0
13
0
70
48
59
62
55
60
60
60
2
9
143
75
12
5
231
2
... | ... |
@@ -259,87 +259,118 @@ |
259 | 259 |
The heap implementations have the same interface, thus any of them can be |
260 | 260 |
used easily in such algorithms. |
261 | 261 |
|
262 | 262 |
\sa \ref concepts::Heap "Heap concept" |
263 | 263 |
*/ |
264 | 264 |
|
265 | 265 |
/** |
266 | 266 |
@defgroup matrices Matrices |
267 | 267 |
@ingroup datas |
268 | 268 |
\brief Two dimensional data storages implemented in LEMON. |
269 | 269 |
|
270 | 270 |
This group contains two dimensional data storages implemented in LEMON. |
271 | 271 |
*/ |
272 | 272 |
|
273 | 273 |
/** |
274 | 274 |
@defgroup auxdat Auxiliary Data Structures |
275 | 275 |
@ingroup datas |
276 | 276 |
\brief Auxiliary data structures implemented in LEMON. |
277 | 277 |
|
278 | 278 |
This group contains some data structures implemented in LEMON in |
279 | 279 |
order to make it easier to implement combinatorial algorithms. |
280 | 280 |
*/ |
281 | 281 |
|
282 | 282 |
/** |
283 |
@defgroup geomdat Geometric Data Structures |
|
284 |
@ingroup auxdat |
|
285 |
\brief Geometric data structures implemented in LEMON. |
|
286 |
|
|
287 |
This group contains geometric data structures implemented in LEMON. |
|
288 |
|
|
289 |
- \ref lemon::dim2::Point "dim2::Point" implements a two dimensional |
|
290 |
vector with the usual operations. |
|
291 |
- \ref lemon::dim2::Box "dim2::Box" can be used to determine the |
|
292 |
rectangular bounding box of a set of \ref lemon::dim2::Point |
|
293 |
"dim2::Point"'s. |
|
294 |
*/ |
|
295 |
|
|
296 |
/** |
|
297 |
@defgroup matrices Matrices |
|
298 |
@ingroup auxdat |
|
299 |
\brief Two dimensional data storages implemented in LEMON. |
|
300 |
|
|
301 |
This group contains two dimensional data storages implemented in LEMON. |
|
302 |
*/ |
|
303 |
|
|
304 |
/** |
|
283 | 305 |
@defgroup algs Algorithms |
284 | 306 |
\brief This group contains the several algorithms |
285 | 307 |
implemented in LEMON. |
286 | 308 |
|
287 | 309 |
This group contains the several algorithms |
288 | 310 |
implemented in LEMON. |
289 | 311 |
*/ |
290 | 312 |
|
291 | 313 |
/** |
292 | 314 |
@defgroup search Graph Search |
293 | 315 |
@ingroup algs |
294 | 316 |
\brief Common graph search algorithms. |
295 | 317 |
|
296 | 318 |
This group contains the common graph search algorithms, namely |
297 | 319 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
298 | 320 |
*/ |
299 | 321 |
|
300 | 322 |
/** |
301 | 323 |
@defgroup shortest_path Shortest Path Algorithms |
302 | 324 |
@ingroup algs |
303 | 325 |
\brief Algorithms for finding shortest paths. |
304 | 326 |
|
305 | 327 |
This group contains the algorithms for finding shortest paths in digraphs. |
306 | 328 |
|
307 | 329 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
308 | 330 |
when all arc lengths are non-negative. |
309 | 331 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
310 | 332 |
from a source node when arc lenghts can be either positive or negative, |
311 | 333 |
but the digraph should not contain directed cycles with negative total |
312 | 334 |
length. |
313 | 335 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
314 | 336 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
315 | 337 |
lenghts can be either positive or negative, but the digraph should |
316 | 338 |
not contain directed cycles with negative total length. |
317 | 339 |
- \ref Suurballe A successive shortest path algorithm for finding |
318 | 340 |
arc-disjoint paths between two nodes having minimum total length. |
319 | 341 |
*/ |
320 | 342 |
|
321 | 343 |
/** |
344 |
@defgroup spantree Minimum Spanning Tree Algorithms |
|
345 |
@ingroup algs |
|
346 |
\brief Algorithms for finding minimum cost spanning trees and arborescences. |
|
347 |
|
|
348 |
This group contains the algorithms for finding minimum cost spanning |
|
349 |
trees and arborescences. |
|
350 |
*/ |
|
351 |
|
|
352 |
/** |
|
322 | 353 |
@defgroup max_flow Maximum Flow Algorithms |
323 | 354 |
@ingroup algs |
324 | 355 |
\brief Algorithms for finding maximum flows. |
325 | 356 |
|
326 | 357 |
This group contains the algorithms for finding maximum flows and |
327 | 358 |
feasible circulations. |
328 | 359 |
|
329 | 360 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
330 | 361 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
331 | 362 |
digraph, a \f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
332 | 363 |
\f$s, t \in V\f$ source and target nodes. |
333 | 364 |
A maximum flow is an \f$f: A\rightarrow\mathbf{R}^+_0\f$ solution of the |
334 | 365 |
following optimization problem. |
335 | 366 |
|
336 | 367 |
\f[ \max\sum_{sv\in A} f(sv) - \sum_{vs\in A} f(vs) \f] |
337 | 368 |
\f[ \sum_{uv\in A} f(uv) = \sum_{vu\in A} f(vu) |
338 | 369 |
\quad \forall u\in V\setminus\{s,t\} \f] |
339 | 370 |
\f[ 0 \leq f(uv) \leq cap(uv) \quad \forall uv\in A \f] |
340 | 371 |
|
341 | 372 |
LEMON contains several algorithms for solving maximum flow problems: |
342 | 373 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
343 | 374 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
344 | 375 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
345 | 376 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
... | ... |
@@ -375,155 +406,146 @@ |
375 | 406 |
- \ref CancelAndTighten The Cancel and Tighten algorithm. |
376 | 407 |
- \ref CycleCanceling Cycle-Canceling algorithms. |
377 | 408 |
|
378 | 409 |
In general NetworkSimplex is the most efficient implementation, |
379 | 410 |
but in special cases other algorithms could be faster. |
380 | 411 |
For example, if the total supply and/or capacities are rather small, |
381 | 412 |
CapacityScaling is usually the fastest algorithm (without effective scaling). |
382 | 413 |
*/ |
383 | 414 |
|
384 | 415 |
/** |
385 | 416 |
@defgroup min_cut Minimum Cut Algorithms |
386 | 417 |
@ingroup algs |
387 | 418 |
|
388 | 419 |
\brief Algorithms for finding minimum cut in graphs. |
389 | 420 |
|
390 | 421 |
This group contains the algorithms for finding minimum cut in graphs. |
391 | 422 |
|
392 | 423 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
393 | 424 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
394 | 425 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
395 | 426 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
396 | 427 |
cut is the \f$X\f$ solution of the next optimization problem: |
397 | 428 |
|
398 | 429 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
399 |
\sum_{uv\in A |
|
430 |
\sum_{uv\in A: u\in X, v\not\in X}cap(uv) \f] |
|
400 | 431 |
|
401 | 432 |
LEMON contains several algorithms related to minimum cut problems: |
402 | 433 |
|
403 | 434 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
404 | 435 |
in directed graphs. |
405 | 436 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
406 | 437 |
calculating minimum cut in undirected graphs. |
407 | 438 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
408 | 439 |
all-pairs minimum cut in undirected graphs. |
409 | 440 |
|
410 | 441 |
If you want to find minimum cut just between two distinict nodes, |
411 | 442 |
see the \ref max_flow "maximum flow problem". |
412 | 443 |
*/ |
413 | 444 |
|
414 | 445 |
/** |
415 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
416 |
@ingroup algs |
|
417 |
\brief Algorithms for discovering the graph properties |
|
418 |
|
|
419 |
This group contains the algorithms for discovering the graph properties |
|
420 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
421 |
|
|
422 |
\image html edge_biconnected_components.png |
|
423 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
|
424 |
*/ |
|
425 |
|
|
426 |
/** |
|
427 |
@defgroup planar Planarity Embedding and Drawing |
|
428 |
@ingroup algs |
|
429 |
\brief Algorithms for planarity checking, embedding and drawing |
|
430 |
|
|
431 |
This group contains the algorithms for planarity checking, |
|
432 |
embedding and drawing. |
|
433 |
|
|
434 |
\image html planar.png |
|
435 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
436 |
*/ |
|
437 |
|
|
438 |
/** |
|
439 | 446 |
@defgroup matching Matching Algorithms |
440 | 447 |
@ingroup algs |
441 | 448 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
442 | 449 |
|
443 | 450 |
This group contains the algorithms for calculating |
444 | 451 |
matchings in graphs and bipartite graphs. The general matching problem is |
445 | 452 |
finding a subset of the edges for which each node has at most one incident |
446 | 453 |
edge. |
447 | 454 |
|
448 | 455 |
There are several different algorithms for calculate matchings in |
449 | 456 |
graphs. The matching problems in bipartite graphs are generally |
450 | 457 |
easier than in general graphs. The goal of the matching optimization |
451 | 458 |
can be finding maximum cardinality, maximum weight or minimum cost |
452 | 459 |
matching. The search can be constrained to find perfect or |
453 | 460 |
maximum cardinality matching. |
454 | 461 |
|
455 | 462 |
The matching algorithms implemented in LEMON: |
456 | 463 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
457 | 464 |
for calculating maximum cardinality matching in bipartite graphs. |
458 | 465 |
- \ref PrBipartiteMatching Push-relabel algorithm |
459 | 466 |
for calculating maximum cardinality matching in bipartite graphs. |
460 | 467 |
- \ref MaxWeightedBipartiteMatching |
461 | 468 |
Successive shortest path algorithm for calculating maximum weighted |
462 | 469 |
matching and maximum weighted bipartite matching in bipartite graphs. |
463 | 470 |
- \ref MinCostMaxBipartiteMatching |
464 | 471 |
Successive shortest path algorithm for calculating minimum cost maximum |
465 | 472 |
matching in bipartite graphs. |
466 | 473 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
467 | 474 |
maximum cardinality matching in general graphs. |
468 | 475 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
469 | 476 |
maximum weighted matching in general graphs. |
470 | 477 |
- \ref MaxWeightedPerfectMatching |
471 | 478 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
472 | 479 |
perfect matching in general graphs. |
473 | 480 |
|
474 | 481 |
\image html bipartite_matching.png |
475 | 482 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
476 | 483 |
*/ |
477 | 484 |
|
478 | 485 |
/** |
479 |
@defgroup |
|
486 |
@defgroup graph_properties Connectivity and Other Graph Properties |
|
480 | 487 |
@ingroup algs |
481 |
\brief Algorithms for |
|
488 |
\brief Algorithms for discovering the graph properties |
|
482 | 489 |
|
483 |
This group contains the algorithms for finding minimum cost spanning |
|
484 |
trees and arborescences. |
|
490 |
This group contains the algorithms for discovering the graph properties |
|
491 |
like connectivity, bipartiteness, euler property, simplicity etc. |
|
492 |
|
|
493 |
\image html connected_components.png |
|
494 |
\image latex connected_components.eps "Connected components" width=\textwidth |
|
495 |
*/ |
|
496 |
|
|
497 |
/** |
|
498 |
@defgroup planar Planarity Embedding and Drawing |
|
499 |
@ingroup algs |
|
500 |
\brief Algorithms for planarity checking, embedding and drawing |
|
501 |
|
|
502 |
This group contains the algorithms for planarity checking, |
|
503 |
embedding and drawing. |
|
504 |
|
|
505 |
\image html planar.png |
|
506 |
\image latex planar.eps "Plane graph" width=\textwidth |
|
507 |
*/ |
|
508 |
|
|
509 |
/** |
|
510 |
@defgroup approx Approximation Algorithms |
|
511 |
@ingroup algs |
|
512 |
\brief Approximation algorithms. |
|
513 |
|
|
514 |
This group contains the approximation and heuristic algorithms |
|
515 |
implemented in LEMON. |
|
485 | 516 |
*/ |
486 | 517 |
|
487 | 518 |
/** |
488 | 519 |
@defgroup auxalg Auxiliary Algorithms |
489 | 520 |
@ingroup algs |
490 | 521 |
\brief Auxiliary algorithms implemented in LEMON. |
491 | 522 |
|
492 | 523 |
This group contains some algorithms implemented in LEMON |
493 | 524 |
in order to make it easier to implement complex algorithms. |
494 | 525 |
*/ |
495 | 526 |
|
496 | 527 |
/** |
497 |
@defgroup approx Approximation Algorithms |
|
498 |
@ingroup algs |
|
499 |
\brief Approximation algorithms. |
|
500 |
|
|
501 |
This group contains the approximation and heuristic algorithms |
|
502 |
implemented in LEMON. |
|
503 |
*/ |
|
504 |
|
|
505 |
/** |
|
506 | 528 |
@defgroup gen_opt_group General Optimization Tools |
507 | 529 |
\brief This group contains some general optimization frameworks |
508 | 530 |
implemented in LEMON. |
509 | 531 |
|
510 | 532 |
This group contains some general optimization frameworks |
511 | 533 |
implemented in LEMON. |
512 | 534 |
*/ |
513 | 535 |
|
514 | 536 |
/** |
515 | 537 |
@defgroup lp_group Lp and Mip Solvers |
516 | 538 |
@ingroup gen_opt_group |
517 | 539 |
\brief Lp and Mip solver interfaces for LEMON. |
518 | 540 |
|
519 | 541 |
This group contains Lp and Mip solver interfaces for LEMON. The |
520 | 542 |
various LP solvers could be used in the same manner with this |
521 | 543 |
interface. |
522 | 544 |
*/ |
523 | 545 |
|
524 | 546 |
/** |
525 | 547 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
526 | 548 |
@ingroup lp_group |
527 | 549 |
\brief Helper tools to the Lp and Mip solvers. |
528 | 550 |
|
529 | 551 |
This group adds some helper tools to general optimization framework |
... | ... |
@@ -587,49 +609,49 @@ |
587 | 609 |
and graph related data. Now it supports the \ref lgf-format |
588 | 610 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
589 | 611 |
postscript (EPS) format. |
590 | 612 |
*/ |
591 | 613 |
|
592 | 614 |
/** |
593 | 615 |
@defgroup lemon_io LEMON Graph Format |
594 | 616 |
@ingroup io_group |
595 | 617 |
\brief Reading and writing LEMON Graph Format. |
596 | 618 |
|
597 | 619 |
This group contains methods for reading and writing |
598 | 620 |
\ref lgf-format "LEMON Graph Format". |
599 | 621 |
*/ |
600 | 622 |
|
601 | 623 |
/** |
602 | 624 |
@defgroup eps_io Postscript Exporting |
603 | 625 |
@ingroup io_group |
604 | 626 |
\brief General \c EPS drawer and graph exporter |
605 | 627 |
|
606 | 628 |
This group contains general \c EPS drawing methods and special |
607 | 629 |
graph exporting tools. |
608 | 630 |
*/ |
609 | 631 |
|
610 | 632 |
/** |
611 |
@defgroup dimacs_group DIMACS |
|
633 |
@defgroup dimacs_group DIMACS Format |
|
612 | 634 |
@ingroup io_group |
613 | 635 |
\brief Read and write files in DIMACS format |
614 | 636 |
|
615 | 637 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
616 | 638 |
*/ |
617 | 639 |
|
618 | 640 |
/** |
619 | 641 |
@defgroup nauty_group NAUTY Format |
620 | 642 |
@ingroup io_group |
621 | 643 |
\brief Read \e Nauty format |
622 | 644 |
|
623 | 645 |
Tool to read graphs from \e Nauty format data. |
624 | 646 |
*/ |
625 | 647 |
|
626 | 648 |
/** |
627 | 649 |
@defgroup concept Concepts |
628 | 650 |
\brief Skeleton classes and concept checking classes |
629 | 651 |
|
630 | 652 |
This group contains the data/algorithm skeletons and concept checking |
631 | 653 |
classes implemented in LEMON. |
632 | 654 |
|
633 | 655 |
The purpose of the classes in this group is fourfold. |
634 | 656 |
|
635 | 657 |
- These classes contain the documentations of the %concepts. In order |
... | ... |
@@ -649,45 +671,45 @@ |
649 | 671 |
that makes it possible to check whether a certain implementation of a |
650 | 672 |
concept indeed provides all the required features. |
651 | 673 |
|
652 | 674 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
653 | 675 |
*/ |
654 | 676 |
|
655 | 677 |
/** |
656 | 678 |
@defgroup graph_concepts Graph Structure Concepts |
657 | 679 |
@ingroup concept |
658 | 680 |
\brief Skeleton and concept checking classes for graph structures |
659 | 681 |
|
660 | 682 |
This group contains the skeletons and concept checking classes of LEMON's |
661 | 683 |
graph structures and helper classes used to implement these. |
662 | 684 |
*/ |
663 | 685 |
|
664 | 686 |
/** |
665 | 687 |
@defgroup map_concepts Map Concepts |
666 | 688 |
@ingroup concept |
667 | 689 |
\brief Skeleton and concept checking classes for maps |
668 | 690 |
|
669 | 691 |
This group contains the skeletons and concept checking classes of maps. |
670 | 692 |
*/ |
671 | 693 |
|
672 | 694 |
/** |
695 |
@defgroup tools Standalone Utility Applications |
|
696 |
|
|
697 |
Some utility applications are listed here. |
|
698 |
|
|
699 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
700 |
them, as well. |
|
701 |
*/ |
|
702 |
|
|
703 |
/** |
|
673 | 704 |
\anchor demoprograms |
674 | 705 |
|
675 | 706 |
@defgroup demos Demo Programs |
676 | 707 |
|
677 | 708 |
Some demo programs are listed here. Their full source codes can be found in |
678 | 709 |
the \c demo subdirectory of the source tree. |
679 | 710 |
|
680 | 711 |
In order to compile them, use the <tt>make demo</tt> or the |
681 | 712 |
<tt>make check</tt> commands. |
682 | 713 |
*/ |
683 | 714 |
|
684 |
/** |
|
685 |
@defgroup tools Standalone Utility Applications |
|
686 |
|
|
687 |
Some utility applications are listed here. |
|
688 |
|
|
689 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
|
690 |
them, as well. |
|
691 |
*/ |
|
692 |
|
|
693 | 715 |
} |
... | ... |
@@ -26,98 +26,99 @@ |
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Bfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct BfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the shortest paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 |
///It must |
|
50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 |
///It must |
|
65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
66 |
///By default it is a NullMap. |
|
66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 | 68 |
///Instantiates a \c ProcessedMap. |
68 | 69 |
|
69 | 70 |
///This function instantiates a \ref ProcessedMap. |
70 | 71 |
///\param g is the digraph, to which |
71 | 72 |
///we would like to define the \ref ProcessedMap |
72 | 73 |
#ifdef DOXYGEN |
73 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
74 | 75 |
#else |
75 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
76 | 77 |
#endif |
77 | 78 |
{ |
78 | 79 |
return new ProcessedMap(); |
79 | 80 |
} |
80 | 81 |
|
81 | 82 |
///The type of the map that indicates which nodes are reached. |
82 | 83 |
|
83 | 84 |
///The type of the map that indicates which nodes are reached. |
84 |
///It must |
|
85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 | 87 |
///Instantiates a \c ReachedMap. |
87 | 88 |
|
88 | 89 |
///This function instantiates a \ref ReachedMap. |
89 | 90 |
///\param g is the digraph, to which |
90 | 91 |
///we would like to define the \ref ReachedMap. |
91 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
92 | 93 |
{ |
93 | 94 |
return new ReachedMap(g); |
94 | 95 |
} |
95 | 96 |
|
96 | 97 |
///The type of the map that stores the distances of the nodes. |
97 | 98 |
|
98 | 99 |
///The type of the map that stores the distances of the nodes. |
99 |
///It must |
|
100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 | 102 |
///Instantiates a \c DistMap. |
102 | 103 |
|
103 | 104 |
///This function instantiates a \ref DistMap. |
104 | 105 |
///\param g is the digraph, to which we would like to define the |
105 | 106 |
///\ref DistMap. |
106 | 107 |
static DistMap *createDistMap(const Digraph &g) |
107 | 108 |
{ |
108 | 109 |
return new DistMap(g); |
109 | 110 |
} |
110 | 111 |
}; |
111 | 112 |
|
112 | 113 |
///%BFS algorithm class. |
113 | 114 |
|
114 | 115 |
///\ingroup search |
115 | 116 |
///This class provides an efficient implementation of the %BFS algorithm. |
116 | 117 |
/// |
117 | 118 |
///There is also a \ref bfs() "function-type interface" for the BFS |
118 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
119 | 120 |
///used easier. |
120 | 121 |
/// |
121 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
122 | 123 |
///The default type is \ref ListDigraph. |
123 | 124 |
#ifdef DOXYGEN |
... | ... |
@@ -204,109 +205,109 @@ |
204 | 205 |
Bfs() {} |
205 | 206 |
|
206 | 207 |
public: |
207 | 208 |
|
208 | 209 |
typedef Bfs Create; |
209 | 210 |
|
210 | 211 |
///\name Named Template Parameters |
211 | 212 |
|
212 | 213 |
///@{ |
213 | 214 |
|
214 | 215 |
template <class T> |
215 | 216 |
struct SetPredMapTraits : public Traits { |
216 | 217 |
typedef T PredMap; |
217 | 218 |
static PredMap *createPredMap(const Digraph &) |
218 | 219 |
{ |
219 | 220 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
220 | 221 |
return 0; // ignore warnings |
221 | 222 |
} |
222 | 223 |
}; |
223 | 224 |
///\brief \ref named-templ-param "Named parameter" for setting |
224 | 225 |
///\c PredMap type. |
225 | 226 |
/// |
226 | 227 |
///\ref named-templ-param "Named parameter" for setting |
227 | 228 |
///\c PredMap type. |
228 |
///It must |
|
229 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
229 | 230 |
template <class T> |
230 | 231 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
231 | 232 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
232 | 233 |
}; |
233 | 234 |
|
234 | 235 |
template <class T> |
235 | 236 |
struct SetDistMapTraits : public Traits { |
236 | 237 |
typedef T DistMap; |
237 | 238 |
static DistMap *createDistMap(const Digraph &) |
238 | 239 |
{ |
239 | 240 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
240 | 241 |
return 0; // ignore warnings |
241 | 242 |
} |
242 | 243 |
}; |
243 | 244 |
///\brief \ref named-templ-param "Named parameter" for setting |
244 | 245 |
///\c DistMap type. |
245 | 246 |
/// |
246 | 247 |
///\ref named-templ-param "Named parameter" for setting |
247 | 248 |
///\c DistMap type. |
248 |
///It must |
|
249 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
249 | 250 |
template <class T> |
250 | 251 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
251 | 252 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
252 | 253 |
}; |
253 | 254 |
|
254 | 255 |
template <class T> |
255 | 256 |
struct SetReachedMapTraits : public Traits { |
256 | 257 |
typedef T ReachedMap; |
257 | 258 |
static ReachedMap *createReachedMap(const Digraph &) |
258 | 259 |
{ |
259 | 260 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
260 | 261 |
return 0; // ignore warnings |
261 | 262 |
} |
262 | 263 |
}; |
263 | 264 |
///\brief \ref named-templ-param "Named parameter" for setting |
264 | 265 |
///\c ReachedMap type. |
265 | 266 |
/// |
266 | 267 |
///\ref named-templ-param "Named parameter" for setting |
267 | 268 |
///\c ReachedMap type. |
268 |
///It must |
|
269 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
269 | 270 |
template <class T> |
270 | 271 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
271 | 272 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
272 | 273 |
}; |
273 | 274 |
|
274 | 275 |
template <class T> |
275 | 276 |
struct SetProcessedMapTraits : public Traits { |
276 | 277 |
typedef T ProcessedMap; |
277 | 278 |
static ProcessedMap *createProcessedMap(const Digraph &) |
278 | 279 |
{ |
279 | 280 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
280 | 281 |
return 0; // ignore warnings |
281 | 282 |
} |
282 | 283 |
}; |
283 | 284 |
///\brief \ref named-templ-param "Named parameter" for setting |
284 | 285 |
///\c ProcessedMap type. |
285 | 286 |
/// |
286 | 287 |
///\ref named-templ-param "Named parameter" for setting |
287 | 288 |
///\c ProcessedMap type. |
288 |
///It must |
|
289 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
289 | 290 |
template <class T> |
290 | 291 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
291 | 292 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
292 | 293 |
}; |
293 | 294 |
|
294 | 295 |
struct SetStandardProcessedMapTraits : public Traits { |
295 | 296 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
296 | 297 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
297 | 298 |
{ |
298 | 299 |
return new ProcessedMap(g); |
299 | 300 |
return 0; // ignore warnings |
300 | 301 |
} |
301 | 302 |
}; |
302 | 303 |
///\brief \ref named-templ-param "Named parameter" for setting |
303 | 304 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
304 | 305 |
/// |
305 | 306 |
///\ref named-templ-param "Named parameter" for setting |
306 | 307 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
307 | 308 |
///If you don't set it explicitly, it will be automatically allocated. |
308 | 309 |
struct SetStandardProcessedMap : |
309 | 310 |
public Bfs< Digraph, SetStandardProcessedMapTraits > { |
310 | 311 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
311 | 312 |
}; |
312 | 313 |
|
... | ... |
@@ -392,50 +393,50 @@ |
392 | 393 |
///Sets the map that stores the distances of the nodes. |
393 | 394 |
|
394 | 395 |
///Sets the map that stores the distances of the nodes calculated by |
395 | 396 |
///the algorithm. |
396 | 397 |
///If you don't use this function before calling \ref run(Node) "run()" |
397 | 398 |
///or \ref init(), an instance will be allocated automatically. |
398 | 399 |
///The destructor deallocates this automatically allocated map, |
399 | 400 |
///of course. |
400 | 401 |
///\return <tt> (*this) </tt> |
401 | 402 |
Bfs &distMap(DistMap &m) |
402 | 403 |
{ |
403 | 404 |
if(local_dist) { |
404 | 405 |
delete _dist; |
405 | 406 |
local_dist=false; |
406 | 407 |
} |
407 | 408 |
_dist = &m; |
408 | 409 |
return *this; |
409 | 410 |
} |
410 | 411 |
|
411 | 412 |
public: |
412 | 413 |
|
413 | 414 |
///\name Execution Control |
414 | 415 |
///The simplest way to execute the BFS algorithm is to use one of the |
415 | 416 |
///member functions called \ref run(Node) "run()".\n |
416 |
///If you need more control on the execution, first you have to call |
|
417 |
///\ref init(), then you can add several source nodes with |
|
417 |
///If you need better control on the execution, you have to call |
|
418 |
///\ref init() first, then you can add several source nodes with |
|
418 | 419 |
///\ref addSource(). Finally the actual path computation can be |
419 | 420 |
///performed with one of the \ref start() functions. |
420 | 421 |
|
421 | 422 |
///@{ |
422 | 423 |
|
423 | 424 |
///\brief Initializes the internal data structures. |
424 | 425 |
/// |
425 | 426 |
///Initializes the internal data structures. |
426 | 427 |
void init() |
427 | 428 |
{ |
428 | 429 |
create_maps(); |
429 | 430 |
_queue.resize(countNodes(*G)); |
430 | 431 |
_queue_head=_queue_tail=0; |
431 | 432 |
_curr_dist=1; |
432 | 433 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
433 | 434 |
_pred->set(u,INVALID); |
434 | 435 |
_reached->set(u,false); |
435 | 436 |
_processed->set(u,false); |
436 | 437 |
} |
437 | 438 |
} |
438 | 439 |
|
439 | 440 |
///Adds a new source node. |
440 | 441 |
|
441 | 442 |
///Adds a new source node to the set of nodes to be processed. |
... | ... |
@@ -716,296 +717,287 @@ |
716 | 717 |
/// b.start(); |
717 | 718 |
/// } |
718 | 719 |
/// } |
719 | 720 |
///\endcode |
720 | 721 |
void run() { |
721 | 722 |
init(); |
722 | 723 |
for (NodeIt n(*G); n != INVALID; ++n) { |
723 | 724 |
if (!reached(n)) { |
724 | 725 |
addSource(n); |
725 | 726 |
start(); |
726 | 727 |
} |
727 | 728 |
} |
728 | 729 |
} |
729 | 730 |
|
730 | 731 |
///@} |
731 | 732 |
|
732 | 733 |
///\name Query Functions |
733 | 734 |
///The results of the BFS algorithm can be obtained using these |
734 | 735 |
///functions.\n |
735 | 736 |
///Either \ref run(Node) "run()" or \ref start() should be called |
736 | 737 |
///before using them. |
737 | 738 |
|
738 | 739 |
