1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_MAX_MATCHING_H |
|
20 |
#define LEMON_MAX_MATCHING_H |
|
21 |
|
|
22 |
#include <vector> |
|
23 |
#include <queue> |
|
24 |
#include <set> |
|
25 |
#include <limits> |
|
26 |
|
|
27 |
#include <lemon/core.h> |
|
28 |
#include <lemon/unionfind.h> |
|
29 |
#include <lemon/bin_heap.h> |
|
30 |
#include <lemon/maps.h> |
|
31 |
|
|
32 |
///\ingroup matching |
|
33 |
///\file |
|
34 |
///\brief Maximum matching algorithms in general graphs. |
|
35 |
|
|
36 |
namespace lemon { |
|
37 |
|
|
38 |
/// \ingroup matching |
|
39 |
/// |
|
40 |
/// \brief Maximum cardinality matching in general graphs |
|
41 |
/// |
|
42 |
/// This class implements Edmonds' alternating forest matching algorithm |
|
43 |
/// for finding a maximum cardinality matching in a general undirected graph. |
|
44 |
/// It can be started from an arbitrary initial matching |
|
45 |
/// (the default is the empty one). |
|
46 |
/// |
|
47 |
/// The dual solution of the problem is a map of the nodes to |
|
48 |
/// \ref MaxMatching::Status "Status", having values \c EVEN (or \c D), |
|
49 |
/// \c ODD (or \c A) and \c MATCHED (or \c C) defining the Gallai-Edmonds |
|
50 |
/// decomposition of the graph. The nodes in \c EVEN/D induce a subgraph |
|
51 |
/// with factor-critical components, the nodes in \c ODD/A form the |
|
52 |
/// canonical barrier, and the nodes in \c MATCHED/C induce a graph having |
|
53 |
/// a perfect matching. The number of the factor-critical components |
|
54 |
/// minus the number of barrier nodes is a lower bound on the |
|
55 |
/// unmatched nodes, and the matching is optimal if and only if this bound is |
|
56 |
/// tight. This decomposition can be obtained using \ref status() or |
|
57 |
/// \ref statusMap() after running the algorithm. |
|
58 |
/// |
|
59 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
60 |
template <typename GR> |
|
61 |
class MaxMatching { |
|
62 |
public: |
|
63 |
|
|
64 |
/// The graph type of the algorithm |
|
65 |
typedef GR Graph; |
|
66 |
/// The type of the matching map |
|
67 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
|
68 |
MatchingMap; |
|
69 |
|
|
70 |
///\brief Status constants for Gallai-Edmonds decomposition. |
|
71 |
/// |
|
72 |
///These constants are used for indicating the Gallai-Edmonds |
|
73 |
///decomposition of a graph. The nodes with status \c EVEN (or \c D) |
|
74 |
///induce a subgraph with factor-critical components, the nodes with |
|
75 |
///status \c ODD (or \c A) form the canonical barrier, and the nodes |
|
76 |
///with status \c MATCHED (or \c C) induce a subgraph having a |
|
77 |
///perfect matching. |
|
78 |
enum Status { |
|
79 |
EVEN = 1, ///< = 1. (\c D is an alias for \c EVEN.) |
|
80 |
D = 1, |
|
81 |
MATCHED = 0, ///< = 0. (\c C is an alias for \c MATCHED.) |
|
82 |
C = 0, |
|
83 |
ODD = -1, ///< = -1. (\c A is an alias for \c ODD.) |
|
84 |
A = -1, |
|
85 |
UNMATCHED = -2 ///< = -2. |
|
86 |
}; |
|
87 |
|
|
88 |
/// The type of the status map |
|
89 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
|
90 |
|
|
91 |
private: |
|
92 |
|
|
93 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
94 |
|
|
95 |
typedef UnionFindEnum<IntNodeMap> BlossomSet; |
|
96 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
|
97 |
typedef RangeMap<Node> NodeIntMap; |
|
98 |
typedef MatchingMap EarMap; |
|
99 |
typedef std::vector<Node> NodeQueue; |
|
100 |
|
|
101 |
const Graph& _graph; |
|
102 |
MatchingMap* _matching; |
|
103 |
StatusMap* _status; |
|
104 |
|
|
105 |
EarMap* _ear; |
|
106 |
|
|
107 |
IntNodeMap* _blossom_set_index; |
|
108 |
BlossomSet* _blossom_set; |
|
109 |
NodeIntMap* _blossom_rep; |
|
110 |
|
|
111 |
IntNodeMap* _tree_set_index; |
|
112 |
TreeSet* _tree_set; |
|
113 |
|
|
114 |
NodeQueue _node_queue; |
|
115 |
int _process, _postpone, _last; |
|
116 |
|
|
117 |
int _node_num; |
|
118 |
|
|
119 |
private: |
|
120 |
|
|
121 |
void createStructures() { |
|
122 |
_node_num = countNodes(_graph); |
|
123 |
if (!_matching) { |
|
124 |
_matching = new MatchingMap(_graph); |
|
125 |
} |
|
126 |
if (!_status) { |
|
127 |
_status = new StatusMap(_graph); |
|
128 |
} |
|
129 |
if (!_ear) { |
|
130 |
_ear = new EarMap(_graph); |
|
131 |
} |
|
132 |
if (!_blossom_set) { |
|
133 |
_blossom_set_index = new IntNodeMap(_graph); |
|
134 |
_blossom_set = new BlossomSet(*_blossom_set_index); |
|
135 |
} |
|
136 |
if (!_blossom_rep) { |
|
137 |
_blossom_rep = new NodeIntMap(_node_num); |
|
138 |
} |
|
139 |
if (!_tree_set) { |
|
140 |
_tree_set_index = new IntNodeMap(_graph); |
|
141 |
_tree_set = new TreeSet(*_tree_set_index); |
|
142 |
} |
|
143 |
_node_queue.resize(_node_num); |
|
144 |
} |
|
145 |
|
|
146 |
void destroyStructures() { |
|
147 |
if (_matching) { |
|
148 |
delete _matching; |
|
149 |
} |
|
150 |
if (_status) { |
|
151 |
delete _status; |
|
152 |
} |
|
153 |
if (_ear) { |
|
154 |
delete _ear; |
|
155 |
} |
|
156 |
if (_blossom_set) { |
|
157 |
delete _blossom_set; |
|
158 |
delete _blossom_set_index; |
|
159 |
} |
|
160 |
if (_blossom_rep) { |
|
161 |
delete _blossom_rep; |
|
162 |
} |
|
163 |
if (_tree_set) { |
|
164 |
delete _tree_set_index; |
|
165 |
delete _tree_set; |
|
166 |
} |
|
167 |
} |
|
168 |
|
|
169 |
void processDense(const Node& n) { |
|
170 |
_process = _postpone = _last = 0; |
|
171 |
_node_queue[_last++] = n; |
|
172 |
|
|
173 |
while (_process != _last) { |
|
174 |
Node u = _node_queue[_process++]; |
|
175 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
|
176 |
Node v = _graph.target(a); |
|
177 |
if ((*_status)[v] == MATCHED) { |
|
178 |
extendOnArc(a); |
|
179 |
} else if ((*_status)[v] == UNMATCHED) { |
|
180 |
augmentOnArc(a); |
|
181 |
return; |
|
182 |
} |
|
183 |
} |
|
184 |
} |
|
185 |
|
|
186 |
while (_postpone != _last) { |
|
187 |
Node u = _node_queue[_postpone++]; |
|
188 |
|
|
189 |
for (OutArcIt a(_graph, u); a != INVALID ; ++a) { |
|
190 |
Node v = _graph.target(a); |
|
191 |
|
|
192 |
if ((*_status)[v] == EVEN) { |
|
193 |
if (_blossom_set->find(u) != _blossom_set->find(v)) { |
|
194 |
shrinkOnEdge(a); |
|
195 |
} |
|
196 |
} |
|
197 |
|
|
198 |
while (_process != _last) { |
|
199 |
Node w = _node_queue[_process++]; |
|
200 |
for (OutArcIt b(_graph, w); b != INVALID; ++b) { |
|
201 |
Node x = _graph.target(b); |
|
202 |
if ((*_status)[x] == MATCHED) { |
|
203 |
extendOnArc(b); |
|
204 |
} else if ((*_status)[x] == UNMATCHED) { |
|
205 |
augmentOnArc(b); |
|
206 |
return; |
|
207 |
} |
|
208 |
} |
|
209 |
} |
|
210 |
} |
|
211 |
} |
|
212 |
} |
|
213 |
|
|
214 |
void processSparse(const Node& n) { |
|
215 |
_process = _last = 0; |
|
216 |
_node_queue[_last++] = n; |
|
217 |
while (_process != _last) { |
|
218 |
Node u = _node_queue[_process++]; |
|
219 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
|
220 |
Node v = _graph.target(a); |
|
221 |
|
|
222 |
if ((*_status)[v] == EVEN) { |
|
223 |
if (_blossom_set->find(u) != _blossom_set->find(v)) { |
|
224 |
shrinkOnEdge(a); |
|
225 |
} |
|
226 |
} else if ((*_status)[v] == MATCHED) { |
|
227 |
extendOnArc(a); |
|
228 |
} else if ((*_status)[v] == UNMATCHED) { |
|
229 |
augmentOnArc(a); |
|
230 |
return; |
|
231 |
} |
|
232 |
} |
|
233 |
} |
|
234 |
} |
|
235 |
|
|
236 |
void shrinkOnEdge(const Edge& e) { |
|
237 |
Node nca = INVALID; |
|
238 |
|
|
239 |
{ |
|
240 |
std::set<Node> left_set, right_set; |
|
241 |
|
|
242 |
Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))]; |
|
243 |
left_set.insert(left); |
|
244 |
|
|
245 |
Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))]; |
|
246 |
right_set.insert(right); |
|
247 |
|
|
248 |
while (true) { |
|
249 |
if ((*_matching)[left] == INVALID) break; |
|
250 |
left = _graph.target((*_matching)[left]); |
|
251 |
left = (*_blossom_rep)[_blossom_set-> |
|
252 |
find(_graph.target((*_ear)[left]))]; |
|
253 |
if (right_set.find(left) != right_set.end()) { |
|
254 |
nca = left; |
|
255 |
break; |
|
256 |
} |
|
257 |
left_set.insert(left); |
|
258 |
|
|
259 |
if ((*_matching)[right] == INVALID) break; |
|
260 |
right = _graph.target((*_matching)[right]); |
|
261 |
right = (*_blossom_rep)[_blossom_set-> |
|
262 |
find(_graph.target((*_ear)[right]))]; |
|
263 |
if (left_set.find(right) != left_set.end()) { |
|
264 |
nca = right; |
|
265 |
break; |
|
266 |
} |
|
267 |
right_set.insert(right); |
|
268 |
} |
|
269 |
|
|
270 |
if (nca == INVALID) { |
|
271 |
if ((*_matching)[left] == INVALID) { |
|
272 |
nca = right; |
|
273 |
while (left_set.find(nca) == left_set.end()) { |
|
274 |
nca = _graph.target((*_matching)[nca]); |
|
275 |
nca =(*_blossom_rep)[_blossom_set-> |
|
276 |
find(_graph.target((*_ear)[nca]))]; |
|
277 |
} |
|
278 |
} else { |
|
279 |
nca = left; |
|
280 |
while (right_set.find(nca) == right_set.end()) { |
|
281 |
nca = _graph.target((*_matching)[nca]); |
|
282 |
nca = (*_blossom_rep)[_blossom_set-> |
|
283 |
find(_graph.target((*_ear)[nca]))]; |
|
284 |
} |
|
285 |
} |
|
286 |
} |
|
287 |
} |
|
288 |
|
|
289 |
{ |
|
290 |
|
|
291 |
Node node = _graph.u(e); |
|
292 |
Arc arc = _graph.direct(e, true); |
|
293 |
Node base = (*_blossom_rep)[_blossom_set->find(node)]; |
|
294 |
|
|
295 |
while (base != nca) { |
|
296 |
(*_ear)[node] = arc; |
|
297 |
|
|
298 |
Node n = node; |
|
299 |
while (n != base) { |
|
300 |
n = _graph.target((*_matching)[n]); |
|
301 |
Arc a = (*_ear)[n]; |
|
302 |
n = _graph.target(a); |
|
303 |
(*_ear)[n] = _graph.oppositeArc(a); |
|
304 |
} |
|
305 |
node = _graph.target((*_matching)[base]); |
|
306 |
_tree_set->erase(base); |
|
307 |
_tree_set->erase(node); |
|
308 |
_blossom_set->insert(node, _blossom_set->find(base)); |
|
309 |
(*_status)[node] = EVEN; |
|
310 |
_node_queue[_last++] = node; |
|
311 |
arc = _graph.oppositeArc((*_ear)[node]); |
|
312 |
node = _graph.target((*_ear)[node]); |
|
313 |
base = (*_blossom_rep)[_blossom_set->find(node)]; |
|
314 |
_blossom_set->join(_graph.target(arc), base); |
|
315 |
} |
|
316 |
} |
|
317 |
|
|
318 |
(*_blossom_rep)[_blossom_set->find(nca)] = nca; |
|
319 |
|
|
320 |
{ |
|
321 |
|
|
322 |
Node node = _graph.v(e); |
|
323 |
Arc arc = _graph.direct(e, false); |
|
324 |
Node base = (*_blossom_rep)[_blossom_set->find(node)]; |
|
325 |
|
|
326 |
while (base != nca) { |
|
327 |
(*_ear)[node] = arc; |
|
328 |
|
|
329 |
Node n = node; |
|
330 |
while (n != base) { |
|
331 |
n = _graph.target((*_matching)[n]); |
|
332 |
Arc a = (*_ear)[n]; |
|
333 |
n = _graph.target(a); |
|
334 |
(*_ear)[n] = _graph.oppositeArc(a); |
|
335 |
} |
|
336 |
node = _graph.target((*_matching)[base]); |
|
337 |
_tree_set->erase(base); |
|
338 |
_tree_set->erase(node); |
|
339 |
_blossom_set->insert(node, _blossom_set->find(base)); |
|
340 |
(*_status)[node] = EVEN; |
|
341 |
_node_queue[_last++] = node; |
|
342 |
arc = _graph.oppositeArc((*_ear)[node]); |
|
343 |
node = _graph.target((*_ear)[node]); |
|
344 |
base = (*_blossom_rep)[_blossom_set->find(node)]; |
|
345 |
_blossom_set->join(_graph.target(arc), base); |
|
346 |
} |
|
347 |
} |
|
348 |
|
|
349 |
(*_blossom_rep)[_blossom_set->find(nca)] = nca; |
|
350 |
} |
|
351 |
|
|
352 |
void extendOnArc(const Arc& a) { |
|
353 |
Node base = _graph.source(a); |
|
354 |
Node odd = _graph.target(a); |
|
355 |
|
|
356 |
(*_ear)[odd] = _graph.oppositeArc(a); |
|
357 |
Node even = _graph.target((*_matching)[odd]); |
|
358 |
(*_blossom_rep)[_blossom_set->insert(even)] = even; |
|
359 |
(*_status)[odd] = ODD; |
|
360 |
(*_status)[even] = EVEN; |
|
361 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]); |
|
362 |
_tree_set->insert(odd, tree); |
|
363 |
_tree_set->insert(even, tree); |
|
364 |
_node_queue[_last++] = even; |
|
365 |
|
|
366 |
} |
|
367 |
|
|
368 |
void augmentOnArc(const Arc& a) { |
|
369 |
Node even = _graph.source(a); |
|
370 |
Node odd = _graph.target(a); |
|
371 |
|
|
372 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]); |
|
373 |
|
|
374 |
(*_matching)[odd] = _graph.oppositeArc(a); |
|
375 |
(*_status)[odd] = MATCHED; |
|
376 |
|
|
377 |
Arc arc = (*_matching)[even]; |
|
378 |
(*_matching)[even] = a; |
|
379 |
|
|
380 |
while (arc != INVALID) { |
|
381 |
odd = _graph.target(arc); |
|
382 |
arc = (*_ear)[odd]; |
|
383 |
even = _graph.target(arc); |
|
384 |
(*_matching)[odd] = arc; |
|
385 |
arc = (*_matching)[even]; |
|
386 |
(*_matching)[even] = _graph.oppositeArc((*_matching)[odd]); |
|
387 |
} |
|
388 |
|
|
389 |
for (typename TreeSet::ItemIt it(*_tree_set, tree); |
|
390 |
it != INVALID; ++it) { |
|
391 |
if ((*_status)[it] == ODD) { |
|
392 |
(*_status)[it] = MATCHED; |
|
393 |
} else { |
|
394 |
int blossom = _blossom_set->find(it); |
|
395 |
for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom); |
|
396 |
jt != INVALID; ++jt) { |
|
397 |
(*_status)[jt] = MATCHED; |
|
398 |
} |
|
399 |
_blossom_set->eraseClass(blossom); |
|
400 |
} |
|
401 |
} |
|
402 |
_tree_set->eraseClass(tree); |
|
403 |
|
|
404 |
} |
|
405 |
|
|
406 |
public: |
|
407 |
|
|
408 |
/// \brief Constructor |
|
409 |
/// |
|
410 |
/// Constructor. |
|
411 |
MaxMatching(const Graph& graph) |
|
412 |
: _graph(graph), _matching(0), _status(0), _ear(0), |
|
413 |
_blossom_set_index(0), _blossom_set(0), _blossom_rep(0), |
|
414 |
_tree_set_index(0), _tree_set(0) {} |
|
415 |
|
|
416 |
~MaxMatching() { |
|
417 |
destroyStructures(); |
|
418 |
} |
|
419 |
|
|
420 |
/// \name Execution Control |
|
421 |
/// The simplest way to execute the algorithm is to use the |
|
422 |
/// \c run() member function.\n |
|
423 |
/// If you need better control on the execution, you have to call |
|
424 |
/// one of the functions \ref init(), \ref greedyInit() or |
|
425 |
/// \ref matchingInit() first, then you can start the algorithm with |
|
426 |
/// \ref startSparse() or \ref startDense(). |
|
427 |
|
|
428 |
///@{ |
|
429 |
|
|
430 |
/// \brief Set the initial matching to the empty matching. |
|
431 |
/// |
|
432 |
/// This function sets the initial matching to the empty matching. |
|
433 |
void init() { |
|
434 |
createStructures(); |
|
435 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
|
436 |
(*_matching)[n] = INVALID; |
|
437 |
(*_status)[n] = UNMATCHED; |
|
438 |
} |
|
439 |
} |
|
440 |
|
|
441 |
/// \brief Find an initial matching in a greedy way. |
|
442 |
/// |
|
443 |
/// This function finds an initial matching in a greedy way. |
|
444 |
void greedyInit() { |
|
445 |
createStructures(); |
|
446 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
447 |
(*_matching)[n] = INVALID; |
|
448 |
(*_status)[n] = UNMATCHED; |
|
449 |
} |
|
450 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
451 |
if ((*_matching)[n] == INVALID) { |
|
452 |
for (OutArcIt a(_graph, n); a != INVALID ; ++a) { |
|
453 |
Node v = _graph.target(a); |
|
454 |
if ((*_matching)[v] == INVALID && v != n) { |
|
455 |
(*_matching)[n] = a; |
|
456 |
(*_status)[n] = MATCHED; |
|
457 |
(*_matching)[v] = _graph.oppositeArc(a); |
|
458 |
(*_status)[v] = MATCHED; |
|
459 |
break; |
|
460 |
} |
|
461 |
} |
|
462 |
} |
|
463 |
} |
|
464 |
} |
|
465 |
|
|
466 |
|
|
467 |
/// \brief Initialize the matching from a map. |
|
468 |
/// |
|
469 |
/// This function initializes the matching from a \c bool valued edge |
|
470 |
/// map. This map should have the property that there are no two incident |
|
471 |
/// edges with \c true value, i.e. it really contains a matching. |
|
472 |
/// \return \c true if the map contains a matching. |
|
473 |
template <typename MatchingMap> |
|
474 |
bool matchingInit(const MatchingMap& matching) { |
|
475 |
createStructures(); |
|
476 |
|
|
477 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
478 |
(*_matching)[n] = INVALID; |
|
479 |
(*_status)[n] = UNMATCHED; |
|
480 |
} |
|
481 |
for(EdgeIt e(_graph); e!=INVALID; ++e) { |
|
482 |
if (matching[e]) { |
|
483 |
|
|
484 |
Node u = _graph.u(e); |
|
485 |
if ((*_matching)[u] != INVALID) return false; |
|
486 |
(*_matching)[u] = _graph.direct(e, true); |
|
487 |
(*_status)[u] = MATCHED; |
|
488 |
|
|
489 |
Node v = _graph.v(e); |
|
490 |
if ((*_matching)[v] != INVALID) return false; |
|
491 |
(*_matching)[v] = _graph.direct(e, false); |
|
492 |
(*_status)[v] = MATCHED; |
|
493 |
} |
|
494 |
} |
|
495 |
return true; |
|
496 |
} |
|
497 |
|
|
498 |
/// \brief Start Edmonds' algorithm |
|
499 |
/// |
|
500 |
/// This function runs the original Edmonds' algorithm. |
|
501 |
/// |
|
502 |
/// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be |
|
503 |
/// called before using this function. |
|
504 |
void startSparse() { |
|
505 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
|
506 |
if ((*_status)[n] == UNMATCHED) { |
|
507 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
|
508 |
_tree_set->insert(n); |
|
509 |
(*_status)[n] = EVEN; |
|
510 |
processSparse(n); |
|
511 |
} |
|
512 |
} |
|
513 |
} |
|
514 |
|
|
515 |
/// \brief Start Edmonds' algorithm with a heuristic improvement |
|
516 |
/// for dense graphs |
|
517 |
/// |
|
518 |
/// This function runs Edmonds' algorithm with a heuristic of postponing |
|
519 |
/// shrinks, therefore resulting in a faster algorithm for dense graphs. |
|
520 |
/// |
|
521 |
/// \pre \ref Init(), \ref greedyInit() or \ref matchingInit() must be |
|
522 |
/// called before using this function. |
|
523 |
void startDense() { |
|
524 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
|
525 |
if ((*_status)[n] == UNMATCHED) { |
|
526 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
|
527 |
_tree_set->insert(n); |
|
528 |
(*_status)[n] = EVEN; |
|
529 |
processDense(n); |
|
530 |
} |
|
531 |
} |
|
532 |
} |
|
533 |
|
|
534 |
|
|
535 |
/// \brief Run Edmonds' algorithm |
|
536 |
