// for( |
|
462 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
463 | 463 |
/// value+=capacities[e]; |
464 | 464 |
/// \endcode |
465 | 465 |
/// The result will be the same as the value returned by |
466 | 466 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
467 | 467 |
class MinCutEdgeIt |
468 | 468 |
{ |
469 | 469 |
bool _side; |
470 | 470 |
const Graph &_graph; |
471 | 471 |
typename Graph::NodeIt _node_it; |
472 | 472 |
typename Graph::OutArcIt _arc_it; |
473 | 473 |
typename Graph::template NodeMap<bool> _cut; |
474 | 474 |
void step() |
475 | 475 |
{ |
476 | 476 |
++_arc_it; |
477 | 477 |
while(_node_it!=INVALID && _arc_it==INVALID) |
478 | 478 |
{ |
479 | 479 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {} |
480 | 480 |
if(_node_it!=INVALID) |
481 | 481 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
482 | 482 |
} |
483 | 483 |
} |
484 | 484 |
|
485 | 485 |
public: |
486 | 486 |
/// Constructor |
487 | 487 |
|
488 | 488 |
/// Constructor. |
489 | 489 |
/// |
490 | 490 |
MinCutEdgeIt(GomoryHu const &gomory, |
491 | 491 |
///< The GomoryHu class. You must call its |
492 | 492 |
/// run() method |
493 | 493 |
/// before initializing this iterator. |
494 | 494 |
const Node& s, ///< The base node. |
495 | 495 |
const Node& t, |
496 | 496 |
///< The node you want to separate from node \c s. |
497 | 497 |
bool side=true |
498 | 498 |
///< If it is \c true (default) then the listed arcs |
499 | 499 |
/// will be oriented from the |
500 | 500 |
/// nodes of the component containing \c s, |
501 | 501 |
/// otherwise they will be oriented in the opposite |
502 | 502 |
/// direction. |
503 | 503 |
) |
504 | 504 |
: _graph(gomory._graph), _cut(_graph) |
505 | 505 |
{ |
506 | 506 |
gomory.minCutMap(s,t,_cut); |
507 | 507 |
if(!side) |
508 | 508 |
for(typename Graph::NodeIt n(_graph);n!=INVALID;++n) |
509 | 509 |
_cut[n]=!_cut[n]; |
510 | 510 |
|
511 | 511 |
for(_node_it=typename Graph::NodeIt(_graph); |
512 | 512 |
_node_it!=INVALID && !_cut[_node_it]; |
513 | 513 |
++_node_it) {} |
514 | 514 |
_arc_it = _node_it!=INVALID ? |
515 | 515 |
typename Graph::OutArcIt(_graph,_node_it) : INVALID; |
516 | 516 |
while(_node_it!=INVALID && _arc_it == INVALID) |
517 | 517 |
{ |
518 | 518 |
for(++_node_it; _node_it!=INVALID&&!_cut[_node_it]; ++_node_it) {} |
519 | 519 |
if(_node_it!=INVALID) |
520 | 520 |
_arc_it= typename Graph::OutArcIt(_graph,_node_it); |
521 | 521 |
} |
522 | 522 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
523 | 523 |
} |
524 | 524 |
/// Conversion to \c Arc |
525 | 525 |
|
526 | 526 |
/// Conversion to \c Arc. |
527 | 527 |
/// |
528 | 528 |
operator typename Graph::Arc() const |
529 | 529 |
{ |
530 | 530 |
return _arc_it; |
531 | 531 |
} |
532 | 532 |
/// Conversion to \c Edge |
533 | 533 |
|
534 | 534 |
/// Conversion to \c Edge. |
535 | 535 |
/// |
536 | 536 |
operator typename Graph::Edge() const |
537 | 537 |
{ |
538 | 538 |
return _arc_it; |
539 | 539 |
} |
540 | 540 |
bool operator==(Invalid) { return _node_it==INVALID; } |
541 | 541 |
bool operator!=(Invalid) { return _node_it!=INVALID; } |
542 | 542 |
/// Next edge |
543 | 543 |
|
544 | 544 |
/// Next edge. |
545 | 545 |
/// |
546 | 546 |
MinCutEdgeIt &operator++() |
547 | 547 |
{ |
548 | 548 |
step(); |
549 | 549 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
550 | 550 |
return *this; |
551 | 551 |
} |
552 | 552 |
/// Postfix incrementation |
553 | 553 |
|
554 | 554 |
/// Postfix incrementation. |
555 | 555 |
/// |
556 | 556 |
/// \warning This incrementation |
557 | 557 |
/// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect. |
558 | 558 |
typename Graph::Arc operator++(int) |
559 | 559 |
{ |
560 | 560 |
typename Graph::Arc e=*this; |
561 | 561 |
++(*this); |
562 | 562 |
return e; |
563 | 563 |
} |
564 | 564 |
}; |
565 | 565 |
|
566 | 566 |
}; |
567 | 567 |
|
568 | 568 |
} |
569 | 569 |
|
570 | 570 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MAPS_H |
20 | 20 |
#define LEMON_MAPS_H |
21 | 21 |
|
22 | 22 |
#include <iterator> |
23 | 23 |
#include <functional> |
24 | 24 |
#include <vector> |
25 | 25 |
#include <map> |
26 | 26 |
|
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
|
29 | 29 |
///\file |
30 | 30 |
///\ingroup maps |
31 | 31 |
///\brief Miscellaneous property maps |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
/// \addtogroup maps |
36 | 36 |
/// @{ |
37 | 37 |
|
38 | 38 |
/// Base class of maps. |
39 | 39 |
|
40 | 40 |
/// Base class of maps. It provides the necessary type definitions |
41 | 41 |
/// required by the map %concepts. |
42 | 42 |
template<typename K, typename V> |
43 | 43 |
class MapBase { |
44 | 44 |
public: |
45 | 45 |
/// \brief The key type of the map. |
46 | 46 |
typedef K Key; |
47 | 47 |
/// \brief The value type of the map. |
48 | 48 |
/// (The type of objects associated with the keys). |
49 | 49 |
typedef V Value; |
50 | 50 |
}; |
51 | 51 |
|
52 | 52 |
|
53 | 53 |
/// Null map. (a.k.a. DoNothingMap) |
54 | 54 |
|
55 | 55 |
/// This map can be used if you have to provide a map only for |
56 | 56 |
/// its type definitions, or if you have to provide a writable map, |
57 | 57 |
/// but data written to it is not required (i.e. it will be sent to |
58 | 58 |
/// <tt>/dev/null</tt>). |
59 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
59 |
/// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
60 | 60 |
/// |
61 | 61 |
/// \sa ConstMap |
62 | 62 |
template<typename K, typename V> |
63 | 63 |
class NullMap : public MapBase<K, V> { |
64 | 64 |
public: |
65 | 65 |
///\e |
66 | 66 |
typedef K Key; |
67 | 67 |
///\e |
68 | 68 |
typedef V Value; |
69 | 69 |
|
70 | 70 |
/// Gives back a default constructed element. |
71 | 71 |
Value operator[](const Key&) const { return Value(); } |
72 | 72 |
/// Absorbs the value. |
73 | 73 |
void set(const Key&, const Value&) {} |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
/// Returns a \c NullMap class |
77 | 77 |
|
78 | 78 |
/// This function just returns a \c NullMap class. |
79 | 79 |
/// \relates NullMap |
80 | 80 |
template <typename K, typename V> |
81 | 81 |
NullMap<K, V> nullMap() { |
82 | 82 |
return NullMap<K, V>(); |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
|
86 | 86 |
/// Constant map. |
87 | 87 |
|
88 | 88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
89 | 89 |
/// value to each key. |
90 | 90 |
/// |
91 | 91 |
/// In other aspects it is equivalent to \c NullMap. |
92 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
92 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
93 | 93 |
/// concept, but it absorbs the data written to it. |
94 | 94 |
/// |
95 | 95 |
/// The simplest way of using this map is through the constMap() |
96 | 96 |
/// function. |
97 | 97 |
/// |
98 | 98 |
/// \sa NullMap |
99 | 99 |
/// \sa IdentityMap |
100 | 100 |
template<typename K, typename V> |
101 | 101 |
class ConstMap : public MapBase<K, V> { |
102 | 102 |
private: |
103 | 103 |
V _value; |
104 | 104 |
public: |
105 | 105 |
///\e |
106 | 106 |
typedef K Key; |
107 | 107 |
///\e |
108 | 108 |
typedef V Value; |
109 | 109 |
|
110 | 110 |
/// Default constructor |
111 | 111 |
|
112 | 112 |
/// Default constructor. |
113 | 113 |
/// The value of the map will be default constructed. |
114 | 114 |
ConstMap() {} |
115 | 115 |
|
116 | 116 |
/// Constructor with specified initial value |
117 | 117 |
|
118 | 118 |
/// Constructor with specified initial value. |
119 | 119 |
/// \param v The initial value of the map. |
120 | 120 |
ConstMap(const Value &v) : _value(v) {} |
121 | 121 |
|
122 | 122 |
/// Gives back the specified value. |
123 | 123 |
Value operator[](const Key&) const { return _value; } |
124 | 124 |
|
125 | 125 |
/// Absorbs the value. |
126 | 126 |
void set(const Key&, const Value&) {} |
127 | 127 |
|
128 | 128 |
/// Sets the value that is assigned to each key. |
129 | 129 |
void setAll(const Value &v) { |
130 | 130 |
_value = v; |
131 | 131 |
} |
132 | 132 |
|
133 | 133 |
template<typename V1> |
134 | 134 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {} |
135 | 135 |
}; |
136 | 136 |
|
137 | 137 |
/// Returns a \c ConstMap class |
138 | 138 |
|
139 | 139 |
/// This function just returns a \c ConstMap class. |
140 | 140 |
/// \relates ConstMap |
141 | 141 |
template<typename K, typename V> |
142 | 142 |
inline ConstMap<K, V> constMap(const V &v) { |
143 | 143 |
return ConstMap<K, V>(v); |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
template<typename K, typename V> |
147 | 147 |
inline ConstMap<K, V> constMap() { |
148 | 148 |
return ConstMap<K, V>(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
|
152 | 152 |
template<typename T, T v> |
153 | 153 |
struct Const {}; |
154 | 154 |
|
155 | 155 |
/// Constant map with inlined constant value. |
156 | 156 |
|
157 | 157 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
158 | 158 |
/// value to each key. |
159 | 159 |
/// |
160 | 160 |
/// In other aspects it is equivalent to \c NullMap. |
161 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
161 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
162 | 162 |
/// concept, but it absorbs the data written to it. |
163 | 163 |
/// |
164 | 164 |
/// The simplest way of using this map is through the constMap() |
165 | 165 |
/// function. |
166 | 166 |
/// |
167 | 167 |
/// \sa NullMap |
168 | 168 |
/// \sa IdentityMap |
169 | 169 |
template<typename K, typename V, V v> |
170 | 170 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
171 | 171 |
public: |
172 | 172 |
///\e |
173 | 173 |
typedef K Key; |
174 | 174 |
///\e |
175 | 175 |
typedef V Value; |
176 | 176 |
|
177 | 177 |
/// Constructor. |
178 | 178 |
ConstMap() {} |
179 | 179 |
|
180 | 180 |
/// Gives back the specified value. |
181 | 181 |
Value operator[](const Key&) const { return v; } |
182 | 182 |
|
183 | 183 |
/// Absorbs the value. |
184 | 184 |
void set(const Key&, const Value&) {} |
185 | 185 |
}; |
186 | 186 |
|
187 | 187 |
/// Returns a \c ConstMap class with inlined constant value |
188 | 188 |
|
189 | 189 |
/// This function just returns a \c ConstMap class with inlined |
190 | 190 |
/// constant value. |
191 | 191 |
/// \relates ConstMap |
192 | 192 |
template<typename K, typename V, V v> |
193 | 193 |
inline ConstMap<K, Const<V, v> > constMap() { |
194 | 194 |
return ConstMap<K, Const<V, v> >(); |
195 | 195 |
} |
196 | 196 |
|
197 | 197 |
|
198 | 198 |
/// Identity map. |
199 | 199 |
|
200 | 200 |
/// This \ref concepts::ReadMap "read-only map" gives back the given |
201 | 201 |
/// key as value without any modification. |
202 | 202 |
/// |
203 | 203 |
/// \sa ConstMap |
204 | 204 |
template <typename T> |
205 | 205 |
class IdentityMap : public MapBase<T, T> { |
206 | 206 |
public: |
207 | 207 |
///\e |
208 | 208 |
typedef T Key; |
209 | 209 |
///\e |
210 | 210 |
typedef T Value; |
211 | 211 |
|
212 | 212 |
/// Gives back the given value without any modification. |
213 | 213 |
Value operator[](const Key &k) const { |
214 | 214 |
return k; |
215 | 215 |
} |
216 | 216 |
}; |
217 | 217 |
|
218 | 218 |
/// Returns an \c IdentityMap class |
219 | 219 |
|
220 | 220 |
/// This function just returns an \c IdentityMap class. |
221 | 221 |
/// \relates IdentityMap |
222 | 222 |
template<typename T> |
223 | 223 |
inline IdentityMap<T> identityMap() { |
224 | 224 |
return IdentityMap<T>(); |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
|
228 | 228 |
/// \brief Map for storing values for integer keys from the range |
229 | 229 |
/// <tt>[0..size-1]</tt>. |
230 | 230 |
/// |
231 | 231 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
232 | 232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
233 | 233 |
/// It can be used with some data structures, for example |
234 | 234 |
/// \c UnionFind, \c BinHeap, when the used items are small |
235 |
/// integers. This map conforms the \ref concepts::ReferenceMap |
|
235 |
/// integers. This map conforms to the \ref concepts::ReferenceMap |
|
236 | 236 |
/// "ReferenceMap" concept. |
237 | 237 |
/// |
238 | 238 |
/// The simplest way of using this map is through the rangeMap() |
239 | 239 |
/// function. |
240 | 240 |
template <typename V> |
241 | 241 |
class RangeMap : public MapBase<int, V> { |
242 | 242 |
template <typename V1> |
243 | 243 |
friend class RangeMap; |
244 | 244 |
private: |
245 | 245 |
|
246 | 246 |
typedef std::vector<V> Vector; |
247 | 247 |
Vector _vector; |
248 | 248 |
|
249 | 249 |
public: |
250 | 250 |
|
251 | 251 |
/// Key type |
252 | 252 |
typedef int Key; |
253 | 253 |
/// Value type |
254 | 254 |
typedef V Value; |
255 | 255 |
/// Reference type |
256 | 256 |
typedef typename Vector::reference Reference; |
257 | 257 |
/// Const reference type |
258 | 258 |
typedef typename Vector::const_reference ConstReference; |
259 | 259 |
|
260 | 260 |
typedef True ReferenceMapTag; |
261 | 261 |
|
262 | 262 |
public: |
263 | 263 |
|
264 | 264 |
/// Constructor with specified default value. |
265 | 265 |
RangeMap(int size = 0, const Value &value = Value()) |
266 | 266 |
: _vector(size, value) {} |
267 | 267 |
|
268 | 268 |
/// Constructs the map from an appropriate \c std::vector. |
269 | 269 |
template <typename V1> |
270 | 270 |
RangeMap(const std::vector<V1>& vector) |
271 | 271 |
: _vector(vector.begin(), vector.end()) {} |
272 | 272 |
|
273 | 273 |
/// Constructs the map from another \c RangeMap. |
274 | 274 |
template <typename V1> |
275 | 275 |
RangeMap(const RangeMap<V1> &c) |
276 | 276 |
: _vector(c._vector.begin(), c._vector.end()) {} |
277 | 277 |
|
278 | 278 |
/// Returns the size of the map. |
279 | 279 |
int size() { |
280 | 280 |
return _vector.size(); |
281 | 281 |
} |
282 | 282 |
|
283 | 283 |
/// Resizes the map. |
284 | 284 |
|
285 | 285 |
/// Resizes the underlying \c std::vector container, so changes the |
286 | 286 |
/// keyset of the map. |
287 | 287 |
/// \param size The new size of the map. The new keyset will be the |
288 | 288 |
/// range <tt>[0..size-1]</tt>. |
289 | 289 |
/// \param value The default value to assign to the new keys. |
290 | 290 |
void resize(int size, const Value &value = Value()) { |
291 | 291 |
_vector.resize(size, value); |
292 | 292 |
} |
293 | 293 |
|
294 | 294 |
private: |
295 | 295 |
|
296 | 296 |
RangeMap& operator=(const RangeMap&); |
297 | 297 |
|
298 | 298 |
public: |
299 | 299 |
|
300 | 300 |
///\e |
301 | 301 |
Reference operator[](const Key &k) { |
302 | 302 |
return _vector[k]; |
303 | 303 |
} |
304 | 304 |
|
305 | 305 |
///\e |
306 | 306 |
ConstReference operator[](const Key &k) const { |
307 | 307 |
return _vector[k]; |
308 | 308 |
} |
309 | 309 |
|
310 | 310 |
///\e |
311 | 311 |
void set(const Key &k, const Value &v) { |
312 | 312 |
_vector[k] = v; |
313 | 313 |
} |
314 | 314 |
}; |
315 | 315 |
|
316 | 316 |
/// Returns a \c RangeMap class |
317 | 317 |
|
318 | 318 |
/// This function just returns a \c RangeMap class. |
319 | 319 |
/// \relates RangeMap |
320 | 320 |
template<typename V> |
321 | 321 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
322 | 322 |
return RangeMap<V>(size, value); |
323 | 323 |
} |
324 | 324 |
|
325 | 325 |
/// \brief Returns a \c RangeMap class created from an appropriate |
326 | 326 |
/// \c std::vector |
327 | 327 |
|
328 | 328 |
/// This function just returns a \c RangeMap class created from an |
329 | 329 |
/// appropriate \c std::vector. |
330 | 330 |
/// \relates RangeMap |
331 | 331 |
template<typename V> |
332 | 332 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
333 | 333 |
return RangeMap<V>(vector); |
334 | 334 |
} |
335 | 335 |
|
336 | 336 |
|
337 | 337 |
/// Map type based on \c std::map |
338 | 338 |
|
339 | 339 |
/// This map is essentially a wrapper for \c std::map with addition |
340 | 340 |
/// that you can specify a default value for the keys that are not |
341 | 341 |
/// stored actually. This value can be different from the default |
342 | 342 |
/// contructed value (i.e. \c %Value()). |
343 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
|
343 |
/// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap" |
|
344 | 344 |
/// concept. |
345 | 345 |
/// |
346 | 346 |
/// This map is useful if a default value should be assigned to most of |
347 | 347 |
/// the keys and different values should be assigned only to a few |
348 | 348 |
/// keys (i.e. the map is "sparse"). |
349 | 349 |
/// The name of this type also refers to this important usage. |
350 | 350 |
/// |
351 | 351 |
/// Apart form that this map can be used in many other cases since it |
352 | 352 |
/// is based on \c std::map, which is a general associative container. |
353 | 353 |
/// However keep in mind that it is usually not as efficient as other |
354 | 354 |
/// maps. |
355 | 355 |
/// |
356 | 356 |
/// The simplest way of using this map is through the sparseMap() |
357 | 357 |
/// function. |
358 | 358 |
template <typename K, typename V, typename Comp = std::less<K> > |
359 | 359 |
class SparseMap : public MapBase<K, V> { |
360 | 360 |
template <typename K1, typename V1, typename C1> |
361 | 361 |
friend class SparseMap; |
362 | 362 |
public: |
363 | 363 |
|
364 | 364 |
/// Key type |
365 | 365 |
typedef K Key; |
366 | 366 |
/// Value type |
367 | 367 |
typedef V Value; |
368 | 368 |
/// Reference type |
369 | 369 |
typedef Value& Reference; |
370 | 370 |
/// Const reference type |
371 | 371 |
typedef const Value& ConstReference; |
372 | 372 |
|
373 | 373 |
typedef True ReferenceMapTag; |
374 | 374 |
|
375 | 375 |
private: |
376 | 376 |
|
377 | 377 |
typedef std::map<K, V, Comp> Map; |
378 | 378 |
Map _map; |
379 | 379 |
Value _value; |
380 | 380 |
|
381 | 381 |
public: |
382 | 382 |
|
383 | 383 |
/// \brief Constructor with specified default value. |
384 | 384 |
SparseMap(const Value &value = Value()) : _value(value) {} |
385 | 385 |
/// \brief Constructs the map from an appropriate \c std::map, and |
386 | 386 |
/// explicitly specifies a default value. |
387 | 387 |
template <typename V1, typename Comp1> |
388 | 388 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
389 | 389 |
const Value &value = Value()) |
390 | 390 |
: _map(map.begin(), map.end()), _value(value) {} |
391 | 391 |
|
392 | 392 |
/// \brief Constructs the map from another \c SparseMap. |
393 | 393 |
template<typename V1, typename Comp1> |
394 | 394 |
SparseMap(const SparseMap<Key, V1, Comp1> &c) |
395 | 395 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {} |
396 | 396 |
|
397 | 397 |
private: |
398 | 398 |
|
399 | 399 |
SparseMap& operator=(const SparseMap&); |
400 | 400 |
|
401 | 401 |
public: |
402 | 402 |
|
403 | 403 |
///\e |
404 | 404 |
Reference operator[](const Key &k) { |
405 | 405 |
typename Map::iterator it = _map.lower_bound(k); |
406 | 406 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
407 | 407 |
return it->second; |
408 | 408 |
else |
409 | 409 |
return _map.insert(it, std::make_pair(k, _value))->second; |
410 | 410 |
} |
411 | 411 |
|
412 | 412 |
///\e |
413 | 413 |
ConstReference operator[](const Key &k) const { |
414 | 414 |
typename Map::const_iterator it = _map.find(k); |
415 | 415 |
if (it != _map.end()) |
416 | 416 |
return it->second; |
417 | 417 |
else |
418 | 418 |
return _value; |
419 | 419 |
} |
420 | 420 |
|
421 | 421 |
///\e |
422 | 422 |
void set(const Key &k, const Value &v) { |
423 | 423 |
typename Map::iterator it = _map.lower_bound(k); |
424 | 424 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
425 | 425 |
it->second = v; |
426 | 426 |
else |
427 | 427 |
_map.insert(it, std::make_pair(k, v)); |
428 | 428 |
} |
429 | 429 |
|
430 | 430 |
///\e |
431 | 431 |
void setAll(const Value &v) { |
432 | 432 |
_value = v; |
433 | 433 |
_map.clear(); |
434 | 434 |
} |
435 | 435 |
}; |
436 | 436 |
|
437 | 437 |
/// Returns a \c SparseMap class |
438 | 438 |
|
439 | 439 |
/// This function just returns a \c SparseMap class with specified |
440 | 440 |
/// default value. |
441 | 441 |
/// \relates SparseMap |
442 | 442 |
template<typename K, typename V, typename Compare> |
443 | 443 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) { |
444 | 444 |
return SparseMap<K, V, Compare>(value); |
445 | 445 |
} |
446 | 446 |
|
447 | 447 |
template<typename K, typename V> |
448 | 448 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) { |
449 | 449 |
return SparseMap<K, V, std::less<K> >(value); |
450 | 450 |
} |
451 | 451 |
|
452 | 452 |
/// \brief Returns a \c SparseMap class created from an appropriate |
453 | 453 |
/// \c std::map |
454 | 454 |
|
455 | 455 |
/// This function just returns a \c SparseMap class created from an |
456 | 456 |
/// appropriate \c std::map. |
457 | 457 |
/// \relates SparseMap |
458 | 458 |
template<typename K, typename V, typename Compare> |
459 | 459 |
inline SparseMap<K, V, Compare> |
460 | 460 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
461 | 461 |
{ |
462 | 462 |
return SparseMap<K, V, Compare>(map, value); |
463 | 463 |
} |
464 | 464 |
|
465 | 465 |
/// @} |
466 | 466 |
|
467 | 467 |
/// \addtogroup map_adaptors |
468 | 468 |
/// @{ |
469 | 469 |
|
470 | 470 |
/// Composition of two maps |
471 | 471 |
|
472 | 472 |
/// This \ref concepts::ReadMap "read-only map" returns the |
473 | 473 |
/// composition of two given maps. That is to say, if \c m1 is of |
474 | 474 |
/// type \c M1 and \c m2 is of \c M2, then for |
475 | 475 |
/// \code |
476 | 476 |
/// ComposeMap<M1, M2> cm(m1,m2); |
477 | 477 |
/// \endcode |
478 | 478 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
479 | 479 |
/// |
480 | 480 |
/// The \c Key type of the map is inherited from \c M2 and the |
481 | 481 |
/// \c Value type is from \c M1. |
482 | 482 |
/// \c M2::Value must be convertible to \c M1::Key. |
483 | 483 |
/// |
484 | 484 |
/// The simplest way of using this map is through the composeMap() |
485 | 485 |
/// function. |
486 | 486 |
/// |
487 | 487 |
/// \sa CombineMap |
488 | 488 |
template <typename M1, typename M2> |
489 | 489 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
490 | 490 |
const M1 &_m1; |
491 | 491 |
const M2 &_m2; |
492 | 492 |
public: |
493 | 493 |
///\e |
494 | 494 |
typedef typename M2::Key Key; |
495 | 495 |
///\e |
496 | 496 |
typedef typename M1::Value Value; |
497 | 497 |
|
498 | 498 |
/// Constructor |
499 | 499 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
500 | 500 |
|
501 | 501 |
///\e |
502 | 502 |
typename MapTraits<M1>::ConstReturnValue |
503 | 503 |
operator[](const Key &k) const { return _m1[_m2[k]]; } |
504 | 504 |
}; |
505 | 505 |
|
506 | 506 |
/// Returns a \c ComposeMap class |
507 | 507 |
|
508 | 508 |
/// This function just returns a \c ComposeMap class. |
509 | 509 |
/// |
510 | 510 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
511 | 511 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
512 | 512 |
/// will be equal to <tt>m1[m2[x]]</tt>. |
513 | 513 |
/// |
514 | 514 |
/// \relates ComposeMap |
515 | 515 |
template <typename M1, typename M2> |
516 | 516 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) { |
517 | 517 |
return ComposeMap<M1, M2>(m1, m2); |
518 | 518 |
} |
519 | 519 |
|
520 | 520 |
|
521 | 521 |
/// Combination of two maps using an STL (binary) functor. |
522 | 522 |
|
523 | 523 |
/// This \ref concepts::ReadMap "read-only map" takes two maps and a |
524 | 524 |
/// binary functor and returns the combination of the two given maps |
525 | 525 |
/// using the functor. |
526 | 526 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
527 | 527 |
/// and \c f is of \c F, then for |
528 | 528 |
/// \code |
529 | 529 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
530 | 530 |
/// \endcode |
531 | 531 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
532 | 532 |
/// |
533 | 533 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
534 | 534 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V. |
535 | 535 |
/// \c M2::Value and \c M1::Value must be convertible to the |
536 | 536 |
/// corresponding input parameter of \c F and the return type of \c F |
537 | 537 |
/// must be convertible to \c V. |
538 | 538 |
/// |
539 | 539 |
/// The simplest way of using this map is through the combineMap() |
540 | 540 |
/// function. |
541 | 541 |
/// |
542 | 542 |
/// \sa ComposeMap |
543 | 543 |
template<typename M1, typename M2, typename F, |
544 | 544 |
typename V = typename F::result_type> |
545 | 545 |
class CombineMap : public MapBase<typename M1::Key, V> { |
546 | 546 |
const M1 &_m1; |
547 | 547 |
const M2 &_m2; |
548 | 548 |
F _f; |
549 | 549 |
public: |
550 | 550 |
///\e |
551 | 551 |
typedef typename M1::Key Key; |
552 | 552 |
///\e |
553 | 553 |
typedef V Value; |
554 | 554 |
|
555 | 555 |
/// Constructor |
556 | 556 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
557 | 557 |
: _m1(m1), _m2(m2), _f(f) {} |
558 | 558 |
///\e |
559 | 559 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); } |
560 | 560 |
}; |
561 | 561 |
|
562 | 562 |
/// Returns a \c CombineMap class |
563 | 563 |
|
564 | 564 |
/// This function just returns a \c CombineMap class. |
565 | 565 |
/// |
566 | 566 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
567 | 567 |
/// values, then |
568 | 568 |
/// \code |
569 | 569 |
/// combineMap(m1,m2,std::plus<double>()) |
570 | 570 |
/// \endcode |
571 | 571 |
/// is equivalent to |
572 | 572 |
/// \code |
573 | 573 |
/// addMap(m1,m2) |
574 | 574 |
/// \endcode |
575 | 575 |
/// |
576 | 576 |
/// This function is specialized for adaptable binary function |
577 | 577 |
/// classes and C++ functions. |
578 | 578 |
/// |
579 | 579 |
/// \relates CombineMap |
580 | 580 |
template<typename M1, typename M2, typename F, typename V> |
581 | 581 |
inline CombineMap<M1, M2, F, V> |
582 | 582 |
combineMap(const M1 &m1, const M2 &m2, const F &f) { |
583 | 583 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
584 | 584 |
} |
585 | 585 |
|
586 | 586 |
template<typename M1, typename M2, typename F> |
587 | 587 |
inline CombineMap<M1, M2, F, typename F::result_type> |
588 | 588 |
combineMap(const M1 &m1, const M2 &m2, const F &f) { |
589 | 589 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
590 | 590 |
} |
591 | 591 |
|
592 | 592 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
593 | 593 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
594 | 594 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
595 | 595 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
596 | 596 |
} |
597 | 597 |
|
598 | 598 |
|
599 | 599 |
/// Converts an STL style (unary) functor to a map |
600 | 600 |
|
601 | 601 |
/// This \ref concepts::ReadMap "read-only map" returns the value |
602 | 602 |
/// of a given functor. Actually, it just wraps the functor and |
603 | 603 |
/// provides the \c Key and \c Value typedefs. |
604 | 604 |
/// |
605 | 605 |
/// Template parameters \c K and \c V will become its \c Key and |
606 | 606 |
/// \c Value. In most cases they have to be given explicitly because |
607 | 607 |
/// a functor typically does not provide \c argument_type and |
608 | 608 |
/// \c result_type typedefs. |
609 | 609 |
/// Parameter \c F is the type of the used functor. |
610 | 610 |
/// |
611 | 611 |
/// The simplest way of using this map is through the functorToMap() |
612 | 612 |
/// function. |
613 | 613 |
/// |
614 | 614 |
/// \sa MapToFunctor |
615 | 615 |
template<typename F, |
616 | 616 |
typename K = typename F::argument_type, |
617 | 617 |
typename V = typename F::result_type> |
618 | 618 |
class FunctorToMap : public MapBase<K, V> { |
619 | 619 |
F _f; |
620 | 620 |
public: |
621 | 621 |
///\e |
622 | 622 |
typedef K Key; |
623 | 623 |
///\e |
624 | 624 |
typedef V Value; |
625 | 625 |
|
626 | 626 |
/// Constructor |
627 | 627 |
FunctorToMap(const F &f = F()) : _f(f) {} |
628 | 628 |
///\e |
629 | 629 |
Value operator[](const Key &k) const { return _f(k); } |
630 | 630 |
}; |
631 | 631 |
|
632 | 632 |
/// Returns a \c FunctorToMap class |
633 | 633 |
|
634 | 634 |
/// This function just returns a \c FunctorToMap class. |
635 | 635 |
/// |
636 | 636 |
/// This function is specialized for adaptable binary function |
637 | 637 |
/// classes and C++ functions. |
638 | 638 |
/// |
639 | 639 |
/// \relates FunctorToMap |
640 | 640 |
template<typename K, typename V, typename F> |
641 | 641 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) { |
642 | 642 |
return FunctorToMap<F, K, V>(f); |
643 | 643 |
} |
644 | 644 |
|
645 | 645 |
template <typename F> |
646 | 646 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
647 | 647 |
functorToMap(const F &f) |
648 | 648 |
{ |
649 | 649 |
return FunctorToMap<F, typename F::argument_type, |
650 | 650 |
typename F::result_type>(f); |
651 | 651 |
} |
652 | 652 |
|
653 | 653 |
template <typename K, typename V> |
654 | 654 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) { |
655 | 655 |
return FunctorToMap<V (*)(K), K, V>(f); |
656 | 656 |
} |
657 | 657 |
|
658 | 658 |
|
659 | 659 |
/// Converts a map to an STL style (unary) functor |
660 | 660 |
|
661 | 661 |
/// This class converts a map to an STL style (unary) functor. |
662 | 662 |
/// That is it provides an <tt>operator()</tt> to read its values. |
663 | 663 |
/// |
664 | 664 |
/// For the sake of convenience it also works as a usual |
665 | 665 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
666 | 666 |
/// and the \c Key and \c Value typedefs also exist. |
667 | 667 |
/// |
668 | 668 |
/// The simplest way of using this map is through the mapToFunctor() |
669 | 669 |
/// function. |
670 | 670 |
/// |
671 | 671 |
///\sa FunctorToMap |
672 | 672 |
template <typename M> |
673 | 673 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> { |
674 | 674 |
const M &_m; |
675 | 675 |
public: |
676 | 676 |
///\e |
677 | 677 |
typedef typename M::Key Key; |
678 | 678 |
///\e |
679 | 679 |
typedef typename M::Value Value; |
680 | 680 |
|
681 | 681 |
typedef typename M::Key argument_type; |
682 | 682 |
typedef typename M::Value result_type; |
683 | 683 |
|
684 | 684 |
/// Constructor |
685 | 685 |
MapToFunctor(const M &m) : _m(m) {} |
686 | 686 |
///\e |
687 | 687 |
Value operator()(const Key &k) const { return _m[k]; } |
688 | 688 |
///\e |
689 | 689 |
Value operator[](const Key &k) const { return _m[k]; } |
690 | 690 |
}; |
691 | 691 |
|
692 | 692 |
/// Returns a \c MapToFunctor class |
693 | 693 |
|
694 | 694 |
/// This function just returns a \c MapToFunctor class. |
695 | 695 |
/// \relates MapToFunctor |
696 | 696 |
template<typename M> |
697 | 697 |
inline MapToFunctor<M> mapToFunctor(const M &m) { |
698 | 698 |
return MapToFunctor<M>(m); |
699 | 699 |
} |
700 | 700 |
|
701 | 701 |
|
702 | 702 |
/// \brief Map adaptor to convert the \c Value type of a map to |
703 | 703 |
/// another type using the default conversion. |
704 | 704 |
|
705 | 705 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
706 | 706 |
/// "readable map" to another type using the default conversion. |
707 | 707 |
/// The \c Key type of it is inherited from \c M and the \c Value |
708 | 708 |
/// type is \c V. |
709 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
|
709 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
710 | 710 |
/// |
711 | 711 |
/// The simplest way of using this map is through the convertMap() |
712 | 712 |
/// function. |
713 | 713 |
template <typename M, typename V> |
714 | 714 |
class ConvertMap : public MapBase<typename M::Key, V> { |
715 | 715 |
const M &_m; |
716 | 716 |
public: |
717 | 717 |
///\e |
718 | 718 |
typedef typename M::Key Key; |
719 | 719 |
///\e |
720 | 720 |
typedef V Value; |
721 | 721 |
|
722 | 722 |
/// Constructor |
723 | 723 |
|
724 | 724 |
/// Constructor. |
725 | 725 |
/// \param m The underlying map. |
726 | 726 |
ConvertMap(const M &m) : _m(m) {} |
727 | 727 |
|
728 | 728 |
///\e |
729 | 729 |
Value operator[](const Key &k) const { return _m[k]; } |
730 | 730 |
}; |
731 | 731 |
|
732 | 732 |
/// Returns a \c ConvertMap class |
733 | 733 |
|
734 | 734 |
/// This function just returns a \c ConvertMap class. |
735 | 735 |
/// \relates ConvertMap |
736 | 736 |
template<typename V, typename M> |
737 | 737 |
inline ConvertMap<M, V> convertMap(const M &map) { |
738 | 738 |
return ConvertMap<M, V>(map); |
739 | 739 |
} |
740 | 740 |
|