///@{ |
739 | 740 |
|
740 |
///The shortest path to |
|
741 |
///The shortest path to the given node. |
|
741 | 742 |
|
742 |
///Returns the shortest path to |
|
743 |
///Returns the shortest path to the given node from the root(s). |
|
743 | 744 |
/// |
744 | 745 |
///\warning \c t should be reached from the root(s). |
745 | 746 |
/// |
746 | 747 |
///\pre Either \ref run(Node) "run()" or \ref init() |
747 | 748 |
///must be called before using this function. |
748 | 749 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
749 | 750 |
|
750 |
///The distance of |
|
751 |
///The distance of the given node from the root(s). |
|
751 | 752 |
|
752 |
///Returns the distance of |
|
753 |
///Returns the distance of the given node from the root(s). |
|
753 | 754 |
/// |
754 | 755 |
///\warning If node \c v is not reached from the root(s), then |
755 | 756 |
///the return value of this function is undefined. |
756 | 757 |
/// |
757 | 758 |
///\pre Either \ref run(Node) "run()" or \ref init() |
758 | 759 |
///must be called before using this function. |
759 | 760 |
int dist(Node v) const { return (*_dist)[v]; } |
760 | 761 |
|
761 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
762 |
|
|
762 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
763 |
///the given node. |
|
764 |
/// |
|
763 | 765 |
///This function returns the 'previous arc' of the shortest path |
764 | 766 |
///tree for the node \c v, i.e. it returns the last arc of a |
765 | 767 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
766 | 768 |
///is not reached from the root(s) or if \c v is a root. |
767 | 769 |
/// |
768 | 770 |
///The shortest path tree used here is equal to the shortest path |
769 |
///tree used in \ref predNode(). |
|
771 |
///tree used in \ref predNode() and \ref predMap(). |
|
770 | 772 |
/// |
771 | 773 |
///\pre Either \ref run(Node) "run()" or \ref init() |
772 | 774 |
///must be called before using this function. |
773 | 775 |
Arc predArc(Node v) const { return (*_pred)[v];} |
774 | 776 |
|
775 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
776 |
|
|
777 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
778 |
///the given node. |
|
779 |
/// |
|
777 | 780 |
///This function returns the 'previous node' of the shortest path |
778 | 781 |
///tree for the node \c v, i.e. it returns the last but one node |
779 |
/// |
|
782 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
780 | 783 |
///if \c v is not reached from the root(s) or if \c v is a root. |
781 | 784 |
/// |
782 | 785 |
///The shortest path tree used here is equal to the shortest path |
783 |
///tree used in \ref predArc(). |
|
786 |
///tree used in \ref predArc() and \ref predMap(). |
|
784 | 787 |
/// |
785 | 788 |
///\pre Either \ref run(Node) "run()" or \ref init() |
786 | 789 |
///must be called before using this function. |
787 | 790 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
788 | 791 |
G->source((*_pred)[v]); } |
789 | 792 |
|
790 | 793 |
///\brief Returns a const reference to the node map that stores the |
791 | 794 |
/// distances of the nodes. |
792 | 795 |
/// |
793 | 796 |
///Returns a const reference to the node map that stores the distances |
794 | 797 |
///of the nodes calculated by the algorithm. |
795 | 798 |
/// |
796 | 799 |
///\pre Either \ref run(Node) "run()" or \ref init() |
797 | 800 |
///must be called before using this function. |
798 | 801 |
const DistMap &distMap() const { return *_dist;} |
799 | 802 |
|
800 | 803 |
///\brief Returns a const reference to the node map that stores the |
801 | 804 |
///predecessor arcs. |
802 | 805 |
/// |
803 | 806 |
///Returns a const reference to the node map that stores the predecessor |
804 |
///arcs, which form the shortest path tree. |
|
807 |
///arcs, which form the shortest path tree (forest). |
|
805 | 808 |
/// |
806 | 809 |
///\pre Either \ref run(Node) "run()" or \ref init() |
807 | 810 |
///must be called before using this function. |
808 | 811 |
const PredMap &predMap() const { return *_pred;} |
809 | 812 |
|
810 |
///Checks if |
|
813 |
///Checks if the given node is reached from the root(s). |
|
811 | 814 |
|
812 | 815 |
///Returns \c true if \c v is reached from the root(s). |
813 | 816 |
/// |
814 | 817 |
///\pre Either \ref run(Node) "run()" or \ref init() |
815 | 818 |
///must be called before using this function. |
816 | 819 |
bool reached(Node v) const { return (*_reached)[v]; } |
817 | 820 |
|
818 | 821 |
///@} |
819 | 822 |
}; |
820 | 823 |
|
821 | 824 |
///Default traits class of bfs() function. |
822 | 825 |
|
823 | 826 |
///Default traits class of bfs() function. |
824 | 827 |
///\tparam GR Digraph type. |
825 | 828 |
template<class GR> |
826 | 829 |
struct BfsWizardDefaultTraits |
827 | 830 |
{ |
828 | 831 |
///The type of the digraph the algorithm runs on. |
829 | 832 |
typedef GR Digraph; |
830 | 833 |
|
831 | 834 |
///\brief The type of the map that stores the predecessor |
832 | 835 |
///arcs of the shortest paths. |
833 | 836 |
/// |
834 | 837 |
///The type of the map that stores the predecessor |
835 | 838 |
///arcs of the shortest paths. |
836 |
///It must |
|
839 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
837 | 840 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
838 | 841 |
///Instantiates a PredMap. |
839 | 842 |
|
840 | 843 |
///This function instantiates a PredMap. |
841 | 844 |
///\param g is the digraph, to which we would like to define the |
842 | 845 |
///PredMap. |
843 | 846 |
static PredMap *createPredMap(const Digraph &g) |
844 | 847 |
{ |
845 | 848 |
return new PredMap(g); |
846 | 849 |
} |
847 | 850 |
|
848 | 851 |
///The type of the map that indicates which nodes are processed. |
849 | 852 |
|
850 | 853 |
///The type of the map that indicates which nodes are processed. |
851 |
///It must |
|
854 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
852 | 855 |
///By default it is a NullMap. |
853 | 856 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
854 | 857 |
///Instantiates a ProcessedMap. |
855 | 858 |
|
856 | 859 |
///This function instantiates a ProcessedMap. |
857 | 860 |
///\param g is the digraph, to which |
858 | 861 |
///we would like to define the ProcessedMap. |
859 | 862 |
#ifdef DOXYGEN |
860 | 863 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
861 | 864 |
#else |
862 | 865 |
static ProcessedMap *createProcessedMap(const Digraph &) |
863 | 866 |
#endif |
864 | 867 |
{ |
865 | 868 |
return new ProcessedMap(); |
866 | 869 |
} |
867 | 870 |
|
868 | 871 |
///The type of the map that indicates which nodes are reached. |
869 | 872 |
|
870 | 873 |
///The type of the map that indicates which nodes are reached. |
871 |
///It must |
|
874 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
872 | 875 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
873 | 876 |
///Instantiates a ReachedMap. |
874 | 877 |
|
875 | 878 |
///This function instantiates a ReachedMap. |
876 | 879 |
///\param g is the digraph, to which |
877 | 880 |
///we would like to define the ReachedMap. |
878 | 881 |
static ReachedMap *createReachedMap(const Digraph &g) |
879 | 882 |
{ |
880 | 883 |
return new ReachedMap(g); |
881 | 884 |
} |
882 | 885 |
|
883 | 886 |
///The type of the map that stores the distances of the nodes. |
884 | 887 |
|
885 | 888 |
///The type of the map that stores the distances of the nodes. |
886 |
///It must |
|
889 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
887 | 890 |
typedef typename Digraph::template NodeMap<int> DistMap; |
888 | 891 |
///Instantiates a DistMap. |
889 | 892 |
|
890 | 893 |
///This function instantiates a DistMap. |
891 | 894 |
///\param g is the digraph, to which we would like to define |
892 | 895 |
///the DistMap |
893 | 896 |
static DistMap *createDistMap(const Digraph &g) |
894 | 897 |
{ |
895 | 898 |
return new DistMap(g); |
896 | 899 |
} |
897 | 900 |
|
898 | 901 |
///The type of the shortest paths. |
899 | 902 |
|
900 | 903 |
///The type of the shortest paths. |
901 |
///It must |
|
904 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
902 | 905 |
typedef lemon::Path<Digraph> Path; |
903 | 906 |
}; |
904 | 907 |
|
905 | 908 |
/// Default traits class used by BfsWizard |
906 | 909 |
|
907 |
/// To make it easier to use Bfs algorithm |
|
908 |
/// we have created a wizard class. |
|
909 |
/// This \ref BfsWizard class needs default traits, |
|
910 |
/// as well as the \ref Bfs class. |
|
911 |
/// The \ref BfsWizardBase is a class to be the default traits of the |
|
912 |
/// \ref BfsWizard class. |
|
910 |
/// Default traits class used by BfsWizard. |
|
911 |
/// \tparam GR The type of the digraph. |
|
913 | 912 |
template<class GR> |
914 | 913 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
915 | 914 |
{ |
916 | 915 |
|
917 | 916 |
typedef BfsWizardDefaultTraits<GR> Base; |
918 | 917 |
protected: |
919 | 918 |
//The type of the nodes in the digraph. |
920 | 919 |
typedef typename Base::Digraph::Node Node; |
921 | 920 |
|
922 | 921 |
//Pointer to the digraph the algorithm runs on. |
923 | 922 |
void *_g; |
924 | 923 |
//Pointer to the map of reached nodes. |
925 | 924 |
void *_reached; |
926 | 925 |
//Pointer to the map of processed nodes. |
927 | 926 |
void *_processed; |
928 | 927 |
//Pointer to the map of predecessors arcs. |
929 | 928 |
void *_pred; |
930 | 929 |
//Pointer to the map of distances. |
931 | 930 |
void *_dist; |
932 | 931 |
//Pointer to the shortest path to the target node. |
933 | 932 |
void *_path; |
934 | 933 |
//Pointer to the distance of the target node. |
935 | 934 |
int *_di; |
936 | 935 |
|
937 | 936 |
public: |
938 | 937 |
/// Constructor. |
939 | 938 |
|
940 |
/// This constructor does not require parameters, |
|
939 |
/// This constructor does not require parameters, it initiates |
|
941 | 940 |
/// all of the attributes to \c 0. |
942 | 941 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
943 | 942 |
_dist(0), _path(0), _di(0) {} |
944 | 943 |
|
945 | 944 |
/// Constructor. |
946 | 945 |
|
947 | 946 |
/// This constructor requires one parameter, |
948 | 947 |
/// others are initiated to \c 0. |
949 | 948 |
/// \param g The digraph the algorithm runs on. |
950 | 949 |
BfsWizardBase(const GR &g) : |
951 | 950 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
952 | 951 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
953 | 952 |
|
954 | 953 |
}; |
955 | 954 |
|
956 | 955 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
957 | 956 |
|
958 | 957 |
/// This auxiliary class is created to implement the |
959 | 958 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
960 | 959 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
961 | 960 |
/// functions and features of the plain \ref Bfs. |
962 | 961 |
/// |
963 | 962 |
/// This class should only be used through the \ref bfs() function, |
964 | 963 |
/// which makes it easier to use the algorithm. |
965 | 964 |
template<class TR> |
966 | 965 |
class BfsWizard : public TR |
967 | 966 |
{ |
968 | 967 |
typedef TR Base; |
969 | 968 |
|
970 |
///The type of the digraph the algorithm runs on. |
|
971 | 969 |
typedef typename TR::Digraph Digraph; |
972 | 970 |
|
973 | 971 |
typedef typename Digraph::Node Node; |
974 | 972 |
typedef typename Digraph::NodeIt NodeIt; |
975 | 973 |
typedef typename Digraph::Arc Arc; |
976 | 974 |
typedef typename Digraph::OutArcIt OutArcIt; |
977 | 975 |
|
978 |
///\brief The type of the map that stores the predecessor |
|
979 |
///arcs of the shortest paths. |
|
980 | 976 |
typedef typename TR::PredMap PredMap; |
981 |
///\brief The type of the map that stores the distances of the nodes. |
|
982 | 977 |
typedef typename TR::DistMap DistMap; |
983 |
///\brief The type of the map that indicates which nodes are reached. |
|
984 | 978 |
typedef typename TR::ReachedMap ReachedMap; |
985 |
///\brief The type of the map that indicates which nodes are processed. |
|
986 | 979 |
typedef typename TR::ProcessedMap ProcessedMap; |
987 |
///The type of the shortest paths |
|
988 | 980 |
typedef typename TR::Path Path; |
989 | 981 |
|
990 | 982 |
public: |
991 | 983 |
|
992 | 984 |
/// Constructor. |
993 | 985 |
BfsWizard() : TR() {} |
994 | 986 |
|
995 | 987 |
/// Constructor that requires parameters. |
996 | 988 |
|
997 | 989 |
/// Constructor that requires parameters. |
998 | 990 |
/// These parameters will be the default values for the traits class. |
999 | 991 |
/// \param g The digraph the algorithm runs on. |
1000 | 992 |
BfsWizard(const Digraph &g) : |
1001 | 993 |
TR(g) {} |
1002 | 994 |
|
1003 | 995 |
///Copy constructor |
1004 | 996 |
BfsWizard(const TR &b) : TR(b) {} |
1005 | 997 |
|
1006 | 998 |
~BfsWizard() {} |
1007 | 999 |
|
1008 | 1000 |
///Runs BFS algorithm from the given source node. |
1009 | 1001 |
|
1010 | 1002 |
///This method runs BFS algorithm from node \c s |
1011 | 1003 |
///in order to compute the shortest path to each node. |
... | ... |
@@ -1046,107 +1038,112 @@ |
1046 | 1038 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1047 | 1039 |
alg.run(s,t); |
1048 | 1040 |
if (Base::_path) |
1049 | 1041 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
1050 | 1042 |
if (Base::_di) |
1051 | 1043 |
*Base::_di = alg.dist(t); |
1052 | 1044 |
return alg.reached(t); |
1053 | 1045 |
} |
1054 | 1046 |
|
1055 | 1047 |
///Runs BFS algorithm to visit all nodes in the digraph. |
1056 | 1048 |
|
1057 | 1049 |
///This method runs BFS algorithm in order to compute |
1058 | 1050 |
///the shortest path to each node. |
1059 | 1051 |
void run() |
1060 | 1052 |
{ |
1061 | 1053 |
run(INVALID); |
1062 | 1054 |
} |
1063 | 1055 |
|
1064 | 1056 |
template<class T> |
1065 | 1057 |
struct SetPredMapBase : public Base { |
1066 | 1058 |
typedef T PredMap; |
1067 | 1059 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1068 | 1060 |
SetPredMapBase(const TR &b) : TR(b) {} |
1069 | 1061 |
}; |
1070 |
///\brief \ref named-func-param "Named parameter" |
|
1071 |
///for setting PredMap object. |
|
1062 |
|
|
1063 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1064 |
///the predecessor map. |
|
1072 | 1065 |
/// |
1073 |
///\ref named-func-param "Named parameter" |
|
1074 |
///for setting PredMap object. |
|
1066 |
///\ref named-templ-param "Named parameter" function for setting |
|
1067 |
///the map that stores the predecessor arcs of the nodes. |
|
1075 | 1068 |
template<class T> |
1076 | 1069 |
BfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1077 | 1070 |
{ |
1078 | 1071 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1079 | 1072 |
return BfsWizard<SetPredMapBase<T> >(*this); |
1080 | 1073 |
} |
1081 | 1074 |
|
1082 | 1075 |
template<class T> |
1083 | 1076 |
struct SetReachedMapBase : public Base { |
1084 | 1077 |
typedef T ReachedMap; |
1085 | 1078 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1086 | 1079 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1087 | 1080 |
}; |
1088 |
///\brief \ref named-func-param "Named parameter" |
|
1089 |
///for setting ReachedMap object. |
|
1081 |
|
|
1082 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1083 |
///the reached map. |
|
1090 | 1084 |
/// |
1091 |
/// \ref named-func-param "Named parameter" |
|
1092 |
///for setting ReachedMap object. |
|
1085 |
///\ref named-templ-param "Named parameter" function for setting |
|
1086 |
///the map that indicates which nodes are reached. |
|
1093 | 1087 |
template<class T> |
1094 | 1088 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1095 | 1089 |
{ |
1096 | 1090 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1097 | 1091 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
1098 | 1092 |
} |
1099 | 1093 |
|
1100 | 1094 |
template<class T> |
1101 | 1095 |
struct SetDistMapBase : public Base { |
1102 | 1096 |
typedef T DistMap; |
1103 | 1097 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1104 | 1098 |
SetDistMapBase(const TR &b) : TR(b) {} |
1105 | 1099 |
}; |
1106 |
///\brief \ref named-func-param "Named parameter" |
|
1107 |
///for setting DistMap object. |
|
1100 |
|
|
1101 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1102 |
///the distance map. |
|
1108 | 1103 |
/// |
1109 |
/// \ref named-func-param "Named parameter" |
|
1110 |
///for setting DistMap object. |
|
1104 |
///\ref named-templ-param "Named parameter" function for setting |
|
1105 |
///the map that stores the distances of the nodes calculated |
|
1106 |
///by the algorithm. |
|
1111 | 1107 |
template<class T> |
1112 | 1108 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1113 | 1109 |
{ |
1114 | 1110 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1115 | 1111 |
return BfsWizard<SetDistMapBase<T> >(*this); |
1116 | 1112 |
} |
1117 | 1113 |
|
1118 | 1114 |
template<class T> |
1119 | 1115 |
struct SetProcessedMapBase : public Base { |
1120 | 1116 |
typedef T ProcessedMap; |
1121 | 1117 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1122 | 1118 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1123 | 1119 |
}; |
1124 |
///\brief \ref named-func-param "Named parameter" |
|
1125 |
///for setting ProcessedMap object. |
|
1120 |
|
|
1121 |
///\brief \ref named-func-param "Named parameter" for setting |
|
1122 |
///the processed map. |
|
1126 | 1123 |
/// |
1127 |
/// \ref named-func-param "Named parameter" |
|
1128 |
///for setting ProcessedMap object. |
|
1124 |
///\ref named-templ-param "Named parameter" function for setting |
|
1125 |
///the map that indicates which nodes are processed. |
|
1129 | 1126 |
template<class T> |
1130 | 1127 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1131 | 1128 |
{ |
1132 | 1129 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1133 | 1130 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
1134 | 1131 |
} |
1135 | 1132 |
|
1136 | 1133 |
template<class T> |
1137 | 1134 |
struct SetPathBase : public Base { |
1138 | 1135 |
typedef T Path; |
1139 | 1136 |
SetPathBase(const TR &b) : TR(b) {} |
1140 | 1137 |
}; |
1141 | 1138 |
///\brief \ref named-func-param "Named parameter" |
1142 | 1139 |
///for getting the shortest path to the target node. |
1143 | 1140 |
/// |
1144 | 1141 |
///\ref named-func-param "Named parameter" |
1145 | 1142 |
///for getting the shortest path to the target node. |
1146 | 1143 |
template<class T> |
1147 | 1144 |
BfsWizard<SetPathBase<T> > path(const T &t) |
1148 | 1145 |
{ |
1149 | 1146 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1150 | 1147 |
return BfsWizard<SetPathBase<T> >(*this); |
1151 | 1148 |
} |
1152 | 1149 |
|
... | ... |
@@ -1243,49 +1240,49 @@ |
1243 | 1240 |
visitor.start(node); |
1244 | 1241 |
visitor.reach(node); |
1245 | 1242 |
visitor.process(node); |
1246 | 1243 |
visitor.discover(arc); |
1247 | 1244 |
visitor.examine(arc); |
1248 | 1245 |
} |
1249 | 1246 |
_Visitor& visitor; |
1250 | 1247 |
}; |
1251 | 1248 |
}; |
1252 | 1249 |
#endif |
1253 | 1250 |
|
1254 | 1251 |
/// \brief Default traits class of BfsVisit class. |
1255 | 1252 |
/// |
1256 | 1253 |
/// Default traits class of BfsVisit class. |
1257 | 1254 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1258 | 1255 |
template<class GR> |
1259 | 1256 |
struct BfsVisitDefaultTraits { |
1260 | 1257 |
|
1261 | 1258 |
/// \brief The type of the digraph the algorithm runs on. |
1262 | 1259 |
typedef GR Digraph; |
1263 | 1260 |
|
1264 | 1261 |
/// \brief The type of the map that indicates which nodes are reached. |
1265 | 1262 |
/// |
1266 | 1263 |
/// The type of the map that indicates which nodes are reached. |
1267 |
/// It must |
|
1264 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
1268 | 1265 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1269 | 1266 |
|
1270 | 1267 |
/// \brief Instantiates a ReachedMap. |
1271 | 1268 |
/// |
1272 | 1269 |
/// This function instantiates a ReachedMap. |
1273 | 1270 |
/// \param digraph is the digraph, to which |
1274 | 1271 |
/// we would like to define the ReachedMap. |
1275 | 1272 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1276 | 1273 |
return new ReachedMap(digraph); |
1277 | 1274 |
} |
1278 | 1275 |
|
1279 | 1276 |
}; |
1280 | 1277 |
|
1281 | 1278 |
/// \ingroup search |
1282 | 1279 |
/// |
1283 | 1280 |
/// \brief BFS algorithm class with visitor interface. |
1284 | 1281 |
/// |
1285 | 1282 |
/// This class provides an efficient implementation of the BFS algorithm |
1286 | 1283 |
/// with visitor interface. |
1287 | 1284 |
/// |
1288 | 1285 |
/// The BfsVisit class provides an alternative interface to the Bfs |
1289 | 1286 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1290 | 1287 |
/// the member functions of the \c Visitor class on every BFS event. |
1291 | 1288 |
/// |
... | ... |
@@ -1404,50 +1401,50 @@ |
1404 | 1401 |
} |
1405 | 1402 |
|
1406 | 1403 |
/// \brief Sets the map that indicates which nodes are reached. |
1407 | 1404 |
/// |
1408 | 1405 |
/// Sets the map that indicates which nodes are reached. |
1409 | 1406 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1410 | 1407 |
/// or \ref init(), an instance will be allocated automatically. |
1411 | 1408 |
/// The destructor deallocates this automatically allocated map, |
1412 | 1409 |
/// of course. |
1413 | 1410 |
/// \return <tt> (*this) </tt> |
1414 | 1411 |
BfsVisit &reachedMap(ReachedMap &m) { |
1415 | 1412 |
if(local_reached) { |
1416 | 1413 |
delete _reached; |
1417 | 1414 |
local_reached = false; |
1418 | 1415 |
} |
1419 | 1416 |
_reached = &m; |
1420 | 1417 |
return *this; |
1421 | 1418 |
} |
1422 | 1419 |
|
1423 | 1420 |
public: |
1424 | 1421 |
|
1425 | 1422 |
/// \name Execution Control |
1426 | 1423 |
/// The simplest way to execute the BFS algorithm is to use one of the |
1427 | 1424 |
/// member functions called \ref run(Node) "run()".\n |
1428 |
/// If you need more control on the execution, first you have to call |
|
1429 |
/// \ref init(), then you can add several source nodes with |
|
1425 |
/// If you need better control on the execution, you have to call |
|
1426 |
/// \ref init() first, then you can add several source nodes with |
|
1430 | 1427 |
/// \ref addSource(). Finally the actual path computation can be |
1431 | 1428 |
/// performed with one of the \ref start() functions. |
1432 | 1429 |
|
1433 | 1430 |
/// @{ |
1434 | 1431 |
|
1435 | 1432 |
/// \brief Initializes the internal data structures. |
1436 | 1433 |
/// |
1437 | 1434 |
/// Initializes the internal data structures. |
1438 | 1435 |
void init() { |
1439 | 1436 |
create_maps(); |
1440 | 1437 |
_list.resize(countNodes(*_digraph)); |
1441 | 1438 |
_list_front = _list_back = -1; |
1442 | 1439 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1443 | 1440 |
_reached->set(u, false); |
1444 | 1441 |
} |
1445 | 1442 |
} |
1446 | 1443 |
|
1447 | 1444 |
/// \brief Adds a new source node. |
1448 | 1445 |
/// |
1449 | 1446 |
/// Adds a new source node to the set of nodes to be processed. |
1450 | 1447 |
void addSource(Node s) { |
1451 | 1448 |
if(!(*_reached)[s]) { |
1452 | 1449 |
_reached->set(s,true); |
1453 | 1450 |
_visitor->start(s); |
... | ... |
@@ -1714,39 +1711,39 @@ |
1714 | 1711 |
/// b.start(); |
1715 | 1712 |
/// } |
1716 | 1713 |
/// } |
1717 | 1714 |
///\endcode |
1718 | 1715 |
void run() { |
1719 | 1716 |
init(); |
1720 | 1717 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1721 | 1718 |
if (!reached(it)) { |
1722 | 1719 |
addSource(it); |
1723 | 1720 |
start(); |
1724 | 1721 |
} |
1725 | 1722 |
} |
1726 | 1723 |
} |
1727 | 1724 |
|
1728 | 1725 |
///@} |
1729 | 1726 |
|
1730 | 1727 |
/// \name Query Functions |
1731 | 1728 |
/// The results of the BFS algorithm can be obtained using these |
1732 | 1729 |
/// functions.\n |
1733 | 1730 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1734 | 1731 |
/// before using them. |
1735 | 1732 |
|
1736 | 1733 |
///@{ |
1737 | 1734 |
|
1738 |
/// \brief Checks if |
|
1735 |
/// \brief Checks if the given node is reached from the root(s). |
|
1739 | 1736 |
/// |
1740 | 1737 |
/// Returns \c true if \c v is reached from the root(s). |
1741 | 1738 |
/// |
1742 | 1739 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1743 | 1740 |
/// must be called before using this function. |
1744 | 1741 |
bool reached(Node v) const { return (*_reached)[v]; } |
1745 | 1742 |
|
1746 | 1743 |
///@} |
1747 | 1744 |
|
1748 | 1745 |
}; |
1749 | 1746 |
|
1750 | 1747 |
} //END OF NAMESPACE LEMON |
1751 | 1748 |
|
1752 | 1749 |
#endif |
... | ... |
@@ -28,48 +28,50 @@ |
28 | 28 |
|
29 | 29 |
//\file |
30 | 30 |
//\brief Extenders for iterable maps. |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
// \ingroup graphbits |
35 | 35 |
// |
36 | 36 |
// \brief Extender for maps |
37 | 37 |
template <typename _Map> |
38 | 38 |
class MapExtender : public _Map { |
39 | 39 |
typedef _Map Parent; |
40 | 40 |
typedef typename Parent::GraphType GraphType; |
41 | 41 |
|
42 | 42 |
public: |
43 | 43 |
|
44 | 44 |
typedef MapExtender Map; |
45 | 45 |
typedef typename Parent::Key Item; |
46 | 46 |
|
47 | 47 |
typedef typename Parent::Key Key; |
48 | 48 |
typedef typename Parent::Value Value; |
49 | 49 |
typedef typename Parent::Reference Reference; |
50 | 50 |
typedef typename Parent::ConstReference ConstReference; |
51 | 51 |
|
52 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
53 |
|
|
52 | 54 |
class MapIt; |
53 | 55 |
class ConstMapIt; |
54 | 56 |
|
55 | 57 |
friend class MapIt; |
56 | 58 |
friend class ConstMapIt; |
57 | 59 |
|
58 | 60 |
public: |
59 | 61 |
|
60 | 62 |
MapExtender(const GraphType& graph) |
61 | 63 |
: Parent(graph) {} |
62 | 64 |
|
63 | 65 |
MapExtender(const GraphType& graph, const Value& value) |
64 | 66 |
: Parent(graph, value) {} |
65 | 67 |
|
66 | 68 |
private: |
67 | 69 |
MapExtender& operator=(const MapExtender& cmap) { |
68 | 70 |
return operator=<MapExtender>(cmap); |
69 | 71 |
} |
70 | 72 |
|
71 | 73 |
template <typename CMap> |
72 | 74 |
MapExtender& operator=(const CMap& cmap) { |
73 | 75 |
Parent::operator=(cmap); |
74 | 76 |
return *this; |
75 | 77 |
} |
... | ... |
@@ -170,48 +172,50 @@ |
170 | 172 |
protected: |
171 | 173 |
const Map& map; |
172 | 174 |
|
173 | 175 |
}; |
174 | 176 |
}; |
175 | 177 |
|
176 | 178 |
// \ingroup graphbits |
177 | 179 |
// |
178 | 180 |
// \brief Extender for maps which use a subset of the items. |
179 | 181 |
template <typename _Graph, typename _Map> |
180 | 182 |
class SubMapExtender : public _Map { |
181 | 183 |
typedef _Map Parent; |
182 | 184 |
typedef _Graph GraphType; |
183 | 185 |
|
184 | 186 |
public: |
185 | 187 |
|
186 | 188 |
typedef SubMapExtender Map; |
187 | 189 |
typedef typename Parent::Key Item; |
188 | 190 |
|
189 | 191 |
typedef typename Parent::Key Key; |
190 | 192 |
typedef typename Parent::Value Value; |
191 | 193 |
typedef typename Parent::Reference Reference; |
192 | 194 |
typedef typename Parent::ConstReference ConstReference; |
193 | 195 |
|
196 |
typedef typename Parent::ReferenceMapTag ReferenceMapTag; |
|
197 |
|
|
194 | 198 |
class MapIt; |
195 | 199 |
class ConstMapIt; |
196 | 200 |
|
197 | 201 |
friend class MapIt; |
198 | 202 |
friend class ConstMapIt; |
199 | 203 |
|
200 | 204 |
public: |
201 | 205 |
|
202 | 206 |
SubMapExtender(const GraphType& _graph) |
203 | 207 |
: Parent(_graph), graph(_graph) {} |
204 | 208 |
|
205 | 209 |
SubMapExtender(const GraphType& _graph, const Value& _value) |
206 | 210 |
: Parent(_graph, _value), graph(_graph) {} |
207 | 211 |
|
208 | 212 |
private: |
209 | 213 |
SubMapExtender& operator=(const SubMapExtender& cmap) { |
210 | 214 |
return operator=<MapExtender>(cmap); |