/// |
|
537 |
/// This function runs Edmonds' algorithm. An additional heuristic of |
|
538 |
/// postponing shrinks is used for relatively dense graphs |
|
539 |
/// (for which <tt>m>=2*n</tt> holds). |
|
540 |
void run() { |
|
541 |
if (countEdges(_graph) < 2 * countNodes(_graph)) { |
|
542 |
greedyInit(); |
|
543 |
startSparse(); |
|
544 |
} else { |
|
545 |
init(); |
|
546 |
startDense(); |
|
547 |
} |
|
548 |
} |
|
549 |
|
|
550 |
/// @} |
|
551 |
|
|
552 |
/// \name Primal Solution |
|
553 |
/// Functions to get the primal solution, i.e. the maximum matching. |
|
554 |
|
|
555 |
/// @{ |
|
556 |
|
|
557 |
/// \brief Return the size (cardinality) of the matching. |
|
558 |
/// |
|
559 |
/// This function returns the size (cardinality) of the current matching. |
|
560 |
/// After run() it returns the size of the maximum matching in the graph. |
|
561 |
int matchingSize() const { |
|
562 |
int size = 0; |
|
563 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
564 |
if ((*_matching)[n] != INVALID) { |
|
565 |
++size; |
|
566 |
} |
|
567 |
} |
|
568 |
return size / 2; |
|
569 |
} |
|
570 |
|
|
571 |
/// \brief Return \c true if the given edge is in the matching. |
|
572 |
/// |
|
573 |
/// This function returns \c true if the given edge is in the current |
|
574 |
/// matching. |
|
575 |
bool matching(const Edge& edge) const { |
|
576 |
return edge == (*_matching)[_graph.u(edge)]; |
|
577 |
} |
|
578 |
|
|
579 |
/// \brief Return the matching arc (or edge) incident to the given node. |
|
580 |
/// |
|
581 |
/// This function returns the matching arc (or edge) incident to the |
|
582 |
/// given node in the current matching or \c INVALID if the node is |
|
583 |
/// not covered by the matching. |
|
584 |
Arc matching(const Node& n) const { |
|
585 |
return (*_matching)[n]; |
|
586 |
} |
|
587 |
|
|
588 |
/// \brief Return a const reference to the matching map. |
|
589 |
/// |
|
590 |
/// This function returns a const reference to a node map that stores |
|
591 |
/// the matching arc (or edge) incident to each node. |
|
592 |
const MatchingMap& matchingMap() const { |
|
593 |
return *_matching; |
|
594 |
} |
|
595 |
|
|
596 |
/// \brief Return the mate of the given node. |
|
597 |
/// |
|
598 |
/// This function returns the mate of the given node in the current |
|
599 |
/// matching or \c INVALID if the node is not covered by the matching. |
|
600 |
Node mate(const Node& n) const { |
|
601 |
return (*_matching)[n] != INVALID ? |
|
602 |
_graph.target((*_matching)[n]) : INVALID; |
|
603 |
} |
|
604 |
|
|
605 |
/// @} |
|
606 |
|
|
607 |
/// \name Dual Solution |
|
608 |
/// Functions to get the dual solution, i.e. the Gallai-Edmonds |
|
609 |
/// decomposition. |
|
610 |
|
|
611 |
/// @{ |
|
612 |
|
|
613 |
/// \brief Return the status of the given node in the Edmonds-Gallai |
|
614 |
/// decomposition. |
|
615 |
/// |
|
616 |
/// This function returns the \ref Status "status" of the given node |
|
617 |
/// in the Edmonds-Gallai decomposition. |
|
618 |
Status status(const Node& n) const { |
|
619 |
return (*_status)[n]; |
|
620 |
} |
|
621 |
|
|
622 |
/// \brief Return a const reference to the status map, which stores |
|
623 |
/// the Edmonds-Gallai decomposition. |
|
624 |
/// |
|
625 |
/// This function returns a const reference to a node map that stores the |
|
626 |
/// \ref Status "status" of each node in the Edmonds-Gallai decomposition. |
|
627 |
const StatusMap& statusMap() const { |
|
628 |
return *_status; |
|
629 |
} |
|
630 |
|
|
631 |
/// \brief Return \c true if the given node is in the barrier. |
|
632 |
/// |
|
633 |
/// This function returns \c true if the given node is in the barrier. |
|
634 |
bool barrier(const Node& n) const { |
|
635 |
return (*_status)[n] == ODD; |
|
636 |
} |
|
637 |
|
|
638 |
/// @} |
|
639 |
|
|
640 |
}; |
|
641 |
|
|
642 |
/// \ingroup matching |
|
643 |
/// |
|
644 |
/// \brief Weighted matching in general graphs |
|
645 |
/// |
|
646 |
/// This class provides an efficient implementation of Edmond's |
|
647 |
/// maximum weighted matching algorithm. The implementation is based |
|
648 |
/// on extensive use of priority queues and provides |
|
649 |
/// \f$O(nm\log n)\f$ time complexity. |
|
650 |
/// |
|
651 |
/// The maximum weighted matching problem is to find a subset of the |
|
652 |
/// edges in an undirected graph with maximum overall weight for which |
|
653 |
/// each node has at most one incident edge. |
|
654 |
/// It can be formulated with the following linear program. |
|
655 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
|
656 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
|
657 |
\quad \forall B\in\mathcal{O}\f] */ |
|
658 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
|
659 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
|
660 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
|
661 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
|
662 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
|
663 |
/// subsets of the nodes. |
|
664 |
/// |
|
665 |
/// The algorithm calculates an optimal matching and a proof of the |
|
666 |
/// optimality. The solution of the dual problem can be used to check |
|
667 |
/// the result of the algorithm. The dual linear problem is the |
|
668 |
/// following. |
|
669 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)} |
|
670 |
z_B \ge w_{uv} \quad \forall uv\in E\f] */ |
|
671 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
|
672 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
|
673 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
|
674 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
|
675 |
/// |
|
676 |
/// The algorithm can be executed with the run() function. |
|
677 |
/// After it the matching (the primal solution) and the dual solution |
|
678 |
/// can be obtained using the query functions and the |
|
679 |
/// \ref MaxWeightedMatching::BlossomIt "BlossomIt" nested class, |
|
680 |
/// which is able to iterate on the nodes of a blossom. |
|
681 |
/// If the value type is integer, then the dual solution is multiplied |
|
682 |
/// by \ref MaxWeightedMatching::dualScale "4". |
|
683 |
/// |
|
684 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
685 |
/// \tparam WM The type edge weight map. The default type is |
|
686 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
|
687 |
#ifdef DOXYGEN |
|
688 |
template <typename GR, typename WM> |
|
689 |
#else |
|
690 |
template <typename GR, |
|
691 |
typename WM = typename GR::template EdgeMap<int> > |
|
692 |
#endif |
|
693 |
class MaxWeightedMatching { |
|
694 |
public: |
|
695 |
|
|
696 |
/// The graph type of the algorithm |
|
697 |
typedef GR Graph; |
|
698 |
/// The type of the edge weight map |
|
699 |
typedef WM WeightMap; |
|
700 |
/// The value type of the edge weights |
|
701 |
typedef typename WeightMap::Value Value; |
|
702 |
|
|
703 |
/// The type of the matching map |
|
704 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
|
705 |
MatchingMap; |
|
706 |
|
|
707 |
/// \brief Scaling factor for dual solution |
|
708 |
/// |
|
709 |
/// Scaling factor for dual solution. It is equal to 4 or 1 |
|
710 |
/// according to the value type. |
|
711 |
static const int dualScale = |
|
712 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
|
713 |
|
|
714 |
private: |
|
715 |
|
|
716 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
717 |
|
|
718 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
|
719 |
typedef std::vector<Node> BlossomNodeList; |
|
720 |
|
|
721 |
struct BlossomVariable { |
|
722 |
int begin, end; |
|
723 |
Value value; |
|
724 |
|
|
725 |
BlossomVariable(int _begin, int _end, Value _value) |
|
726 |
: begin(_begin), end(_end), value(_value) {} |
|
727 |
|
|
728 |
}; |
|
729 |
|
|
730 |
typedef std::vector<BlossomVariable> BlossomPotential; |
|
731 |
|
|
732 |
const Graph& _graph; |
|
733 |
const WeightMap& _weight; |
|
734 |
|
|
735 |
MatchingMap* _matching; |
|
736 |
|
|
737 |
NodePotential* _node_potential; |
|
738 |
|
|
739 |
BlossomPotential _blossom_potential; |
|
740 |
BlossomNodeList _blossom_node_list; |
|
741 |
|
|
742 |
int _node_num; |
|
743 |
int _blossom_num; |
|
744 |
|
|
745 |
typedef RangeMap<int> IntIntMap; |
|
746 |
|
|
747 |
enum Status { |
|
748 |
EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2 |
|
749 |
}; |
|
750 |
|
|
751 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
|
752 |
struct BlossomData { |
|
753 |
int tree; |
|
754 |
Status status; |
|
755 |
Arc pred, next; |
|
756 |
Value pot, offset; |
|
757 |
Node base; |
|
758 |
}; |
|
759 |
|
|
760 |
IntNodeMap *_blossom_index; |
|
761 |
BlossomSet *_blossom_set; |
|
762 |
RangeMap<BlossomData>* _blossom_data; |
|
763 |
|
|
764 |
IntNodeMap *_node_index; |
|
765 |
IntArcMap *_node_heap_index; |
|
766 |
|
|
767 |
struct NodeData { |
|
768 |
|
|
769 |
NodeData(IntArcMap& node_heap_index) |
|
770 |
: heap(node_heap_index) {} |
|
771 |
|
|
772 |
int blossom; |
|
773 |
Value pot; |
|
774 |
BinHeap<Value, IntArcMap> heap; |
|
775 |
std::map<int, Arc> heap_index; |
|
776 |
|
|
777 |
int tree; |
|
778 |
}; |
|
779 |
|
|
780 |
RangeMap<NodeData>* _node_data; |
|
781 |
|
|
782 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
|
783 |
|
|
784 |
IntIntMap *_tree_set_index; |
|
785 |
TreeSet *_tree_set; |
|
786 |
|
|
787 |
IntNodeMap *_delta1_index; |
|
788 |
BinHeap<Value, IntNodeMap> *_delta1; |
|
789 |
|
|
790 |
IntIntMap *_delta2_index; |
|
791 |
BinHeap<Value, IntIntMap> *_delta2; |
|
792 |
|
|
793 |
IntEdgeMap *_delta3_index; |
|
794 |
BinHeap<Value, IntEdgeMap> *_delta3; |
|
795 |
|
|
796 |
IntIntMap *_delta4_index; |
|
797 |
BinHeap<Value, IntIntMap> *_delta4; |
|
798 |
|
|
799 |
Value _delta_sum; |
|
800 |
|
|
801 |
void createStructures() { |
|
802 |
_node_num = countNodes(_graph); |
|
803 |
_blossom_num = _node_num * 3 / 2; |
|
804 |
|
|
805 |
if (!_matching) { |
|
806 |
_matching = new MatchingMap(_graph); |
|
807 |
} |
|
808 |
if (!_node_potential) { |
|
809 |
_node_potential = new NodePotential(_graph); |
|
810 |
} |
|
811 |
if (!_blossom_set) { |
|
812 |
_blossom_index = new IntNodeMap(_graph); |
|
813 |
_blossom_set = new BlossomSet(*_blossom_index); |
|
814 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
|
815 |
} |
|
816 |
|
|
817 |
if (!_node_index) { |
|
818 |
_node_index = new IntNodeMap(_graph); |
|
819 |
_node_heap_index = new IntArcMap(_graph); |
|
820 |
_node_data = new RangeMap<NodeData>(_node_num, |
|
821 |
NodeData(*_node_heap_index)); |
|
822 |
} |
|
823 |
|
|
824 |
if (!_tree_set) { |
|
825 |
_tree_set_index = new IntIntMap(_blossom_num); |
|
826 |
_tree_set = new TreeSet(*_tree_set_index); |
|
827 |
} |
|
828 |
if (!_delta1) { |
|
829 |
_delta1_index = new IntNodeMap(_graph); |
|
830 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
|
831 |
} |
|
832 |
if (!_delta2) { |
|
833 |
_delta2_index = new IntIntMap(_blossom_num); |
|
834 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
|
835 |
} |
|
836 |
if (!_delta3) { |
|
837 |
_delta3_index = new IntEdgeMap(_graph); |
|
838 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
|
839 |
} |
|
840 |
if (!_delta4) { |
|
841 |
_delta4_index = new IntIntMap(_blossom_num); |
|
842 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
|
843 |
} |
|
844 |
} |
|
845 |
|
|
846 |
void destroyStructures() { |
|
847 |
_node_num = countNodes(_graph); |
|
848 |
_blossom_num = _node_num * 3 / 2; |
|
849 |
|
|
850 |
if (_matching) { |
|
851 |
delete _matching; |
|
852 |
} |
|
853 |
if (_node_potential) { |
|
854 |
delete _node_potential; |
|
855 |
} |
|
856 |
if (_blossom_set) { |
|
857 |
delete _blossom_index; |
|
858 |
delete _blossom_set; |
|
859 |
delete _blossom_data; |
|
860 |
} |
|
861 |
|
|
862 |
if (_node_index) { |
|
863 |
delete _node_index; |
|
864 |
delete _node_heap_index; |
|
865 |
delete _node_data; |
|
866 |
} |
|
867 |
|
|
868 |
if (_tree_set) { |
|
869 |
delete _tree_set_index; |
|
870 |
delete _tree_set; |
|
871 |
} |
|
872 |
if (_delta1) { |
|
873 |
delete _delta1_index; |
|
874 |
delete _delta1; |
|
875 |
} |
|
876 |
if (_delta2) { |
|
877 |
delete _delta2_index; |
|
878 |
delete _delta2; |
|
879 |
} |
|
880 |
if (_delta3) { |
|
881 |
delete _delta3_index; |
|
882 |
delete _delta3; |
|
883 |
} |
|
884 |
if (_delta4) { |
|
885 |
delete _delta4_index; |
|
886 |
delete _delta4; |
|
887 |
} |
|
888 |
} |
|
889 |
|
|
890 |
void matchedToEven(int blossom, int tree) { |
|
891 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
892 |
_delta2->erase(blossom); |
|
893 |
} |
|
894 |
|
|
895 |
if (!_blossom_set->trivial(blossom)) { |
|
896 |
(*_blossom_data)[blossom].pot -= |
|
897 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
|
898 |
} |
|
899 |
|
|
900 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
901 |
n != INVALID; ++n) { |
|
902 |
|
|
903 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
904 |
int ni = (*_node_index)[n]; |
|
905 |
|
|
906 |
(*_node_data)[ni].heap.clear(); |
|
907 |
(*_node_data)[ni].heap_index.clear(); |
|
908 |
|
|
909 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
|
910 |
|
|
911 |
_delta1->push(n, (*_node_data)[ni].pot); |
|
912 |
|
|
913 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
914 |
Node v = _graph.source(e); |
|
915 |
int vb = _blossom_set->find(v); |
|
916 |
int vi = (*_node_index)[v]; |
|
917 |
|
|
918 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
919 |
dualScale * _weight[e]; |
|
920 |
|
|
921 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
922 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
|
923 |
_delta3->push(e, rw / 2); |
|
924 |
} |
|
925 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
|
926 |
if (_delta3->state(e) != _delta3->IN_HEAP) { |
|
927 |
_delta3->push(e, rw); |
|
928 |
} |
|
929 |
} else { |
|
930 |
typename std::map<int, Arc>::iterator it = |
|
931 |
(*_node_data)[vi].heap_index.find(tree); |
|
932 |
|
|
933 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
934 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
|
935 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
936 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
937 |
it->second = e; |
|
938 |
} |
|
939 |
} else { |
|
940 |
(*_node_data)[vi].heap.push(e, rw); |
|
941 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
942 |
} |
|
943 |
|
|
944 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
|
945 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
946 |
|
|
947 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
948 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
|
949 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
950 |
(*_blossom_data)[vb].offset); |
|
951 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
952 |
(*_blossom_data)[vb].offset){ |
|
953 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
954 |
(*_blossom_data)[vb].offset); |
|
955 |
} |
|
956 |
} |
|
957 |
} |
|
958 |
} |
|
959 |
} |
|
960 |
} |
|
961 |
(*_blossom_data)[blossom].offset = 0; |
|
962 |
} |
|
963 |
|
|
964 |
void matchedToOdd(int blossom) { |
|
965 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
966 |
_delta2->erase(blossom); |
|
967 |
} |
|
968 |
(*_blossom_data)[blossom].offset += _delta_sum; |
|
969 |
if (!_blossom_set->trivial(blossom)) { |
|
970 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
|
971 |
(*_blossom_data)[blossom].offset); |
|
972 |
} |
|
973 |
} |
|
974 |
|
|
975 |
void evenToMatched(int blossom, int tree) { |
|
976 |
if (!_blossom_set->trivial(blossom)) { |
|
977 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
|
978 |
} |
|
979 |
|
|
980 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
981 |
n != INVALID; ++n) { |
|
982 |
int ni = (*_node_index)[n]; |
|
983 |
(*_node_data)[ni].pot -= _delta_sum; |
|
984 |
|
|
985 |
_delta1->erase(n); |
|
986 |
|
|
987 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
988 |
Node v = _graph.source(e); |
|
989 |
int vb = _blossom_set->find(v); |
|
990 |
int vi = (*_node_index)[v]; |
|
991 |
|
|
992 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
993 |
dualScale * _weight[e]; |
|
994 |
|
|
995 |
if (vb == blossom) { |
|
996 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
997 |
_delta3->erase(e); |
|
998 |
} |
|
999 |
} else if ((*_blossom_data)[vb].status == EVEN) { |
|
1000 |
|
|
1001 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1002 |
_delta3->erase(e); |
|
1003 |
} |
|
1004 |
|
|
1005 |
int vt = _tree_set->find(vb); |
|
1006 |
|
|
1007 |
if (vt != tree) { |
|
1008 |
|
|
1009 |
Arc r = _graph.oppositeArc(e); |
|
1010 |
|
|
1011 |
typename std::map<int, Arc>::iterator it = |
|
1012 |
(*_node_data)[ni].heap_index.find(vt); |
|
1013 |
|
|
1014 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
1015 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
1016 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
1017 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
1018 |
it->second = r; |
|
1019 |
} |
|
1020 |
} else { |
|
1021 |
(*_node_data)[ni].heap.push(r, rw); |
|
1022 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
1023 |
} |
|
1024 |
|
|
1025 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
|
1026 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
1027 |
|
|
1028 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
|
1029 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
1030 |
(*_blossom_data)[blossom].offset); |
|
1031 |
} else if ((*_delta2)[blossom] > |
|
1032 |
_blossom_set->classPrio(blossom) - |
|
1033 |
(*_blossom_data)[blossom].offset){ |
|
1034 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