741 | 741 |
|
742 | 742 |
/// Applies all map setting operations to two maps |
743 | 743 |
|
744 | 744 |
/// This map has two \ref concepts::WriteMap "writable map" parameters |
745 | 745 |
/// and each write request will be passed to both of them. |
746 | 746 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
747 | 747 |
/// operations will return the corresponding values of \c M1. |
748 | 748 |
/// |
749 | 749 |
/// The \c Key and \c Value types are inherited from \c M1. |
750 | 750 |
/// The \c Key and \c Value of \c M2 must be convertible from those |
751 | 751 |
/// of \c M1. |
752 | 752 |
/// |
753 | 753 |
/// The simplest way of using this map is through the forkMap() |
754 | 754 |
/// function. |
755 | 755 |
template<typename M1, typename M2> |
756 | 756 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
757 | 757 |
M1 &_m1; |
758 | 758 |
M2 &_m2; |
759 | 759 |
public: |
760 | 760 |
///\e |
761 | 761 |
typedef typename M1::Key Key; |
762 | 762 |
///\e |
763 | 763 |
typedef typename M1::Value Value; |
764 | 764 |
|
765 | 765 |
/// Constructor |
766 | 766 |
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {} |
767 | 767 |
/// Returns the value associated with the given key in the first map. |
768 | 768 |
Value operator[](const Key &k) const { return _m1[k]; } |
769 | 769 |
/// Sets the value associated with the given key in both maps. |
770 | 770 |
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); } |
771 | 771 |
}; |
772 | 772 |
|
773 | 773 |
/// Returns a \c ForkMap class |
774 | 774 |
|
775 | 775 |
/// This function just returns a \c ForkMap class. |
776 | 776 |
/// \relates ForkMap |
777 | 777 |
template <typename M1, typename M2> |
778 | 778 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) { |
779 | 779 |
return ForkMap<M1,M2>(m1,m2); |
780 | 780 |
} |
781 | 781 |
|
782 | 782 |
|
783 | 783 |
/// Sum of two maps |
784 | 784 |
|
785 | 785 |
/// This \ref concepts::ReadMap "read-only map" returns the sum |
786 | 786 |
/// of the values of the two given maps. |
787 | 787 |
/// Its \c Key and \c Value types are inherited from \c M1. |
788 | 788 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
789 | 789 |
/// \c M1. |
790 | 790 |
/// |
791 | 791 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
792 | 792 |
/// \code |
793 | 793 |
/// AddMap<M1,M2> am(m1,m2); |
794 | 794 |
/// \endcode |
795 | 795 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
796 | 796 |
/// |
797 | 797 |
/// The simplest way of using this map is through the addMap() |
798 | 798 |
/// function. |
799 | 799 |
/// |
800 | 800 |
/// \sa SubMap, MulMap, DivMap |
801 | 801 |
/// \sa ShiftMap, ShiftWriteMap |
802 | 802 |
template<typename M1, typename M2> |
803 | 803 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
804 | 804 |
const M1 &_m1; |
805 | 805 |
const M2 &_m2; |
806 | 806 |
public: |
807 | 807 |
///\e |
808 | 808 |
typedef typename M1::Key Key; |
809 | 809 |
///\e |
810 | 810 |
typedef typename M1::Value Value; |
811 | 811 |
|
812 | 812 |
/// Constructor |
813 | 813 |
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
814 | 814 |
///\e |
815 | 815 |
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; } |
816 | 816 |
}; |
817 | 817 |
|
818 | 818 |
/// Returns an \c AddMap class |
819 | 819 |
|
820 | 820 |
/// This function just returns an \c AddMap class. |
821 | 821 |
/// |
822 | 822 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
823 | 823 |
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
824 | 824 |
/// <tt>m1[x]+m2[x]</tt>. |
825 | 825 |
/// |
826 | 826 |
/// \relates AddMap |
827 | 827 |
template<typename M1, typename M2> |
828 | 828 |
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) { |
829 | 829 |
return AddMap<M1, M2>(m1,m2); |
830 | 830 |
} |
831 | 831 |
|
832 | 832 |
|
833 | 833 |
/// Difference of two maps |
834 | 834 |
|
835 | 835 |
/// This \ref concepts::ReadMap "read-only map" returns the difference |
836 | 836 |
/// of the values of the two given maps. |
837 | 837 |
/// Its \c Key and \c Value types are inherited from \c M1. |
838 | 838 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
839 | 839 |
/// \c M1. |
840 | 840 |
/// |
841 | 841 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
842 | 842 |
/// \code |
843 | 843 |
/// SubMap<M1,M2> sm(m1,m2); |
844 | 844 |
/// \endcode |
845 | 845 |
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
846 | 846 |
/// |
847 | 847 |
/// The simplest way of using this map is through the subMap() |
848 | 848 |
/// function. |
849 | 849 |
/// |
850 | 850 |
/// \sa AddMap, MulMap, DivMap |
851 | 851 |
template<typename M1, typename M2> |
852 | 852 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
853 | 853 |
const M1 &_m1; |
854 | 854 |
const M2 &_m2; |
855 | 855 |
public: |
856 | 856 |
///\e |
857 | 857 |
typedef typename M1::Key Key; |
858 | 858 |
///\e |
859 | 859 |
typedef typename M1::Value Value; |
860 | 860 |
|
861 | 861 |
/// Constructor |
862 | 862 |
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
863 | 863 |
///\e |
864 | 864 |
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; } |
865 | 865 |
}; |
866 | 866 |
|
867 | 867 |
/// Returns a \c SubMap class |
868 | 868 |
|
869 | 869 |
/// This function just returns a \c SubMap class. |
870 | 870 |
/// |
871 | 871 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
872 | 872 |
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
873 | 873 |
/// <tt>m1[x]-m2[x]</tt>. |
874 | 874 |
/// |
875 | 875 |
/// \relates SubMap |
876 | 876 |
template<typename M1, typename M2> |
877 | 877 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
878 | 878 |
return SubMap<M1, M2>(m1,m2); |
879 | 879 |
} |
880 | 880 |
|
881 | 881 |
|
882 | 882 |
/// Product of two maps |
883 | 883 |
|
884 | 884 |
/// This \ref concepts::ReadMap "read-only map" returns the product |
885 | 885 |
/// of the values of the two given maps. |
886 | 886 |
/// Its \c Key and \c Value types are inherited from \c M1. |
887 | 887 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
888 | 888 |
/// \c M1. |
889 | 889 |
/// |
890 | 890 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
891 | 891 |
/// \code |
892 | 892 |
/// MulMap<M1,M2> mm(m1,m2); |
893 | 893 |
/// \endcode |
894 | 894 |
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
895 | 895 |
/// |
896 | 896 |
/// The simplest way of using this map is through the mulMap() |
897 | 897 |
/// function. |
898 | 898 |
/// |
899 | 899 |
/// \sa AddMap, SubMap, DivMap |
900 | 900 |
/// \sa ScaleMap, ScaleWriteMap |
901 | 901 |
template<typename M1, typename M2> |
902 | 902 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
903 | 903 |
const M1 &_m1; |
904 | 904 |
const M2 &_m2; |
905 | 905 |
public: |
906 | 906 |
///\e |
907 | 907 |
typedef typename M1::Key Key; |
908 | 908 |
///\e |
909 | 909 |
typedef typename M1::Value Value; |
910 | 910 |
|
911 | 911 |
/// Constructor |
912 | 912 |
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
913 | 913 |
///\e |
914 | 914 |
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; } |
915 | 915 |
}; |
916 | 916 |
|
917 | 917 |
/// Returns a \c MulMap class |
918 | 918 |
|
919 | 919 |
/// This function just returns a \c MulMap class. |
920 | 920 |
/// |
921 | 921 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
922 | 922 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
923 | 923 |
/// <tt>m1[x]*m2[x]</tt>. |
924 | 924 |
/// |
925 | 925 |
/// \relates MulMap |
926 | 926 |
template<typename M1, typename M2> |
927 | 927 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
928 | 928 |
return MulMap<M1, M2>(m1,m2); |
929 | 929 |
} |
930 | 930 |
|
931 | 931 |
|
932 | 932 |
/// Quotient of two maps |
933 | 933 |
|
934 | 934 |
/// This \ref concepts::ReadMap "read-only map" returns the quotient |
935 | 935 |
/// of the values of the two given maps. |
936 | 936 |
/// Its \c Key and \c Value types are inherited from \c M1. |
937 | 937 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
938 | 938 |
/// \c M1. |
939 | 939 |
/// |
940 | 940 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
941 | 941 |
/// \code |
942 | 942 |
/// DivMap<M1,M2> dm(m1,m2); |
943 | 943 |
/// \endcode |
944 | 944 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
945 | 945 |
/// |
946 | 946 |
/// The simplest way of using this map is through the divMap() |
947 | 947 |
/// function. |
948 | 948 |
/// |
949 | 949 |
/// \sa AddMap, SubMap, MulMap |
950 | 950 |
template<typename M1, typename M2> |
951 | 951 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
952 | 952 |
const M1 &_m1; |
953 | 953 |
const M2 &_m2; |
954 | 954 |
public: |
955 | 955 |
///\e |
956 | 956 |
typedef typename M1::Key Key; |
957 | 957 |
///\e |
958 | 958 |
typedef typename M1::Value Value; |
959 | 959 |
|
960 | 960 |
/// Constructor |
961 | 961 |
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {} |
962 | 962 |
///\e |
963 | 963 |
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; } |
964 | 964 |
}; |
965 | 965 |
|
966 | 966 |
/// Returns a \c DivMap class |
967 | 967 |
|
968 | 968 |
/// This function just returns a \c DivMap class. |
969 | 969 |
/// |
970 | 970 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
971 | 971 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
972 | 972 |
/// <tt>m1[x]/m2[x]</tt>. |
973 | 973 |
/// |
974 | 974 |
/// \relates DivMap |
975 | 975 |
template<typename M1, typename M2> |
976 | 976 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
977 | 977 |
return DivMap<M1, M2>(m1,m2); |
978 | 978 |
} |
979 | 979 |
|
980 | 980 |
|
981 | 981 |
/// Shifts a map with a constant. |
982 | 982 |
|
983 | 983 |
/// This \ref concepts::ReadMap "read-only map" returns the sum of |
984 | 984 |
/// the given map and a constant value (i.e. it shifts the map with |
985 | 985 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
986 | 986 |
/// |
987 | 987 |
/// Actually, |
988 | 988 |
/// \code |
989 | 989 |
/// ShiftMap<M> sh(m,v); |
990 | 990 |
/// \endcode |
991 | 991 |
/// is equivalent to |
992 | 992 |
/// \code |
993 | 993 |
/// ConstMap<M::Key, M::Value> cm(v); |
994 | 994 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
995 | 995 |
/// \endcode |
996 | 996 |
/// |
997 | 997 |
/// The simplest way of using this map is through the shiftMap() |
998 | 998 |
/// function. |
999 | 999 |
/// |
1000 | 1000 |
/// \sa ShiftWriteMap |
1001 | 1001 |
template<typename M, typename C = typename M::Value> |
1002 | 1002 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
1003 | 1003 |
const M &_m; |
1004 | 1004 |
C _v; |
1005 | 1005 |
public: |
1006 | 1006 |
///\e |
1007 | 1007 |
typedef typename M::Key Key; |
1008 | 1008 |
///\e |
1009 | 1009 |
typedef typename M::Value Value; |
1010 | 1010 |
|
1011 | 1011 |
/// Constructor |
1012 | 1012 |
|
1013 | 1013 |
/// Constructor. |
1014 | 1014 |
/// \param m The undelying map. |
1015 | 1015 |
/// \param v The constant value. |
1016 | 1016 |
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {} |
1017 | 1017 |
///\e |
1018 | 1018 |
Value operator[](const Key &k) const { return _m[k]+_v; } |
1019 | 1019 |
}; |
1020 | 1020 |
|
1021 | 1021 |
/// Shifts a map with a constant (read-write version). |
1022 | 1022 |
|
1023 | 1023 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
1024 | 1024 |
/// of the given map and a constant value (i.e. it shifts the map with |
1025 | 1025 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
1026 | 1026 |
/// It makes also possible to write the map. |
1027 | 1027 |
/// |
1028 | 1028 |
/// The simplest way of using this map is through the shiftWriteMap() |
1029 | 1029 |
/// function. |
1030 | 1030 |
/// |
1031 | 1031 |
/// \sa ShiftMap |
1032 | 1032 |
template<typename M, typename C = typename M::Value> |
1033 | 1033 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1034 | 1034 |
M &_m; |
1035 | 1035 |
C _v; |
1036 | 1036 |
public: |
1037 | 1037 |
///\e |
1038 | 1038 |
typedef typename M::Key Key; |
1039 | 1039 |
///\e |
1040 | 1040 |
typedef typename M::Value Value; |
1041 | 1041 |
|
1042 | 1042 |
/// Constructor |
1043 | 1043 |
|
1044 | 1044 |
/// Constructor. |
1045 | 1045 |
/// \param m The undelying map. |
1046 | 1046 |
/// \param v The constant value. |
1047 | 1047 |
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
1048 | 1048 |
///\e |
1049 | 1049 |
Value operator[](const Key &k) const { return _m[k]+_v; } |
1050 | 1050 |
///\e |
1051 | 1051 |
void set(const Key &k, const Value &v) { _m.set(k, v-_v); } |
1052 | 1052 |
}; |
1053 | 1053 |
|
1054 | 1054 |
/// Returns a \c ShiftMap class |
1055 | 1055 |
|
1056 | 1056 |
/// This function just returns a \c ShiftMap class. |
1057 | 1057 |
/// |
1058 | 1058 |
/// For example, if \c m is a map with \c double values and \c v is |
1059 | 1059 |
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
1060 | 1060 |
/// <tt>m[x]+v</tt>. |
1061 | 1061 |
/// |
1062 | 1062 |
/// \relates ShiftMap |
1063 | 1063 |
template<typename M, typename C> |
1064 | 1064 |
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) { |
1065 | 1065 |
return ShiftMap<M, C>(m,v); |
1066 | 1066 |
} |
1067 | 1067 |
|
1068 | 1068 |
/// Returns a \c ShiftWriteMap class |
1069 | 1069 |
|
1070 | 1070 |
/// This function just returns a \c ShiftWriteMap class. |
1071 | 1071 |
/// |
1072 | 1072 |
/// For example, if \c m is a map with \c double values and \c v is |
1073 | 1073 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
1074 | 1074 |
/// <tt>m[x]+v</tt>. |
1075 | 1075 |
/// Moreover it makes also possible to write the map. |
1076 | 1076 |
/// |
1077 | 1077 |
/// \relates ShiftWriteMap |
1078 | 1078 |
template<typename M, typename C> |
1079 | 1079 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) { |
1080 | 1080 |
return ShiftWriteMap<M, C>(m,v); |
1081 | 1081 |
} |
1082 | 1082 |
|
1083 | 1083 |
|
1084 | 1084 |
/// Scales a map with a constant. |
1085 | 1085 |
|
1086 | 1086 |
/// This \ref concepts::ReadMap "read-only map" returns the value of |
1087 | 1087 |
/// the given map multiplied from the left side with a constant value. |
1088 | 1088 |
/// Its \c Key and \c Value are inherited from \c M. |
1089 | 1089 |
/// |
1090 | 1090 |
/// Actually, |
1091 | 1091 |
/// \code |
1092 | 1092 |
/// ScaleMap<M> sc(m,v); |
1093 | 1093 |
/// \endcode |
1094 | 1094 |
/// is equivalent to |
1095 | 1095 |
/// \code |
1096 | 1096 |
/// ConstMap<M::Key, M::Value> cm(v); |
1097 | 1097 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
1098 | 1098 |
/// \endcode |
1099 | 1099 |
/// |
1100 | 1100 |
/// The simplest way of using this map is through the scaleMap() |
1101 | 1101 |
/// function. |
1102 | 1102 |
/// |
1103 | 1103 |
/// \sa ScaleWriteMap |
1104 | 1104 |
template<typename M, typename C = typename M::Value> |
1105 | 1105 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
1106 | 1106 |
const M &_m; |
1107 | 1107 |
C _v; |
1108 | 1108 |
public: |
1109 | 1109 |
///\e |
1110 | 1110 |
typedef typename M::Key Key; |
1111 | 1111 |
///\e |
1112 | 1112 |
typedef typename M::Value Value; |
1113 | 1113 |
|
1114 | 1114 |
/// Constructor |
1115 | 1115 |
|
1116 | 1116 |
/// Constructor. |
1117 | 1117 |
/// \param m The undelying map. |
1118 | 1118 |
/// \param v The constant value. |
1119 | 1119 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {} |
1120 | 1120 |
///\e |
1121 | 1121 |
Value operator[](const Key &k) const { return _v*_m[k]; } |
1122 | 1122 |
}; |
1123 | 1123 |
|
1124 | 1124 |
/// Scales a map with a constant (read-write version). |
1125 | 1125 |
|
1126 | 1126 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
1127 | 1127 |
/// the given map multiplied from the left side with a constant value. |
1128 | 1128 |
/// Its \c Key and \c Value are inherited from \c M. |
1129 | 1129 |
/// It can also be used as write map if the \c / operator is defined |
1130 | 1130 |
/// between \c Value and \c C and the given multiplier is not zero. |
1131 | 1131 |
/// |
1132 | 1132 |
/// The simplest way of using this map is through the scaleWriteMap() |
1133 | 1133 |
/// function. |
1134 | 1134 |
/// |
1135 | 1135 |
/// \sa ScaleMap |
1136 | 1136 |
template<typename M, typename C = typename M::Value> |
1137 | 1137 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1138 | 1138 |
M &_m; |
1139 | 1139 |
C _v; |
1140 | 1140 |
public: |
1141 | 1141 |
///\e |
1142 | 1142 |
typedef typename M::Key Key; |
1143 | 1143 |
///\e |
1144 | 1144 |
typedef typename M::Value Value; |
1145 | 1145 |
|
1146 | 1146 |
/// Constructor |
1147 | 1147 |
|
1148 | 1148 |
/// Constructor. |
1149 | 1149 |
/// \param m The undelying map. |
1150 | 1150 |
/// \param v The constant value. |
1151 | 1151 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {} |
1152 | 1152 |
///\e |
1153 | 1153 |
Value operator[](const Key &k) const { return _v*_m[k]; } |
1154 | 1154 |
///\e |
1155 | 1155 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); } |
1156 | 1156 |
}; |
1157 | 1157 |
|
1158 | 1158 |
/// Returns a \c ScaleMap class |
1159 | 1159 |
|
1160 | 1160 |
/// This function just returns a \c ScaleMap class. |
1161 | 1161 |
/// |
1162 | 1162 |
/// For example, if \c m is a map with \c double values and \c v is |
1163 | 1163 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
1164 | 1164 |
/// <tt>v*m[x]</tt>. |
1165 | 1165 |
/// |
1166 | 1166 |
/// \relates ScaleMap |
1167 | 1167 |
template<typename M, typename C> |
1168 | 1168 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) { |
1169 | 1169 |
return ScaleMap<M, C>(m,v); |
1170 | 1170 |
} |
1171 | 1171 |
|
1172 | 1172 |
/// Returns a \c ScaleWriteMap class |
1173 | 1173 |
|
1174 | 1174 |
/// This function just returns a \c ScaleWriteMap class. |
1175 | 1175 |
/// |
1176 | 1176 |
/// For example, if \c m is a map with \c double values and \c v is |
1177 | 1177 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
1178 | 1178 |
/// <tt>v*m[x]</tt>. |
1179 | 1179 |
/// Moreover it makes also possible to write the map. |
1180 | 1180 |
/// |
1181 | 1181 |
/// \relates ScaleWriteMap |
1182 | 1182 |
template<typename M, typename C> |
1183 | 1183 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) { |
1184 | 1184 |
return ScaleWriteMap<M, C>(m,v); |
1185 | 1185 |
} |
1186 | 1186 |
|
1187 | 1187 |
|
1188 | 1188 |
/// Negative of a map |
1189 | 1189 |
|
1190 | 1190 |
/// This \ref concepts::ReadMap "read-only map" returns the negative |
1191 | 1191 |
/// of the values of the given map (using the unary \c - operator). |
1192 | 1192 |
/// Its \c Key and \c Value are inherited from \c M. |
1193 | 1193 |
/// |
1194 | 1194 |
/// If M::Value is \c int, \c double etc., then |
1195 | 1195 |
/// \code |
1196 | 1196 |
/// NegMap<M> neg(m); |
1197 | 1197 |
/// \endcode |
1198 | 1198 |
/// is equivalent to |
1199 | 1199 |
/// \code |
1200 | 1200 |
/// ScaleMap<M> neg(m,-1); |
1201 | 1201 |
/// \endcode |
1202 | 1202 |
/// |
1203 | 1203 |
/// The simplest way of using this map is through the negMap() |
1204 | 1204 |
/// function. |
1205 | 1205 |
/// |
1206 | 1206 |
/// \sa NegWriteMap |
1207 | 1207 |
template<typename M> |
1208 | 1208 |
class NegMap : public MapBase<typename M::Key, typename M::Value> { |
1209 | 1209 |
const M& _m; |
1210 | 1210 |
public: |
1211 | 1211 |
///\e |
1212 | 1212 |
typedef typename M::Key Key; |
1213 | 1213 |
///\e |
1214 | 1214 |
typedef typename M::Value Value; |
1215 | 1215 |
|
1216 | 1216 |
/// Constructor |
1217 | 1217 |
NegMap(const M &m) : _m(m) {} |
1218 | 1218 |
///\e |
1219 | 1219 |
Value operator[](const Key &k) const { return -_m[k]; } |
1220 | 1220 |
}; |
1221 | 1221 |
|
1222 | 1222 |
/// Negative of a map (read-write version) |
1223 | 1223 |
|
1224 | 1224 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
1225 | 1225 |
/// negative of the values of the given map (using the unary \c - |
1226 | 1226 |
/// operator). |
1227 | 1227 |
/// Its \c Key and \c Value are inherited from \c M. |
1228 | 1228 |
/// It makes also possible to write the map. |
1229 | 1229 |
/// |
1230 | 1230 |
/// If M::Value is \c int, \c double etc., then |
1231 | 1231 |
/// \code |
1232 | 1232 |
/// NegWriteMap<M> neg(m); |
1233 | 1233 |
/// \endcode |
1234 | 1234 |
/// is equivalent to |
1235 | 1235 |
/// \code |
1236 | 1236 |
/// ScaleWriteMap<M> neg(m,-1); |
1237 | 1237 |
/// \endcode |
1238 | 1238 |
/// |
1239 | 1239 |
/// The simplest way of using this map is through the negWriteMap() |
1240 | 1240 |
/// function. |
1241 | 1241 |
/// |
1242 | 1242 |
/// \sa NegMap |
1243 | 1243 |
template<typename M> |
1244 | 1244 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> { |
1245 | 1245 |
M &_m; |
1246 | 1246 |
public: |
1247 | 1247 |
///\e |
1248 | 1248 |
typedef typename M::Key Key; |
1249 | 1249 |
///\e |
1250 | 1250 |
typedef typename M::Value Value; |
1251 | 1251 |
|
1252 | 1252 |
/// Constructor |
1253 | 1253 |
NegWriteMap(M &m) : _m(m) {} |
1254 | 1254 |
///\e |
1255 | 1255 |
Value operator[](const Key &k) const { return -_m[k]; } |
1256 | 1256 |
///\e |
1257 | 1257 |
void set(const Key &k, const Value &v) { _m.set(k, -v); } |
1258 | 1258 |
}; |
1259 | 1259 |
|
1260 | 1260 |
/// Returns a \c NegMap class |
1261 | 1261 |
|
1262 | 1262 |
/// This function just returns a \c NegMap class. |
1263 | 1263 |
/// |
1264 | 1264 |
/// For example, if \c m is a map with \c double values, then |
1265 | 1265 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
1266 | 1266 |
/// |
1267 | 1267 |
/// \relates NegMap |
1268 | 1268 |
template <typename M> |
1269 | 1269 |
inline NegMap<M> negMap(const M &m) { |
1270 | 1270 |
return NegMap<M>(m); |
1271 | 1271 |
} |
1272 | 1272 |
|
1273 | 1273 |
/// Returns a \c NegWriteMap class |
1274 | 1274 |
|
1275 | 1275 |
/// This function just returns a \c NegWriteMap class. |
1276 | 1276 |
/// |
1277 | 1277 |
/// For example, if \c m is a map with \c double values, then |
1278 | 1278 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
1279 | 1279 |
/// Moreover it makes also possible to write the map. |
1280 | 1280 |
/// |
1281 | 1281 |
/// \relates NegWriteMap |
1282 | 1282 |
template <typename M> |
1283 | 1283 |
inline NegWriteMap<M> negWriteMap(M &m) { |
1284 | 1284 |
return NegWriteMap<M>(m); |
1285 | 1285 |
} |
1286 | 1286 |
|
1287 | 1287 |
|
1288 | 1288 |
/// Absolute value of a map |
1289 | 1289 |
|
1290 | 1290 |
/// This \ref concepts::ReadMap "read-only map" returns the absolute |
1291 | 1291 |
/// value of the values of the given map. |
1292 | 1292 |
/// Its \c Key and \c Value are inherited from \c M. |
1293 | 1293 |
/// \c Value must be comparable to \c 0 and the unary \c - |
1294 | 1294 |
/// operator must be defined for it, of course. |
1295 | 1295 |
/// |
1296 | 1296 |
/// The simplest way of using this map is through the absMap() |
1297 | 1297 |
/// function. |
1298 | 1298 |
template<typename M> |
1299 | 1299 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
1300 | 1300 |
const M &_m; |
1301 | 1301 |
public: |
1302 | 1302 |
///\e |
1303 | 1303 |
typedef typename M::Key Key; |
1304 | 1304 |
///\e |
1305 | 1305 |
typedef typename M::Value Value; |
1306 | 1306 |
|
1307 | 1307 |
/// Constructor |
1308 | 1308 |
AbsMap(const M &m) : _m(m) {} |
1309 | 1309 |
///\e |
1310 | 1310 |
Value operator[](const Key &k) const { |
1311 | 1311 |
Value tmp = _m[k]; |
1312 | 1312 |
return tmp >= 0 ? tmp : -tmp; |
1313 | 1313 |
} |
1314 | 1314 |
|
1315 | 1315 |
}; |
1316 | 1316 |
|
1317 | 1317 |
/// Returns an \c AbsMap class |
1318 | 1318 |
|
1319 | 1319 |
/// This function just returns an \c AbsMap class. |
1320 | 1320 |
/// |
1321 | 1321 |
/// For example, if \c m is a map with \c double values, then |
1322 | 1322 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
1323 | 1323 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
1324 | 1324 |
/// negative. |
1325 | 1325 |
/// |
1326 | 1326 |
/// \relates AbsMap |
1327 | 1327 |
template<typename M> |
1328 | 1328 |
inline AbsMap<M> absMap(const M &m) { |
1329 | 1329 |
return AbsMap<M>(m); |
1330 | 1330 |
} |
1331 | 1331 |
|
1332 | 1332 |
/// @} |
1333 | 1333 |
|
1334 | 1334 |
// Logical maps and map adaptors: |
1335 | 1335 |
|
1336 | 1336 |
/// \addtogroup maps |
1337 | 1337 |
/// @{ |
1338 | 1338 |
|
1339 | 1339 |
/// Constant \c true map. |
1340 | 1340 |
|
1341 | 1341 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1342 | 1342 |
/// each key. |
1343 | 1343 |
/// |
1344 | 1344 |
/// Note that |
1345 | 1345 |
/// \code |
1346 | 1346 |
/// TrueMap<K> tm; |
1347 | 1347 |
/// \endcode |
1348 | 1348 |
/// is equivalent to |
1349 | 1349 |
/// \code |
1350 | 1350 |
/// ConstMap<K,bool> tm(true); |
1351 | 1351 |
/// \endcode |
1352 | 1352 |
/// |
1353 | 1353 |
/// \sa FalseMap |
1354 | 1354 |
/// \sa ConstMap |
1355 | 1355 |
template <typename K> |
1356 | 1356 |
class TrueMap : public MapBase<K, bool> { |
1357 | 1357 |
public: |
1358 | 1358 |
///\e |
1359 | 1359 |
typedef K Key; |
1360 | 1360 |
///\e |
1361 | 1361 |
typedef bool Value; |
1362 | 1362 |
|
1363 | 1363 |
/// Gives back \c true. |
1364 | 1364 |
Value operator[](const Key&) const { return true; } |
1365 | 1365 |
}; |
1366 | 1366 |
|
1367 | 1367 |
/// Returns a \c TrueMap class |
1368 | 1368 |
|
1369 | 1369 |
/// This function just returns a \c TrueMap class. |
1370 | 1370 |
/// \relates TrueMap |
1371 | 1371 |
template<typename K> |
1372 | 1372 |
inline TrueMap<K> trueMap() { |
1373 | 1373 |
return TrueMap<K>(); |
1374 | 1374 |
} |
1375 | 1375 |
|
1376 | 1376 |
|
1377 | 1377 |
/// Constant \c false map. |
1378 | 1378 |
|
1379 | 1379 |
/// This \ref concepts::ReadMap "read-only map" assigns \c false to |
1380 | 1380 |
/// each key. |
1381 | 1381 |
/// |
1382 | 1382 |
/// Note that |
1383 | 1383 |
/// \code |
1384 | 1384 |
/// FalseMap<K> fm; |
1385 | 1385 |
/// \endcode |
1386 | 1386 |
/// is equivalent to |
1387 | 1387 |
/// \code |
1388 | 1388 |
/// ConstMap<K,bool> fm(false); |
1389 | 1389 |
/// \endcode |
1390 | 1390 |
/// |
1391 | 1391 |
/// \sa TrueMap |
1392 | 1392 |
/// \sa ConstMap |
1393 | 1393 |
template <typename K> |
1394 | 1394 |
class FalseMap : public MapBase<K, bool> { |
1395 | 1395 |
public: |
1396 | 1396 |
///\e |
1397 | 1397 |
typedef K Key; |
1398 | 1398 |
///\e |
1399 | 1399 |
typedef bool Value; |
1400 | 1400 |
|
1401 | 1401 |
/// Gives back \c false. |
1402 | 1402 |
Value operator[](const Key&) const { return false; } |
1403 | 1403 |
}; |
1404 | 1404 |
|
1405 | 1405 |
/// Returns a \c FalseMap class |
1406 | 1406 |
|
1407 | 1407 |
/// This function just returns a \c FalseMap class. |
1408 | 1408 |
/// \relates FalseMap |
1409 | 1409 |
template<typename K> |
1410 | 1410 |
inline FalseMap<K> falseMap() { |
1411 | 1411 |
return FalseMap<K>(); |
1412 | 1412 |
} |
1413 | 1413 |
|
1414 | 1414 |
/// @} |
1415 | 1415 |
|
1416 | 1416 |
/// \addtogroup map_adaptors |
1417 | 1417 |
/// @{ |
1418 | 1418 |
|
1419 | 1419 |
/// Logical 'and' of two maps |
1420 | 1420 |
|
1421 | 1421 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1422 | 1422 |
/// 'and' of the values of the two given maps. |
1423 | 1423 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1424 | 1424 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1425 | 1425 |
/// |
1426 | 1426 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1427 | 1427 |
/// \code |
1428 | 1428 |
/// AndMap<M1,M2> am(m1,m2); |
1429 | 1429 |
/// \endcode |
1430 | 1430 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>. |
1431 | 1431 |
/// |
1432 | 1432 |
/// The simplest way of using this map is through the andMap() |
1433 | 1433 |
/// function. |
1434 | 1434 |
/// |
1435 | 1435 |
/// \sa OrMap |
1436 | 1436 |
/// \sa NotMap, NotWriteMap |
1437 | 1437 |
template<typename M1, typename M2> |
1438 | 1438 |
class AndMap : public MapBase<typename M1::Key, bool> { |
1439 | 1439 |
const M1 &_m1; |
1440 | 1440 |
const M2 &_m2; |
1441 | 1441 |
public: |
1442 | 1442 |
///\e |
1443 | 1443 |
typedef typename M1::Key Key; |
1444 | 1444 |
///\e |
1445 | 1445 |
typedef bool Value; |
1446 | 1446 |
|
1447 | 1447 |
/// Constructor |
1448 | 1448 |
AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1449 | 1449 |
///\e |
1450 | 1450 |
Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; } |
1451 | 1451 |
}; |
1452 | 1452 |
|
1453 | 1453 |
/// Returns an \c AndMap class |
1454 | 1454 |
|
1455 | 1455 |
/// This function just returns an \c AndMap class. |
1456 | 1456 |
/// |
1457 | 1457 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1458 | 1458 |
/// then <tt>andMap(m1,m2)[x]</tt> will be equal to |
1459 | 1459 |
/// <tt>m1[x]&&m2[x]</tt>. |
1460 | 1460 |
/// |
1461 | 1461 |
/// \relates AndMap |
1462 | 1462 |
template<typename M1, typename M2> |
1463 | 1463 |
inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) { |
1464 | 1464 |
return AndMap<M1, M2>(m1,m2); |
1465 | 1465 |
} |
1466 | 1466 |
|
1467 | 1467 |
|
1468 | 1468 |
/// Logical 'or' of two maps |
1469 | 1469 |
|
1470 | 1470 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1471 | 1471 |
/// 'or' of the values of the two given maps. |
1472 | 1472 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1473 | 1473 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1474 | 1474 |
/// |
1475 | 1475 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1476 | 1476 |
/// \code |
1477 | 1477 |
/// OrMap<M1,M2> om(m1,m2); |
1478 | 1478 |
/// \endcode |
1479 | 1479 |
/// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>. |
1480 | 1480 |
/// |
1481 | 1481 |
/// The simplest way of using this map is through the orMap() |
1482 | 1482 |
/// function. |
1483 | 1483 |
/// |
1484 | 1484 |
/// \sa AndMap |
1485 | 1485 |
/// \sa NotMap, NotWriteMap |
1486 | 1486 |
template<typename M1, typename M2> |
1487 | 1487 |
class OrMap : public MapBase<typename M1::Key, bool> { |
1488 | 1488 |
const M1 &_m1; |
1489 | 1489 |
const M2 &_m2; |
1490 | 1490 |
public: |
1491 | 1491 |
///\e |
1492 | 1492 |
typedef typename M1::Key Key; |
1493 | 1493 |
///\e |
1494 | 1494 |
typedef bool Value; |
1495 | 1495 |
|
1496 | 1496 |
/// Constructor |
1497 | 1497 |
OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1498 | 1498 |
///\e |
1499 | 1499 |
Value operator[](const Key &k) const { return _m1[k]||_m2[k]; } |
1500 | 1500 |
}; |
1501 | 1501 |
|
1502 | 1502 |
/// Returns an \c OrMap class |
1503 | 1503 |
|
1504 | 1504 |
/// This function just returns an \c OrMap class. |
1505 | 1505 |
/// |
1506 | 1506 |
/// For example, if \c m1 and \c m2 are both maps with \c bool values, |
1507 | 1507 |
/// then <tt>orMap(m1,m2)[x]</tt> will be equal to |
1508 | 1508 |
/// <tt>m1[x]||m2[x]</tt>. |
1509 | 1509 |
/// |
1510 | 1510 |
/// \relates OrMap |
1511 | 1511 |
template<typename M1, typename M2> |
1512 | 1512 |
inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) { |
1513 | 1513 |
return OrMap<M1, M2>(m1,m2); |
1514 | 1514 |
} |
1515 | 1515 |
|
1516 | 1516 |
|
1517 | 1517 |
/// Logical 'not' of a map |
1518 | 1518 |
|
1519 | 1519 |
/// This \ref concepts::ReadMap "read-only map" returns the logical |
1520 | 1520 |
/// negation of the values of the given map. |
1521 | 1521 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1522 | 1522 |
/// |
1523 | 1523 |
/// The simplest way of using this map is through the notMap() |
1524 | 1524 |
/// function. |
1525 | 1525 |
/// |
1526 | 1526 |
/// \sa NotWriteMap |
1527 | 1527 |
template <typename M> |
1528 | 1528 |
class NotMap : public MapBase<typename M::Key, bool> { |
1529 | 1529 |
const M &_m; |
1530 | 1530 |
public: |
1531 | 1531 |
///\e |
1532 | 1532 |
typedef typename M::Key Key; |
1533 | 1533 |
///\e |
1534 | 1534 |
typedef bool Value; |
1535 | 1535 |
|
1536 | 1536 |
/// Constructor |
1537 | 1537 |
NotMap(const M &m) : _m(m) {} |
1538 | 1538 |
///\e |
1539 | 1539 |
Value operator[](const Key &k) const { return !_m[k]; } |
1540 | 1540 |
}; |
1541 | 1541 |
|
1542 | 1542 |
/// Logical 'not' of a map (read-write version) |
1543 | 1543 |
|
1544 | 1544 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
1545 | 1545 |
/// logical negation of the values of the given map. |
1546 | 1546 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
1547 | 1547 |
/// It makes also possible to write the map. When a value is set, |
1548 | 1548 |
/// the opposite value is set to the original map. |
1549 | 1549 |