211 | 215 |
} |
212 | 216 |
|
213 | 217 |
template <typename CMap> |
214 | 218 |
SubMapExtender& operator=(const CMap& cmap) { |
215 | 219 |
checkConcept<concepts::ReadMap<Key, Value>, CMap>(); |
216 | 220 |
Item it; |
217 | 221 |
for (graph.first(it); it != INVALID; graph.next(it)) { |
... | ... |
@@ -51,66 +51,73 @@ |
51 | 51 |
typedef LM LowerMap; |
52 | 52 |
|
53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
54 | 54 |
/// |
55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
56 | 56 |
/// on the arcs. |
57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
58 | 58 |
typedef UM UpperMap; |
59 | 59 |
|
60 | 60 |
/// \brief The type of supply map. |
61 | 61 |
/// |
62 | 62 |
/// The type of the map that stores the signed supply values of the |
63 | 63 |
/// nodes. |
64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
65 | 65 |
typedef SM SupplyMap; |
66 | 66 |
|
67 | 67 |
/// \brief The type of the flow and supply values. |
68 | 68 |
typedef typename SupplyMap::Value Value; |
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 |
#ifdef DOXYGEN |
|
76 |
typedef GR::ArcMap<Value> FlowMap; |
|
77 |
#else |
|
75 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
79 |
#endif |
|
76 | 80 |
|
77 | 81 |
/// \brief Instantiates a FlowMap. |
78 | 82 |
/// |
79 | 83 |
/// This function instantiates a \ref FlowMap. |
80 | 84 |
/// \param digraph The digraph for which we would like to define |
81 | 85 |
/// the flow map. |
82 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
83 | 87 |
return new FlowMap(digraph); |
84 | 88 |
} |
85 | 89 |
|
86 | 90 |
/// \brief The elevator type used by the algorithm. |
87 | 91 |
/// |
88 | 92 |
/// The elevator type used by the algorithm. |
89 | 93 |
/// |
90 |
/// \sa Elevator |
|
91 |
/// \sa LinkedElevator |
|
94 |
/// \sa Elevator, LinkedElevator |
|
95 |
#ifdef DOXYGEN |
|
96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
97 |
#else |
|
92 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
99 |
#endif |
|
93 | 100 |
|
94 | 101 |
/// \brief Instantiates an Elevator. |
95 | 102 |
/// |
96 | 103 |
/// This function instantiates an \ref Elevator. |
97 | 104 |
/// \param digraph The digraph for which we would like to define |
98 | 105 |
/// the elevator. |
99 | 106 |
/// \param max_level The maximum level of the elevator. |
100 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
101 | 108 |
return new Elevator(digraph, max_level); |
102 | 109 |
} |
103 | 110 |
|
104 | 111 |
/// \brief The tolerance used by the algorithm |
105 | 112 |
/// |
106 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
107 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
108 | 115 |
|
109 | 116 |
}; |
110 | 117 |
|
111 | 118 |
/** |
112 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
113 | 120 |
|
114 | 121 |
\ingroup max_flow |
115 | 122 |
This class implements a push-relabel algorithm for the \e network |
116 | 123 |
\e circulation problem. |
... | ... |
@@ -448,50 +455,50 @@ |
448 | 455 |
/// using this function. |
449 | 456 |
const Elevator& elevator() const { |
450 | 457 |
return *_level; |
451 | 458 |
} |
452 | 459 |
|
453 | 460 |
/// \brief Sets the tolerance used by the algorithm. |
454 | 461 |
/// |
455 | 462 |
/// Sets the tolerance object used by the algorithm. |
456 | 463 |
/// \return <tt>(*this)</tt> |
457 | 464 |
Circulation& tolerance(const Tolerance& tolerance) { |
458 | 465 |
_tol = tolerance; |
459 | 466 |
return *this; |
460 | 467 |
} |
461 | 468 |
|
462 | 469 |
/// \brief Returns a const reference to the tolerance. |
463 | 470 |
/// |
464 | 471 |
/// Returns a const reference to the tolerance object used by |
465 | 472 |
/// the algorithm. |
466 | 473 |
const Tolerance& tolerance() const { |
467 | 474 |
return _tol; |
468 | 475 |
} |
469 | 476 |
|
470 | 477 |
/// \name Execution Control |
471 | 478 |
/// The simplest way to execute the algorithm is to call \ref run().\n |
472 |
/// If you need more control on the initial solution or the execution, |
|
473 |
/// first you have to call one of the \ref init() functions, then |
|
479 |
/// If you need better control on the initial solution or the execution, |
|
480 |
/// you have to call one of the \ref init() functions first, then |
|
474 | 481 |
/// the \ref start() function. |
475 | 482 |
|
476 | 483 |
///@{ |
477 | 484 |
|
478 | 485 |
/// Initializes the internal data structures. |
479 | 486 |
|
480 | 487 |
/// Initializes the internal data structures and sets all flow values |
481 | 488 |
/// to the lower bound. |
482 | 489 |
void init() |
483 | 490 |
{ |
484 | 491 |
LEMON_DEBUG(checkBoundMaps(), |
485 | 492 |
"Upper bounds must be greater or equal to the lower bounds"); |
486 | 493 |
|
487 | 494 |
createStructures(); |
488 | 495 |
|
489 | 496 |
for(NodeIt n(_g);n!=INVALID;++n) { |
490 | 497 |
(*_excess)[n] = (*_supply)[n]; |
491 | 498 |
} |
492 | 499 |
|
493 | 500 |
for (ArcIt e(_g);e!=INVALID;++e) { |
494 | 501 |
_flow->set(e, (*_lo)[e]); |
495 | 502 |
(*_excess)[_g.target(e)] += (*_flow)[e]; |
496 | 503 |
(*_excess)[_g.source(e)] -= (*_flow)[e]; |
497 | 504 |
} |
... | ... |
@@ -161,49 +161,50 @@ |
161 | 161 |
/// (The type of objects associated with the keys). |
162 | 162 |
typedef T Value; |
163 | 163 |
/// The reference type of the map. |
164 | 164 |
typedef R Reference; |
165 | 165 |
/// The const reference type of the map. |
166 | 166 |
typedef CR ConstReference; |
167 | 167 |
|
168 | 168 |
public: |
169 | 169 |
|
170 | 170 |
/// Returns a reference to the value associated with the given key. |
171 | 171 |
Reference operator[](const Key &) { |
172 | 172 |
return *static_cast<Value *>(0); |
173 | 173 |
} |
174 | 174 |
|
175 | 175 |
/// Returns a const reference to the value associated with the given key. |
176 | 176 |
ConstReference operator[](const Key &) const { |
177 | 177 |
return *static_cast<Value *>(0); |
178 | 178 |
} |
179 | 179 |
|
180 | 180 |
/// Sets the value associated with the given key. |
181 | 181 |
void set(const Key &k,const Value &t) { operator[](k)=t; } |
182 | 182 |
|
183 | 183 |
template<typename _ReferenceMap> |
184 | 184 |
struct Constraints { |
185 |
|
|
185 |
typename enable_if<typename _ReferenceMap::ReferenceMapTag, void>::type |
|
186 |
constraints() { |
|
186 | 187 |
checkConcept<ReadWriteMap<K, T>, _ReferenceMap >(); |
187 | 188 |
ref = m[key]; |
188 | 189 |
m[key] = val; |
189 | 190 |
m[key] = ref; |
190 | 191 |
m[key] = cref; |
191 | 192 |
own_ref = m[own_key]; |
192 | 193 |
m[own_key] = own_val; |
193 | 194 |
m[own_key] = own_ref; |
194 | 195 |
m[own_key] = own_cref; |
195 | 196 |
m[key] = m[own_key]; |
196 | 197 |
m[own_key] = m[key]; |
197 | 198 |
} |
198 | 199 |
const Key& key; |
199 | 200 |
Value& val; |
200 | 201 |
Reference ref; |
201 | 202 |
ConstReference cref; |
202 | 203 |
const typename _ReferenceMap::Key& own_key; |
203 | 204 |
typename _ReferenceMap::Value& own_val; |
204 | 205 |
typename _ReferenceMap::Reference own_ref; |
205 | 206 |
typename _ReferenceMap::ConstReference own_cref; |
206 | 207 |
_ReferenceMap& m; |
207 | 208 |
}; |
208 | 209 |
}; |
209 | 210 |
... | ... |
@@ -26,98 +26,99 @@ |
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Dfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Dfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct DfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the %DFS paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the %DFS paths. |
50 |
///It must |
|
50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 |
///It must |
|
65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
66 |
///By default it is a NullMap. |
|
66 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
67 | 68 |
///Instantiates a \c ProcessedMap. |
68 | 69 |
|
69 | 70 |
///This function instantiates a \ref ProcessedMap. |
70 | 71 |
///\param g is the digraph, to which |
71 | 72 |
///we would like to define the \ref ProcessedMap. |
72 | 73 |
#ifdef DOXYGEN |
73 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
74 | 75 |
#else |
75 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
76 | 77 |
#endif |
77 | 78 |
{ |
78 | 79 |
return new ProcessedMap(); |
79 | 80 |
} |
80 | 81 |
|
81 | 82 |
///The type of the map that indicates which nodes are reached. |
82 | 83 |
|
83 | 84 |
///The type of the map that indicates which nodes are reached. |
84 |
///It must |
|
85 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
85 | 86 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
86 | 87 |
///Instantiates a \c ReachedMap. |
87 | 88 |
|
88 | 89 |
///This function instantiates a \ref ReachedMap. |
89 | 90 |
///\param g is the digraph, to which |
90 | 91 |
///we would like to define the \ref ReachedMap. |
91 | 92 |
static ReachedMap *createReachedMap(const Digraph &g) |
92 | 93 |
{ |
93 | 94 |
return new ReachedMap(g); |
94 | 95 |
} |
95 | 96 |
|
96 | 97 |
///The type of the map that stores the distances of the nodes. |
97 | 98 |
|
98 | 99 |
///The type of the map that stores the distances of the nodes. |
99 |
///It must |
|
100 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
100 | 101 |
typedef typename Digraph::template NodeMap<int> DistMap; |
101 | 102 |
///Instantiates a \c DistMap. |
102 | 103 |
|
103 | 104 |
///This function instantiates a \ref DistMap. |
104 | 105 |
///\param g is the digraph, to which we would like to define the |
105 | 106 |
///\ref DistMap. |
106 | 107 |
static DistMap *createDistMap(const Digraph &g) |
107 | 108 |
{ |
108 | 109 |
return new DistMap(g); |
109 | 110 |
} |
110 | 111 |
}; |
111 | 112 |
|
112 | 113 |
///%DFS algorithm class. |
113 | 114 |
|
114 | 115 |
///\ingroup search |
115 | 116 |
///This class provides an efficient implementation of the %DFS algorithm. |
116 | 117 |
/// |
117 | 118 |
///There is also a \ref dfs() "function-type interface" for the DFS |
118 | 119 |
///algorithm, which is convenient in the simplier cases and it can be |
119 | 120 |
///used easier. |
120 | 121 |
/// |
121 | 122 |
///\tparam GR The type of the digraph the algorithm runs on. |
122 | 123 |
///The default type is \ref ListDigraph. |
123 | 124 |
#ifdef DOXYGEN |
... | ... |
@@ -203,109 +204,109 @@ |
203 | 204 |
Dfs() {} |
204 | 205 |
|
205 | 206 |
public: |
206 | 207 |
|
207 | 208 |
typedef Dfs Create; |
208 | 209 |
|
209 | 210 |
///\name Named Template Parameters |
210 | 211 |
|
211 | 212 |
///@{ |
212 | 213 |
|
213 | 214 |
template <class T> |
214 | 215 |
struct SetPredMapTraits : public Traits { |
215 | 216 |
typedef T PredMap; |
216 | 217 |
static PredMap *createPredMap(const Digraph &) |
217 | 218 |
{ |
218 | 219 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
219 | 220 |
return 0; // ignore warnings |
220 | 221 |
} |
221 | 222 |
}; |
222 | 223 |
///\brief \ref named-templ-param "Named parameter" for setting |
223 | 224 |
///\c PredMap type. |
224 | 225 |
/// |
225 | 226 |
///\ref named-templ-param "Named parameter" for setting |
226 | 227 |
///\c PredMap type. |
227 |
///It must |
|
228 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
228 | 229 |
template <class T> |
229 | 230 |
struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > { |
230 | 231 |
typedef Dfs<Digraph, SetPredMapTraits<T> > Create; |
231 | 232 |
}; |
232 | 233 |
|
233 | 234 |
template <class T> |
234 | 235 |
struct SetDistMapTraits : public Traits { |
235 | 236 |
typedef T DistMap; |
236 | 237 |
static DistMap *createDistMap(const Digraph &) |
237 | 238 |
{ |
238 | 239 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
239 | 240 |
return 0; // ignore warnings |
240 | 241 |
} |
241 | 242 |
}; |
242 | 243 |
///\brief \ref named-templ-param "Named parameter" for setting |
243 | 244 |
///\c DistMap type. |
244 | 245 |
/// |
245 | 246 |
///\ref named-templ-param "Named parameter" for setting |
246 | 247 |
///\c DistMap type. |
247 |
///It must |
|
248 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
248 | 249 |
template <class T> |
249 | 250 |
struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > { |
250 | 251 |
typedef Dfs<Digraph, SetDistMapTraits<T> > Create; |
251 | 252 |
}; |
252 | 253 |
|
253 | 254 |
template <class T> |
254 | 255 |
struct SetReachedMapTraits : public Traits { |
255 | 256 |
typedef T ReachedMap; |
256 | 257 |
static ReachedMap *createReachedMap(const Digraph &) |
257 | 258 |
{ |
258 | 259 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
259 | 260 |
return 0; // ignore warnings |
260 | 261 |
} |
261 | 262 |
}; |
262 | 263 |
///\brief \ref named-templ-param "Named parameter" for setting |
263 | 264 |
///\c ReachedMap type. |
264 | 265 |
/// |
265 | 266 |
///\ref named-templ-param "Named parameter" for setting |
266 | 267 |
///\c ReachedMap type. |
267 |
///It must |
|
268 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
268 | 269 |
template <class T> |
269 | 270 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
270 | 271 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
271 | 272 |
}; |
272 | 273 |
|
273 | 274 |
template <class T> |
274 | 275 |
struct SetProcessedMapTraits : public Traits { |
275 | 276 |
typedef T ProcessedMap; |
276 | 277 |
static ProcessedMap *createProcessedMap(const Digraph &) |
277 | 278 |
{ |
278 | 279 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
279 | 280 |
return 0; // ignore warnings |
280 | 281 |
} |
281 | 282 |
}; |
282 | 283 |
///\brief \ref named-templ-param "Named parameter" for setting |
283 | 284 |
///\c ProcessedMap type. |
284 | 285 |
/// |
285 | 286 |
///\ref named-templ-param "Named parameter" for setting |
286 | 287 |
///\c ProcessedMap type. |
287 |
///It must |
|
288 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
288 | 289 |
template <class T> |
289 | 290 |
struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > { |
290 | 291 |
typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create; |
291 | 292 |
}; |
292 | 293 |
|
293 | 294 |
struct SetStandardProcessedMapTraits : public Traits { |
294 | 295 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
295 | 296 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
296 | 297 |
{ |
297 | 298 |
return new ProcessedMap(g); |
298 | 299 |
} |
299 | 300 |
}; |
300 | 301 |
///\brief \ref named-templ-param "Named parameter" for setting |
301 | 302 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
302 | 303 |
/// |
303 | 304 |
///\ref named-templ-param "Named parameter" for setting |
304 | 305 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
305 | 306 |
///If you don't set it explicitly, it will be automatically allocated. |
306 | 307 |
struct SetStandardProcessedMap : |
307 | 308 |
public Dfs< Digraph, SetStandardProcessedMapTraits > { |
308 | 309 |
typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create; |
309 | 310 |
}; |
310 | 311 |
|
311 | 312 |
///@} |
... | ... |
@@ -390,50 +391,50 @@ |
390 | 391 |
///Sets the map that stores the distances of the nodes. |
391 | 392 |
|
392 | 393 |
///Sets the map that stores the distances of the nodes calculated by |
393 | 394 |
///the algorithm. |
394 | 395 |
///If you don't use this function before calling \ref run(Node) "run()" |
395 | 396 |
///or \ref init(), an instance will be allocated automatically. |
396 | 397 |
///The destructor deallocates this automatically allocated map, |
397 | 398 |
///of course. |
398 | 399 |
///\return <tt> (*this) </tt> |
399 | 400 |
Dfs &distMap(DistMap &m) |
400 | 401 |
{ |
401 | 402 |
if(local_dist) { |
402 | 403 |
delete _dist; |
403 | 404 |
local_dist=false; |
404 | 405 |
} |
405 | 406 |
_dist = &m; |
406 | 407 |
return *this; |
407 | 408 |
} |
408 | 409 |
|
409 | 410 |
public: |
410 | 411 |
|
411 | 412 |
///\name Execution Control |
412 | 413 |
///The simplest way to execute the DFS algorithm is to use one of the |
413 | 414 |
///member functions called \ref run(Node) "run()".\n |
414 |
///If you need more control on the execution, first you have to call |
|
415 |
///\ref init(), then you can add a source node with \ref addSource() |
|
415 |
///If you need better control on the execution, you have to call |
|
416 |
///\ref init() first, then you can add a source node with \ref addSource() |
|
416 | 417 |
///and perform the actual computation with \ref start(). |
417 | 418 |
///This procedure can be repeated if there are nodes that have not |
418 | 419 |
///been reached. |
419 | 420 |
|
420 | 421 |
///@{ |
421 | 422 |
|
422 | 423 |
///\brief Initializes the internal data structures. |
423 | 424 |
/// |
424 | 425 |
///Initializes the internal data structures. |
425 | 426 |
void init() |
426 | 427 |
{ |
427 | 428 |
create_maps(); |
428 | 429 |
_stack.resize(countNodes(*G)); |
429 | 430 |
_stack_head=-1; |
430 | 431 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
431 | 432 |
_pred->set(u,INVALID); |
432 | 433 |
_reached->set(u,false); |
433 | 434 |
_processed->set(u,false); |
434 | 435 |
} |
435 | 436 |
} |
436 | 437 |
|
437 | 438 |
///Adds a new source node. |
438 | 439 |
|
439 | 440 |
///Adds a new source node to the set of nodes to be processed. |
... | ... |
@@ -648,296 +649,285 @@ |
648 | 649 |
/// d.start(); |
649 | 650 |
/// } |
650 | 651 |
/// } |
651 | 652 |
///\endcode |
652 | 653 |
void run() { |
653 | 654 |
init(); |
654 | 655 |
for (NodeIt it(*G); it != INVALID; ++it) { |
655 | 656 |
if (!reached(it)) { |
656 | 657 |
addSource(it); |
657 | 658 |
start(); |
658 | 659 |
} |
659 | 660 |
} |
660 | 661 |
} |
661 | 662 |
|
662 | 663 |
///@} |
663 | 664 |
|
664 | 665 |
///\name Query Functions |
665 | 666 |
///The results of the DFS algorithm can be obtained using these |
666 | 667 |
///functions.\n |
667 | 668 |
///Either \ref run(Node) "run()" or \ref start() should be called |
668 | 669 |
///before using them. |
669 | 670 |
|
670 | 671 |
///@{ |
671 | 672 |
|
672 |
///The DFS path to |
|
673 |
///The DFS path to the given node. |
|
673 | 674 |
|
674 |
///Returns the DFS path to |
|
675 |
///Returns the DFS path to the given node from the root(s). |
|
675 | 676 |
/// |
676 | 677 |
///\warning \c t should be reached from the root(s). |
677 | 678 |
/// |
678 | 679 |
///\pre Either \ref run(Node) "run()" or \ref init() |
679 | 680 |
///must be called before using this function. |
680 | 681 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
681 | 682 |
|
682 |
///The distance of |
|
683 |
///The distance of the given node from the root(s). |
|
683 | 684 |
|
684 |
///Returns the distance of |
|
685 |
///Returns the distance of the given node from the root(s). |
|
685 | 686 |
/// |
686 | 687 |
///\warning If node \c v is not reached from the root(s), then |
687 | 688 |
///the return value of this function is undefined. |
688 | 689 |
/// |
689 | 690 |
///\pre Either \ref run(Node) "run()" or \ref init() |
690 | 691 |
///must be called before using this function. |
691 | 692 |
int dist(Node v) const { return (*_dist)[v]; } |
692 | 693 |
|
693 |
///Returns the 'previous arc' of the %DFS tree for |
|
694 |
///Returns the 'previous arc' of the %DFS tree for the given node. |
|
694 | 695 |
|
695 | 696 |
///This function returns the 'previous arc' of the %DFS tree for the |
696 | 697 |
///node \c v, i.e. it returns the last arc of a %DFS path from a |
697 | 698 |
///root to \c v. It is \c INVALID if \c v is not reached from the |
698 | 699 |
///root(s) or if \c v is a root. |
699 | 700 |
/// |
700 | 701 |
///The %DFS tree used here is equal to the %DFS tree used in |
701 |
///\ref predNode(). |
|
702 |
///\ref predNode() and \ref predMap(). |
|
702 | 703 |
/// |
703 | 704 |
///\pre Either \ref run(Node) "run()" or \ref init() |
704 | 705 |
///must be called before using this function. |
705 | 706 |
Arc predArc(Node v) const { return (*_pred)[v];} |
706 | 707 |
|
707 |
///Returns the 'previous node' of the %DFS tree. |
|
708 |
///Returns the 'previous node' of the %DFS tree for the given node. |
|
708 | 709 |
|
709 | 710 |
///This function returns the 'previous node' of the %DFS |
710 | 711 |
///tree for the node \c v, i.e. it returns the last but one node |
711 |
/// |
|
712 |
///of a %DFS path from a root to \c v. It is \c INVALID |
|
712 | 713 |
///if \c v is not reached from the root(s) or if \c v is a root. |
713 | 714 |
/// |
714 | 715 |
///The %DFS tree used here is equal to the %DFS tree used in |
715 |
///\ref predArc(). |
|
716 |
///\ref predArc() and \ref predMap(). |
|
716 | 717 |
/// |
717 | 718 |
///\pre Either \ref run(Node) "run()" or \ref init() |
718 | 719 |
///must be called before using this function. |
719 | 720 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
720 | 721 |
G->source((*_pred)[v]); } |
721 | 722 |
|
722 | 723 |
///\brief Returns a const reference to the node map that stores the |
723 | 724 |
///distances of the nodes. |
724 | 725 |
/// |
725 | 726 |
///Returns a const reference to the node map that stores the |
726 | 727 |
///distances of the nodes calculated by the algorithm. |
727 | 728 |
/// |
728 | 729 |
///\pre Either \ref run(Node) "run()" or \ref init() |
729 | 730 |
///must be called before using this function. |
730 | 731 |
const DistMap &distMap() const { return *_dist;} |
731 | 732 |
|
732 | 733 |
///\brief Returns a const reference to the node map that stores the |
733 | 734 |
///predecessor arcs. |
734 | 735 |
/// |
735 | 736 |
///Returns a const reference to the node map that stores the predecessor |
736 |
///arcs, which form the DFS tree. |
|
737 |
///arcs, which form the DFS tree (forest). |
|
737 | 738 |
/// |
738 | 739 |
///\pre Either \ref run(Node) "run()" or \ref init() |
739 | 740 |
///must be called before using this function. |
740 | 741 |
const PredMap &predMap() const { return *_pred;} |
741 | 742 |
|
742 |
///Checks if |
|
743 |
///Checks if the given node. node is reached from the root(s). |
|
743 | 744 |
|
744 | 745 |
///Returns \c true if \c v is reached from the root(s). |
745 | 746 |
/// |
746 | 747 |
///\pre Either \ref run(Node) "run()" or \ref init() |
747 | 748 |
///must be called before using this function. |
748 | 749 |
bool reached(Node v) const { return (*_reached)[v]; } |
749 | 750 |
|
750 | 751 |
///@} |
751 | 752 |
}; |
752 | 753 |
|
753 | 754 |
///Default traits class of dfs() function. |
754 | 755 |
|
755 | 756 |
///Default traits class of dfs() function. |
756 | 757 |
///\tparam GR Digraph type. |
757 | 758 |
template<class GR> |
758 | 759 |
struct DfsWizardDefaultTraits |
759 | 760 |
{ |
760 | 761 |
///The type of the digraph the algorithm runs on. |
761 | 762 |
typedef GR Digraph; |
762 | 763 |
|
763 | 764 |
///\brief The type of the map that stores the predecessor |
764 | 765 |
///arcs of the %DFS paths. |
765 | 766 |
/// |
766 | 767 |
///The type of the map that stores the predecessor |
767 | 768 |
///arcs of the %DFS paths. |
768 |
///It must |
|
769 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
769 | 770 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
770 | 771 |
///Instantiates a PredMap. |
771 | 772 |
|
772 | 773 |
///This function instantiates a PredMap. |
773 | 774 |
///\param g is the digraph, to which we would like to define the |
774 | 775 |
///PredMap. |
775 | 776 |
static PredMap *createPredMap(const Digraph &g) |
776 | 777 |
{ |
777 | 778 |
return new PredMap(g); |
778 | 779 |
} |
779 | 780 |
|
780 | 781 |
///The type of the map that indicates which nodes are processed. |
781 | 782 |
|
782 | 783 |
///The type of the map that indicates which nodes are processed. |
783 |
///It must |
|
784 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
784 | 785 |
///By default it is a NullMap. |
785 | 786 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
786 | 787 |
///Instantiates a ProcessedMap. |
787 | 788 |
|
788 | 789 |
///This function instantiates a ProcessedMap. |
789 | 790 |
///\param g is the digraph, to which |
790 | 791 |
///we would like to define the ProcessedMap. |
791 | 792 |
#ifdef DOXYGEN |
792 | 793 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
793 | 794 |
#else |
794 | 795 |
static ProcessedMap *createProcessedMap(const Digraph &) |
795 | 796 |
#endif |
796 | 797 |
{ |
797 | 798 |
return new ProcessedMap(); |
798 | 799 |
} |
799 | 800 |
|
800 | 801 |
///The type of the map that indicates which nodes are reached. |
801 | 802 |
|
802 | 803 |
///The type of the map that indicates which nodes are reached. |
803 |
///It must |
|
804 |
///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
804 | 805 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
805 | 806 |
///Instantiates a ReachedMap. |
806 | 807 |
|
807 | 808 |
///This function instantiates a ReachedMap. |
808 | 809 |
///\param g is the digraph, to which |
809 | 810 |
///we would like to define the ReachedMap. |
810 | 811 |
static ReachedMap *createReachedMap(const Digraph &g) |
811 | 812 |
{ |
812 | 813 |
return new ReachedMap(g); |
813 | 814 |
} |
814 | 815 |
|
815 | 816 |
///The type of the map that stores the distances of the nodes. |
816 | 817 |
|
817 | 818 |
///The type of the map that stores the distances of the nodes. |
818 |
///It must |
|
819 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
819 | 820 |
typedef typename Digraph::template NodeMap<int> DistMap; |
820 | 821 |
///Instantiates a DistMap. |
821 | 822 |
|
822 | 823 |
///This function instantiates a DistMap. |
823 | 824 |
///\param g is the digraph, to which we would like to define |
824 | 825 |
///the DistMap |
825 | 826 |
static DistMap *createDistMap(const Digraph &g) |
826 | 827 |
{ |
827 | 828 |
return new DistMap(g); |
828 | 829 |
} |
829 | 830 |
|
830 | 831 |
///The type of the DFS paths. |
831 | 832 |
|
832 | 833 |
///The type of the DFS paths. |
833 |
///It must |
|
834 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
834 | 835 |
typedef lemon::Path<Digraph> Path; |
835 | 836 |
}; |
836 | 837 |
|
837 | 838 |
/// Default traits class used by DfsWizard |
838 | 839 |
|
839 |
/// To make it easier to use Dfs algorithm |
|
840 |
/// we have created a wizard class. |
|
841 |
/// This \ref DfsWizard class needs default traits, |
|
842 |
/// as well as the \ref Dfs class. |
|
843 |
/// The \ref DfsWizardBase is a class to be the default traits of the |
|
844 |
/// \ref DfsWizard class. |
|
840 |
/// Default traits class used by DfsWizard. |
|
841 |
/// \tparam GR The type of the digraph. |
|
845 | 842 |
template<class GR> |
846 | 843 |
class DfsWizardBase : public DfsWizardDefaultTraits<GR> |
847 | 844 |
{ |
848 | 845 |
|
849 | 846 |
typedef DfsWizardDefaultTraits<GR> Base; |
850 | 847 |
protected: |
851 | 848 |
//The type of the nodes in the digraph. |
852 | 849 |
typedef typename Base::Digraph::Node Node; |
853 | 850 |
|
854 | 851 |
//Pointer to the digraph the algorithm runs on. |
855 | 852 |
void *_g; |
856 | 853 |
//Pointer to the map of reached nodes. |
857 | 854 |
void *_reached; |
858 | 855 |
//Pointer to the map of processed nodes. |
859 | 856 |
void *_processed; |
860 | 857 |
//Pointer to the map of predecessors arcs. |
861 | 858 |
void *_pred; |
862 | 859 |
//Pointer to the map of distances. |
863 | 860 |
void *_dist; |
864 | 861 |
//Pointer to the DFS path to the target node. |
865 | 862 |
void *_path; |
866 | 863 |
//Pointer to the distance of the target node. |
867 | 864 |
int *_di; |
868 | 865 |
|
869 | 866 |
public: |
870 | 867 |
/// Constructor. |
871 | 868 |
|
872 |
/// This constructor does not require parameters, |
|
869 |
/// This constructor does not require parameters, it initiates |
|
873 | 870 |
/// all of the attributes to \c 0. |
874 | 871 |
DfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
875 | 872 |