1035 |
(*_blossom_data)[blossom].offset); |
|
1036 |
} |
|
1037 |
} |
|
1038 |
} |
|
1039 |
|
|
1040 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
|
1041 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1042 |
_delta3->erase(e); |
|
1043 |
} |
|
1044 |
} else { |
|
1045 |
|
|
1046 |
typename std::map<int, Arc>::iterator it = |
|
1047 |
(*_node_data)[vi].heap_index.find(tree); |
|
1048 |
|
|
1049 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
1050 |
(*_node_data)[vi].heap.erase(it->second); |
|
1051 |
(*_node_data)[vi].heap_index.erase(it); |
|
1052 |
if ((*_node_data)[vi].heap.empty()) { |
|
1053 |
_blossom_set->increase(v, std::numeric_limits<Value>::max()); |
|
1054 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
|
1055 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
|
1056 |
} |
|
1057 |
|
|
1058 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
1059 |
if (_blossom_set->classPrio(vb) == |
|
1060 |
std::numeric_limits<Value>::max()) { |
|
1061 |
_delta2->erase(vb); |
|
1062 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
|
1063 |
(*_blossom_data)[vb].offset) { |
|
1064 |
_delta2->increase(vb, _blossom_set->classPrio(vb) - |
|
1065 |
(*_blossom_data)[vb].offset); |
|
1066 |
} |
|
1067 |
} |
|
1068 |
} |
|
1069 |
} |
|
1070 |
} |
|
1071 |
} |
|
1072 |
} |
|
1073 |
|
|
1074 |
void oddToMatched(int blossom) { |
|
1075 |
(*_blossom_data)[blossom].offset -= _delta_sum; |
|
1076 |
|
|
1077 |
if (_blossom_set->classPrio(blossom) != |
|
1078 |
std::numeric_limits<Value>::max()) { |
|
1079 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
1080 |
(*_blossom_data)[blossom].offset); |
|
1081 |
} |
|
1082 |
|
|
1083 |
if (!_blossom_set->trivial(blossom)) { |
|
1084 |
_delta4->erase(blossom); |
|
1085 |
} |
|
1086 |
} |
|
1087 |
|
|
1088 |
void oddToEven(int blossom, int tree) { |
|
1089 |
if (!_blossom_set->trivial(blossom)) { |
|
1090 |
_delta4->erase(blossom); |
|
1091 |
(*_blossom_data)[blossom].pot -= |
|
1092 |
2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
|
1093 |
} |
|
1094 |
|
|
1095 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
1096 |
n != INVALID; ++n) { |
|
1097 |
int ni = (*_node_index)[n]; |
|
1098 |
|
|
1099 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
1100 |
|
|
1101 |
(*_node_data)[ni].heap.clear(); |
|
1102 |
(*_node_data)[ni].heap_index.clear(); |
|
1103 |
(*_node_data)[ni].pot += |
|
1104 |
2 * _delta_sum - (*_blossom_data)[blossom].offset; |
|
1105 |
|
|
1106 |
_delta1->push(n, (*_node_data)[ni].pot); |
|
1107 |
|
|
1108 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
1109 |
Node v = _graph.source(e); |
|
1110 |
int vb = _blossom_set->find(v); |
|
1111 |
int vi = (*_node_index)[v]; |
|
1112 |
|
|
1113 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
1114 |
dualScale * _weight[e]; |
|
1115 |
|
|
1116 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
1117 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
|
1118 |
_delta3->push(e, rw / 2); |
|
1119 |
} |
|
1120 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
|
1121 |
if (_delta3->state(e) != _delta3->IN_HEAP) { |
|
1122 |
_delta3->push(e, rw); |
|
1123 |
} |
|
1124 |
} else { |
|
1125 |
|
|
1126 |
typename std::map<int, Arc>::iterator it = |
|
1127 |
(*_node_data)[vi].heap_index.find(tree); |
|
1128 |
|
|
1129 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
1130 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
|
1131 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
1132 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
1133 |
it->second = e; |
|
1134 |
} |
|
1135 |
} else { |
|
1136 |
(*_node_data)[vi].heap.push(e, rw); |
|
1137 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
1138 |
} |
|
1139 |
|
|
1140 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
|
1141 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
1142 |
|
|
1143 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
1144 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
|
1145 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
1146 |
(*_blossom_data)[vb].offset); |
|
1147 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
1148 |
(*_blossom_data)[vb].offset) { |
|
1149 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
1150 |
(*_blossom_data)[vb].offset); |
|
1151 |
} |
|
1152 |
} |
|
1153 |
} |
|
1154 |
} |
|
1155 |
} |
|
1156 |
} |
|
1157 |
(*_blossom_data)[blossom].offset = 0; |
|
1158 |
} |
|
1159 |
|
|
1160 |
|
|
1161 |
void matchedToUnmatched(int blossom) { |
|
1162 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
1163 |
_delta2->erase(blossom); |
|
1164 |
} |
|
1165 |
|
|
1166 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
1167 |
n != INVALID; ++n) { |
|
1168 |
int ni = (*_node_index)[n]; |
|
1169 |
|
|
1170 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
1171 |
|
|
1172 |
(*_node_data)[ni].heap.clear(); |
|
1173 |
(*_node_data)[ni].heap_index.clear(); |
|
1174 |
|
|
1175 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
1176 |
Node v = _graph.target(e); |
|
1177 |
int vb = _blossom_set->find(v); |
|
1178 |
int vi = (*_node_index)[v]; |
|
1179 |
|
|
1180 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
1181 |
dualScale * _weight[e]; |
|
1182 |
|
|
1183 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
1184 |
if (_delta3->state(e) != _delta3->IN_HEAP) { |
|
1185 |
_delta3->push(e, rw); |
|
1186 |
} |
|
1187 |
} |
|
1188 |
} |
|
1189 |
} |
|
1190 |
} |
|
1191 |
|
|
1192 |
void unmatchedToMatched(int blossom) { |
|
1193 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
1194 |
n != INVALID; ++n) { |
|
1195 |
int ni = (*_node_index)[n]; |
|
1196 |
|
|
1197 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
1198 |
Node v = _graph.source(e); |
|
1199 |
int vb = _blossom_set->find(v); |
|
1200 |
int vi = (*_node_index)[v]; |
|
1201 |
|
|
1202 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
1203 |
dualScale * _weight[e]; |
|
1204 |
|
|
1205 |
if (vb == blossom) { |
|
1206 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1207 |
_delta3->erase(e); |
|
1208 |
} |
|
1209 |
} else if ((*_blossom_data)[vb].status == EVEN) { |
|
1210 |
|
|
1211 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1212 |
_delta3->erase(e); |
|
1213 |
} |
|
1214 |
|
|
1215 |
int vt = _tree_set->find(vb); |
|
1216 |
|
|
1217 |
Arc r = _graph.oppositeArc(e); |
|
1218 |
|
|
1219 |
typename std::map<int, Arc>::iterator it = |
|
1220 |
(*_node_data)[ni].heap_index.find(vt); |
|
1221 |
|
|
1222 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
1223 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
1224 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
1225 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
1226 |
it->second = r; |
|
1227 |
} |
|
1228 |
} else { |
|
1229 |
(*_node_data)[ni].heap.push(r, rw); |
|
1230 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
1231 |
} |
|
1232 |
|
|
1233 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
|
1234 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
1235 |
|
|
1236 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
|
1237 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
1238 |
(*_blossom_data)[blossom].offset); |
|
1239 |
} else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)- |
|
1240 |
(*_blossom_data)[blossom].offset){ |
|
1241 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
1242 |
(*_blossom_data)[blossom].offset); |
|
1243 |
} |
|
1244 |
} |
|
1245 |
|
|
1246 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
|
1247 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1248 |
_delta3->erase(e); |
|
1249 |
} |
|
1250 |
} |
|
1251 |
} |
|
1252 |
} |
|
1253 |
} |
|
1254 |
|
|
1255 |
void alternatePath(int even, int tree) { |
|
1256 |
int odd; |
|
1257 |
|
|
1258 |
evenToMatched(even, tree); |
|
1259 |
(*_blossom_data)[even].status = MATCHED; |
|
1260 |
|
|
1261 |
while ((*_blossom_data)[even].pred != INVALID) { |
|
1262 |
odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
|
1263 |
(*_blossom_data)[odd].status = MATCHED; |
|
1264 |
oddToMatched(odd); |
|
1265 |
(*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
|
1266 |
|
|
1267 |
even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
|
1268 |
(*_blossom_data)[even].status = MATCHED; |
|
1269 |
evenToMatched(even, tree); |
|
1270 |
(*_blossom_data)[even].next = |
|
1271 |
_graph.oppositeArc((*_blossom_data)[odd].pred); |
|
1272 |
} |
|
1273 |
|
|
1274 |
} |
|
1275 |
|
|
1276 |
void destroyTree(int tree) { |
|
1277 |
for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
|
1278 |
if ((*_blossom_data)[b].status == EVEN) { |
|
1279 |
(*_blossom_data)[b].status = MATCHED; |
|
1280 |
evenToMatched(b, tree); |
|
1281 |
} else if ((*_blossom_data)[b].status == ODD) { |
|
1282 |
(*_blossom_data)[b].status = MATCHED; |
|
1283 |
oddToMatched(b); |
|
1284 |
} |
|
1285 |
} |
|
1286 |
_tree_set->eraseClass(tree); |
|
1287 |
} |
|
1288 |
|
|
1289 |
|
|
1290 |
void unmatchNode(const Node& node) { |
|
1291 |
int blossom = _blossom_set->find(node); |
|
1292 |
int tree = _tree_set->find(blossom); |
|
1293 |
|
|
1294 |
alternatePath(blossom, tree); |
|
1295 |
destroyTree(tree); |
|
1296 |
|
|
1297 |
(*_blossom_data)[blossom].status = UNMATCHED; |
|
1298 |
(*_blossom_data)[blossom].base = node; |
|
1299 |
matchedToUnmatched(blossom); |
|
1300 |
} |
|
1301 |
|
|
1302 |
|
|
1303 |
void augmentOnEdge(const Edge& edge) { |
|
1304 |
|
|
1305 |
int left = _blossom_set->find(_graph.u(edge)); |
|
1306 |
int right = _blossom_set->find(_graph.v(edge)); |
|
1307 |
|
|
1308 |
if ((*_blossom_data)[left].status == EVEN) { |
|
1309 |
int left_tree = _tree_set->find(left); |
|
1310 |
alternatePath(left, left_tree); |
|
1311 |
destroyTree(left_tree); |
|
1312 |
} else { |
|
1313 |
(*_blossom_data)[left].status = MATCHED; |
|
1314 |
unmatchedToMatched(left); |
|
1315 |
} |
|
1316 |
|
|
1317 |
if ((*_blossom_data)[right].status == EVEN) { |
|
1318 |
int right_tree = _tree_set->find(right); |
|
1319 |
alternatePath(right, right_tree); |
|
1320 |
destroyTree(right_tree); |
|
1321 |
} else { |
|
1322 |
(*_blossom_data)[right].status = MATCHED; |
|
1323 |
unmatchedToMatched(right); |
|
1324 |
} |
|
1325 |
|
|
1326 |
(*_blossom_data)[left].next = _graph.direct(edge, true); |
|
1327 |
(*_blossom_data)[right].next = _graph.direct(edge, false); |
|
1328 |
} |
|
1329 |
|
|
1330 |
void extendOnArc(const Arc& arc) { |
|
1331 |
int base = _blossom_set->find(_graph.target(arc)); |
|
1332 |
int tree = _tree_set->find(base); |
|
1333 |
|
|
1334 |
int odd = _blossom_set->find(_graph.source(arc)); |
|
1335 |
_tree_set->insert(odd, tree); |
|
1336 |
(*_blossom_data)[odd].status = ODD; |
|
1337 |
matchedToOdd(odd); |
|
1338 |
(*_blossom_data)[odd].pred = arc; |
|
1339 |
|
|
1340 |
int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
|
1341 |
(*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
|
1342 |
_tree_set->insert(even, tree); |
|
1343 |
(*_blossom_data)[even].status = EVEN; |
|
1344 |
matchedToEven(even, tree); |
|
1345 |
} |
|
1346 |
|
|
1347 |
void shrinkOnEdge(const Edge& edge, int tree) { |
|
1348 |
int nca = -1; |
|
1349 |
std::vector<int> left_path, right_path; |
|
1350 |
|
|
1351 |
{ |
|
1352 |
std::set<int> left_set, right_set; |
|
1353 |
int left = _blossom_set->find(_graph.u(edge)); |
|
1354 |
left_path.push_back(left); |
|
1355 |
left_set.insert(left); |
|
1356 |
|
|
1357 |
int right = _blossom_set->find(_graph.v(edge)); |
|
1358 |
right_path.push_back(right); |
|
1359 |
right_set.insert(right); |
|
1360 |
|
|
1361 |
while (true) { |
|
1362 |
|
|
1363 |
if ((*_blossom_data)[left].pred == INVALID) break; |
|
1364 |
|
|
1365 |
left = |
|
1366 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
|
1367 |
left_path.push_back(left); |
|
1368 |
left = |
|
1369 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
|
1370 |
left_path.push_back(left); |
|
1371 |
|
|
1372 |
left_set.insert(left); |
|
1373 |
|
|
1374 |
if (right_set.find(left) != right_set.end()) { |
|
1375 |
nca = left; |
|
1376 |
break; |
|
1377 |
} |
|
1378 |
|
|
1379 |
if ((*_blossom_data)[right].pred == INVALID) break; |
|
1380 |
|
|
1381 |
right = |
|
1382 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
|
1383 |
right_path.push_back(right); |
|
1384 |
right = |
|
1385 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
|
1386 |
right_path.push_back(right); |
|
1387 |
|
|
1388 |
right_set.insert(right); |
|
1389 |
|
|
1390 |
if (left_set.find(right) != left_set.end()) { |
|
1391 |
nca = right; |
|
1392 |
break; |
|
1393 |
} |
|
1394 |
|
|
1395 |
} |
|
1396 |
|
|
1397 |
if (nca == -1) { |
|
1398 |
if ((*_blossom_data)[left].pred == INVALID) { |
|
1399 |
nca = right; |
|
1400 |
while (left_set.find(nca) == left_set.end()) { |
|
1401 |
nca = |
|
1402 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
1403 |
right_path.push_back(nca); |
|
1404 |
nca = |
|
1405 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
1406 |
right_path.push_back(nca); |
|
1407 |
} |
|
1408 |
} else { |
|
1409 |
nca = left; |
|
1410 |
while (right_set.find(nca) == right_set.end()) { |
|
1411 |
nca = |
|
1412 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
1413 |
left_path.push_back(nca); |
|
1414 |
nca = |
|
1415 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
1416 |
left_path.push_back(nca); |
|
1417 |
} |
|
1418 |
} |
|
1419 |
} |
|
1420 |
} |
|
1421 |
|
|
1422 |
std::vector<int> subblossoms; |
|
1423 |
Arc prev; |
|
1424 |
|
|
1425 |
prev = _graph.direct(edge, true); |
|
1426 |
for (int i = 0; left_path[i] != nca; i += 2) { |
|
1427 |
subblossoms.push_back(left_path[i]); |
|
1428 |
(*_blossom_data)[left_path[i]].next = prev; |
|
1429 |
_tree_set->erase(left_path[i]); |
|
1430 |
|
|
1431 |
subblossoms.push_back(left_path[i + 1]); |
|
1432 |
(*_blossom_data)[left_path[i + 1]].status = EVEN; |
|
1433 |
oddToEven(left_path[i + 1], tree); |
|
1434 |
_tree_set->erase(left_path[i + 1]); |
|
1435 |
prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
|
1436 |
} |
|
1437 |
|
|
1438 |
int k = 0; |
|
1439 |
while (right_path[k] != nca) ++k; |
|
1440 |
|
|
1441 |
subblossoms.push_back(nca); |
|
1442 |
(*_blossom_data)[nca].next = prev; |
|
1443 |
|
|
1444 |
for (int i = k - 2; i >= 0; i -= 2) { |
|
1445 |
subblossoms.push_back(right_path[i + 1]); |
|
1446 |
(*_blossom_data)[right_path[i + 1]].status = EVEN; |
|
1447 |
oddToEven(right_path[i + 1], tree); |
|
1448 |
_tree_set->erase(right_path[i + 1]); |
|
1449 |
|
|
1450 |
(*_blossom_data)[right_path[i + 1]].next = |
|
1451 |
(*_blossom_data)[right_path[i + 1]].pred; |
|
1452 |
|
|
1453 |
subblossoms.push_back(right_path[i]); |
|
1454 |
_tree_set->erase(right_path[i]); |
|
1455 |
} |
|
1456 |
|
|
1457 |
int surface = |
|
1458 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
1459 |
|
|
1460 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
|
1461 |
if (!_blossom_set->trivial(subblossoms[i])) { |
|
1462 |
(*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
|
1463 |
} |
|
1464 |
(*_blossom_data)[subblossoms[i]].status = MATCHED; |
|
1465 |
} |
|
1466 |
|
|
1467 |
(*_blossom_data)[surface].pot = -2 * _delta_sum; |
|
1468 |
(*_blossom_data)[surface].offset = 0; |
|
1469 |
(*_blossom_data)[surface].status = EVEN; |
|
1470 |
(*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
|
1471 |
(*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
|
1472 |
|
|
1473 |
_tree_set->insert(surface, tree); |
|
1474 |
_tree_set->erase(nca); |
|
1475 |
} |
|
1476 |
|
|
1477 |
void splitBlossom(int blossom) { |
|
1478 |
Arc next = (*_blossom_data)[blossom].next; |
|
1479 |
Arc pred = (*_blossom_data)[blossom].pred; |
|
1480 |
|
|
1481 |
int tree = _tree_set->find(blossom); |
|
1482 |
|
|
1483 |
(*_blossom_data)[blossom].status = MATCHED; |
|
1484 |
oddToMatched(blossom); |
|
1485 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
1486 |
_delta2->erase(blossom); |
|
1487 |
} |
|
1488 |
|
|
1489 |
std::vector<int> subblossoms; |
|
1490 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
|
1491 |
|
|
1492 |
Value offset = (*_blossom_data)[blossom].offset; |
|
1493 |
int b = _blossom_set->find(_graph.source(pred)); |
|
1494 |
int d = _blossom_set->find(_graph.source(next)); |
|
1495 |
|
|
1496 |
int ib = -1, id = -1; |
|
1497 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
|
1498 |
if (subblossoms[i] == b) ib = i; |
|
1499 |
if (subblossoms[i] == d) id = i; |
|
1500 |
|
|
1501 |
(*_blossom_data)[subblossoms[i]].offset = offset; |
|
1502 |
if (!_blossom_set->trivial(subblossoms[i])) { |
|
1503 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
|
1504 |
} |
|
1505 |
if (_blossom_set->classPrio(subblossoms[i]) != |
|
1506 |
std::numeric_limits<Value>::max()) { |
|
1507 |
_delta2->push(subblossoms[i], |
|
1508 |
_blossom_set->classPrio(subblossoms[i]) - |
|
1509 |
(*_blossom_data)[subblossoms[i]].offset); |
|
1510 |
} |
|
1511 |
} |
|
1512 |
|
|
1513 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
|
1514 |
for (int i = (id + 1) % subblossoms.size(); |
|
1515 |
i != ib; i = (i + 2) % subblossoms.size()) { |
|
1516 |
int sb = subblossoms[i]; |
|
1517 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
1518 |
(*_blossom_data)[sb].next = |
|
1519 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
1520 |
} |
|
1521 |
|
|
1522 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
|
1523 |
int sb = subblossoms[i]; |
|
1524 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
1525 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
|
1526 |
|
|
1527 |
(*_blossom_data)[sb].status = ODD; |
|
1528 |
matchedToOdd(sb); |