/// |
1550 | 1550 |
/// The simplest way of using this map is through the notWriteMap() |
1551 | 1551 |
/// function. |
1552 | 1552 |
/// |
1553 | 1553 |
/// \sa NotMap |
1554 | 1554 |
template <typename M> |
1555 | 1555 |
class NotWriteMap : public MapBase<typename M::Key, bool> { |
1556 | 1556 |
M &_m; |
1557 | 1557 |
public: |
1558 | 1558 |
///\e |
1559 | 1559 |
typedef typename M::Key Key; |
1560 | 1560 |
///\e |
1561 | 1561 |
typedef bool Value; |
1562 | 1562 |
|
1563 | 1563 |
/// Constructor |
1564 | 1564 |
NotWriteMap(M &m) : _m(m) {} |
1565 | 1565 |
///\e |
1566 | 1566 |
Value operator[](const Key &k) const { return !_m[k]; } |
1567 | 1567 |
///\e |
1568 | 1568 |
void set(const Key &k, bool v) { _m.set(k, !v); } |
1569 | 1569 |
}; |
1570 | 1570 |
|
1571 | 1571 |
/// Returns a \c NotMap class |
1572 | 1572 |
|
1573 | 1573 |
/// This function just returns a \c NotMap class. |
1574 | 1574 |
/// |
1575 | 1575 |
/// For example, if \c m is a map with \c bool values, then |
1576 | 1576 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1577 | 1577 |
/// |
1578 | 1578 |
/// \relates NotMap |
1579 | 1579 |
template <typename M> |
1580 | 1580 |
inline NotMap<M> notMap(const M &m) { |
1581 | 1581 |
return NotMap<M>(m); |
1582 | 1582 |
} |
1583 | 1583 |
|
1584 | 1584 |
/// Returns a \c NotWriteMap class |
1585 | 1585 |
|
1586 | 1586 |
/// This function just returns a \c NotWriteMap class. |
1587 | 1587 |
/// |
1588 | 1588 |
/// For example, if \c m is a map with \c bool values, then |
1589 | 1589 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
1590 | 1590 |
/// Moreover it makes also possible to write the map. |
1591 | 1591 |
/// |
1592 | 1592 |
/// \relates NotWriteMap |
1593 | 1593 |
template <typename M> |
1594 | 1594 |
inline NotWriteMap<M> notWriteMap(M &m) { |
1595 | 1595 |
return NotWriteMap<M>(m); |
1596 | 1596 |
} |
1597 | 1597 |
|
1598 | 1598 |
|
1599 | 1599 |
/// Combination of two maps using the \c == operator |
1600 | 1600 |
|
1601 | 1601 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1602 | 1602 |
/// the keys for which the corresponding values of the two maps are |
1603 | 1603 |
/// equal. |
1604 | 1604 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1605 | 1605 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1606 | 1606 |
/// |
1607 | 1607 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1608 | 1608 |
/// \code |
1609 | 1609 |
/// EqualMap<M1,M2> em(m1,m2); |
1610 | 1610 |
/// \endcode |
1611 | 1611 |
/// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>. |
1612 | 1612 |
/// |
1613 | 1613 |
/// The simplest way of using this map is through the equalMap() |
1614 | 1614 |
/// function. |
1615 | 1615 |
/// |
1616 | 1616 |
/// \sa LessMap |
1617 | 1617 |
template<typename M1, typename M2> |
1618 | 1618 |
class EqualMap : public MapBase<typename M1::Key, bool> { |
1619 | 1619 |
const M1 &_m1; |
1620 | 1620 |
const M2 &_m2; |
1621 | 1621 |
public: |
1622 | 1622 |
///\e |
1623 | 1623 |
typedef typename M1::Key Key; |
1624 | 1624 |
///\e |
1625 | 1625 |
typedef bool Value; |
1626 | 1626 |
|
1627 | 1627 |
/// Constructor |
1628 | 1628 |
EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1629 | 1629 |
///\e |
1630 | 1630 |
Value operator[](const Key &k) const { return _m1[k]==_m2[k]; } |
1631 | 1631 |
}; |
1632 | 1632 |
|
1633 | 1633 |
/// Returns an \c EqualMap class |
1634 | 1634 |
|
1635 | 1635 |
/// This function just returns an \c EqualMap class. |
1636 | 1636 |
/// |
1637 | 1637 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1638 | 1638 |
/// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to |
1639 | 1639 |
/// <tt>m1[x]==m2[x]</tt>. |
1640 | 1640 |
/// |
1641 | 1641 |
/// \relates EqualMap |
1642 | 1642 |
template<typename M1, typename M2> |
1643 | 1643 |
inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) { |
1644 | 1644 |
return EqualMap<M1, M2>(m1,m2); |
1645 | 1645 |
} |
1646 | 1646 |
|
1647 | 1647 |
|
1648 | 1648 |
/// Combination of two maps using the \c < operator |
1649 | 1649 |
|
1650 | 1650 |
/// This \ref concepts::ReadMap "read-only map" assigns \c true to |
1651 | 1651 |
/// the keys for which the corresponding value of the first map is |
1652 | 1652 |
/// less then the value of the second map. |
1653 | 1653 |
/// Its \c Key type is inherited from \c M1 and its \c Value type is |
1654 | 1654 |
/// \c bool. \c M2::Key must be convertible to \c M1::Key. |
1655 | 1655 |
/// |
1656 | 1656 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
1657 | 1657 |
/// \code |
1658 | 1658 |
/// LessMap<M1,M2> lm(m1,m2); |
1659 | 1659 |
/// \endcode |
1660 | 1660 |
/// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>. |
1661 | 1661 |
/// |
1662 | 1662 |
/// The simplest way of using this map is through the lessMap() |
1663 | 1663 |
/// function. |
1664 | 1664 |
/// |
1665 | 1665 |
/// \sa EqualMap |
1666 | 1666 |
template<typename M1, typename M2> |
1667 | 1667 |
class LessMap : public MapBase<typename M1::Key, bool> { |
1668 | 1668 |
const M1 &_m1; |
1669 | 1669 |
const M2 &_m2; |
1670 | 1670 |
public: |
1671 | 1671 |
///\e |
1672 | 1672 |
typedef typename M1::Key Key; |
1673 | 1673 |
///\e |
1674 | 1674 |
typedef bool Value; |
1675 | 1675 |
|
1676 | 1676 |
/// Constructor |
1677 | 1677 |
LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {} |
1678 | 1678 |
///\e |
1679 | 1679 |
Value operator[](const Key &k) const { return _m1[k]<_m2[k]; } |
1680 | 1680 |
}; |
1681 | 1681 |
|
1682 | 1682 |
/// Returns an \c LessMap class |
1683 | 1683 |
|
1684 | 1684 |
/// This function just returns an \c LessMap class. |
1685 | 1685 |
/// |
1686 | 1686 |
/// For example, if \c m1 and \c m2 are maps with keys and values of |
1687 | 1687 |
/// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to |
1688 | 1688 |
/// <tt>m1[x]<m2[x]</tt>. |
1689 | 1689 |
/// |
1690 | 1690 |
/// \relates LessMap |
1691 | 1691 |
template<typename M1, typename M2> |
1692 | 1692 |
inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) { |
1693 | 1693 |
return LessMap<M1, M2>(m1,m2); |
1694 | 1694 |
} |
1695 | 1695 |
|
1696 | 1696 |
namespace _maps_bits { |
1697 | 1697 |
|
1698 | 1698 |
template <typename _Iterator, typename Enable = void> |
1699 | 1699 |
struct IteratorTraits { |
1700 | 1700 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
1701 | 1701 |
}; |
1702 | 1702 |
|
1703 | 1703 |
template <typename _Iterator> |
1704 | 1704 |
struct IteratorTraits<_Iterator, |
1705 | 1705 |
typename exists<typename _Iterator::container_type>::type> |
1706 | 1706 |
{ |
1707 | 1707 |
typedef typename _Iterator::container_type::value_type Value; |
1708 | 1708 |
}; |
1709 | 1709 |
|
1710 | 1710 |
} |
1711 | 1711 |
|
1712 | 1712 |
/// @} |
1713 | 1713 |
|
1714 | 1714 |
/// \addtogroup maps |
1715 | 1715 |
/// @{ |
1716 | 1716 |
|
1717 | 1717 |
/// \brief Writable bool map for logging each \c true assigned element |
1718 | 1718 |
/// |
1719 | 1719 |
/// A \ref concepts::WriteMap "writable" bool map for logging |
1720 | 1720 |
/// each \c true assigned element, i.e it copies subsequently each |
1721 | 1721 |
/// keys set to \c true to the given iterator. |
1722 | 1722 |
/// The most important usage of it is storing certain nodes or arcs |
1723 | 1723 |
/// that were marked \c true by an algorithm. |
1724 | 1724 |
/// |
1725 | 1725 |
/// There are several algorithms that provide solutions through bool |
1726 | 1726 |
/// maps and most of them assign \c true at most once for each key. |
1727 | 1727 |
/// In these cases it is a natural request to store each \c true |
1728 | 1728 |
/// assigned elements (in order of the assignment), which can be |
1729 | 1729 |
/// easily done with LoggerBoolMap. |
1730 | 1730 |
/// |
1731 | 1731 |
/// The simplest way of using this map is through the loggerBoolMap() |
1732 | 1732 |
/// function. |
1733 | 1733 |
/// |
1734 | 1734 |
/// \tparam IT The type of the iterator. |
1735 | 1735 |
/// \tparam KEY The key type of the map. The default value set |
1736 | 1736 |
/// according to the iterator type should work in most cases. |
1737 | 1737 |
/// |
1738 | 1738 |
/// \note The container of the iterator must contain enough space |
1739 | 1739 |
/// for the elements or the iterator should be an inserter iterator. |
1740 | 1740 |
#ifdef DOXYGEN |
1741 | 1741 |
template <typename IT, typename KEY> |
1742 | 1742 |
#else |
1743 | 1743 |
template <typename IT, |
1744 | 1744 |
typename KEY = typename _maps_bits::IteratorTraits<IT>::Value> |
1745 | 1745 |
#endif |
1746 | 1746 |
class LoggerBoolMap : public MapBase<KEY, bool> { |
1747 | 1747 |
public: |
1748 | 1748 |
|
1749 | 1749 |
///\e |
1750 | 1750 |
typedef KEY Key; |
1751 | 1751 |
///\e |
1752 | 1752 |
typedef bool Value; |
1753 | 1753 |
///\e |
1754 | 1754 |
typedef IT Iterator; |
1755 | 1755 |
|
1756 | 1756 |
/// Constructor |
1757 | 1757 |
LoggerBoolMap(Iterator it) |
1758 | 1758 |
: _begin(it), _end(it) {} |
1759 | 1759 |
|
1760 | 1760 |
/// Gives back the given iterator set for the first key |
1761 | 1761 |
Iterator begin() const { |
1762 | 1762 |
return _begin; |
1763 | 1763 |
} |
1764 | 1764 |
|
1765 | 1765 |
/// Gives back the the 'after the last' iterator |
1766 | 1766 |
Iterator end() const { |
1767 | 1767 |
return _end; |
1768 | 1768 |
} |
1769 | 1769 |
|
1770 | 1770 |
/// The set function of the map |
1771 | 1771 |
void set(const Key& key, Value value) { |
1772 | 1772 |
if (value) { |
1773 | 1773 |
*_end++ = key; |
1774 | 1774 |
} |
1775 | 1775 |
} |
1776 | 1776 |
|
1777 | 1777 |
private: |
1778 | 1778 |
Iterator _begin; |
1779 | 1779 |
Iterator _end; |
1780 | 1780 |
}; |
1781 | 1781 |
|
1782 | 1782 |
/// Returns a \c LoggerBoolMap class |
1783 | 1783 |
|
1784 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
1785 | 1785 |
/// |
1786 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
1787 | 1787 |
/// that were marked \c true by an algorithm. |
1788 | 1788 |
/// For example it makes easier to store the nodes in the processing |
1789 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
1790 | 1790 |
/// \code |
1791 | 1791 |
/// std::vector<Node> v; |
1792 |
/// dfs(g |
|
1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
|
1793 | 1793 |
/// \endcode |
1794 | 1794 |
/// \code |
1795 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
1796 |
/// dfs(g |
|
1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
|
1797 | 1797 |
/// \endcode |
1798 | 1798 |
/// |
1799 | 1799 |
/// \note The container of the iterator must contain enough space |
1800 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
1801 | 1801 |
/// |
1802 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1803 | 1803 |
/// it cannot be used when a readable map is needed, for example as |
1804 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1805 | 1805 |
/// |
1806 | 1806 |
/// \relates LoggerBoolMap |
1807 | 1807 |
template<typename Iterator> |
1808 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1809 | 1809 |
return LoggerBoolMap<Iterator>(it); |
1810 | 1810 |
} |
1811 | 1811 |
|
1812 | 1812 |
/// @} |
1813 | 1813 |
|
1814 | 1814 |
/// \addtogroup graph_maps |
1815 | 1815 |
/// @{ |
1816 | 1816 |
|
1817 | 1817 |
/// \brief Provides an immutable and unique id for each item in a graph. |
1818 | 1818 |
/// |
1819 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
1820 | 1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
1821 | 1821 |
/// - \b unique: different items get different ids, |
1822 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
1823 | 1823 |
/// delete other nodes). |
1824 | 1824 |
/// |
1825 | 1825 |
/// Using this map you get access (i.e. can read) the inner id values of |
1826 | 1826 |
/// the items stored in the graph, which is returned by the \c id() |
1827 | 1827 |
/// function of the graph. This map can be inverted with its member |
1828 |
/// class \c InverseMap or with the \c operator() member. |
|
1828 |
/// class \c InverseMap or with the \c operator()() member. |
|
1829 | 1829 |
/// |
1830 | 1830 |
/// \tparam GR The graph type. |
1831 | 1831 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1832 | 1832 |
/// \c GR::Edge). |
1833 | 1833 |
/// |
1834 | 1834 |
/// \see RangeIdMap |
1835 | 1835 |
template <typename GR, typename K> |
1836 | 1836 |
class IdMap : public MapBase<K, int> { |
1837 | 1837 |
public: |
1838 | 1838 |
/// The graph type of IdMap. |
1839 | 1839 |
typedef GR Graph; |
1840 | 1840 |
typedef GR Digraph; |
1841 | 1841 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1842 | 1842 |
typedef K Item; |
1843 | 1843 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1844 | 1844 |
typedef K Key; |
1845 | 1845 |
/// The value type of IdMap. |
1846 | 1846 |
typedef int Value; |
1847 | 1847 |
|
1848 | 1848 |
/// \brief Constructor. |
1849 | 1849 |
/// |
1850 | 1850 |
/// Constructor of the map. |
1851 | 1851 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1852 | 1852 |
|
1853 | 1853 |
/// \brief Gives back the \e id of the item. |
1854 | 1854 |
/// |
1855 | 1855 |
/// Gives back the immutable and unique \e id of the item. |
1856 | 1856 |
int operator[](const Item& item) const { return _graph->id(item);} |
1857 | 1857 |
|
1858 | 1858 |
/// \brief Gives back the \e item by its id. |
1859 | 1859 |
/// |
1860 | 1860 |
/// Gives back the \e item by its id. |
1861 | 1861 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
1862 | 1862 |
|
1863 | 1863 |
private: |
1864 | 1864 |
const Graph* _graph; |
1865 | 1865 |
|
1866 | 1866 |
public: |
1867 | 1867 |
|
1868 |
/// \brief |
|
1868 |
/// \brief The inverse map type of IdMap. |
|
1869 | 1869 |
/// |
1870 |
/// |
|
1870 |
/// The inverse map type of IdMap. The subscript operator gives back |
|
1871 |
/// an item by its id. |
|
1872 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
1871 | 1873 |
/// \see inverse() |
1872 | 1874 |
class InverseMap { |
1873 | 1875 |
public: |
1874 | 1876 |
|
1875 | 1877 |
/// \brief Constructor. |
1876 | 1878 |
/// |
1877 | 1879 |
/// Constructor for creating an id-to-item map. |
1878 | 1880 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
1879 | 1881 |
|
1880 | 1882 |
/// \brief Constructor. |
1881 | 1883 |
/// |
1882 | 1884 |
/// Constructor for creating an id-to-item map. |
1883 | 1885 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
1884 | 1886 |
|
1885 |
/// \brief Gives back |
|
1887 |
/// \brief Gives back an item by its id. |
|
1886 | 1888 |
/// |
1887 |
/// Gives back |
|
1889 |
/// Gives back an item by its id. |
|
1888 | 1890 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1889 | 1891 |
|
1890 | 1892 |
private: |
1891 | 1893 |
const Graph* _graph; |
1892 | 1894 |
}; |
1893 | 1895 |
|
1894 | 1896 |
/// \brief Gives back the inverse of the map. |
1895 | 1897 |
/// |
1896 | 1898 |
/// Gives back the inverse of the IdMap. |
1897 | 1899 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1898 | 1900 |
}; |
1899 | 1901 |
|
1902 |
/// \brief Returns an \c IdMap class. |
|
1903 |
/// |
|
1904 |
/// This function just returns an \c IdMap class. |
|
1905 |
/// \relates IdMap |
|
1906 |
template <typename K, typename GR> |
|
1907 |
inline IdMap<GR, K> idMap(const GR& graph) { |
|
1908 |
return IdMap<GR, K>(graph); |
|
1909 |
} |
|
1900 | 1910 |
|
1901 | 1911 |
/// \brief General cross reference graph map type. |
1902 | 1912 |
|
1903 | 1913 |
/// This class provides simple invertable graph maps. |
1904 | 1914 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
1905 | 1915 |
/// and if a key is set to a new value, then stores it in the inverse map. |
1906 |
/// The values of the map can be accessed |
|
1907 |
/// with stl compatible forward iterator. |
|
1916 |
/// The graph items can be accessed by their values either using |
|
1917 |
/// \c InverseMap or \c operator()(), and the values of the map can be |
|
1918 |
/// accessed with an STL compatible forward iterator (\c ValueIt). |
|
1919 |
/// |
|
1920 |
/// This map is intended to be used when all associated values are |
|
1921 |
/// different (the map is actually invertable) or there are only a few |
|
1922 |
/// items with the same value. |
|
1923 |
/// Otherwise consider to use \c IterableValueMap, which is more |
|
1924 |
/// suitable and more efficient for such cases. It provides iterators |
|
1925 |
/// to traverse the items with the same associated value, however |
|
1926 |
/// it does not have \c InverseMap. |
|
1908 | 1927 |
/// |
1909 | 1928 |
/// This type is not reference map, so it cannot be modified with |
1910 | 1929 |
/// the subscript operator. |
1911 | 1930 |
/// |
1912 | 1931 |
/// \tparam GR The graph type. |
1913 | 1932 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1914 | 1933 |
/// \c GR::Edge). |
1915 | 1934 |
/// \tparam V The value type of the map. |
1916 | 1935 |
/// |
1917 | 1936 |
/// \see IterableValueMap |
1918 | 1937 |
template <typename GR, typename K, typename V> |
1919 | 1938 |
class CrossRefMap |
1920 | 1939 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type { |
1921 | 1940 |
private: |
1922 | 1941 |
|
1923 | 1942 |
typedef typename ItemSetTraits<GR, K>:: |
1924 | 1943 |
template Map<V>::Type Map; |
1925 | 1944 |
|
1926 | 1945 |
typedef std::multimap<V, K> Container; |
1927 | 1946 |
Container _inv_map; |
1928 | 1947 |
|
1929 | 1948 |
public: |
1930 | 1949 |
|
1931 | 1950 |
/// The graph type of CrossRefMap. |
1932 | 1951 |
typedef GR Graph; |
1933 | 1952 |
typedef GR Digraph; |
1934 | 1953 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1935 | 1954 |
typedef K Item; |
1936 | 1955 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1937 | 1956 |
typedef K Key; |
1938 | 1957 |
/// The value type of CrossRefMap. |
1939 | 1958 |
typedef V Value; |
1940 | 1959 |
|
1941 | 1960 |
/// \brief Constructor. |
1942 | 1961 |
/// |
1943 | 1962 |
/// Construct a new CrossRefMap for the given graph. |
1944 | 1963 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {} |
1945 | 1964 |
|
1946 | 1965 |
/// \brief Forward iterator for values. |
1947 | 1966 |
/// |
1948 |
/// This iterator is an |
|
1967 |
/// This iterator is an STL compatible forward |
|
1949 | 1968 |
/// iterator on the values of the map. The values can |
1950 | 1969 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
1951 | 1970 |
/// They are considered with multiplicity, so each value is |
1952 | 1971 |
/// traversed for each item it is assigned to. |
1953 |
class |
|
1972 |
class ValueIt |
|
1954 | 1973 |
: public std::iterator<std::forward_iterator_tag, Value> { |
1955 | 1974 |
friend class CrossRefMap; |
1956 | 1975 |
private: |
1957 |
|
|
1976 |
ValueIt(typename Container::const_iterator _it) |
|
1958 | 1977 |
: it(_it) {} |
1959 | 1978 |
public: |
1960 | 1979 |
|
1961 |
ValueIterator() {} |
|
1962 |
|
|
1963 |
ValueIterator& operator++() { ++it; return *this; } |
|
1964 |
ValueIterator operator++(int) { |
|
1965 |
|
|
1980 |
/// Constructor |
|
1981 |
ValueIt() {} |
|
1982 |
|
|
1983 |
/// \e |
|
1984 |
ValueIt& operator++() { ++it; return *this; } |
|
1985 |
/// \e |
|
1986 |
ValueIt operator++(int) { |
|
1987 |
ValueIt tmp(*this); |
|
1966 | 1988 |
operator++(); |
1967 | 1989 |
return tmp; |
1968 | 1990 |
} |
1969 | 1991 |
|
1992 |
/// \e |
|
1970 | 1993 |
const Value& operator*() const { return it->first; } |
1994 |
/// \e |
|
1971 | 1995 |
const Value* operator->() const { return &(it->first); } |
1972 | 1996 |
|
1973 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
|
1974 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|
1997 |
/// \e |
|
1998 |
bool operator==(ValueIt jt) const { return it == jt.it; } |
|
1999 |
/// \e |
|
2000 |
bool operator!=(ValueIt jt) const { return it != jt.it; } |
|
1975 | 2001 |
|
1976 | 2002 |
private: |
1977 | 2003 |
typename Container::const_iterator it; |
1978 | 2004 |
}; |
2005 |
|
|
2006 |
/// Alias for \c ValueIt |
|
2007 |
typedef ValueIt ValueIterator; |
|
1979 | 2008 |
|
1980 | 2009 |
/// \brief Returns an iterator to the first value. |
1981 | 2010 |
/// |
1982 |
/// Returns an |
|
2011 |
/// Returns an STL compatible iterator to the |
|
1983 | 2012 |
/// first value of the map. The values of the |
1984 | 2013 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1985 | 2014 |
/// range. |
1986 |
ValueIterator beginValue() const { |
|
1987 |
return ValueIterator(_inv_map.begin()); |
|
2015 |
ValueIt beginValue() const { |
|
2016 |
return ValueIt(_inv_map.begin()); |
|
1988 | 2017 |
} |
1989 | 2018 |
|
1990 | 2019 |
/// \brief Returns an iterator after the last value. |
1991 | 2020 |
/// |
1992 |
/// Returns an |
|
2021 |
/// Returns an STL compatible iterator after the |
|
1993 | 2022 |
/// last value of the map. The values of the |
1994 | 2023 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1995 | 2024 |
/// range. |
1996 |
ValueIterator endValue() const { |
|
1997 |
return ValueIterator(_inv_map.end()); |
|
2025 |
ValueIt endValue() const { |
|
2026 |
return ValueIt(_inv_map.end()); |
|
1998 | 2027 |
} |
1999 | 2028 |
|
2000 | 2029 |
/// \brief Sets the value associated with the given key. |
2001 | 2030 |
/// |
2002 | 2031 |
/// Sets the value associated with the given key. |
2003 | 2032 |
void set(const Key& key, const Value& val) { |
2004 | 2033 |
Value oldval = Map::operator[](key); |
2005 | 2034 |
typename Container::iterator it; |
2006 | 2035 |
for (it = _inv_map.equal_range(oldval).first; |
2007 | 2036 |
it != _inv_map.equal_range(oldval).second; ++it) { |
2008 | 2037 |
if (it->second == key) { |
2009 | 2038 |
_inv_map.erase(it); |
2010 | 2039 |
break; |
2011 | 2040 |
} |
2012 | 2041 |
} |
2013 | 2042 |
_inv_map.insert(std::make_pair(val, key)); |
2014 | 2043 |
Map::set(key, val); |
2015 | 2044 |
} |
2016 | 2045 |
|
2017 | 2046 |
/// \brief Returns the value associated with the given key. |
2018 | 2047 |
/// |
2019 | 2048 |
/// Returns the value associated with the given key. |
2020 | 2049 |
typename MapTraits<Map>::ConstReturnValue |
2021 | 2050 |
operator[](const Key& key) const { |
2022 | 2051 |
return Map::operator[](key); |
2023 | 2052 |
} |
2024 | 2053 |
|
2025 | 2054 |
/// \brief Gives back an item by its value. |
2026 | 2055 |
/// |
2027 | 2056 |
/// This function gives back an item that is assigned to |
2028 | 2057 |
/// the given value or \c INVALID if no such item exists. |
2029 | 2058 |
/// If there are more items with the same associated value, |
2030 | 2059 |
/// only one of them is returned. |
2031 | 2060 |
Key operator()(const Value& val) const { |
2032 | 2061 |
typename Container::const_iterator it = _inv_map.find(val); |
2033 | 2062 |
return it != _inv_map.end() ? it->second : INVALID; |
2034 | 2063 |
} |
2064 |
|
|
2065 |
/// \brief Returns the number of items with the given value. |
|
2066 |
/// |
|
2067 |
/// This function returns the number of items with the given value |
|
2068 |
/// associated with it. |
|
2069 |
int count(const Value &val) const { |
|
2070 |
return _inv_map.count(val); |
|
2071 |
} |
|
2035 | 2072 |
|
2036 | 2073 |
protected: |
2037 | 2074 |
|
2038 | 2075 |
/// \brief Erase the key from the map and the inverse map. |
2039 | 2076 |
/// |
2040 | 2077 |
/// Erase the key from the map and the inverse map. It is called by the |
2041 | 2078 |
/// \c AlterationNotifier. |
2042 | 2079 |
virtual void erase(const Key& key) { |
2043 | 2080 |
Value val = Map::operator[](key); |
2044 | 2081 |
typename Container::iterator it; |
2045 | 2082 |
for (it = _inv_map.equal_range(val).first; |
2046 | 2083 |
it != _inv_map.equal_range(val).second; ++it) { |
2047 | 2084 |
if (it->second == key) { |
2048 | 2085 |
_inv_map.erase(it); |
2049 | 2086 |
break; |
2050 | 2087 |
} |
2051 | 2088 |
} |
2052 | 2089 |
Map::erase(key); |
2053 | 2090 |
} |
2054 | 2091 |
|
2055 | 2092 |
/// \brief Erase more keys from the map and the inverse map. |
2056 | 2093 |
/// |
2057 | 2094 |
/// Erase more keys from the map and the inverse map. It is called by the |
2058 | 2095 |
/// \c AlterationNotifier. |
2059 | 2096 |
virtual void erase(const std::vector<Key>& keys) { |
2060 | 2097 |
for (int i = 0; i < int(keys.size()); ++i) { |
2061 | 2098 |
Value val = Map::operator[](keys[i]); |
2062 | 2099 |
typename Container::iterator it; |
2063 | 2100 |
for (it = _inv_map.equal_range(val).first; |
2064 | 2101 |
it != _inv_map.equal_range(val).second; ++it) { |
2065 | 2102 |
if (it->second == keys[i]) { |
2066 | 2103 |
_inv_map.erase(it); |
2067 | 2104 |
break; |
2068 | 2105 |
} |
2069 | 2106 |
} |
2070 | 2107 |
} |
2071 | 2108 |
Map::erase(keys); |
2072 | 2109 |
} |
2073 | 2110 |
|
2074 | 2111 |
/// \brief Clear the keys from the map and the inverse map. |
2075 | 2112 |
/// |
2076 | 2113 |
/// Clear the keys from the map and the inverse map. It is called by the |
2077 | 2114 |
/// \c AlterationNotifier. |
2078 | 2115 |
virtual void clear() { |
2079 | 2116 |
_inv_map.clear(); |
2080 | 2117 |
Map::clear(); |
2081 | 2118 |
} |
2082 | 2119 |
|
2083 | 2120 |
public: |
2084 | 2121 |
|
2085 |
/// \brief The inverse map type. |
|
2122 |
/// \brief The inverse map type of CrossRefMap. |
|
2086 | 2123 |
/// |
2087 |
/// The inverse of this map. The subscript operator of the map |
|
2088 |
/// gives back the item that was last assigned to the value. |
|
2124 |
/// The inverse map type of CrossRefMap. The subscript operator gives |
|
2125 |
/// back an item by its value. |
|
2126 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
2127 |
/// \see inverse() |
|
2089 | 2128 |
class InverseMap { |
2090 | 2129 |
public: |
2091 | 2130 |
/// \brief Constructor |
2092 | 2131 |
/// |
2093 | 2132 |
/// Constructor of the InverseMap. |
2094 | 2133 |
explicit InverseMap(const CrossRefMap& inverted) |
2095 | 2134 |
: _inverted(inverted) {} |
2096 | 2135 |
|
2097 | 2136 |
/// The value type of the InverseMap. |
2098 | 2137 |
typedef typename CrossRefMap::Key Value; |
2099 | 2138 |
/// The key type of the InverseMap. |
2100 | 2139 |
typedef typename CrossRefMap::Value Key; |
2101 | 2140 |
|
2102 | 2141 |
/// \brief Subscript operator. |
2103 | 2142 |
/// |
2104 | 2143 |
/// Subscript operator. It gives back an item |
2105 | 2144 |
/// that is assigned to the given value or \c INVALID |
2106 | 2145 |
/// if no such item exists. |
2107 | 2146 |
Value operator[](const Key& key) const { |
2108 | 2147 |
return _inverted(key); |
2109 | 2148 |
} |
2110 | 2149 |
|
2111 | 2150 |
private: |
2112 | 2151 |
const CrossRefMap& _inverted; |
2113 | 2152 |
}; |
2114 | 2153 |
|
2115 |
/// \brief |
|
2154 |
/// \brief Gives back the inverse of the map. |
|
2116 | 2155 |
/// |
2117 |
/// |
|
2156 |
/// Gives back the inverse of the CrossRefMap. |
|
2118 | 2157 |
InverseMap inverse() const { |
2119 | 2158 |
return InverseMap(*this); |
2120 | 2159 |
} |
2121 | 2160 |
|
2122 | 2161 |
}; |
2123 | 2162 |
|
2124 |
/// \brief Provides continuous and unique |
|
2163 |
/// \brief Provides continuous and unique id for the |
|
2125 | 2164 |
/// items of a graph. |
2126 | 2165 |
/// |
2127 | 2166 |
/// RangeIdMap provides a unique and continuous |
2128 |
/// |
|
2167 |
/// id for each item of a given type (\c Node, \c Arc or |
|
2129 | 2168 |
/// \c Edge) in a graph. This id is |
2130 | 2169 |
/// - \b unique: different items get different ids, |
2131 | 2170 |
/// - \b continuous: the range of the ids is the set of integers |
2132 | 2171 |
/// between 0 and \c n-1, where \c n is the number of the items of |
2133 | 2172 |
/// this type (\c Node, \c Arc or \c Edge). |
2134 | 2173 |
/// - So, the ids can change when deleting an item of the same type. |
2135 | 2174 |
/// |
2136 | 2175 |
/// Thus this id is not (necessarily) the same as what can get using |
2137 | 2176 |
/// the \c id() function of the graph or \ref IdMap. |
2138 | 2177 |
/// This map can be inverted with its member class \c InverseMap, |
2139 |
/// or with the \c operator() member. |
|
2178 |
/// or with the \c operator()() member. |
|
2140 | 2179 |
/// |
2141 | 2180 |
/// \tparam GR The graph type. |
2142 | 2181 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2143 | 2182 |
/// \c GR::Edge). |
2144 | 2183 |
/// |
2145 | 2184 |
/// \see IdMap |
2146 | 2185 |
template <typename GR, typename K> |
2147 | 2186 |
class RangeIdMap |
2148 | 2187 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
2149 | 2188 |
|
2150 | 2189 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
2151 | 2190 |
|
2152 | 2191 |
public: |
2153 | 2192 |
/// The graph type of RangeIdMap. |
2154 | 2193 |
typedef GR Graph; |
2155 | 2194 |
typedef GR Digraph; |
2156 | 2195 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
2157 | 2196 |
typedef K Item; |
2158 | 2197 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
2159 | 2198 |
typedef K Key; |
2160 | 2199 |
/// The value type of RangeIdMap. |
2161 | 2200 |
typedef int Value; |
2162 | 2201 |
|
2163 | 2202 |
/// \brief Constructor. |
2164 | 2203 |
/// |
2165 | 2204 |
/// Constructor. |
2166 | 2205 |
explicit RangeIdMap(const Graph& gr) : Map(gr) { |
2167 | 2206 |
Item it; |
2168 | 2207 |
const typename Map::Notifier* nf = Map::notifier(); |
2169 | 2208 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2170 | 2209 |
Map::set(it, _inv_map.size()); |
2171 | 2210 |
_inv_map.push_back(it); |
2172 | 2211 |
} |
2173 | 2212 |
} |
2174 | 2213 |
|
2175 | 2214 |
protected: |
2176 | 2215 |
|
2177 | 2216 |
/// \brief Adds a new key to the map. |
2178 | 2217 |
/// |
2179 | 2218 |
/// Add a new key to the map. It is called by the |
2180 | 2219 |
/// \c AlterationNotifier. |
2181 | 2220 |
virtual void add(const Item& item) { |
2182 | 2221 |
Map::add(item); |
2183 | 2222 |
Map::set(item, _inv_map.size()); |
2184 | 2223 |
_inv_map.push_back(item); |
2185 | 2224 |
} |
2186 | 2225 |
|
2187 | 2226 |
/// \brief Add more new keys to the map. |
2188 | 2227 |
/// |
2189 | 2228 |
/// Add more new keys to the map. It is called by the |
2190 | 2229 |
/// \c AlterationNotifier. |
2191 | 2230 |
virtual void add(const std::vector<Item>& items) { |
2192 | 2231 |
Map::add(items); |
2193 | 2232 |
for (int i = 0; i < int(items.size()); ++i) { |
2194 | 2233 |
Map::set(items[i], _inv_map.size()); |
2195 | 2234 |
_inv_map.push_back(items[i]); |
2196 | 2235 |
} |
2197 | 2236 |
} |
2198 | 2237 |
|
2199 | 2238 |
/// \brief Erase the key from the map. |
2200 | 2239 |
/// |
2201 | 2240 |
/// Erase the key from the map. It is called by the |
2202 | 2241 |
/// \c AlterationNotifier. |
2203 | 2242 |
virtual void erase(const Item& item) { |
2204 | 2243 |
Map::set(_inv_map.back(), Map::operator[](item)); |
2205 | 2244 |
_inv_map[Map::operator[](item)] = _inv_map.back(); |
2206 | 2245 |
_inv_map.pop_back(); |
2207 | 2246 |
Map::erase(item); |
2208 | 2247 |
} |
2209 | 2248 |
|
2210 | 2249 |
/// \brief Erase more keys from the map. |
2211 | 2250 |
/// |
2212 | 2251 |
/// Erase more keys from the map. It is called by the |
2213 | 2252 |
/// \c AlterationNotifier. |
2214 | 2253 |
virtual void erase(const std::vector<Item>& items) { |
2215 | 2254 |
for (int i = 0; i < int(items.size()); ++i) { |
2216 | 2255 |
Map::set(_inv_map.back(), Map::operator[](items[i])); |
2217 | 2256 |
_inv_map[Map::operator[](items[i])] = _inv_map.back(); |
2218 | 2257 |
_inv_map.pop_back(); |
2219 | 2258 |
} |
2220 | 2259 |
Map::erase(items); |
2221 | 2260 |
} |
2222 | 2261 |
|
2223 | 2262 |
/// \brief Build the unique map. |
2224 | 2263 |
/// |
2225 | 2264 |
/// Build the unique map. It is called by the |
2226 | 2265 |
/// \c AlterationNotifier. |
2227 | 2266 |
virtual void build() { |
2228 | 2267 |
Map::build(); |
2229 | 2268 |
Item it; |
2230 | 2269 |
const typename Map::Notifier* nf = Map::notifier(); |
2231 | 2270 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2232 | 2271 |
Map::set(it, _inv_map.size()); |
2233 | 2272 |
_inv_map.push_back(it); |
2234 | 2273 |
} |
2235 | 2274 |
} |
2236 | 2275 |
|
2237 | 2276 |
/// \brief Clear the keys from the map. |
2238 | 2277 |
/// |
2239 | 2278 |
/// Clear the keys from the map. It is called by the |
2240 | 2279 |
/// \c AlterationNotifier. |
2241 | 2280 |
virtual void clear() { |
2242 | 2281 |
_inv_map.clear(); |
2243 | 2282 |
Map::clear(); |
2244 | 2283 |
} |
2245 | 2284 |
|
2246 | 2285 |
public: |
2247 | 2286 |
|
2248 | 2287 |
/// \brief Returns the maximal value plus one. |
2249 | 2288 |
/// |
2250 | 2289 |