_dist(0), _path(0), _di(0) {} |
876 | 873 |
|
877 | 874 |
/// Constructor. |
878 | 875 |
|
879 | 876 |
/// This constructor requires one parameter, |
880 | 877 |
/// others are initiated to \c 0. |
881 | 878 |
/// \param g The digraph the algorithm runs on. |
882 | 879 |
DfsWizardBase(const GR &g) : |
883 | 880 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
884 | 881 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
885 | 882 |
|
886 | 883 |
}; |
887 | 884 |
|
888 | 885 |
/// Auxiliary class for the function-type interface of DFS algorithm. |
889 | 886 |
|
890 | 887 |
/// This auxiliary class is created to implement the |
891 | 888 |
/// \ref dfs() "function-type interface" of \ref Dfs algorithm. |
892 | 889 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
893 | 890 |
/// functions and features of the plain \ref Dfs. |
894 | 891 |
/// |
895 | 892 |
/// This class should only be used through the \ref dfs() function, |
896 | 893 |
/// which makes it easier to use the algorithm. |
897 | 894 |
template<class TR> |
898 | 895 |
class DfsWizard : public TR |
899 | 896 |
{ |
900 | 897 |
typedef TR Base; |
901 | 898 |
|
902 |
///The type of the digraph the algorithm runs on. |
|
903 | 899 |
typedef typename TR::Digraph Digraph; |
904 | 900 |
|
905 | 901 |
typedef typename Digraph::Node Node; |
906 | 902 |
typedef typename Digraph::NodeIt NodeIt; |
907 | 903 |
typedef typename Digraph::Arc Arc; |
908 | 904 |
typedef typename Digraph::OutArcIt OutArcIt; |
909 | 905 |
|
910 |
///\brief The type of the map that stores the predecessor |
|
911 |
///arcs of the DFS paths. |
|
912 | 906 |
typedef typename TR::PredMap PredMap; |
913 |
///\brief The type of the map that stores the distances of the nodes. |
|
914 | 907 |
typedef typename TR::DistMap DistMap; |
915 |
///\brief The type of the map that indicates which nodes are reached. |
|
916 | 908 |
typedef typename TR::ReachedMap ReachedMap; |
917 |
///\brief The type of the map that indicates which nodes are processed. |
|
918 | 909 |
typedef typename TR::ProcessedMap ProcessedMap; |
919 |
///The type of the DFS paths |
|
920 | 910 |
typedef typename TR::Path Path; |
921 | 911 |
|
922 | 912 |
public: |
923 | 913 |
|
924 | 914 |
/// Constructor. |
925 | 915 |
DfsWizard() : TR() {} |
926 | 916 |
|
927 | 917 |
/// Constructor that requires parameters. |
928 | 918 |
|
929 | 919 |
/// Constructor that requires parameters. |
930 | 920 |
/// These parameters will be the default values for the traits class. |
931 | 921 |
/// \param g The digraph the algorithm runs on. |
932 | 922 |
DfsWizard(const Digraph &g) : |
933 | 923 |
TR(g) {} |
934 | 924 |
|
935 | 925 |
///Copy constructor |
936 | 926 |
DfsWizard(const TR &b) : TR(b) {} |
937 | 927 |
|
938 | 928 |
~DfsWizard() {} |
939 | 929 |
|
940 | 930 |
///Runs DFS algorithm from the given source node. |
941 | 931 |
|
942 | 932 |
///This method runs DFS algorithm from node \c s |
943 | 933 |
///in order to compute the DFS path to each node. |
... | ... |
@@ -978,107 +968,112 @@ |
978 | 968 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
979 | 969 |
alg.run(s,t); |
980 | 970 |
if (Base::_path) |
981 | 971 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
982 | 972 |
if (Base::_di) |
983 | 973 |
*Base::_di = alg.dist(t); |
984 | 974 |
return alg.reached(t); |
985 | 975 |
} |
986 | 976 |
|
987 | 977 |
///Runs DFS algorithm to visit all nodes in the digraph. |
988 | 978 |
|
989 | 979 |
///This method runs DFS algorithm in order to compute |
990 | 980 |
///the DFS path to each node. |
991 | 981 |
void run() |
992 | 982 |
{ |
993 | 983 |
run(INVALID); |
994 | 984 |
} |
995 | 985 |
|
996 | 986 |
template<class T> |
997 | 987 |
struct SetPredMapBase : public Base { |
998 | 988 |
typedef T PredMap; |
999 | 989 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1000 | 990 |
SetPredMapBase(const TR &b) : TR(b) {} |
1001 | 991 |
}; |
1002 |
///\brief \ref named-func-param "Named parameter" |
|
1003 |
///for setting PredMap object. |
|
992 |
|
|
993 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
994 |
///the predecessor map. |
|
1004 | 995 |
/// |
1005 |
///\ref named-func-param "Named parameter" |
|
1006 |
///for setting PredMap object. |
|
996 |
///\ref named-templ-param "Named parameter" function for setting |
|
997 |
///the map that stores the predecessor arcs of the nodes. |
|
1007 | 998 |
template<class T> |
1008 | 999 |
DfsWizard<SetPredMapBase<T> > predMap(const T &t) |
1009 | 1000 |
{ |
1010 | 1001 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1011 | 1002 |
return DfsWizard<SetPredMapBase<T> >(*this); |
1012 | 1003 |
} |
1013 | 1004 |
|
1014 | 1005 |
template<class T> |
1015 | 1006 |
struct SetReachedMapBase : public Base { |
1016 | 1007 |
typedef T ReachedMap; |
1017 | 1008 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1018 | 1009 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1019 | 1010 |
}; |
1020 |
///\brief \ref named-func-param "Named parameter" |
|
1021 |
///for setting ReachedMap object. |
|
1011 |
|
|
1012 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1013 |
///the reached map. |
|
1022 | 1014 |
/// |
1023 |
/// \ref named-func-param "Named parameter" |
|
1024 |
///for setting ReachedMap object. |
|
1015 |
///\ref named-templ-param "Named parameter" function for setting |
|
1016 |
///the map that indicates which nodes are reached. |
|
1025 | 1017 |
template<class T> |
1026 | 1018 |
DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1027 | 1019 |
{ |
1028 | 1020 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1029 | 1021 |
return DfsWizard<SetReachedMapBase<T> >(*this); |
1030 | 1022 |
} |
1031 | 1023 |
|
1032 | 1024 |
template<class T> |
1033 | 1025 |
struct SetDistMapBase : public Base { |
1034 | 1026 |
typedef T DistMap; |
1035 | 1027 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1036 | 1028 |
SetDistMapBase(const TR &b) : TR(b) {} |
1037 | 1029 |
}; |
1038 |
///\brief \ref named-func-param "Named parameter" |
|
1039 |
///for setting DistMap object. |
|
1030 |
|
|
1031 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1032 |
///the distance map. |
|
1040 | 1033 |
/// |
1041 |
/// \ref named-func-param "Named parameter" |
|
1042 |
///for setting DistMap object. |
|
1034 |
///\ref named-templ-param "Named parameter" function for setting |
|
1035 |
///the map that stores the distances of the nodes calculated |
|
1036 |
///by the algorithm. |
|
1043 | 1037 |
template<class T> |
1044 | 1038 |
DfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1045 | 1039 |
{ |
1046 | 1040 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1047 | 1041 |
return DfsWizard<SetDistMapBase<T> >(*this); |
1048 | 1042 |
} |
1049 | 1043 |
|
1050 | 1044 |
template<class T> |
1051 | 1045 |
struct SetProcessedMapBase : public Base { |
1052 | 1046 |
typedef T ProcessedMap; |
1053 | 1047 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1054 | 1048 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1055 | 1049 |
}; |
1056 |
///\brief \ref named-func-param "Named parameter" |
|
1057 |
///for setting ProcessedMap object. |
|
1050 |
|
|
1051 |
///\brief \ref named-func-param "Named parameter" for setting |
|
1052 |
///the processed map. |
|
1058 | 1053 |
/// |
1059 |
/// \ref named-func-param "Named parameter" |
|
1060 |
///for setting ProcessedMap object. |
|
1054 |
///\ref named-templ-param "Named parameter" function for setting |
|
1055 |
///the map that indicates which nodes are processed. |
|
1061 | 1056 |
template<class T> |
1062 | 1057 |
DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1063 | 1058 |
{ |
1064 | 1059 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1065 | 1060 |
return DfsWizard<SetProcessedMapBase<T> >(*this); |
1066 | 1061 |
} |
1067 | 1062 |
|
1068 | 1063 |
template<class T> |
1069 | 1064 |
struct SetPathBase : public Base { |
1070 | 1065 |
typedef T Path; |
1071 | 1066 |
SetPathBase(const TR &b) : TR(b) {} |
1072 | 1067 |
}; |
1073 | 1068 |
///\brief \ref named-func-param "Named parameter" |
1074 | 1069 |
///for getting the DFS path to the target node. |
1075 | 1070 |
/// |
1076 | 1071 |
///\ref named-func-param "Named parameter" |
1077 | 1072 |
///for getting the DFS path to the target node. |
1078 | 1073 |
template<class T> |
1079 | 1074 |
DfsWizard<SetPathBase<T> > path(const T &t) |
1080 | 1075 |
{ |
1081 | 1076 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1082 | 1077 |
return DfsWizard<SetPathBase<T> >(*this); |
1083 | 1078 |
} |
1084 | 1079 |
|
... | ... |
@@ -1187,49 +1182,49 @@ |
1187 | 1182 |
visitor.reach(node); |
1188 | 1183 |
visitor.discover(arc); |
1189 | 1184 |
visitor.examine(arc); |
1190 | 1185 |
visitor.leave(node); |
1191 | 1186 |
visitor.backtrack(arc); |
1192 | 1187 |
} |
1193 | 1188 |
_Visitor& visitor; |
1194 | 1189 |
}; |
1195 | 1190 |
}; |
1196 | 1191 |
#endif |
1197 | 1192 |
|
1198 | 1193 |
/// \brief Default traits class of DfsVisit class. |
1199 | 1194 |
/// |
1200 | 1195 |
/// Default traits class of DfsVisit class. |
1201 | 1196 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1202 | 1197 |
template<class GR> |
1203 | 1198 |
struct DfsVisitDefaultTraits { |
1204 | 1199 |
|
1205 | 1200 |
/// \brief The type of the digraph the algorithm runs on. |
1206 | 1201 |
typedef GR Digraph; |
1207 | 1202 |
|
1208 | 1203 |
/// \brief The type of the map that indicates which nodes are reached. |
1209 | 1204 |
/// |
1210 | 1205 |
/// The type of the map that indicates which nodes are reached. |
1211 |
/// It must |
|
1206 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
1212 | 1207 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1213 | 1208 |
|
1214 | 1209 |
/// \brief Instantiates a ReachedMap. |
1215 | 1210 |
/// |
1216 | 1211 |
/// This function instantiates a ReachedMap. |
1217 | 1212 |
/// \param digraph is the digraph, to which |
1218 | 1213 |
/// we would like to define the ReachedMap. |
1219 | 1214 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1220 | 1215 |
return new ReachedMap(digraph); |
1221 | 1216 |
} |
1222 | 1217 |
|
1223 | 1218 |
}; |
1224 | 1219 |
|
1225 | 1220 |
/// \ingroup search |
1226 | 1221 |
/// |
1227 | 1222 |
/// \brief DFS algorithm class with visitor interface. |
1228 | 1223 |
/// |
1229 | 1224 |
/// This class provides an efficient implementation of the DFS algorithm |
1230 | 1225 |
/// with visitor interface. |
1231 | 1226 |
/// |
1232 | 1227 |
/// The DfsVisit class provides an alternative interface to the Dfs |
1233 | 1228 |
/// class. It works with callback mechanism, the DfsVisit object calls |
1234 | 1229 |
/// the member functions of the \c Visitor class on every DFS event. |
1235 | 1230 |
/// |
... | ... |
@@ -1348,50 +1343,50 @@ |
1348 | 1343 |
} |
1349 | 1344 |
|
1350 | 1345 |
/// \brief Sets the map that indicates which nodes are reached. |
1351 | 1346 |
/// |
1352 | 1347 |
/// Sets the map that indicates which nodes are reached. |
1353 | 1348 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1354 | 1349 |
/// or \ref init(), an instance will be allocated automatically. |
1355 | 1350 |
/// The destructor deallocates this automatically allocated map, |
1356 | 1351 |
/// of course. |
1357 | 1352 |
/// \return <tt> (*this) </tt> |
1358 | 1353 |
DfsVisit &reachedMap(ReachedMap &m) { |
1359 | 1354 |
if(local_reached) { |
1360 | 1355 |
delete _reached; |
1361 | 1356 |
local_reached=false; |
1362 | 1357 |
} |
1363 | 1358 |
_reached = &m; |
1364 | 1359 |
return *this; |
1365 | 1360 |
} |
1366 | 1361 |
|
1367 | 1362 |
public: |
1368 | 1363 |
|
1369 | 1364 |
/// \name Execution Control |
1370 | 1365 |
/// The simplest way to execute the DFS algorithm is to use one of the |
1371 | 1366 |
/// member functions called \ref run(Node) "run()".\n |
1372 |
/// If you need more control on the execution, first you have to call |
|
1373 |
/// \ref init(), then you can add a source node with \ref addSource() |
|
1367 |
/// If you need better control on the execution, you have to call |
|
1368 |
/// \ref init() first, then you can add a source node with \ref addSource() |
|
1374 | 1369 |
/// and perform the actual computation with \ref start(). |
1375 | 1370 |
/// This procedure can be repeated if there are nodes that have not |
1376 | 1371 |
/// been reached. |
1377 | 1372 |
|
1378 | 1373 |
/// @{ |
1379 | 1374 |
|
1380 | 1375 |
/// \brief Initializes the internal data structures. |
1381 | 1376 |
/// |
1382 | 1377 |
/// Initializes the internal data structures. |
1383 | 1378 |
void init() { |
1384 | 1379 |
create_maps(); |
1385 | 1380 |
_stack.resize(countNodes(*_digraph)); |
1386 | 1381 |
_stack_head = -1; |
1387 | 1382 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1388 | 1383 |
_reached->set(u, false); |
1389 | 1384 |
} |
1390 | 1385 |
} |
1391 | 1386 |
|
1392 | 1387 |
/// \brief Adds a new source node. |
1393 | 1388 |
/// |
1394 | 1389 |
/// Adds a new source node to the set of nodes to be processed. |
1395 | 1390 |
/// |
1396 | 1391 |
/// \pre The stack must be empty. Otherwise the algorithm gives |
1397 | 1392 |
/// wrong results. (One of the outgoing arcs of all the source nodes |
... | ... |
@@ -1599,39 +1594,39 @@ |
1599 | 1594 |
/// d.start(); |
1600 | 1595 |
/// } |
1601 | 1596 |
/// } |
1602 | 1597 |
///\endcode |
1603 | 1598 |
void run() { |
1604 | 1599 |
init(); |
1605 | 1600 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
1606 | 1601 |
if (!reached(it)) { |
1607 | 1602 |
addSource(it); |
1608 | 1603 |
start(); |
1609 | 1604 |
} |
1610 | 1605 |
} |
1611 | 1606 |
} |
1612 | 1607 |
|
1613 | 1608 |
///@} |
1614 | 1609 |
|
1615 | 1610 |
/// \name Query Functions |
1616 | 1611 |
/// The results of the DFS algorithm can be obtained using these |
1617 | 1612 |
/// functions.\n |
1618 | 1613 |
/// Either \ref run(Node) "run()" or \ref start() should be called |
1619 | 1614 |
/// before using them. |
1620 | 1615 |
|
1621 | 1616 |
///@{ |
1622 | 1617 |
|
1623 |
/// \brief Checks if |
|
1618 |
/// \brief Checks if the given node is reached from the root(s). |
|
1624 | 1619 |
/// |
1625 | 1620 |
/// Returns \c true if \c v is reached from the root(s). |
1626 | 1621 |
/// |
1627 | 1622 |
/// \pre Either \ref run(Node) "run()" or \ref init() |
1628 | 1623 |
/// must be called before using this function. |
1629 | 1624 |
bool reached(Node v) const { return (*_reached)[v]; } |
1630 | 1625 |
|
1631 | 1626 |
///@} |
1632 | 1627 |
|
1633 | 1628 |
}; |
1634 | 1629 |
|
1635 | 1630 |
} //END OF NAMESPACE LEMON |
1636 | 1631 |
|
1637 | 1632 |
#endif |
... | ... |
@@ -49,180 +49,184 @@ |
49 | 49 |
/// \brief Gives back the sum of the given two elements. |
50 | 50 |
static Value plus(const Value& left, const Value& right) { |
51 | 51 |
return left + right; |
52 | 52 |
} |
53 | 53 |
/// \brief Gives back true only if the first value is less than the second. |
54 | 54 |
static bool less(const Value& left, const Value& right) { |
55 | 55 |
return left < right; |
56 | 56 |
} |
57 | 57 |
}; |
58 | 58 |
|
59 | 59 |
///Default traits class of Dijkstra class. |
60 | 60 |
|
61 | 61 |
///Default traits class of Dijkstra class. |
62 | 62 |
///\tparam GR The type of the digraph. |
63 | 63 |
///\tparam LEN The type of the length map. |
64 | 64 |
template<typename GR, typename LEN> |
65 | 65 |
struct DijkstraDefaultTraits |
66 | 66 |
{ |
67 | 67 |
///The type of the digraph the algorithm runs on. |
68 | 68 |
typedef GR Digraph; |
69 | 69 |
|
70 | 70 |
///The type of the map that stores the arc lengths. |
71 | 71 |
|
72 | 72 |
///The type of the map that stores the arc lengths. |
73 |
///It must |
|
73 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
74 | 74 |
typedef LEN LengthMap; |
75 |
///The type of the |
|
75 |
///The type of the arc lengths. |
|
76 | 76 |
typedef typename LEN::Value Value; |
77 | 77 |
|
78 | 78 |
/// Operation traits for %Dijkstra algorithm. |
79 | 79 |
|
80 | 80 |
/// This class defines the operations that are used in the algorithm. |
81 | 81 |
/// \see DijkstraDefaultOperationTraits |
82 | 82 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
83 | 83 |
|
84 | 84 |
/// The cross reference type used by the heap. |
85 | 85 |
|
86 | 86 |
/// The cross reference type used by the heap. |
87 | 87 |
/// Usually it is \c Digraph::NodeMap<int>. |
88 | 88 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
89 | 89 |
///Instantiates a \c HeapCrossRef. |
90 | 90 |
|
91 | 91 |
///This function instantiates a \ref HeapCrossRef. |
92 | 92 |
/// \param g is the digraph, to which we would like to define the |
93 | 93 |
/// \ref HeapCrossRef. |
94 | 94 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
95 | 95 |
{ |
96 | 96 |
return new HeapCrossRef(g); |
97 | 97 |
} |
98 | 98 |
|
99 | 99 |
///The heap type used by the %Dijkstra algorithm. |
100 | 100 |
|
101 | 101 |
///The heap type used by the Dijkstra algorithm. |
102 | 102 |
/// |
103 | 103 |
///\sa BinHeap |
104 | 104 |
///\sa Dijkstra |
105 | 105 |
typedef BinHeap<typename LEN::Value, HeapCrossRef, std::less<Value> > Heap; |
106 | 106 |
///Instantiates a \c Heap. |
107 | 107 |
|
108 | 108 |
///This function instantiates a \ref Heap. |
109 | 109 |
static Heap *createHeap(HeapCrossRef& r) |
110 | 110 |
{ |
111 | 111 |
return new Heap(r); |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
///\brief The type of the map that stores the predecessor |
115 | 115 |
///arcs of the shortest paths. |
116 | 116 |
/// |
117 | 117 |
///The type of the map that stores the predecessor |
118 | 118 |
///arcs of the shortest paths. |
119 |
///It must |
|
119 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
120 | 120 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
121 | 121 |
///Instantiates a \c PredMap. |
122 | 122 |
|
123 | 123 |
///This function instantiates a \ref PredMap. |
124 | 124 |
///\param g is the digraph, to which we would like to define the |
125 | 125 |
///\ref PredMap. |
126 | 126 |
static PredMap *createPredMap(const Digraph &g) |
127 | 127 |
{ |
128 | 128 |
return new PredMap(g); |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
///The type of the map that indicates which nodes are processed. |
132 | 132 |
|
133 | 133 |
///The type of the map that indicates which nodes are processed. |
134 |
///It must |
|
134 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
135 | 135 |
///By default it is a NullMap. |
136 | 136 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
137 | 137 |
///Instantiates a \c ProcessedMap. |
138 | 138 |
|
139 | 139 |
///This function instantiates a \ref ProcessedMap. |
140 | 140 |
///\param g is the digraph, to which |
141 | 141 |
///we would like to define the \ref ProcessedMap. |
142 | 142 |
#ifdef DOXYGEN |
143 | 143 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
144 | 144 |
#else |
145 | 145 |
static ProcessedMap *createProcessedMap(const Digraph &) |
146 | 146 |
#endif |
147 | 147 |
{ |
148 | 148 |
return new ProcessedMap(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
///The type of the map that stores the distances of the nodes. |
152 | 152 |
|
153 | 153 |
///The type of the map that stores the distances of the nodes. |
154 |
///It must |
|
154 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
155 | 155 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
156 | 156 |
///Instantiates a \c DistMap. |
157 | 157 |
|
158 | 158 |
///This function instantiates a \ref DistMap. |
159 | 159 |
///\param g is the digraph, to which we would like to define |
160 | 160 |
///the \ref DistMap. |
161 | 161 |
static DistMap *createDistMap(const Digraph &g) |
162 | 162 |
{ |
163 | 163 |
return new DistMap(g); |
164 | 164 |
} |
165 | 165 |
}; |
166 | 166 |
|
167 | 167 |
///%Dijkstra algorithm class. |
168 | 168 |
|
169 | 169 |
/// \ingroup shortest_path |
170 | 170 |
///This class provides an efficient implementation of the %Dijkstra algorithm. |
171 | 171 |
/// |
172 |
///The %Dijkstra algorithm solves the single-source shortest path problem |
|
173 |
///when all arc lengths are non-negative. If there are negative lengths, |
|
174 |
///the BellmanFord algorithm should be used instead. |
|
175 |
/// |
|
172 | 176 |
///The arc lengths are passed to the algorithm using a |
173 | 177 |
///\ref concepts::ReadMap "ReadMap", |
174 | 178 |
///so it is easy to change it to any kind of length. |
175 | 179 |
///The type of the length is determined by the |
176 | 180 |
///\ref concepts::ReadMap::Value "Value" of the length map. |
177 | 181 |
///It is also possible to change the underlying priority heap. |
178 | 182 |
/// |
179 | 183 |
///There is also a \ref dijkstra() "function-type interface" for the |
180 | 184 |
///%Dijkstra algorithm, which is convenient in the simplier cases and |
181 | 185 |
///it can be used easier. |
182 | 186 |
/// |
183 | 187 |
///\tparam GR The type of the digraph the algorithm runs on. |
184 | 188 |
///The default type is \ref ListDigraph. |
185 | 189 |
///\tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
186 | 190 |
///the lengths of the arcs. |
187 | 191 |
///It is read once for each arc, so the map may involve in |
188 | 192 |
///relatively time consuming process to compute the arc lengths if |
189 | 193 |
///it is necessary. The default map type is \ref |
190 | 194 |
///concepts::Digraph::ArcMap "GR::ArcMap<int>". |
191 | 195 |
#ifdef DOXYGEN |
192 | 196 |
template <typename GR, typename LEN, typename TR> |
193 | 197 |
#else |
194 | 198 |
template <typename GR=ListDigraph, |
195 | 199 |
typename LEN=typename GR::template ArcMap<int>, |
196 | 200 |
typename TR=DijkstraDefaultTraits<GR,LEN> > |
197 | 201 |
#endif |
198 | 202 |
class Dijkstra { |
199 | 203 |
public: |
200 | 204 |
|
201 | 205 |
///The type of the digraph the algorithm runs on. |
202 | 206 |
typedef typename TR::Digraph Digraph; |
203 | 207 |
|
204 |
///The type of the |
|
208 |
///The type of the arc lengths. |
|
205 | 209 |
typedef typename TR::LengthMap::Value Value; |
206 | 210 |
///The type of the map that stores the arc lengths. |
207 | 211 |
typedef typename TR::LengthMap LengthMap; |
208 | 212 |
///\brief The type of the map that stores the predecessor arcs of the |
209 | 213 |
///shortest paths. |
210 | 214 |
typedef typename TR::PredMap PredMap; |
211 | 215 |
///The type of the map that stores the distances of the nodes. |
212 | 216 |
typedef typename TR::DistMap DistMap; |
213 | 217 |
///The type of the map that indicates which nodes are processed. |
214 | 218 |
typedef typename TR::ProcessedMap ProcessedMap; |
215 | 219 |
///The type of the paths. |
216 | 220 |
typedef PredMapPath<Digraph, PredMap> Path; |
217 | 221 |
///The cross reference type used for the current heap. |
218 | 222 |
typedef typename TR::HeapCrossRef HeapCrossRef; |
219 | 223 |
///The heap type used by the algorithm. |
220 | 224 |
typedef typename TR::Heap Heap; |
221 | 225 |
///\brief The \ref DijkstraDefaultOperationTraits "operation traits class" |
222 | 226 |
///of the algorithm. |
223 | 227 |
typedef typename TR::OperationTraits OperationTraits; |
224 | 228 |
|
225 | 229 |
///The \ref DijkstraDefaultTraits "traits class" of the algorithm. |
226 | 230 |
typedef TR Traits; |
227 | 231 |
|
228 | 232 |
private: |
... | ... |
@@ -283,91 +287,91 @@ |
283 | 287 |
} |
284 | 288 |
|
285 | 289 |
public: |
286 | 290 |
|
287 | 291 |
typedef Dijkstra Create; |
288 | 292 |
|
289 | 293 |
///\name Named Template Parameters |
290 | 294 |
|
291 | 295 |
///@{ |
292 | 296 |
|
293 | 297 |
template <class T> |
294 | 298 |
struct SetPredMapTraits : public Traits { |
295 | 299 |
typedef T PredMap; |
296 | 300 |
static PredMap *createPredMap(const Digraph &) |
297 | 301 |
{ |
298 | 302 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
299 | 303 |
return 0; // ignore warnings |
300 | 304 |
} |
301 | 305 |
}; |
302 | 306 |
///\brief \ref named-templ-param "Named parameter" for setting |
303 | 307 |
///\c PredMap type. |
304 | 308 |
/// |
305 | 309 |
///\ref named-templ-param "Named parameter" for setting |
306 | 310 |
///\c PredMap type. |
307 |
///It must |
|
311 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
308 | 312 |
template <class T> |
309 | 313 |
struct SetPredMap |
310 | 314 |
: public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > { |
311 | 315 |
typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
312 | 316 |
}; |
313 | 317 |
|
314 | 318 |
template <class T> |
315 | 319 |
struct SetDistMapTraits : public Traits { |
316 | 320 |
typedef T DistMap; |
317 | 321 |
static DistMap *createDistMap(const Digraph &) |
318 | 322 |
{ |
319 | 323 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
320 | 324 |
return 0; // ignore warnings |
321 | 325 |
} |
322 | 326 |
}; |
323 | 327 |
///\brief \ref named-templ-param "Named parameter" for setting |
324 | 328 |
///\c DistMap type. |
325 | 329 |
/// |
326 | 330 |
///\ref named-templ-param "Named parameter" for setting |
327 | 331 |
///\c DistMap type. |
328 |
///It must |
|
332 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
329 | 333 |
template <class T> |
330 | 334 |
struct SetDistMap |
331 | 335 |
: public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > { |
332 | 336 |
typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
333 | 337 |
}; |
334 | 338 |
|
335 | 339 |
template <class T> |
336 | 340 |
struct SetProcessedMapTraits : public Traits { |
337 | 341 |
typedef T ProcessedMap; |
338 | 342 |
static ProcessedMap *createProcessedMap(const Digraph &) |
339 | 343 |
{ |
340 | 344 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
341 | 345 |
return 0; // ignore warnings |
342 | 346 |
} |
343 | 347 |
}; |
344 | 348 |
///\brief \ref named-templ-param "Named parameter" for setting |
345 | 349 |
///\c ProcessedMap type. |
346 | 350 |
/// |
347 | 351 |
///\ref named-templ-param "Named parameter" for setting |
348 | 352 |
///\c ProcessedMap type. |
349 |
///It must |
|
353 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
350 | 354 |
template <class T> |
351 | 355 |
struct SetProcessedMap |
352 | 356 |
: public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > { |
353 | 357 |
typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create; |
354 | 358 |
}; |
355 | 359 |
|
356 | 360 |
struct SetStandardProcessedMapTraits : public Traits { |
357 | 361 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
358 | 362 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
359 | 363 |
{ |
360 | 364 |
return new ProcessedMap(g); |
361 | 365 |
} |
362 | 366 |
}; |
363 | 367 |
///\brief \ref named-templ-param "Named parameter" for setting |
364 | 368 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
365 | 369 |
/// |
366 | 370 |
///\ref named-templ-param "Named parameter" for setting |
367 | 371 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
368 | 372 |
///If you don't set it explicitly, it will be automatically allocated. |
369 | 373 |
struct SetStandardProcessedMap |
370 | 374 |
: public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > { |
371 | 375 |
typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > |
372 | 376 |
Create; |
373 | 377 |
}; |
... | ... |
@@ -422,48 +426,49 @@ |
422 | 426 |
///automatically created by the algorithm (i.e. the digraph should be |
423 | 427 |
///passed to the constructor of the cross reference and the cross |
424 | 428 |
///reference should be passed to the constructor of the heap). |
425 | 429 |
///However external heap and cross reference objects could also be |
426 | 430 |
///passed to the algorithm using the \ref heap() function before |