|
1529 |
_tree_set->insert(sb, tree); |
|
1530 |
(*_blossom_data)[sb].pred = pred; |
|
1531 |
(*_blossom_data)[sb].next = |
|
1532 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
1533 |
|
|
1534 |
pred = (*_blossom_data)[ub].next; |
|
1535 |
|
|
1536 |
(*_blossom_data)[tb].status = EVEN; |
|
1537 |
matchedToEven(tb, tree); |
|
1538 |
_tree_set->insert(tb, tree); |
|
1539 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
|
1540 |
} |
|
1541 |
|
|
1542 |
(*_blossom_data)[subblossoms[id]].status = ODD; |
|
1543 |
matchedToOdd(subblossoms[id]); |
|
1544 |
_tree_set->insert(subblossoms[id], tree); |
|
1545 |
(*_blossom_data)[subblossoms[id]].next = next; |
|
1546 |
(*_blossom_data)[subblossoms[id]].pred = pred; |
|
1547 |
|
|
1548 |
} else { |
|
1549 |
|
|
1550 |
for (int i = (ib + 1) % subblossoms.size(); |
|
1551 |
i != id; i = (i + 2) % subblossoms.size()) { |
|
1552 |
int sb = subblossoms[i]; |
|
1553 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
1554 |
(*_blossom_data)[sb].next = |
|
1555 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
1556 |
} |
|
1557 |
|
|
1558 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
|
1559 |
int sb = subblossoms[i]; |
|
1560 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
1561 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
|
1562 |
|
|
1563 |
(*_blossom_data)[sb].status = ODD; |
|
1564 |
matchedToOdd(sb); |
|
1565 |
_tree_set->insert(sb, tree); |
|
1566 |
(*_blossom_data)[sb].next = next; |
|
1567 |
(*_blossom_data)[sb].pred = |
|
1568 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
1569 |
|
|
1570 |
(*_blossom_data)[tb].status = EVEN; |
|
1571 |
matchedToEven(tb, tree); |
|
1572 |
_tree_set->insert(tb, tree); |
|
1573 |
(*_blossom_data)[tb].pred = |
|
1574 |
(*_blossom_data)[tb].next = |
|
1575 |
_graph.oppositeArc((*_blossom_data)[ub].next); |
|
1576 |
next = (*_blossom_data)[ub].next; |
|
1577 |
} |
|
1578 |
|
|
1579 |
(*_blossom_data)[subblossoms[ib]].status = ODD; |
|
1580 |
matchedToOdd(subblossoms[ib]); |
|
1581 |
_tree_set->insert(subblossoms[ib], tree); |
|
1582 |
(*_blossom_data)[subblossoms[ib]].next = next; |
|
1583 |
(*_blossom_data)[subblossoms[ib]].pred = pred; |
|
1584 |
} |
|
1585 |
_tree_set->erase(blossom); |
|
1586 |
} |
|
1587 |
|
|
1588 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
|
1589 |
if (_blossom_set->trivial(blossom)) { |
|
1590 |
int bi = (*_node_index)[base]; |
|
1591 |
Value pot = (*_node_data)[bi].pot; |
|
1592 |
|
|
1593 |
(*_matching)[base] = matching; |
|
1594 |
_blossom_node_list.push_back(base); |
|
1595 |
(*_node_potential)[base] = pot; |
|
1596 |
} else { |
|
1597 |
|
|
1598 |
Value pot = (*_blossom_data)[blossom].pot; |
|
1599 |
int bn = _blossom_node_list.size(); |
|
1600 |
|
|
1601 |
std::vector<int> subblossoms; |
|
1602 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
|
1603 |
int b = _blossom_set->find(base); |
|
1604 |
int ib = -1; |
|
1605 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
|
1606 |
if (subblossoms[i] == b) { ib = i; break; } |
|
1607 |
} |
|
1608 |
|
|
1609 |
for (int i = 1; i < int(subblossoms.size()); i += 2) { |
|
1610 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
|
1611 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
|
1612 |
|
|
1613 |
Arc m = (*_blossom_data)[tb].next; |
|
1614 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
|
1615 |
extractBlossom(tb, _graph.source(m), m); |
|
1616 |
} |
|
1617 |
extractBlossom(subblossoms[ib], base, matching); |
|
1618 |
|
|
1619 |
int en = _blossom_node_list.size(); |
|
1620 |
|
|
1621 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
|
1622 |
} |
|
1623 |
} |
|
1624 |
|
|
1625 |
void extractMatching() { |
|
1626 |
std::vector<int> blossoms; |
|
1627 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
|
1628 |
blossoms.push_back(c); |
|
1629 |
} |
|
1630 |
|
|
1631 |
for (int i = 0; i < int(blossoms.size()); ++i) { |
|
1632 |
if ((*_blossom_data)[blossoms[i]].status == MATCHED) { |
|
1633 |
|
|
1634 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
|
1635 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
|
1636 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
|
1637 |
n != INVALID; ++n) { |
|
1638 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
|
1639 |
} |
|
1640 |
|
|
1641 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
|
1642 |
Node base = _graph.source(matching); |
|
1643 |
extractBlossom(blossoms[i], base, matching); |
|
1644 |
} else { |
|
1645 |
Node base = (*_blossom_data)[blossoms[i]].base; |
|
1646 |
extractBlossom(blossoms[i], base, INVALID); |
|
1647 |
} |
|
1648 |
} |
|
1649 |
} |
|
1650 |
|
|
1651 |
public: |
|
1652 |
|
|
1653 |
/// \brief Constructor |
|
1654 |
/// |
|
1655 |
/// Constructor. |
|
1656 |
MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
|
1657 |
: _graph(graph), _weight(weight), _matching(0), |
|
1658 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
|
1659 |
_node_num(0), _blossom_num(0), |
|
1660 |
|
|
1661 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
|
1662 |
_node_index(0), _node_heap_index(0), _node_data(0), |
|
1663 |
_tree_set_index(0), _tree_set(0), |
|
1664 |
|
|
1665 |
_delta1_index(0), _delta1(0), |
|
1666 |
_delta2_index(0), _delta2(0), |
|
1667 |
_delta3_index(0), _delta3(0), |
|
1668 |
_delta4_index(0), _delta4(0), |
|
1669 |
|
|
1670 |
_delta_sum() {} |
|
1671 |
|
|
1672 |
~MaxWeightedMatching() { |
|
1673 |
destroyStructures(); |
|
1674 |
} |
|
1675 |
|
|
1676 |
/// \name Execution Control |
|
1677 |
/// The simplest way to execute the algorithm is to use the |
|
1678 |
/// \ref run() member function. |
|
1679 |
|
|
1680 |
///@{ |
|
1681 |
|
|
1682 |
/// \brief Initialize the algorithm |
|
1683 |
/// |
|
1684 |
/// This function initializes the algorithm. |
|
1685 |
void init() { |
|
1686 |
createStructures(); |
|
1687 |
|
|
1688 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
1689 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
1690 |
} |
|
1691 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1692 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
|
1693 |
} |
|
1694 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1695 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
1696 |
} |
|
1697 |
for (int i = 0; i < _blossom_num; ++i) { |
|
1698 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
1699 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
1700 |
} |
|
1701 |
|
|
1702 |
int index = 0; |
|
1703 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1704 |
Value max = 0; |
|
1705 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
1706 |
if (_graph.target(e) == n) continue; |
|
1707 |
if ((dualScale * _weight[e]) / 2 > max) { |
|
1708 |
max = (dualScale * _weight[e]) / 2; |
|
1709 |
} |
|
1710 |
} |
|
1711 |
(*_node_index)[n] = index; |
|
1712 |
(*_node_data)[index].pot = max; |
|
1713 |
_delta1->push(n, max); |
|
1714 |
int blossom = |
|
1715 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
1716 |
|
|
1717 |
_tree_set->insert(blossom); |
|
1718 |
|
|
1719 |
(*_blossom_data)[blossom].status = EVEN; |
|
1720 |
(*_blossom_data)[blossom].pred = INVALID; |
|
1721 |
(*_blossom_data)[blossom].next = INVALID; |
|
1722 |
(*_blossom_data)[blossom].pot = 0; |
|
1723 |
(*_blossom_data)[blossom].offset = 0; |
|
1724 |
++index; |
|
1725 |
} |
|
1726 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1727 |
int si = (*_node_index)[_graph.u(e)]; |
|
1728 |
int ti = (*_node_index)[_graph.v(e)]; |
|
1729 |
if (_graph.u(e) != _graph.v(e)) { |
|
1730 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
1731 |
dualScale * _weight[e]) / 2); |
|
1732 |
} |
|
1733 |
} |
|
1734 |
} |
|
1735 |
|
|
1736 |
/// \brief Start the algorithm |
|
1737 |
/// |
|
1738 |
/// This function starts the algorithm. |
|
1739 |
/// |
|
1740 |
/// \pre \ref init() must be called before using this function. |
|
1741 |
void start() { |
|
1742 |
enum OpType { |
|
1743 |
D1, D2, D3, D4 |
|
1744 |
}; |
|
1745 |
|
|
1746 |
int unmatched = _node_num; |
|
1747 |
while (unmatched > 0) { |
|
1748 |
Value d1 = !_delta1->empty() ? |
|
1749 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
|
1750 |
|
|
1751 |
Value d2 = !_delta2->empty() ? |
|
1752 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
|
1753 |
|
|
1754 |
Value d3 = !_delta3->empty() ? |
|
1755 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
|
1756 |
|
|
1757 |
Value d4 = !_delta4->empty() ? |
|
1758 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
|
1759 |
|
|
1760 |
_delta_sum = d1; OpType ot = D1; |
|
1761 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
|
1762 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
|
1763 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
|
1764 |
|
|
1765 |
|
|
1766 |
switch (ot) { |
|
1767 |
case D1: |
|
1768 |
{ |
|
1769 |
Node n = _delta1->top(); |
|
1770 |
unmatchNode(n); |
|
1771 |
--unmatched; |
|
1772 |
} |
|
1773 |
break; |
|
1774 |
case D2: |
|
1775 |
{ |
|
1776 |
int blossom = _delta2->top(); |
|
1777 |
Node n = _blossom_set->classTop(blossom); |
|
1778 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
|
1779 |
extendOnArc(e); |
|
1780 |
} |
|
1781 |
break; |
|
1782 |
case D3: |
|
1783 |
{ |
|
1784 |
Edge e = _delta3->top(); |
|
1785 |
|
|
1786 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
|
1787 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
|
1788 |
|
|
1789 |
if (left_blossom == right_blossom) { |
|
1790 |
_delta3->pop(); |
|
1791 |
} else { |
|
1792 |
int left_tree; |
|
1793 |
if ((*_blossom_data)[left_blossom].status == EVEN) { |
|
1794 |
left_tree = _tree_set->find(left_blossom); |
|
1795 |
} else { |
|
1796 |
left_tree = -1; |
|
1797 |
++unmatched; |
|
1798 |
} |
|
1799 |
int right_tree; |
|
1800 |
if ((*_blossom_data)[right_blossom].status == EVEN) { |
|
1801 |
right_tree = _tree_set->find(right_blossom); |
|
1802 |
} else { |
|
1803 |
right_tree = -1; |
|
1804 |
++unmatched; |
|
1805 |
} |
|
1806 |
|
|
1807 |
if (left_tree == right_tree) { |
|
1808 |
shrinkOnEdge(e, left_tree); |
|
1809 |
} else { |
|
1810 |
augmentOnEdge(e); |
|
1811 |
unmatched -= 2; |
|
1812 |
} |
|
1813 |
} |
|
1814 |
} break; |
|
1815 |
case D4: |
|
1816 |
splitBlossom(_delta4->top()); |
|
1817 |
break; |
|
1818 |
} |
|
1819 |
} |
|
1820 |
extractMatching(); |
|
1821 |
} |
|
1822 |
|
|
1823 |
/// \brief Run the algorithm. |
|
1824 |
/// |
|
1825 |
/// This method runs the \c %MaxWeightedMatching algorithm. |
|
1826 |
/// |
|
1827 |
/// \note mwm.run() is just a shortcut of the following code. |
|
1828 |
/// \code |
|
1829 |
/// mwm.init(); |
|
1830 |
/// mwm.start(); |
|
1831 |
/// \endcode |
|
1832 |
void run() { |
|
1833 |
init(); |
|
1834 |
start(); |
|
1835 |
} |
|
1836 |
|
|
1837 |
/// @} |
|
1838 |
|
|
1839 |
/// \name Primal Solution |
|
1840 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
1841 |
/// matching.\n |
|
1842 |
/// Either \ref run() or \ref start() function should be called before |
|
1843 |
/// using them. |
|
1844 |
|
|
1845 |
/// @{ |
|
1846 |
|
|
1847 |
/// \brief Return the weight of the matching. |
|
1848 |
/// |
|
1849 |
/// This function returns the weight of the found matching. |
|
1850 |
/// |
|
1851 |
/// \pre Either run() or start() must be called before using this function. |
|
1852 |
Value matchingWeight() const { |
|
1853 |
Value sum = 0; |
|
1854 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1855 |
if ((*_matching)[n] != INVALID) { |
|
1856 |
sum += _weight[(*_matching)[n]]; |
|
1857 |
} |
|
1858 |
} |
|
1859 |
return sum /= 2; |
|
1860 |
} |
|
1861 |
|
|
1862 |
/// \brief Return the size (cardinality) of the matching. |
|
1863 |
/// |
|
1864 |
/// This function returns the size (cardinality) of the found matching. |
|
1865 |
/// |
|
1866 |
/// \pre Either run() or start() must be called before using this function. |
|
1867 |
int matchingSize() const { |
|
1868 |
int num = 0; |
|
1869 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1870 |
if ((*_matching)[n] != INVALID) { |
|
1871 |
++num; |
|
1872 |
} |
|
1873 |
} |
|
1874 |
return num /= 2; |
|
1875 |
} |
|
1876 |
|
|
1877 |
/// \brief Return \c true if the given edge is in the matching. |
|
1878 |
/// |
|
1879 |
/// This function returns \c true if the given edge is in the found |
|
1880 |
/// matching. |
|
1881 |
/// |
|
1882 |
/// \pre Either run() or start() must be called before using this function. |
|
1883 |
bool matching(const Edge& edge) const { |
|
1884 |
return edge == (*_matching)[_graph.u(edge)]; |
|
1885 |
} |
|
1886 |
|
|
1887 |
/// \brief Return the matching arc (or edge) incident to the given node. |
|
1888 |
/// |
|
1889 |
/// This function returns the matching arc (or edge) incident to the |
|
1890 |
/// given node in the found matching or \c INVALID if the node is |
|
1891 |
/// not covered by the matching. |
|
1892 |
/// |
|
1893 |
/// \pre Either run() or start() must be called before using this function. |
|
1894 |
Arc matching(const Node& node) const { |
|
1895 |
return (*_matching)[node]; |
|
1896 |
} |
|
1897 |
|
|
1898 |
/// \brief Return a const reference to the matching map. |
|
1899 |
/// |
|
1900 |
/// This function returns a const reference to a node map that stores |
|
1901 |
/// the matching arc (or edge) incident to each node. |
|
1902 |
const MatchingMap& matchingMap() const { |
|
1903 |
return *_matching; |
|
1904 |
} |
|
1905 |
|
|
1906 |
/// \brief Return the mate of the given node. |
|
1907 |
/// |
|
1908 |
/// This function returns the mate of the given node in the found |
|
1909 |
/// matching or \c INVALID if the node is not covered by the matching. |
|
1910 |
/// |
|
1911 |
/// \pre Either run() or start() must be called before using this function. |
|
1912 |
Node mate(const Node& node) const { |
|
1913 |
return (*_matching)[node] != INVALID ? |
|
1914 |
_graph.target((*_matching)[node]) : INVALID; |
|
1915 |
} |
|
1916 |
|
|
1917 |
/// @} |
|
1918 |
|
|
1919 |
/// \name Dual Solution |
|
1920 |
/// Functions to get the dual solution.\n |
|
1921 |
/// Either \ref run() or \ref start() function should be called before |
|
1922 |
/// using them. |
|
1923 |
|
|
1924 |
/// @{ |
|
1925 |
|
|
1926 |
/// \brief Return the value of the dual solution. |
|
1927 |
/// |
|
1928 |
/// This function returns the value of the dual solution. |
|
1929 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
1930 |
/// "dual scale". |
|
1931 |
/// |
|
1932 |
/// \pre Either run() or start() must be called before using this function. |
|
1933 |
Value dualValue() const { |
|
1934 |
Value sum = 0; |
|
1935 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1936 |
sum += nodeValue(n); |
|
1937 |
} |
|
1938 |
for (int i = 0; i < blossomNum(); ++i) { |
|
1939 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
|
1940 |
} |
|
1941 |
return sum; |
|
1942 |
} |
|
1943 |
|
|
1944 |
/// \brief Return the dual value (potential) of the given node. |
|
1945 |
/// |
|
1946 |
/// This function returns the dual value (potential) of the given node. |
|
1947 |
/// |
|
1948 |
/// \pre Either run() or start() must be called before using this function. |
|
1949 |
Value nodeValue(const Node& n) const { |
|
1950 |
return (*_node_potential)[n]; |
|
1951 |
} |
|
1952 |
|
|
1953 |
/// \brief Return the number of the blossoms in the basis. |
|
1954 |
/// |
|
1955 |
/// This function returns the number of the blossoms in the basis. |
|
1956 |
/// |
|
1957 |
/// \pre Either run() or start() must be called before using this function. |
|
1958 |
/// \see BlossomIt |
|
1959 |
int blossomNum() const { |
|
1960 |
return _blossom_potential.size(); |
|
1961 |
} |
|
1962 |
|
|
1963 |
/// \brief Return the number of the nodes in the given blossom. |
|
1964 |
/// |
|
1965 |
/// This function returns the number of the nodes in the given blossom. |
|
1966 |
/// |
|
1967 |
/// \pre Either run() or start() must be called before using this function. |
|
1968 |
/// \see BlossomIt |
|
1969 |
int blossomSize(int k) const { |
|
1970 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
|
1971 |
} |
|
1972 |
|
|
1973 |
/// \brief Return the dual value (ptential) of the given blossom. |
|
1974 |
/// |
|
1975 |
/// This function returns the dual value (ptential) of the given blossom. |
|
1976 |
/// |
|
1977 |
/// \pre Either run() or start() must be called before using this function. |
|
1978 |
Value blossomValue(int k) const { |
|
1979 |
return _blossom_potential[k].value; |
|
1980 |
} |
|
1981 |
|
|
1982 |
/// \brief Iterator for obtaining the nodes of a blossom. |
|
1983 |
/// |
|
1984 |
/// This class provides an iterator for obtaining the nodes of the |
|
1985 |
/// given blossom. It lists a subset of the nodes. |
|
1986 |
/// Before using this iterator, you must allocate a |
|
1987 |
/// MaxWeightedMatching class and execute it. |
|
1988 |
class BlossomIt { |
|
1989 |
public: |
|
1990 |
|
|
1991 |
/// \brief Constructor. |
|
1992 |
/// |
|
1993 |
/// Constructor to get the nodes of the given variable. |
|
1994 |
/// |
|
1995 |
/// \pre Either \ref MaxWeightedMatching::run() "algorithm.run()" or |
|
1996 |
/// \ref MaxWeightedMatching::start() "algorithm.start()" must be |
|
1997 |
/// called before initializing this iterator. |
|
1998 |
BlossomIt(const MaxWeightedMatching& algorithm, int variable) |
|
1999 |
: _algorithm(&algorithm) |
|
2000 |
{ |
|
2001 |
_index = _algorithm->_blossom_potential[variable].begin; |
|
2002 |
_last = _algorithm->_blossom_potential[variable].end; |
|
2003 |
} |
|
2004 |
|
|
2005 |
/// \brief Conversion to \c Node. |
|
2006 |
/// |
|
2007 |
/// Conversion to \c Node. |
|