/// Returns the maximal value plus one in the map. |
2251 | 2290 |
unsigned int size() const { |
2252 | 2291 |
return _inv_map.size(); |
2253 | 2292 |
} |
2254 | 2293 |
|
2255 | 2294 |
/// \brief Swaps the position of the two items in the map. |
2256 | 2295 |
/// |
2257 | 2296 |
/// Swaps the position of the two items in the map. |
2258 | 2297 |
void swap(const Item& p, const Item& q) { |
2259 | 2298 |
int pi = Map::operator[](p); |
2260 | 2299 |
int qi = Map::operator[](q); |
2261 | 2300 |
Map::set(p, qi); |
2262 | 2301 |
_inv_map[qi] = p; |
2263 | 2302 |
Map::set(q, pi); |
2264 | 2303 |
_inv_map[pi] = q; |
2265 | 2304 |
} |
2266 | 2305 |
|
2267 |
/// \brief Gives back the \e |
|
2306 |
/// \brief Gives back the \e range \e id of the item |
|
2268 | 2307 |
/// |
2269 |
/// Gives back the \e |
|
2308 |
/// Gives back the \e range \e id of the item. |
|
2270 | 2309 |
int operator[](const Item& item) const { |
2271 | 2310 |
return Map::operator[](item); |
2272 | 2311 |
} |
2273 | 2312 |
|
2274 |
/// \brief Gives back the item belonging to a \e |
|
2313 |
/// \brief Gives back the item belonging to a \e range \e id |
|
2275 | 2314 |
/// |
2276 |
/// Gives back the item belonging to |
|
2315 |
/// Gives back the item belonging to the given \e range \e id. |
|
2277 | 2316 |
Item operator()(int id) const { |
2278 | 2317 |
return _inv_map[id]; |
2279 | 2318 |
} |
2280 | 2319 |
|
2281 | 2320 |
private: |
2282 | 2321 |
|
2283 | 2322 |
typedef std::vector<Item> Container; |
2284 | 2323 |
Container _inv_map; |
2285 | 2324 |
|
2286 | 2325 |
public: |
2287 | 2326 |
|
2288 | 2327 |
/// \brief The inverse map type of RangeIdMap. |
2289 | 2328 |
/// |
2290 |
/// The inverse map type of RangeIdMap. |
|
2329 |
/// The inverse map type of RangeIdMap. The subscript operator gives |
|
2330 |
/// back an item by its \e range \e id. |
|
2331 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
2291 | 2332 |
class InverseMap { |
2292 | 2333 |
public: |
2293 | 2334 |
/// \brief Constructor |
2294 | 2335 |
/// |
2295 | 2336 |
/// Constructor of the InverseMap. |
2296 | 2337 |
explicit InverseMap(const RangeIdMap& inverted) |
2297 | 2338 |
: _inverted(inverted) {} |
2298 | 2339 |
|
2299 | 2340 |
|
2300 | 2341 |
/// The value type of the InverseMap. |
2301 | 2342 |
typedef typename RangeIdMap::Key Value; |
2302 | 2343 |
/// The key type of the InverseMap. |
2303 | 2344 |
typedef typename RangeIdMap::Value Key; |
2304 | 2345 |
|
2305 | 2346 |
/// \brief Subscript operator. |
2306 | 2347 |
/// |
2307 | 2348 |
/// Subscript operator. It gives back the item |
2308 |
/// that the |
|
2349 |
/// that the given \e range \e id currently belongs to. |
|
2309 | 2350 |
Value operator[](const Key& key) const { |
2310 | 2351 |
return _inverted(key); |
2311 | 2352 |
} |
2312 | 2353 |
|
2313 | 2354 |
/// \brief Size of the map. |
2314 | 2355 |
/// |
2315 | 2356 |
/// Returns the size of the map. |
2316 | 2357 |
unsigned int size() const { |
2317 | 2358 |
return _inverted.size(); |
2318 | 2359 |
} |
2319 | 2360 |
|
2320 | 2361 |
private: |
2321 | 2362 |
const RangeIdMap& _inverted; |
2322 | 2363 |
}; |
2323 | 2364 |
|
2324 | 2365 |
/// \brief Gives back the inverse of the map. |
2325 | 2366 |
/// |
2326 |
/// Gives back the inverse of the |
|
2367 |
/// Gives back the inverse of the RangeIdMap. |
|
2327 | 2368 |
const InverseMap inverse() const { |
2328 | 2369 |
return InverseMap(*this); |
2329 | 2370 |
} |
2330 | 2371 |
}; |
2331 | 2372 |
|
2373 |
/// \brief Returns a \c RangeIdMap class. |
|
2374 |
/// |
|
2375 |
/// This function just returns an \c RangeIdMap class. |
|
2376 |
/// \relates RangeIdMap |
|
2377 |
template <typename K, typename GR> |
|
2378 |
inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) { |
|
2379 |
return RangeIdMap<GR, K>(graph); |
|
2380 |
} |
|
2381 |
|
|
2332 | 2382 |
/// \brief Dynamic iterable \c bool map. |
2333 | 2383 |
/// |
2334 | 2384 |
/// This class provides a special graph map type which can store a |
2335 | 2385 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
2336 | 2386 |
/// For both \c true and \c false values it is possible to iterate on |
2337 |
/// the keys. |
|
2387 |
/// the keys mapped to the value. |
|
2338 | 2388 |
/// |
2339 | 2389 |
/// This type is a reference map, so it can be modified with the |
2340 | 2390 |
/// subscript operator. |
2341 | 2391 |
/// |
2342 | 2392 |
/// \tparam GR The graph type. |
2343 | 2393 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2344 | 2394 |
/// \c GR::Edge). |
2345 | 2395 |
/// |
2346 | 2396 |
/// \see IterableIntMap, IterableValueMap |
2347 | 2397 |
/// \see CrossRefMap |
2348 | 2398 |
template <typename GR, typename K> |
2349 | 2399 |
class IterableBoolMap |
2350 | 2400 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
2351 | 2401 |
private: |
2352 | 2402 |
typedef GR Graph; |
2353 | 2403 |
|
2354 | 2404 |
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt; |
2355 | 2405 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent; |
2356 | 2406 |
|
2357 | 2407 |
std::vector<K> _array; |
2358 | 2408 |
int _sep; |
2359 | 2409 |
|
2360 | 2410 |
public: |
2361 | 2411 |
|
2362 | 2412 |
/// Indicates that the map is reference map. |
2363 | 2413 |
typedef True ReferenceMapTag; |
2364 | 2414 |
|
2365 | 2415 |
/// The key type |
2366 | 2416 |
typedef K Key; |
2367 | 2417 |
/// The value type |
2368 | 2418 |
typedef bool Value; |
2369 | 2419 |
/// The const reference type. |
2370 | 2420 |
typedef const Value& ConstReference; |
2371 | 2421 |
|
2372 | 2422 |
private: |
2373 | 2423 |
|
2374 | 2424 |
int position(const Key& key) const { |
2375 | 2425 |
return Parent::operator[](key); |
2376 | 2426 |
} |
2377 | 2427 |
|
2378 | 2428 |
public: |
2379 | 2429 |
|
2380 | 2430 |
/// \brief Reference to the value of the map. |
2381 | 2431 |
/// |
2382 | 2432 |
/// This class is similar to the \c bool type. It can be converted to |
2383 | 2433 |
/// \c bool and it provides the same operators. |
2384 | 2434 |
class Reference { |
2385 | 2435 |
friend class IterableBoolMap; |
2386 | 2436 |
private: |
2387 | 2437 |
Reference(IterableBoolMap& map, const Key& key) |
2388 | 2438 |
: _key(key), _map(map) {} |
2389 | 2439 |
public: |
2390 | 2440 |
|
2391 | 2441 |
Reference& operator=(const Reference& value) { |
2392 | 2442 |
_map.set(_key, static_cast<bool>(value)); |
2393 | 2443 |
return *this; |
2394 | 2444 |
} |
2395 | 2445 |
|
2396 | 2446 |
operator bool() const { |
2397 | 2447 |
return static_cast<const IterableBoolMap&>(_map)[_key]; |
2398 | 2448 |
} |
2399 | 2449 |
|
2400 | 2450 |
Reference& operator=(bool value) { |
2401 | 2451 |
_map.set(_key, value); |
2402 | 2452 |
return *this; |
2403 | 2453 |
} |
2404 | 2454 |
Reference& operator&=(bool value) { |
2405 | 2455 |
_map.set(_key, _map[_key] & value); |
2406 | 2456 |
return *this; |
2407 | 2457 |
} |
2408 | 2458 |
Reference& operator|=(bool value) { |
2409 | 2459 |
_map.set(_key, _map[_key] | value); |
2410 | 2460 |
return *this; |
2411 | 2461 |
} |
2412 | 2462 |
Reference& operator^=(bool value) { |
2413 | 2463 |
_map.set(_key, _map[_key] ^ value); |
2414 | 2464 |
return *this; |
2415 | 2465 |
} |
2416 | 2466 |
private: |
2417 | 2467 |
Key _key; |
2418 | 2468 |
IterableBoolMap& _map; |
2419 | 2469 |
}; |
2420 | 2470 |
|
2421 | 2471 |
/// \brief Constructor of the map with a default value. |
2422 | 2472 |
/// |
2423 | 2473 |
/// Constructor of the map with a default value. |
2424 | 2474 |
explicit IterableBoolMap(const Graph& graph, bool def = false) |
2425 | 2475 |
: Parent(graph) { |
2426 | 2476 |
typename Parent::Notifier* nf = Parent::notifier(); |
2427 | 2477 |
Key it; |
2428 | 2478 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2429 | 2479 |
Parent::set(it, _array.size()); |
2430 | 2480 |
_array.push_back(it); |
2431 | 2481 |
} |
2432 | 2482 |
_sep = (def ? _array.size() : 0); |
2433 | 2483 |
} |
2434 | 2484 |
|
2435 | 2485 |
/// \brief Const subscript operator of the map. |
2436 | 2486 |
/// |
2437 | 2487 |
/// Const subscript operator of the map. |
2438 | 2488 |
bool operator[](const Key& key) const { |
2439 | 2489 |
return position(key) < _sep; |
2440 | 2490 |
} |
2441 | 2491 |
|
2442 | 2492 |
/// \brief Subscript operator of the map. |
2443 | 2493 |
/// |
2444 | 2494 |
/// Subscript operator of the map. |
2445 | 2495 |
Reference operator[](const Key& key) { |
2446 | 2496 |
return Reference(*this, key); |
2447 | 2497 |
} |
2448 | 2498 |
|
2449 | 2499 |
/// \brief Set operation of the map. |
2450 | 2500 |
/// |
2451 | 2501 |
/// Set operation of the map. |
2452 | 2502 |
void set(const Key& key, bool value) { |
2453 | 2503 |
int pos = position(key); |
2454 | 2504 |
if (value) { |
2455 | 2505 |
if (pos < _sep) return; |
2456 | 2506 |
Key tmp = _array[_sep]; |
2457 | 2507 |
_array[_sep] = key; |
2458 | 2508 |
Parent::set(key, _sep); |
2459 | 2509 |
_array[pos] = tmp; |
2460 | 2510 |
Parent::set(tmp, pos); |
2461 | 2511 |
++_sep; |
2462 | 2512 |
} else { |
2463 | 2513 |
if (pos >= _sep) return; |
2464 | 2514 |
--_sep; |
2465 | 2515 |
Key tmp = _array[_sep]; |
2466 | 2516 |
_array[_sep] = key; |
2467 | 2517 |
Parent::set(key, _sep); |
2468 | 2518 |
_array[pos] = tmp; |
2469 | 2519 |
Parent::set(tmp, pos); |
2470 | 2520 |
} |
2471 | 2521 |
} |
2472 | 2522 |
|
2473 | 2523 |
/// \brief Set all items. |
2474 | 2524 |
/// |
2475 | 2525 |
/// Set all items in the map. |
2476 | 2526 |
/// \note Constant time operation. |
2477 | 2527 |
void setAll(bool value) { |
2478 | 2528 |
_sep = (value ? _array.size() : 0); |
2479 | 2529 |
} |
2480 | 2530 |
|
2481 | 2531 |
/// \brief Returns the number of the keys mapped to \c true. |
2482 | 2532 |
/// |
2483 | 2533 |
/// Returns the number of the keys mapped to \c true. |
2484 | 2534 |
int trueNum() const { |
2485 | 2535 |
return _sep; |
2486 | 2536 |
} |
2487 | 2537 |
|
2488 | 2538 |
/// \brief Returns the number of the keys mapped to \c false. |
2489 | 2539 |
/// |
2490 | 2540 |
/// Returns the number of the keys mapped to \c false. |
2491 | 2541 |
int falseNum() const { |
2492 | 2542 |
return _array.size() - _sep; |
2493 | 2543 |
} |
2494 | 2544 |
|
2495 | 2545 |
/// \brief Iterator for the keys mapped to \c true. |
2496 | 2546 |
/// |
2497 | 2547 |
/// Iterator for the keys mapped to \c true. It works |
2498 | 2548 |
/// like a graph item iterator, it can be converted to |
2499 | 2549 |
/// the key type of the map, incremented with \c ++ operator, and |
2500 | 2550 |
/// if the iterator leaves the last valid key, it will be equal to |
2501 | 2551 |
/// \c INVALID. |
2502 | 2552 |
class TrueIt : public Key { |
2503 | 2553 |
public: |
2504 | 2554 |
typedef Key Parent; |
2505 | 2555 |
|
2506 | 2556 |
/// \brief Creates an iterator. |
2507 | 2557 |
/// |
2508 | 2558 |
/// Creates an iterator. It iterates on the |
2509 | 2559 |
/// keys mapped to \c true. |
2510 | 2560 |
/// \param map The IterableBoolMap. |
2511 | 2561 |
explicit TrueIt(const IterableBoolMap& map) |
2512 | 2562 |
: Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID), |
2513 | 2563 |
_map(&map) {} |
2514 | 2564 |
|
2515 | 2565 |
/// \brief Invalid constructor \& conversion. |
2516 | 2566 |
/// |
2517 | 2567 |
/// This constructor initializes the iterator to be invalid. |
2518 | 2568 |
/// \sa Invalid for more details. |
2519 | 2569 |
TrueIt(Invalid) : Parent(INVALID), _map(0) {} |
2520 | 2570 |
|
2521 | 2571 |
/// \brief Increment operator. |
2522 | 2572 |
/// |
2523 | 2573 |
/// Increment operator. |
2524 | 2574 |
TrueIt& operator++() { |
2525 | 2575 |
int pos = _map->position(*this); |
2526 | 2576 |
Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID); |
2527 | 2577 |
return *this; |
2528 | 2578 |
} |
2529 | 2579 |
|
2530 | 2580 |
private: |
2531 | 2581 |
const IterableBoolMap* _map; |
2532 | 2582 |
}; |
2533 | 2583 |
|
2534 | 2584 |
/// \brief Iterator for the keys mapped to \c false. |
2535 | 2585 |
/// |
2536 | 2586 |
/// Iterator for the keys mapped to \c false. It works |
2537 | 2587 |
/// like a graph item iterator, it can be converted to |
2538 | 2588 |
/// the key type of the map, incremented with \c ++ operator, and |
2539 | 2589 |
/// if the iterator leaves the last valid key, it will be equal to |
2540 | 2590 |
/// \c INVALID. |
2541 | 2591 |
class FalseIt : public Key { |
2542 | 2592 |
public: |
2543 | 2593 |
typedef Key Parent; |
2544 | 2594 |
|
2545 | 2595 |
/// \brief Creates an iterator. |
2546 | 2596 |
/// |
2547 | 2597 |
/// Creates an iterator. It iterates on the |
2548 | 2598 |
/// keys mapped to \c false. |
2549 | 2599 |
/// \param map The IterableBoolMap. |
2550 | 2600 |
explicit FalseIt(const IterableBoolMap& map) |
2551 | 2601 |
: Parent(map._sep < int(map._array.size()) ? |
2552 | 2602 |
map._array.back() : INVALID), _map(&map) {} |
2553 | 2603 |
|
2554 | 2604 |
/// \brief Invalid constructor \& conversion. |
2555 | 2605 |
/// |
2556 | 2606 |
/// This constructor initializes the iterator to be invalid. |
2557 | 2607 |
/// \sa Invalid for more details. |
2558 | 2608 |
FalseIt(Invalid) : Parent(INVALID), _map(0) {} |
2559 | 2609 |
|
2560 | 2610 |
/// \brief Increment operator. |
2561 | 2611 |
/// |
2562 | 2612 |
/// Increment operator. |
2563 | 2613 |
FalseIt& operator++() { |
2564 | 2614 |
int pos = _map->position(*this); |
2565 | 2615 |
Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID); |
2566 | 2616 |
return *this; |
2567 | 2617 |
} |
2568 | 2618 |
|
2569 | 2619 |
private: |
2570 | 2620 |
const IterableBoolMap* _map; |
2571 | 2621 |
}; |
2572 | 2622 |
|
2573 | 2623 |
/// \brief Iterator for the keys mapped to a given value. |
2574 | 2624 |
/// |
2575 | 2625 |
/// Iterator for the keys mapped to a given value. It works |
2576 | 2626 |
/// like a graph item iterator, it can be converted to |
2577 | 2627 |
/// the key type of the map, incremented with \c ++ operator, and |
2578 | 2628 |
/// if the iterator leaves the last valid key, it will be equal to |
2579 | 2629 |
/// \c INVALID. |
2580 | 2630 |
class ItemIt : public Key { |
2581 | 2631 |
public: |
2582 | 2632 |
typedef Key Parent; |
2583 | 2633 |
|
2584 | 2634 |
/// \brief Creates an iterator with a value. |
2585 | 2635 |
/// |
2586 | 2636 |
/// Creates an iterator with a value. It iterates on the |
2587 | 2637 |
/// keys mapped to the given value. |
2588 | 2638 |
/// \param map The IterableBoolMap. |
2589 | 2639 |
/// \param value The value. |
2590 | 2640 |
ItemIt(const IterableBoolMap& map, bool value) |
2591 | 2641 |
: Parent(value ? |
2592 | 2642 |
(map._sep > 0 ? |
2593 | 2643 |
map._array[map._sep - 1] : INVALID) : |
2594 | 2644 |
(map._sep < int(map._array.size()) ? |
2595 | 2645 |
map._array.back() : INVALID)), _map(&map) {} |
2596 | 2646 |
|
2597 | 2647 |
/// \brief Invalid constructor \& conversion. |
2598 | 2648 |
/// |
2599 | 2649 |
/// This constructor initializes the iterator to be invalid. |
2600 | 2650 |
/// \sa Invalid for more details. |
2601 | 2651 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
2602 | 2652 |
|
2603 | 2653 |
/// \brief Increment operator. |
2604 | 2654 |
/// |
2605 | 2655 |
/// Increment operator. |
2606 | 2656 |
ItemIt& operator++() { |
2607 | 2657 |
int pos = _map->position(*this); |
2608 | 2658 |
int _sep = pos >= _map->_sep ? _map->_sep : 0; |
2609 | 2659 |
Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID); |
2610 | 2660 |
return *this; |
2611 | 2661 |
} |
2612 | 2662 |
|
2613 | 2663 |
private: |
2614 | 2664 |
const IterableBoolMap* _map; |
2615 | 2665 |
}; |
2616 | 2666 |
|
2617 | 2667 |
protected: |
2618 | 2668 |
|
2619 | 2669 |
virtual void add(const Key& key) { |
2620 | 2670 |
Parent::add(key); |
2621 | 2671 |
Parent::set(key, _array.size()); |
2622 | 2672 |
_array.push_back(key); |
2623 | 2673 |
} |
2624 | 2674 |
|
2625 | 2675 |
virtual void add(const std::vector<Key>& keys) { |
2626 | 2676 |
Parent::add(keys); |
2627 | 2677 |
for (int i = 0; i < int(keys.size()); ++i) { |
2628 | 2678 |
Parent::set(keys[i], _array.size()); |
2629 | 2679 |
_array.push_back(keys[i]); |
2630 | 2680 |
} |
2631 | 2681 |
} |
2632 | 2682 |
|
2633 | 2683 |
virtual void erase(const Key& key) { |
2634 | 2684 |
int pos = position(key); |
2635 | 2685 |
if (pos < _sep) { |
2636 | 2686 |
--_sep; |
2637 | 2687 |
Parent::set(_array[_sep], pos); |
2638 | 2688 |
_array[pos] = _array[_sep]; |
2639 | 2689 |
Parent::set(_array.back(), _sep); |
2640 | 2690 |
_array[_sep] = _array.back(); |
2641 | 2691 |
_array.pop_back(); |
2642 | 2692 |
} else { |
2643 | 2693 |
Parent::set(_array.back(), pos); |
2644 | 2694 |
_array[pos] = _array.back(); |
2645 | 2695 |
_array.pop_back(); |
2646 | 2696 |
} |
2647 | 2697 |
Parent::erase(key); |
2648 | 2698 |
} |
2649 | 2699 |
|
2650 | 2700 |
virtual void erase(const std::vector<Key>& keys) { |
2651 | 2701 |
for (int i = 0; i < int(keys.size()); ++i) { |
2652 | 2702 |
int pos = position(keys[i]); |
2653 | 2703 |
if (pos < _sep) { |
2654 | 2704 |
--_sep; |
2655 | 2705 |
Parent::set(_array[_sep], pos); |
2656 | 2706 |
_array[pos] = _array[_sep]; |
2657 | 2707 |
Parent::set(_array.back(), _sep); |
2658 | 2708 |
_array[_sep] = _array.back(); |
2659 | 2709 |
_array.pop_back(); |
2660 | 2710 |
} else { |
2661 | 2711 |
Parent::set(_array.back(), pos); |
2662 | 2712 |
_array[pos] = _array.back(); |
2663 | 2713 |
_array.pop_back(); |
2664 | 2714 |
} |
2665 | 2715 |
} |
2666 | 2716 |
Parent::erase(keys); |
2667 | 2717 |
} |
2668 | 2718 |
|
2669 | 2719 |
virtual void build() { |
2670 | 2720 |
Parent::build(); |
2671 | 2721 |
typename Parent::Notifier* nf = Parent::notifier(); |
2672 | 2722 |
Key it; |
2673 | 2723 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
2674 | 2724 |
Parent::set(it, _array.size()); |
2675 | 2725 |
_array.push_back(it); |
2676 | 2726 |
} |
2677 | 2727 |
_sep = 0; |
2678 | 2728 |
} |
2679 | 2729 |
|
2680 | 2730 |
virtual void clear() { |
2681 | 2731 |
_array.clear(); |
2682 | 2732 |
_sep = 0; |
2683 | 2733 |
Parent::clear(); |
2684 | 2734 |
} |
2685 | 2735 |
|
2686 | 2736 |
}; |
2687 | 2737 |
|
2688 | 2738 |
|
2689 | 2739 |
namespace _maps_bits { |
2690 | 2740 |
template <typename Item> |
2691 | 2741 |
struct IterableIntMapNode { |
2692 | 2742 |
IterableIntMapNode() : value(-1) {} |
2693 | 2743 |
IterableIntMapNode(int _value) : value(_value) {} |
2694 | 2744 |
Item prev, next; |
2695 | 2745 |
int value; |
2696 | 2746 |
}; |
2697 | 2747 |
} |
2698 | 2748 |
|
2699 | 2749 |
/// \brief Dynamic iterable integer map. |
2700 | 2750 |
/// |
2701 | 2751 |
/// This class provides a special graph map type which can store an |
2702 | 2752 |
/// integer value for graph items (\c Node, \c Arc or \c Edge). |
2703 | 2753 |
/// For each non-negative value it is possible to iterate on the keys |
2704 | 2754 |
/// mapped to the value. |
2705 | 2755 |
/// |
2756 |
/// This map is intended to be used with small integer values, for which |
|
2757 |
/// it is efficient, and supports iteration only for non-negative values. |
|
2758 |
/// If you need large values and/or iteration for negative integers, |
|
2759 |
/// consider to use \ref IterableValueMap instead. |
|
2760 |
/// |
|
2706 | 2761 |
/// This type is a reference map, so it can be modified with the |
2707 | 2762 |
/// subscript operator. |
2708 | 2763 |
/// |
2709 | 2764 |
/// \note The size of the data structure depends on the largest |
2710 | 2765 |
/// value in the map. |
2711 | 2766 |
/// |
2712 | 2767 |
/// \tparam GR The graph type. |
2713 | 2768 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2714 | 2769 |
/// \c GR::Edge). |
2715 | 2770 |
/// |
2716 | 2771 |
/// \see IterableBoolMap, IterableValueMap |
2717 | 2772 |
/// \see CrossRefMap |
2718 | 2773 |
template <typename GR, typename K> |
2719 | 2774 |
class IterableIntMap |
2720 | 2775 |
: protected ItemSetTraits<GR, K>:: |
2721 | 2776 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type { |
2722 | 2777 |
public: |
2723 | 2778 |
typedef typename ItemSetTraits<GR, K>:: |
2724 | 2779 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent; |
2725 | 2780 |
|
2726 | 2781 |
/// The key type |
2727 | 2782 |
typedef K Key; |
2728 | 2783 |
/// The value type |
2729 | 2784 |
typedef int Value; |
2730 | 2785 |
/// The graph type |
2731 | 2786 |
typedef GR Graph; |
2732 | 2787 |
|
2733 | 2788 |
/// \brief Constructor of the map. |
2734 | 2789 |
/// |
2735 | 2790 |
/// Constructor of the map. It sets all values to -1. |
2736 | 2791 |
explicit IterableIntMap(const Graph& graph) |
2737 | 2792 |
: Parent(graph) {} |
2738 | 2793 |
|
2739 | 2794 |
/// \brief Constructor of the map with a given value. |
2740 | 2795 |
/// |
2741 | 2796 |
/// Constructor of the map with a given value. |
2742 | 2797 |
explicit IterableIntMap(const Graph& graph, int value) |
2743 | 2798 |
: Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) { |
2744 | 2799 |
if (value >= 0) { |
2745 | 2800 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
2746 | 2801 |
lace(it); |
2747 | 2802 |
} |
2748 | 2803 |
} |
2749 | 2804 |
} |
2750 | 2805 |
|
2751 | 2806 |
private: |
2752 | 2807 |
|
2753 | 2808 |
void unlace(const Key& key) { |
2754 | 2809 |
typename Parent::Value& node = Parent::operator[](key); |
2755 | 2810 |
if (node.value < 0) return; |
2756 | 2811 |
if (node.prev != INVALID) { |
2757 | 2812 |
Parent::operator[](node.prev).next = node.next; |
2758 | 2813 |
} else { |
2759 | 2814 |
_first[node.value] = node.next; |
2760 | 2815 |
} |
2761 | 2816 |
if (node.next != INVALID) { |
2762 | 2817 |
Parent::operator[](node.next).prev = node.prev; |
2763 | 2818 |
} |
2764 | 2819 |
while (!_first.empty() && _first.back() == INVALID) { |
2765 | 2820 |
_first.pop_back(); |
2766 | 2821 |
} |
2767 | 2822 |
} |
2768 | 2823 |
|
2769 | 2824 |
void lace(const Key& key) { |
2770 | 2825 |
typename Parent::Value& node = Parent::operator[](key); |
2771 | 2826 |
if (node.value < 0) return; |
2772 | 2827 |
if (node.value >= int(_first.size())) { |
2773 | 2828 |
_first.resize(node.value + 1, INVALID); |
2774 | 2829 |
} |
2775 | 2830 |
node.prev = INVALID; |
2776 | 2831 |
node.next = _first[node.value]; |
2777 | 2832 |
if (node.next != INVALID) { |
2778 | 2833 |
Parent::operator[](node.next).prev = key; |
2779 | 2834 |
} |
2780 | 2835 |
_first[node.value] = key; |
2781 | 2836 |
} |
2782 | 2837 |
|
2783 | 2838 |
public: |
2784 | 2839 |
|
2785 | 2840 |
/// Indicates that the map is reference map. |
2786 | 2841 |
typedef True ReferenceMapTag; |
2787 | 2842 |
|
2788 | 2843 |
/// \brief Reference to the value of the map. |
2789 | 2844 |
/// |
2790 | 2845 |
/// This class is similar to the \c int type. It can |
2791 | 2846 |
/// be converted to \c int and it has the same operators. |
2792 | 2847 |
class Reference { |
2793 | 2848 |
friend class IterableIntMap; |
2794 | 2849 |
private: |
2795 | 2850 |
Reference(IterableIntMap& map, const Key& key) |
2796 | 2851 |
: _key(key), _map(map) {} |
2797 | 2852 |
public: |
2798 | 2853 |
|
2799 | 2854 |
Reference& operator=(const Reference& value) { |
2800 | 2855 |
_map.set(_key, static_cast<const int&>(value)); |
2801 | 2856 |
return *this; |
2802 | 2857 |
} |
2803 | 2858 |
|
2804 | 2859 |
operator const int&() const { |
2805 | 2860 |
return static_cast<const IterableIntMap&>(_map)[_key]; |
2806 | 2861 |
} |
2807 | 2862 |
|
2808 | 2863 |
Reference& operator=(int value) { |
2809 | 2864 |
_map.set(_key, value); |
2810 | 2865 |
return *this; |
2811 | 2866 |
} |
2812 | 2867 |
Reference& operator++() { |
2813 | 2868 |
_map.set(_key, _map[_key] + 1); |
2814 | 2869 |
return *this; |
2815 | 2870 |
} |
2816 | 2871 |
int operator++(int) { |
2817 | 2872 |
int value = _map[_key]; |
2818 | 2873 |
_map.set(_key, value + 1); |
2819 | 2874 |
return value; |
2820 | 2875 |
} |
2821 | 2876 |
Reference& operator--() { |
2822 | 2877 |
_map.set(_key, _map[_key] - 1); |
2823 | 2878 |
return *this; |
2824 | 2879 |
} |
2825 | 2880 |
int operator--(int) { |
2826 | 2881 |
int value = _map[_key]; |
2827 | 2882 |
_map.set(_key, value - 1); |
2828 | 2883 |
return value; |
2829 | 2884 |
} |
2830 | 2885 |
Reference& operator+=(int value) { |
2831 | 2886 |
_map.set(_key, _map[_key] + value); |
2832 | 2887 |
return *this; |
2833 | 2888 |
} |
2834 | 2889 |
Reference& operator-=(int value) { |
2835 | 2890 |
_map.set(_key, _map[_key] - value); |
2836 | 2891 |
return *this; |
2837 | 2892 |
} |
2838 | 2893 |
Reference& operator*=(int value) { |
2839 | 2894 |
_map.set(_key, _map[_key] * value); |
2840 | 2895 |
return *this; |
2841 | 2896 |
} |
2842 | 2897 |
Reference& operator/=(int value) { |
2843 | 2898 |
_map.set(_key, _map[_key] / value); |
2844 | 2899 |
return *this; |
2845 | 2900 |
} |
2846 | 2901 |
Reference& operator%=(int value) { |
2847 | 2902 |
_map.set(_key, _map[_key] % value); |
2848 | 2903 |
return *this; |
2849 | 2904 |
} |
2850 | 2905 |
Reference& operator&=(int value) { |
2851 | 2906 |
_map.set(_key, _map[_key] & value); |
2852 | 2907 |
return *this; |
2853 | 2908 |
} |
2854 | 2909 |
Reference& operator|=(int value) { |
2855 | 2910 |
_map.set(_key, _map[_key] | value); |
2856 | 2911 |
return *this; |
2857 | 2912 |
} |
2858 | 2913 |
Reference& operator^=(int value) { |
2859 | 2914 |
_map.set(_key, _map[_key] ^ value); |
2860 | 2915 |
return *this; |
2861 | 2916 |
} |
2862 | 2917 |
Reference& operator<<=(int value) { |
2863 | 2918 |
_map.set(_key, _map[_key] << value); |
2864 | 2919 |
return *this; |
2865 | 2920 |
} |
2866 | 2921 |
Reference& operator>>=(int value) { |
2867 | 2922 |
_map.set(_key, _map[_key] >> value); |
2868 | 2923 |
return *this; |
2869 | 2924 |
} |
2870 | 2925 |
|
2871 | 2926 |
private: |
2872 | 2927 |
Key _key; |
2873 | 2928 |
IterableIntMap& _map; |
2874 | 2929 |
}; |
2875 | 2930 |
|
2876 | 2931 |
/// The const reference type. |
2877 | 2932 |
typedef const Value& ConstReference; |
2878 | 2933 |
|
2879 | 2934 |
/// \brief Gives back the maximal value plus one. |
2880 | 2935 |
/// |
2881 | 2936 |
/// Gives back the maximal value plus one. |
2882 | 2937 |
int size() const { |
2883 | 2938 |
return _first.size(); |
2884 | 2939 |
} |
2885 | 2940 |
|
2886 | 2941 |
/// \brief Set operation of the map. |
2887 | 2942 |
/// |
2888 | 2943 |
/// Set operation of the map. |
2889 | 2944 |
void set(const Key& key, const Value& value) { |
2890 | 2945 |
unlace(key); |
2891 | 2946 |
Parent::operator[](key).value = value; |
2892 | 2947 |
lace(key); |
2893 | 2948 |
} |
2894 | 2949 |
|
2895 | 2950 |
/// \brief Const subscript operator of the map. |
2896 | 2951 |
/// |
2897 | 2952 |
/// Const subscript operator of the map. |
2898 | 2953 |
const Value& operator[](const Key& key) const { |
2899 | 2954 |
return Parent::operator[](key).value; |
2900 | 2955 |
} |
2901 | 2956 |
|
2902 | 2957 |
/// \brief Subscript operator of the map. |
2903 | 2958 |
/// |
2904 | 2959 |
/// Subscript operator of the map. |
2905 | 2960 |
Reference operator[](const Key& key) { |
2906 | 2961 |
return Reference(*this, key); |
2907 | 2962 |
} |
2908 | 2963 |
|
2909 | 2964 |
/// \brief Iterator for the keys with the same value. |
2910 | 2965 |
/// |
2911 | 2966 |
/// Iterator for the keys with the same value. It works |
2912 | 2967 |
/// like a graph item iterator, it can be converted to |
2913 | 2968 |
/// the item type of the map, incremented with \c ++ operator, and |
2914 | 2969 |
/// if the iterator leaves the last valid item, it will be equal to |
2915 | 2970 |
/// \c INVALID. |
2916 | 2971 |
class ItemIt : public Key { |
2917 | 2972 |
public: |
2918 | 2973 |
typedef Key Parent; |
2919 | 2974 |
|
2920 | 2975 |
/// \brief Invalid constructor \& conversion. |
2921 | 2976 |
/// |
2922 | 2977 |
/// This constructor initializes the iterator to be invalid. |
2923 | 2978 |
/// \sa Invalid for more details. |
2924 | 2979 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
2925 | 2980 |
|
2926 | 2981 |
/// \brief Creates an iterator with a value. |
2927 | 2982 |
/// |
2928 | 2983 |
/// Creates an iterator with a value. It iterates on the |
2929 | 2984 |
/// keys mapped to the given value. |
2930 | 2985 |
/// \param map The IterableIntMap. |
2931 | 2986 |
/// \param value The value. |
2932 | 2987 |
ItemIt(const IterableIntMap& map, int value) : _map(&map) { |
2933 | 2988 |
if (value < 0 || value >= int(_map->_first.size())) { |
2934 | 2989 |
Parent::operator=(INVALID); |
2935 | 2990 |
} else { |
2936 | 2991 |
Parent::operator=(_map->_first[value]); |
2937 | 2992 |
} |
2938 | 2993 |
} |
2939 | 2994 |
|
2940 | 2995 |
/// \brief Increment operator. |
2941 | 2996 |
/// |
2942 | 2997 |
/// Increment operator. |
2943 | 2998 |
ItemIt& operator++() { |
2944 | 2999 |
Parent::operator=(_map->IterableIntMap::Parent:: |
2945 | 3000 |
operator[](static_cast<Parent&>(*this)).next); |
2946 | 3001 |
return *this; |
2947 | 3002 |
} |
2948 | 3003 |
|
2949 | 3004 |
private: |
2950 | 3005 |
const IterableIntMap* _map; |
2951 | 3006 |
}; |
2952 | 3007 |
|
2953 | 3008 |
protected: |
2954 | 3009 |
|
2955 | 3010 |
virtual void erase(const Key& key) { |
2956 | 3011 |
unlace(key); |
2957 | 3012 |
Parent::erase(key); |
2958 | 3013 |
} |
2959 | 3014 |
|
2960 | 3015 |
virtual void erase(const std::vector<Key>& keys) { |
2961 | 3016 |
for (int i = 0; i < int(keys.size()); ++i) { |
2962 | 3017 |
unlace(keys[i]); |
2963 | 3018 |
} |
2964 | 3019 |
Parent::erase(keys); |
2965 | 3020 |
} |
2966 | 3021 |
|
2967 | 3022 |
virtual void clear() { |
2968 | 3023 |
_first.clear(); |
2969 | 3024 |
Parent::clear(); |
2970 | 3025 |
} |
2971 | 3026 |
|
2972 | 3027 |
private: |
2973 | 3028 |
std::vector<Key> _first; |
2974 | 3029 |
}; |
2975 | 3030 |
|
2976 | 3031 |
namespace _maps_bits { |
2977 | 3032 |
template <typename Item, typename Value> |
2978 | 3033 |
struct IterableValueMapNode { |
2979 | 3034 |
IterableValueMapNode(Value _value = Value()) : value(_value) {} |
2980 | 3035 |
Item prev, next; |
2981 | 3036 |
Value value; |
2982 | 3037 |
}; |
2983 | 3038 |
} |
2984 | 3039 |
|
2985 | 3040 |
/// \brief Dynamic iterable map for comparable values. |
2986 | 3041 |
/// |
2987 |
/// This class provides a special graph map type which can store |
|
3042 |
/// This class provides a special graph map type which can store a |
|
2988 | 3043 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge). |
2989 | 3044 |
/// For each value it is possible to iterate on the keys mapped to |
2990 |
/// the value |
|
3045 |
/// the value (\c ItemIt), and the values of the map can be accessed |
|
3046 |
/// with an STL compatible forward iterator (\c ValueIt). |
|
3047 |
/// The map stores a linked list for each value, which contains |
|
3048 |
/// the items mapped to the value, and the used values are stored |
|
3049 |
/// in balanced binary tree (\c std::map). |
|
2991 | 3050 |
/// |
2992 |
/// The map stores for each value a linked list with |
|
2993 |
/// the items which mapped to the value, and the values are stored |
|
2994 |
/// in balanced binary tree. The values of the map can be accessed |
|
2995 |
/// with stl compatible forward iterator. |
|
3051 |
/// \ref IterableBoolMap and \ref IterableIntMap are similar classes |
|
3052 |
/// specialized for \c bool and \c int values, respectively. |
|
2996 | 3053 |
/// |
2997 | 3054 |
/// This type is not reference map, so it cannot be modified with |
2998 | 3055 |
/// the subscript operator. |
2999 | 3056 |
/// |
3000 | 3057 |
/// \tparam GR The graph type. |
3001 | 3058 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
3002 | 3059 |
/// \c GR::Edge). |
3003 | 3060 |
/// \tparam V The value type of the map. It can be any comparable |
3004 | 3061 |
/// value type. |
3005 | 3062 |
/// |
3006 | 3063 |
/// \see IterableBoolMap, IterableIntMap |
3007 | 3064 |
/// \see CrossRefMap |
3008 | 3065 |
template <typename GR, typename K, typename V> |
3009 | 3066 |
class IterableValueMap |
3010 | 3067 |
: protected ItemSetTraits<GR, K>:: |
3011 | 3068 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type { |
3012 | 3069 |
public: |
3013 | 3070 |
typedef typename ItemSetTraits<GR, K>:: |
3014 | 3071 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent; |
3015 | 3072 |
|
3016 | 3073 |
/// The key type |
3017 | 3074 |
typedef K Key; |
3018 | 3075 |
/// The value type |
3019 | 3076 |
typedef V Value; |
3020 | 3077 |
/// The graph type |
3021 | 3078 |
typedef GR Graph; |
3022 | 3079 |
|
3023 | 3080 |
public: |