427 | 431 |
///calling \ref run(Node) "run()" or \ref init(). |
428 | 432 |
///\sa SetHeap |
429 | 433 |
template <class H, class CR = typename Digraph::template NodeMap<int> > |
430 | 434 |
struct SetStandardHeap |
431 | 435 |
: public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > { |
432 | 436 |
typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > |
433 | 437 |
Create; |
434 | 438 |
}; |
435 | 439 |
|
436 | 440 |
template <class T> |
437 | 441 |
struct SetOperationTraitsTraits : public Traits { |
438 | 442 |
typedef T OperationTraits; |
439 | 443 |
}; |
440 | 444 |
|
441 | 445 |
/// \brief \ref named-templ-param "Named parameter" for setting |
442 | 446 |
///\c OperationTraits type |
443 | 447 |
/// |
444 | 448 |
///\ref named-templ-param "Named parameter" for setting |
445 | 449 |
///\c OperationTraits type. |
450 |
/// For more information see \ref DijkstraDefaultOperationTraits. |
|
446 | 451 |
template <class T> |
447 | 452 |
struct SetOperationTraits |
448 | 453 |
: public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
449 | 454 |
typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > |
450 | 455 |
Create; |
451 | 456 |
}; |
452 | 457 |
|
453 | 458 |
///@} |
454 | 459 |
|
455 | 460 |
protected: |
456 | 461 |
|
457 | 462 |
Dijkstra() {} |
458 | 463 |
|
459 | 464 |
public: |
460 | 465 |
|
461 | 466 |
///Constructor. |
462 | 467 |
|
463 | 468 |
///Constructor. |
464 | 469 |
///\param g The digraph the algorithm runs on. |
465 | 470 |
///\param length The length map used by the algorithm. |
466 | 471 |
Dijkstra(const Digraph& g, const LengthMap& length) : |
467 | 472 |
G(&g), _length(&length), |
468 | 473 |
_pred(NULL), local_pred(false), |
469 | 474 |
_dist(NULL), local_dist(false), |
... | ... |
@@ -563,50 +568,50 @@ |
563 | 568 |
local_heap_cross_ref=false; |
564 | 569 |
} |
565 | 570 |
_heap_cross_ref = &cr; |
566 | 571 |
if(local_heap) { |
567 | 572 |
delete _heap; |
568 | 573 |
local_heap=false; |
569 | 574 |
} |
570 | 575 |
_heap = &hp; |
571 | 576 |
return *this; |
572 | 577 |
} |
573 | 578 |
|
574 | 579 |
private: |
575 | 580 |
|
576 | 581 |
void finalizeNodeData(Node v,Value dst) |
577 | 582 |
{ |
578 | 583 |
_processed->set(v,true); |
579 | 584 |
_dist->set(v, dst); |
580 | 585 |
} |
581 | 586 |
|
582 | 587 |
public: |
583 | 588 |
|
584 | 589 |
///\name Execution Control |
585 | 590 |
///The simplest way to execute the %Dijkstra algorithm is to use |
586 | 591 |
///one of the member functions called \ref run(Node) "run()".\n |
587 |
///If you need more control on the execution, first you have to call |
|
588 |
///\ref init(), then you can add several source nodes with |
|
592 |
///If you need better control on the execution, you have to call |
|
593 |
///\ref init() first, then you can add several source nodes with |
|
589 | 594 |
///\ref addSource(). Finally the actual path computation can be |
590 | 595 |
///performed with one of the \ref start() functions. |
591 | 596 |
|
592 | 597 |
///@{ |
593 | 598 |
|
594 | 599 |
///\brief Initializes the internal data structures. |
595 | 600 |
/// |
596 | 601 |
///Initializes the internal data structures. |
597 | 602 |
void init() |
598 | 603 |
{ |
599 | 604 |
create_maps(); |
600 | 605 |
_heap->clear(); |
601 | 606 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
602 | 607 |
_pred->set(u,INVALID); |
603 | 608 |
_processed->set(u,false); |
604 | 609 |
_heap_cross_ref->set(u,Heap::PRE_HEAP); |
605 | 610 |
} |
606 | 611 |
} |
607 | 612 |
|
608 | 613 |
///Adds a new source node. |
609 | 614 |
|
610 | 615 |
///Adds a new source node to the priority heap. |
611 | 616 |
///The optional second parameter is the initial distance of the node. |
612 | 617 |
/// |
... | ... |
@@ -780,282 +785,281 @@ |
780 | 785 |
///in order to compute the shortest path to node \c t |
781 | 786 |
///(it stops searching when \c t is processed). |
782 | 787 |
/// |
783 | 788 |
///\return \c true if \c t is reachable form \c s. |
784 | 789 |
/// |
785 | 790 |
///\note Apart from the return value, <tt>d.run(s,t)</tt> is just a |
786 | 791 |
///shortcut of the following code. |
787 | 792 |
///\code |
788 | 793 |
/// d.init(); |
789 | 794 |
/// d.addSource(s); |
790 | 795 |
/// d.start(t); |
791 | 796 |
///\endcode |
792 | 797 |
bool run(Node s,Node t) { |
793 | 798 |
init(); |
794 | 799 |
addSource(s); |
795 | 800 |
start(t); |
796 | 801 |
return (*_heap_cross_ref)[t] == Heap::POST_HEAP; |
797 | 802 |
} |
798 | 803 |
|
799 | 804 |
///@} |
800 | 805 |
|
801 | 806 |
///\name Query Functions |
802 | 807 |
///The results of the %Dijkstra algorithm can be obtained using these |
803 | 808 |
///functions.\n |
804 |
///Either \ref run(Node) "run()" or \ref |
|
809 |
///Either \ref run(Node) "run()" or \ref init() should be called |
|
805 | 810 |
///before using them. |
806 | 811 |
|
807 | 812 |
///@{ |
808 | 813 |
|
809 |
///The shortest path to |
|
814 |
///The shortest path to the given node. |
|
810 | 815 |
|
811 |
///Returns the shortest path to |
|
816 |
///Returns the shortest path to the given node from the root(s). |
|
812 | 817 |
/// |
813 | 818 |
///\warning \c t should be reached from the root(s). |
814 | 819 |
/// |
815 | 820 |
///\pre Either \ref run(Node) "run()" or \ref init() |
816 | 821 |
///must be called before using this function. |
817 | 822 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
818 | 823 |
|
819 |
///The distance of |
|
824 |
///The distance of the given node from the root(s). |
|
820 | 825 |
|
821 |
///Returns the distance of |
|
826 |
///Returns the distance of the given node from the root(s). |
|
822 | 827 |
/// |
823 | 828 |
///\warning If node \c v is not reached from the root(s), then |
824 | 829 |
///the return value of this function is undefined. |
825 | 830 |
/// |
826 | 831 |
///\pre Either \ref run(Node) "run()" or \ref init() |
827 | 832 |
///must be called before using this function. |
828 | 833 |
Value dist(Node v) const { return (*_dist)[v]; } |
829 | 834 |
|
830 |
///Returns the 'previous arc' of the shortest path tree for a node. |
|
831 |
|
|
835 |
///\brief Returns the 'previous arc' of the shortest path tree for |
|
836 |
///the given node. |
|
837 |
/// |
|
832 | 838 |
///This function returns the 'previous arc' of the shortest path |
833 | 839 |
///tree for the node \c v, i.e. it returns the last arc of a |
834 | 840 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
835 | 841 |
///is not reached from the root(s) or if \c v is a root. |
836 | 842 |
/// |
837 | 843 |
///The shortest path tree used here is equal to the shortest path |
838 |
///tree used in \ref predNode(). |
|
844 |
///tree used in \ref predNode() and \ref predMap(). |
|
839 | 845 |
/// |
840 | 846 |
///\pre Either \ref run(Node) "run()" or \ref init() |
841 | 847 |
///must be called before using this function. |
842 | 848 |
Arc predArc(Node v) const { return (*_pred)[v]; } |
843 | 849 |
|
844 |
///Returns the 'previous node' of the shortest path tree for a node. |
|
845 |
|
|
850 |
///\brief Returns the 'previous node' of the shortest path tree for |
|
851 |
///the given node. |
|
852 |
/// |
|
846 | 853 |
///This function returns the 'previous node' of the shortest path |
847 | 854 |
///tree for the node \c v, i.e. it returns the last but one node |
848 |
/// |
|
855 |
///of a shortest path from a root to \c v. It is \c INVALID |
|
849 | 856 |
///if \c v is not reached from the root(s) or if \c v is a root. |
850 | 857 |
/// |
851 | 858 |
///The shortest path tree used here is equal to the shortest path |
852 |
///tree used in \ref predArc(). |
|
859 |
///tree used in \ref predArc() and \ref predMap(). |
|
853 | 860 |
/// |
854 | 861 |
///\pre Either \ref run(Node) "run()" or \ref init() |
855 | 862 |
///must be called before using this function. |
856 | 863 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
857 | 864 |
G->source((*_pred)[v]); } |
858 | 865 |
|
859 | 866 |
///\brief Returns a const reference to the node map that stores the |
860 | 867 |
///distances of the nodes. |
861 | 868 |
/// |
862 | 869 |
///Returns a const reference to the node map that stores the distances |
863 | 870 |
///of the nodes calculated by the algorithm. |
864 | 871 |
/// |
865 | 872 |
///\pre Either \ref run(Node) "run()" or \ref init() |
866 | 873 |
///must be called before using this function. |
867 | 874 |
const DistMap &distMap() const { return *_dist;} |
868 | 875 |
|
869 | 876 |
///\brief Returns a const reference to the node map that stores the |
870 | 877 |
///predecessor arcs. |
871 | 878 |
/// |
872 | 879 |
///Returns a const reference to the node map that stores the predecessor |
873 |
///arcs, which form the shortest path tree. |
|
880 |
///arcs, which form the shortest path tree (forest). |
|
874 | 881 |
/// |
875 | 882 |
///\pre Either \ref run(Node) "run()" or \ref init() |
876 | 883 |
///must be called before using this function. |
877 | 884 |
const PredMap &predMap() const { return *_pred;} |
878 | 885 |
|
879 |
///Checks if |
|
886 |
///Checks if the given node is reached from the root(s). |
|
880 | 887 |
|
881 | 888 |
///Returns \c true if \c v is reached from the root(s). |
882 | 889 |
/// |
883 | 890 |
///\pre Either \ref run(Node) "run()" or \ref init() |
884 | 891 |
///must be called before using this function. |
885 | 892 |
bool reached(Node v) const { return (*_heap_cross_ref)[v] != |
886 | 893 |
Heap::PRE_HEAP; } |
887 | 894 |
|
888 | 895 |
///Checks if a node is processed. |
889 | 896 |
|
890 | 897 |
///Returns \c true if \c v is processed, i.e. the shortest |
891 | 898 |
///path to \c v has already found. |
892 | 899 |
/// |
893 | 900 |
///\pre Either \ref run(Node) "run()" or \ref init() |
894 | 901 |
///must be called before using this function. |
895 | 902 |
bool processed(Node v) const { return (*_heap_cross_ref)[v] == |
896 | 903 |
Heap::POST_HEAP; } |
897 | 904 |
|
898 |
///The current distance of |
|
905 |
///The current distance of the given node from the root(s). |
|
899 | 906 |
|
900 |
///Returns the current distance of |
|
907 |
///Returns the current distance of the given node from the root(s). |
|
901 | 908 |
///It may be decreased in the following processes. |
902 | 909 |
/// |
903 | 910 |
///\pre Either \ref run(Node) "run()" or \ref init() |
904 | 911 |
///must be called before using this function and |
905 | 912 |
///node \c v must be reached but not necessarily processed. |
906 | 913 |
Value currentDist(Node v) const { |
907 | 914 |
return processed(v) ? (*_dist)[v] : (*_heap)[v]; |
908 | 915 |
} |
909 | 916 |
|
910 | 917 |
///@} |
911 | 918 |
}; |
912 | 919 |
|
913 | 920 |
|
914 | 921 |
///Default traits class of dijkstra() function. |
915 | 922 |
|
916 | 923 |
///Default traits class of dijkstra() function. |
917 | 924 |
///\tparam GR The type of the digraph. |
918 | 925 |
///\tparam LEN The type of the length map. |
919 | 926 |
template<class GR, class LEN> |
920 | 927 |
struct DijkstraWizardDefaultTraits |
921 | 928 |
{ |
922 | 929 |
///The type of the digraph the algorithm runs on. |
923 | 930 |
typedef GR Digraph; |
924 | 931 |
///The type of the map that stores the arc lengths. |
925 | 932 |
|
926 | 933 |
///The type of the map that stores the arc lengths. |
927 |
///It must |
|
934 |
///It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
|
928 | 935 |
typedef LEN LengthMap; |
929 |
///The type of the |
|
936 |
///The type of the arc lengths. |
|
930 | 937 |
typedef typename LEN::Value Value; |
931 | 938 |
|
932 | 939 |
/// Operation traits for Dijkstra algorithm. |
933 | 940 |
|
934 | 941 |
/// This class defines the operations that are used in the algorithm. |
935 | 942 |
/// \see DijkstraDefaultOperationTraits |
936 | 943 |
typedef DijkstraDefaultOperationTraits<Value> OperationTraits; |
937 | 944 |
|
938 | 945 |
/// The cross reference type used by the heap. |
939 | 946 |
|
940 | 947 |
/// The cross reference type used by the heap. |
941 | 948 |
/// Usually it is \c Digraph::NodeMap<int>. |
942 | 949 |
typedef typename Digraph::template NodeMap<int> HeapCrossRef; |
943 | 950 |
///Instantiates a \ref HeapCrossRef. |
944 | 951 |
|
945 | 952 |
///This function instantiates a \ref HeapCrossRef. |
946 | 953 |
/// \param g is the digraph, to which we would like to define the |
947 | 954 |
/// HeapCrossRef. |
948 | 955 |
static HeapCrossRef *createHeapCrossRef(const Digraph &g) |
949 | 956 |
{ |
950 | 957 |
return new HeapCrossRef(g); |
951 | 958 |
} |
952 | 959 |
|
953 | 960 |
///The heap type used by the Dijkstra algorithm. |
954 | 961 |
|
955 | 962 |
///The heap type used by the Dijkstra algorithm. |
956 | 963 |
/// |
957 | 964 |
///\sa BinHeap |
958 | 965 |
///\sa Dijkstra |
959 | 966 |
typedef BinHeap<Value, typename Digraph::template NodeMap<int>, |
960 | 967 |
std::less<Value> > Heap; |
961 | 968 |
|
962 | 969 |
///Instantiates a \ref Heap. |
963 | 970 |
|
964 | 971 |
///This function instantiates a \ref Heap. |
965 | 972 |
/// \param r is the HeapCrossRef which is used. |
966 | 973 |
static Heap *createHeap(HeapCrossRef& r) |
967 | 974 |
{ |
968 | 975 |
return new Heap(r); |
969 | 976 |
} |
970 | 977 |
|
971 | 978 |
///\brief The type of the map that stores the predecessor |
972 | 979 |
///arcs of the shortest paths. |
973 | 980 |
/// |
974 | 981 |
///The type of the map that stores the predecessor |
975 | 982 |
///arcs of the shortest paths. |
976 |
///It must |
|
983 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
977 | 984 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
978 | 985 |
///Instantiates a PredMap. |
979 | 986 |
|
980 | 987 |
///This function instantiates a PredMap. |
981 | 988 |
///\param g is the digraph, to which we would like to define the |
982 | 989 |
///PredMap. |
983 | 990 |
static PredMap *createPredMap(const Digraph &g) |
984 | 991 |
{ |
985 | 992 |
return new PredMap(g); |
986 | 993 |
} |
987 | 994 |
|
988 | 995 |
///The type of the map that indicates which nodes are processed. |
989 | 996 |
|
990 | 997 |
///The type of the map that indicates which nodes are processed. |
991 |
///It must |
|
998 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
992 | 999 |
///By default it is a NullMap. |
993 | 1000 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
994 | 1001 |
///Instantiates a ProcessedMap. |
995 | 1002 |
|
996 | 1003 |
///This function instantiates a ProcessedMap. |
997 | 1004 |
///\param g is the digraph, to which |
998 | 1005 |
///we would like to define the ProcessedMap. |
999 | 1006 |
#ifdef DOXYGEN |
1000 | 1007 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
1001 | 1008 |
#else |
1002 | 1009 |
static ProcessedMap *createProcessedMap(const Digraph &) |
1003 | 1010 |
#endif |
1004 | 1011 |
{ |
1005 | 1012 |
return new ProcessedMap(); |
1006 | 1013 |
} |
1007 | 1014 |
|
1008 | 1015 |
///The type of the map that stores the distances of the nodes. |
1009 | 1016 |
|
1010 | 1017 |
///The type of the map that stores the distances of the nodes. |
1011 |
///It must |
|
1018 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
|
1012 | 1019 |
typedef typename Digraph::template NodeMap<typename LEN::Value> DistMap; |
1013 | 1020 |
///Instantiates a DistMap. |
1014 | 1021 |
|
1015 | 1022 |
///This function instantiates a DistMap. |
1016 | 1023 |
///\param g is the digraph, to which we would like to define |
1017 | 1024 |
///the DistMap |
1018 | 1025 |
static DistMap *createDistMap(const Digraph &g) |
1019 | 1026 |
{ |
1020 | 1027 |
return new DistMap(g); |
1021 | 1028 |
} |
1022 | 1029 |
|
1023 | 1030 |
///The type of the shortest paths. |
1024 | 1031 |
|
1025 | 1032 |
///The type of the shortest paths. |
1026 |
///It must |
|
1033 |
///It must conform to the \ref concepts::Path "Path" concept. |
|
1027 | 1034 |
typedef lemon::Path<Digraph> Path; |
1028 | 1035 |
}; |
1029 | 1036 |
|
1030 | 1037 |
/// Default traits class used by DijkstraWizard |
1031 | 1038 |
|
1032 |
/// To make it easier to use Dijkstra algorithm |
|
1033 |
/// we have created a wizard class. |
|
1034 |
/// This \ref DijkstraWizard class needs default traits, |
|
1035 |
/// as well as the \ref Dijkstra class. |
|
1036 |
/// The \ref DijkstraWizardBase is a class to be the default traits of the |
|
1037 |
/// \ref DijkstraWizard class. |
|
1039 |
/// Default traits class used by DijkstraWizard. |
|
1040 |
/// \tparam GR The type of the digraph. |
|
1041 |
/// \tparam LEN The type of the length map. |
|
1038 | 1042 |
template<typename GR, typename LEN> |
1039 | 1043 |
class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LEN> |
1040 | 1044 |
{ |
1041 | 1045 |
typedef DijkstraWizardDefaultTraits<GR,LEN> Base; |
1042 | 1046 |
protected: |
1043 | 1047 |
//The type of the nodes in the digraph. |
1044 | 1048 |
typedef typename Base::Digraph::Node Node; |
1045 | 1049 |
|
1046 | 1050 |
//Pointer to the digraph the algorithm runs on. |
1047 | 1051 |
void *_g; |
1048 | 1052 |
//Pointer to the length map. |
1049 | 1053 |
void *_length; |
1050 | 1054 |
//Pointer to the map of processed nodes. |
1051 | 1055 |
void *_processed; |
1052 | 1056 |
//Pointer to the map of predecessors arcs. |
1053 | 1057 |
void *_pred; |
1054 | 1058 |
//Pointer to the map of distances. |
1055 | 1059 |
void *_dist; |
1056 | 1060 |
//Pointer to the shortest path to the target node. |
1057 | 1061 |
void *_path; |
1058 | 1062 |
//Pointer to the distance of the target node. |
1059 | 1063 |
void *_di; |
1060 | 1064 |
|
1061 | 1065 |
public: |
... | ... |
@@ -1072,70 +1076,61 @@ |
1072 | 1076 |
/// others are initiated to \c 0. |
1073 | 1077 |
/// \param g The digraph the algorithm runs on. |
1074 | 1078 |
/// \param l The length map. |
1075 | 1079 |
DijkstraWizardBase(const GR &g,const LEN &l) : |
1076 | 1080 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
1077 | 1081 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&l))), |
1078 | 1082 |
_processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
1079 | 1083 |
|
1080 | 1084 |
}; |
1081 | 1085 |
|
1082 | 1086 |
/// Auxiliary class for the function-type interface of Dijkstra algorithm. |
1083 | 1087 |
|
1084 | 1088 |
/// This auxiliary class is created to implement the |
1085 | 1089 |
/// \ref dijkstra() "function-type interface" of \ref Dijkstra algorithm. |
1086 | 1090 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
1087 | 1091 |
/// functions and features of the plain \ref Dijkstra. |
1088 | 1092 |
/// |
1089 | 1093 |
/// This class should only be used through the \ref dijkstra() function, |
1090 | 1094 |
/// which makes it easier to use the algorithm. |
1091 | 1095 |
template<class TR> |
1092 | 1096 |
class DijkstraWizard : public TR |
1093 | 1097 |
{ |
1094 | 1098 |
typedef TR Base; |
1095 | 1099 |
|
1096 |
///The type of the digraph the algorithm runs on. |
|
1097 | 1100 |
typedef typename TR::Digraph Digraph; |
1098 | 1101 |
|
1099 | 1102 |
typedef typename Digraph::Node Node; |
1100 | 1103 |
typedef typename Digraph::NodeIt NodeIt; |
1101 | 1104 |
typedef typename Digraph::Arc Arc; |
1102 | 1105 |
typedef typename Digraph::OutArcIt OutArcIt; |
1103 | 1106 |
|
1104 |
///The type of the map that stores the arc lengths. |
|
1105 | 1107 |
typedef typename TR::LengthMap LengthMap; |
1106 |
///The type of the length of the arcs. |
|
1107 | 1108 |
typedef typename LengthMap::Value Value; |
1108 |
///\brief The type of the map that stores the predecessor |
|
1109 |
///arcs of the shortest paths. |
|
1110 | 1109 |
typedef typename TR::PredMap PredMap; |
1111 |
///The type of the map that stores the distances of the nodes. |
|
1112 | 1110 |
typedef typename TR::DistMap DistMap; |
1113 |
///The type of the map that indicates which nodes are processed. |
|
1114 | 1111 |
typedef typename TR::ProcessedMap ProcessedMap; |
1115 |
///The type of the shortest paths |
|
1116 | 1112 |
typedef typename TR::Path Path; |
1117 |
///The heap type used by the dijkstra algorithm. |
|
1118 | 1113 |
typedef typename TR::Heap Heap; |
1119 | 1114 |
|
1120 | 1115 |
public: |
1121 | 1116 |
|
1122 | 1117 |
/// Constructor. |
1123 | 1118 |
DijkstraWizard() : TR() {} |
1124 | 1119 |
|
1125 | 1120 |
/// Constructor that requires parameters. |
1126 | 1121 |
|
1127 | 1122 |
/// Constructor that requires parameters. |
1128 | 1123 |
/// These parameters will be the default values for the traits class. |
1129 | 1124 |
/// \param g The digraph the algorithm runs on. |
1130 | 1125 |
/// \param l The length map. |
1131 | 1126 |
DijkstraWizard(const Digraph &g, const LengthMap &l) : |
1132 | 1127 |
TR(g,l) {} |
1133 | 1128 |
|
1134 | 1129 |
///Copy constructor |
1135 | 1130 |
DijkstraWizard(const TR &b) : TR(b) {} |
1136 | 1131 |
|
1137 | 1132 |
~DijkstraWizard() {} |
1138 | 1133 |
|
1139 | 1134 |
///Runs Dijkstra algorithm from the given source node. |
1140 | 1135 |
|
1141 | 1136 |
///This method runs %Dijkstra algorithm from the given source node |
... | ... |
@@ -1165,101 +1160,106 @@ |
1165 | 1160 |
{ |
1166 | 1161 |
Dijkstra<Digraph,LengthMap,TR> |
1167 | 1162 |
dijk(*reinterpret_cast<const Digraph*>(Base::_g), |
1168 | 1163 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1169 | 1164 |
if (Base::_pred) |
1170 | 1165 |
dijk.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1171 | 1166 |
if (Base::_dist) |
1172 | 1167 |
dijk.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1173 | 1168 |
if (Base::_processed) |
1174 | 1169 |
dijk.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1175 | 1170 |
dijk.run(s,t); |
1176 | 1171 |
if (Base::_path) |
1177 | 1172 |
*reinterpret_cast<Path*>(Base::_path) = dijk.path(t); |
1178 | 1173 |
if (Base::_di) |
1179 | 1174 |
*reinterpret_cast<Value*>(Base::_di) = dijk.dist(t); |
1180 | 1175 |
return dijk.reached(t); |
1181 | 1176 |
} |
1182 | 1177 |
|
1183 | 1178 |
template<class T> |
1184 | 1179 |
struct SetPredMapBase : public Base { |
1185 | 1180 |
typedef T PredMap; |
1186 | 1181 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1187 | 1182 |
SetPredMapBase(const TR &b) : TR(b) {} |
1188 | 1183 |
}; |
1189 |
///\brief \ref named-func-param "Named parameter" |
|
1190 |
///for setting PredMap object. |
|
1184 |
|
|
1185 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1186 |
///the predecessor map. |
|
1191 | 1187 |
/// |
1192 |
///\ref named-func-param "Named parameter" |
|
1193 |
///for setting PredMap object. |
|
1188 |
///\ref named-templ-param "Named parameter" function for setting |
|
1189 |
///the map that stores the predecessor arcs of the nodes. |
|
1194 | 1190 |
template<class T> |
1195 | 1191 |
DijkstraWizard<SetPredMapBase<T> > predMap(const T &t) |
1196 | 1192 |
{ |
1197 | 1193 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1198 | 1194 |
return DijkstraWizard<SetPredMapBase<T> >(*this); |
1199 | 1195 |
} |
1200 | 1196 |
|
1201 | 1197 |
template<class T> |
1202 | 1198 |
struct SetDistMapBase : public Base { |
1203 | 1199 |
typedef T DistMap; |
1204 | 1200 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1205 | 1201 |
SetDistMapBase(const TR &b) : TR(b) {} |
1206 | 1202 |
}; |
1207 |
///\brief \ref named-func-param "Named parameter" |
|
1208 |
///for setting DistMap object. |
|
1203 |
|
|
1204 |
///\brief \ref named-templ-param "Named parameter" for setting |
|
1205 |
///the distance map. |
|
1209 | 1206 |
/// |
1210 |
///\ref named-func-param "Named parameter" |
|
1211 |
///for setting DistMap object. |
|
1207 |
///\ref named-templ-param "Named parameter" function for setting |
|
1208 |
///the map that stores the distances of the nodes calculated |
|
1209 |
///by the algorithm. |
|
1212 | 1210 |
template<class T> |
1213 | 1211 |
DijkstraWizard<SetDistMapBase<T> > distMap(const T &t) |
1214 | 1212 |
{ |
1215 | 1213 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1216 | 1214 |
return DijkstraWizard<SetDistMapBase<T> >(*this); |
1217 | 1215 |
} |
1218 | 1216 |
|
1219 | 1217 |
template<class T> |
1220 | 1218 |
struct SetProcessedMapBase : public Base { |
1221 | 1219 |
typedef T ProcessedMap; |
1222 | 1220 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1223 | 1221 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1224 | 1222 |
}; |
1225 |
///\brief \ref named-func-param "Named parameter" |
|
1226 |
///for setting ProcessedMap object. |
|
1223 |
|
|
1224 |
///\brief \ref named-func-param "Named parameter" for setting |
|
1225 |
///the processed map. |
|
1227 | 1226 |
/// |
1228 |
/// \ref named-func-param "Named parameter" |
|
1229 |
///for setting ProcessedMap object. |
|
1227 |
///\ref named-templ-param "Named parameter" function for setting |
|
1228 |
///the map that indicates which nodes are processed. |
|
1230 | 1229 |
template<class T> |
1231 | 1230 |
DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1232 | 1231 |
{ |
1233 | 1232 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1234 | 1233 |
return DijkstraWizard<SetProcessedMapBase<T> >(*this); |
1235 | 1234 |
} |
1236 | 1235 |
|
1237 | 1236 |
template<class T> |
1238 | 1237 |
struct SetPathBase : public Base { |
1239 | 1238 |
typedef T Path; |
1240 | 1239 |
SetPathBase(const TR &b) : TR(b) {} |
1241 | 1240 |
}; |
1241 |
|
|
1242 | 1242 |
///\brief \ref named-func-param "Named parameter" |
1243 | 1243 |
///for getting the shortest path to the target node. |
1244 | 1244 |
/// |
1245 | 1245 |
///\ref named-func-param "Named parameter" |
1246 | 1246 |
///for getting the shortest path to the target node. |
1247 | 1247 |
template<class T> |
1248 | 1248 |
DijkstraWizard<SetPathBase<T> > path(const T &t) |
1249 | 1249 |
{ |
1250 | 1250 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1251 | 1251 |
return DijkstraWizard<SetPathBase<T> >(*this); |
1252 | 1252 |
} |
1253 | 1253 |
|
1254 | 1254 |
///\brief \ref named-func-param "Named parameter" |
1255 | 1255 |
///for getting the distance of the target node. |
1256 | 1256 |
/// |
1257 | 1257 |
///\ref named-func-param "Named parameter" |
1258 | 1258 |
///for getting the distance of the target node. |
1259 | 1259 |
DijkstraWizard dist(const Value &d) |
1260 | 1260 |
{ |
1261 | 1261 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
1262 | 1262 |
return *this; |
1263 | 1263 |
} |
1264 | 1264 |
|
1265 | 1265 |
}; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_DIM2_H |
20 | 20 |
#define LEMON_DIM2_H |
21 | 21 |
|
22 | 22 |
#include <iostream> |
23 | 23 |
|
24 |
///\ingroup |
|
24 |
///\ingroup geomdat |
|
25 | 25 |
///\file |
26 | 26 |
///\brief A simple two dimensional vector and a bounding box implementation |
27 |
/// |
|
28 |
/// The class \ref lemon::dim2::Point "dim2::Point" implements |
|
29 |
/// a two dimensional vector with the usual operations. |
|
30 |
/// |
|
31 |
/// The class \ref lemon::dim2::Box "dim2::Box" can be used to determine |
|
32 |
/// the rectangular bounding box of a set of |
|
33 |
/// \ref lemon::dim2::Point "dim2::Point"'s. |
|
34 | 27 |
|
35 | 28 |
namespace lemon { |
36 | 29 |
|
37 | 30 |
///Tools for handling two dimensional coordinates |
38 | 31 |
|
39 | 32 |
///This namespace is a storage of several |
40 | 33 |
///tools for handling two dimensional coordinates |
41 | 34 |
namespace dim2 { |
42 | 35 |
|
43 |
/// \addtogroup |
|
36 |
/// \addtogroup geomdat |
|
44 | 37 |
/// @{ |
45 | 38 |
|
46 | 39 |
/// Two dimensional vector (plain vector) |
47 | 40 |
|
48 | 41 |
/// A simple two dimensional vector (plain vector) implementation |
49 | 42 |
/// with the usual vector operations. |
50 | 43 |
template<typename T> |
51 | 44 |
class Point { |
52 | 45 |
|
53 | 46 |
public: |
54 | 47 |
|
55 | 48 |
typedef T Value; |