2008 |
operator Node() const { |
|
2009 |
return _algorithm->_blossom_node_list[_index]; |
|
2010 |
} |
|
2011 |
|
|
2012 |
/// \brief Increment operator. |
|
2013 |
/// |
|
2014 |
/// Increment operator. |
|
2015 |
BlossomIt& operator++() { |
|
2016 |
++_index; |
|
2017 |
return *this; |
|
2018 |
} |
|
2019 |
|
|
2020 |
/// \brief Validity checking |
|
2021 |
/// |
|
2022 |
/// Checks whether the iterator is invalid. |
|
2023 |
bool operator==(Invalid) const { return _index == _last; } |
|
2024 |
|
|
2025 |
/// \brief Validity checking |
|
2026 |
/// |
|
2027 |
/// Checks whether the iterator is valid. |
|
2028 |
bool operator!=(Invalid) const { return _index != _last; } |
|
2029 |
|
|
2030 |
private: |
|
2031 |
const MaxWeightedMatching* _algorithm; |
|
2032 |
int _last; |
|
2033 |
int _index; |
|
2034 |
}; |
|
2035 |
|
|
2036 |
/// @} |
|
2037 |
|
|
2038 |
}; |
|
2039 |
|
|
2040 |
/// \ingroup matching |
|
2041 |
/// |
|
2042 |
/// \brief Weighted perfect matching in general graphs |
|
2043 |
/// |
|
2044 |
/// This class provides an efficient implementation of Edmond's |
|
2045 |
/// maximum weighted perfect matching algorithm. The implementation |
|
2046 |
/// is based on extensive use of priority queues and provides |
|
2047 |
/// \f$O(nm\log n)\f$ time complexity. |
|
2048 |
/// |
|
2049 |
/// The maximum weighted perfect matching problem is to find a subset of |
|
2050 |
/// the edges in an undirected graph with maximum overall weight for which |
|
2051 |
/// each node has exactly one incident edge. |
|
2052 |
/// It can be formulated with the following linear program. |
|
2053 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
|
2054 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
|
2055 |
\quad \forall B\in\mathcal{O}\f] */ |
|
2056 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
|
2057 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
|
2058 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
|
2059 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
|
2060 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
|
2061 |
/// subsets of the nodes. |
|
2062 |
/// |
|
2063 |
/// The algorithm calculates an optimal matching and a proof of the |
|
2064 |
/// optimality. The solution of the dual problem can be used to check |
|
2065 |
/// the result of the algorithm. The dual linear problem is the |
|
2066 |
/// following. |
|
2067 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge |
|
2068 |
w_{uv} \quad \forall uv\in E\f] */ |
|
2069 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
|
2070 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
|
2071 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
|
2072 |
/// |
|
2073 |
/// The algorithm can be executed with the run() function. |
|
2074 |
/// After it the matching (the primal solution) and the dual solution |
|
2075 |
/// can be obtained using the query functions and the |
|
2076 |
/// \ref MaxWeightedPerfectMatching::BlossomIt "BlossomIt" nested class, |
|
2077 |
/// which is able to iterate on the nodes of a blossom. |
|
2078 |
/// If the value type is integer, then the dual solution is multiplied |
|
2079 |
/// by \ref MaxWeightedMatching::dualScale "4". |
|
2080 |
/// |
|
2081 |
/// \tparam GR The undirected graph type the algorithm runs on. |
|
2082 |
/// \tparam WM The type edge weight map. The default type is |
|
2083 |
/// \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
|
2084 |
#ifdef DOXYGEN |
|
2085 |
template <typename GR, typename WM> |
|
2086 |
#else |
|
2087 |
template <typename GR, |
|
2088 |
typename WM = typename GR::template EdgeMap<int> > |
|
2089 |
#endif |
|
2090 |
class MaxWeightedPerfectMatching { |
|
2091 |
public: |
|
2092 |
|
|
2093 |
/// The graph type of the algorithm |
|
2094 |
typedef GR Graph; |
|
2095 |
/// The type of the edge weight map |
|
2096 |
typedef WM WeightMap; |
|
2097 |
/// The value type of the edge weights |
|
2098 |
typedef typename WeightMap::Value Value; |
|
2099 |
|
|
2100 |
/// \brief Scaling factor for dual solution |
|
2101 |
/// |
|
2102 |
/// Scaling factor for dual solution, it is equal to 4 or 1 |
|
2103 |
/// according to the value type. |
|
2104 |
static const int dualScale = |
|
2105 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
|
2106 |
|
|
2107 |
/// The type of the matching map |
|
2108 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
|
2109 |
MatchingMap; |
|
2110 |
|
|
2111 |
private: |
|
2112 |
|
|
2113 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
2114 |
|
|
2115 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
|
2116 |
typedef std::vector<Node> BlossomNodeList; |
|
2117 |
|
|
2118 |
struct BlossomVariable { |
|
2119 |
int begin, end; |
|
2120 |
Value value; |
|
2121 |
|
|
2122 |
BlossomVariable(int _begin, int _end, Value _value) |
|
2123 |
: begin(_begin), end(_end), value(_value) {} |
|
2124 |
|
|
2125 |
}; |
|
2126 |
|
|
2127 |
typedef std::vector<BlossomVariable> BlossomPotential; |
|
2128 |
|
|
2129 |
const Graph& _graph; |
|
2130 |
const WeightMap& _weight; |
|
2131 |
|
|
2132 |
MatchingMap* _matching; |
|
2133 |
|
|
2134 |
NodePotential* _node_potential; |
|
2135 |
|
|
2136 |
BlossomPotential _blossom_potential; |
|
2137 |
BlossomNodeList _blossom_node_list; |
|
2138 |
|
|
2139 |
int _node_num; |
|
2140 |
int _blossom_num; |
|
2141 |
|
|
2142 |
typedef RangeMap<int> IntIntMap; |
|
2143 |
|
|
2144 |
enum Status { |
|
2145 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
2146 |
}; |
|
2147 |
|
|
2148 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
|
2149 |
struct BlossomData { |
|
2150 |
int tree; |
|
2151 |
Status status; |
|
2152 |
Arc pred, next; |
|
2153 |
Value pot, offset; |
|
2154 |
}; |
|
2155 |
|
|
2156 |
IntNodeMap *_blossom_index; |
|
2157 |
BlossomSet *_blossom_set; |
|
2158 |
RangeMap<BlossomData>* _blossom_data; |
|
2159 |
|
|
2160 |
IntNodeMap *_node_index; |
|
2161 |
IntArcMap *_node_heap_index; |
|
2162 |
|
|
2163 |
struct NodeData { |
|
2164 |
|
|
2165 |
NodeData(IntArcMap& node_heap_index) |
|
2166 |
: heap(node_heap_index) {} |
|
2167 |
|
|
2168 |
int blossom; |
|
2169 |
Value pot; |
|
2170 |
BinHeap<Value, IntArcMap> heap; |
|
2171 |
std::map<int, Arc> heap_index; |
|
2172 |
|
|
2173 |
int tree; |
|
2174 |
}; |
|
2175 |
|
|
2176 |
RangeMap<NodeData>* _node_data; |
|
2177 |
|
|
2178 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
|
2179 |
|
|
2180 |
IntIntMap *_tree_set_index; |
|
2181 |
TreeSet *_tree_set; |
|
2182 |
|
|
2183 |
IntIntMap *_delta2_index; |
|
2184 |
BinHeap<Value, IntIntMap> *_delta2; |
|
2185 |
|
|
2186 |
IntEdgeMap *_delta3_index; |
|
2187 |
BinHeap<Value, IntEdgeMap> *_delta3; |
|
2188 |
|
|
2189 |
IntIntMap *_delta4_index; |
|
2190 |
BinHeap<Value, IntIntMap> *_delta4; |
|
2191 |
|
|
2192 |
Value _delta_sum; |
|
2193 |
|
|
2194 |
void createStructures() { |
|
2195 |
_node_num = countNodes(_graph); |
|
2196 |
_blossom_num = _node_num * 3 / 2; |
|
2197 |
|
|
2198 |
if (!_matching) { |
|
2199 |
_matching = new MatchingMap(_graph); |
|
2200 |
} |
|
2201 |
if (!_node_potential) { |
|
2202 |
_node_potential = new NodePotential(_graph); |
|
2203 |
} |
|
2204 |
if (!_blossom_set) { |
|
2205 |
_blossom_index = new IntNodeMap(_graph); |
|
2206 |
_blossom_set = new BlossomSet(*_blossom_index); |
|
2207 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
|
2208 |
} |
|
2209 |
|
|
2210 |
if (!_node_index) { |
|
2211 |
_node_index = new IntNodeMap(_graph); |
|
2212 |
_node_heap_index = new IntArcMap(_graph); |
|
2213 |
_node_data = new RangeMap<NodeData>(_node_num, |
|
2214 |
NodeData(*_node_heap_index)); |
|
2215 |
} |
|
2216 |
|
|
2217 |
if (!_tree_set) { |
|
2218 |
_tree_set_index = new IntIntMap(_blossom_num); |
|
2219 |
_tree_set = new TreeSet(*_tree_set_index); |
|
2220 |
} |
|
2221 |
if (!_delta2) { |
|
2222 |
_delta2_index = new IntIntMap(_blossom_num); |
|
2223 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
|
2224 |
} |
|
2225 |
if (!_delta3) { |
|
2226 |
_delta3_index = new IntEdgeMap(_graph); |
|
2227 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
|
2228 |
} |
|
2229 |
if (!_delta4) { |
|
2230 |
_delta4_index = new IntIntMap(_blossom_num); |
|
2231 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
|
2232 |
} |
|
2233 |
} |
|
2234 |
|
|
2235 |
void destroyStructures() { |
|
2236 |
_node_num = countNodes(_graph); |
|
2237 |
_blossom_num = _node_num * 3 / 2; |
|
2238 |
|
|
2239 |
if (_matching) { |
|
2240 |
delete _matching; |
|
2241 |
} |
|
2242 |
if (_node_potential) { |
|
2243 |
delete _node_potential; |
|
2244 |
} |
|
2245 |
if (_blossom_set) { |
|
2246 |
delete _blossom_index; |
|
2247 |
delete _blossom_set; |
|
2248 |
delete _blossom_data; |
|
2249 |
} |
|
2250 |
|
|
2251 |
if (_node_index) { |
|
2252 |
delete _node_index; |
|
2253 |
delete _node_heap_index; |
|
2254 |
delete _node_data; |
|
2255 |
} |
|
2256 |
|
|
2257 |
if (_tree_set) { |
|
2258 |
delete _tree_set_index; |
|
2259 |
delete _tree_set; |
|
2260 |
} |
|
2261 |
if (_delta2) { |
|
2262 |
delete _delta2_index; |
|
2263 |
delete _delta2; |
|
2264 |
} |
|
2265 |
if (_delta3) { |
|
2266 |
delete _delta3_index; |
|
2267 |
delete _delta3; |
|
2268 |
} |
|
2269 |
if (_delta4) { |
|
2270 |
delete _delta4_index; |
|
2271 |
delete _delta4; |
|
2272 |
} |
|
2273 |
} |
|
2274 |
|
|
2275 |
void matchedToEven(int blossom, int tree) { |
|
2276 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
2277 |
_delta2->erase(blossom); |
|
2278 |
} |
|
2279 |
|
|
2280 |
if (!_blossom_set->trivial(blossom)) { |
|
2281 |
(*_blossom_data)[blossom].pot -= |
|
2282 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
|
2283 |
} |
|
2284 |
|
|
2285 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
2286 |
n != INVALID; ++n) { |
|
2287 |
|
|
2288 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
2289 |
int ni = (*_node_index)[n]; |
|
2290 |
|
|
2291 |
(*_node_data)[ni].heap.clear(); |
|
2292 |
(*_node_data)[ni].heap_index.clear(); |
|
2293 |
|
|
2294 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
|
2295 |
|
|
2296 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
2297 |
Node v = _graph.source(e); |
|
2298 |
int vb = _blossom_set->find(v); |
|
2299 |
int vi = (*_node_index)[v]; |
|
2300 |
|
|
2301 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
2302 |
dualScale * _weight[e]; |
|
2303 |
|
|
2304 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
2305 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
|
2306 |
_delta3->push(e, rw / 2); |
|
2307 |
} |
|
2308 |
} else { |
|
2309 |
typename std::map<int, Arc>::iterator it = |
|
2310 |
(*_node_data)[vi].heap_index.find(tree); |
|
2311 |
|
|
2312 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
2313 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
|
2314 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
2315 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
2316 |
it->second = e; |
|
2317 |
} |
|
2318 |
} else { |
|
2319 |
(*_node_data)[vi].heap.push(e, rw); |
|
2320 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
2321 |
} |
|
2322 |
|
|
2323 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
|
2324 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
2325 |
|
|
2326 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
2327 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
|
2328 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
2329 |
(*_blossom_data)[vb].offset); |
|
2330 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
2331 |
(*_blossom_data)[vb].offset){ |
|
2332 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
2333 |
(*_blossom_data)[vb].offset); |
|
2334 |
} |
|
2335 |
} |
|
2336 |
} |
|
2337 |
} |
|
2338 |
} |
|
2339 |
} |
|
2340 |
(*_blossom_data)[blossom].offset = 0; |
|
2341 |
} |
|
2342 |
|
|
2343 |
void matchedToOdd(int blossom) { |
|
2344 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
2345 |
_delta2->erase(blossom); |
|
2346 |
} |
|
2347 |
(*_blossom_data)[blossom].offset += _delta_sum; |
|
2348 |
if (!_blossom_set->trivial(blossom)) { |
|
2349 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
|
2350 |
(*_blossom_data)[blossom].offset); |
|
2351 |
} |
|
2352 |
} |
|
2353 |
|
|
2354 |
void evenToMatched(int blossom, int tree) { |
|
2355 |
if (!_blossom_set->trivial(blossom)) { |
|
2356 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
|
2357 |
} |
|
2358 |
|
|
2359 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
2360 |
n != INVALID; ++n) { |
|
2361 |
int ni = (*_node_index)[n]; |
|
2362 |
(*_node_data)[ni].pot -= _delta_sum; |
|
2363 |
|
|
2364 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
2365 |
Node v = _graph.source(e); |
|
2366 |
int vb = _blossom_set->find(v); |
|
2367 |
int vi = (*_node_index)[v]; |
|
2368 |
|
|
2369 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
2370 |
dualScale * _weight[e]; |
|
2371 |
|
|
2372 |
if (vb == blossom) { |
|
2373 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
2374 |
_delta3->erase(e); |
|
2375 |
} |
|
2376 |
} else if ((*_blossom_data)[vb].status == EVEN) { |
|
2377 |
|
|
2378 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
2379 |
_delta3->erase(e); |
|
2380 |
} |
|
2381 |
|
|
2382 |
int vt = _tree_set->find(vb); |
|
2383 |
|
|
2384 |
if (vt != tree) { |
|
2385 |
|
|
2386 |
Arc r = _graph.oppositeArc(e); |
|
2387 |
|
|
2388 |
typename std::map<int, Arc>::iterator it = |
|
2389 |
(*_node_data)[ni].heap_index.find(vt); |
|
2390 |
|
|
2391 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
2392 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
2393 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
2394 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
2395 |
it->second = r; |
|
2396 |
} |
|
2397 |
} else { |
|
2398 |
(*_node_data)[ni].heap.push(r, rw); |
|
2399 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
2400 |
} |
|
2401 |
|
|
2402 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
|
2403 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
2404 |
|
|
2405 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
|
2406 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
2407 |
(*_blossom_data)[blossom].offset); |
|
2408 |
} else if ((*_delta2)[blossom] > |
|
2409 |
_blossom_set->classPrio(blossom) - |
|
2410 |
(*_blossom_data)[blossom].offset){ |
|
2411 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
2412 |
(*_blossom_data)[blossom].offset); |
|
2413 |
} |
|
2414 |
} |
|
2415 |
} |
|
2416 |
} else { |
|
2417 |
|
|
2418 |
typename std::map<int, Arc>::iterator it = |
|
2419 |
(*_node_data)[vi].heap_index.find(tree); |
|
2420 |
|
|
2421 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
2422 |
(*_node_data)[vi].heap.erase(it->second); |
|
2423 |
(*_node_data)[vi].heap_index.erase(it); |
|
2424 |
if ((*_node_data)[vi].heap.empty()) { |
|
2425 |
_blossom_set->increase(v, std::numeric_limits<Value>::max()); |
|
2426 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
|
2427 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
|
2428 |
} |
|
2429 |
|
|
2430 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
2431 |
if (_blossom_set->classPrio(vb) == |
|
2432 |
std::numeric_limits<Value>::max()) { |
|
2433 |
_delta2->erase(vb); |
|
2434 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
|
2435 |
(*_blossom_data)[vb].offset) { |
|
2436 |
_delta2->increase(vb, _blossom_set->classPrio(vb) - |
|
2437 |
(*_blossom_data)[vb].offset); |
|
2438 |
} |
|
2439 |
} |
|
2440 |
} |
|
2441 |
} |
|
2442 |
} |
|
2443 |
} |
|
2444 |
} |
|
2445 |
|
|
2446 |
void oddToMatched(int blossom) { |
|
2447 |
(*_blossom_data)[blossom].offset -= _delta_sum; |
|
2448 |
|
|
2449 |
if (_blossom_set->classPrio(blossom) != |
|
2450 |
std::numeric_limits<Value>::max()) { |
|
2451 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
2452 |
(*_blossom_data)[blossom].offset); |
|
2453 |
} |
|
2454 |
|
|
2455 |
if (!_blossom_set->trivial(blossom)) { |
|
2456 |
_delta4->erase(blossom); |
|
2457 |
} |
|
2458 |
} |
|
2459 |
|
|
2460 |
void oddToEven(int blossom, int tree) { |
|
2461 |
if (!_blossom_set->trivial(blossom)) { |
|
2462 |
_delta4->erase(blossom); |
|
2463 |
(*_blossom_data)[blossom].pot -= |
|
2464 |
2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
|
2465 |
} |
|
2466 |
|
|
2467 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
2468 |
n != INVALID; ++n) { |
|
2469 |
int ni = (*_node_index)[n]; |
|
2470 |
|
|
2471 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
2472 |
|
|
2473 |
(*_node_data)[ni].heap.clear(); |
|
2474 |
(*_node_data)[ni].heap_index.clear(); |
|
2475 |
(*_node_data)[ni].pot += |
|
2476 |
2 * _delta_sum - (*_blossom_data)[blossom].offset; |
|
2477 |
|
|
2478 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
2479 |
Node v = _graph.source(e); |
|
2480 |
int vb = _blossom_set->find(v); |
|
2481 |
int vi = (*_node_index)[v]; |
|
2482 |
|
|
2483 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
2484 |
dualScale * _weight[e]; |
|
2485 |
|
|
2486 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
2487 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
|
2488 |
_delta3->push(e, rw / 2); |
|
2489 |
} |
|
2490 |
} else { |
|
2491 |
|
|
2492 |
typename std::map<int, Arc>::iterator it = |
|
2493 |
(*_node_data)[vi].heap_index.find(tree); |
|
2494 |
|
|
2495 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
2496 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
|
2497 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
2498 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
2499 |
it->second = e; |
|
2500 |
} |
|
2501 |
} else { |
|
2502 |