3024 | 3081 |
|
3025 | 3082 |
/// \brief Constructor of the map with a given value. |
3026 | 3083 |
/// |
3027 | 3084 |
/// Constructor of the map with a given value. |
3028 | 3085 |
explicit IterableValueMap(const Graph& graph, |
3029 | 3086 |
const Value& value = Value()) |
3030 | 3087 |
: Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) { |
3031 | 3088 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
3032 | 3089 |
lace(it); |
3033 | 3090 |
} |
3034 | 3091 |
} |
3035 | 3092 |
|
3036 | 3093 |
protected: |
3037 | 3094 |
|
3038 | 3095 |
void unlace(const Key& key) { |
3039 | 3096 |
typename Parent::Value& node = Parent::operator[](key); |
3040 | 3097 |
if (node.prev != INVALID) { |
3041 | 3098 |
Parent::operator[](node.prev).next = node.next; |
3042 | 3099 |
} else { |
3043 | 3100 |
if (node.next != INVALID) { |
3044 | 3101 |
_first[node.value] = node.next; |
3045 | 3102 |
} else { |
3046 | 3103 |
_first.erase(node.value); |
3047 | 3104 |
} |
3048 | 3105 |
} |
3049 | 3106 |
if (node.next != INVALID) { |
3050 | 3107 |
Parent::operator[](node.next).prev = node.prev; |
3051 | 3108 |
} |
3052 | 3109 |
} |
3053 | 3110 |
|
3054 | 3111 |
void lace(const Key& key) { |
3055 | 3112 |
typename Parent::Value& node = Parent::operator[](key); |
3056 | 3113 |
typename std::map<Value, Key>::iterator it = _first.find(node.value); |
3057 | 3114 |
if (it == _first.end()) { |
3058 | 3115 |
node.prev = node.next = INVALID; |
3059 | 3116 |
_first.insert(std::make_pair(node.value, key)); |
3060 | 3117 |
} else { |
3061 | 3118 |
node.prev = INVALID; |
3062 | 3119 |
node.next = it->second; |
3063 | 3120 |
if (node.next != INVALID) { |
3064 | 3121 |
Parent::operator[](node.next).prev = key; |
3065 | 3122 |
} |
3066 | 3123 |
it->second = key; |
3067 | 3124 |
} |
3068 | 3125 |
} |
3069 | 3126 |
|
3070 | 3127 |
public: |
3071 | 3128 |
|
3072 | 3129 |
/// \brief Forward iterator for values. |
3073 | 3130 |
/// |
3074 |
/// This iterator is an |
|
3131 |
/// This iterator is an STL compatible forward |
|
3075 | 3132 |
/// iterator on the values of the map. The values can |
3076 | 3133 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
3077 |
class |
|
3134 |
class ValueIt |
|
3078 | 3135 |
: public std::iterator<std::forward_iterator_tag, Value> { |
3079 | 3136 |
friend class IterableValueMap; |
3080 | 3137 |
private: |
3081 |
|
|
3138 |
ValueIt(typename std::map<Value, Key>::const_iterator _it) |
|
3082 | 3139 |
: it(_it) {} |
3083 | 3140 |
public: |
3084 | 3141 |
|
3085 |
ValueIterator() {} |
|
3086 |
|
|
3087 |
ValueIterator& operator++() { ++it; return *this; } |
|
3088 |
ValueIterator operator++(int) { |
|
3089 |
|
|
3142 |
/// Constructor |
|
3143 |
ValueIt() {} |
|
3144 |
|
|
3145 |
/// \e |
|
3146 |
ValueIt& operator++() { ++it; return *this; } |
|
3147 |
/// \e |
|
3148 |
ValueIt operator++(int) { |
|
3149 |
ValueIt tmp(*this); |
|
3090 | 3150 |
operator++(); |
3091 | 3151 |
return tmp; |
3092 | 3152 |
} |
3093 | 3153 |
|
3154 |
/// \e |
|
3094 | 3155 |
const Value& operator*() const { return it->first; } |
3156 |
/// \e |
|
3095 | 3157 |
const Value* operator->() const { return &(it->first); } |
3096 | 3158 |
|
3097 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
|
3098 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|
3159 |
/// \e |
|
3160 |
bool operator==(ValueIt jt) const { return it == jt.it; } |
|
3161 |
/// \e |
|
3162 |
bool operator!=(ValueIt jt) const { return it != jt.it; } |
|
3099 | 3163 |
|
3100 | 3164 |
private: |
3101 | 3165 |
typename std::map<Value, Key>::const_iterator it; |
3102 | 3166 |
}; |
3103 | 3167 |
|
3104 | 3168 |
/// \brief Returns an iterator to the first value. |
3105 | 3169 |
/// |
3106 |
/// Returns an |
|
3170 |
/// Returns an STL compatible iterator to the |
|
3107 | 3171 |
/// first value of the map. The values of the |
3108 | 3172 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
3109 | 3173 |
/// range. |
3110 |
ValueIterator beginValue() const { |
|
3111 |
return ValueIterator(_first.begin()); |
|
3174 |
ValueIt beginValue() const { |
|
3175 |
return ValueIt(_first.begin()); |
|
3112 | 3176 |
} |
3113 | 3177 |
|
3114 | 3178 |
/// \brief Returns an iterator after the last value. |
3115 | 3179 |
/// |
3116 |
/// Returns an |
|
3180 |
/// Returns an STL compatible iterator after the |
|
3117 | 3181 |
/// last value of the map. The values of the |
3118 | 3182 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
3119 | 3183 |
/// range. |
3120 |
ValueIterator endValue() const { |
|
3121 |
return ValueIterator(_first.end()); |
|
3184 |
ValueIt endValue() const { |
|
3185 |
return ValueIt(_first.end()); |
|
3122 | 3186 |
} |
3123 | 3187 |
|
3124 | 3188 |
/// \brief Set operation of the map. |
3125 | 3189 |
/// |
3126 | 3190 |
/// Set operation of the map. |
3127 | 3191 |
void set(const Key& key, const Value& value) { |
3128 | 3192 |
unlace(key); |
3129 | 3193 |
Parent::operator[](key).value = value; |
3130 | 3194 |
lace(key); |
3131 | 3195 |
} |
3132 | 3196 |
|
3133 | 3197 |
/// \brief Const subscript operator of the map. |
3134 | 3198 |
/// |
3135 | 3199 |
/// Const subscript operator of the map. |
3136 | 3200 |
const Value& operator[](const Key& key) const { |
3137 | 3201 |
return Parent::operator[](key).value; |
3138 | 3202 |
} |
3139 | 3203 |
|
3140 | 3204 |
/// \brief Iterator for the keys with the same value. |
3141 | 3205 |
/// |
3142 | 3206 |
/// Iterator for the keys with the same value. It works |
3143 | 3207 |
/// like a graph item iterator, it can be converted to |
3144 | 3208 |
/// the item type of the map, incremented with \c ++ operator, and |
3145 | 3209 |
/// if the iterator leaves the last valid item, it will be equal to |
3146 | 3210 |
/// \c INVALID. |
3147 | 3211 |
class ItemIt : public Key { |
3148 | 3212 |
public: |
3149 | 3213 |
typedef Key Parent; |
3150 | 3214 |
|
3151 | 3215 |
/// \brief Invalid constructor \& conversion. |
3152 | 3216 |
/// |
3153 | 3217 |
/// This constructor initializes the iterator to be invalid. |
3154 | 3218 |
/// \sa Invalid for more details. |
3155 | 3219 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
3156 | 3220 |
|
3157 | 3221 |
/// \brief Creates an iterator with a value. |
3158 | 3222 |
/// |
3159 | 3223 |
/// Creates an iterator with a value. It iterates on the |
3160 | 3224 |
/// keys which have the given value. |
3161 | 3225 |
/// \param map The IterableValueMap |
3162 | 3226 |
/// \param value The value |
3163 | 3227 |
ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) { |
3164 | 3228 |
typename std::map<Value, Key>::const_iterator it = |
3165 | 3229 |
map._first.find(value); |
3166 | 3230 |
if (it == map._first.end()) { |
3167 | 3231 |
Parent::operator=(INVALID); |
3168 | 3232 |
} else { |
3169 | 3233 |
Parent::operator=(it->second); |
3170 | 3234 |
} |
3171 | 3235 |
} |
3172 | 3236 |
|
3173 | 3237 |
/// \brief Increment operator. |
3174 | 3238 |
/// |
3175 | 3239 |
/// Increment Operator. |
3176 | 3240 |
ItemIt& operator++() { |
3177 | 3241 |
Parent::operator=(_map->IterableValueMap::Parent:: |
3178 | 3242 |
operator[](static_cast<Parent&>(*this)).next); |
3179 | 3243 |
return *this; |
3180 | 3244 |
} |
3181 | 3245 |
|
3182 | 3246 |
|
3183 | 3247 |
private: |
3184 | 3248 |
const IterableValueMap* _map; |
3185 | 3249 |
}; |
3186 | 3250 |
|
3187 | 3251 |
protected: |
3188 | 3252 |
|
3189 | 3253 |
virtual void add(const Key& key) { |
3190 | 3254 |
Parent::add(key); |
3191 | 3255 |
unlace(key); |
3192 | 3256 |
} |
3193 | 3257 |
|
3194 | 3258 |
virtual void add(const std::vector<Key>& keys) { |
3195 | 3259 |
Parent::add(keys); |
3196 | 3260 |
for (int i = 0; i < int(keys.size()); ++i) { |
3197 | 3261 |
lace(keys[i]); |
3198 | 3262 |
} |
3199 | 3263 |
} |
3200 | 3264 |
|
3201 | 3265 |
virtual void erase(const Key& key) { |
3202 | 3266 |
unlace(key); |
3203 | 3267 |
Parent::erase(key); |
3204 | 3268 |
} |
3205 | 3269 |
|
3206 | 3270 |
virtual void erase(const std::vector<Key>& keys) { |
3207 | 3271 |
for (int i = 0; i < int(keys.size()); ++i) { |
3208 | 3272 |
unlace(keys[i]); |
3209 | 3273 |
} |
3210 | 3274 |
Parent::erase(keys); |
3211 | 3275 |
} |
3212 | 3276 |
|
3213 | 3277 |
virtual void build() { |
3214 | 3278 |
Parent::build(); |
3215 | 3279 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
3216 | 3280 |
lace(it); |
3217 | 3281 |
} |
3218 | 3282 |
} |
3219 | 3283 |
|
3220 | 3284 |
virtual void clear() { |
3221 | 3285 |
_first.clear(); |
3222 | 3286 |
Parent::clear(); |
3223 | 3287 |
} |
3224 | 3288 |
|
3225 | 3289 |
private: |
3226 | 3290 |
std::map<Value, Key> _first; |
3227 | 3291 |
}; |
3228 | 3292 |
|
3229 | 3293 |
/// \brief Map of the source nodes of arcs in a digraph. |
3230 | 3294 |
/// |
3231 | 3295 |
/// SourceMap provides access for the source node of each arc in a digraph, |
3232 | 3296 |
/// which is returned by the \c source() function of the digraph. |
3233 | 3297 |
/// \tparam GR The digraph type. |
3234 | 3298 |
/// \see TargetMap |
3235 | 3299 |
template <typename GR> |
3236 | 3300 |
class SourceMap { |
3237 | 3301 |
public: |
3238 | 3302 |
|
3239 |
///\ |
|
3303 |
/// The key type (the \c Arc type of the digraph). |
|
3240 | 3304 |
typedef typename GR::Arc Key; |
3241 |
///\ |
|
3305 |
/// The value type (the \c Node type of the digraph). |
|
3242 | 3306 |
typedef typename GR::Node Value; |
3243 | 3307 |
|
3244 | 3308 |
/// \brief Constructor |
3245 | 3309 |
/// |
3246 | 3310 |
/// Constructor. |
3247 | 3311 |
/// \param digraph The digraph that the map belongs to. |
3248 | 3312 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {} |
3249 | 3313 |
|
3250 | 3314 |
/// \brief Returns the source node of the given arc. |
3251 | 3315 |
/// |
3252 | 3316 |
/// Returns the source node of the given arc. |
3253 | 3317 |
Value operator[](const Key& arc) const { |
3254 | 3318 |
return _graph.source(arc); |
3255 | 3319 |
} |
3256 | 3320 |
|
3257 | 3321 |
private: |
3258 | 3322 |
const GR& _graph; |
3259 | 3323 |
}; |
3260 | 3324 |
|
3261 | 3325 |
/// \brief Returns a \c SourceMap class. |
3262 | 3326 |
/// |
3263 | 3327 |
/// This function just returns an \c SourceMap class. |
3264 | 3328 |
/// \relates SourceMap |
3265 | 3329 |
template <typename GR> |
3266 | 3330 |
inline SourceMap<GR> sourceMap(const GR& graph) { |
3267 | 3331 |
return SourceMap<GR>(graph); |
3268 | 3332 |
} |
3269 | 3333 |
|
3270 | 3334 |
/// \brief Map of the target nodes of arcs in a digraph. |
3271 | 3335 |
/// |
3272 | 3336 |
/// TargetMap provides access for the target node of each arc in a digraph, |
3273 | 3337 |
/// which is returned by the \c target() function of the digraph. |
3274 | 3338 |
/// \tparam GR The digraph type. |
3275 | 3339 |
/// \see SourceMap |
3276 | 3340 |
template <typename GR> |
3277 | 3341 |
class TargetMap { |
3278 | 3342 |
public: |
3279 | 3343 |
|
3280 |
///\ |
|
3344 |
/// The key type (the \c Arc type of the digraph). |
|
3281 | 3345 |
typedef typename GR::Arc Key; |
3282 |
///\ |
|
3346 |
/// The value type (the \c Node type of the digraph). |
|
3283 | 3347 |
typedef typename GR::Node Value; |
3284 | 3348 |
|
3285 | 3349 |
/// \brief Constructor |
3286 | 3350 |
/// |
3287 | 3351 |
/// Constructor. |
3288 | 3352 |
/// \param digraph The digraph that the map belongs to. |
3289 | 3353 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {} |
3290 | 3354 |
|
3291 | 3355 |
/// \brief Returns the target node of the given arc. |
3292 | 3356 |
/// |
3293 | 3357 |
/// Returns the target node of the given arc. |
3294 | 3358 |
Value operator[](const Key& e) const { |
3295 | 3359 |
return _graph.target(e); |
3296 | 3360 |
} |
3297 | 3361 |
|
3298 | 3362 |
private: |
3299 | 3363 |
const GR& _graph; |
3300 | 3364 |
}; |
3301 | 3365 |
|
3302 | 3366 |
/// \brief Returns a \c TargetMap class. |
3303 | 3367 |
/// |
3304 | 3368 |
/// This function just returns a \c TargetMap class. |
3305 | 3369 |
/// \relates TargetMap |
3306 | 3370 |
template <typename GR> |
3307 | 3371 |
inline TargetMap<GR> targetMap(const GR& graph) { |
3308 | 3372 |
return TargetMap<GR>(graph); |
3309 | 3373 |
} |
3310 | 3374 |
|
3311 | 3375 |
/// \brief Map of the "forward" directed arc view of edges in a graph. |
3312 | 3376 |
/// |
3313 | 3377 |
/// ForwardMap provides access for the "forward" directed arc view of |
3314 | 3378 |
/// each edge in a graph, which is returned by the \c direct() function |
3315 | 3379 |
/// of the graph with \c true parameter. |
3316 | 3380 |
/// \tparam GR The graph type. |
3317 | 3381 |
/// \see BackwardMap |
3318 | 3382 |
template <typename GR> |
3319 | 3383 |
class ForwardMap { |
3320 | 3384 |
public: |
3321 | 3385 |
|
3386 |
/// The key type (the \c Edge type of the digraph). |
|
3387 |
typedef typename GR::Edge Key; |
|
3388 |
/// The value type (the \c Arc type of the digraph). |
|
3322 | 3389 |
typedef typename GR::Arc Value; |
3323 |
typedef typename GR::Edge Key; |
|
3324 | 3390 |
|
3325 | 3391 |
/// \brief Constructor |
3326 | 3392 |
/// |
3327 | 3393 |
/// Constructor. |
3328 | 3394 |
/// \param graph The graph that the map belongs to. |
3329 | 3395 |
explicit ForwardMap(const GR& graph) : _graph(graph) {} |
3330 | 3396 |
|
3331 | 3397 |
/// \brief Returns the "forward" directed arc view of the given edge. |
3332 | 3398 |
/// |
3333 | 3399 |
/// Returns the "forward" directed arc view of the given edge. |
3334 | 3400 |
Value operator[](const Key& key) const { |
3335 | 3401 |
return _graph.direct(key, true); |
3336 | 3402 |
} |
3337 | 3403 |
|
3338 | 3404 |
private: |
3339 | 3405 |
const GR& _graph; |
3340 | 3406 |
}; |
3341 | 3407 |
|
3342 | 3408 |
/// \brief Returns a \c ForwardMap class. |
3343 | 3409 |
/// |
3344 | 3410 |
/// This function just returns an \c ForwardMap class. |
3345 | 3411 |
/// \relates ForwardMap |
3346 | 3412 |
template <typename GR> |
3347 | 3413 |
inline ForwardMap<GR> forwardMap(const GR& graph) { |
3348 | 3414 |
return ForwardMap<GR>(graph); |
3349 | 3415 |
} |
3350 | 3416 |
|
3351 | 3417 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
3352 | 3418 |
/// |
3353 | 3419 |
/// BackwardMap provides access for the "backward" directed arc view of |
3354 | 3420 |
/// each edge in a graph, which is returned by the \c direct() function |
3355 | 3421 |
/// of the graph with \c false parameter. |
3356 | 3422 |
/// \tparam GR The graph type. |
3357 | 3423 |
/// \see ForwardMap |
3358 | 3424 |
template <typename GR> |
3359 | 3425 |
class BackwardMap { |
3360 | 3426 |
public: |
3361 | 3427 |
|
3428 |
/// The key type (the \c Edge type of the digraph). |
|
3429 |
typedef typename GR::Edge Key; |
|
3430 |
/// The value type (the \c Arc type of the digraph). |
|
3362 | 3431 |
typedef typename GR::Arc Value; |
3363 |
typedef typename GR::Edge Key; |
|
3364 | 3432 |
|
3365 | 3433 |
/// \brief Constructor |
3366 | 3434 |
/// |
3367 | 3435 |
/// Constructor. |
3368 | 3436 |
/// \param graph The graph that the map belongs to. |
3369 | 3437 |
explicit BackwardMap(const GR& graph) : _graph(graph) {} |
3370 | 3438 |
|
3371 | 3439 |
/// \brief Returns the "backward" directed arc view of the given edge. |
3372 | 3440 |
/// |
3373 | 3441 |
/// Returns the "backward" directed arc view of the given edge. |
3374 | 3442 |
Value operator[](const Key& key) const { |
3375 | 3443 |
return _graph.direct(key, false); |
3376 | 3444 |
} |
3377 | 3445 |
|
3378 | 3446 |
private: |
3379 | 3447 |
const GR& _graph; |
3380 | 3448 |
}; |
3381 | 3449 |
|
3382 | 3450 |
/// \brief Returns a \c BackwardMap class |
3383 | 3451 |
|
3384 | 3452 |
/// This function just returns a \c BackwardMap class. |
3385 | 3453 |
/// \relates BackwardMap |
3386 | 3454 |
template <typename GR> |
3387 | 3455 |
inline BackwardMap<GR> backwardMap(const GR& graph) { |
3388 | 3456 |
return BackwardMap<GR>(graph); |
3389 | 3457 |
} |
3390 | 3458 |
|
3391 | 3459 |
/// \brief Map of the in-degrees of nodes in a digraph. |
3392 | 3460 |
/// |
3393 | 3461 |
/// This map returns the in-degree of a node. Once it is constructed, |
3394 | 3462 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
3395 | 3463 |
/// in constant time. On the other hand, the values are updated automatically |
3396 | 3464 |
/// whenever the digraph changes. |
3397 | 3465 |
/// |
3398 | 3466 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
3399 | 3467 |
/// may provide alternative ways to modify the digraph. |
3400 | 3468 |
/// The correct behavior of InDegMap is not guarantied if these additional |
3401 | 3469 |
/// features are used. For example the functions |
3402 | 3470 |
/// \ref ListDigraph::changeSource() "changeSource()", |
3403 | 3471 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
3404 | 3472 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
3405 | 3473 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
3406 | 3474 |
/// |
3407 | 3475 |
/// \sa OutDegMap |
3408 | 3476 |
template <typename GR> |
3409 | 3477 |
class InDegMap |
3410 | 3478 |
: protected ItemSetTraits<GR, typename GR::Arc> |
3411 | 3479 |
::ItemNotifier::ObserverBase { |
3412 | 3480 |
|
3413 | 3481 |
public: |
3414 | 3482 |
|
3415 | 3483 |
/// The graph type of InDegMap |
3416 | 3484 |
typedef GR Graph; |
3417 | 3485 |
typedef GR Digraph; |
3418 | 3486 |
/// The key type |
3419 | 3487 |
typedef typename Digraph::Node Key; |
3420 | 3488 |
/// The value type |
3421 | 3489 |
typedef int Value; |
3422 | 3490 |
|
3423 | 3491 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
3424 | 3492 |
::ItemNotifier::ObserverBase Parent; |
3425 | 3493 |
|
3426 | 3494 |
private: |
3427 | 3495 |
|
3428 | 3496 |
class AutoNodeMap |
3429 | 3497 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
3430 | 3498 |
public: |
3431 | 3499 |
|
3432 | 3500 |
typedef typename ItemSetTraits<Digraph, Key>:: |
3433 | 3501 |
template Map<int>::Type Parent; |
3434 | 3502 |
|
3435 | 3503 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
3436 | 3504 |
|
3437 | 3505 |
virtual void add(const Key& key) { |
3438 | 3506 |
Parent::add(key); |
3439 | 3507 |
Parent::set(key, 0); |
3440 | 3508 |
} |
3441 | 3509 |
|
3442 | 3510 |
virtual void add(const std::vector<Key>& keys) { |
3443 | 3511 |
Parent::add(keys); |
3444 | 3512 |
for (int i = 0; i < int(keys.size()); ++i) { |
3445 | 3513 |
Parent::set(keys[i], 0); |
3446 | 3514 |
} |
3447 | 3515 |
} |
3448 | 3516 |
|
3449 | 3517 |
virtual void build() { |
3450 | 3518 |
Parent::build(); |
3451 | 3519 |
Key it; |
3452 | 3520 |
typename Parent::Notifier* nf = Parent::notifier(); |
3453 | 3521 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
3454 | 3522 |
Parent::set(it, 0); |
3455 | 3523 |
} |
3456 | 3524 |
} |
3457 | 3525 |
}; |
3458 | 3526 |
|
3459 | 3527 |
public: |
3460 | 3528 |
|
3461 | 3529 |
/// \brief Constructor. |
3462 | 3530 |
/// |
3463 | 3531 |
/// Constructor for creating an in-degree map. |
3464 | 3532 |
explicit InDegMap(const Digraph& graph) |
3465 | 3533 |
: _digraph(graph), _deg(graph) { |
3466 | 3534 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
3467 | 3535 |
|
3468 | 3536 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3469 | 3537 |
_deg[it] = countInArcs(_digraph, it); |
3470 | 3538 |
} |
3471 | 3539 |
} |
3472 | 3540 |
|
3473 | 3541 |
/// \brief Gives back the in-degree of a Node. |
3474 | 3542 |
/// |
3475 | 3543 |
/// Gives back the in-degree of a Node. |
3476 | 3544 |
int operator[](const Key& key) const { |
3477 | 3545 |
return _deg[key]; |
3478 | 3546 |
} |
3479 | 3547 |
|
3480 | 3548 |
protected: |
3481 | 3549 |
|
3482 | 3550 |
typedef typename Digraph::Arc Arc; |
3483 | 3551 |
|
3484 | 3552 |
virtual void add(const Arc& arc) { |
3485 | 3553 |
++_deg[_digraph.target(arc)]; |
3486 | 3554 |
} |
3487 | 3555 |
|
3488 | 3556 |
virtual void add(const std::vector<Arc>& arcs) { |
3489 | 3557 |
for (int i = 0; i < int(arcs.size()); ++i) { |
3490 | 3558 |
++_deg[_digraph.target(arcs[i])]; |
3491 | 3559 |
} |
3492 | 3560 |
} |
3493 | 3561 |
|
3494 | 3562 |
virtual void erase(const Arc& arc) { |
3495 | 3563 |
--_deg[_digraph.target(arc)]; |
3496 | 3564 |
} |
3497 | 3565 |
|
3498 | 3566 |
virtual void erase(const std::vector<Arc>& arcs) { |
3499 | 3567 |
for (int i = 0; i < int(arcs.size()); ++i) { |
3500 | 3568 |
--_deg[_digraph.target(arcs[i])]; |
3501 | 3569 |
} |
3502 | 3570 |
} |
3503 | 3571 |
|
3504 | 3572 |
virtual void build() { |
3505 | 3573 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3506 | 3574 |
_deg[it] = countInArcs(_digraph, it); |
3507 | 3575 |
} |
3508 | 3576 |
} |
3509 | 3577 |
|
3510 | 3578 |
virtual void clear() { |
3511 | 3579 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3512 | 3580 |
_deg[it] = 0; |
3513 | 3581 |
} |
3514 | 3582 |
} |
3515 | 3583 |
private: |
3516 | 3584 |
|
3517 | 3585 |
const Digraph& _digraph; |
3518 | 3586 |
AutoNodeMap _deg; |
3519 | 3587 |
}; |
3520 | 3588 |
|
3521 | 3589 |
/// \brief Map of the out-degrees of nodes in a digraph. |
3522 | 3590 |
/// |
3523 | 3591 |
/// This map returns the out-degree of a node. Once it is constructed, |
3524 | 3592 |
/// the degrees are stored in a standard \c NodeMap, so each query is done |
3525 | 3593 |
/// in constant time. On the other hand, the values are updated automatically |
3526 | 3594 |
/// whenever the digraph changes. |
3527 | 3595 |
/// |
3528 | 3596 |
/// \warning Besides \c addNode() and \c addArc(), a digraph structure |
3529 | 3597 |
/// may provide alternative ways to modify the digraph. |
3530 | 3598 |
/// The correct behavior of OutDegMap is not guarantied if these additional |
3531 | 3599 |
/// features are used. For example the functions |
3532 | 3600 |
/// \ref ListDigraph::changeSource() "changeSource()", |
3533 | 3601 |
/// \ref ListDigraph::changeTarget() "changeTarget()" and |
3534 | 3602 |
/// \ref ListDigraph::reverseArc() "reverseArc()" |
3535 | 3603 |
/// of \ref ListDigraph will \e not update the degree values correctly. |
3536 | 3604 |
/// |
3537 | 3605 |
/// \sa InDegMap |
3538 | 3606 |
template <typename GR> |
3539 | 3607 |
class OutDegMap |
3540 | 3608 |
: protected ItemSetTraits<GR, typename GR::Arc> |
3541 | 3609 |
::ItemNotifier::ObserverBase { |
3542 | 3610 |
|
3543 | 3611 |
public: |
3544 | 3612 |
|
3545 | 3613 |
/// The graph type of OutDegMap |
3546 | 3614 |
typedef GR Graph; |
3547 | 3615 |
typedef GR Digraph; |
3548 | 3616 |
/// The key type |
3549 | 3617 |
typedef typename Digraph::Node Key; |
3550 | 3618 |
/// The value type |
3551 | 3619 |
typedef int Value; |
3552 | 3620 |
|
3553 | 3621 |
typedef typename ItemSetTraits<Digraph, typename Digraph::Arc> |
3554 | 3622 |
::ItemNotifier::ObserverBase Parent; |
3555 | 3623 |
|
3556 | 3624 |
private: |
3557 | 3625 |
|
3558 | 3626 |
class AutoNodeMap |
3559 | 3627 |
: public ItemSetTraits<Digraph, Key>::template Map<int>::Type { |
3560 | 3628 |
public: |
3561 | 3629 |
|
3562 | 3630 |
typedef typename ItemSetTraits<Digraph, Key>:: |
3563 | 3631 |
template Map<int>::Type Parent; |
3564 | 3632 |
|
3565 | 3633 |
AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {} |
3566 | 3634 |
|
3567 | 3635 |
virtual void add(const Key& key) { |
3568 | 3636 |
Parent::add(key); |
3569 | 3637 |
Parent::set(key, 0); |
3570 | 3638 |
} |
3571 | 3639 |
virtual void add(const std::vector<Key>& keys) { |
3572 | 3640 |
Parent::add(keys); |
3573 | 3641 |
for (int i = 0; i < int(keys.size()); ++i) { |
3574 | 3642 |
Parent::set(keys[i], 0); |
3575 | 3643 |
} |
3576 | 3644 |
} |
3577 | 3645 |
virtual void build() { |
3578 | 3646 |
Parent::build(); |
3579 | 3647 |
Key it; |
3580 | 3648 |
typename Parent::Notifier* nf = Parent::notifier(); |
3581 | 3649 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
3582 | 3650 |
Parent::set(it, 0); |
3583 | 3651 |
} |
3584 | 3652 |
} |
3585 | 3653 |
}; |
3586 | 3654 |
|
3587 | 3655 |
public: |
3588 | 3656 |
|
3589 | 3657 |
/// \brief Constructor. |
3590 | 3658 |
/// |
3591 | 3659 |
/// Constructor for creating an out-degree map. |
3592 | 3660 |
explicit OutDegMap(const Digraph& graph) |
3593 | 3661 |
: _digraph(graph), _deg(graph) { |
3594 | 3662 |
Parent::attach(_digraph.notifier(typename Digraph::Arc())); |
3595 | 3663 |
|
3596 | 3664 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3597 | 3665 |
_deg[it] = countOutArcs(_digraph, it); |
3598 | 3666 |
} |
3599 | 3667 |
} |
3600 | 3668 |
|
3601 | 3669 |
/// \brief Gives back the out-degree of a Node. |
3602 | 3670 |
/// |
3603 | 3671 |
/// Gives back the out-degree of a Node. |
3604 | 3672 |
int operator[](const Key& key) const { |
3605 | 3673 |
return _deg[key]; |
3606 | 3674 |
} |
3607 | 3675 |
|
3608 | 3676 |
protected: |
3609 | 3677 |
|
3610 | 3678 |
typedef typename Digraph::Arc Arc; |
3611 | 3679 |
|
3612 | 3680 |
virtual void add(const Arc& arc) { |
3613 | 3681 |
++_deg[_digraph.source(arc)]; |
3614 | 3682 |
} |
3615 | 3683 |
|
3616 | 3684 |
virtual void add(const std::vector<Arc>& arcs) { |
3617 | 3685 |
for (int i = 0; i < int(arcs.size()); ++i) { |
3618 | 3686 |
++_deg[_digraph.source(arcs[i])]; |
3619 | 3687 |
} |
3620 | 3688 |
} |
3621 | 3689 |
|
3622 | 3690 |
virtual void erase(const Arc& arc) { |
3623 | 3691 |
--_deg[_digraph.source(arc)]; |
3624 | 3692 |
} |
3625 | 3693 |
|
3626 | 3694 |
virtual void erase(const std::vector<Arc>& arcs) { |
3627 | 3695 |
for (int i = 0; i < int(arcs.size()); ++i) { |
3628 | 3696 |
--_deg[_digraph.source(arcs[i])]; |
3629 | 3697 |
} |
3630 | 3698 |
} |
3631 | 3699 |
|
3632 | 3700 |
virtual void build() { |
3633 | 3701 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3634 | 3702 |
_deg[it] = countOutArcs(_digraph, it); |
3635 | 3703 |
} |
3636 | 3704 |
} |
3637 | 3705 |
|
3638 | 3706 |
virtual void clear() { |
3639 | 3707 |
for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) { |
3640 | 3708 |
_deg[it] = 0; |
3641 | 3709 |
} |
3642 | 3710 |
} |
3643 | 3711 |
private: |
3644 | 3712 |
|
3645 | 3713 |
const Digraph& _digraph; |
3646 | 3714 |
AutoNodeMap _deg; |
3647 | 3715 |
}; |
3648 | 3716 |
|
3649 | 3717 |
/// \brief Potential difference map |
3650 | 3718 |
/// |
3651 | 3719 |
/// PotentialDifferenceMap returns the difference between the potentials of |
3652 | 3720 |
/// the source and target nodes of each arc in a digraph, i.e. it returns |
3653 | 3721 |
/// \code |
3654 | 3722 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
3655 | 3723 |
/// \endcode |
3656 | 3724 |
/// \tparam GR The digraph type. |
3657 | 3725 |
/// \tparam POT A node map storing the potentials. |
3658 | 3726 |
template <typename GR, typename POT> |
3659 | 3727 |
class PotentialDifferenceMap { |
3660 | 3728 |
public: |
3661 | 3729 |
/// Key type |
3662 | 3730 |
typedef typename GR::Arc Key; |
3663 | 3731 |
/// Value type |
3664 | 3732 |
typedef typename POT::Value Value; |
3665 | 3733 |
|
3666 | 3734 |
/// \brief Constructor |
3667 | 3735 |
/// |
3668 | 3736 |
/// Contructor of the map. |
3669 | 3737 |
explicit PotentialDifferenceMap(const GR& gr, |
3670 | 3738 |
const POT& potential) |
3671 | 3739 |
: _digraph(gr), _potential(potential) {} |
3672 | 3740 |
|
3673 | 3741 |
/// \brief Returns the potential difference for the given arc. |
3674 | 3742 |
/// |
3675 | 3743 |
/// Returns the potential difference for the given arc, i.e. |
3676 | 3744 |
/// \code |
3677 | 3745 |
/// potential[gr.target(arc)] - potential[gr.source(arc)]. |
3678 | 3746 |
/// \endcode |
3679 | 3747 |
Value operator[](const Key& arc) const { |
3680 | 3748 |
return _potential[_digraph.target(arc)] - |
3681 | 3749 |
_potential[_digraph.source(arc)]; |
3682 | 3750 |
} |
3683 | 3751 |
|
3684 | 3752 |
private: |
3685 | 3753 |
const GR& _digraph; |
3686 | 3754 |
const POT& _potential; |
3687 | 3755 |
}; |
3688 | 3756 |
|
3689 | 3757 |
/// \brief Returns a PotentialDifferenceMap. |
3690 | 3758 |
/// |
3691 | 3759 |
/// This function just returns a PotentialDifferenceMap. |
3692 | 3760 |
/// \relates PotentialDifferenceMap |
3693 | 3761 |
template <typename GR, typename POT> |
3694 | 3762 |
PotentialDifferenceMap<GR, POT> |
3695 | 3763 |
potentialDifferenceMap(const GR& gr, const POT& potential) { |
3696 | 3764 |
return PotentialDifferenceMap<GR, POT>(gr, potential); |
3697 | 3765 |
} |
3698 | 3766 |
|
3699 | 3767 |
/// @} |
3700 | 3768 |
} |
3701 | 3769 |
|
3702 | 3770 |
#endif // LEMON_MAPS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MIN_COST_ARBORESCENCE_H |
20 | 20 |
#define LEMON_MIN_COST_ARBORESCENCE_H |
21 | 21 |
|
22 | 22 |
///\ingroup spantree |
23 | 23 |
///\file |
24 | 24 |
///\brief Minimum Cost Arborescence algorithm. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
|
28 | 28 |
#include <lemon/list_graph.h> |
29 | 29 |
#include <lemon/bin_heap.h> |
30 | 30 |
#include <lemon/assert.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
|
35 | 35 |
/// \brief Default traits class for MinCostArborescence class. |
36 | 36 |
/// |
37 | 37 |
/// Default traits class for MinCostArborescence class. |
38 | 38 |
/// \param GR Digraph type. |
39 | 39 |
/// \param CM Type of the cost map. |
40 | 40 |
template <class GR, class CM> |
41 | 41 |
struct MinCostArborescenceDefaultTraits{ |
42 | 42 |
|
43 | 43 |
/// \brief The digraph type the algorithm runs on. |
44 | 44 |
typedef GR Digraph; |
45 | 45 |
|
46 | 46 |
/// \brief The type of the map that stores the arc costs. |
47 | 47 |
/// |
48 | 48 |
/// The type of the map that stores the arc costs. |
49 | 49 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
50 | 50 |
typedef CM CostMap; |
51 | 51 |
|
52 | 52 |
/// \brief The value type of the costs. |
53 | 53 |
/// |
54 | 54 |
/// The value type of the costs. |
55 | 55 |
typedef typename CostMap::Value Value; |
56 | 56 |
|
57 | 57 |
/// \brief The type of the map that stores which arcs are in the |
58 | 58 |
/// arborescence. |
59 | 59 |
/// |
60 | 60 |
/// The type of the map that stores which arcs are in the |
61 | 61 |
/// arborescence. It must conform to the \ref concepts::WriteMap |
62 | 62 |
/// "WriteMap" concept, and its value type must be \c bool |
63 | 63 |
/// (or convertible). Initially it will be set to \c false on each |
64 | 64 |
/// arc, then it will be set on each arborescence arc once. |
65 | 65 |
typedef typename Digraph::template ArcMap<bool> ArborescenceMap; |
66 | 66 |
|
67 | 67 |
/// \brief Instantiates a \c ArborescenceMap. |
68 | 68 |
/// |
69 | 69 |
/// This function instantiates a \c ArborescenceMap. |
70 | 70 |
/// \param digraph The digraph to which we would like to calculate |
71 | 71 |
/// the \c ArborescenceMap. |
72 | 72 |
static ArborescenceMap *createArborescenceMap(const Digraph &digraph){ |
73 | 73 |
return new ArborescenceMap(digraph); |
74 | 74 |
} |
75 | 75 |
|
76 | 76 |
/// \brief The type of the \c PredMap |
77 | 77 |
/// |
78 | 78 |
/// The type of the \c PredMap. It must confrom to the |
79 | 79 |
/// \ref concepts::WriteMap "WriteMap" concept, and its value type |
80 | 80 |
/// must be the \c Arc type of the digraph. |
81 | 81 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
82 | 82 |
|
83 | 83 |
/// \brief Instantiates a \c PredMap. |
84 | 84 |
/// |
85 | 85 |
/// This function instantiates a \c PredMap. |
86 | 86 |
/// \param digraph The digraph to which we would like to define the |
87 | 87 |
/// \c PredMap. |
88 | 88 |
static PredMap *createPredMap(const Digraph &digraph){ |
89 | 89 |
return new PredMap(digraph); |
90 | 90 |
} |
91 | 91 |
|
92 | 92 |
}; |
93 | 93 |
|
94 | 94 |
/// \ingroup spantree |
95 | 95 |
/// |
96 | 96 |
/// \brief Minimum Cost Arborescence algorithm class. |
97 | 97 |
/// |
98 | 98 |
/// This class provides an efficient implementation of the |
99 | 99 |
/// Minimum Cost Arborescence algorithm. The arborescence is a tree |
100 | 100 |
/// which is directed from a given source node of the digraph. One or |
101 | 101 |
/// more sources should be given to the algorithm and it will calculate |
102 | 102 |
/// the minimum cost subgraph that is the union of arborescences with the |
103 | 103 |
/// given sources and spans all the nodes which are reachable from the |
104 | 104 |
/// sources. The time complexity of the algorithm is O(n<sup>2</sup>+e). |
105 | 105 |
/// |
106 | 106 |
/// The algorithm also provides an optimal dual solution, therefore |
107 | 107 |
/// the optimality of the solution can be checked. |
108 | 108 |
/// |
109 | 109 |