56 | 49 |
|
57 | 50 |
///First coordinate |
58 | 51 |
T x; |
59 | 52 |
///Second coordinate |
60 | 53 |
T y; |
61 | 54 |
|
62 | 55 |
///Default constructor |
63 | 56 |
Point() {} |
64 | 57 |
|
65 | 58 |
///Construct an instance from coordinates |
66 | 59 |
Point(T a, T b) : x(a), y(b) { } |
67 | 60 |
... | ... |
@@ -338,52 +338,52 @@ |
338 | 338 |
nn = (*_pred)[nn]; |
339 | 339 |
} |
340 | 340 |
while (!st.empty()) { |
341 | 341 |
cutMap.set(st.back(), cutMap[nn]); |
342 | 342 |
st.pop_back(); |
343 | 343 |
} |
344 | 344 |
} |
345 | 345 |
|
346 | 346 |
return value; |
347 | 347 |
} |
348 | 348 |
|
349 | 349 |
///@} |
350 | 350 |
|
351 | 351 |
friend class MinCutNodeIt; |
352 | 352 |
|
353 | 353 |
/// Iterate on the nodes of a minimum cut |
354 | 354 |
|
355 | 355 |
/// This iterator class lists the nodes of a minimum cut found by |
356 | 356 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
357 | 357 |
/// and call its \ref GomoryHu::run() "run()" method. |
358 | 358 |
/// |
359 | 359 |
/// This example counts the nodes in the minimum cut separating \c s from |
360 | 360 |
/// \c t. |
361 | 361 |
/// \code |
362 |
/// |
|
362 |
/// GomoryHu<Graph> gom(g, capacities); |
|
363 | 363 |
/// gom.run(); |
364 | 364 |
/// int cnt=0; |
365 |
/// for( |
|
365 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
|
366 | 366 |
/// \endcode |
367 | 367 |
class MinCutNodeIt |
368 | 368 |
{ |
369 | 369 |
bool _side; |
370 | 370 |
typename Graph::NodeIt _node_it; |
371 | 371 |
typename Graph::template NodeMap<bool> _cut; |
372 | 372 |
public: |
373 | 373 |
/// Constructor |
374 | 374 |
|
375 | 375 |
/// Constructor. |
376 | 376 |
/// |
377 | 377 |
MinCutNodeIt(GomoryHu const &gomory, |
378 | 378 |
///< The GomoryHu class. You must call its |
379 | 379 |
/// run() method |
380 | 380 |
/// before initializing this iterator. |
381 | 381 |
const Node& s, ///< The base node. |
382 | 382 |
const Node& t, |
383 | 383 |
///< The node you want to separate from node \c s. |
384 | 384 |
bool side=true |
385 | 385 |
///< If it is \c true (default) then the iterator lists |
386 | 386 |
/// the nodes of the component containing \c s, |
387 | 387 |
/// otherwise it lists the other component. |
388 | 388 |
/// \note As the minimum cut is not always unique, |
389 | 389 |
/// \code |
... | ... |
@@ -435,52 +435,52 @@ |
435 | 435 |
/// Postfix incrementation. |
436 | 436 |
/// |
437 | 437 |
/// \warning This incrementation |
438 | 438 |
/// returns a \c Node, not a \c MinCutNodeIt, as one may |
439 | 439 |
/// expect. |
440 | 440 |
typename Graph::Node operator++(int) |
441 | 441 |
{ |
442 | 442 |
typename Graph::Node n=*this; |
443 | 443 |
++(*this); |
444 | 444 |
return n; |
445 | 445 |
} |
446 | 446 |
}; |
447 | 447 |
|
448 | 448 |
friend class MinCutEdgeIt; |
449 | 449 |
|
450 | 450 |
/// Iterate on the edges of a minimum cut |
451 | 451 |
|
452 | 452 |
/// This iterator class lists the edges of a minimum cut found by |
453 | 453 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
454 | 454 |
/// and call its \ref GomoryHu::run() "run()" method. |
455 | 455 |
/// |
456 | 456 |
/// This example computes the value of the minimum cut separating \c s from |
457 | 457 |
/// \c t. |
458 | 458 |
/// \code |
459 |
/// |
|
459 |
/// GomoryHu<Graph> gom(g, capacities); |
|
460 | 460 |
/// gom.run(); |
461 | 461 |
/// int value=0; |
462 |
/// for( |
|
462 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
|
463 | 463 |
/// value+=capacities[e]; |
464 | 464 |
/// \endcode |
465 | 465 |
/// The result will be the same as the value returned by |
466 | 466 |
/// \ref GomoryHu::minCutValue() "gom.minCutValue(s,t)". |
467 | 467 |
class MinCutEdgeIt |
468 | 468 |
{ |
469 | 469 |
bool _side; |
470 | 470 |
const Graph &_graph; |
471 | 471 |
typename Graph::NodeIt _node_it; |
472 | 472 |
typename Graph::OutArcIt _arc_it; |
473 | 473 |
typename Graph::template NodeMap<bool> _cut; |
474 | 474 |
void step() |
475 | 475 |
{ |
476 | 476 |
++_arc_it; |
477 | 477 |
while(_node_it!=INVALID && _arc_it==INVALID) |
478 | 478 |
{ |
479 | 479 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {} |
480 | 480 |
if(_node_it!=INVALID) |
481 | 481 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
482 | 482 |
} |
483 | 483 |
} |
484 | 484 |
|
485 | 485 |
public: |
486 | 486 |
/// Constructor |
... | ... |
@@ -35,82 +35,82 @@ |
35 | 35 |
/// \addtogroup maps |
36 | 36 |
/// @{ |
37 | 37 |
|
38 | 38 |
/// Base class of maps. |
39 | 39 |
|
40 | 40 |
/// Base class of maps. It provides the necessary type definitions |
41 | 41 |
/// required by the map %concepts. |
42 | 42 |
template<typename K, typename V> |
43 | 43 |
class MapBase { |
44 | 44 |
public: |
45 | 45 |
/// \brief The key type of the map. |
46 | 46 |
typedef K Key; |
47 | 47 |
/// \brief The value type of the map. |
48 | 48 |
/// (The type of objects associated with the keys). |
49 | 49 |
typedef V Value; |
50 | 50 |
}; |
51 | 51 |
|
52 | 52 |
|
53 | 53 |
/// Null map. (a.k.a. DoNothingMap) |
54 | 54 |
|
55 | 55 |
/// This map can be used if you have to provide a map only for |
56 | 56 |
/// its type definitions, or if you have to provide a writable map, |
57 | 57 |
/// but data written to it is not required (i.e. it will be sent to |
58 | 58 |
/// <tt>/dev/null</tt>). |
59 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
59 |
/// It conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
60 | 60 |
/// |
61 | 61 |
/// \sa ConstMap |
62 | 62 |
template<typename K, typename V> |
63 | 63 |
class NullMap : public MapBase<K, V> { |
64 | 64 |
public: |
65 | 65 |
///\e |
66 | 66 |
typedef K Key; |
67 | 67 |
///\e |
68 | 68 |
typedef V Value; |
69 | 69 |
|
70 | 70 |
/// Gives back a default constructed element. |
71 | 71 |
Value operator[](const Key&) const { return Value(); } |
72 | 72 |
/// Absorbs the value. |
73 | 73 |
void set(const Key&, const Value&) {} |
74 | 74 |
}; |
75 | 75 |
|
76 | 76 |
/// Returns a \c NullMap class |
77 | 77 |
|
78 | 78 |
/// This function just returns a \c NullMap class. |
79 | 79 |
/// \relates NullMap |
80 | 80 |
template <typename K, typename V> |
81 | 81 |
NullMap<K, V> nullMap() { |
82 | 82 |
return NullMap<K, V>(); |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
|
86 | 86 |
/// Constant map. |
87 | 87 |
|
88 | 88 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
89 | 89 |
/// value to each key. |
90 | 90 |
/// |
91 | 91 |
/// In other aspects it is equivalent to \c NullMap. |
92 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
92 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
93 | 93 |
/// concept, but it absorbs the data written to it. |
94 | 94 |
/// |
95 | 95 |
/// The simplest way of using this map is through the constMap() |
96 | 96 |
/// function. |
97 | 97 |
/// |
98 | 98 |
/// \sa NullMap |
99 | 99 |
/// \sa IdentityMap |
100 | 100 |
template<typename K, typename V> |
101 | 101 |
class ConstMap : public MapBase<K, V> { |
102 | 102 |
private: |
103 | 103 |
V _value; |
104 | 104 |
public: |
105 | 105 |
///\e |
106 | 106 |
typedef K Key; |
107 | 107 |
///\e |
108 | 108 |
typedef V Value; |
109 | 109 |
|
110 | 110 |
/// Default constructor |
111 | 111 |
|
112 | 112 |
/// Default constructor. |
113 | 113 |
/// The value of the map will be default constructed. |
114 | 114 |
ConstMap() {} |
115 | 115 |
|
116 | 116 |
/// Constructor with specified initial value |
... | ... |
@@ -137,49 +137,49 @@ |
137 | 137 |
/// Returns a \c ConstMap class |
138 | 138 |
|
139 | 139 |
/// This function just returns a \c ConstMap class. |
140 | 140 |
/// \relates ConstMap |
141 | 141 |
template<typename K, typename V> |
142 | 142 |
inline ConstMap<K, V> constMap(const V &v) { |
143 | 143 |
return ConstMap<K, V>(v); |
144 | 144 |
} |
145 | 145 |
|
146 | 146 |
template<typename K, typename V> |
147 | 147 |
inline ConstMap<K, V> constMap() { |
148 | 148 |
return ConstMap<K, V>(); |
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
|
152 | 152 |
template<typename T, T v> |
153 | 153 |
struct Const {}; |
154 | 154 |
|
155 | 155 |
/// Constant map with inlined constant value. |
156 | 156 |
|
157 | 157 |
/// This \ref concepts::ReadMap "readable map" assigns a specified |
158 | 158 |
/// value to each key. |
159 | 159 |
/// |
160 | 160 |
/// In other aspects it is equivalent to \c NullMap. |
161 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
161 |
/// So it conforms to the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
162 | 162 |
/// concept, but it absorbs the data written to it. |
163 | 163 |
/// |
164 | 164 |
/// The simplest way of using this map is through the constMap() |
165 | 165 |
/// function. |
166 | 166 |
/// |
167 | 167 |
/// \sa NullMap |
168 | 168 |
/// \sa IdentityMap |
169 | 169 |
template<typename K, typename V, V v> |
170 | 170 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
171 | 171 |
public: |
172 | 172 |
///\e |
173 | 173 |
typedef K Key; |
174 | 174 |
///\e |
175 | 175 |
typedef V Value; |
176 | 176 |
|
177 | 177 |
/// Constructor. |
178 | 178 |
ConstMap() {} |
179 | 179 |
|
180 | 180 |
/// Gives back the specified value. |
181 | 181 |
Value operator[](const Key&) const { return v; } |
182 | 182 |
|
183 | 183 |
/// Absorbs the value. |
184 | 184 |
void set(const Key&, const Value&) {} |
185 | 185 |
}; |
... | ... |
@@ -211,49 +211,49 @@ |
211 | 211 |
|
212 | 212 |
/// Gives back the given value without any modification. |
213 | 213 |
Value operator[](const Key &k) const { |
214 | 214 |
return k; |
215 | 215 |
} |
216 | 216 |
}; |
217 | 217 |
|
218 | 218 |
/// Returns an \c IdentityMap class |
219 | 219 |
|
220 | 220 |
/// This function just returns an \c IdentityMap class. |
221 | 221 |
/// \relates IdentityMap |
222 | 222 |
template<typename T> |
223 | 223 |
inline IdentityMap<T> identityMap() { |
224 | 224 |
return IdentityMap<T>(); |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
|
228 | 228 |
/// \brief Map for storing values for integer keys from the range |
229 | 229 |
/// <tt>[0..size-1]</tt>. |
230 | 230 |
/// |
231 | 231 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
232 | 232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
233 | 233 |
/// It can be used with some data structures, for example |
234 | 234 |
/// \c UnionFind, \c BinHeap, when the used items are small |
235 |
/// integers. This map conforms the \ref concepts::ReferenceMap |
|
235 |
/// integers. This map conforms to the \ref concepts::ReferenceMap |
|
236 | 236 |
/// "ReferenceMap" concept. |
237 | 237 |
/// |
238 | 238 |
/// The simplest way of using this map is through the rangeMap() |
239 | 239 |
/// function. |
240 | 240 |
template <typename V> |
241 | 241 |
class RangeMap : public MapBase<int, V> { |
242 | 242 |
template <typename V1> |
243 | 243 |
friend class RangeMap; |
244 | 244 |
private: |
245 | 245 |
|
246 | 246 |
typedef std::vector<V> Vector; |
247 | 247 |
Vector _vector; |
248 | 248 |
|
249 | 249 |
public: |
250 | 250 |
|
251 | 251 |
/// Key type |
252 | 252 |
typedef int Key; |
253 | 253 |
/// Value type |
254 | 254 |
typedef V Value; |
255 | 255 |
/// Reference type |
256 | 256 |
typedef typename Vector::reference Reference; |
257 | 257 |
/// Const reference type |
258 | 258 |
typedef typename Vector::const_reference ConstReference; |
259 | 259 |
|
... | ... |
@@ -319,49 +319,49 @@ |
319 | 319 |
/// \relates RangeMap |
320 | 320 |
template<typename V> |
321 | 321 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) { |
322 | 322 |
return RangeMap<V>(size, value); |
323 | 323 |
} |
324 | 324 |
|
325 | 325 |
/// \brief Returns a \c RangeMap class created from an appropriate |
326 | 326 |
/// \c std::vector |
327 | 327 |
|
328 | 328 |
/// This function just returns a \c RangeMap class created from an |
329 | 329 |
/// appropriate \c std::vector. |
330 | 330 |
/// \relates RangeMap |
331 | 331 |
template<typename V> |
332 | 332 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) { |
333 | 333 |
return RangeMap<V>(vector); |
334 | 334 |
} |
335 | 335 |
|
336 | 336 |
|
337 | 337 |
/// Map type based on \c std::map |
338 | 338 |
|
339 | 339 |
/// This map is essentially a wrapper for \c std::map with addition |
340 | 340 |
/// that you can specify a default value for the keys that are not |
341 | 341 |
/// stored actually. This value can be different from the default |
342 | 342 |
/// contructed value (i.e. \c %Value()). |
343 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
|
343 |
/// This type conforms to the \ref concepts::ReferenceMap "ReferenceMap" |
|
344 | 344 |
/// concept. |
345 | 345 |
/// |
346 | 346 |
/// This map is useful if a default value should be assigned to most of |
347 | 347 |
/// the keys and different values should be assigned only to a few |
348 | 348 |
/// keys (i.e. the map is "sparse"). |
349 | 349 |
/// The name of this type also refers to this important usage. |
350 | 350 |
/// |
351 | 351 |
/// Apart form that this map can be used in many other cases since it |
352 | 352 |
/// is based on \c std::map, which is a general associative container. |
353 | 353 |
/// However keep in mind that it is usually not as efficient as other |
354 | 354 |
/// maps. |
355 | 355 |
/// |
356 | 356 |
/// The simplest way of using this map is through the sparseMap() |
357 | 357 |
/// function. |
358 | 358 |
template <typename K, typename V, typename Comp = std::less<K> > |
359 | 359 |
class SparseMap : public MapBase<K, V> { |
360 | 360 |
template <typename K1, typename V1, typename C1> |
361 | 361 |
friend class SparseMap; |
362 | 362 |
public: |
363 | 363 |
|
364 | 364 |
/// Key type |
365 | 365 |
typedef K Key; |
366 | 366 |
/// Value type |
367 | 367 |
typedef V Value; |
... | ... |
@@ -685,49 +685,49 @@ |
685 | 685 |
MapToFunctor(const M &m) : _m(m) {} |
686 | 686 |
///\e |
687 | 687 |
Value operator()(const Key &k) const { return _m[k]; } |
688 | 688 |
///\e |
689 | 689 |
Value operator[](const Key &k) const { return _m[k]; } |
690 | 690 |
}; |
691 | 691 |
|
692 | 692 |
/// Returns a \c MapToFunctor class |
693 | 693 |
|
694 | 694 |
/// This function just returns a \c MapToFunctor class. |
695 | 695 |
/// \relates MapToFunctor |
696 | 696 |
template<typename M> |
697 | 697 |
inline MapToFunctor<M> mapToFunctor(const M &m) { |
698 | 698 |
return MapToFunctor<M>(m); |
699 | 699 |
} |
700 | 700 |
|
701 | 701 |
|
702 | 702 |
/// \brief Map adaptor to convert the \c Value type of a map to |
703 | 703 |
/// another type using the default conversion. |
704 | 704 |
|
705 | 705 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
706 | 706 |
/// "readable map" to another type using the default conversion. |
707 | 707 |
/// The \c Key type of it is inherited from \c M and the \c Value |
708 | 708 |
/// type is \c V. |
709 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
|
709 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
710 | 710 |
/// |
711 | 711 |
/// The simplest way of using this map is through the convertMap() |
712 | 712 |
/// function. |
713 | 713 |
template <typename M, typename V> |
714 | 714 |
class ConvertMap : public MapBase<typename M::Key, V> { |
715 | 715 |
const M &_m; |
716 | 716 |
public: |
717 | 717 |
///\e |
718 | 718 |
typedef typename M::Key Key; |
719 | 719 |
///\e |
720 | 720 |
typedef V Value; |
721 | 721 |
|
722 | 722 |
/// Constructor |
723 | 723 |
|
724 | 724 |
/// Constructor. |
725 | 725 |
/// \param m The underlying map. |
726 | 726 |
ConvertMap(const M &m) : _m(m) {} |
727 | 727 |
|
728 | 728 |
///\e |
729 | 729 |
Value operator[](const Key &k) const { return _m[k]; } |
730 | 730 |
}; |
731 | 731 |
|
732 | 732 |
/// Returns a \c ConvertMap class |
733 | 733 |
|
... | ... |
@@ -1768,292 +1768,329 @@ |
1768 | 1768 |
} |
1769 | 1769 |
|
1770 | 1770 |
/// The set function of the map |
1771 | 1771 |
void set(const Key& key, Value value) { |
1772 | 1772 |
if (value) { |
1773 | 1773 |
*_end++ = key; |
1774 | 1774 |
} |
1775 | 1775 |
} |
1776 | 1776 |
|
1777 | 1777 |
private: |
1778 | 1778 |
Iterator _begin; |
1779 | 1779 |
Iterator _end; |
1780 | 1780 |
}; |
1781 | 1781 |
|
1782 | 1782 |
/// Returns a \c LoggerBoolMap class |
1783 | 1783 |
|
1784 | 1784 |
/// This function just returns a \c LoggerBoolMap class. |
1785 | 1785 |
/// |
1786 | 1786 |
/// The most important usage of it is storing certain nodes or arcs |
1787 | 1787 |
/// that were marked \c true by an algorithm. |
1788 | 1788 |
/// For example it makes easier to store the nodes in the processing |
1789 | 1789 |
/// order of Dfs algorithm, as the following examples show. |
1790 | 1790 |
/// \code |
1791 | 1791 |
/// std::vector<Node> v; |
1792 |
/// dfs(g |
|
1792 |
/// dfs(g).processedMap(loggerBoolMap(std::back_inserter(v))).run(s); |
|
1793 | 1793 |
/// \endcode |
1794 | 1794 |
/// \code |
1795 | 1795 |
/// std::vector<Node> v(countNodes(g)); |
1796 |
/// dfs(g |
|
1796 |
/// dfs(g).processedMap(loggerBoolMap(v.begin())).run(s); |
|
1797 | 1797 |
/// \endcode |
1798 | 1798 |
/// |
1799 | 1799 |
/// \note The container of the iterator must contain enough space |
1800 | 1800 |
/// for the elements or the iterator should be an inserter iterator. |
1801 | 1801 |
/// |
1802 | 1802 |
/// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so |
1803 | 1803 |
/// it cannot be used when a readable map is needed, for example as |
1804 | 1804 |
/// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms. |
1805 | 1805 |
/// |
1806 | 1806 |
/// \relates LoggerBoolMap |
1807 | 1807 |
template<typename Iterator> |
1808 | 1808 |
inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) { |
1809 | 1809 |
return LoggerBoolMap<Iterator>(it); |
1810 | 1810 |
} |
1811 | 1811 |
|
1812 | 1812 |
/// @} |
1813 | 1813 |
|
1814 | 1814 |
/// \addtogroup graph_maps |
1815 | 1815 |
/// @{ |
1816 | 1816 |
|
1817 | 1817 |
/// \brief Provides an immutable and unique id for each item in a graph. |
1818 | 1818 |
/// |
1819 | 1819 |
/// IdMap provides a unique and immutable id for each item of the |
1820 | 1820 |
/// same type (\c Node, \c Arc or \c Edge) in a graph. This id is |
1821 | 1821 |
/// - \b unique: different items get different ids, |
1822 | 1822 |
/// - \b immutable: the id of an item does not change (even if you |
1823 | 1823 |
/// delete other nodes). |
1824 | 1824 |
/// |
1825 | 1825 |
/// Using this map you get access (i.e. can read) the inner id values of |
1826 | 1826 |
/// the items stored in the graph, which is returned by the \c id() |
1827 | 1827 |
/// function of the graph. This map can be inverted with its member |
1828 |
/// class \c InverseMap or with the \c operator() member. |
|
1828 |
/// class \c InverseMap or with the \c operator()() member. |
|
1829 | 1829 |
/// |
1830 | 1830 |
/// \tparam GR The graph type. |
1831 | 1831 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1832 | 1832 |
/// \c GR::Edge). |
1833 | 1833 |
/// |
1834 | 1834 |
/// \see RangeIdMap |
1835 | 1835 |
template <typename GR, typename K> |
1836 | 1836 |
class IdMap : public MapBase<K, int> { |
1837 | 1837 |
public: |
1838 | 1838 |
/// The graph type of IdMap. |
1839 | 1839 |
typedef GR Graph; |
1840 | 1840 |
typedef GR Digraph; |
1841 | 1841 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1842 | 1842 |
typedef K Item; |
1843 | 1843 |
/// The key type of IdMap (\c Node, \c Arc or \c Edge). |
1844 | 1844 |
typedef K Key; |
1845 | 1845 |
/// The value type of IdMap. |
1846 | 1846 |
typedef int Value; |
1847 | 1847 |
|
1848 | 1848 |
/// \brief Constructor. |
1849 | 1849 |
/// |
1850 | 1850 |
/// Constructor of the map. |
1851 | 1851 |
explicit IdMap(const Graph& graph) : _graph(&graph) {} |
1852 | 1852 |
|
1853 | 1853 |
/// \brief Gives back the \e id of the item. |
1854 | 1854 |
/// |
1855 | 1855 |
/// Gives back the immutable and unique \e id of the item. |
1856 | 1856 |
int operator[](const Item& item) const { return _graph->id(item);} |
1857 | 1857 |
|
1858 | 1858 |
/// \brief Gives back the \e item by its id. |
1859 | 1859 |
/// |
1860 | 1860 |
/// Gives back the \e item by its id. |
1861 | 1861 |
Item operator()(int id) { return _graph->fromId(id, Item()); } |
1862 | 1862 |
|
1863 | 1863 |
private: |
1864 | 1864 |
const Graph* _graph; |
1865 | 1865 |
|
1866 | 1866 |
public: |
1867 | 1867 |
|
1868 |
/// \brief |
|
1868 |
/// \brief The inverse map type of IdMap. |
|
1869 | 1869 |
/// |
1870 |
/// |
|
1870 |
/// The inverse map type of IdMap. The subscript operator gives back |
|
1871 |
/// an item by its id. |
|
1872 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
1871 | 1873 |
/// \see inverse() |
1872 | 1874 |
class InverseMap { |
1873 | 1875 |
public: |
1874 | 1876 |
|
1875 | 1877 |
/// \brief Constructor. |
1876 | 1878 |
/// |
1877 | 1879 |
/// Constructor for creating an id-to-item map. |
1878 | 1880 |
explicit InverseMap(const Graph& graph) : _graph(&graph) {} |
1879 | 1881 |
|
1880 | 1882 |
/// \brief Constructor. |
1881 | 1883 |
/// |
1882 | 1884 |
/// Constructor for creating an id-to-item map. |
1883 | 1885 |
explicit InverseMap(const IdMap& map) : _graph(map._graph) {} |
1884 | 1886 |
|
1885 |
/// \brief Gives back |
|
1887 |
/// \brief Gives back an item by its id. |
|
1886 | 1888 |
/// |
1887 |
/// Gives back |
|
1889 |
/// Gives back an item by its id. |
|
1888 | 1890 |
Item operator[](int id) const { return _graph->fromId(id, Item());} |
1889 | 1891 |
|
1890 | 1892 |
private: |
1891 | 1893 |
const Graph* _graph; |
1892 | 1894 |
}; |
1893 | 1895 |
|
1894 | 1896 |
/// \brief Gives back the inverse of the map. |
1895 | 1897 |
/// |
1896 | 1898 |
/// Gives back the inverse of the IdMap. |
1897 | 1899 |
InverseMap inverse() const { return InverseMap(*_graph);} |
1898 | 1900 |
}; |
1899 | 1901 |
|
1902 |
/// \brief Returns an \c IdMap class. |
|
1903 |
/// |
|
1904 |
/// This function just returns an \c IdMap class. |
|
1905 |
/// \relates IdMap |
|
1906 |
template <typename K, typename GR> |
|
1907 |
inline IdMap<GR, K> idMap(const GR& graph) { |
|
1908 |
return IdMap<GR, K>(graph); |
|
1909 |
} |
|
1900 | 1910 |
|
1901 | 1911 |
/// \brief General cross reference graph map type. |
1902 | 1912 |
|
1903 | 1913 |
/// This class provides simple invertable graph maps. |
1904 | 1914 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
1905 | 1915 |
/// and if a key is set to a new value, then stores it in the inverse map. |
1906 |
/// The values of the map can be accessed |
|
1907 |
/// with stl compatible forward iterator. |
|
1916 |
/// The graph items can be accessed by their values either using |
|
1917 |
/// \c InverseMap or \c operator()(), and the values of the map can be |
|
1918 |
/// accessed with an STL compatible forward iterator (\c ValueIt). |
|
1919 |
/// |
|
1920 |
/// This map is intended to be used when all associated values are |
|
1921 |
/// different (the map is actually invertable) or there are only a few |
|
1922 |
/// items with the same value. |
|
1923 |
/// Otherwise consider to use \c IterableValueMap, which is more |
|
1924 |
/// suitable and more efficient for such cases. It provides iterators |
|
1925 |
/// to traverse the items with the same associated value, however |
|
1926 |
/// it does not have \c InverseMap. |
|
1908 | 1927 |
/// |
1909 | 1928 |
/// This type is not reference map, so it cannot be modified with |
1910 | 1929 |
/// the subscript operator. |
1911 | 1930 |
/// |
1912 | 1931 |
/// \tparam GR The graph type. |
1913 | 1932 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1914 | 1933 |
/// \c GR::Edge). |
1915 | 1934 |
/// \tparam V The value type of the map. |
1916 | 1935 |
/// |
1917 | 1936 |
/// \see IterableValueMap |
1918 | 1937 |
template <typename GR, typename K, typename V> |
1919 | 1938 |
class CrossRefMap |
1920 | 1939 |
: protected ItemSetTraits<GR, K>::template Map<V>::Type { |
1921 | 1940 |
private: |
1922 | 1941 |
|
1923 | 1942 |
typedef typename ItemSetTraits<GR, K>:: |
1924 | 1943 |
template Map<V>::Type Map; |
1925 | 1944 |
|
1926 | 1945 |
typedef std::multimap<V, K> Container; |
1927 | 1946 |
Container _inv_map; |
1928 | 1947 |
|
1929 | 1948 |
public: |
1930 | 1949 |
|
1931 | 1950 |
/// The graph type of CrossRefMap. |
1932 | 1951 |
typedef GR Graph; |
1933 | 1952 |
typedef GR Digraph; |
1934 | 1953 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1935 | 1954 |
typedef K Item; |
1936 | 1955 |
/// The key type of CrossRefMap (\c Node, \c Arc or \c Edge). |
1937 | 1956 |
typedef K Key; |
1938 | 1957 |
/// The value type of CrossRefMap. |
1939 | 1958 |
typedef V Value; |
1940 | 1959 |
|
1941 | 1960 |
/// \brief Constructor. |
1942 | 1961 |
/// |
1943 | 1962 |
/// Construct a new CrossRefMap for the given graph. |
1944 | 1963 |
explicit CrossRefMap(const Graph& graph) : Map(graph) {} |
1945 | 1964 |
|
1946 | 1965 |
/// \brief Forward iterator for values. |
1947 | 1966 |
/// |
1948 |
/// This iterator is an |
|
1967 |
/// This iterator is an STL compatible forward |
|
1949 | 1968 |
/// iterator on the values of the map. The values can |
1950 | 1969 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
1951 | 1970 |
/// They are considered with multiplicity, so each value is |
1952 | 1971 |
/// traversed for each item it is assigned to. |
1953 |
class |
|
1972 |
class ValueIt |
|
1954 | 1973 |
: public std::iterator<std::forward_iterator_tag, Value> { |
1955 | 1974 |
friend class CrossRefMap; |
1956 | 1975 |
private: |
1957 |
|
|
1976 |
ValueIt(typename Container::const_iterator _it) |
|
1958 | 1977 |
: it(_it) {} |
1959 | 1978 |
public: |
1960 | 1979 |
|
1961 |
ValueIterator() {} |
|
1962 |
|
|
1963 |
ValueIterator& operator++() { ++it; return *this; } |
|
1964 |
ValueIterator operator++(int) { |
|
1965 |
|
|
1980 |
/// Constructor |
|
1981 |
ValueIt() {} |
|
1982 |
|
|
1983 |
/// \e |
|
1984 |
ValueIt& operator++() { ++it; return *this; } |
|
1985 |
/// \e |
|
1986 |
ValueIt operator++(int) { |
|
1987 |
ValueIt tmp(*this); |
|
1966 | 1988 |
operator++(); |
1967 | 1989 |
return tmp; |
1968 | 1990 |
} |
1969 | 1991 |
|
1992 |
/// \e |
|
1970 | 1993 |
const Value& operator*() const { return it->first; } |
1994 |
/// \e |
|
1971 | 1995 |
const Value* operator->() const { return &(it->first); } |
1972 | 1996 |
|
1973 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
|
1974 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|
1997 |
/// \e |
|
1998 |
bool operator==(ValueIt jt) const { return it == jt.it; } |
|
1999 |
/// \e |
|
2000 |
bool operator!=(ValueIt jt) const { return it != jt.it; } |
|
1975 | 2001 |
|
1976 | 2002 |
private: |
1977 | 2003 |
typename Container::const_iterator it; |
1978 | 2004 |
}; |
1979 | 2005 |
|
2006 |
/// Alias for \c ValueIt |
|
2007 |
typedef ValueIt ValueIterator; |
|
2008 |
|
|
1980 | 2009 |
/// \brief Returns an iterator to the first value. |
1981 | 2010 |
/// |
1982 |
/// Returns an |
|
2011 |
/// Returns an STL compatible iterator to the |
|
1983 | 2012 |
/// first value of the map. The values of the |
1984 | 2013 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1985 | 2014 |
/// range. |
1986 |
ValueIterator beginValue() const { |
|
1987 |
return ValueIterator(_inv_map.begin()); |
|
2015 |
ValueIt beginValue() const { |
|
2016 |
return ValueIt(_inv_map.begin()); |
|
1988 | 2017 |
} |
1989 | 2018 |
|
1990 | 2019 |
/// \brief Returns an iterator after the last value. |
1991 | 2020 |
/// |
1992 |
/// Returns an |
|
2021 |
/// Returns an STL compatible iterator after the |
|
1993 | 2022 |
/// last value of the map. The values of the |
1994 | 2023 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