(*_node_data)[vi].heap.push(e, rw); |
|
2503 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
2504 |
} |
|
2505 |
|
|
2506 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
|
2507 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
2508 |
|
|
2509 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
2510 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
|
2511 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
2512 |
(*_blossom_data)[vb].offset); |
|
2513 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
2514 |
(*_blossom_data)[vb].offset) { |
|
2515 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
2516 |
(*_blossom_data)[vb].offset); |
|
2517 |
} |
|
2518 |
} |
|
2519 |
} |
|
2520 |
} |
|
2521 |
} |
|
2522 |
} |
|
2523 |
(*_blossom_data)[blossom].offset = 0; |
|
2524 |
} |
|
2525 |
|
|
2526 |
void alternatePath(int even, int tree) { |
|
2527 |
int odd; |
|
2528 |
|
|
2529 |
evenToMatched(even, tree); |
|
2530 |
(*_blossom_data)[even].status = MATCHED; |
|
2531 |
|
|
2532 |
while ((*_blossom_data)[even].pred != INVALID) { |
|
2533 |
odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
|
2534 |
(*_blossom_data)[odd].status = MATCHED; |
|
2535 |
oddToMatched(odd); |
|
2536 |
(*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
|
2537 |
|
|
2538 |
even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
|
2539 |
(*_blossom_data)[even].status = MATCHED; |
|
2540 |
evenToMatched(even, tree); |
|
2541 |
(*_blossom_data)[even].next = |
|
2542 |
_graph.oppositeArc((*_blossom_data)[odd].pred); |
|
2543 |
} |
|
2544 |
|
|
2545 |
} |
|
2546 |
|
|
2547 |
void destroyTree(int tree) { |
|
2548 |
for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
|
2549 |
if ((*_blossom_data)[b].status == EVEN) { |
|
2550 |
(*_blossom_data)[b].status = MATCHED; |
|
2551 |
evenToMatched(b, tree); |
|
2552 |
} else if ((*_blossom_data)[b].status == ODD) { |
|
2553 |
(*_blossom_data)[b].status = MATCHED; |
|
2554 |
oddToMatched(b); |
|
2555 |
} |
|
2556 |
} |
|
2557 |
_tree_set->eraseClass(tree); |
|
2558 |
} |
|
2559 |
|
|
2560 |
void augmentOnEdge(const Edge& edge) { |
|
2561 |
|
|
2562 |
int left = _blossom_set->find(_graph.u(edge)); |
|
2563 |
int right = _blossom_set->find(_graph.v(edge)); |
|
2564 |
|
|
2565 |
int left_tree = _tree_set->find(left); |
|
2566 |
alternatePath(left, left_tree); |
|
2567 |
destroyTree(left_tree); |
|
2568 |
|
|
2569 |
int right_tree = _tree_set->find(right); |
|
2570 |
alternatePath(right, right_tree); |
|
2571 |
destroyTree(right_tree); |
|
2572 |
|
|
2573 |
(*_blossom_data)[left].next = _graph.direct(edge, true); |
|
2574 |
(*_blossom_data)[right].next = _graph.direct(edge, false); |
|
2575 |
} |
|
2576 |
|
|
2577 |
void extendOnArc(const Arc& arc) { |
|
2578 |
int base = _blossom_set->find(_graph.target(arc)); |
|
2579 |
int tree = _tree_set->find(base); |
|
2580 |
|
|
2581 |
int odd = _blossom_set->find(_graph.source(arc)); |
|
2582 |
_tree_set->insert(odd, tree); |
|
2583 |
(*_blossom_data)[odd].status = ODD; |
|
2584 |
matchedToOdd(odd); |
|
2585 |
(*_blossom_data)[odd].pred = arc; |
|
2586 |
|
|
2587 |
int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
|
2588 |
(*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
|
2589 |
_tree_set->insert(even, tree); |
|
2590 |
(*_blossom_data)[even].status = EVEN; |
|
2591 |
matchedToEven(even, tree); |
|
2592 |
} |
|
2593 |
|
|
2594 |
void shrinkOnEdge(const Edge& edge, int tree) { |
|
2595 |
int nca = -1; |
|
2596 |
std::vector<int> left_path, right_path; |
|
2597 |
|
|
2598 |
{ |
|
2599 |
std::set<int> left_set, right_set; |
|
2600 |
int left = _blossom_set->find(_graph.u(edge)); |
|
2601 |
left_path.push_back(left); |
|
2602 |
left_set.insert(left); |
|
2603 |
|
|
2604 |
int right = _blossom_set->find(_graph.v(edge)); |
|
2605 |
right_path.push_back(right); |
|
2606 |
right_set.insert(right); |
|
2607 |
|
|
2608 |
while (true) { |
|
2609 |
|
|
2610 |
if ((*_blossom_data)[left].pred == INVALID) break; |
|
2611 |
|
|
2612 |
left = |
|
2613 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
|
2614 |
left_path.push_back(left); |
|
2615 |
left = |
|
2616 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
|
2617 |
left_path.push_back(left); |
|
2618 |
|
|
2619 |
left_set.insert(left); |
|
2620 |
|
|
2621 |
if (right_set.find(left) != right_set.end()) { |
|
2622 |
nca = left; |
|
2623 |
break; |
|
2624 |
} |
|
2625 |
|
|
2626 |
if ((*_blossom_data)[right].pred == INVALID) break; |
|
2627 |
|
|
2628 |
right = |
|
2629 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
|
2630 |
right_path.push_back(right); |
|
2631 |
right = |
|
2632 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
|
2633 |
right_path.push_back(right); |
|
2634 |
|
|
2635 |
right_set.insert(right); |
|
2636 |
|
|
2637 |
if (left_set.find(right) != left_set.end()) { |
|
2638 |
nca = right; |
|
2639 |
break; |
|
2640 |
} |
|
2641 |
|
|
2642 |
} |
|
2643 |
|
|
2644 |
if (nca == -1) { |
|
2645 |
if ((*_blossom_data)[left].pred == INVALID) { |
|
2646 |
nca = right; |
|
2647 |
while (left_set.find(nca) == left_set.end()) { |
|
2648 |
nca = |
|
2649 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
2650 |
right_path.push_back(nca); |
|
2651 |
nca = |
|
2652 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
2653 |
right_path.push_back(nca); |
|
2654 |
} |
|
2655 |
} else { |
|
2656 |
nca = left; |
|
2657 |
while (right_set.find(nca) == right_set.end()) { |
|
2658 |
nca = |
|
2659 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
2660 |
left_path.push_back(nca); |
|
2661 |
nca = |
|
2662 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
2663 |
left_path.push_back(nca); |
|
2664 |
} |
|
2665 |
} |
|
2666 |
} |
|
2667 |
} |
|
2668 |
|
|
2669 |
std::vector<int> subblossoms; |
|
2670 |
Arc prev; |
|
2671 |
|
|
2672 |
prev = _graph.direct(edge, true); |
|
2673 |
for (int i = 0; left_path[i] != nca; i += 2) { |
|
2674 |
subblossoms.push_back(left_path[i]); |
|
2675 |
(*_blossom_data)[left_path[i]].next = prev; |
|
2676 |
_tree_set->erase(left_path[i]); |
|
2677 |
|
|
2678 |
subblossoms.push_back(left_path[i + 1]); |
|
2679 |
(*_blossom_data)[left_path[i + 1]].status = EVEN; |
|
2680 |
oddToEven(left_path[i + 1], tree); |
|
2681 |
_tree_set->erase(left_path[i + 1]); |
|
2682 |
prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
|
2683 |
} |
|
2684 |
|
|
2685 |
int k = 0; |
|
2686 |
while (right_path[k] != nca) ++k; |
|
2687 |
|
|
2688 |
subblossoms.push_back(nca); |
|
2689 |
(*_blossom_data)[nca].next = prev; |
|
2690 |
|
|
2691 |
for (int i = k - 2; i >= 0; i -= 2) { |
|
2692 |
subblossoms.push_back(right_path[i + 1]); |
|
2693 |
(*_blossom_data)[right_path[i + 1]].status = EVEN; |
|
2694 |
oddToEven(right_path[i + 1], tree); |
|
2695 |
_tree_set->erase(right_path[i + 1]); |
|
2696 |
|
|
2697 |
(*_blossom_data)[right_path[i + 1]].next = |
|
2698 |
(*_blossom_data)[right_path[i + 1]].pred; |
|
2699 |
|
|
2700 |
subblossoms.push_back(right_path[i]); |
|
2701 |
_tree_set->erase(right_path[i]); |
|
2702 |
} |
|
2703 |
|
|
2704 |
int surface = |
|
2705 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
2706 |
|
|
2707 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
|
2708 |
if (!_blossom_set->trivial(subblossoms[i])) { |
|
2709 |
(*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
|
2710 |
} |
|
2711 |
(*_blossom_data)[subblossoms[i]].status = MATCHED; |
|
2712 |
} |
|
2713 |
|
|
2714 |
(*_blossom_data)[surface].pot = -2 * _delta_sum; |
|
2715 |
(*_blossom_data)[surface].offset = 0; |
|
2716 |
(*_blossom_data)[surface].status = EVEN; |
|
2717 |
(*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
|
2718 |
(*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
|
2719 |
|
|
2720 |
_tree_set->insert(surface, tree); |
|
2721 |
_tree_set->erase(nca); |
|
2722 |
} |
|
2723 |
|
|
2724 |
void splitBlossom(int blossom) { |
|
2725 |
Arc next = (*_blossom_data)[blossom].next; |
|
2726 |
Arc pred = (*_blossom_data)[blossom].pred; |
|
2727 |
|
|
2728 |
int tree = _tree_set->find(blossom); |
|
2729 |
|
|
2730 |
(*_blossom_data)[blossom].status = MATCHED; |
|
2731 |
oddToMatched(blossom); |
|
2732 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
2733 |
_delta2->erase(blossom); |
|
2734 |
} |
|
2735 |
|
|
2736 |
std::vector<int> subblossoms; |
|
2737 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
|
2738 |
|
|
2739 |
Value offset = (*_blossom_data)[blossom].offset; |
|
2740 |
int b = _blossom_set->find(_graph.source(pred)); |
|
2741 |
int d = _blossom_set->find(_graph.source(next)); |
|
2742 |
|
|
2743 |
int ib = -1, id = -1; |
|
2744 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
|
2745 |
if (subblossoms[i] == b) ib = i; |
|
2746 |
if (subblossoms[i] == d) id = i; |
|
2747 |
|
|
2748 |
(*_blossom_data)[subblossoms[i]].offset = offset; |
|
2749 |
if (!_blossom_set->trivial(subblossoms[i])) { |
|
2750 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
|
2751 |
} |
|
2752 |
if (_blossom_set->classPrio(subblossoms[i]) != |
|
2753 |
std::numeric_limits<Value>::max()) { |
|
2754 |
_delta2->push(subblossoms[i], |
|
2755 |
_blossom_set->classPrio(subblossoms[i]) - |
|
2756 |
(*_blossom_data)[subblossoms[i]].offset); |
|
2757 |
} |
|
2758 |
} |
|
2759 |
|
|
2760 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
|
2761 |
for (int i = (id + 1) % subblossoms.size(); |
|
2762 |
i != ib; i = (i + 2) % subblossoms.size()) { |
|
2763 |
int sb = subblossoms[i]; |
|
2764 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
2765 |
(*_blossom_data)[sb].next = |
|
2766 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
2767 |
} |
|
2768 |
|
|
2769 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
|
2770 |
int sb = subblossoms[i]; |
|
2771 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
2772 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
|
2773 |
|
|
2774 |
(*_blossom_data)[sb].status = ODD; |
|
2775 |
matchedToOdd(sb); |
|
2776 |
_tree_set->insert(sb, tree); |
|
2777 |
(*_blossom_data)[sb].pred = pred; |
|
2778 |
(*_blossom_data)[sb].next = |
|
2779 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
2780 |
|
|
2781 |
pred = (*_blossom_data)[ub].next; |
|
2782 |
|
|
2783 |
(*_blossom_data)[tb].status = EVEN; |
|
2784 |
matchedToEven(tb, tree); |
|
2785 |
_tree_set->insert(tb, tree); |
|
2786 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
|
2787 |
} |
|
2788 |
|
|
2789 |
(*_blossom_data)[subblossoms[id]].status = ODD; |
|
2790 |
matchedToOdd(subblossoms[id]); |
|
2791 |
_tree_set->insert(subblossoms[id], tree); |
|
2792 |
(*_blossom_data)[subblossoms[id]].next = next; |
|
2793 |
(*_blossom_data)[subblossoms[id]].pred = pred; |
|
2794 |
|
|
2795 |
} else { |
|
2796 |
|
|
2797 |
for (int i = (ib + 1) % subblossoms.size(); |
|
2798 |
i != id; i = (i + 2) % subblossoms.size()) { |
|
2799 |
int sb = subblossoms[i]; |
|
2800 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
2801 |
(*_blossom_data)[sb].next = |
|
2802 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
2803 |
} |
|
2804 |
|
|
2805 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
|
2806 |
int sb = subblossoms[i]; |
|
2807 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
2808 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
|
2809 |
|
|
2810 |
(*_blossom_data)[sb].status = ODD; |
|
2811 |
matchedToOdd(sb); |
|
2812 |
_tree_set->insert(sb, tree); |
|
2813 |
(*_blossom_data)[sb].next = next; |
|
2814 |
(*_blossom_data)[sb].pred = |
|
2815 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
2816 |
|
|
2817 |
(*_blossom_data)[tb].status = EVEN; |
|
2818 |
matchedToEven(tb, tree); |
|
2819 |
_tree_set->insert(tb, tree); |
|
2820 |
(*_blossom_data)[tb].pred = |
|
2821 |
(*_blossom_data)[tb].next = |
|
2822 |
_graph.oppositeArc((*_blossom_data)[ub].next); |
|
2823 |
next = (*_blossom_data)[ub].next; |
|
2824 |
} |
|
2825 |
|
|
2826 |
(*_blossom_data)[subblossoms[ib]].status = ODD; |
|
2827 |
matchedToOdd(subblossoms[ib]); |
|
2828 |
_tree_set->insert(subblossoms[ib], tree); |
|
2829 |
(*_blossom_data)[subblossoms[ib]].next = next; |
|
2830 |
(*_blossom_data)[subblossoms[ib]].pred = pred; |
|
2831 |
} |
|
2832 |
_tree_set->erase(blossom); |
|
2833 |
} |
|
2834 |
|
|
2835 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
|
2836 |
if (_blossom_set->trivial(blossom)) { |
|
2837 |
int bi = (*_node_index)[base]; |
|
2838 |
Value pot = (*_node_data)[bi].pot; |
|
2839 |
|
|
2840 |
(*_matching)[base] = matching; |
|
2841 |
_blossom_node_list.push_back(base); |
|
2842 |
(*_node_potential)[base] = pot; |
|
2843 |
} else { |
|
2844 |
|
|
2845 |
Value pot = (*_blossom_data)[blossom].pot; |
|
2846 |
int bn = _blossom_node_list.size(); |
|
2847 |
|
|
2848 |
std::vector<int> subblossoms; |
|
2849 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
|
2850 |
int b = _blossom_set->find(base); |
|
2851 |
int ib = -1; |
|
2852 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
|
2853 |
if (subblossoms[i] == b) { ib = i; break; } |
|
2854 |
} |
|
2855 |
|
|
2856 |
for (int i = 1; i < int(subblossoms.size()); i += 2) { |
|
2857 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
|
2858 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
|
2859 |
|
|
2860 |
Arc m = (*_blossom_data)[tb].next; |
|
2861 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
|
2862 |
extractBlossom(tb, _graph.source(m), m); |
|
2863 |
} |
|
2864 |
extractBlossom(subblossoms[ib], base, matching); |
|
2865 |
|
|
2866 |
int en = _blossom_node_list.size(); |
|
2867 |
|
|
2868 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
|
2869 |
} |
|
2870 |
} |
|
2871 |
|
|
2872 |
void extractMatching() { |
|
2873 |
std::vector<int> blossoms; |
|
2874 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
|
2875 |
blossoms.push_back(c); |
|
2876 |
} |
|
2877 |
|
|
2878 |
for (int i = 0; i < int(blossoms.size()); ++i) { |
|
2879 |
|
|
2880 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
|
2881 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
|
2882 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
|
2883 |
n != INVALID; ++n) { |
|
2884 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
|
2885 |
} |
|
2886 |
|
|
2887 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
|
2888 |
Node base = _graph.source(matching); |
|
2889 |
extractBlossom(blossoms[i], base, matching); |
|
2890 |
} |
|
2891 |
} |
|
2892 |
|
|
2893 |
public: |
|
2894 |
|
|
2895 |
/// \brief Constructor |
|
2896 |
/// |
|
2897 |
/// Constructor. |
|
2898 |
MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight) |
|
2899 |
: _graph(graph), _weight(weight), _matching(0), |
|
2900 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
|
2901 |
_node_num(0), _blossom_num(0), |
|
2902 |
|
|
2903 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
|
2904 |
_node_index(0), _node_heap_index(0), _node_data(0), |
|
2905 |
_tree_set_index(0), _tree_set(0), |
|
2906 |
|
|
2907 |
_delta2_index(0), _delta2(0), |
|
2908 |
_delta3_index(0), _delta3(0), |
|
2909 |
_delta4_index(0), _delta4(0), |
|
2910 |
|
|
2911 |
_delta_sum() {} |
|
2912 |
|
|
2913 |
~MaxWeightedPerfectMatching() { |
|
2914 |
destroyStructures(); |
|
2915 |
} |
|
2916 |
|
|
2917 |
/// \name Execution Control |
|
2918 |
/// The simplest way to execute the algorithm is to use the |
|
2919 |
/// \ref run() member function. |
|
2920 |
|
|
2921 |
///@{ |
|
2922 |
|
|
2923 |
/// \brief Initialize the algorithm |
|
2924 |
/// |
|
2925 |
/// This function initializes the algorithm. |
|
2926 |
void init() { |
|
2927 |
createStructures(); |
|
2928 |
|
|
2929 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
2930 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
2931 |
} |
|
2932 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
2933 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
2934 |
} |
|
2935 |
for (int i = 0; i < _blossom_num; ++i) { |
|
2936 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
2937 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
2938 |
} |
|
2939 |
|
|
2940 |
int index = 0; |
|
2941 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
2942 |
Value max = - std::numeric_limits<Value>::max(); |
|
2943 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
2944 |
if (_graph.target(e) == n) continue; |
|
2945 |
if ((dualScale * _weight[e]) / 2 > max) { |
|
2946 |
max = (dualScale * _weight[e]) / 2; |
|
2947 |
} |
|
2948 |
} |
|
2949 |
(*_node_index)[n] = index; |
|
2950 |
(*_node_data)[index].pot = max; |
|
2951 |
int blossom = |
|
2952 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
2953 |
|
|
2954 |
_tree_set->insert(blossom); |
|
2955 |
|
|
2956 |
(*_blossom_data)[blossom].status = EVEN; |
|
2957 |
(*_blossom_data)[blossom].pred = INVALID; |
|
2958 |
(*_blossom_data)[blossom].next = INVALID; |
|
2959 |
(*_blossom_data)[blossom].pot = 0; |
|
2960 |
(*_blossom_data)[blossom].offset = 0; |
|
2961 |
++index; |
|
2962 |
} |
|
2963 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
2964 |
int si = (*_node_index)[_graph.u(e)]; |
|
2965 |
int ti = (*_node_index)[_graph.v(e)]; |
|
2966 |
if (_graph.u(e) != _graph.v(e)) { |
|
2967 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
2968 |
dualScale * _weight[e]) / 2); |
|
2969 |
} |
|
2970 |
} |
|
2971 |
} |
|
2972 |
|
|
2973 |
/// \brief Start the algorithm |
|
2974 |
/// |
|
2975 |
/// This function starts the algorithm. |
|
2976 |
/// |
|
2977 |
/// \pre \ref init() must be called before using this function. |
|
2978 |
bool start() { |
|
2979 |
enum OpType { |
|
2980 |
D2, D3, D4 |
|
2981 |
}; |
|
2982 |
|
|
2983 |
int unmatched = _node_num; |
|
2984 |
while (unmatched > 0) { |