/// \param GR The digraph type the algorithm runs on. |
110 | 110 |
/// \param CM A read-only arc map storing the costs of the |
111 | 111 |
/// arcs. It is read once for each arc, so the map may involve in |
112 | 112 |
/// relatively time consuming process to compute the arc costs if |
113 | 113 |
/// it is necessary. The default map type is \ref |
114 | 114 |
/// concepts::Digraph::ArcMap "Digraph::ArcMap<int>". |
115 | 115 |
/// \param TR Traits class to set various data types used |
116 | 116 |
/// by the algorithm. The default traits class is |
117 | 117 |
/// \ref MinCostArborescenceDefaultTraits |
118 | 118 |
/// "MinCostArborescenceDefaultTraits<GR, CM>". |
119 | 119 |
#ifndef DOXYGEN |
120 | 120 |
template <typename GR, |
121 | 121 |
typename CM = typename GR::template ArcMap<int>, |
122 | 122 |
typename TR = |
123 | 123 |
MinCostArborescenceDefaultTraits<GR, CM> > |
124 | 124 |
#else |
125 | 125 |
template <typename GR, typename CM, typedef TR> |
126 | 126 |
#endif |
127 | 127 |
class MinCostArborescence { |
128 | 128 |
public: |
129 | 129 |
|
130 | 130 |
/// \brief The \ref MinCostArborescenceDefaultTraits "traits class" |
131 | 131 |
/// of the algorithm. |
132 | 132 |
typedef TR Traits; |
133 | 133 |
/// The type of the underlying digraph. |
134 | 134 |
typedef typename Traits::Digraph Digraph; |
135 | 135 |
/// The type of the map that stores the arc costs. |
136 | 136 |
typedef typename Traits::CostMap CostMap; |
137 | 137 |
///The type of the costs of the arcs. |
138 | 138 |
typedef typename Traits::Value Value; |
139 | 139 |
///The type of the predecessor map. |
140 | 140 |
typedef typename Traits::PredMap PredMap; |
141 | 141 |
///The type of the map that stores which arcs are in the arborescence. |
142 | 142 |
typedef typename Traits::ArborescenceMap ArborescenceMap; |
143 | 143 |
|
144 | 144 |
typedef MinCostArborescence Create; |
145 | 145 |
|
146 | 146 |
private: |
147 | 147 |
|
148 | 148 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
149 | 149 |
|
150 | 150 |
struct CostArc { |
151 | 151 |
|
152 | 152 |
Arc arc; |
153 | 153 |
Value value; |
154 | 154 |
|
155 | 155 |
CostArc() {} |
156 | 156 |
CostArc(Arc _arc, Value _value) : arc(_arc), value(_value) {} |
157 | 157 |
|
158 | 158 |
}; |
159 | 159 |
|
160 | 160 |
const Digraph *_digraph; |
161 | 161 |
const CostMap *_cost; |
162 | 162 |
|
163 | 163 |
PredMap *_pred; |
164 | 164 |
bool local_pred; |
165 | 165 |
|
166 | 166 |
ArborescenceMap *_arborescence; |
167 | 167 |
bool local_arborescence; |
168 | 168 |
|
169 | 169 |
typedef typename Digraph::template ArcMap<int> ArcOrder; |
170 | 170 |
ArcOrder *_arc_order; |
171 | 171 |
|
172 | 172 |
typedef typename Digraph::template NodeMap<int> NodeOrder; |
173 | 173 |
NodeOrder *_node_order; |
174 | 174 |
|
175 | 175 |
typedef typename Digraph::template NodeMap<CostArc> CostArcMap; |
176 | 176 |
CostArcMap *_cost_arcs; |
177 | 177 |
|
178 | 178 |
struct StackLevel { |
179 | 179 |
|
180 | 180 |
std::vector<CostArc> arcs; |
181 | 181 |
int node_level; |
182 | 182 |
|
183 | 183 |
}; |
184 | 184 |
|
185 | 185 |
std::vector<StackLevel> level_stack; |
186 | 186 |
std::vector<Node> queue; |
187 | 187 |
|
188 | 188 |
typedef std::vector<typename Digraph::Node> DualNodeList; |
189 | 189 |
|
190 | 190 |
DualNodeList _dual_node_list; |
191 | 191 |
|
192 | 192 |
struct DualVariable { |
193 | 193 |
int begin, end; |
194 | 194 |
Value value; |
195 | 195 |
|
196 | 196 |
DualVariable(int _begin, int _end, Value _value) |
197 | 197 |
: begin(_begin), end(_end), value(_value) {} |
198 | 198 |
|
199 | 199 |
}; |
200 | 200 |
|
201 | 201 |
typedef std::vector<DualVariable> DualVariables; |
202 | 202 |
|
203 | 203 |
DualVariables _dual_variables; |
204 | 204 |
|
205 | 205 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
206 | 206 |
|
207 | 207 |
HeapCrossRef *_heap_cross_ref; |
208 | 208 |
|
209 | 209 |
typedef BinHeap<int, HeapCrossRef> Heap; |
210 | 210 |
|
211 | 211 |
Heap *_heap; |
212 | 212 |
|
213 | 213 |
protected: |
214 | 214 |
|
215 | 215 |
MinCostArborescence() {} |
216 | 216 |
|
217 | 217 |
private: |
218 | 218 |
|
219 | 219 |
void createStructures() { |
220 | 220 |
if (!_pred) { |
221 | 221 |
local_pred = true; |
222 | 222 |
_pred = Traits::createPredMap(*_digraph); |
223 | 223 |
} |
224 | 224 |
if (!_arborescence) { |
225 | 225 |
local_arborescence = true; |
226 | 226 |
_arborescence = Traits::createArborescenceMap(*_digraph); |
227 | 227 |
} |
228 | 228 |
if (!_arc_order) { |
229 | 229 |
_arc_order = new ArcOrder(*_digraph); |
230 | 230 |
} |
231 | 231 |
if (!_node_order) { |
232 | 232 |
_node_order = new NodeOrder(*_digraph); |
233 | 233 |
} |
234 | 234 |
if (!_cost_arcs) { |
235 | 235 |
_cost_arcs = new CostArcMap(*_digraph); |
236 | 236 |
} |
237 | 237 |
if (!_heap_cross_ref) { |
238 | 238 |
_heap_cross_ref = new HeapCrossRef(*_digraph, -1); |
239 | 239 |
} |
240 | 240 |
if (!_heap) { |
241 | 241 |
_heap = new Heap(*_heap_cross_ref); |
242 | 242 |
} |
243 | 243 |
} |
244 | 244 |
|
245 | 245 |
void destroyStructures() { |
246 | 246 |
if (local_arborescence) { |
247 | 247 |
delete _arborescence; |
248 | 248 |
} |
249 | 249 |
if (local_pred) { |
250 | 250 |
delete _pred; |
251 | 251 |
} |
252 | 252 |
if (_arc_order) { |
253 | 253 |
delete _arc_order; |
254 | 254 |
} |
255 | 255 |
if (_node_order) { |
256 | 256 |
delete _node_order; |
257 | 257 |
} |
258 | 258 |
if (_cost_arcs) { |
259 | 259 |
delete _cost_arcs; |
260 | 260 |
} |
261 | 261 |
if (_heap) { |
262 | 262 |
delete _heap; |
263 | 263 |
} |
264 | 264 |
if (_heap_cross_ref) { |
265 | 265 |
delete _heap_cross_ref; |
266 | 266 |
} |
267 | 267 |
} |
268 | 268 |
|
269 | 269 |
Arc prepare(Node node) { |
270 | 270 |
std::vector<Node> nodes; |
271 | 271 |
(*_node_order)[node] = _dual_node_list.size(); |
272 | 272 |
StackLevel level; |
273 | 273 |
level.node_level = _dual_node_list.size(); |
274 | 274 |
_dual_node_list.push_back(node); |
275 | 275 |
for (InArcIt it(*_digraph, node); it != INVALID; ++it) { |
276 | 276 |
Arc arc = it; |
277 | 277 |
Node source = _digraph->source(arc); |
278 | 278 |
Value value = (*_cost)[it]; |
279 | 279 |
if (source == node || (*_node_order)[source] == -3) continue; |
280 | 280 |
if ((*_cost_arcs)[source].arc == INVALID) { |
281 | 281 |
(*_cost_arcs)[source].arc = arc; |
282 | 282 |
(*_cost_arcs)[source].value = value; |
283 | 283 |
nodes.push_back(source); |
284 | 284 |
} else { |
285 | 285 |
if ((*_cost_arcs)[source].value > value) { |
286 | 286 |
(*_cost_arcs)[source].arc = arc; |
287 | 287 |
(*_cost_arcs)[source].value = value; |
288 | 288 |
} |
289 | 289 |
} |
290 | 290 |
} |
291 | 291 |
CostArc minimum = (*_cost_arcs)[nodes[0]]; |
292 | 292 |
for (int i = 1; i < int(nodes.size()); ++i) { |
293 | 293 |
if ((*_cost_arcs)[nodes[i]].value < minimum.value) { |
294 | 294 |
minimum = (*_cost_arcs)[nodes[i]]; |
295 | 295 |
} |
296 | 296 |
} |
297 | 297 |
(*_arc_order)[minimum.arc] = _dual_variables.size(); |
298 | 298 |
DualVariable var(_dual_node_list.size() - 1, |
299 | 299 |
_dual_node_list.size(), minimum.value); |
300 | 300 |
_dual_variables.push_back(var); |
301 | 301 |
for (int i = 0; i < int(nodes.size()); ++i) { |
302 | 302 |
(*_cost_arcs)[nodes[i]].value -= minimum.value; |
303 | 303 |
level.arcs.push_back((*_cost_arcs)[nodes[i]]); |
304 | 304 |
(*_cost_arcs)[nodes[i]].arc = INVALID; |
305 | 305 |
} |
306 | 306 |
level_stack.push_back(level); |
307 | 307 |
return minimum.arc; |
308 | 308 |
} |
309 | 309 |
|
310 | 310 |
Arc contract(Node node) { |
311 | 311 |
int node_bottom = bottom(node); |
312 | 312 |
std::vector<Node> nodes; |
313 | 313 |
while (!level_stack.empty() && |
314 | 314 |
level_stack.back().node_level >= node_bottom) { |
315 | 315 |
for (int i = 0; i < int(level_stack.back().arcs.size()); ++i) { |
316 | 316 |
Arc arc = level_stack.back().arcs[i].arc; |
317 | 317 |
Node source = _digraph->source(arc); |
318 | 318 |
Value value = level_stack.back().arcs[i].value; |
319 | 319 |
if ((*_node_order)[source] >= node_bottom) continue; |
320 | 320 |
if ((*_cost_arcs)[source].arc == INVALID) { |
321 | 321 |
(*_cost_arcs)[source].arc = arc; |
322 | 322 |
(*_cost_arcs)[source].value = value; |
323 | 323 |
nodes.push_back(source); |
324 | 324 |
} else { |
325 | 325 |
if ((*_cost_arcs)[source].value > value) { |
326 | 326 |
(*_cost_arcs)[source].arc = arc; |
327 | 327 |
(*_cost_arcs)[source].value = value; |
328 | 328 |
} |
329 | 329 |
} |
330 | 330 |
} |
331 | 331 |
level_stack.pop_back(); |
332 | 332 |
} |
333 | 333 |
CostArc minimum = (*_cost_arcs)[nodes[0]]; |
334 | 334 |
for (int i = 1; i < int(nodes.size()); ++i) { |
335 | 335 |
if ((*_cost_arcs)[nodes[i]].value < minimum.value) { |
336 | 336 |
minimum = (*_cost_arcs)[nodes[i]]; |
337 | 337 |
} |
338 | 338 |
} |
339 | 339 |
(*_arc_order)[minimum.arc] = _dual_variables.size(); |
340 | 340 |
DualVariable var(node_bottom, _dual_node_list.size(), minimum.value); |
341 | 341 |
_dual_variables.push_back(var); |
342 | 342 |
StackLevel level; |
343 | 343 |
level.node_level = node_bottom; |
344 | 344 |
for (int i = 0; i < int(nodes.size()); ++i) { |
345 | 345 |
(*_cost_arcs)[nodes[i]].value -= minimum.value; |
346 | 346 |
level.arcs.push_back((*_cost_arcs)[nodes[i]]); |
347 | 347 |
(*_cost_arcs)[nodes[i]].arc = INVALID; |
348 | 348 |
} |
349 | 349 |
level_stack.push_back(level); |
350 | 350 |
return minimum.arc; |
351 | 351 |
} |
352 | 352 |
|
353 | 353 |
int bottom(Node node) { |
354 | 354 |
int k = level_stack.size() - 1; |
355 | 355 |
while (level_stack[k].node_level > (*_node_order)[node]) { |
356 | 356 |
--k; |
357 | 357 |
} |
358 | 358 |
return level_stack[k].node_level; |
359 | 359 |
} |
360 | 360 |
|
361 | 361 |
void finalize(Arc arc) { |
362 | 362 |
Node node = _digraph->target(arc); |
363 | 363 |
_heap->push(node, (*_arc_order)[arc]); |
364 | 364 |
_pred->set(node, arc); |
365 | 365 |
while (!_heap->empty()) { |
366 | 366 |
Node source = _heap->top(); |
367 | 367 |
_heap->pop(); |
368 | 368 |
(*_node_order)[source] = -1; |
369 | 369 |
for (OutArcIt it(*_digraph, source); it != INVALID; ++it) { |
370 | 370 |
if ((*_arc_order)[it] < 0) continue; |
371 | 371 |
Node target = _digraph->target(it); |
372 | 372 |
switch(_heap->state(target)) { |
373 | 373 |
case Heap::PRE_HEAP: |
374 | 374 |
_heap->push(target, (*_arc_order)[it]); |
375 | 375 |
_pred->set(target, it); |
376 | 376 |
break; |
377 | 377 |
case Heap::IN_HEAP: |
378 | 378 |
if ((*_arc_order)[it] < (*_heap)[target]) { |
379 | 379 |
_heap->decrease(target, (*_arc_order)[it]); |
380 | 380 |
_pred->set(target, it); |
381 | 381 |
} |
382 | 382 |
break; |
383 | 383 |
case Heap::POST_HEAP: |
384 | 384 |
break; |
385 | 385 |
} |
386 | 386 |
} |
387 | 387 |
_arborescence->set((*_pred)[source], true); |
388 | 388 |
} |
389 | 389 |
} |
390 | 390 |
|
391 | 391 |
|
392 | 392 |
public: |
393 | 393 |
|
394 | 394 |
/// \name Named Template Parameters |
395 | 395 |
|
396 | 396 |
/// @{ |
397 | 397 |
|
398 | 398 |
template <class T> |
399 | 399 |
struct SetArborescenceMapTraits : public Traits { |
400 | 400 |
typedef T ArborescenceMap; |
401 | 401 |
static ArborescenceMap *createArborescenceMap(const Digraph &) |
402 | 402 |
{ |
403 | 403 |
LEMON_ASSERT(false, "ArborescenceMap is not initialized"); |
404 | 404 |
return 0; // ignore warnings |
405 | 405 |
} |
406 | 406 |
}; |
407 | 407 |
|
408 | 408 |
/// \brief \ref named-templ-param "Named parameter" for |
409 | 409 |
/// setting \c ArborescenceMap type |
410 | 410 |
/// |
411 | 411 |
/// \ref named-templ-param "Named parameter" for setting |
412 | 412 |
/// \c ArborescenceMap type. |
413 | 413 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept, |
414 | 414 |
/// and its value type must be \c bool (or convertible). |
415 | 415 |
/// Initially it will be set to \c false on each arc, |
416 | 416 |
/// then it will be set on each arborescence arc once. |
417 | 417 |
template <class T> |
418 | 418 |
struct SetArborescenceMap |
419 | 419 |
: public MinCostArborescence<Digraph, CostMap, |
420 | 420 |
SetArborescenceMapTraits<T> > { |
421 | 421 |
}; |
422 | 422 |
|
423 | 423 |
template <class T> |
424 | 424 |
struct SetPredMapTraits : public Traits { |
425 | 425 |
typedef T PredMap; |
426 | 426 |
static PredMap *createPredMap(const Digraph &) |
427 | 427 |
{ |
428 | 428 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
429 | 429 |
return 0; // ignore warnings |
430 | 430 |
} |
431 | 431 |
}; |
432 | 432 |
|
433 | 433 |
/// \brief \ref named-templ-param "Named parameter" for |
434 | 434 |
/// setting \c PredMap type |
435 | 435 |
/// |
436 | 436 |
/// \ref named-templ-param "Named parameter" for setting |
437 | 437 |
/// \c PredMap type. |
438 | 438 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept, |
439 | 439 |
/// and its value type must be the \c Arc type of the digraph. |
440 | 440 |
template <class T> |
441 | 441 |
struct SetPredMap |
442 | 442 |
: public MinCostArborescence<Digraph, CostMap, SetPredMapTraits<T> > { |
443 | 443 |
}; |
444 | 444 |
|
445 | 445 |
/// @} |
446 | 446 |
|
447 | 447 |
/// \brief Constructor. |
448 | 448 |
/// |
449 | 449 |
/// \param digraph The digraph the algorithm will run on. |
450 | 450 |
/// \param cost The cost map used by the algorithm. |
451 | 451 |
MinCostArborescence(const Digraph& digraph, const CostMap& cost) |
452 | 452 |
: _digraph(&digraph), _cost(&cost), _pred(0), local_pred(false), |
453 | 453 |
_arborescence(0), local_arborescence(false), |
454 | 454 |
_arc_order(0), _node_order(0), _cost_arcs(0), |
455 | 455 |
_heap_cross_ref(0), _heap(0) {} |
456 | 456 |
|
457 | 457 |
/// \brief Destructor. |
458 | 458 |
~MinCostArborescence() { |
459 | 459 |
destroyStructures(); |
460 | 460 |
} |
461 | 461 |
|
462 | 462 |
/// \brief Sets the arborescence map. |
463 | 463 |
/// |
464 | 464 |
/// Sets the arborescence map. |
465 | 465 |
/// \return <tt>(*this)</tt> |
466 | 466 |
MinCostArborescence& arborescenceMap(ArborescenceMap& m) { |
467 | 467 |
if (local_arborescence) { |
468 | 468 |
delete _arborescence; |
469 | 469 |
} |
470 | 470 |
local_arborescence = false; |
471 | 471 |
_arborescence = &m; |
472 | 472 |
return *this; |
473 | 473 |
} |
474 | 474 |
|
475 | 475 |
/// \brief Sets the predecessor map. |
476 | 476 |
/// |
477 | 477 |
/// Sets the predecessor map. |
478 | 478 |
/// \return <tt>(*this)</tt> |
479 | 479 |
MinCostArborescence& predMap(PredMap& m) { |
480 | 480 |
if (local_pred) { |
481 | 481 |
delete _pred; |
482 | 482 |
} |
483 | 483 |
local_pred = false; |
484 | 484 |
_pred = &m; |
485 | 485 |
return *this; |
486 | 486 |
} |
487 | 487 |
|
488 | 488 |
/// \name Execution Control |
489 | 489 |
/// The simplest way to execute the algorithm is to use |
490 | 490 |
/// one of the member functions called \c run(...). \n |
491 |
/// If you need more control on the execution, |
|
492 |
/// first you must call \ref init(), then you can add several |
|
491 |
/// If you need better control on the execution, |
|
492 |
/// you have to call \ref init() first, then you can add several |
|
493 | 493 |
/// source nodes with \ref addSource(). |
494 | 494 |
/// Finally \ref start() will perform the arborescence |
495 | 495 |
/// computation. |
496 | 496 |
|
497 | 497 |
///@{ |
498 | 498 |
|
499 | 499 |
/// \brief Initializes the internal data structures. |
500 | 500 |
/// |
501 | 501 |
/// Initializes the internal data structures. |
502 | 502 |
/// |
503 | 503 |
void init() { |
504 | 504 |
createStructures(); |
505 | 505 |
_heap->clear(); |
506 | 506 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
507 | 507 |
(*_cost_arcs)[it].arc = INVALID; |
508 | 508 |
(*_node_order)[it] = -3; |
509 | 509 |
(*_heap_cross_ref)[it] = Heap::PRE_HEAP; |
510 | 510 |
_pred->set(it, INVALID); |
511 | 511 |
} |
512 | 512 |
for (ArcIt it(*_digraph); it != INVALID; ++it) { |
513 | 513 |
_arborescence->set(it, false); |
514 | 514 |
(*_arc_order)[it] = -1; |
515 | 515 |
} |
516 | 516 |
_dual_node_list.clear(); |
517 | 517 |
_dual_variables.clear(); |
518 | 518 |
} |
519 | 519 |
|
520 | 520 |
/// \brief Adds a new source node. |
521 | 521 |
/// |
522 | 522 |
/// Adds a new source node to the algorithm. |
523 | 523 |
void addSource(Node source) { |
524 | 524 |
std::vector<Node> nodes; |
525 | 525 |
nodes.push_back(source); |
526 | 526 |
while (!nodes.empty()) { |
527 | 527 |
Node node = nodes.back(); |
528 | 528 |
nodes.pop_back(); |
529 | 529 |
for (OutArcIt it(*_digraph, node); it != INVALID; ++it) { |
530 | 530 |
Node target = _digraph->target(it); |
531 | 531 |
if ((*_node_order)[target] == -3) { |
532 | 532 |
(*_node_order)[target] = -2; |
533 | 533 |
nodes.push_back(target); |
534 | 534 |
queue.push_back(target); |
535 | 535 |
} |
536 | 536 |
} |
537 | 537 |
} |
538 | 538 |
(*_node_order)[source] = -1; |
539 | 539 |
} |
540 | 540 |
|
541 | 541 |
/// \brief Processes the next node in the priority queue. |
542 | 542 |
/// |
543 | 543 |
/// Processes the next node in the priority queue. |
544 | 544 |
/// |
545 | 545 |
/// \return The processed node. |
546 | 546 |
/// |
547 | 547 |
/// \warning The queue must not be empty. |
548 | 548 |
Node processNextNode() { |
549 | 549 |
Node node = queue.back(); |
550 | 550 |
queue.pop_back(); |
551 | 551 |
if ((*_node_order)[node] == -2) { |
552 | 552 |
Arc arc = prepare(node); |
553 | 553 |
Node source = _digraph->source(arc); |
554 | 554 |
while ((*_node_order)[source] != -1) { |
555 | 555 |
if ((*_node_order)[source] >= 0) { |
556 | 556 |
arc = contract(source); |
557 | 557 |
} else { |
558 | 558 |
arc = prepare(source); |
559 | 559 |
} |
560 | 560 |
source = _digraph->source(arc); |
561 | 561 |
} |
562 | 562 |
finalize(arc); |
563 | 563 |
level_stack.clear(); |
564 | 564 |
} |
565 | 565 |
return node; |
566 | 566 |
} |
567 | 567 |
|
568 | 568 |
/// \brief Returns the number of the nodes to be processed. |
569 | 569 |
/// |
570 | 570 |
/// Returns the number of the nodes to be processed in the priority |
571 | 571 |
/// queue. |
572 | 572 |
int queueSize() const { |
573 | 573 |
return queue.size(); |
574 | 574 |
} |
575 | 575 |
|
576 | 576 |
/// \brief Returns \c false if there are nodes to be processed. |
577 | 577 |
/// |
578 | 578 |
/// Returns \c false if there are nodes to be processed. |
579 | 579 |
bool emptyQueue() const { |
580 | 580 |
return queue.empty(); |
581 | 581 |
} |
582 | 582 |
|
583 | 583 |
/// \brief Executes the algorithm. |
584 | 584 |
/// |
585 | 585 |
/// Executes the algorithm. |
586 | 586 |
/// |
587 | 587 |
/// \pre init() must be called and at least one node should be added |
588 | 588 |
/// with addSource() before using this function. |
589 | 589 |
/// |
590 | 590 |
///\note mca.start() is just a shortcut of the following code. |
591 | 591 |
///\code |
592 | 592 |
///while (!mca.emptyQueue()) { |
593 | 593 |
/// mca.processNextNode(); |
594 | 594 |
///} |
595 | 595 |
///\endcode |
596 | 596 |
void start() { |
597 | 597 |
while (!emptyQueue()) { |
598 | 598 |
processNextNode(); |
599 | 599 |
} |
600 | 600 |
} |
601 | 601 |
|
602 | 602 |
/// \brief Runs %MinCostArborescence algorithm from node \c s. |
603 | 603 |
/// |
604 | 604 |
/// This method runs the %MinCostArborescence algorithm from |
605 | 605 |
/// a root node \c s. |
606 | 606 |
/// |
607 | 607 |
/// \note mca.run(s) is just a shortcut of the following code. |
608 | 608 |
/// \code |
609 | 609 |
/// mca.init(); |
610 | 610 |
/// mca.addSource(s); |
611 | 611 |
/// mca.start(); |
612 | 612 |
/// \endcode |
613 | 613 |
void run(Node s) { |
614 | 614 |
init(); |
615 | 615 |
addSource(s); |
616 | 616 |
start(); |
617 | 617 |
} |
618 | 618 |
|
619 | 619 |
///@} |
620 | 620 |
|
621 | 621 |
/// \name Query Functions |
622 | 622 |
/// The result of the %MinCostArborescence algorithm can be obtained |
623 | 623 |
/// using these functions.\n |
624 | 624 |
/// Either run() or start() must be called before using them. |
625 | 625 |
|
626 | 626 |
/// @{ |
627 | 627 |
|
628 | 628 |
/// \brief Returns the cost of the arborescence. |
629 | 629 |
/// |
630 | 630 |
/// Returns the cost of the arborescence. |
631 | 631 |
Value arborescenceCost() const { |
632 | 632 |
Value sum = 0; |
633 | 633 |
for (ArcIt it(*_digraph); it != INVALID; ++it) { |
634 | 634 |
if (arborescence(it)) { |
635 | 635 |
sum += (*_cost)[it]; |
636 | 636 |
} |
637 | 637 |
} |
638 | 638 |
return sum; |
639 | 639 |
} |
640 | 640 |
|
641 | 641 |
/// \brief Returns \c true if the arc is in the arborescence. |
642 | 642 |
/// |
643 | 643 |
/// Returns \c true if the given arc is in the arborescence. |
644 | 644 |
/// \param arc An arc of the digraph. |
645 | 645 |
/// \pre \ref run() must be called before using this function. |
646 | 646 |
bool arborescence(Arc arc) const { |
647 | 647 |
return (*_pred)[_digraph->target(arc)] == arc; |
648 | 648 |
} |
649 | 649 |
|
650 | 650 |
/// \brief Returns a const reference to the arborescence map. |
651 | 651 |
/// |
652 | 652 |
/// Returns a const reference to the arborescence map. |
653 | 653 |
/// \pre \ref run() must be called before using this function. |
654 | 654 |
const ArborescenceMap& arborescenceMap() const { |
655 | 655 |
return *_arborescence; |
656 | 656 |
} |
657 | 657 |
|
658 | 658 |
/// \brief Returns the predecessor arc of the given node. |
659 | 659 |
/// |
660 | 660 |
/// Returns the predecessor arc of the given node. |
661 | 661 |
/// \pre \ref run() must be called before using this function. |
662 | 662 |
Arc pred(Node node) const { |
663 | 663 |
return (*_pred)[node]; |
664 | 664 |
} |
665 | 665 |
|
666 | 666 |
/// \brief Returns a const reference to the pred map. |
667 | 667 |
/// |
668 | 668 |
/// Returns a const reference to the pred map. |
669 | 669 |
/// \pre \ref run() must be called before using this function. |
670 | 670 |
const PredMap& predMap() const { |
671 | 671 |
return *_pred; |
672 | 672 |
} |
673 | 673 |
|
674 | 674 |
/// \brief Indicates that a node is reachable from the sources. |
675 | 675 |
/// |
676 | 676 |
/// Indicates that a node is reachable from the sources. |
677 | 677 |
bool reached(Node node) const { |
678 | 678 |
return (*_node_order)[node] != -3; |
679 | 679 |
} |
680 | 680 |
|
681 | 681 |
/// \brief Indicates that a node is processed. |
682 | 682 |
/// |
683 | 683 |
/// Indicates that a node is processed. The arborescence path exists |
684 | 684 |
/// from the source to the given node. |
685 | 685 |
bool processed(Node node) const { |
686 | 686 |
return (*_node_order)[node] == -1; |
687 | 687 |
} |
688 | 688 |
|
689 | 689 |
/// \brief Returns the number of the dual variables in basis. |
690 | 690 |
/// |
691 | 691 |
/// Returns the number of the dual variables in basis. |
692 | 692 |
int dualNum() const { |
693 | 693 |
return _dual_variables.size(); |
694 | 694 |
} |
695 | 695 |
|
696 | 696 |
/// \brief Returns the value of the dual solution. |
697 | 697 |
/// |
698 | 698 |
/// Returns the value of the dual solution. It should be |
699 | 699 |
/// equal to the arborescence value. |
700 | 700 |
Value dualValue() const { |
701 | 701 |
Value sum = 0; |
702 | 702 |
for (int i = 0; i < int(_dual_variables.size()); ++i) { |
703 | 703 |
sum += _dual_variables[i].value; |
704 | 704 |
} |
705 | 705 |
return sum; |
706 | 706 |
} |
707 | 707 |
|
708 | 708 |
/// \brief Returns the number of the nodes in the dual variable. |
709 | 709 |
/// |
710 | 710 |
/// Returns the number of the nodes in the dual variable. |
711 | 711 |
int dualSize(int k) const { |
712 | 712 |
return _dual_variables[k].end - _dual_variables[k].begin; |
713 | 713 |
} |
714 | 714 |
|
715 | 715 |
/// \brief Returns the value of the dual variable. |
716 | 716 |
/// |
717 | 717 |
/// Returns the the value of the dual variable. |
718 | 718 |
Value dualValue(int k) const { |
719 | 719 |
return _dual_variables[k].value; |
720 | 720 |
} |
721 | 721 |
|
722 | 722 |
/// \brief LEMON iterator for getting a dual variable. |
723 | 723 |
/// |
724 | 724 |
/// This class provides a common style LEMON iterator for getting a |
725 | 725 |
/// dual variable of \ref MinCostArborescence algorithm. |
726 | 726 |
/// It iterates over a subset of the nodes. |
727 | 727 |
class DualIt { |
728 | 728 |
public: |
729 | 729 |
|
730 | 730 |
/// \brief Constructor. |
731 | 731 |
/// |
732 | 732 |
/// Constructor for getting the nodeset of the dual variable |
733 | 733 |
/// of \ref MinCostArborescence algorithm. |
734 | 734 |
DualIt(const MinCostArborescence& algorithm, int variable) |
735 | 735 |
: _algorithm(&algorithm) |
736 | 736 |
{ |
737 | 737 |
_index = _algorithm->_dual_variables[variable].begin; |
738 | 738 |
_last = _algorithm->_dual_variables[variable].end; |
739 | 739 |
} |
740 | 740 |
|
741 | 741 |
/// \brief Conversion to \c Node. |
742 | 742 |
/// |
743 | 743 |
/// Conversion to \c Node. |
744 | 744 |
operator Node() const { |
745 | 745 |
return _algorithm->_dual_node_list[_index]; |
746 | 746 |
} |
747 | 747 |
|
748 | 748 |
/// \brief Increment operator. |
749 | 749 |
/// |
750 | 750 |
/// Increment operator. |
751 | 751 |
DualIt& operator++() { |
752 | 752 |
++_index; |
753 | 753 |
return *this; |
754 | 754 |
} |
755 | 755 |
|
756 | 756 |
/// \brief Validity checking |
757 | 757 |
/// |
758 | 758 |
/// Checks whether the iterator is invalid. |
759 | 759 |
bool operator==(Invalid) const { |
760 | 760 |
return _index == _last; |
761 | 761 |
} |
762 | 762 |
|
763 | 763 |
/// \brief Validity checking |
764 | 764 |
/// |
765 | 765 |
/// Checks whether the iterator is valid. |
766 | 766 |
bool operator!=(Invalid) const { |
767 | 767 |
return _index != _last; |
768 | 768 |
} |
769 | 769 |
|
770 | 770 |
private: |
771 | 771 |
const MinCostArborescence* _algorithm; |
772 | 772 |
int _index, _last; |
773 | 773 |
}; |
774 | 774 |
|
775 | 775 |
/// @} |
776 | 776 |
|
777 | 777 |
}; |
778 | 778 |
|
779 | 779 |
/// \ingroup spantree |
780 | 780 |
/// |
781 | 781 |
/// \brief Function type interface for MinCostArborescence algorithm. |
782 | 782 |
/// |
783 | 783 |
/// Function type interface for MinCostArborescence algorithm. |
784 | 784 |
/// \param digraph The digraph the algorithm runs on. |
785 | 785 |
/// \param cost An arc map storing the costs. |
786 | 786 |
/// \param source The source node of the arborescence. |
787 | 787 |
/// \retval arborescence An arc map with \c bool (or convertible) value |
788 | 788 |
/// type that stores the arborescence. |
789 | 789 |
/// \return The total cost of the arborescence. |
790 | 790 |
/// |
791 | 791 |
/// \sa MinCostArborescence |
792 | 792 |
template <typename Digraph, typename CostMap, typename ArborescenceMap> |
793 | 793 |
typename CostMap::Value minCostArborescence(const Digraph& digraph, |
794 | 794 |
const CostMap& cost, |
795 | 795 |
typename Digraph::Node source, |
796 | 796 |
ArborescenceMap& arborescence) { |
797 | 797 |
typename MinCostArborescence<Digraph, CostMap> |
798 | 798 |
::template SetArborescenceMap<ArborescenceMap> |
799 | 799 |
::Create mca(digraph, cost); |
800 | 800 |
mca.arborescenceMap(arborescence); |
801 | 801 |
mca.run(source); |
802 | 802 |
return mca.arborescenceCost(); |
803 | 803 |
} |
804 | 804 |
|
805 | 805 |
} |
806 | 806 |
|
807 | 807 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_PREFLOW_H |
20 | 20 |
#define LEMON_PREFLOW_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
|
25 | 25 |
/// \file |
26 | 26 |
/// \ingroup max_flow |
27 | 27 |
/// \brief Implementation of the preflow algorithm. |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
/// \brief Default traits class of Preflow class. |
32 | 32 |
/// |
33 | 33 |
/// Default traits class of Preflow class. |
34 | 34 |
/// \tparam GR Digraph type. |
35 | 35 |
/// \tparam CAP Capacity map type. |
36 | 36 |
template <typename GR, typename CAP> |
37 | 37 |
struct PreflowDefaultTraits { |
38 | 38 |
|
39 | 39 |
/// \brief The type of the digraph the algorithm runs on. |
40 | 40 |
typedef GR Digraph; |
41 | 41 |
|
42 | 42 |
/// \brief The type of the map that stores the arc capacities. |
43 | 43 |
/// |
44 | 44 |
/// The type of the map that stores the arc capacities. |
45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
46 | 46 |
typedef CAP CapacityMap; |
47 | 47 |
|
48 | 48 |
/// \brief The type of the flow values. |
49 | 49 |
typedef typename CapacityMap::Value Value; |
50 | 50 |
|
51 | 51 |
/// \brief The type of the map that stores the flow values. |
52 | 52 |
/// |
53 | 53 |
/// The type of the map that stores the flow values. |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 |
#ifdef DOXYGEN |
|
56 |
typedef GR::ArcMap<Value> FlowMap; |
|
57 |
#else |
|
55 | 58 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
59 |
#endif |
|
56 | 60 |
|
57 | 61 |
/// \brief Instantiates a FlowMap. |
58 | 62 |
/// |
59 | 63 |
/// This function instantiates a \ref FlowMap. |
60 | 64 |
/// \param digraph The digraph for which we would like to define |
61 | 65 |
/// the flow map. |
62 | 66 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
63 | 67 |
return new FlowMap(digraph); |
64 | 68 |
} |
65 | 69 |
|
66 | 70 |
/// \brief The elevator type used by Preflow algorithm. |
67 | 71 |
/// |
68 | 72 |
/// The elevator type used by Preflow algorithm. |
69 | 73 |
/// |
70 |
/// \sa Elevator |
|
71 |
/// \sa LinkedElevator |
|
72 |
|
|
74 |
/// \sa Elevator, LinkedElevator |
|
75 |
#ifdef DOXYGEN |
|
76 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
77 |
#else |
|
78 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
79 |
#endif |
|
73 | 80 |
|
74 | 81 |
/// \brief Instantiates an Elevator. |
75 | 82 |
/// |
76 | 83 |
/// This function instantiates an \ref Elevator. |
77 | 84 |
/// \param digraph The digraph for which we would like to define |
78 | 85 |
/// the elevator. |
79 | 86 |
/// \param max_level The maximum level of the elevator. |
80 | 87 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
81 | 88 |
return new Elevator(digraph, max_level); |
82 | 89 |
} |
83 | 90 |
|
84 | 91 |
/// \brief The tolerance used by the algorithm |
85 | 92 |
/// |
86 | 93 |
/// The tolerance used by the algorithm to handle inexact computation. |
87 | 94 |
typedef lemon::Tolerance<Value> Tolerance; |
88 | 95 |
|
89 | 96 |
}; |
90 | 97 |
|
91 | 98 |
|
92 | 99 |
/// \ingroup max_flow |
93 | 100 |
/// |
94 | 101 |
/// \brief %Preflow algorithm class. |
95 | 102 |
/// |
96 | 103 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
97 | 104 |
/// \e push-relabel algorithm producing a \ref max_flow |
98 | 105 |
/// "flow of maximum value" in a digraph. |
99 | 106 |
/// The preflow algorithms are the fastest known maximum |
100 | 107 |
/// flow algorithms. The current implementation uses a mixture of the |
101 | 108 |
/// \e "highest label" and the \e "bound decrease" heuristics. |
102 | 109 |
/// The worst case time complexity of the algorithm is \f$O(n^2\sqrt{e})\f$. |
103 | 110 |
/// |
104 | 111 |
/// The algorithm consists of two phases. After the first phase |
105 | 112 |
/// the maximum flow value and the minimum cut is obtained. The |
106 | 113 |
/// second phase constructs a feasible maximum flow on each arc. |
107 | 114 |
/// |
108 | 115 |
/// \tparam GR The type of the digraph the algorithm runs on. |
109 | 116 |
/// \tparam CAP The type of the capacity map. The default map |
110 | 117 |
/// type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
111 | 118 |
#ifdef DOXYGEN |
112 | 119 |
template <typename GR, typename CAP, typename TR> |
113 | 120 |
#else |
114 | 121 |
template <typename GR, |
115 | 122 |
typename CAP = typename GR::template ArcMap<int>, |
116 | 123 |
typename TR = PreflowDefaultTraits<GR, CAP> > |
117 | 124 |
#endif |
118 | 125 |
class Preflow { |
119 | 126 |
public: |
120 | 127 |
|
121 | 128 |
///The \ref PreflowDefaultTraits "traits class" of the algorithm. |
122 | 129 |
typedef TR Traits; |
123 | 130 |
///The type of the digraph the algorithm runs on. |
124 | 131 |
typedef typename Traits::Digraph Digraph; |
125 | 132 |
///The type of the capacity map. |
126 | 133 |
typedef typename Traits::CapacityMap CapacityMap; |
127 | 134 |
///The type of the flow values. |
128 | 135 |
typedef typename Traits::Value Value; |
129 | 136 |
|
130 | 137 |
///The type of the flow map. |
131 | 138 |
typedef typename Traits::FlowMap FlowMap; |
132 | 139 |