1995 | 2024 |
/// range. |
1996 |
ValueIterator endValue() const { |
|
1997 |
return ValueIterator(_inv_map.end()); |
|
2025 |
ValueIt endValue() const { |
|
2026 |
return ValueIt(_inv_map.end()); |
|
1998 | 2027 |
} |
1999 | 2028 |
|
2000 | 2029 |
/// \brief Sets the value associated with the given key. |
2001 | 2030 |
/// |
2002 | 2031 |
/// Sets the value associated with the given key. |
2003 | 2032 |
void set(const Key& key, const Value& val) { |
2004 | 2033 |
Value oldval = Map::operator[](key); |
2005 | 2034 |
typename Container::iterator it; |
2006 | 2035 |
for (it = _inv_map.equal_range(oldval).first; |
2007 | 2036 |
it != _inv_map.equal_range(oldval).second; ++it) { |
2008 | 2037 |
if (it->second == key) { |
2009 | 2038 |
_inv_map.erase(it); |
2010 | 2039 |
break; |
2011 | 2040 |
} |
2012 | 2041 |
} |
2013 | 2042 |
_inv_map.insert(std::make_pair(val, key)); |
2014 | 2043 |
Map::set(key, val); |
2015 | 2044 |
} |
2016 | 2045 |
|
2017 | 2046 |
/// \brief Returns the value associated with the given key. |
2018 | 2047 |
/// |
2019 | 2048 |
/// Returns the value associated with the given key. |
2020 | 2049 |
typename MapTraits<Map>::ConstReturnValue |
2021 | 2050 |
operator[](const Key& key) const { |
2022 | 2051 |
return Map::operator[](key); |
2023 | 2052 |
} |
2024 | 2053 |
|
2025 | 2054 |
/// \brief Gives back an item by its value. |
2026 | 2055 |
/// |
2027 | 2056 |
/// This function gives back an item that is assigned to |
2028 | 2057 |
/// the given value or \c INVALID if no such item exists. |
2029 | 2058 |
/// If there are more items with the same associated value, |
2030 | 2059 |
/// only one of them is returned. |
2031 | 2060 |
Key operator()(const Value& val) const { |
2032 | 2061 |
typename Container::const_iterator it = _inv_map.find(val); |
2033 | 2062 |
return it != _inv_map.end() ? it->second : INVALID; |
2034 | 2063 |
} |
2035 | 2064 |
|
2065 |
/// \brief Returns the number of items with the given value. |
|
2066 |
/// |
|
2067 |
/// This function returns the number of items with the given value |
|
2068 |
/// associated with it. |
|
2069 |
int count(const Value &val) const { |
|
2070 |
return _inv_map.count(val); |
|
2071 |
} |
|
2072 |
|
|
2036 | 2073 |
protected: |
2037 | 2074 |
|
2038 | 2075 |
/// \brief Erase the key from the map and the inverse map. |
2039 | 2076 |
/// |
2040 | 2077 |
/// Erase the key from the map and the inverse map. It is called by the |
2041 | 2078 |
/// \c AlterationNotifier. |
2042 | 2079 |
virtual void erase(const Key& key) { |
2043 | 2080 |
Value val = Map::operator[](key); |
2044 | 2081 |
typename Container::iterator it; |
2045 | 2082 |
for (it = _inv_map.equal_range(val).first; |
2046 | 2083 |
it != _inv_map.equal_range(val).second; ++it) { |
2047 | 2084 |
if (it->second == key) { |
2048 | 2085 |
_inv_map.erase(it); |
2049 | 2086 |
break; |
2050 | 2087 |
} |
2051 | 2088 |
} |
2052 | 2089 |
Map::erase(key); |
2053 | 2090 |
} |
2054 | 2091 |
|
2055 | 2092 |
/// \brief Erase more keys from the map and the inverse map. |
2056 | 2093 |
/// |
2057 | 2094 |
/// Erase more keys from the map and the inverse map. It is called by the |
2058 | 2095 |
/// \c AlterationNotifier. |
2059 | 2096 |
virtual void erase(const std::vector<Key>& keys) { |
... | ... |
@@ -2061,103 +2098,105 @@ |
2061 | 2098 |
Value val = Map::operator[](keys[i]); |
2062 | 2099 |
typename Container::iterator it; |
2063 | 2100 |
for (it = _inv_map.equal_range(val).first; |
2064 | 2101 |
it != _inv_map.equal_range(val).second; ++it) { |
2065 | 2102 |
if (it->second == keys[i]) { |
2066 | 2103 |
_inv_map.erase(it); |
2067 | 2104 |
break; |
2068 | 2105 |
} |
2069 | 2106 |
} |
2070 | 2107 |
} |
2071 | 2108 |
Map::erase(keys); |
2072 | 2109 |
} |
2073 | 2110 |
|
2074 | 2111 |
/// \brief Clear the keys from the map and the inverse map. |
2075 | 2112 |
/// |
2076 | 2113 |
/// Clear the keys from the map and the inverse map. It is called by the |
2077 | 2114 |
/// \c AlterationNotifier. |
2078 | 2115 |
virtual void clear() { |
2079 | 2116 |
_inv_map.clear(); |
2080 | 2117 |
Map::clear(); |
2081 | 2118 |
} |
2082 | 2119 |
|
2083 | 2120 |
public: |
2084 | 2121 |
|
2085 |
/// \brief The inverse map type. |
|
2122 |
/// \brief The inverse map type of CrossRefMap. |
|
2086 | 2123 |
/// |
2087 |
/// The inverse of this map. The subscript operator of the map |
|
2088 |
/// gives back the item that was last assigned to the value. |
|
2124 |
/// The inverse map type of CrossRefMap. The subscript operator gives |
|
2125 |
/// back an item by its value. |
|
2126 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
2127 |
/// \see inverse() |
|
2089 | 2128 |
class InverseMap { |
2090 | 2129 |
public: |
2091 | 2130 |
/// \brief Constructor |
2092 | 2131 |
/// |
2093 | 2132 |
/// Constructor of the InverseMap. |
2094 | 2133 |
explicit InverseMap(const CrossRefMap& inverted) |
2095 | 2134 |
: _inverted(inverted) {} |
2096 | 2135 |
|
2097 | 2136 |
/// The value type of the InverseMap. |
2098 | 2137 |
typedef typename CrossRefMap::Key Value; |
2099 | 2138 |
/// The key type of the InverseMap. |
2100 | 2139 |
typedef typename CrossRefMap::Value Key; |
2101 | 2140 |
|
2102 | 2141 |
/// \brief Subscript operator. |
2103 | 2142 |
/// |
2104 | 2143 |
/// Subscript operator. It gives back an item |
2105 | 2144 |
/// that is assigned to the given value or \c INVALID |
2106 | 2145 |
/// if no such item exists. |
2107 | 2146 |
Value operator[](const Key& key) const { |
2108 | 2147 |
return _inverted(key); |
2109 | 2148 |
} |
2110 | 2149 |
|
2111 | 2150 |
private: |
2112 | 2151 |
const CrossRefMap& _inverted; |
2113 | 2152 |
}; |
2114 | 2153 |
|
2115 |
/// \brief |
|
2154 |
/// \brief Gives back the inverse of the map. |
|
2116 | 2155 |
/// |
2117 |
/// |
|
2156 |
/// Gives back the inverse of the CrossRefMap. |
|
2118 | 2157 |
InverseMap inverse() const { |
2119 | 2158 |
return InverseMap(*this); |
2120 | 2159 |
} |
2121 | 2160 |
|
2122 | 2161 |
}; |
2123 | 2162 |
|
2124 |
/// \brief Provides continuous and unique |
|
2163 |
/// \brief Provides continuous and unique id for the |
|
2125 | 2164 |
/// items of a graph. |
2126 | 2165 |
/// |
2127 | 2166 |
/// RangeIdMap provides a unique and continuous |
2128 |
/// |
|
2167 |
/// id for each item of a given type (\c Node, \c Arc or |
|
2129 | 2168 |
/// \c Edge) in a graph. This id is |
2130 | 2169 |
/// - \b unique: different items get different ids, |
2131 | 2170 |
/// - \b continuous: the range of the ids is the set of integers |
2132 | 2171 |
/// between 0 and \c n-1, where \c n is the number of the items of |
2133 | 2172 |
/// this type (\c Node, \c Arc or \c Edge). |
2134 | 2173 |
/// - So, the ids can change when deleting an item of the same type. |
2135 | 2174 |
/// |
2136 | 2175 |
/// Thus this id is not (necessarily) the same as what can get using |
2137 | 2176 |
/// the \c id() function of the graph or \ref IdMap. |
2138 | 2177 |
/// This map can be inverted with its member class \c InverseMap, |
2139 |
/// or with the \c operator() member. |
|
2178 |
/// or with the \c operator()() member. |
|
2140 | 2179 |
/// |
2141 | 2180 |
/// \tparam GR The graph type. |
2142 | 2181 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2143 | 2182 |
/// \c GR::Edge). |
2144 | 2183 |
/// |
2145 | 2184 |
/// \see IdMap |
2146 | 2185 |
template <typename GR, typename K> |
2147 | 2186 |
class RangeIdMap |
2148 | 2187 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
2149 | 2188 |
|
2150 | 2189 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map; |
2151 | 2190 |
|
2152 | 2191 |
public: |
2153 | 2192 |
/// The graph type of RangeIdMap. |
2154 | 2193 |
typedef GR Graph; |
2155 | 2194 |
typedef GR Digraph; |
2156 | 2195 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
2157 | 2196 |
typedef K Item; |
2158 | 2197 |
/// The key type of RangeIdMap (\c Node, \c Arc or \c Edge). |
2159 | 2198 |
typedef K Key; |
2160 | 2199 |
/// The value type of RangeIdMap. |
2161 | 2200 |
typedef int Value; |
2162 | 2201 |
|
2163 | 2202 |
/// \brief Constructor. |
... | ... |
@@ -2243,119 +2282,130 @@ |
2243 | 2282 |
Map::clear(); |
2244 | 2283 |
} |
2245 | 2284 |
|
2246 | 2285 |
public: |
2247 | 2286 |
|
2248 | 2287 |
/// \brief Returns the maximal value plus one. |
2249 | 2288 |
/// |
2250 | 2289 |
/// Returns the maximal value plus one in the map. |
2251 | 2290 |
unsigned int size() const { |
2252 | 2291 |
return _inv_map.size(); |
2253 | 2292 |
} |
2254 | 2293 |
|
2255 | 2294 |
/// \brief Swaps the position of the two items in the map. |
2256 | 2295 |
/// |
2257 | 2296 |
/// Swaps the position of the two items in the map. |
2258 | 2297 |
void swap(const Item& p, const Item& q) { |
2259 | 2298 |
int pi = Map::operator[](p); |
2260 | 2299 |
int qi = Map::operator[](q); |
2261 | 2300 |
Map::set(p, qi); |
2262 | 2301 |
_inv_map[qi] = p; |
2263 | 2302 |
Map::set(q, pi); |
2264 | 2303 |
_inv_map[pi] = q; |
2265 | 2304 |
} |
2266 | 2305 |
|
2267 |
/// \brief Gives back the \e |
|
2306 |
/// \brief Gives back the \e range \e id of the item |
|
2268 | 2307 |
/// |
2269 |
/// Gives back the \e |
|
2308 |
/// Gives back the \e range \e id of the item. |
|
2270 | 2309 |
int operator[](const Item& item) const { |
2271 | 2310 |
return Map::operator[](item); |
2272 | 2311 |
} |
2273 | 2312 |
|
2274 |
/// \brief Gives back the item belonging to a \e |
|
2313 |
/// \brief Gives back the item belonging to a \e range \e id |
|
2275 | 2314 |
/// |
2276 |
/// Gives back the item belonging to |
|
2315 |
/// Gives back the item belonging to the given \e range \e id. |
|
2277 | 2316 |
Item operator()(int id) const { |
2278 | 2317 |
return _inv_map[id]; |
2279 | 2318 |
} |
2280 | 2319 |
|
2281 | 2320 |
private: |
2282 | 2321 |
|
2283 | 2322 |
typedef std::vector<Item> Container; |
2284 | 2323 |
Container _inv_map; |
2285 | 2324 |
|
2286 | 2325 |
public: |
2287 | 2326 |
|
2288 | 2327 |
/// \brief The inverse map type of RangeIdMap. |
2289 | 2328 |
/// |
2290 |
/// The inverse map type of RangeIdMap. |
|
2329 |
/// The inverse map type of RangeIdMap. The subscript operator gives |
|
2330 |
/// back an item by its \e range \e id. |
|
2331 |
/// This type conforms to the \ref concepts::ReadMap "ReadMap" concept. |
|
2291 | 2332 |
class InverseMap { |
2292 | 2333 |
public: |
2293 | 2334 |
/// \brief Constructor |
2294 | 2335 |
/// |
2295 | 2336 |
/// Constructor of the InverseMap. |
2296 | 2337 |
explicit InverseMap(const RangeIdMap& inverted) |
2297 | 2338 |
: _inverted(inverted) {} |
2298 | 2339 |
|
2299 | 2340 |
|
2300 | 2341 |
/// The value type of the InverseMap. |
2301 | 2342 |
typedef typename RangeIdMap::Key Value; |
2302 | 2343 |
/// The key type of the InverseMap. |
2303 | 2344 |
typedef typename RangeIdMap::Value Key; |
2304 | 2345 |
|
2305 | 2346 |
/// \brief Subscript operator. |
2306 | 2347 |
/// |
2307 | 2348 |
/// Subscript operator. It gives back the item |
2308 |
/// that the |
|
2349 |
/// that the given \e range \e id currently belongs to. |
|
2309 | 2350 |
Value operator[](const Key& key) const { |
2310 | 2351 |
return _inverted(key); |
2311 | 2352 |
} |
2312 | 2353 |
|
2313 | 2354 |
/// \brief Size of the map. |
2314 | 2355 |
/// |
2315 | 2356 |
/// Returns the size of the map. |
2316 | 2357 |
unsigned int size() const { |
2317 | 2358 |
return _inverted.size(); |
2318 | 2359 |
} |
2319 | 2360 |
|
2320 | 2361 |
private: |
2321 | 2362 |
const RangeIdMap& _inverted; |
2322 | 2363 |
}; |
2323 | 2364 |
|
2324 | 2365 |
/// \brief Gives back the inverse of the map. |
2325 | 2366 |
/// |
2326 |
/// Gives back the inverse of the |
|
2367 |
/// Gives back the inverse of the RangeIdMap. |
|
2327 | 2368 |
const InverseMap inverse() const { |
2328 | 2369 |
return InverseMap(*this); |
2329 | 2370 |
} |
2330 | 2371 |
}; |
2331 | 2372 |
|
2373 |
/// \brief Returns a \c RangeIdMap class. |
|
2374 |
/// |
|
2375 |
/// This function just returns an \c RangeIdMap class. |
|
2376 |
/// \relates RangeIdMap |
|
2377 |
template <typename K, typename GR> |
|
2378 |
inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) { |
|
2379 |
return RangeIdMap<GR, K>(graph); |
|
2380 |
} |
|
2381 |
|
|
2332 | 2382 |
/// \brief Dynamic iterable \c bool map. |
2333 | 2383 |
/// |
2334 | 2384 |
/// This class provides a special graph map type which can store a |
2335 | 2385 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
2336 | 2386 |
/// For both \c true and \c false values it is possible to iterate on |
2337 |
/// the keys. |
|
2387 |
/// the keys mapped to the value. |
|
2338 | 2388 |
/// |
2339 | 2389 |
/// This type is a reference map, so it can be modified with the |
2340 | 2390 |
/// subscript operator. |
2341 | 2391 |
/// |
2342 | 2392 |
/// \tparam GR The graph type. |
2343 | 2393 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2344 | 2394 |
/// \c GR::Edge). |
2345 | 2395 |
/// |
2346 | 2396 |
/// \see IterableIntMap, IterableValueMap |
2347 | 2397 |
/// \see CrossRefMap |
2348 | 2398 |
template <typename GR, typename K> |
2349 | 2399 |
class IterableBoolMap |
2350 | 2400 |
: protected ItemSetTraits<GR, K>::template Map<int>::Type { |
2351 | 2401 |
private: |
2352 | 2402 |
typedef GR Graph; |
2353 | 2403 |
|
2354 | 2404 |
typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt; |
2355 | 2405 |
typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent; |
2356 | 2406 |
|
2357 | 2407 |
std::vector<K> _array; |
2358 | 2408 |
int _sep; |
2359 | 2409 |
|
2360 | 2410 |
public: |
2361 | 2411 |
|
... | ... |
@@ -2682,48 +2732,53 @@ |
2682 | 2732 |
_sep = 0; |
2683 | 2733 |
Parent::clear(); |
2684 | 2734 |
} |
2685 | 2735 |
|
2686 | 2736 |
}; |
2687 | 2737 |
|
2688 | 2738 |
|
2689 | 2739 |
namespace _maps_bits { |
2690 | 2740 |
template <typename Item> |
2691 | 2741 |
struct IterableIntMapNode { |
2692 | 2742 |
IterableIntMapNode() : value(-1) {} |
2693 | 2743 |
IterableIntMapNode(int _value) : value(_value) {} |
2694 | 2744 |
Item prev, next; |
2695 | 2745 |
int value; |
2696 | 2746 |
}; |
2697 | 2747 |
} |
2698 | 2748 |
|
2699 | 2749 |
/// \brief Dynamic iterable integer map. |
2700 | 2750 |
/// |
2701 | 2751 |
/// This class provides a special graph map type which can store an |
2702 | 2752 |
/// integer value for graph items (\c Node, \c Arc or \c Edge). |
2703 | 2753 |
/// For each non-negative value it is possible to iterate on the keys |
2704 | 2754 |
/// mapped to the value. |
2705 | 2755 |
/// |
2756 |
/// This map is intended to be used with small integer values, for which |
|
2757 |
/// it is efficient, and supports iteration only for non-negative values. |
|
2758 |
/// If you need large values and/or iteration for negative integers, |
|
2759 |
/// consider to use \ref IterableValueMap instead. |
|
2760 |
/// |
|
2706 | 2761 |
/// This type is a reference map, so it can be modified with the |
2707 | 2762 |
/// subscript operator. |
2708 | 2763 |
/// |
2709 | 2764 |
/// \note The size of the data structure depends on the largest |
2710 | 2765 |
/// value in the map. |
2711 | 2766 |
/// |
2712 | 2767 |
/// \tparam GR The graph type. |
2713 | 2768 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
2714 | 2769 |
/// \c GR::Edge). |
2715 | 2770 |
/// |
2716 | 2771 |
/// \see IterableBoolMap, IterableValueMap |
2717 | 2772 |
/// \see CrossRefMap |
2718 | 2773 |
template <typename GR, typename K> |
2719 | 2774 |
class IterableIntMap |
2720 | 2775 |
: protected ItemSetTraits<GR, K>:: |
2721 | 2776 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type { |
2722 | 2777 |
public: |
2723 | 2778 |
typedef typename ItemSetTraits<GR, K>:: |
2724 | 2779 |
template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent; |
2725 | 2780 |
|
2726 | 2781 |
/// The key type |
2727 | 2782 |
typedef K Key; |
2728 | 2783 |
/// The value type |
2729 | 2784 |
typedef int Value; |
... | ... |
@@ -2963,57 +3018,59 @@ |
2963 | 3018 |
} |
2964 | 3019 |
Parent::erase(keys); |
2965 | 3020 |
} |
2966 | 3021 |
|
2967 | 3022 |
virtual void clear() { |
2968 | 3023 |
_first.clear(); |
2969 | 3024 |
Parent::clear(); |
2970 | 3025 |
} |
2971 | 3026 |
|
2972 | 3027 |
private: |
2973 | 3028 |
std::vector<Key> _first; |
2974 | 3029 |
}; |
2975 | 3030 |
|
2976 | 3031 |
namespace _maps_bits { |
2977 | 3032 |
template <typename Item, typename Value> |
2978 | 3033 |
struct IterableValueMapNode { |
2979 | 3034 |
IterableValueMapNode(Value _value = Value()) : value(_value) {} |
2980 | 3035 |
Item prev, next; |
2981 | 3036 |
Value value; |
2982 | 3037 |
}; |
2983 | 3038 |
} |
2984 | 3039 |
|
2985 | 3040 |
/// \brief Dynamic iterable map for comparable values. |
2986 | 3041 |
/// |
2987 |
/// This class provides a special graph map type which can store |
|
3042 |
/// This class provides a special graph map type which can store a |
|
2988 | 3043 |
/// comparable value for graph items (\c Node, \c Arc or \c Edge). |
2989 | 3044 |
/// For each value it is possible to iterate on the keys mapped to |
2990 |
/// the value |
|
3045 |
/// the value (\c ItemIt), and the values of the map can be accessed |
|
3046 |
/// with an STL compatible forward iterator (\c ValueIt). |
|
3047 |
/// The map stores a linked list for each value, which contains |
|
3048 |
/// the items mapped to the value, and the used values are stored |
|
3049 |
/// in balanced binary tree (\c std::map). |
|
2991 | 3050 |
/// |
2992 |
/// The map stores for each value a linked list with |
|
2993 |
/// the items which mapped to the value, and the values are stored |
|
2994 |
/// in balanced binary tree. The values of the map can be accessed |
|
2995 |
/// with stl compatible forward iterator. |
|
3051 |
/// \ref IterableBoolMap and \ref IterableIntMap are similar classes |
|
3052 |
/// specialized for \c bool and \c int values, respectively. |
|
2996 | 3053 |
/// |
2997 | 3054 |
/// This type is not reference map, so it cannot be modified with |
2998 | 3055 |
/// the subscript operator. |
2999 | 3056 |
/// |
3000 | 3057 |
/// \tparam GR The graph type. |
3001 | 3058 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
3002 | 3059 |
/// \c GR::Edge). |
3003 | 3060 |
/// \tparam V The value type of the map. It can be any comparable |
3004 | 3061 |
/// value type. |
3005 | 3062 |
/// |
3006 | 3063 |
/// \see IterableBoolMap, IterableIntMap |
3007 | 3064 |
/// \see CrossRefMap |
3008 | 3065 |
template <typename GR, typename K, typename V> |
3009 | 3066 |
class IterableValueMap |
3010 | 3067 |
: protected ItemSetTraits<GR, K>:: |
3011 | 3068 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type { |
3012 | 3069 |
public: |
3013 | 3070 |
typedef typename ItemSetTraits<GR, K>:: |
3014 | 3071 |
template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent; |
3015 | 3072 |
|
3016 | 3073 |
/// The key type |
3017 | 3074 |
typedef K Key; |
3018 | 3075 |
/// The value type |
3019 | 3076 |
typedef V Value; |
... | ... |
@@ -3050,96 +3107,103 @@ |
3050 | 3107 |
Parent::operator[](node.next).prev = node.prev; |
3051 | 3108 |
} |
3052 | 3109 |
} |
3053 | 3110 |
|
3054 | 3111 |
void lace(const Key& key) { |
3055 | 3112 |
typename Parent::Value& node = Parent::operator[](key); |
3056 | 3113 |
typename std::map<Value, Key>::iterator it = _first.find(node.value); |
3057 | 3114 |
if (it == _first.end()) { |
3058 | 3115 |
node.prev = node.next = INVALID; |
3059 | 3116 |
_first.insert(std::make_pair(node.value, key)); |
3060 | 3117 |
} else { |
3061 | 3118 |
node.prev = INVALID; |
3062 | 3119 |
node.next = it->second; |
3063 | 3120 |
if (node.next != INVALID) { |
3064 | 3121 |
Parent::operator[](node.next).prev = key; |
3065 | 3122 |
} |
3066 | 3123 |
it->second = key; |
3067 | 3124 |
} |
3068 | 3125 |
} |
3069 | 3126 |
|
3070 | 3127 |
public: |
3071 | 3128 |
|
3072 | 3129 |
/// \brief Forward iterator for values. |
3073 | 3130 |
/// |
3074 |
/// This iterator is an |
|
3131 |
/// This iterator is an STL compatible forward |
|
3075 | 3132 |
/// iterator on the values of the map. The values can |
3076 | 3133 |
/// be accessed in the <tt>[beginValue, endValue)</tt> range. |
3077 |
class |
|
3134 |
class ValueIt |
|
3078 | 3135 |
: public std::iterator<std::forward_iterator_tag, Value> { |
3079 | 3136 |
friend class IterableValueMap; |
3080 | 3137 |
private: |
3081 |
|
|
3138 |
ValueIt(typename std::map<Value, Key>::const_iterator _it) |
|
3082 | 3139 |
: it(_it) {} |
3083 | 3140 |
public: |
3084 | 3141 |
|
3085 |
ValueIterator() {} |
|
3086 |
|
|
3087 |
ValueIterator& operator++() { ++it; return *this; } |
|
3088 |
ValueIterator operator++(int) { |
|
3089 |
|
|
3142 |
/// Constructor |
|
3143 |
ValueIt() {} |
|
3144 |
|
|
3145 |
/// \e |
|
3146 |
ValueIt& operator++() { ++it; return *this; } |
|
3147 |
/// \e |
|
3148 |
ValueIt operator++(int) { |
|
3149 |
ValueIt tmp(*this); |
|
3090 | 3150 |
operator++(); |
3091 | 3151 |
return tmp; |
3092 | 3152 |
} |
3093 | 3153 |
|
3154 |
/// \e |
|
3094 | 3155 |
const Value& operator*() const { return it->first; } |
3156 |
/// \e |
|
3095 | 3157 |
const Value* operator->() const { return &(it->first); } |
3096 | 3158 |
|
3097 |
bool operator==(ValueIterator jt) const { return it == jt.it; } |
|
3098 |
bool operator!=(ValueIterator jt) const { return it != jt.it; } |
|
3159 |
/// \e |
|
3160 |
bool operator==(ValueIt jt) const { return it == jt.it; } |
|
3161 |
/// \e |
|
3162 |
bool operator!=(ValueIt jt) const { return it != jt.it; } |
|
3099 | 3163 |
|
3100 | 3164 |
private: |
3101 | 3165 |
typename std::map<Value, Key>::const_iterator it; |
3102 | 3166 |
}; |
3103 | 3167 |
|
3104 | 3168 |
/// \brief Returns an iterator to the first value. |
3105 | 3169 |
/// |
3106 |
/// Returns an |
|
3170 |
/// Returns an STL compatible iterator to the |
|
3107 | 3171 |
/// first value of the map. The values of the |
3108 | 3172 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
3109 | 3173 |
/// range. |
3110 |
ValueIterator beginValue() const { |
|
3111 |
return ValueIterator(_first.begin()); |
|
3174 |
ValueIt beginValue() const { |
|
3175 |
return ValueIt(_first.begin()); |
|
3112 | 3176 |
} |
3113 | 3177 |
|
3114 | 3178 |
/// \brief Returns an iterator after the last value. |
3115 | 3179 |
/// |
3116 |
/// Returns an |
|
3180 |
/// Returns an STL compatible iterator after the |
|
3117 | 3181 |
/// last value of the map. The values of the |
3118 | 3182 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
3119 | 3183 |
/// range. |
3120 |
ValueIterator endValue() const { |
|
3121 |
return ValueIterator(_first.end()); |
|
3184 |
ValueIt endValue() const { |
|
3185 |
return ValueIt(_first.end()); |
|
3122 | 3186 |
} |
3123 | 3187 |
|
3124 | 3188 |
/// \brief Set operation of the map. |
3125 | 3189 |
/// |
3126 | 3190 |
/// Set operation of the map. |
3127 | 3191 |
void set(const Key& key, const Value& value) { |
3128 | 3192 |
unlace(key); |
3129 | 3193 |
Parent::operator[](key).value = value; |
3130 | 3194 |
lace(key); |
3131 | 3195 |
} |
3132 | 3196 |
|
3133 | 3197 |
/// \brief Const subscript operator of the map. |
3134 | 3198 |
/// |
3135 | 3199 |
/// Const subscript operator of the map. |
3136 | 3200 |
const Value& operator[](const Key& key) const { |
3137 | 3201 |
return Parent::operator[](key).value; |
3138 | 3202 |
} |
3139 | 3203 |
|
3140 | 3204 |
/// \brief Iterator for the keys with the same value. |
3141 | 3205 |
/// |
3142 | 3206 |
/// Iterator for the keys with the same value. It works |
3143 | 3207 |
/// like a graph item iterator, it can be converted to |
3144 | 3208 |
/// the item type of the map, incremented with \c ++ operator, and |
3145 | 3209 |
/// if the iterator leaves the last valid item, it will be equal to |
... | ... |
@@ -3215,173 +3279,177 @@ |
3215 | 3279 |
for (typename Parent::ItemIt it(*this); it != INVALID; ++it) { |
3216 | 3280 |
lace(it); |
3217 | 3281 |
} |
3218 | 3282 |
} |
3219 | 3283 |
|
3220 | 3284 |
virtual void clear() { |
3221 | 3285 |
_first.clear(); |
3222 | 3286 |
Parent::clear(); |
3223 | 3287 |
} |
3224 | 3288 |
|
3225 | 3289 |
private: |
3226 | 3290 |
std::map<Value, Key> _first; |
3227 | 3291 |
}; |
3228 | 3292 |
|
3229 | 3293 |
/// \brief Map of the source nodes of arcs in a digraph. |
3230 | 3294 |
/// |
3231 | 3295 |
/// SourceMap provides access for the source node of each arc in a digraph, |
3232 | 3296 |
/// which is returned by the \c source() function of the digraph. |
3233 | 3297 |
/// \tparam GR The digraph type. |
3234 | 3298 |
/// \see TargetMap |
3235 | 3299 |
template <typename GR> |
3236 | 3300 |
class SourceMap { |
3237 | 3301 |
public: |
3238 | 3302 |
|
3239 |
///\ |
|
3303 |
/// The key type (the \c Arc type of the digraph). |
|
3240 | 3304 |
typedef typename GR::Arc Key; |
3241 |
///\ |
|
3305 |
/// The value type (the \c Node type of the digraph). |
|
3242 | 3306 |
typedef typename GR::Node Value; |
3243 | 3307 |
|
3244 | 3308 |
/// \brief Constructor |
3245 | 3309 |
/// |
3246 | 3310 |
/// Constructor. |
3247 | 3311 |
/// \param digraph The digraph that the map belongs to. |
3248 | 3312 |
explicit SourceMap(const GR& digraph) : _graph(digraph) {} |
3249 | 3313 |
|
3250 | 3314 |
/// \brief Returns the source node of the given arc. |
3251 | 3315 |
/// |
3252 | 3316 |
/// Returns the source node of the given arc. |
3253 | 3317 |
Value operator[](const Key& arc) const { |
3254 | 3318 |
return _graph.source(arc); |
3255 | 3319 |
} |
3256 | 3320 |
|
3257 | 3321 |
private: |
3258 | 3322 |
const GR& _graph; |
3259 | 3323 |
}; |
3260 | 3324 |
|
3261 | 3325 |
/// \brief Returns a \c SourceMap class. |
3262 | 3326 |
/// |
3263 | 3327 |
/// This function just returns an \c SourceMap class. |
3264 | 3328 |
/// \relates SourceMap |
3265 | 3329 |
template <typename GR> |
3266 | 3330 |
inline SourceMap<GR> sourceMap(const GR& graph) { |
3267 | 3331 |
return SourceMap<GR>(graph); |
3268 | 3332 |
} |
3269 | 3333 |
|
3270 | 3334 |
/// \brief Map of the target nodes of arcs in a digraph. |
3271 | 3335 |
/// |
3272 | 3336 |
/// TargetMap provides access for the target node of each arc in a digraph, |
3273 | 3337 |
/// which is returned by the \c target() function of the digraph. |
3274 | 3338 |
/// \tparam GR The digraph type. |
3275 | 3339 |
/// \see SourceMap |
3276 | 3340 |
template <typename GR> |
3277 | 3341 |
class TargetMap { |
3278 | 3342 |
public: |
3279 | 3343 |
|
3280 |
///\ |
|
3344 |
/// The key type (the \c Arc type of the digraph). |
|
3281 | 3345 |
typedef typename GR::Arc Key; |
3282 |
///\ |
|
3346 |
/// The value type (the \c Node type of the digraph). |
|
3283 | 3347 |
typedef typename GR::Node Value; |
3284 | 3348 |
|
3285 | 3349 |
/// \brief Constructor |
3286 | 3350 |
/// |
3287 | 3351 |
/// Constructor. |
3288 | 3352 |
/// \param digraph The digraph that the map belongs to. |
3289 | 3353 |
explicit TargetMap(const GR& digraph) : _graph(digraph) {} |
3290 | 3354 |
|
3291 | 3355 |
/// \brief Returns the target node of the given arc. |
3292 | 3356 |
/// |
3293 | 3357 |
/// Returns the target node of the given arc. |
3294 | 3358 |
Value operator[](const Key& e) const { |
3295 | 3359 |
return _graph.target(e); |
3296 | 3360 |
} |
3297 | 3361 |
|
3298 | 3362 |
private: |
3299 | 3363 |
const GR& _graph; |
3300 | 3364 |
}; |
3301 | 3365 |
|
3302 | 3366 |
/// \brief Returns a \c TargetMap class. |
3303 | 3367 |
/// |
3304 | 3368 |
/// This function just returns a \c TargetMap class. |
3305 | 3369 |
/// \relates TargetMap |
3306 | 3370 |
template <typename GR> |
3307 | 3371 |
inline TargetMap<GR> targetMap(const GR& graph) { |
3308 | 3372 |