|
2985 |
Value d2 = !_delta2->empty() ? |
|
2986 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
|
2987 |
|
|
2988 |
Value d3 = !_delta3->empty() ? |
|
2989 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
|
2990 |
|
|
2991 |
Value d4 = !_delta4->empty() ? |
|
2992 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
|
2993 |
|
|
2994 |
_delta_sum = d2; OpType ot = D2; |
|
2995 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
|
2996 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
|
2997 |
|
|
2998 |
if (_delta_sum == std::numeric_limits<Value>::max()) { |
|
2999 |
return false; |
|
3000 |
} |
|
3001 |
|
|
3002 |
switch (ot) { |
|
3003 |
case D2: |
|
3004 |
{ |
|
3005 |
int blossom = _delta2->top(); |
|
3006 |
Node n = _blossom_set->classTop(blossom); |
|
3007 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
|
3008 |
extendOnArc(e); |
|
3009 |
} |
|
3010 |
break; |
|
3011 |
case D3: |
|
3012 |
{ |
|
3013 |
Edge e = _delta3->top(); |
|
3014 |
|
|
3015 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
|
3016 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
|
3017 |
|
|
3018 |
if (left_blossom == right_blossom) { |
|
3019 |
_delta3->pop(); |
|
3020 |
} else { |
|
3021 |
int left_tree = _tree_set->find(left_blossom); |
|
3022 |
int right_tree = _tree_set->find(right_blossom); |
|
3023 |
|
|
3024 |
if (left_tree == right_tree) { |
|
3025 |
shrinkOnEdge(e, left_tree); |
|
3026 |
} else { |
|
3027 |
augmentOnEdge(e); |
|
3028 |
unmatched -= 2; |
|
3029 |
} |
|
3030 |
} |
|
3031 |
} break; |
|
3032 |
case D4: |
|
3033 |
splitBlossom(_delta4->top()); |
|
3034 |
break; |
|
3035 |
} |
|
3036 |
} |
|
3037 |
extractMatching(); |
|
3038 |
return true; |
|
3039 |
} |
|
3040 |
|
|
3041 |
/// \brief Run the algorithm. |
|
3042 |
/// |
|
3043 |
/// This method runs the \c %MaxWeightedPerfectMatching algorithm. |
|
3044 |
/// |
|
3045 |
/// \note mwpm.run() is just a shortcut of the following code. |
|
3046 |
/// \code |
|
3047 |
/// mwpm.init(); |
|
3048 |
/// mwpm.start(); |
|
3049 |
/// \endcode |
|
3050 |
bool run() { |
|
3051 |
init(); |
|
3052 |
return start(); |
|
3053 |
} |
|
3054 |
|
|
3055 |
/// @} |
|
3056 |
|
|
3057 |
/// \name Primal Solution |
|
3058 |
/// Functions to get the primal solution, i.e. the maximum weighted |
|
3059 |
/// perfect matching.\n |
|
3060 |
/// Either \ref run() or \ref start() function should be called before |
|
3061 |
/// using them. |
|
3062 |
|
|
3063 |
/// @{ |
|
3064 |
|
|
3065 |
/// \brief Return the weight of the matching. |
|
3066 |
/// |
|
3067 |
/// This function returns the weight of the found matching. |
|
3068 |
/// |
|
3069 |
/// \pre Either run() or start() must be called before using this function. |
|
3070 |
Value matchingWeight() const { |
|
3071 |
Value sum = 0; |
|
3072 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3073 |
if ((*_matching)[n] != INVALID) { |
|
3074 |
sum += _weight[(*_matching)[n]]; |
|
3075 |
} |
|
3076 |
} |
|
3077 |
return sum /= 2; |
|
3078 |
} |
|
3079 |
|
|
3080 |
/// \brief Return \c true if the given edge is in the matching. |
|
3081 |
/// |
|
3082 |
/// This function returns \c true if the given edge is in the found |
|
3083 |
/// matching. |
|
3084 |
/// |
|
3085 |
/// \pre Either run() or start() must be called before using this function. |
|
3086 |
bool matching(const Edge& edge) const { |
|
3087 |
return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge; |
|
3088 |
} |
|
3089 |
|
|
3090 |
/// \brief Return the matching arc (or edge) incident to the given node. |
|
3091 |
/// |
|
3092 |
/// This function returns the matching arc (or edge) incident to the |
|
3093 |
/// given node in the found matching or \c INVALID if the node is |
|
3094 |
/// not covered by the matching. |
|
3095 |
/// |
|
3096 |
/// \pre Either run() or start() must be called before using this function. |
|
3097 |
Arc matching(const Node& node) const { |
|
3098 |
return (*_matching)[node]; |
|
3099 |
} |
|
3100 |
|
|
3101 |
/// \brief Return a const reference to the matching map. |
|
3102 |
/// |
|
3103 |
/// This function returns a const reference to a node map that stores |
|
3104 |
/// the matching arc (or edge) incident to each node. |
|
3105 |
const MatchingMap& matchingMap() const { |
|
3106 |
return *_matching; |
|
3107 |
} |
|
3108 |
|
|
3109 |
/// \brief Return the mate of the given node. |
|
3110 |
/// |
|
3111 |
/// This function returns the mate of the given node in the found |
|
3112 |
/// matching or \c INVALID if the node is not covered by the matching. |
|
3113 |
/// |
|
3114 |
/// \pre Either run() or start() must be called before using this function. |
|
3115 |
Node mate(const Node& node) const { |
|
3116 |
return _graph.target((*_matching)[node]); |
|
3117 |
} |
|
3118 |
|
|
3119 |
/// @} |
|
3120 |
|
|
3121 |
/// \name Dual Solution |
|
3122 |
/// Functions to get the dual solution.\n |
|
3123 |
/// Either \ref run() or \ref start() function should be called before |
|
3124 |
/// using them. |
|
3125 |
|
|
3126 |
/// @{ |
|
3127 |
|
|
3128 |
/// \brief Return the value of the dual solution. |
|
3129 |
/// |
|
3130 |
/// This function returns the value of the dual solution. |
|
3131 |
/// It should be equal to the primal value scaled by \ref dualScale |
|
3132 |
/// "dual scale". |
|
3133 |
/// |
|
3134 |
/// \pre Either run() or start() must be called before using this function. |
|
3135 |
Value dualValue() const { |
|
3136 |
Value sum = 0; |
|
3137 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3138 |
sum += nodeValue(n); |
|
3139 |
} |
|
3140 |
for (int i = 0; i < blossomNum(); ++i) { |
|
3141 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
|
3142 |
} |
|
3143 |
return sum; |
|
3144 |
} |
|
3145 |
|
|
3146 |
/// \brief Return the dual value (potential) of the given node. |
|
3147 |
/// |
|
3148 |
/// This function returns the dual value (potential) of the given node. |
|
3149 |
/// |
|
3150 |
/// \pre Either run() or start() must be called before using this function. |
|
3151 |
Value nodeValue(const Node& n) const { |
|
3152 |
return (*_node_potential)[n]; |
|
3153 |
} |
|
3154 |
|
|
3155 |
/// \brief Return the number of the blossoms in the basis. |
|
3156 |
/// |
|
3157 |
/// This function returns the number of the blossoms in the basis. |
|
3158 |
/// |
|
3159 |
/// \pre Either run() or start() must be called before using this function. |
|
3160 |
/// \see BlossomIt |
|
3161 |
int blossomNum() const { |
|
3162 |
return _blossom_potential.size(); |
|
3163 |
} |
|
3164 |
|
|
3165 |
/// \brief Return the number of the nodes in the given blossom. |
|
3166 |
/// |
|
3167 |
/// This function returns the number of the nodes in the given blossom. |
|
3168 |
/// |
|
3169 |
/// \pre Either run() or start() must be called before using this function. |
|
3170 |
/// \see BlossomIt |
|
3171 |
int blossomSize(int k) const { |
|
3172 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
|
3173 |
} |
|
3174 |
|
|
3175 |
/// \brief Return the dual value (ptential) of the given blossom. |
|
3176 |
/// |
|
3177 |
/// This function returns the dual value (ptential) of the given blossom. |
|
3178 |
/// |
|
3179 |
/// \pre Either run() or start() must be called before using this function. |
|
3180 |
Value blossomValue(int k) const { |
|
3181 |
return _blossom_potential[k].value; |
|
3182 |
} |
|
3183 |
|
|
3184 |
/// \brief Iterator for obtaining the nodes of a blossom. |
|
3185 |
/// |
|
3186 |
/// This class provides an iterator for obtaining the nodes of the |
|
3187 |
/// given blossom. It lists a subset of the nodes. |
|
3188 |
/// Before using this iterator, you must allocate a |
|
3189 |
/// MaxWeightedPerfectMatching class and execute it. |
|
3190 |
class BlossomIt { |
|
3191 |
public: |
|
3192 |
|
|
3193 |
/// \brief Constructor. |
|
3194 |
/// |
|
3195 |
/// Constructor to get the nodes of the given variable. |
|
3196 |
/// |
|
3197 |
/// \pre Either \ref MaxWeightedPerfectMatching::run() "algorithm.run()" |
|
3198 |
/// or \ref MaxWeightedPerfectMatching::start() "algorithm.start()" |
|
3199 |
/// must be called before initializing this iterator. |
|
3200 |
BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) |
|
3201 |
: _algorithm(&algorithm) |
|
3202 |
{ |
|
3203 |
_index = _algorithm->_blossom_potential[variable].begin; |
|
3204 |
_last = _algorithm->_blossom_potential[variable].end; |
|
3205 |
} |
|
3206 |
|
|
3207 |
/// \brief Conversion to \c Node. |
|
3208 |
/// |
|
3209 |
/// Conversion to \c Node. |
|
3210 |
operator Node() const { |
|
3211 |
return _algorithm->_blossom_node_list[_index]; |
|
3212 |
} |
|
3213 |
|
|
3214 |
/// \brief Increment operator. |
|
3215 |
/// |
|
3216 |
/// Increment operator. |
|
3217 |
BlossomIt& operator++() { |
|
3218 |
++_index; |
|
3219 |
return *this; |
|
3220 |
} |
|
3221 |
|
|
3222 |
/// \brief Validity checking |
|
3223 |
/// |
|
3224 |
/// This function checks whether the iterator is invalid. |
|
3225 |
bool operator==(Invalid) const { return _index == _last; } |
|
3226 |
|
|
3227 |
/// \brief Validity checking |
|
3228 |
/// |
|
3229 |
/// This function checks whether the iterator is valid. |
|
3230 |
bool operator!=(Invalid) const { return _index != _last; } |
|
3231 |
|
|
3232 |
private: |
|
3233 |
const MaxWeightedPerfectMatching* _algorithm; |
|
3234 |
int _last; |
|
3235 |
int _index; |
|
3236 |
}; |
|
3237 |
|
|
3238 |
/// @} |
|
3239 |
|
|
3240 |
}; |
|
3241 |
|
|
3242 |
} //END OF NAMESPACE LEMON |
|
3243 |
|
|
3244 |
#endif //LEMON_MAX_MATCHING_H |
... | ... |
@@ -54,634 +54,635 @@ |
54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
55 | 55 |
in conjunction with other graph representations. |
56 | 56 |
|
57 | 57 |
You are free to use the graph structure that fit your requirements |
58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
59 | 59 |
with any graph structure. |
60 | 60 |
|
61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
62 | 62 |
*/ |
63 | 63 |
|
64 | 64 |
/** |
65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
66 | 66 |
@ingroup graphs |
67 | 67 |
\brief Adaptor classes for digraphs and graphs |
68 | 68 |
|
69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
70 | 70 |
|
71 | 71 |
The main parts of LEMON are the different graph structures, generic |
72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
73 | 73 |
adaptors. While the previous notions are more or less clear, the |
74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
75 | 75 |
which serve for considering graph structures in different ways. |
76 | 76 |
|
77 | 77 |
A short example makes this much clearer. Suppose that we have an |
78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
79 | 79 |
\code |
80 | 80 |
template <typename Digraph> |
81 | 81 |
int algorithm(const Digraph&); |
82 | 82 |
\endcode |
83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
94 | 94 |
To come back to the reverse oriented graph, in this situation |
95 | 95 |
\code |
96 | 96 |
template<typename Digraph> class ReverseDigraph; |
97 | 97 |
\endcode |
98 | 98 |
template class can be used. The code looks as follows |
99 | 99 |
\code |
100 | 100 |
ListDigraph g; |
101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
102 | 102 |
int result = algorithm(rg); |
103 | 103 |
\endcode |
104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
105 | 105 |
This techniques give rise to an elegant code, and based on stable |
106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
107 | 107 |
|
108 | 108 |
In flow, circulation and matching problems, the residual |
109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
112 | 112 |
obtained. For other examples, the interested user is referred to the |
113 | 113 |
detailed documentation of particular adaptors. |
114 | 114 |
|
115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
116 | 116 |
capabilities of the original graph while in other cases this would be |
117 | 117 |
meaningless. This means that the concepts that they meet depend |
118 | 118 |
on the graph adaptor, and the wrapped graph. |
119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
121 | 121 |
adaptor modifies the original digraph. |
122 | 122 |
However in case of a residual digraph, this operation has no sense. |
123 | 123 |
|
124 | 124 |
Let us stand one more example here to simplify your work. |
125 | 125 |
ReverseDigraph has constructor |
126 | 126 |
\code |
127 | 127 |
ReverseDigraph(Digraph& digraph); |
128 | 128 |
\endcode |
129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
130 | 130 |
reference to a graph is given, then it have to be instantiated with |
131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
132 | 132 |
\code |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 | 141 |
@defgroup semi_adaptors Semi-Adaptor Classes for Graphs |
142 | 142 |
@ingroup graphs |
143 | 143 |
\brief Graph types between real graphs and graph adaptors. |
144 | 144 |
|
145 | 145 |
This group contains some graph types between real graphs and graph adaptors. |
146 | 146 |
These classes wrap graphs to give new functionality as the adaptors do it. |
147 | 147 |
On the other hand they are not light-weight structures as the adaptors. |
148 | 148 |
*/ |
149 | 149 |
|
150 | 150 |
/** |
151 | 151 |
@defgroup maps Maps |
152 | 152 |
@ingroup datas |
153 | 153 |
\brief Map structures implemented in LEMON. |
154 | 154 |
|
155 | 155 |
This group contains the map structures implemented in LEMON. |
156 | 156 |
|
157 | 157 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
158 | 158 |
new maps from existing ones. |
159 | 159 |
|
160 | 160 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
161 | 161 |
*/ |
162 | 162 |
|
163 | 163 |
/** |
164 | 164 |
@defgroup graph_maps Graph Maps |
165 | 165 |
@ingroup maps |
166 | 166 |
\brief Special graph-related maps. |
167 | 167 |
|
168 | 168 |
This group contains maps that are specifically designed to assign |
169 | 169 |
values to the nodes and arcs/edges of graphs. |
170 | 170 |
|
171 | 171 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
172 | 172 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
173 | 173 |
*/ |
174 | 174 |
|
175 | 175 |
/** |
176 | 176 |
\defgroup map_adaptors Map Adaptors |
177 | 177 |
\ingroup maps |
178 | 178 |
\brief Tools to create new maps from existing ones |
179 | 179 |
|
180 | 180 |
This group contains map adaptors that are used to create "implicit" |
181 | 181 |
maps from other maps. |
182 | 182 |
|
183 | 183 |
Most of them are \ref concepts::ReadMap "read-only maps". |
184 | 184 |
They can make arithmetic and logical operations between one or two maps |
185 | 185 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
186 | 186 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
187 | 187 |
|
188 | 188 |
The typical usage of this classes is passing implicit maps to |
189 | 189 |
algorithms. If a function type algorithm is called then the function |
190 | 190 |
type map adaptors can be used comfortable. For example let's see the |
191 | 191 |
usage of map adaptors with the \c graphToEps() function. |
192 | 192 |
\code |
193 | 193 |
Color nodeColor(int deg) { |
194 | 194 |
if (deg >= 2) { |
195 | 195 |
return Color(0.5, 0.0, 0.5); |
196 | 196 |
} else if (deg == 1) { |
197 | 197 |
return Color(1.0, 0.5, 1.0); |
198 | 198 |
} else { |
199 | 199 |
return Color(0.0, 0.0, 0.0); |
200 | 200 |
} |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
Digraph::NodeMap<int> degree_map(graph); |
204 | 204 |
|
205 | 205 |
graphToEps(graph, "graph.eps") |
206 | 206 |
.coords(coords).scaleToA4().undirected() |
207 | 207 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
208 | 208 |
.run(); |
209 | 209 |
\endcode |
210 | 210 |
The \c functorToMap() function makes an \c int to \c Color map from the |
211 | 211 |
\c nodeColor() function. The \c composeMap() compose the \c degree_map |
212 | 212 |
and the previously created map. The composed map is a proper function to |
213 | 213 |
get the color of each node. |
214 | 214 |
|
215 | 215 |
The usage with class type algorithms is little bit harder. In this |
216 | 216 |
case the function type map adaptors can not be used, because the |
217 | 217 |
function map adaptors give back temporary objects. |
218 | 218 |
\code |
219 | 219 |
Digraph graph; |
220 | 220 |
|
221 | 221 |
typedef Digraph::ArcMap<double> DoubleArcMap; |
222 | 222 |
DoubleArcMap length(graph); |
223 | 223 |
DoubleArcMap speed(graph); |
224 | 224 |
|
225 | 225 |
typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap; |
226 | 226 |
TimeMap time(length, speed); |
227 | 227 |
|
228 | 228 |
Dijkstra<Digraph, TimeMap> dijkstra(graph, time); |
229 | 229 |
dijkstra.run(source, target); |
230 | 230 |
\endcode |
231 | 231 |
We have a length map and a maximum speed map on the arcs of a digraph. |
232 | 232 |
The minimum time to pass the arc can be calculated as the division of |
233 | 233 |
the two maps which can be done implicitly with the \c DivMap template |
234 | 234 |
class. We use the implicit minimum time map as the length map of the |
235 | 235 |
\c Dijkstra algorithm. |
236 | 236 |
*/ |
237 | 237 |
|
238 | 238 |
/** |
239 | 239 |
@defgroup matrices Matrices |
240 | 240 |
@ingroup datas |
241 | 241 |
\brief Two dimensional data storages implemented in LEMON. |
242 | 242 |
|
243 | 243 |
This group contains two dimensional data storages implemented in LEMON. |
244 | 244 |
*/ |
245 | 245 |
|
246 | 246 |
/** |
247 | 247 |
@defgroup paths Path Structures |
248 | 248 |
@ingroup datas |
249 | 249 |
\brief %Path structures implemented in LEMON. |
250 | 250 |
|
251 | 251 |