///The type of the elevator. |
133 | 140 |
typedef typename Traits::Elevator Elevator; |
134 | 141 |
///The type of the tolerance. |
135 | 142 |
typedef typename Traits::Tolerance Tolerance; |
136 | 143 |
|
137 | 144 |
private: |
138 | 145 |
|
139 | 146 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
140 | 147 |
|
141 | 148 |
const Digraph& _graph; |
142 | 149 |
const CapacityMap* _capacity; |
143 | 150 |
|
144 | 151 |
int _node_num; |
145 | 152 |
|
146 | 153 |
Node _source, _target; |
147 | 154 |
|
148 | 155 |
FlowMap* _flow; |
149 | 156 |
bool _local_flow; |
150 | 157 |
|
151 | 158 |
Elevator* _level; |
152 | 159 |
bool _local_level; |
153 | 160 |
|
154 | 161 |
typedef typename Digraph::template NodeMap<Value> ExcessMap; |
155 | 162 |
ExcessMap* _excess; |
156 | 163 |
|
157 | 164 |
Tolerance _tolerance; |
158 | 165 |
|
159 | 166 |
bool _phase; |
160 | 167 |
|
161 | 168 |
|
162 | 169 |
void createStructures() { |
163 | 170 |
_node_num = countNodes(_graph); |
164 | 171 |
|
165 | 172 |
if (!_flow) { |
166 | 173 |
_flow = Traits::createFlowMap(_graph); |
167 | 174 |
_local_flow = true; |
168 | 175 |
} |
169 | 176 |
if (!_level) { |
170 | 177 |
_level = Traits::createElevator(_graph, _node_num); |
171 | 178 |
_local_level = true; |
172 | 179 |
} |
173 | 180 |
if (!_excess) { |
174 | 181 |
_excess = new ExcessMap(_graph); |
175 | 182 |
} |
176 | 183 |
} |
177 | 184 |
|
178 | 185 |
void destroyStructures() { |
179 | 186 |
if (_local_flow) { |
180 | 187 |
delete _flow; |
181 | 188 |
} |
182 | 189 |
if (_local_level) { |
183 | 190 |
delete _level; |
184 | 191 |
} |
185 | 192 |
if (_excess) { |
186 | 193 |
delete _excess; |
187 | 194 |
} |
188 | 195 |
} |
189 | 196 |
|
190 | 197 |
public: |
191 | 198 |
|
192 | 199 |
typedef Preflow Create; |
193 | 200 |
|
194 | 201 |
///\name Named Template Parameters |
195 | 202 |
|
196 | 203 |
///@{ |
197 | 204 |
|
198 | 205 |
template <typename T> |
199 | 206 |
struct SetFlowMapTraits : public Traits { |
200 | 207 |
typedef T FlowMap; |
201 | 208 |
static FlowMap *createFlowMap(const Digraph&) { |
202 | 209 |
LEMON_ASSERT(false, "FlowMap is not initialized"); |
203 | 210 |
return 0; // ignore warnings |
204 | 211 |
} |
205 | 212 |
}; |
206 | 213 |
|
207 | 214 |
/// \brief \ref named-templ-param "Named parameter" for setting |
208 | 215 |
/// FlowMap type |
209 | 216 |
/// |
210 | 217 |
/// \ref named-templ-param "Named parameter" for setting FlowMap |
211 | 218 |
/// type. |
212 | 219 |
template <typename T> |
213 | 220 |
struct SetFlowMap |
214 | 221 |
: public Preflow<Digraph, CapacityMap, SetFlowMapTraits<T> > { |
215 | 222 |
typedef Preflow<Digraph, CapacityMap, |
216 | 223 |
SetFlowMapTraits<T> > Create; |
217 | 224 |
}; |
218 | 225 |
|
219 | 226 |
template <typename T> |
220 | 227 |
struct SetElevatorTraits : public Traits { |
221 | 228 |
typedef T Elevator; |
222 | 229 |
static Elevator *createElevator(const Digraph&, int) { |
223 | 230 |
LEMON_ASSERT(false, "Elevator is not initialized"); |
224 | 231 |
return 0; // ignore warnings |
225 | 232 |
} |
226 | 233 |
}; |
227 | 234 |
|
228 | 235 |
/// \brief \ref named-templ-param "Named parameter" for setting |
229 | 236 |
/// Elevator type |
230 | 237 |
/// |
231 | 238 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
232 | 239 |
/// type. If this named parameter is used, then an external |
233 | 240 |
/// elevator object must be passed to the algorithm using the |
234 | 241 |
/// \ref elevator(Elevator&) "elevator()" function before calling |
235 | 242 |
/// \ref run() or \ref init(). |
236 | 243 |
/// \sa SetStandardElevator |
237 | 244 |
template <typename T> |
238 | 245 |
struct SetElevator |
239 | 246 |
: public Preflow<Digraph, CapacityMap, SetElevatorTraits<T> > { |
240 | 247 |
typedef Preflow<Digraph, CapacityMap, |
241 | 248 |
SetElevatorTraits<T> > Create; |
242 | 249 |
}; |
243 | 250 |
|
244 | 251 |
template <typename T> |
245 | 252 |
struct SetStandardElevatorTraits : public Traits { |
246 | 253 |
typedef T Elevator; |
247 | 254 |
static Elevator *createElevator(const Digraph& digraph, int max_level) { |
248 | 255 |
return new Elevator(digraph, max_level); |
249 | 256 |
} |
250 | 257 |
}; |
251 | 258 |
|
252 | 259 |
/// \brief \ref named-templ-param "Named parameter" for setting |
253 | 260 |
/// Elevator type with automatic allocation |
254 | 261 |
/// |
255 | 262 |
/// \ref named-templ-param "Named parameter" for setting Elevator |
256 | 263 |
/// type with automatic allocation. |
257 | 264 |
/// The Elevator should have standard constructor interface to be |
258 | 265 |
/// able to automatically created by the algorithm (i.e. the |
259 | 266 |
/// digraph and the maximum level should be passed to it). |
260 | 267 |
/// However an external elevator object could also be passed to the |
261 | 268 |
/// algorithm with the \ref elevator(Elevator&) "elevator()" function |
262 | 269 |
/// before calling \ref run() or \ref init(). |
263 | 270 |
/// \sa SetElevator |
264 | 271 |
template <typename T> |
265 | 272 |
struct SetStandardElevator |
266 | 273 |
: public Preflow<Digraph, CapacityMap, |
267 | 274 |
SetStandardElevatorTraits<T> > { |
268 | 275 |
typedef Preflow<Digraph, CapacityMap, |
269 | 276 |
SetStandardElevatorTraits<T> > Create; |
270 | 277 |
}; |
271 | 278 |
|
272 | 279 |
/// @} |
273 | 280 |
|
274 | 281 |
protected: |
275 | 282 |
|
276 | 283 |
Preflow() {} |
277 | 284 |
|
278 | 285 |
public: |
279 | 286 |
|
280 | 287 |
|
281 | 288 |
/// \brief The constructor of the class. |
282 | 289 |
/// |
283 | 290 |
/// The constructor of the class. |
284 | 291 |
/// \param digraph The digraph the algorithm runs on. |
285 | 292 |
/// \param capacity The capacity of the arcs. |
286 | 293 |
/// \param source The source node. |
287 | 294 |
/// \param target The target node. |
288 | 295 |
Preflow(const Digraph& digraph, const CapacityMap& capacity, |
289 | 296 |
Node source, Node target) |
290 | 297 |
: _graph(digraph), _capacity(&capacity), |
291 | 298 |
_node_num(0), _source(source), _target(target), |
292 | 299 |
_flow(0), _local_flow(false), |
293 | 300 |
_level(0), _local_level(false), |
294 | 301 |
_excess(0), _tolerance(), _phase() {} |
295 | 302 |
|
296 | 303 |
/// \brief Destructor. |
297 | 304 |
/// |
298 | 305 |
/// Destructor. |
299 | 306 |
~Preflow() { |
300 | 307 |
destroyStructures(); |
301 | 308 |
} |
302 | 309 |
|
303 | 310 |
/// \brief Sets the capacity map. |
304 | 311 |
/// |
305 | 312 |
/// Sets the capacity map. |
306 | 313 |
/// \return <tt>(*this)</tt> |
307 | 314 |
Preflow& capacityMap(const CapacityMap& map) { |
308 | 315 |
_capacity = ↦ |
309 | 316 |
return *this; |
310 | 317 |
} |
311 | 318 |
|
312 | 319 |
/// \brief Sets the flow map. |
313 | 320 |
/// |
314 | 321 |
/// Sets the flow map. |
315 | 322 |
/// If you don't use this function before calling \ref run() or |
316 | 323 |
/// \ref init(), an instance will be allocated automatically. |
317 | 324 |
/// The destructor deallocates this automatically allocated map, |
318 | 325 |
/// of course. |
319 | 326 |
/// \return <tt>(*this)</tt> |
320 | 327 |
Preflow& flowMap(FlowMap& map) { |
321 | 328 |
if (_local_flow) { |
322 | 329 |
delete _flow; |
323 | 330 |
_local_flow = false; |
324 | 331 |
} |
325 | 332 |
_flow = ↦ |
326 | 333 |
return *this; |
327 | 334 |
} |
328 | 335 |
|
329 | 336 |
/// \brief Sets the source node. |
330 | 337 |
/// |
331 | 338 |
/// Sets the source node. |
332 | 339 |
/// \return <tt>(*this)</tt> |
333 | 340 |
Preflow& source(const Node& node) { |
334 | 341 |
_source = node; |
335 | 342 |
return *this; |
336 | 343 |
} |
337 | 344 |
|
338 | 345 |
/// \brief Sets the target node. |
339 | 346 |
/// |
340 | 347 |
/// Sets the target node. |
341 | 348 |
/// \return <tt>(*this)</tt> |
342 | 349 |
Preflow& target(const Node& node) { |
343 | 350 |
_target = node; |
344 | 351 |
return *this; |
345 | 352 |
} |
346 | 353 |
|
347 | 354 |
/// \brief Sets the elevator used by algorithm. |
348 | 355 |
/// |
349 | 356 |
/// Sets the elevator used by algorithm. |
350 | 357 |
/// If you don't use this function before calling \ref run() or |
351 | 358 |
/// \ref init(), an instance will be allocated automatically. |
352 | 359 |
/// The destructor deallocates this automatically allocated elevator, |
353 | 360 |
/// of course. |
354 | 361 |
/// \return <tt>(*this)</tt> |
355 | 362 |
Preflow& elevator(Elevator& elevator) { |
356 | 363 |
if (_local_level) { |
357 | 364 |
delete _level; |
358 | 365 |
_local_level = false; |
359 | 366 |
} |
360 | 367 |
_level = &elevator; |
361 | 368 |
return *this; |
362 | 369 |
} |
363 | 370 |
|
364 | 371 |
/// \brief Returns a const reference to the elevator. |
365 | 372 |
/// |
366 | 373 |
/// Returns a const reference to the elevator. |
367 | 374 |
/// |
368 | 375 |
/// \pre Either \ref run() or \ref init() must be called before |
369 | 376 |
/// using this function. |
370 | 377 |
const Elevator& elevator() const { |
371 | 378 |
return *_level; |
372 | 379 |
} |
373 | 380 |
|
374 | 381 |
/// \brief Sets the tolerance used by the algorithm. |
375 | 382 |
/// |
376 | 383 |
/// Sets the tolerance object used by the algorithm. |
377 | 384 |
/// \return <tt>(*this)</tt> |
378 | 385 |
Preflow& tolerance(const Tolerance& tolerance) { |
379 | 386 |
_tolerance = tolerance; |
380 | 387 |
return *this; |
381 | 388 |
} |
382 | 389 |
|
383 | 390 |
/// \brief Returns a const reference to the tolerance. |
384 | 391 |
/// |
385 | 392 |
/// Returns a const reference to the tolerance object used by |
386 | 393 |
/// the algorithm. |
387 | 394 |
const Tolerance& tolerance() const { |
388 | 395 |
return _tolerance; |
389 | 396 |
} |
390 | 397 |
|
391 | 398 |
/// \name Execution Control |
392 | 399 |
/// The simplest way to execute the preflow algorithm is to use |
393 | 400 |
/// \ref run() or \ref runMinCut().\n |
394 |
/// If you need more control on the initial solution or the execution, |
|
395 |
/// first you have to call one of the \ref init() functions, then |
|
401 |
/// If you need better control on the initial solution or the execution, |
|
402 |
/// you have to call one of the \ref init() functions first, then |
|
396 | 403 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
397 | 404 |
|
398 | 405 |
///@{ |
399 | 406 |
|
400 | 407 |
/// \brief Initializes the internal data structures. |
401 | 408 |
/// |
402 | 409 |
/// Initializes the internal data structures and sets the initial |
403 | 410 |
/// flow to zero on each arc. |
404 | 411 |
void init() { |
405 | 412 |
createStructures(); |
406 | 413 |
|
407 | 414 |
_phase = true; |
408 | 415 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
409 | 416 |
(*_excess)[n] = 0; |
410 | 417 |
} |
411 | 418 |
|
412 | 419 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
413 | 420 |
_flow->set(e, 0); |
414 | 421 |
} |
415 | 422 |
|
416 | 423 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
417 | 424 |
|
418 | 425 |
_level->initStart(); |
419 | 426 |
_level->initAddItem(_target); |
420 | 427 |
|
421 | 428 |
std::vector<Node> queue; |
422 | 429 |
reached[_source] = true; |
423 | 430 |
|
424 | 431 |
queue.push_back(_target); |
425 | 432 |
reached[_target] = true; |
426 | 433 |
while (!queue.empty()) { |
427 | 434 |
_level->initNewLevel(); |
428 | 435 |
std::vector<Node> nqueue; |
429 | 436 |
for (int i = 0; i < int(queue.size()); ++i) { |
430 | 437 |
Node n = queue[i]; |
431 | 438 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
432 | 439 |
Node u = _graph.source(e); |
433 | 440 |
if (!reached[u] && _tolerance.positive((*_capacity)[e])) { |
434 | 441 |
reached[u] = true; |
435 | 442 |
_level->initAddItem(u); |
436 | 443 |
nqueue.push_back(u); |
437 | 444 |
} |
438 | 445 |
} |
439 | 446 |
} |
440 | 447 |
queue.swap(nqueue); |
441 | 448 |
} |
442 | 449 |
_level->initFinish(); |
443 | 450 |
|
444 | 451 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
445 | 452 |
if (_tolerance.positive((*_capacity)[e])) { |
446 | 453 |
Node u = _graph.target(e); |
447 | 454 |
if ((*_level)[u] == _level->maxLevel()) continue; |
448 | 455 |
_flow->set(e, (*_capacity)[e]); |
449 | 456 |
(*_excess)[u] += (*_capacity)[e]; |
450 | 457 |
if (u != _target && !_level->active(u)) { |
451 | 458 |
_level->activate(u); |
452 | 459 |
} |
453 | 460 |
} |
454 | 461 |
} |
455 | 462 |
} |
456 | 463 |
|
457 | 464 |
/// \brief Initializes the internal data structures using the |
458 | 465 |
/// given flow map. |
459 | 466 |
/// |
460 | 467 |
/// Initializes the internal data structures and sets the initial |
461 | 468 |
/// flow to the given \c flowMap. The \c flowMap should contain a |
462 | 469 |
/// flow or at least a preflow, i.e. at each node excluding the |
463 | 470 |
/// source node the incoming flow should greater or equal to the |
464 | 471 |
/// outgoing flow. |
465 | 472 |
/// \return \c false if the given \c flowMap is not a preflow. |
466 | 473 |
template <typename FlowMap> |
467 | 474 |
bool init(const FlowMap& flowMap) { |
468 | 475 |
createStructures(); |
469 | 476 |
|
470 | 477 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
471 | 478 |
_flow->set(e, flowMap[e]); |
472 | 479 |
} |
473 | 480 |
|
474 | 481 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
475 | 482 |
Value excess = 0; |
476 | 483 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
477 | 484 |
excess += (*_flow)[e]; |
478 | 485 |
} |
479 | 486 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
480 | 487 |
excess -= (*_flow)[e]; |
481 | 488 |
} |
482 | 489 |
if (excess < 0 && n != _source) return false; |
483 | 490 |
(*_excess)[n] = excess; |
484 | 491 |
} |
485 | 492 |
|
486 | 493 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
487 | 494 |
|
488 | 495 |
_level->initStart(); |
489 | 496 |
_level->initAddItem(_target); |
490 | 497 |
|
491 | 498 |
std::vector<Node> queue; |
492 | 499 |
reached[_source] = true; |
493 | 500 |
|
494 | 501 |
queue.push_back(_target); |
495 | 502 |
reached[_target] = true; |
496 | 503 |
while (!queue.empty()) { |
497 | 504 |
_level->initNewLevel(); |
498 | 505 |
std::vector<Node> nqueue; |
499 | 506 |
for (int i = 0; i < int(queue.size()); ++i) { |
500 | 507 |
Node n = queue[i]; |
501 | 508 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
502 | 509 |
Node u = _graph.source(e); |
503 | 510 |
if (!reached[u] && |
504 | 511 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
505 | 512 |
reached[u] = true; |
506 | 513 |
_level->initAddItem(u); |
507 | 514 |
nqueue.push_back(u); |
508 | 515 |
} |
509 | 516 |
} |
510 | 517 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
511 | 518 |
Node v = _graph.target(e); |
512 | 519 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
513 | 520 |
reached[v] = true; |
514 | 521 |
_level->initAddItem(v); |
515 | 522 |
nqueue.push_back(v); |
516 | 523 |
} |
517 | 524 |
} |
518 | 525 |
} |
519 | 526 |
queue.swap(nqueue); |
520 | 527 |
} |
521 | 528 |
_level->initFinish(); |
522 | 529 |
|
523 | 530 |
for (OutArcIt e(_graph, _source); e != INVALID; ++e) { |
524 | 531 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
525 | 532 |
if (_tolerance.positive(rem)) { |
526 | 533 |
Node u = _graph.target(e); |
527 | 534 |
if ((*_level)[u] == _level->maxLevel()) continue; |
528 | 535 |
_flow->set(e, (*_capacity)[e]); |
529 | 536 |
(*_excess)[u] += rem; |
530 | 537 |
if (u != _target && !_level->active(u)) { |
531 | 538 |
_level->activate(u); |
532 | 539 |
} |
533 | 540 |
} |
534 | 541 |
} |
535 | 542 |
for (InArcIt e(_graph, _source); e != INVALID; ++e) { |
536 | 543 |
Value rem = (*_flow)[e]; |
537 | 544 |
if (_tolerance.positive(rem)) { |
538 | 545 |
Node v = _graph.source(e); |
539 | 546 |
if ((*_level)[v] == _level->maxLevel()) continue; |
540 | 547 |
_flow->set(e, 0); |
541 | 548 |
(*_excess)[v] += rem; |
542 | 549 |
if (v != _target && !_level->active(v)) { |
543 | 550 |
_level->activate(v); |
544 | 551 |
} |
545 | 552 |
} |
546 | 553 |
} |
547 | 554 |
return true; |
548 | 555 |
} |
549 | 556 |
|
550 | 557 |
/// \brief Starts the first phase of the preflow algorithm. |
551 | 558 |
/// |
552 | 559 |
/// The preflow algorithm consists of two phases, this method runs |
553 | 560 |
/// the first phase. After the first phase the maximum flow value |
554 | 561 |
/// and a minimum value cut can already be computed, although a |
555 | 562 |
/// maximum flow is not yet obtained. So after calling this method |
556 | 563 |
/// \ref flowValue() returns the value of a maximum flow and \ref |
557 | 564 |
/// minCut() returns a minimum cut. |
558 | 565 |
/// \pre One of the \ref init() functions must be called before |
559 | 566 |
/// using this function. |
560 | 567 |
void startFirstPhase() { |
561 | 568 |
_phase = true; |
562 | 569 |
|
563 | 570 |
Node n = _level->highestActive(); |
564 | 571 |
int level = _level->highestActiveLevel(); |
565 | 572 |
while (n != INVALID) { |
566 | 573 |
int num = _node_num; |
567 | 574 |
|
568 | 575 |
while (num > 0 && n != INVALID) { |
569 | 576 |
Value excess = (*_excess)[n]; |
570 | 577 |
int new_level = _level->maxLevel(); |
571 | 578 |
|
572 | 579 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
573 | 580 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
574 | 581 |
if (!_tolerance.positive(rem)) continue; |
575 | 582 |
Node v = _graph.target(e); |
576 | 583 |
if ((*_level)[v] < level) { |
577 | 584 |
if (!_level->active(v) && v != _target) { |
578 | 585 |
_level->activate(v); |
579 | 586 |
} |
580 | 587 |
if (!_tolerance.less(rem, excess)) { |
581 | 588 |
_flow->set(e, (*_flow)[e] + excess); |
582 | 589 |
(*_excess)[v] += excess; |
583 | 590 |
excess = 0; |
584 | 591 |
goto no_more_push_1; |
585 | 592 |
} else { |
586 | 593 |
excess -= rem; |
587 | 594 |
(*_excess)[v] += rem; |
588 | 595 |
_flow->set(e, (*_capacity)[e]); |
589 | 596 |
} |
590 | 597 |
} else if (new_level > (*_level)[v]) { |
591 | 598 |
new_level = (*_level)[v]; |
592 | 599 |
} |
593 | 600 |
} |
594 | 601 |
|
595 | 602 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
596 | 603 |
Value rem = (*_flow)[e]; |
597 | 604 |
if (!_tolerance.positive(rem)) continue; |
598 | 605 |
Node v = _graph.source(e); |
599 | 606 |
if ((*_level)[v] < level) { |
600 | 607 |
if (!_level->active(v) && v != _target) { |
601 | 608 |
_level->activate(v); |
602 | 609 |
} |
603 | 610 |
if (!_tolerance.less(rem, excess)) { |
604 | 611 |
_flow->set(e, (*_flow)[e] - excess); |
605 | 612 |
(*_excess)[v] += excess; |
606 | 613 |
excess = 0; |
607 | 614 |
goto no_more_push_1; |
608 | 615 |
} else { |
609 | 616 |
excess -= rem; |
610 | 617 |
(*_excess)[v] += rem; |
611 | 618 |
_flow->set(e, 0); |
612 | 619 |
} |
613 | 620 |
} else if (new_level > (*_level)[v]) { |
614 | 621 |
new_level = (*_level)[v]; |
615 | 622 |
} |
616 | 623 |
} |
617 | 624 |
|
618 | 625 |
no_more_push_1: |
619 | 626 |
|
620 | 627 |
(*_excess)[n] = excess; |
621 | 628 |
|
622 | 629 |
if (excess != 0) { |
623 | 630 |
if (new_level + 1 < _level->maxLevel()) { |
624 | 631 |
_level->liftHighestActive(new_level + 1); |
625 | 632 |
} else { |
626 | 633 |
_level->liftHighestActiveToTop(); |
627 | 634 |
} |
628 | 635 |
if (_level->emptyLevel(level)) { |
629 | 636 |
_level->liftToTop(level); |
630 | 637 |
} |
631 | 638 |
} else { |
632 | 639 |
_level->deactivate(n); |
633 | 640 |
} |
634 | 641 |
|
635 | 642 |
n = _level->highestActive(); |
636 | 643 |
level = _level->highestActiveLevel(); |
637 | 644 |
--num; |
638 | 645 |
} |
639 | 646 |
|
640 | 647 |
num = _node_num * 20; |
641 | 648 |
while (num > 0 && n != INVALID) { |
642 | 649 |
Value excess = (*_excess)[n]; |
643 | 650 |
int new_level = _level->maxLevel(); |
644 | 651 |
|
645 | 652 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
646 | 653 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
647 | 654 |
if (!_tolerance.positive(rem)) continue; |
648 | 655 |
Node v = _graph.target(e); |
649 | 656 |
if ((*_level)[v] < level) { |
650 | 657 |
if (!_level->active(v) && v != _target) { |
651 | 658 |
_level->activate(v); |
652 | 659 |
} |
653 | 660 |
if (!_tolerance.less(rem, excess)) { |
654 | 661 |
_flow->set(e, (*_flow)[e] + excess); |
655 | 662 |
(*_excess)[v] += excess; |
656 | 663 |
excess = 0; |
657 | 664 |
goto no_more_push_2; |
658 | 665 |
} else { |
659 | 666 |
excess -= rem; |
660 | 667 |
(*_excess)[v] += rem; |
661 | 668 |
_flow->set(e, (*_capacity)[e]); |
662 | 669 |
} |
663 | 670 |
} else if (new_level > (*_level)[v]) { |
664 | 671 |
new_level = (*_level)[v]; |
665 | 672 |
} |
666 | 673 |
} |
667 | 674 |
|
668 | 675 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
669 | 676 |
Value rem = (*_flow)[e]; |
670 | 677 |
if (!_tolerance.positive(rem)) continue; |
671 | 678 |
Node v = _graph.source(e); |
672 | 679 |
if ((*_level)[v] < level) { |
673 | 680 |
if (!_level->active(v) && v != _target) { |
674 | 681 |
_level->activate(v); |
675 | 682 |
} |
676 | 683 |
if (!_tolerance.less(rem, excess)) { |
677 | 684 |
_flow->set(e, (*_flow)[e] - excess); |
678 | 685 |
(*_excess)[v] += excess; |
679 | 686 |
excess = 0; |
680 | 687 |
goto no_more_push_2; |
681 | 688 |
} else { |
682 | 689 |
excess -= rem; |
683 | 690 |
(*_excess)[v] += rem; |
684 | 691 |
_flow->set(e, 0); |
685 | 692 |
} |
686 | 693 |
} else if (new_level > (*_level)[v]) { |
687 | 694 |
new_level = (*_level)[v]; |
688 | 695 |
} |
689 | 696 |
} |
690 | 697 |
|
691 | 698 |
no_more_push_2: |
692 | 699 |
|
693 | 700 |
(*_excess)[n] = excess; |
694 | 701 |
|
695 | 702 |
if (excess != 0) { |
696 | 703 |
if (new_level + 1 < _level->maxLevel()) { |
697 | 704 |
_level->liftActiveOn(level, new_level + 1); |
698 | 705 |
} else { |
699 | 706 |
_level->liftActiveToTop(level); |
700 | 707 |
} |
701 | 708 |
if (_level->emptyLevel(level)) { |
702 | 709 |
_level->liftToTop(level); |
703 | 710 |
} |
704 | 711 |
} else { |
705 | 712 |
_level->deactivate(n); |
706 | 713 |
} |
707 | 714 |
|
708 | 715 |
while (level >= 0 && _level->activeFree(level)) { |
709 | 716 |
--level; |
710 | 717 |
} |
711 | 718 |
if (level == -1) { |
712 | 719 |
n = _level->highestActive(); |
713 | 720 |
level = _level->highestActiveLevel(); |
714 | 721 |
} else { |
715 | 722 |
n = _level->activeOn(level); |
716 | 723 |
} |
717 | 724 |
--num; |
718 | 725 |
} |
719 | 726 |
} |
720 | 727 |
} |
721 | 728 |
|
722 | 729 |
/// \brief Starts the second phase of the preflow algorithm. |
723 | 730 |
/// |
724 | 731 |
/// The preflow algorithm consists of two phases, this method runs |
725 | 732 |
/// the second phase. After calling one of the \ref init() functions |
726 | 733 |
/// and \ref startFirstPhase() and then \ref startSecondPhase(), |
727 | 734 |
/// \ref flowMap() returns a maximum flow, \ref flowValue() returns the |
728 | 735 |
/// value of a maximum flow, \ref minCut() returns a minimum cut |
729 | 736 |
/// \pre One of the \ref init() functions and \ref startFirstPhase() |
730 | 737 |
/// must be called before using this function. |
731 | 738 |
void startSecondPhase() { |
732 | 739 |
_phase = false; |
733 | 740 |
|
734 | 741 |
typename Digraph::template NodeMap<bool> reached(_graph); |
735 | 742 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
736 | 743 |
reached[n] = (*_level)[n] < _level->maxLevel(); |
737 | 744 |
} |
738 | 745 |
|
739 | 746 |
_level->initStart(); |
740 | 747 |
_level->initAddItem(_source); |
741 | 748 |
|
742 | 749 |
std::vector<Node> queue; |
743 | 750 |
queue.push_back(_source); |
744 | 751 |
reached[_source] = true; |
745 | 752 |
|
746 | 753 |
while (!queue.empty()) { |
747 | 754 |
_level->initNewLevel(); |
748 | 755 |
std::vector<Node> nqueue; |
749 | 756 |
for (int i = 0; i < int(queue.size()); ++i) { |
750 | 757 |
Node n = queue[i]; |
751 | 758 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
752 | 759 |
Node v = _graph.target(e); |
753 | 760 |
if (!reached[v] && _tolerance.positive((*_flow)[e])) { |
754 | 761 |
reached[v] = true; |
755 | 762 |
_level->initAddItem(v); |
756 | 763 |
nqueue.push_back(v); |
757 | 764 |
} |
758 | 765 |
} |
759 | 766 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
760 | 767 |
Node u = _graph.source(e); |
761 | 768 |
if (!reached[u] && |
762 | 769 |
_tolerance.positive((*_capacity)[e] - (*_flow)[e])) { |
763 | 770 |
reached[u] = true; |
764 | 771 |
_level->initAddItem(u); |
765 | 772 |
nqueue.push_back(u); |
766 | 773 |
} |
767 | 774 |
} |
768 | 775 |
} |
769 | 776 |
queue.swap(nqueue); |
770 | 777 |
} |
771 | 778 |
_level->initFinish(); |
772 | 779 |
|
773 | 780 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
774 | 781 |
if (!reached[n]) { |
775 | 782 |
_level->dirtyTopButOne(n); |
776 | 783 |
} else if ((*_excess)[n] > 0 && _target != n) { |
777 | 784 |
_level->activate(n); |
778 | 785 |
} |
779 | 786 |
} |
780 | 787 |
|
781 | 788 |
Node n; |
782 | 789 |
while ((n = _level->highestActive()) != INVALID) { |
783 | 790 |
Value excess = (*_excess)[n]; |
784 | 791 |
int level = _level->highestActiveLevel(); |
785 | 792 |
int new_level = _level->maxLevel(); |
786 | 793 |
|
787 | 794 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
788 | 795 |
Value rem = (*_capacity)[e] - (*_flow)[e]; |
789 | 796 |
if (!_tolerance.positive(rem)) continue; |
790 | 797 |
Node v = _graph.target(e); |
791 | 798 |
if ((*_level)[v] < level) { |
792 | 799 |
if (!_level->active(v) && v != _source) { |
793 | 800 |
_level->activate(v); |
794 | 801 |
} |
795 | 802 |
if (!_tolerance.less(rem, excess)) { |
796 | 803 |
_flow->set(e, (*_flow)[e] + excess); |
797 | 804 |
(*_excess)[v] += excess; |
798 | 805 |
excess = 0; |
799 | 806 |
goto no_more_push; |
800 | 807 |
} else { |
801 | 808 |
excess -= rem; |
802 | 809 |
(*_excess)[v] += rem; |
803 | 810 |
_flow->set(e, (*_capacity)[e]); |
804 | 811 |
} |
805 | 812 |
} else if (new_level > (*_level)[v]) { |
806 | 813 |
new_level = (*_level)[v]; |
807 | 814 |
} |
808 | 815 |
} |
809 | 816 |
|
810 | 817 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
811 | 818 |
Value rem = (*_flow)[e]; |
812 | 819 |
if (!_tolerance.positive(rem)) continue; |
813 | 820 |
Node v = _graph.source(e); |
814 | 821 |
if ((*_level)[v] < level) { |
815 | 822 |
if (!_level->active(v) && v != _source) { |
816 | 823 |
_level->activate(v); |
817 | 824 |
} |
818 | 825 |
if (!_tolerance.less(rem, excess)) { |
819 | 826 |
_flow->set(e, (*_flow)[e] - excess); |
820 | 827 |
(*_excess)[v] += excess; |
821 | 828 |
excess = 0; |
822 | 829 |
goto no_more_push; |
823 | 830 |
} else { |
824 | 831 |
excess -= rem; |
825 | 832 |
(*_excess)[v] += rem; |
826 | 833 |
_flow->set(e, 0); |
827 | 834 |
} |
828 | 835 |
} else if (new_level > (*_level)[v]) { |
829 | 836 |
new_level = (*_level)[v]; |
830 | 837 |
} |
831 | 838 |
} |
832 | 839 |
|
833 | 840 |
no_more_push: |
834 | 841 |
|
835 | 842 |
(*_excess)[n] = excess; |
836 | 843 |
|
837 | 844 |
if (excess != 0) { |
838 | 845 |
if (new_level + 1 < _level->maxLevel()) { |
839 | 846 |
_level->liftHighestActive(new_level + 1); |
840 | 847 |
} else { |
841 | 848 |
// Calculation error |
842 | 849 |
_level->liftHighestActiveToTop(); |
843 | 850 |
} |
844 | 851 |
if (_level->emptyLevel(level)) { |
845 | 852 |
// Calculation error |
846 | 853 |
_level->liftToTop(level); |
847 | 854 |
} |
848 | 855 |
} else { |
849 | 856 |
_level->deactivate(n); |
850 | 857 |
} |
851 | 858 |
|
852 | 859 |
} |
853 | 860 |
} |
854 | 861 |
|
855 | 862 |
/// \brief Runs the preflow algorithm. |
856 | 863 |
/// |
857 | 864 |
/// Runs the preflow algorithm. |
858 | 865 |
/// \note pf.run() is just a shortcut of the following code. |
859 | 866 |
/// \code |
860 | 867 |
/// pf.init(); |
861 | 868 |
/// pf.startFirstPhase(); |
862 | 869 |
/// pf.startSecondPhase(); |
863 | 870 |
/// \endcode |
864 | 871 |
void run() { |
865 | 872 |
init(); |
866 | 873 |
startFirstPhase(); |
867 | 874 |
startSecondPhase(); |
868 | 875 |
} |
869 | 876 |
|
870 | 877 |
/// \brief Runs the preflow algorithm to compute the minimum cut. |
871 | 878 |
/// |
872 | 879 |
/// Runs the preflow algorithm to compute the minimum cut. |
873 | 880 |
/// \note pf.runMinCut() is just a shortcut of the following code. |
874 | 881 |
/// \code |
875 | 882 |
/// pf.init(); |
876 | 883 |
/// pf.startFirstPhase(); |
877 | 884 |
/// \endcode |
878 | 885 |
void runMinCut() { |
879 | 886 |
init(); |
880 | 887 |
startFirstPhase(); |
881 | 888 |
} |
882 | 889 |
|
883 | 890 |
/// @} |
884 | 891 |
|
885 | 892 |
/// \name Query Functions |
886 | 893 |
/// The results of the preflow algorithm can be obtained using these |
887 | 894 |
/// functions.\n |
888 | 895 |
/// Either one of the \ref run() "run*()" functions or one of the |
889 | 896 |
/// \ref startFirstPhase() "start*()" functions should be called |
890 | 897 |
/// before using them. |
891 | 898 |
|
892 | 899 |
///@{ |
893 | 900 |
|
894 | 901 |
/// \brief Returns the value of the maximum flow. |
895 | 902 |
/// |
896 | 903 |
/// Returns the value of the maximum flow by returning the excess |
897 | 904 |
/// of the target node. This value equals to the value of |
898 | 905 |
/// the maximum flow already after the first phase of the algorithm. |
899 | 906 |
/// |
900 | 907 |
/// \pre Either \ref run() or \ref init() must be called before |
901 | 908 |
/// using this function. |
902 | 909 |
Value flowValue() const { |
903 | 910 |
return (*_excess)[_target]; |
904 | 911 |
} |
905 | 912 |
|
906 | 913 |
/// \brief Returns the flow value on the given arc. |
907 | 914 |
/// |
908 | 915 |
/// Returns the flow value on the given arc. This method can |
909 | 916 |
/// be called after the second phase of the algorithm. |
910 | 917 |
/// |
911 | 918 |
/// \pre Either \ref run() or \ref init() must be called before |
912 | 919 |
/// using this function. |
913 | 920 |
Value flow(const Arc& arc) const { |
914 | 921 |
return (*_flow)[arc]; |
915 | 922 |
} |
916 | 923 |
|
917 | 924 |
/// \brief Returns a const reference to the flow map. |
918 | 925 |
/// |
919 | 926 |
/// Returns a const reference to the arc map storing the found flow. |
920 | 927 |
/// This method can be called after the second phase of the algorithm. |
921 | 928 |
/// |
922 | 929 |
/// \pre Either \ref run() or \ref init() must be called before |
923 | 930 |
/// using this function. |
924 | 931 |
const FlowMap& flowMap() const { |
925 | 932 |
return *_flow; |
926 | 933 |
} |
927 | 934 |
|
928 | 935 |
/// \brief Returns \c true when the node is on the source side of the |
929 | 936 |
/// minimum cut. |
930 | 937 |
/// |
931 | 938 |
/// Returns true when the node is on the source side of the found |
932 | 939 |
/// minimum cut. This method can be called both after running \ref |
933 | 940 |
/// startFirstPhase() and \ref startSecondPhase(). |
934 | 941 |
/// |
935 | 942 |
/// \pre Either \ref run() or \ref init() must be called before |
936 | 943 |
/// using this function. |
937 | 944 |
bool minCut(const Node& node) const { |
938 | 945 |
return ((*_level)[node] == _level->maxLevel()) == _phase; |
939 | 946 |
} |
940 | 947 |
|
941 | 948 |
/// \brief Gives back a minimum value cut. |
942 | 949 |
/// |
943 | 950 |
/// Sets \c cutMap to the characteristic vector of a minimum value |
944 | 951 |
/// cut. \c cutMap should be a \ref concepts::WriteMap "writable" |
945 | 952 |
/// node map with \c bool (or convertible) value type. |
946 | 953 |
/// |
947 | 954 |
/// This method can be called both after running \ref startFirstPhase() |
948 | 955 |
/// and \ref startSecondPhase(). The result after the second phase |
949 | 956 |
/// could be slightly different if inexact computation is used. |
950 | 957 |
/// |
951 | 958 |
/// \note This function calls \ref minCut() for each node, so it runs in |
952 | 959 |
/// O(n) time. |
953 | 960 |
/// |
954 | 961 |
/// \pre Either \ref run() or \ref init() must be called before |
955 | 962 |
/// using this function. |
956 | 963 |
template <typename CutMap> |
957 | 964 |
void minCutMap(CutMap& cutMap) const { |
958 | 965 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
959 | 966 |
cutMap.set(n, minCut(n)); |
960 | 967 |
} |
961 | 968 |
} |
962 | 969 |
|
963 | 970 |
/// @} |
964 | 971 |
}; |
965 | 972 |
} |
966 | 973 |
|
967 | 974 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <deque> |
20 | 20 |
#include <set> |
21 | 21 |
|
22 | 22 |
#include <lemon/concept_check.h> |
23 | 23 |
#include <lemon/concepts/maps.h> |
24 | 24 |