return TargetMap<GR>(graph); |
3309 | 3373 |
} |
3310 | 3374 |
|
3311 | 3375 |
/// \brief Map of the "forward" directed arc view of edges in a graph. |
3312 | 3376 |
/// |
3313 | 3377 |
/// ForwardMap provides access for the "forward" directed arc view of |
3314 | 3378 |
/// each edge in a graph, which is returned by the \c direct() function |
3315 | 3379 |
/// of the graph with \c true parameter. |
3316 | 3380 |
/// \tparam GR The graph type. |
3317 | 3381 |
/// \see BackwardMap |
3318 | 3382 |
template <typename GR> |
3319 | 3383 |
class ForwardMap { |
3320 | 3384 |
public: |
3321 | 3385 |
|
3386 |
/// The key type (the \c Edge type of the digraph). |
|
3387 |
typedef typename GR::Edge Key; |
|
3388 |
/// The value type (the \c Arc type of the digraph). |
|
3322 | 3389 |
typedef typename GR::Arc Value; |
3323 |
typedef typename GR::Edge Key; |
|
3324 | 3390 |
|
3325 | 3391 |
/// \brief Constructor |
3326 | 3392 |
/// |
3327 | 3393 |
/// Constructor. |
3328 | 3394 |
/// \param graph The graph that the map belongs to. |
3329 | 3395 |
explicit ForwardMap(const GR& graph) : _graph(graph) {} |
3330 | 3396 |
|
3331 | 3397 |
/// \brief Returns the "forward" directed arc view of the given edge. |
3332 | 3398 |
/// |
3333 | 3399 |
/// Returns the "forward" directed arc view of the given edge. |
3334 | 3400 |
Value operator[](const Key& key) const { |
3335 | 3401 |
return _graph.direct(key, true); |
3336 | 3402 |
} |
3337 | 3403 |
|
3338 | 3404 |
private: |
3339 | 3405 |
const GR& _graph; |
3340 | 3406 |
}; |
3341 | 3407 |
|
3342 | 3408 |
/// \brief Returns a \c ForwardMap class. |
3343 | 3409 |
/// |
3344 | 3410 |
/// This function just returns an \c ForwardMap class. |
3345 | 3411 |
/// \relates ForwardMap |
3346 | 3412 |
template <typename GR> |
3347 | 3413 |
inline ForwardMap<GR> forwardMap(const GR& graph) { |
3348 | 3414 |
return ForwardMap<GR>(graph); |
3349 | 3415 |
} |
3350 | 3416 |
|
3351 | 3417 |
/// \brief Map of the "backward" directed arc view of edges in a graph. |
3352 | 3418 |
/// |
3353 | 3419 |
/// BackwardMap provides access for the "backward" directed arc view of |
3354 | 3420 |
/// each edge in a graph, which is returned by the \c direct() function |
3355 | 3421 |
/// of the graph with \c false parameter. |
3356 | 3422 |
/// \tparam GR The graph type. |
3357 | 3423 |
/// \see ForwardMap |
3358 | 3424 |
template <typename GR> |
3359 | 3425 |
class BackwardMap { |
3360 | 3426 |
public: |
3361 | 3427 |
|
3428 |
/// The key type (the \c Edge type of the digraph). |
|
3429 |
typedef typename GR::Edge Key; |
|
3430 |
/// The value type (the \c Arc type of the digraph). |
|
3362 | 3431 |
typedef typename GR::Arc Value; |
3363 |
typedef typename GR::Edge Key; |
|
3364 | 3432 |
|
3365 | 3433 |
/// \brief Constructor |
3366 | 3434 |
/// |
3367 | 3435 |
/// Constructor. |
3368 | 3436 |
/// \param graph The graph that the map belongs to. |
3369 | 3437 |
explicit BackwardMap(const GR& graph) : _graph(graph) {} |
3370 | 3438 |
|
3371 | 3439 |
/// \brief Returns the "backward" directed arc view of the given edge. |
3372 | 3440 |
/// |
3373 | 3441 |
/// Returns the "backward" directed arc view of the given edge. |
3374 | 3442 |
Value operator[](const Key& key) const { |
3375 | 3443 |
return _graph.direct(key, false); |
3376 | 3444 |
} |
3377 | 3445 |
|
3378 | 3446 |
private: |
3379 | 3447 |
const GR& _graph; |
3380 | 3448 |
}; |
3381 | 3449 |
|
3382 | 3450 |
/// \brief Returns a \c BackwardMap class |
3383 | 3451 |
|
3384 | 3452 |
/// This function just returns a \c BackwardMap class. |
3385 | 3453 |
/// \relates BackwardMap |
3386 | 3454 |
template <typename GR> |
3387 | 3455 |
inline BackwardMap<GR> backwardMap(const GR& graph) { |
... | ... |
@@ -467,50 +467,50 @@ |
467 | 467 |
if (local_arborescence) { |
468 | 468 |
delete _arborescence; |
469 | 469 |
} |
470 | 470 |
local_arborescence = false; |
471 | 471 |
_arborescence = &m; |
472 | 472 |
return *this; |
473 | 473 |
} |
474 | 474 |
|
475 | 475 |
/// \brief Sets the predecessor map. |
476 | 476 |
/// |
477 | 477 |
/// Sets the predecessor map. |
478 | 478 |
/// \return <tt>(*this)</tt> |
479 | 479 |
MinCostArborescence& predMap(PredMap& m) { |
480 | 480 |
if (local_pred) { |
481 | 481 |
delete _pred; |
482 | 482 |
} |
483 | 483 |
local_pred = false; |
484 | 484 |
_pred = &m; |
485 | 485 |
return *this; |
486 | 486 |
} |
487 | 487 |
|
488 | 488 |
/// \name Execution Control |
489 | 489 |
/// The simplest way to execute the algorithm is to use |
490 | 490 |
/// one of the member functions called \c run(...). \n |
491 |
/// If you need more control on the execution, |
|
492 |
/// first you must call \ref init(), then you can add several |
|
491 |
/// If you need better control on the execution, |
|
492 |
/// you have to call \ref init() first, then you can add several |
|
493 | 493 |
/// source nodes with \ref addSource(). |
494 | 494 |
/// Finally \ref start() will perform the arborescence |
495 | 495 |
/// computation. |
496 | 496 |
|
497 | 497 |
///@{ |
498 | 498 |
|
499 | 499 |
/// \brief Initializes the internal data structures. |
500 | 500 |
/// |
501 | 501 |
/// Initializes the internal data structures. |
502 | 502 |
/// |
503 | 503 |
void init() { |
504 | 504 |
createStructures(); |
505 | 505 |
_heap->clear(); |
506 | 506 |
for (NodeIt it(*_digraph); it != INVALID; ++it) { |
507 | 507 |
(*_cost_arcs)[it].arc = INVALID; |
508 | 508 |
(*_node_order)[it] = -3; |
509 | 509 |
(*_heap_cross_ref)[it] = Heap::PRE_HEAP; |
510 | 510 |
_pred->set(it, INVALID); |
511 | 511 |
} |
512 | 512 |
for (ArcIt it(*_digraph); it != INVALID; ++it) { |
513 | 513 |
_arborescence->set(it, false); |
514 | 514 |
(*_arc_order)[it] = -1; |
515 | 515 |
} |
516 | 516 |
_dual_node_list.clear(); |
... | ... |
@@ -31,66 +31,73 @@ |
31 | 31 |
/// \brief Default traits class of Preflow class. |
32 | 32 |
/// |
33 | 33 |
/// Default traits class of Preflow class. |
34 | 34 |
/// \tparam GR Digraph type. |
35 | 35 |
/// \tparam CAP Capacity map type. |
36 | 36 |
template <typename GR, typename CAP> |
37 | 37 |
struct PreflowDefaultTraits { |
38 | 38 |
|
39 | 39 |
/// \brief The type of the digraph the algorithm runs on. |
40 | 40 |
typedef GR Digraph; |
41 | 41 |
|
42 | 42 |
/// \brief The type of the map that stores the arc capacities. |
43 | 43 |
/// |
44 | 44 |
/// The type of the map that stores the arc capacities. |
45 | 45 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
46 | 46 |
typedef CAP CapacityMap; |
47 | 47 |
|
48 | 48 |
/// \brief The type of the flow values. |
49 | 49 |
typedef typename CapacityMap::Value Value; |
50 | 50 |
|
51 | 51 |
/// \brief The type of the map that stores the flow values. |
52 | 52 |
/// |
53 | 53 |
/// The type of the map that stores the flow values. |
54 | 54 |
/// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
55 |
#ifdef DOXYGEN |
|
56 |
typedef GR::ArcMap<Value> FlowMap; |
|
57 |
#else |
|
55 | 58 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
59 |
#endif |
|
56 | 60 |
|
57 | 61 |
/// \brief Instantiates a FlowMap. |
58 | 62 |
/// |
59 | 63 |
/// This function instantiates a \ref FlowMap. |
60 | 64 |
/// \param digraph The digraph for which we would like to define |
61 | 65 |
/// the flow map. |
62 | 66 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
63 | 67 |
return new FlowMap(digraph); |
64 | 68 |
} |
65 | 69 |
|
66 | 70 |
/// \brief The elevator type used by Preflow algorithm. |
67 | 71 |
/// |
68 | 72 |
/// The elevator type used by Preflow algorithm. |
69 | 73 |
/// |
70 |
/// \sa Elevator |
|
71 |
/// \sa LinkedElevator |
|
72 |
|
|
74 |
/// \sa Elevator, LinkedElevator |
|
75 |
#ifdef DOXYGEN |
|
76 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
|
77 |
#else |
|
78 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
|
79 |
#endif |
|
73 | 80 |
|
74 | 81 |
/// \brief Instantiates an Elevator. |
75 | 82 |
/// |
76 | 83 |
/// This function instantiates an \ref Elevator. |
77 | 84 |
/// \param digraph The digraph for which we would like to define |
78 | 85 |
/// the elevator. |
79 | 86 |
/// \param max_level The maximum level of the elevator. |
80 | 87 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
81 | 88 |
return new Elevator(digraph, max_level); |
82 | 89 |
} |
83 | 90 |
|
84 | 91 |
/// \brief The tolerance used by the algorithm |
85 | 92 |
/// |
86 | 93 |
/// The tolerance used by the algorithm to handle inexact computation. |
87 | 94 |
typedef lemon::Tolerance<Value> Tolerance; |
88 | 95 |
|
89 | 96 |
}; |
90 | 97 |
|
91 | 98 |
|
92 | 99 |
/// \ingroup max_flow |
93 | 100 |
/// |
94 | 101 |
/// \brief %Preflow algorithm class. |
95 | 102 |
/// |
96 | 103 |
/// This class provides an implementation of Goldberg-Tarjan's \e preflow |
... | ... |
@@ -370,50 +377,50 @@ |
370 | 377 |
const Elevator& elevator() const { |
371 | 378 |
return *_level; |
372 | 379 |
} |
373 | 380 |
|
374 | 381 |
/// \brief Sets the tolerance used by the algorithm. |
375 | 382 |
/// |
376 | 383 |
/// Sets the tolerance object used by the algorithm. |
377 | 384 |
/// \return <tt>(*this)</tt> |
378 | 385 |
Preflow& tolerance(const Tolerance& tolerance) { |
379 | 386 |
_tolerance = tolerance; |
380 | 387 |
return *this; |
381 | 388 |
} |
382 | 389 |
|
383 | 390 |
/// \brief Returns a const reference to the tolerance. |
384 | 391 |
/// |
385 | 392 |
/// Returns a const reference to the tolerance object used by |
386 | 393 |
/// the algorithm. |
387 | 394 |
const Tolerance& tolerance() const { |
388 | 395 |
return _tolerance; |
389 | 396 |
} |
390 | 397 |
|
391 | 398 |
/// \name Execution Control |
392 | 399 |
/// The simplest way to execute the preflow algorithm is to use |
393 | 400 |
/// \ref run() or \ref runMinCut().\n |
394 |
/// If you need more control on the initial solution or the execution, |
|
395 |
/// first you have to call one of the \ref init() functions, then |
|
401 |
/// If you need better control on the initial solution or the execution, |
|
402 |
/// you have to call one of the \ref init() functions first, then |
|
396 | 403 |
/// \ref startFirstPhase() and if you need it \ref startSecondPhase(). |
397 | 404 |
|
398 | 405 |
///@{ |
399 | 406 |
|
400 | 407 |
/// \brief Initializes the internal data structures. |
401 | 408 |
/// |
402 | 409 |
/// Initializes the internal data structures and sets the initial |
403 | 410 |
/// flow to zero on each arc. |
404 | 411 |
void init() { |
405 | 412 |
createStructures(); |
406 | 413 |
|
407 | 414 |
_phase = true; |
408 | 415 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
409 | 416 |
(*_excess)[n] = 0; |
410 | 417 |
} |
411 | 418 |
|
412 | 419 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
413 | 420 |
_flow->set(e, 0); |
414 | 421 |
} |
415 | 422 |
|
416 | 423 |
typename Digraph::template NodeMap<bool> reached(_graph, false); |
417 | 424 |
|
418 | 425 |
_level->initStart(); |
419 | 426 |
_level->initAddItem(_target); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <deque> |
20 | 20 |
#include <set> |
21 | 21 |
|
22 | 22 |
#include <lemon/concept_check.h> |
23 | 23 |
#include <lemon/concepts/maps.h> |
24 | 24 |
#include <lemon/maps.h> |
25 |
#include <lemon/list_graph.h> |
|
25 | 26 |
#include <lemon/smart_graph.h> |
27 |
#include <lemon/adaptors.h> |
|
28 |
#include <lemon/dfs.h> |
|
26 | 29 |
|
27 | 30 |
#include "test_tools.h" |
28 | 31 |
|
29 | 32 |
using namespace lemon; |
30 | 33 |
using namespace lemon::concepts; |
31 | 34 |
|
32 | 35 |
struct A {}; |
33 | 36 |
inline bool operator<(A, A) { return true; } |
34 | 37 |
struct B {}; |
35 | 38 |
|
36 | 39 |
class C { |
37 | 40 |
int x; |
38 | 41 |
public: |
39 | 42 |
C(int _x) : x(_x) {} |
40 | 43 |
}; |
41 | 44 |
|
42 | 45 |
class F { |
43 | 46 |
public: |
44 | 47 |
typedef A argument_type; |
45 | 48 |
typedef B result_type; |
46 | 49 |
|
47 | 50 |
B operator()(const A&) const { return B(); } |
48 | 51 |
private: |
49 | 52 |
F& operator=(const F&); |
50 | 53 |
}; |
51 | 54 |
|
52 | 55 |
int func(A) { return 3; } |
53 | 56 |
|
54 | 57 |
int binc(int a, B) { return a+1; } |
55 | 58 |
|
56 | 59 |
typedef ReadMap<A, double> DoubleMap; |
57 | 60 |
typedef ReadWriteMap<A, double> DoubleWriteMap; |
58 | 61 |
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap; |
59 | 62 |
|
60 | 63 |
typedef ReadMap<A, bool> BoolMap; |
61 | 64 |
typedef ReadWriteMap<A, bool> BoolWriteMap; |
62 | 65 |
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap; |
63 | 66 |
|
67 |
template<typename Map1, typename Map2, typename ItemIt> |
|
68 |
void compareMap(const Map1& map1, const Map2& map2, ItemIt it) { |
|
69 |
for (; it != INVALID; ++it) |
|
70 |
check(map1[it] == map2[it], "The maps are not equal"); |
|
71 |
} |
|
72 |
|
|
64 | 73 |
int main() |
65 | 74 |
{ |
66 | 75 |
// Map concepts |
67 | 76 |
checkConcept<ReadMap<A,B>, ReadMap<A,B> >(); |
68 | 77 |
checkConcept<ReadMap<A,C>, ReadMap<A,C> >(); |
69 | 78 |
checkConcept<WriteMap<A,B>, WriteMap<A,B> >(); |
70 | 79 |
checkConcept<WriteMap<A,C>, WriteMap<A,C> >(); |
71 | 80 |
checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >(); |
72 | 81 |
checkConcept<ReadWriteMap<A,C>, ReadWriteMap<A,C> >(); |
73 | 82 |
checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >(); |
74 | 83 |
checkConcept<ReferenceMap<A,C,C&,const C&>, ReferenceMap<A,C,C&,const C&> >(); |
75 | 84 |
|
76 | 85 |
// NullMap |
77 | 86 |
{ |
78 | 87 |
checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >(); |
79 | 88 |
NullMap<A,B> map1; |
80 | 89 |
NullMap<A,B> map2 = map1; |
81 | 90 |
map1 = nullMap<A,B>(); |
82 | 91 |
} |
83 | 92 |
|
84 | 93 |
// ConstMap |
85 | 94 |
{ |
86 | 95 |
checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >(); |
87 | 96 |
checkConcept<ReadWriteMap<A,C>, ConstMap<A,C> >(); |
... | ... |
@@ -308,67 +317,287 @@ |
308 | 317 |
rm[0] = true; rm[1] = false; |
309 | 318 |
check(andMap(tm,rm)[0] && !andMap(tm,rm)[1] && |
310 | 319 |
!andMap(fm,rm)[0] && !andMap(fm,rm)[1], |
311 | 320 |
"Something is wrong with AndMap"); |
312 | 321 |
check(orMap(tm,rm)[0] && orMap(tm,rm)[1] && |
313 | 322 |
orMap(fm,rm)[0] && !orMap(fm,rm)[1], |
314 | 323 |
"Something is wrong with OrMap"); |
315 | 324 |
check(!notMap(rm)[0] && notMap(rm)[1], |
316 | 325 |
"Something is wrong with NotMap"); |
317 | 326 |
check(!notWriteMap(rm)[0] && notWriteMap(rm)[1], |
318 | 327 |
"Something is wrong with NotWriteMap"); |
319 | 328 |
|
320 | 329 |
ConstMap<int, double> cm(2.0); |
321 | 330 |
IdentityMap<int> im; |
322 | 331 |
ConvertMap<IdentityMap<int>, double> id(im); |
323 | 332 |
check(lessMap(id,cm)[1] && !lessMap(id,cm)[2] && !lessMap(id,cm)[3], |
324 | 333 |
"Something is wrong with LessMap"); |
325 | 334 |
check(!equalMap(id,cm)[1] && equalMap(id,cm)[2] && !equalMap(id,cm)[3], |
326 | 335 |
"Something is wrong with EqualMap"); |
327 | 336 |
} |
328 | 337 |
|
329 | 338 |
// LoggerBoolMap |
330 | 339 |
{ |
331 | 340 |
typedef std::vector<int> vec; |
341 |
checkConcept<WriteMap<int, bool>, LoggerBoolMap<vec::iterator> >(); |
|
342 |
checkConcept<WriteMap<int, bool>, |
|
343 |
LoggerBoolMap<std::back_insert_iterator<vec> > >(); |
|
344 |
|
|
332 | 345 |
vec v1; |
333 | 346 |
vec v2(10); |
334 | 347 |
LoggerBoolMap<std::back_insert_iterator<vec> > |
335 | 348 |
map1(std::back_inserter(v1)); |
336 | 349 |
LoggerBoolMap<vec::iterator> map2(v2.begin()); |
337 | 350 |
map1.set(10, false); |
338 | 351 |
map1.set(20, true); map2.set(20, true); |
339 | 352 |
map1.set(30, false); map2.set(40, false); |
340 | 353 |
map1.set(50, true); map2.set(50, true); |
341 | 354 |
map1.set(60, true); map2.set(60, true); |
342 | 355 |
check(v1.size() == 3 && v2.size() == 10 && |
343 | 356 |
v1[0]==20 && v1[1]==50 && v1[2]==60 && |
344 | 357 |
v2[0]==20 && v2[1]==50 && v2[2]==60, |
345 | 358 |
"Something is wrong with LoggerBoolMap"); |
346 | 359 |
|
347 | 360 |
int i = 0; |
348 | 361 |
for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin(); |
349 | 362 |
it != map2.end(); ++it ) |
350 | 363 |
check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); |
364 |
|
|
365 |
typedef ListDigraph Graph; |
|
366 |
DIGRAPH_TYPEDEFS(Graph); |
|
367 |
Graph gr; |
|
368 |
|
|
369 |
Node n0 = gr.addNode(); |
|
370 |
Node n1 = gr.addNode(); |
|
371 |
Node n2 = gr.addNode(); |
|
372 |
Node n3 = gr.addNode(); |
|
373 |
|
|
374 |
gr.addArc(n3, n0); |
|
375 |
gr.addArc(n3, n2); |
|
376 |
gr.addArc(n0, n2); |
|
377 |
gr.addArc(n2, n1); |
|
378 |
gr.addArc(n0, n1); |
|
379 |
|
|
380 |
{ |
|
381 |
std::vector<Node> v; |
|
382 |
dfs(gr).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
|
383 |
|
|
384 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
|
385 |
"Something is wrong with LoggerBoolMap"); |
|
386 |
} |
|
387 |
{ |
|
388 |
std::vector<Node> v(countNodes(gr)); |
|
389 |
dfs(gr).processedMap(loggerBoolMap(v.begin())).run(); |
|
390 |
|
|
391 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
|
392 |
"Something is wrong with LoggerBoolMap"); |
|
393 |
} |
|
394 |
} |
|
395 |
|
|
396 |
// IdMap, RangeIdMap |
|
397 |
{ |
|
398 |
typedef ListDigraph Graph; |
|
399 |
DIGRAPH_TYPEDEFS(Graph); |
|
400 |
|
|
401 |
checkConcept<ReadMap<Node, int>, IdMap<Graph, Node> >(); |
|
402 |
checkConcept<ReadMap<Arc, int>, IdMap<Graph, Arc> >(); |
|
403 |
checkConcept<ReadMap<Node, int>, RangeIdMap<Graph, Node> >(); |
|
404 |
checkConcept<ReadMap<Arc, int>, RangeIdMap<Graph, Arc> >(); |
|
405 |
|
|
406 |
Graph gr; |
|
407 |
IdMap<Graph, Node> nmap(gr); |
|
408 |
IdMap<Graph, Arc> amap(gr); |
|
409 |
RangeIdMap<Graph, Node> nrmap(gr); |
|
410 |
RangeIdMap<Graph, Arc> armap(gr); |
|
411 |
|
|
412 |
Node n0 = gr.addNode(); |
|
413 |
Node n1 = gr.addNode(); |
|
414 |
Node n2 = gr.addNode(); |
|
415 |
|
|
416 |
Arc a0 = gr.addArc(n0, n1); |
|
417 |
Arc a1 = gr.addArc(n0, n2); |
|
418 |
Arc a2 = gr.addArc(n2, n1); |
|
419 |
Arc a3 = gr.addArc(n2, n0); |
|
420 |
|
|
421 |
check(nmap[n0] == gr.id(n0) && nmap(gr.id(n0)) == n0, "Wrong IdMap"); |
|
422 |
check(nmap[n1] == gr.id(n1) && nmap(gr.id(n1)) == n1, "Wrong IdMap"); |
|
423 |
check(nmap[n2] == gr.id(n2) && nmap(gr.id(n2)) == n2, "Wrong IdMap"); |
|
424 |
|
|
425 |
check(amap[a0] == gr.id(a0) && amap(gr.id(a0)) == a0, "Wrong IdMap"); |
|
426 |
check(amap[a1] == gr.id(a1) && amap(gr.id(a1)) == a1, "Wrong IdMap"); |
|
427 |
check(amap[a2] == gr.id(a2) && amap(gr.id(a2)) == a2, "Wrong IdMap"); |
|
428 |
check(amap[a3] == gr.id(a3) && amap(gr.id(a3)) == a3, "Wrong IdMap"); |
|
429 |
|
|
430 |
check(nmap.inverse()[gr.id(n0)] == n0, "Wrong IdMap::InverseMap"); |
|
431 |
check(amap.inverse()[gr.id(a0)] == a0, "Wrong IdMap::InverseMap"); |
|
432 |
|
|
433 |
check(nrmap.size() == 3 && armap.size() == 4, |
|
434 |
"Wrong RangeIdMap::size()"); |
|
435 |
|
|
436 |
check(nrmap[n0] == 0 && nrmap(0) == n0, "Wrong RangeIdMap"); |
|
437 |
check(nrmap[n1] == 1 && nrmap(1) == n1, "Wrong RangeIdMap"); |
|
438 |
check(nrmap[n2] == 2 && nrmap(2) == n2, "Wrong RangeIdMap"); |
|
439 |
|
|
440 |
check(armap[a0] == 0 && armap(0) == a0, "Wrong RangeIdMap"); |
|
441 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
|
442 |
check(armap[a2] == 2 && armap(2) == a2, "Wrong RangeIdMap"); |
|
443 |
check(armap[a3] == 3 && armap(3) == a3, "Wrong RangeIdMap"); |
|
444 |
|
|
445 |
check(nrmap.inverse()[0] == n0, "Wrong RangeIdMap::InverseMap"); |
|
446 |
check(armap.inverse()[0] == a0, "Wrong RangeIdMap::InverseMap"); |
|
447 |
|
|
448 |
gr.erase(n1); |
|
449 |
|
|
450 |
if (nrmap[n0] == 1) nrmap.swap(n0, n2); |
|
451 |
nrmap.swap(n2, n0); |
|
452 |
if (armap[a1] == 1) armap.swap(a1, a3); |
|
453 |
armap.swap(a3, a1); |
|
454 |
|
|
455 |
check(nrmap.size() == 2 && armap.size() == 2, |
|
456 |
"Wrong RangeIdMap::size()"); |
|
457 |
|
|
458 |
check(nrmap[n0] == 1 && nrmap(1) == n0, "Wrong RangeIdMap"); |
|
459 |
check(nrmap[n2] == 0 && nrmap(0) == n2, "Wrong RangeIdMap"); |
|
460 |
|
|
461 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
|
462 |
check(armap[a3] == 0 && armap(0) == a3, "Wrong RangeIdMap"); |
|
463 |
|
|
464 |
check(nrmap.inverse()[0] == n2, "Wrong RangeIdMap::InverseMap"); |
|
465 |
check(armap.inverse()[0] == a3, "Wrong RangeIdMap::InverseMap"); |
|
466 |
} |
|
467 |
|
|
468 |
// SourceMap, TargetMap, ForwardMap, BackwardMap, InDegMap, OutDegMap |
|
469 |
{ |
|
470 |
typedef ListGraph Graph; |
|
471 |
GRAPH_TYPEDEFS(Graph); |
|
472 |
|
|
473 |
checkConcept<ReadMap<Arc, Node>, SourceMap<Graph> >(); |
|
474 |
checkConcept<ReadMap<Arc, Node>, TargetMap<Graph> >(); |
|
475 |
checkConcept<ReadMap<Edge, Arc>, ForwardMap<Graph> >(); |
|
476 |
checkConcept<ReadMap<Edge, Arc>, BackwardMap<Graph> >(); |
|
477 |
checkConcept<ReadMap<Node, int>, InDegMap<Graph> >(); |
|
478 |
checkConcept<ReadMap<Node, int>, OutDegMap<Graph> >(); |
|
479 |
|
|
480 |
Graph gr; |
|
481 |
Node n0 = gr.addNode(); |
|
482 |
Node n1 = gr.addNode(); |
|
483 |
Node n2 = gr.addNode(); |
|
484 |
|
|
485 |
gr.addEdge(n0,n1); |
|
486 |
gr.addEdge(n1,n2); |
|
487 |
gr.addEdge(n0,n2); |
|
488 |
gr.addEdge(n2,n1); |
|
489 |
gr.addEdge(n1,n2); |
|
490 |
gr.addEdge(n0,n1); |
|
491 |
|
|
492 |
for (EdgeIt e(gr); e != INVALID; ++e) { |
|
493 |
check(forwardMap(gr)[e] == gr.direct(e, true), "Wrong ForwardMap"); |
|
494 |
check(backwardMap(gr)[e] == gr.direct(e, false), "Wrong BackwardMap"); |
|
495 |
} |
|
496 |
|
|
497 |
compareMap(sourceMap(orienter(gr, constMap<Edge, bool>(true))), |
|
498 |
targetMap(orienter(gr, constMap<Edge, bool>(false))), |
|
499 |
EdgeIt(gr)); |
|
500 |
|
|
501 |
typedef Orienter<Graph, const ConstMap<Edge, bool> > Digraph; |
|
502 |
Digraph dgr(gr, constMap<Edge, bool>(true)); |
|
503 |
OutDegMap<Digraph> odm(dgr); |
|
504 |
InDegMap<Digraph> idm(dgr); |
|
505 |
|
|
506 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 1, "Wrong OutDegMap"); |
|
507 |
check(idm[n0] == 0 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
|
508 |
|
|
509 |
gr.addEdge(n2, n0); |
|
510 |
|
|
511 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 2, "Wrong OutDegMap"); |
|
512 |
check(idm[n0] == 1 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
|
513 |
} |
|
514 |
|
|
515 |
// CrossRefMap |
|
516 |
{ |
|
517 |
typedef ListDigraph Graph; |
|
518 |
DIGRAPH_TYPEDEFS(Graph); |
|
519 |
|
|
520 |
checkConcept<ReadWriteMap<Node, int>, |
|
521 |
CrossRefMap<Graph, Node, int> >(); |
|
522 |
checkConcept<ReadWriteMap<Node, bool>, |
|
523 |
CrossRefMap<Graph, Node, bool> >(); |
|
524 |
checkConcept<ReadWriteMap<Node, double>, |
|
525 |
CrossRefMap<Graph, Node, double> >(); |
|
526 |
|
|
527 |
Graph gr; |
|
528 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
|
529 |
CRMap map(gr); |
|
530 |
|
|
531 |
Node n0 = gr.addNode(); |
|
532 |
Node n1 = gr.addNode(); |
|
533 |
Node n2 = gr.addNode(); |
|
534 |
|
|
535 |
map.set(n0, 'A'); |
|
536 |
map.set(n1, 'B'); |
|
537 |
map.set(n2, 'C'); |
|
538 |
|
|
539 |
check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0, |
|
540 |
"Wrong CrossRefMap"); |
|
541 |
check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1, |
|
542 |
"Wrong CrossRefMap"); |
|
543 |
check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2, |
|
544 |
"Wrong CrossRefMap"); |
|
545 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1, |
|
546 |
"Wrong CrossRefMap::count()"); |
|
547 |
|
|
548 |
CRMap::ValueIt it = map.beginValue(); |
|
549 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
550 |
it == map.endValue(), "Wrong value iterator"); |
|
551 |
|
|
552 |
map.set(n2, 'A'); |
|
553 |
|
|
554 |
check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A', |
|
555 |
"Wrong CrossRefMap"); |
|
556 |
check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap"); |
|
557 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
|
558 |
check(map('C') == INVALID && map.inverse()['C'] == INVALID, |
|
559 |
"Wrong CrossRefMap"); |
|
560 |
check(map.count('A') == 2 && map.count('B') == 1 && map.count('C') == 0, |
|
561 |
"Wrong CrossRefMap::count()"); |
|
562 |
|
|
563 |
it = map.beginValue(); |
|
564 |
check(*it++ == 'A' && *it++ == 'A' && *it++ == 'B' && |
|
565 |
it == map.endValue(), "Wrong value iterator"); |
|
566 |
|
|
567 |
map.set(n0, 'C'); |
|
568 |
|
|
569 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
|
570 |
"Wrong CrossRefMap"); |
|
571 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap"); |
|
572 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
|
573 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap"); |
|
574 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1, |
|
575 |
"Wrong CrossRefMap::count()"); |
|
576 |
|
|
577 |
it = map.beginValue(); |
|
578 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
|
579 |
it == map.endValue(), "Wrong value iterator"); |
|
351 | 580 |
} |
352 | 581 |
|
353 | 582 |
// CrossRefMap |
354 | 583 |
{ |
355 | 584 |
typedef SmartDigraph Graph; |
356 | 585 |
DIGRAPH_TYPEDEFS(Graph); |
357 | 586 |
|
358 | 587 |
checkConcept<ReadWriteMap<Node, int>, |
359 | 588 |
CrossRefMap<Graph, Node, int> >(); |
360 | 589 |
|
361 | 590 |
Graph gr; |
362 | 591 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
363 | 592 |
typedef CRMap::ValueIterator ValueIt; |
364 | 593 |
CRMap map(gr); |
365 | 594 |
|
366 | 595 |
Node n0 = gr.addNode(); |
367 | 596 |
Node n1 = gr.addNode(); |
368 | 597 |
Node n2 = gr.addNode(); |
369 | 598 |
|
370 | 599 |
map.set(n0, 'A'); |
371 | 600 |
map.set(n1, 'B'); |
372 | 601 |
map.set(n2, 'C'); |
373 | 602 |
map.set(n2, 'A'); |
374 | 603 |
map.set(n0, 'C'); |
... | ... |
@@ -525,51 +754,51 @@ |
525 | 754 |
|
526 | 755 |
const int num = 10; |
527 | 756 |
Graph g; |
528 | 757 |
std::vector<Item> items; |
529 | 758 |
for (int i = 0; i < num; ++i) { |
530 | 759 |
items.push_back(g.addNode()); |
531 | 760 |
} |
532 | 761 |
|
533 | 762 |
Ivm map1(g, 0.0); |
534 | 763 |
check(distance(map1.beginValue(), map1.endValue()) == 1, "Wrong size"); |
535 | 764 |
check(*map1.beginValue() == 0.0, "Wrong value"); |
536 | 765 |
|
537 | 766 |
for (int i = 0; i < num; ++i) { |
538 | 767 |
map1.set(items[i], static_cast<double>(i)); |
539 | 768 |
} |
540 | 769 |
check(distance(map1.beginValue(), map1.endValue()) == num, "Wrong size"); |
541 | 770 |
|
542 | 771 |
for (int i = 0; i < num; ++i) { |
543 | 772 |
Ivm::ItemIt it(map1, static_cast<double>(i)); |
544 | 773 |
check(static_cast<Item>(it) == items[i], "Wrong value"); |
545 | 774 |
++it; |
546 | 775 |
check(static_cast<Item>(it) == INVALID, "Wrong value"); |
547 | 776 |
} |
548 | 777 |
|
549 |
for (Ivm:: |
|
778 |
for (Ivm::ValueIt vit = map1.beginValue(); |
|
550 | 779 |
vit != map1.endValue(); ++vit) { |
551 | 780 |
check(map1[static_cast<Item>(Ivm::ItemIt(map1, *vit))] == *vit, |
552 |
"Wrong |
|
781 |
"Wrong ValueIt"); |
|
553 | 782 |
} |
554 | 783 |
|
555 | 784 |
for (int i = 0; i < num; ++i) { |
556 | 785 |
map1.set(items[i], static_cast<double>(i % 2)); |
557 | 786 |
} |
558 | 787 |
check(distance(map1.beginValue(), map1.endValue()) == 2, "Wrong size"); |
559 | 788 |
|
560 | 789 |
int n = 0; |
561 | 790 |
for (Ivm::ItemIt it(map1, 0.0); it != INVALID; ++it) { |
562 | 791 |
check(map1[static_cast<Item>(it)] == 0.0, "Wrong value"); |
563 | 792 |
++n; |
564 | 793 |
} |
565 | 794 |
check(n == (num + 1) / 2, "Wrong number"); |
566 | 795 |
|
567 | 796 |
for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) { |
568 | 797 |
check(map1[static_cast<Item>(it)] == 1.0, "Wrong value"); |
569 | 798 |
++n; |
570 | 799 |
} |
571 | 800 |
check(n == num, "Wrong number"); |
572 | 801 |
|
573 | 802 |
} |
574 | 803 |
return 0; |
575 | 804 |
} |
0 comments (0 inline)