#include <lemon/maps.h> |
25 |
#include <lemon/list_graph.h> |
|
25 | 26 |
#include <lemon/smart_graph.h> |
27 |
#include <lemon/adaptors.h> |
|
28 |
#include <lemon/dfs.h> |
|
26 | 29 |
|
27 | 30 |
#include "test_tools.h" |
28 | 31 |
|
29 | 32 |
using namespace lemon; |
30 | 33 |
using namespace lemon::concepts; |
31 | 34 |
|
32 | 35 |
struct A {}; |
33 | 36 |
inline bool operator<(A, A) { return true; } |
34 | 37 |
struct B {}; |
35 | 38 |
|
36 | 39 |
class C { |
37 | 40 |
int x; |
38 | 41 |
public: |
39 | 42 |
C(int _x) : x(_x) {} |
40 | 43 |
}; |
41 | 44 |
|
42 | 45 |
class F { |
43 | 46 |
public: |
44 | 47 |
typedef A argument_type; |
45 | 48 |
typedef B result_type; |
46 | 49 |
|
47 | 50 |
B operator()(const A&) const { return B(); } |
48 | 51 |
private: |
49 | 52 |
F& operator=(const F&); |
50 | 53 |
}; |
51 | 54 |
|
52 | 55 |
int func(A) { return 3; } |
53 | 56 |
|
54 | 57 |
int binc(int a, B) { return a+1; } |
55 | 58 |
|
56 | 59 |
typedef ReadMap<A, double> DoubleMap; |
57 | 60 |
typedef ReadWriteMap<A, double> DoubleWriteMap; |
58 | 61 |
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap; |
59 | 62 |
|
60 | 63 |
typedef ReadMap<A, bool> BoolMap; |
61 | 64 |
typedef ReadWriteMap<A, bool> BoolWriteMap; |
62 | 65 |
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap; |
63 | 66 |
|
67 |
template<typename Map1, typename Map2, typename ItemIt> |
|
68 |
void compareMap(const Map1& map1, const Map2& map2, ItemIt it) { |
|
69 |
for (; it != INVALID; ++it) |
|
70 |
check(map1[it] == map2[it], "The maps are not equal"); |
|
71 |
} |
|
72 |
|
|
64 | 73 |
int main() |
65 | 74 |
{ |
66 | 75 |
// Map concepts |
67 | 76 |
checkConcept<ReadMap<A,B>, ReadMap<A,B> >(); |
68 | 77 |
checkConcept<ReadMap<A,C>, ReadMap<A,C> >(); |
69 | 78 |
checkConcept<WriteMap<A,B>, WriteMap<A,B> >(); |
70 | 79 |
checkConcept<WriteMap<A,C>, WriteMap<A,C> >(); |
71 | 80 |
checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >(); |
72 | 81 |
checkConcept<ReadWriteMap<A,C>, ReadWriteMap<A,C> >(); |
73 | 82 |
checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >(); |
74 | 83 |
checkConcept<ReferenceMap<A,C,C&,const C&>, ReferenceMap<A,C,C&,const C&> >(); |
75 | 84 |
|
76 | 85 |
// NullMap |
77 | 86 |
{ |
78 | 87 |
checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >(); |
79 | 88 |
NullMap<A,B> map1; |
80 | 89 |
NullMap<A,B> map2 = map1; |
81 | 90 |
map1 = nullMap<A,B>(); |
82 | 91 |
} |
83 | 92 |
|
84 | 93 |
// ConstMap |
85 | 94 |
{ |
86 | 95 |
checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >(); |
87 | 96 |
checkConcept<ReadWriteMap<A,C>, ConstMap<A,C> >(); |
88 | 97 |
ConstMap<A,B> map1; |
89 | 98 |
ConstMap<A,B> map2 = B(); |
90 | 99 |
ConstMap<A,B> map3 = map1; |
91 | 100 |
map1 = constMap<A>(B()); |
92 | 101 |
map1 = constMap<A,B>(); |
93 | 102 |
map1.setAll(B()); |
94 | 103 |
ConstMap<A,C> map4(C(1)); |
95 | 104 |
ConstMap<A,C> map5 = map4; |
96 | 105 |
map4 = constMap<A>(C(2)); |
97 | 106 |
map4.setAll(C(3)); |
98 | 107 |
|
99 | 108 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >(); |
100 | 109 |
check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap"); |
101 | 110 |
|
102 | 111 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >(); |
103 | 112 |
ConstMap<A,Const<int,10> > map6; |
104 | 113 |
ConstMap<A,Const<int,10> > map7 = map6; |
105 | 114 |
map6 = constMap<A,int,10>(); |
106 | 115 |
map7 = constMap<A,Const<int,10> >(); |
107 | 116 |
check(map6[A()] == 10 && map7[A()] == 10, |
108 | 117 |
"Something is wrong with ConstMap"); |
109 | 118 |
} |
110 | 119 |
|
111 | 120 |
// IdentityMap |
112 | 121 |
{ |
113 | 122 |
checkConcept<ReadMap<A,A>, IdentityMap<A> >(); |
114 | 123 |
IdentityMap<A> map1; |
115 | 124 |
IdentityMap<A> map2 = map1; |
116 | 125 |
map1 = identityMap<A>(); |
117 | 126 |
|
118 | 127 |
checkConcept<ReadMap<double,double>, IdentityMap<double> >(); |
119 | 128 |
check(identityMap<double>()[1.0] == 1.0 && |
120 | 129 |
identityMap<double>()[3.14] == 3.14, |
121 | 130 |
"Something is wrong with IdentityMap"); |
122 | 131 |
} |
123 | 132 |
|
124 | 133 |
// RangeMap |
125 | 134 |
{ |
126 | 135 |
checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >(); |
127 | 136 |
RangeMap<B> map1; |
128 | 137 |
RangeMap<B> map2(10); |
129 | 138 |
RangeMap<B> map3(10,B()); |
130 | 139 |
RangeMap<B> map4 = map1; |
131 | 140 |
RangeMap<B> map5 = rangeMap<B>(); |
132 | 141 |
RangeMap<B> map6 = rangeMap<B>(10); |
133 | 142 |
RangeMap<B> map7 = rangeMap(10,B()); |
134 | 143 |
|
135 | 144 |
checkConcept< ReferenceMap<int, double, double&, const double&>, |
136 | 145 |
RangeMap<double> >(); |
137 | 146 |
std::vector<double> v(10, 0); |
138 | 147 |
v[5] = 100; |
139 | 148 |
RangeMap<double> map8(v); |
140 | 149 |
RangeMap<double> map9 = rangeMap(v); |
141 | 150 |
check(map9.size() == 10 && map9[2] == 0 && map9[5] == 100, |
142 | 151 |
"Something is wrong with RangeMap"); |
143 | 152 |
} |
144 | 153 |
|
145 | 154 |
// SparseMap |
146 | 155 |
{ |
147 | 156 |
checkConcept<ReferenceMap<A,B,B&,const B&>, SparseMap<A,B> >(); |
148 | 157 |
SparseMap<A,B> map1; |
149 | 158 |
SparseMap<A,B> map2 = B(); |
150 | 159 |
SparseMap<A,B> map3 = sparseMap<A,B>(); |
151 | 160 |
SparseMap<A,B> map4 = sparseMap<A>(B()); |
152 | 161 |
|
153 | 162 |
checkConcept< ReferenceMap<double, int, int&, const int&>, |
154 | 163 |
SparseMap<double, int> >(); |
155 | 164 |
std::map<double, int> m; |
156 | 165 |
SparseMap<double, int> map5(m); |
157 | 166 |
SparseMap<double, int> map6(m,10); |
158 | 167 |
SparseMap<double, int> map7 = sparseMap(m); |
159 | 168 |
SparseMap<double, int> map8 = sparseMap(m,10); |
160 | 169 |
|
161 | 170 |
check(map5[1.0] == 0 && map5[3.14] == 0 && |
162 | 171 |
map6[1.0] == 10 && map6[3.14] == 10, |
163 | 172 |
"Something is wrong with SparseMap"); |
164 | 173 |
map5[1.0] = map6[3.14] = 100; |
165 | 174 |
check(map5[1.0] == 100 && map5[3.14] == 0 && |
166 | 175 |
map6[1.0] == 10 && map6[3.14] == 100, |
167 | 176 |
"Something is wrong with SparseMap"); |
168 | 177 |
} |
169 | 178 |
|
170 | 179 |
// ComposeMap |
171 | 180 |
{ |
172 | 181 |
typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap; |
173 | 182 |
checkConcept<ReadMap<B,double>, CompMap>(); |
174 | 183 |
CompMap map1 = CompMap(DoubleMap(),ReadMap<B,A>()); |
175 | 184 |
CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>()); |
176 | 185 |
|
177 | 186 |
SparseMap<double, bool> m1(false); m1[3.14] = true; |
178 | 187 |
RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14; |
179 | 188 |
check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1], |
180 | 189 |
"Something is wrong with ComposeMap") |
181 | 190 |
} |
182 | 191 |
|
183 | 192 |
// CombineMap |
184 | 193 |
{ |
185 | 194 |
typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap; |
186 | 195 |
checkConcept<ReadMap<A,double>, CombMap>(); |
187 | 196 |
CombMap map1 = CombMap(DoubleMap(), DoubleMap()); |
188 | 197 |
CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>()); |
189 | 198 |
|
190 | 199 |
check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3, |
191 | 200 |
"Something is wrong with CombineMap"); |
192 | 201 |
} |
193 | 202 |
|
194 | 203 |
// FunctorToMap, MapToFunctor |
195 | 204 |
{ |
196 | 205 |
checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >(); |
197 | 206 |
checkConcept<ReadMap<A,B>, FunctorToMap<F> >(); |
198 | 207 |
FunctorToMap<F> map1; |
199 | 208 |
FunctorToMap<F> map2 = FunctorToMap<F>(F()); |
200 | 209 |
B b = functorToMap(F())[A()]; |
201 | 210 |
|
202 | 211 |
checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >(); |
203 | 212 |
MapToFunctor<ReadMap<A,B> > map = MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>()); |
204 | 213 |
|
205 | 214 |
check(functorToMap(&func)[A()] == 3, |
206 | 215 |
"Something is wrong with FunctorToMap"); |
207 | 216 |
check(mapToFunctor(constMap<A,int>(2))(A()) == 2, |
208 | 217 |
"Something is wrong with MapToFunctor"); |
209 | 218 |
check(mapToFunctor(functorToMap(&func))(A()) == 3 && |
210 | 219 |
mapToFunctor(functorToMap(&func))[A()] == 3, |
211 | 220 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
212 | 221 |
check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2, |
213 | 222 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
214 | 223 |
} |
215 | 224 |
|
216 | 225 |
// ConvertMap |
217 | 226 |
{ |
218 | 227 |
checkConcept<ReadMap<double,double>, |
219 | 228 |
ConvertMap<ReadMap<double, int>, double> >(); |
220 | 229 |
ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true)); |
221 | 230 |
ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false)); |
222 | 231 |
} |
223 | 232 |
|
224 | 233 |
// ForkMap |
225 | 234 |
{ |
226 | 235 |
checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >(); |
227 | 236 |
|
228 | 237 |
typedef RangeMap<double> RM; |
229 | 238 |
typedef SparseMap<int, double> SM; |
230 | 239 |
RM m1(10, -1); |
231 | 240 |
SM m2(-1); |
232 | 241 |
checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >(); |
233 | 242 |
checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >(); |
234 | 243 |
ForkMap<RM, SM> map1(m1,m2); |
235 | 244 |
ForkMap<SM, RM> map2 = forkMap(m2,m1); |
236 | 245 |
map2.set(5, 10); |
237 | 246 |
check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 && |
238 | 247 |
m2[5] == 10 && map2[1] == -1 && map2[5] == 10, |
239 | 248 |
"Something is wrong with ForkMap"); |
240 | 249 |
} |
241 | 250 |
|
242 | 251 |
// Arithmetic maps: |
243 | 252 |
// - AddMap, SubMap, MulMap, DivMap |
244 | 253 |
// - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap |
245 | 254 |
// - NegMap, NegWriteMap, AbsMap |
246 | 255 |
{ |
247 | 256 |
checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >(); |
248 | 257 |
checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >(); |
249 | 258 |
checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >(); |
250 | 259 |
checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >(); |
251 | 260 |
|
252 | 261 |
ConstMap<int, double> c1(1.0), c2(3.14); |
253 | 262 |
IdentityMap<int> im; |
254 | 263 |
ConvertMap<IdentityMap<int>, double> id(im); |
255 | 264 |
check(addMap(c1,id)[0] == 1.0 && addMap(c1,id)[10] == 11.0, |
256 | 265 |
"Something is wrong with AddMap"); |
257 | 266 |
check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0, |
258 | 267 |
"Something is wrong with SubMap"); |
259 | 268 |
check(mulMap(id,c2)[0] == 0 && mulMap(id,c2)[2] == 6.28, |
260 | 269 |
"Something is wrong with MulMap"); |
261 | 270 |
check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2] == 1.57, |
262 | 271 |
"Something is wrong with DivMap"); |
263 | 272 |
|
264 | 273 |
checkConcept<DoubleMap, ShiftMap<DoubleMap> >(); |
265 | 274 |
checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >(); |
266 | 275 |
checkConcept<DoubleMap, ScaleMap<DoubleMap> >(); |
267 | 276 |
checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >(); |
268 | 277 |
checkConcept<DoubleMap, NegMap<DoubleMap> >(); |
269 | 278 |
checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >(); |
270 | 279 |
checkConcept<DoubleMap, AbsMap<DoubleMap> >(); |
271 | 280 |
|
272 | 281 |
check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0, |
273 | 282 |
"Something is wrong with ShiftMap"); |
274 | 283 |
check(shiftWriteMap(id, 2.0)[1] == 3.0 && |
275 | 284 |
shiftWriteMap(id, 2.0)[10] == 12.0, |
276 | 285 |
"Something is wrong with ShiftWriteMap"); |
277 | 286 |
check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0, |
278 | 287 |
"Something is wrong with ScaleMap"); |
279 | 288 |
check(scaleWriteMap(id, 2.0)[1] == 2.0 && |
280 | 289 |
scaleWriteMap(id, 2.0)[10] == 20.0, |
281 | 290 |
"Something is wrong with ScaleWriteMap"); |
282 | 291 |
check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0, |
283 | 292 |
"Something is wrong with NegMap"); |
284 | 293 |
check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0, |
285 | 294 |
"Something is wrong with NegWriteMap"); |
286 | 295 |
check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0, |
287 | 296 |
"Something is wrong with AbsMap"); |
288 | 297 |
} |
289 | 298 |
|
290 | 299 |
// Logical maps: |
291 | 300 |
// - TrueMap, FalseMap |
292 | 301 |
// - AndMap, OrMap |
293 | 302 |
// - NotMap, NotWriteMap |
294 | 303 |
// - EqualMap, LessMap |
295 | 304 |
{ |
296 | 305 |
checkConcept<BoolMap, TrueMap<A> >(); |
297 | 306 |
checkConcept<BoolMap, FalseMap<A> >(); |
298 | 307 |
checkConcept<BoolMap, AndMap<BoolMap,BoolMap> >(); |
299 | 308 |
checkConcept<BoolMap, OrMap<BoolMap,BoolMap> >(); |
300 | 309 |
checkConcept<BoolMap, NotMap<BoolMap> >(); |
301 | 310 |
checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >(); |
302 | 311 |
checkConcept<BoolMap, EqualMap<DoubleMap,DoubleMap> >(); |
303 | 312 |
checkConcept<BoolMap, LessMap<DoubleMap,DoubleMap> >(); |
304 | 313 |
|
305 | 314 |
TrueMap<int> tm; |
306 | 315 |
FalseMap<int> fm; |
307 | 316 |
RangeMap<bool> rm(2); |
308 | 317 |
rm[0] = true; rm[1] = false; |
309 | 318 |
check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] && |
310 | 319 |
!andMap(fm,rm)[0] && !andMap(fm,rm)[1], |
311 | 320 |
"Something is wrong with AndMap"); |
312 | 321 |
check(orMap(tm,rm)[0] && orMap(tm,rm)[1] && |
313 | 322 |
orMap(fm,rm)[0] && !orMap(fm,rm)[1], |
314 | 323 |
"Something is wrong with OrMap"); |
315 | 324 |
check(!notMap(rm)[0] && notMap(rm)[1], |
316 | 325 |
"Something is wrong with NotMap"); |
317 | 326 |
check(!notWriteMap(rm)[0] && notWriteMap(rm)[1], |
318 | 327 |
"Something is wrong with NotWriteMap"); |
319 | 328 |
|
320 | 329 |
ConstMap<int, double> cm(2.0); |
321 | 330 |
IdentityMap<int> im; |
322 | 331 |
ConvertMap<IdentityMap<int>, double> id(im); |
323 | 332 |
check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3], |
324 | 333 |
"Something is wrong with LessMap"); |
325 | 334 |
check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3], |
326 | 335 |
"Something is wrong with EqualMap"); |
327 | 336 |
} |
328 | 337 |
|
329 | 338 |
// LoggerBoolMap |
330 | 339 |
{ |
331 | 340 |
typedef std::vector<int> vec; |
341 |
checkConcept<WriteMap<int, bool>, LoggerBoolMap<vec::iterator> >(); |
|
342 |
checkConcept<WriteMap<int, bool>, |
|
343 |
LoggerBoolMap<std::back_insert_iterator<vec> > >(); |
|
344 |
|
|
332 | 345 |
vec v1; |
333 | 346 |
vec v2(10); |
334 | 347 |
LoggerBoolMap<std::back_insert_iterator<vec> > |
335 | 348 |
map1(std::back_inserter(v1)); |
336 | 349 |
LoggerBoolMap<vec::iterator> map2(v2.begin()); |
337 | 350 |
map1.set(10, false); |
338 | 351 |
map1.set(20, true); map2.set(20, true); |
339 | 352 |
map1.set(30, false); map2.set(40, false); |
340 | 353 |
map1.set(50, true); map2.set(50, true); |
341 | 354 |
map1.set(60, true); map2.set(60, true); |
342 | 355 |
check(v1.size() == 3 && v2.size() == 10 && |
343 | 356 |
v1[0]==20 && v1[1]==50 && v1[2]==60 && |
344 | 357 |
v2[0]==20 && v2[1]==50 && v2[2]==60, |
345 | 358 |
"Something is wrong with LoggerBoolMap"); |
346 | 359 |
|
347 | 360 |
int i = 0; |
348 | 361 |
for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin(); |
349 | 362 |
it != map2.end(); ++it ) |
350 | 363 |
check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); |
364 |
|
|
365 |
typedef ListDigraph Graph; |
|
366 |
DIGRAPH_TYPEDEFS(Graph); |
|
367 |
Graph gr; |
|
368 |
|
|
369 |
Node n0 = gr.addNode(); |
|
370 |
Node n1 = gr.addNode(); |
|
371 |
Node n2 = gr.addNode(); |
|
372 |
Node n3 = gr.addNode(); |
|
373 |
|
|
374 |
gr.addArc(n3, n0); |
|
375 |
gr.addArc(n3, n2); |
|
376 |
gr.addArc(n0, n2); |
|
377 |
gr.addArc(n2, n1); |
|
378 |
gr.addArc(n0, n1); |
|
379 |
|
|
380 |
{ |
|
381 |
std::vector<Node> v; |
|
382 |
dfs(gr).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
|
383 |
|
|
384 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
|
385 |
"Something is wrong with LoggerBoolMap"); |
|
386 |
} |
|
387 |
{ |
|
388 |
std::vector<Node> v(countNodes(gr)); |
|
389 |
dfs(gr).processedMap(loggerBoolMap(v.begin())).run(); |
|
390 |
|
|
391 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
|
392 |
"Something is wrong with LoggerBoolMap"); |
|
393 |
} |
|
394 |
} |
|
395 |
|
|
396 |
// IdMap, RangeIdMap |
|
397 |
{ |
|
398 |
typedef ListDigraph Graph; |
|
399 |
DIGRAPH_TYPEDEFS(Graph); |
|
400 |
|
|
401 |
checkConcept<ReadMap<Node, int>, IdMap<Graph, Node> >(); |
|
402 |
checkConcept<ReadMap<Arc, int>, IdMap<Graph, Arc> >(); |
|
403 |
checkConcept<ReadMap<Node, int>, RangeIdMap<Graph, Node> >(); |
|
404 |
checkConcept<ReadMap<Arc, int>, RangeIdMap<Graph, Arc> >(); |
|
405 |
|
|
406 |
Graph gr; |
|
407 |
IdMap<Graph, Node> nmap(gr); |
|
408 |
IdMap<Graph, Arc> amap(gr); |
|
409 |
RangeIdMap<Graph, Node> nrmap(gr); |
|
410 |
RangeIdMap<Graph, Arc> armap(gr); |
|
411 |
|
|
412 |
Node n0 = gr.addNode(); |
|
413 |
Node n1 = gr.addNode(); |
|
414 |
Node n2 = gr.addNode(); |
|
415 |
|
|
416 |
Arc a0 = gr.addArc(n0, n1); |
|
417 |
Arc a1 = gr.addArc(n0, n2); |
|
418 |
Arc a2 = gr.addArc(n2, n1); |
|
419 |
Arc a3 = gr.addArc(n2, n0); |
|
420 |
|
|
421 |
check(nmap[n0] == gr.id(n0) && nmap(gr.id(n0)) == n0, "Wrong IdMap"); |
|
422 |
check(nmap[n1] == gr.id(n1) && nmap(gr.id(n1)) == n1, "Wrong IdMap"); |
|
423 |
check(nmap[n2] == gr.id(n2) && nmap(gr.id(n2)) == n2, "Wrong IdMap"); |
|
424 |
|
|
425 |
check(amap[a0] == gr.id(a0) && amap(gr.id(a0)) == a0, "Wrong IdMap"); |
|
426 |
check(amap[a1] == gr.id(a1) && amap(gr.id(a1)) == a1, "Wrong IdMap"); |
|
427 |
check(amap[a2] == gr.id(a2) && amap(gr.id(a2)) == a2, "Wrong IdMap"); |
|
428 |
check(amap[a3] == gr.id(a3) && amap(gr.id(a3)) == a3, "Wrong IdMap"); |
|
429 |
|
|
430 |
check(nmap.inverse()[gr.id(n0)] == n0, "Wrong IdMap::InverseMap"); |
|
431 |
check(amap.inverse()[gr.id(a0)] == a0, "Wrong IdMap::InverseMap"); |
|
432 |
|
|
433 |
check(nrmap.size() == 3 && armap.size() == 4, |
|
434 |
"Wrong RangeIdMap::size()"); |
|
435 |
|
|
436 |
check(nrmap[n0] == 0 && nrmap(0) == n0, "Wrong RangeIdMap"); |
|
437 |
check(nrmap[n1] == 1 && nrmap(1) == n1, "Wrong RangeIdMap"); |
|
438 |
check(nrmap[n2] == 2 && nrmap(2) == n2, "Wrong RangeIdMap"); |
|
439 |
|
|
440 |
check(armap[a0] == 0 && armap(0) == a0, "Wrong RangeIdMap"); |
|
441 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
|
442 |
check(armap[a2] == 2 && armap(2) == a2, "Wrong RangeIdMap"); |
|
443 |
check(armap[a3] == 3 && armap(3) == a3, "Wrong RangeIdMap"); |
|
444 |
|
|
445 |
check(nrmap.inverse()[0] == n0, "Wrong RangeIdMap::InverseMap"); |
|
446 |
check(armap.inverse()[0] == a0, "Wrong RangeIdMap::InverseMap"); |
|
447 |
|
|
448 |
gr.erase(n1); |
|
449 |
|
|
450 |
if (nrmap[n0] == 1) nrmap.swap(n0, n2); |
|
451 |
nrmap.swap(n2, n0); |
|
452 |
if (armap[a1] == 1) armap.swap(a1, a3); |
|
453 |
armap.swap(a3, a1); |
|
454 |
|
|
455 |
check(nrmap.size() == 2 && armap.size() == 2, |
|
456 |
"Wrong RangeIdMap::size()"); |
|
457 |
|
|
458 |
check(nrmap[n0] == 1 && nrmap(1) == n0, "Wrong RangeIdMap"); |
|
459 |
check(nrmap[n2] == 0 && nrmap(0) == n2, "Wrong RangeIdMap"); |
|
460 |
|
|
461 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
|
462 |
check(armap[a3] == 0 && armap(0) == a3, "Wrong RangeIdMap"); |
|
463 |
|
|
464 |
check(nrmap.inverse()[0] == n2, "Wrong RangeIdMap::InverseMap"); |
|
465 |
check(armap.inverse()[0] == a3, "Wrong RangeIdMap::InverseMap"); |
|
466 |
} |
|
467 |
|
|
468 |
// SourceMap, TargetMap, ForwardMap, BackwardMap, InDegMap, OutDegMap |
|
469 |
{ |
|
470 |
typedef ListGraph Graph; |
|
471 |
GRAPH_TYPEDEFS(Graph); |
|
472 |
|
|
473 |
checkConcept<ReadMap<Arc, Node>, SourceMap<Graph> >(); |
|
474 |
checkConcept<ReadMap<Arc, Node>, TargetMap<Graph> >(); |
|
475 |
checkConcept<ReadMap<Edge, Arc>, ForwardMap<Graph> >(); |
|
476 |
checkConcept<ReadMap<Edge, Arc>, BackwardMap<Graph> >(); |
|
477 |
checkConcept<ReadMap<Node, int>, InDegMap<Graph> >(); |
|
478 |
checkConcept<ReadMap<Node, int>, OutDegMap<Graph> >(); |
|
479 |
|
|
480 |
Graph gr; |
|
481 |
Node n0 = gr.addNode(); |
|
482 |
Node n1 = gr.addNode(); |
|
483 |
Node n2 = gr.addNode(); |
|
484 |
|
|
485 |
gr.addEdge(n0,n1); |
|
486 |
gr.addEdge(n1,n2); |
|
487 |
gr.addEdge(n0,n2); |
|
488 |
gr.addEdge(n2,n1); |
|
489 |
gr.addEdge(n1,n2); |
|
490 |
gr.addEdge(n0,n1); |
|
491 |
|
|
492 |
for (EdgeIt e(gr); e != INVALID; ++e) { |
|
493 |
check(forwardMap(gr)[e] == gr.direct(e, true), "Wrong ForwardMap"); |
|
494 |
check(backwardMap(gr)[e] == gr.direct(e, false), "Wrong BackwardMap"); |
|
495 |
} |
|
496 |
|
|
497 |
compareMap(sourceMap(orienter(gr, constMap<Edge, bool>(true))), |
|
498 |
targetMap(orienter(gr, constMap<Edge, bool>(false))), |
|
499 |
EdgeIt(gr)); |
|
500 |
|
|
501 |
typedef Orienter<Graph, const ConstMap<Edge, bool> > Digraph; |
|
502 |
Digraph dgr(gr, constMap<Edge, bool>(true)); |
|
503 |
OutDegMap<Digraph> odm(dgr); |
|
504 |
InDegMap<Digraph> idm(dgr); |
|
505 |
|
|
506 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 1, "Wrong OutDegMap"); |
|
507 |
check(idm[n0] == 0 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
|
508 |
|
|
509 |
gr.addEdge(n2, n0); |
|
510 |
|
|
511 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 2, "Wrong OutDegMap"); |
|
512 |
check(idm[n0] == 1 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
|
513 |
} |
|
514 |
|
|
515 |
// CrossRefMap |
|
516 |
{ |
|
517 |
typedef ListDigraph Graph; |
|
518 |
DIGRAPH_TYPEDEFS(Graph); |
|
519 |
|
|
520 |
checkConcept<ReadWriteMap<Node, int>, |
|
521 |
CrossRefMap<Graph, Node, int> >(); |
|
522 |
checkConcept<ReadWriteMap<Node, bool>, |
|
523 |
CrossRefMap<Graph, Node, bool> >(); |
|
524 |
checkConcept<ReadWriteMap<Node, double>, |
|
525 |
CrossRefMap<Graph, Node, double> >(); |
|
526 |
|
|
527 |
Graph gr; |
|
528 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
|
529 |
CRMap map(gr); |
|
530 |
|
|
531 |
Node n0 = gr.addNode(); |
|
532 |
Node n1 = gr.addNode(); |
|
533 |
Node n2 = gr.addNode(); |
|
534 |
|
|
535 |
map.set(n0, 'A'); |
|
536 |
map.set(n1, 'B'); |
|
537 |
map.set(n2, 'C'); |
|
538 |
|
|
539 |
check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0, |
|
540 |
"Wrong CrossRefMap"); |
|
541 |
check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1, |
|
542 |
"Wrong CrossRefMap"); |
|
543 |
check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2, |
|
544 |
"Wrong CrossRefMap"); |
|
545 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1, |
|
546 |
"Wrong CrossRefMap::count()"); |
|
547 |
|
|
548 |
CRMap::ValueIt it = map.beginValue(); |
|
549 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
550 |
it == map.endValue(), "Wrong value iterator"); |
|
551 |
|
|
552 |
map.set(n2, 'A'); |
|
553 |
|
|
554 |
check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A', |
|
555 |
"Wrong CrossRefMap"); |
|
556 |
check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap"); |
|
557 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
|
558 |
check(map('C') == INVALID && map.inverse()['C'] == INVALID, |
|
559 |
"Wrong CrossRefMap"); |
|
560 |
check(map.count('A') == 2 && map.count('B') == 1 && map.count('C') == 0, |
|
561 |
"Wrong CrossRefMap::count()"); |
|
562 |
|
|
563 |
it = map.beginValue(); |
|
564 |
check(*it++ == 'A' && *it++ == 'A' && *it++ == 'B' && |
|
565 |
it == map.endValue(), "Wrong value iterator"); |
|
566 |
|
|
567 |
map.set(n0, 'C'); |
|
568 |
|
|
569 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
|
570 |
"Wrong CrossRefMap"); |
|
571 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap"); |
|
572 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
|
573 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap"); |
|
574 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1, |
|
575 |
"Wrong CrossRefMap::count()"); |
|
576 |
|
|
577 |
it = map.beginValue(); |
|
578 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
579 |
it == map.endValue(), "Wrong value iterator"); |
|
351 | 580 |
} |
352 | 581 |
|
353 | 582 |
// CrossRefMap |
354 | 583 |
{ |
355 | 584 |
typedef SmartDigraph Graph; |
356 | 585 |
DIGRAPH_TYPEDEFS(Graph); |
357 | 586 |
|
358 | 587 |
checkConcept<ReadWriteMap<Node, int>, |
359 | 588 |
CrossRefMap<Graph, Node, int> >(); |
360 | 589 |
|
361 | 590 |
Graph gr; |
362 | 591 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
363 | 592 |
typedef CRMap::ValueIterator ValueIt; |
364 | 593 |
CRMap map(gr); |
365 | 594 |
|
366 | 595 |
Node n0 = gr.addNode(); |
367 | 596 |
Node n1 = gr.addNode(); |
368 | 597 |
Node n2 = gr.addNode(); |
369 | 598 |
|
370 | 599 |
map.set(n0, 'A'); |
371 | 600 |
map.set(n1, 'B'); |
372 | 601 |
map.set(n2, 'C'); |
373 | 602 |
map.set(n2, 'A'); |
374 | 603 |
map.set(n0, 'C'); |
375 | 604 |
|
376 | 605 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
377 | 606 |
"Wrong CrossRefMap"); |
378 | 607 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap"); |
379 | 608 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
380 | 609 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap"); |
381 | 610 |
|
382 | 611 |
ValueIt it = map.beginValue(); |
383 | 612 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
384 | 613 |
it == map.endValue(), "Wrong value iterator"); |
385 | 614 |
} |
386 | 615 |
|
387 | 616 |
// Iterable bool map |
388 | 617 |
{ |
389 | 618 |
typedef SmartGraph Graph; |
390 | 619 |
typedef SmartGraph::Node Item; |
391 | 620 |
|
392 | 621 |
typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm; |
393 | 622 |
checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>(); |
394 | 623 |
|
395 | 624 |
const int num = 10; |
396 | 625 |
Graph g; |
397 | 626 |
std::vector<Item> items; |
398 | 627 |
for (int i = 0; i < num; ++i) { |
399 | 628 |
items.push_back(g.addNode()); |
400 | 629 |
} |
401 | 630 |
|
402 | 631 |
Ibm map1(g, true); |
403 | 632 |
int n = 0; |
404 | 633 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
405 | 634 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt"); |
406 | 635 |
++n; |
407 | 636 |
} |
408 | 637 |
check(n == num, "Wrong number"); |
409 | 638 |
|
410 | 639 |
n = 0; |
411 | 640 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) { |
412 | 641 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
413 | 642 |
++n; |
414 | 643 |
} |
415 | 644 |
check(n == num, "Wrong number"); |
416 | 645 |
check(Ibm::FalseIt(map1) == INVALID, "Wrong FalseIt"); |
417 | 646 |
check(Ibm::ItemIt(map1, false) == INVALID, "Wrong ItemIt for false"); |
418 | 647 |
|
419 | 648 |
map1[items[5]] = true; |
420 | 649 |
|
421 | 650 |
n = 0; |
422 | 651 |
for (Ibm::ItemIt it(map1, true); it != INVALID; ++it) { |
423 | 652 |
check(map1[static_cast<Item>(it)], "Wrong ItemIt for true"); |
424 | 653 |
++n; |
425 | 654 |
} |
426 | 655 |
check(n == num, "Wrong number"); |
427 | 656 |
|
428 | 657 |
map1[items[num / 2]] = false; |
429 | 658 |
check(map1[items[num / 2]] == false, "Wrong map value"); |
430 | 659 |
|
431 | 660 |
n = 0; |
432 | 661 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
433 | 662 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
434 | 663 |
++n; |
435 | 664 |
} |
436 | 665 |
check(n == num - 1, "Wrong number"); |
437 | 666 |
|
438 | 667 |
n = 0; |
439 | 668 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) { |
440 | 669 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
441 | 670 |
++n; |
442 | 671 |
} |
443 | 672 |
check(n == 1, "Wrong number"); |
444 | 673 |
|
445 | 674 |
map1[items[0]] = false; |
446 | 675 |
check(map1[items[0]] == false, "Wrong map value"); |
447 | 676 |
|
448 | 677 |
map1[items[num - 1]] = false; |
449 | 678 |
check(map1[items[num - 1]] == false, "Wrong map value"); |
450 | 679 |
|
451 | 680 |
n = 0; |
452 | 681 |
for (Ibm::TrueIt it(map1); it != INVALID; ++it) { |
453 | 682 |
check(map1[static_cast<Item>(it)], "Wrong TrueIt for true"); |
454 | 683 |
++n; |
455 | 684 |
} |
456 | 685 |
check(n == num - 3, "Wrong number"); |
457 | 686 |
check(map1.trueNum() == num - 3, "Wrong number"); |
458 | 687 |
|
459 | 688 |
n = 0; |
460 | 689 |
for (Ibm::FalseIt it(map1); it != INVALID; ++it) { |
461 | 690 |
check(!map1[static_cast<Item>(it)], "Wrong FalseIt for true"); |
462 | 691 |
++n; |
463 | 692 |
} |
464 | 693 |
check(n == 3, "Wrong number"); |
465 | 694 |
check(map1.falseNum() == 3, "Wrong number"); |
466 | 695 |
} |
467 | 696 |
|
468 | 697 |
// Iterable int map |
469 | 698 |
{ |
470 | 699 |
typedef SmartGraph Graph; |
471 | 700 |
typedef SmartGraph::Node Item; |
472 | 701 |
typedef IterableIntMap<SmartGraph, SmartGraph::Node> Iim; |
473 | 702 |
|
474 | 703 |
checkConcept<ReferenceMap<Item, int, int&, const int&>, Iim>(); |
475 | 704 |
|
476 | 705 |
const int num = 10; |
477 | 706 |
Graph g; |
478 | 707 |
std::vector<Item> items; |
479 | 708 |
for (int i = 0; i < num; ++i) { |
480 | 709 |
items.push_back(g.addNode()); |
481 | 710 |
} |
482 | 711 |
|
483 | 712 |
Iim map1(g); |
484 | 713 |
check(map1.size() == 0, "Wrong size"); |
485 | 714 |
|
486 | 715 |
for (int i = 0; i < num; ++i) { |
487 | 716 |
map1[items[i]] = i; |
488 | 717 |
} |
489 | 718 |
check(map1.size() == num, "Wrong size"); |
490 | 719 |
|
491 | 720 |
for (int i = 0; i < num; ++i) { |
492 | 721 |
Iim::ItemIt it(map1, i); |
493 | 722 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
494 | 723 |
++it; |
495 | 724 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
496 | 725 |
} |
497 | 726 |
|
498 | 727 |
for (int i = 0; i < num; ++i) { |
499 | 728 |
map1[items[i]] = i % 2; |
500 | 729 |
} |
501 | 730 |
check(map1.size() == 2, "Wrong size"); |
502 | 731 |
|
503 | 732 |
int n = 0; |
504 | 733 |
for (Iim::ItemIt it(map1, 0); it != INVALID; ++it) { |
505 | 734 |
check(map1[static_cast<Item>(it)] == 0, "Wrong value"); |
506 | 735 |
++n; |
507 | 736 |
} |
508 | 737 |
check(n == (num + 1) / 2, "Wrong number"); |
509 | 738 |
|
510 | 739 |
for (Iim::ItemIt it(map1, 1); it != INVALID; ++it) { |
511 | 740 |
check(map1[static_cast<Item>(it)] == 1, "Wrong value"); |
512 | 741 |
++n; |
513 | 742 |
} |
514 | 743 |
check(n == num, "Wrong number"); |
515 | 744 |
|
516 | 745 |
} |
517 | 746 |
|
518 | 747 |
// Iterable value map |
519 | 748 |
{ |
520 | 749 |
typedef SmartGraph Graph; |
521 | 750 |
typedef SmartGraph::Node Item; |
522 | 751 |
typedef IterableValueMap<SmartGraph, SmartGraph::Node, double> Ivm; |
523 | 752 |
|
524 | 753 |
checkConcept<ReadWriteMap<Item, double>, Ivm>(); |
525 | 754 |
|
526 | 755 |
const int num = 10; |
527 | 756 |
Graph g; |
528 | 757 |
std::vector<Item> items; |
529 | 758 |
for (int i = 0; i < num; ++i) { |
530 | 759 |
items.push_back(g.addNode()); |
531 | 760 |
} |
532 | 761 |
|
533 | 762 |
Ivm map1(g, 0.0); |
534 | 763 |
check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size"); |
535 | 764 |
check(*map1.beginValue() == 0.0, "Wrong value"); |
536 | 765 |
|
537 | 766 |
for (int i = 0; i < num; ++i) { |
538 | 767 |
map1.set(items[i], static_cast<double>(i)); |
539 | 768 |
} |
540 | 769 |
check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size"); |
541 | 770 |
|
542 | 771 |
for (int i = 0; i < num; ++i) { |
543 | 772 |
Ivm::ItemIt it(map1, static_cast<double>(i)); |
544 | 773 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
545 | 774 |
++it; |
546 | 775 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
547 | 776 |
} |
548 | 777 |
|
549 |
for (Ivm:: |
|
778 |
for (Ivm::ValueIt vit = map1.beginValue(); |
|
550 | 779 |
vit != map1.endValue(); ++vit) { |
551 | 780 |
check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit, |
552 |
"Wrong |
|
781 |
"Wrong ValueIt"); |
|
553 | 782 |
} |
554 | 783 |
|
555 | 784 |
for (int i = 0; i < num; ++i) { |
556 | 785 |
map1.set(items[i], static_cast<double>(i % 2)); |
557 | 786 |
} |
558 | 787 |
check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size"); |
559 | 788 |
|
560 | 789 |
int n = 0; |
561 | 790 |
for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) { |
562 | 791 |
check(map1[static_cast<Item>(it)] == 0.0, "Wrong value"); |
563 | 792 |
++n; |
564 | 793 |
} |
565 | 794 |
check(n == (num + 1) / 2, "Wrong number"); |
566 | 795 |
|
567 | 796 |
for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) { |
568 | 797 |
check(map1[static_cast<Item>(it)] == 1.0, "Wrong value"); |
569 | 798 |
++n; |
570 | 799 |
} |
571 | 800 |
check(n == num, "Wrong number"); |
572 | 801 |
|
573 | 802 |
} |
574 | 803 |
return 0; |
575 | 804 |
} |
0 comments (0 inline)