This group contains the path structures implemented in LEMON. |
252 | 252 |
|
253 | 253 |
LEMON provides flexible data structures to work with paths. |
254 | 254 |
All of them have similar interfaces and they can be copied easily with |
255 | 255 |
assignment operators and copy constructors. This makes it easy and |
256 | 256 |
efficient to have e.g. the Dijkstra algorithm to store its result in |
257 | 257 |
any kind of path structure. |
258 | 258 |
|
259 | 259 |
\sa lemon::concepts::Path |
260 | 260 |
*/ |
261 | 261 |
|
262 | 262 |
/** |
263 | 263 |
@defgroup auxdat Auxiliary Data Structures |
264 | 264 |
@ingroup datas |
265 | 265 |
\brief Auxiliary data structures implemented in LEMON. |
266 | 266 |
|
267 | 267 |
This group contains some data structures implemented in LEMON in |
268 | 268 |
order to make it easier to implement combinatorial algorithms. |
269 | 269 |
*/ |
270 | 270 |
|
271 | 271 |
/** |
272 | 272 |
@defgroup algs Algorithms |
273 | 273 |
\brief This group contains the several algorithms |
274 | 274 |
implemented in LEMON. |
275 | 275 |
|
276 | 276 |
This group contains the several algorithms |
277 | 277 |
implemented in LEMON. |
278 | 278 |
*/ |
279 | 279 |
|
280 | 280 |
/** |
281 | 281 |
@defgroup search Graph Search |
282 | 282 |
@ingroup algs |
283 | 283 |
\brief Common graph search algorithms. |
284 | 284 |
|
285 | 285 |
This group contains the common graph search algorithms, namely |
286 | 286 |
\e breadth-first \e search (BFS) and \e depth-first \e search (DFS). |
287 | 287 |
*/ |
288 | 288 |
|
289 | 289 |
/** |
290 | 290 |
@defgroup shortest_path Shortest Path Algorithms |
291 | 291 |
@ingroup algs |
292 | 292 |
\brief Algorithms for finding shortest paths. |
293 | 293 |
|
294 | 294 |
This group contains the algorithms for finding shortest paths in digraphs. |
295 | 295 |
|
296 | 296 |
- \ref Dijkstra algorithm for finding shortest paths from a source node |
297 | 297 |
when all arc lengths are non-negative. |
298 | 298 |
- \ref BellmanFord "Bellman-Ford" algorithm for finding shortest paths |
299 | 299 |
from a source node when arc lenghts can be either positive or negative, |
300 | 300 |
but the digraph should not contain directed cycles with negative total |
301 | 301 |
length. |
302 | 302 |
- \ref FloydWarshall "Floyd-Warshall" and \ref Johnson "Johnson" algorithms |
303 | 303 |
for solving the \e all-pairs \e shortest \e paths \e problem when arc |
304 | 304 |
lenghts can be either positive or negative, but the digraph should |
305 | 305 |
not contain directed cycles with negative total length. |
306 | 306 |
- \ref Suurballe A successive shortest path algorithm for finding |
307 | 307 |
arc-disjoint paths between two nodes having minimum total length. |
308 | 308 |
*/ |
309 | 309 |
|
310 | 310 |
/** |
311 | 311 |
@defgroup max_flow Maximum Flow Algorithms |
312 | 312 |
@ingroup algs |
313 | 313 |
\brief Algorithms for finding maximum flows. |
314 | 314 |
|
315 | 315 |
This group contains the algorithms for finding maximum flows and |
316 | 316 |
feasible circulations. |
317 | 317 |
|
318 | 318 |
The \e maximum \e flow \e problem is to find a flow of maximum value between |
319 | 319 |
a single source and a single target. Formally, there is a \f$G=(V,A)\f$ |
320 | 320 |
digraph, a \f$cap:A\rightarrow\mathbf{R}^+_0\f$ capacity function and |
321 | 321 |
\f$s, t \in V\f$ source and target nodes. |
322 | 322 |
A maximum flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of the |
323 | 323 |
following optimization problem. |
324 | 324 |
|
325 | 325 |
\f[ \max\sum_{a\in\delta_{out}(s)}f(a) - \sum_{a\in\delta_{in}(s)}f(a) \f] |
326 | 326 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) = \sum_{a\in\delta_{in}(v)} f(a) |
327 | 327 |
\qquad \forall v\in V\setminus\{s,t\} \f] |
328 | 328 |
\f[ 0 \leq f(a) \leq cap(a) \qquad \forall a\in A \f] |
329 | 329 |
|
330 | 330 |
LEMON contains several algorithms for solving maximum flow problems: |
331 | 331 |
- \ref EdmondsKarp Edmonds-Karp algorithm. |
332 | 332 |
- \ref Preflow Goldberg-Tarjan's preflow push-relabel algorithm. |
333 | 333 |
- \ref DinitzSleatorTarjan Dinitz's blocking flow algorithm with dynamic trees. |
334 | 334 |
- \ref GoldbergTarjan Preflow push-relabel algorithm with dynamic trees. |
335 | 335 |
|
336 | 336 |
In most cases the \ref Preflow "Preflow" algorithm provides the |
337 | 337 |
fastest method for computing a maximum flow. All implementations |
338 | 338 |
provides functions to also query the minimum cut, which is the dual |
339 | 339 |
problem of the maximum flow. |
340 | 340 |
*/ |
341 | 341 |
|
342 | 342 |
/** |
343 | 343 |
@defgroup min_cost_flow Minimum Cost Flow Algorithms |
344 | 344 |
@ingroup algs |
345 | 345 |
|
346 | 346 |
\brief Algorithms for finding minimum cost flows and circulations. |
347 | 347 |
|
348 | 348 |
This group contains the algorithms for finding minimum cost flows and |
349 | 349 |
circulations. |
350 | 350 |
|
351 | 351 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
352 | 352 |
minimum total cost from a set of supply nodes to a set of demand nodes |
353 | 353 |
in a network with capacity constraints and arc costs. |
354 | 354 |
Formally, let \f$G=(V,A)\f$ be a digraph, |
355 | 355 |
\f$lower, upper: A\rightarrow\mathbf{Z}^+_0\f$ denote the lower and |
356 | 356 |
upper bounds for the flow values on the arcs, |
357 | 357 |
\f$cost: A\rightarrow\mathbf{Z}^+_0\f$ denotes the cost per unit flow |
358 | 358 |
on the arcs, and |
359 | 359 |
\f$supply: V\rightarrow\mathbf{Z}\f$ denotes the supply/demand values |
360 | 360 |
of the nodes. |
361 | 361 |
A minimum cost flow is an \f$f:A\rightarrow\mathbf{R}^+_0\f$ solution of |
362 | 362 |
the following optimization problem. |
363 | 363 |
|
364 | 364 |
\f[ \min\sum_{a\in A} f(a) cost(a) \f] |
365 | 365 |
\f[ \sum_{a\in\delta_{out}(v)} f(a) - \sum_{a\in\delta_{in}(v)} f(a) = |
366 | 366 |
supply(v) \qquad \forall v\in V \f] |
367 | 367 |
\f[ lower(a) \leq f(a) \leq upper(a) \qquad \forall a\in A \f] |
368 | 368 |
|
369 | 369 |
LEMON contains several algorithms for solving minimum cost flow problems: |
370 | 370 |
- \ref CycleCanceling Cycle-canceling algorithms. |
371 | 371 |
- \ref CapacityScaling Successive shortest path algorithm with optional |
372 | 372 |
capacity scaling. |
373 | 373 |
- \ref CostScaling Push-relabel and augment-relabel algorithms based on |
374 | 374 |
cost scaling. |
375 | 375 |
- \ref NetworkSimplex Primal network simplex algorithm with various |
376 | 376 |
pivot strategies. |
377 | 377 |
*/ |
378 | 378 |
|
379 | 379 |
/** |
380 | 380 |
@defgroup min_cut Minimum Cut Algorithms |
381 | 381 |
@ingroup algs |
382 | 382 |
|
383 | 383 |
\brief Algorithms for finding minimum cut in graphs. |
384 | 384 |
|
385 | 385 |
This group contains the algorithms for finding minimum cut in graphs. |
386 | 386 |
|
387 | 387 |
The \e minimum \e cut \e problem is to find a non-empty and non-complete |
388 | 388 |
\f$X\f$ subset of the nodes with minimum overall capacity on |
389 | 389 |
outgoing arcs. Formally, there is a \f$G=(V,A)\f$ digraph, a |
390 | 390 |
\f$cap: A\rightarrow\mathbf{R}^+_0\f$ capacity function. The minimum |
391 | 391 |
cut is the \f$X\f$ solution of the next optimization problem: |
392 | 392 |
|
393 | 393 |
\f[ \min_{X \subset V, X\not\in \{\emptyset, V\}} |
394 | 394 |
\sum_{uv\in A, u\in X, v\not\in X}cap(uv) \f] |
395 | 395 |
|
396 | 396 |
LEMON contains several algorithms related to minimum cut problems: |
397 | 397 |
|
398 | 398 |
- \ref HaoOrlin "Hao-Orlin algorithm" for calculating minimum cut |
399 | 399 |
in directed graphs. |
400 | 400 |
- \ref NagamochiIbaraki "Nagamochi-Ibaraki algorithm" for |
401 | 401 |
calculating minimum cut in undirected graphs. |
402 | 402 |
- \ref GomoryHu "Gomory-Hu tree computation" for calculating |
403 | 403 |
all-pairs minimum cut in undirected graphs. |
404 | 404 |
|
405 | 405 |
If you want to find minimum cut just between two distinict nodes, |
406 | 406 |
see the \ref max_flow "maximum flow problem". |
407 | 407 |
*/ |
408 | 408 |
|
409 | 409 |
/** |
410 | 410 |
@defgroup graph_properties Connectivity and Other Graph Properties |
411 | 411 |
@ingroup algs |
412 | 412 |
\brief Algorithms for discovering the graph properties |
413 | 413 |
|
414 | 414 |
This group contains the algorithms for discovering the graph properties |
415 | 415 |
like connectivity, bipartiteness, euler property, simplicity etc. |
416 | 416 |
|
417 | 417 |
\image html edge_biconnected_components.png |
418 | 418 |
\image latex edge_biconnected_components.eps "bi-edge-connected components" width=\textwidth |
419 | 419 |
*/ |
420 | 420 |
|
421 | 421 |
/** |
422 | 422 |
@defgroup planar Planarity Embedding and Drawing |
423 | 423 |
@ingroup algs |
424 | 424 |
\brief Algorithms for planarity checking, embedding and drawing |
425 | 425 |
|
426 | 426 |
This group contains the algorithms for planarity checking, |
427 | 427 |
embedding and drawing. |
428 | 428 |
|
429 | 429 |
\image html planar.png |
430 | 430 |
\image latex planar.eps "Plane graph" width=\textwidth |
431 | 431 |
*/ |
432 | 432 |
|
433 | 433 |
/** |
434 | 434 |
@defgroup matching Matching Algorithms |
435 | 435 |
@ingroup algs |
436 | 436 |
\brief Algorithms for finding matchings in graphs and bipartite graphs. |
437 | 437 |
|
438 |
This group contains |
|
438 |
This group contains the algorithms for calculating |
|
439 | 439 |
matchings in graphs and bipartite graphs. The general matching problem is |
440 |
finding a subset of the |
|
440 |
finding a subset of the edges for which each node has at most one incident |
|
441 |
edge. |
|
441 | 442 |
|
442 | 443 |
There are several different algorithms for calculate matchings in |
443 | 444 |
graphs. The matching problems in bipartite graphs are generally |
444 | 445 |
easier than in general graphs. The goal of the matching optimization |
445 | 446 |
can be finding maximum cardinality, maximum weight or minimum cost |
446 | 447 |
matching. The search can be constrained to find perfect or |
447 | 448 |
maximum cardinality matching. |
448 | 449 |
|
449 | 450 |
The matching algorithms implemented in LEMON: |
450 | 451 |
- \ref MaxBipartiteMatching Hopcroft-Karp augmenting path algorithm |
451 | 452 |
for calculating maximum cardinality matching in bipartite graphs. |
452 | 453 |
- \ref PrBipartiteMatching Push-relabel algorithm |
453 | 454 |
for calculating maximum cardinality matching in bipartite graphs. |
454 | 455 |
- \ref MaxWeightedBipartiteMatching |
455 | 456 |
Successive shortest path algorithm for calculating maximum weighted |
456 | 457 |
matching and maximum weighted bipartite matching in bipartite graphs. |
457 | 458 |
- \ref MinCostMaxBipartiteMatching |
458 | 459 |
Successive shortest path algorithm for calculating minimum cost maximum |
459 | 460 |
matching in bipartite graphs. |
460 | 461 |
- \ref MaxMatching Edmond's blossom shrinking algorithm for calculating |
461 | 462 |
maximum cardinality matching in general graphs. |
462 | 463 |
- \ref MaxWeightedMatching Edmond's blossom shrinking algorithm for calculating |
463 | 464 |
maximum weighted matching in general graphs. |
464 | 465 |
- \ref MaxWeightedPerfectMatching |
465 | 466 |
Edmond's blossom shrinking algorithm for calculating maximum weighted |
466 | 467 |
perfect matching in general graphs. |
467 | 468 |
|
468 | 469 |
\image html bipartite_matching.png |
469 | 470 |
\image latex bipartite_matching.eps "Bipartite Matching" width=\textwidth |
470 | 471 |
*/ |
471 | 472 |
|
472 | 473 |
/** |
473 | 474 |
@defgroup spantree Minimum Spanning Tree Algorithms |
474 | 475 |
@ingroup algs |
475 | 476 |
\brief Algorithms for finding a minimum cost spanning tree in a graph. |
476 | 477 |
|
477 | 478 |
This group contains the algorithms for finding a minimum cost spanning |
478 | 479 |
tree in a graph. |
479 | 480 |
*/ |
480 | 481 |
|
481 | 482 |
/** |
482 | 483 |
@defgroup auxalg Auxiliary Algorithms |
483 | 484 |
@ingroup algs |
484 | 485 |
\brief Auxiliary algorithms implemented in LEMON. |
485 | 486 |
|
486 | 487 |
This group contains some algorithms implemented in LEMON |
487 | 488 |
in order to make it easier to implement complex algorithms. |
488 | 489 |
*/ |
489 | 490 |
|
490 | 491 |
/** |
491 | 492 |
@defgroup approx Approximation Algorithms |
492 | 493 |
@ingroup algs |
493 | 494 |
\brief Approximation algorithms. |
494 | 495 |
|
495 | 496 |
This group contains the approximation and heuristic algorithms |
496 | 497 |
implemented in LEMON. |
497 | 498 |
*/ |
498 | 499 |
|
499 | 500 |
/** |
500 | 501 |
@defgroup gen_opt_group General Optimization Tools |
501 | 502 |
\brief This group contains some general optimization frameworks |
502 | 503 |
implemented in LEMON. |
503 | 504 |
|
504 | 505 |
This group contains some general optimization frameworks |
505 | 506 |
implemented in LEMON. |
506 | 507 |
*/ |
507 | 508 |
|
508 | 509 |
/** |
509 | 510 |
@defgroup lp_group Lp and Mip Solvers |
510 | 511 |
@ingroup gen_opt_group |
511 | 512 |
\brief Lp and Mip solver interfaces for LEMON. |
512 | 513 |
|
513 | 514 |
This group contains Lp and Mip solver interfaces for LEMON. The |
514 | 515 |
various LP solvers could be used in the same manner with this |
515 | 516 |
interface. |
516 | 517 |
*/ |
517 | 518 |
|
518 | 519 |
/** |
519 | 520 |
@defgroup lp_utils Tools for Lp and Mip Solvers |
520 | 521 |
@ingroup lp_group |
521 | 522 |
\brief Helper tools to the Lp and Mip solvers. |
522 | 523 |
|
523 | 524 |
This group adds some helper tools to general optimization framework |
524 | 525 |
implemented in LEMON. |
525 | 526 |
*/ |
526 | 527 |
|
527 | 528 |
/** |
528 | 529 |
@defgroup metah Metaheuristics |
529 | 530 |
@ingroup gen_opt_group |
530 | 531 |
\brief Metaheuristics for LEMON library. |
531 | 532 |
|
532 | 533 |
This group contains some metaheuristic optimization tools. |
533 | 534 |
*/ |
534 | 535 |
|
535 | 536 |
/** |
536 | 537 |
@defgroup utils Tools and Utilities |
537 | 538 |
\brief Tools and utilities for programming in LEMON |
538 | 539 |
|
539 | 540 |
Tools and utilities for programming in LEMON. |
540 | 541 |
*/ |
541 | 542 |
|
542 | 543 |
/** |
543 | 544 |
@defgroup gutils Basic Graph Utilities |
544 | 545 |
@ingroup utils |
545 | 546 |
\brief Simple basic graph utilities. |
546 | 547 |
|
547 | 548 |
This group contains some simple basic graph utilities. |
548 | 549 |
*/ |
549 | 550 |
|
550 | 551 |
/** |
551 | 552 |
@defgroup misc Miscellaneous Tools |
552 | 553 |
@ingroup utils |
553 | 554 |
\brief Tools for development, debugging and testing. |
554 | 555 |
|
555 | 556 |
This group contains several useful tools for development, |
556 | 557 |
debugging and testing. |
557 | 558 |
*/ |
558 | 559 |
|
559 | 560 |
/** |
560 | 561 |
@defgroup timecount Time Measuring and Counting |
561 | 562 |
@ingroup misc |
562 | 563 |
\brief Simple tools for measuring the performance of algorithms. |
563 | 564 |
|
564 | 565 |
This group contains simple tools for measuring the performance |
565 | 566 |
of algorithms. |
566 | 567 |
*/ |
567 | 568 |
|
568 | 569 |
/** |
569 | 570 |
@defgroup exceptions Exceptions |
570 | 571 |
@ingroup utils |
571 | 572 |
\brief Exceptions defined in LEMON. |
572 | 573 |
|
573 | 574 |
This group contains the exceptions defined in LEMON. |
574 | 575 |
*/ |
575 | 576 |
|
576 | 577 |
/** |
577 | 578 |
@defgroup io_group Input-Output |
578 | 579 |
\brief Graph Input-Output methods |
579 | 580 |
|
580 | 581 |
This group contains the tools for importing and exporting graphs |
581 | 582 |
and graph related data. Now it supports the \ref lgf-format |
582 | 583 |
"LEMON Graph Format", the \c DIMACS format and the encapsulated |
583 | 584 |
postscript (EPS) format. |
584 | 585 |
*/ |
585 | 586 |
|
586 | 587 |
/** |
587 | 588 |
@defgroup lemon_io LEMON Graph Format |
588 | 589 |
@ingroup io_group |
589 | 590 |
\brief Reading and writing LEMON Graph Format. |
590 | 591 |
|
591 | 592 |
This group contains methods for reading and writing |
592 | 593 |
\ref lgf-format "LEMON Graph Format". |
593 | 594 |
*/ |
594 | 595 |
|
595 | 596 |
/** |
596 | 597 |
@defgroup eps_io Postscript Exporting |
597 | 598 |
@ingroup io_group |
598 | 599 |
\brief General \c EPS drawer and graph exporter |
599 | 600 |
|
600 | 601 |
This group contains general \c EPS drawing methods and special |
601 | 602 |
graph exporting tools. |
602 | 603 |
*/ |
603 | 604 |
|
604 | 605 |
/** |
605 | 606 |
@defgroup dimacs_group DIMACS format |
606 | 607 |
@ingroup io_group |
607 | 608 |
\brief Read and write files in DIMACS format |
608 | 609 |
|
609 | 610 |
Tools to read a digraph from or write it to a file in DIMACS format data. |
610 | 611 |
*/ |
611 | 612 |
|
612 | 613 |
/** |
613 | 614 |
@defgroup nauty_group NAUTY Format |
614 | 615 |
@ingroup io_group |
615 | 616 |
\brief Read \e Nauty format |
616 | 617 |
|
617 | 618 |
Tool to read graphs from \e Nauty format data. |
618 | 619 |
*/ |
619 | 620 |
|
620 | 621 |
/** |
621 | 622 |
@defgroup concept Concepts |
622 | 623 |
\brief Skeleton classes and concept checking classes |
623 | 624 |
|
624 | 625 |
This group contains the data/algorithm skeletons and concept checking |
625 | 626 |
classes implemented in LEMON. |
626 | 627 |
|
627 | 628 |
The purpose of the classes in this group is fourfold. |
628 | 629 |
|
629 | 630 |
- These classes contain the documentations of the %concepts. In order |
630 | 631 |
to avoid document multiplications, an implementation of a concept |
631 | 632 |
simply refers to the corresponding concept class. |
632 | 633 |
|
633 | 634 |
- These classes declare every functions, <tt>typedef</tt>s etc. an |
634 | 635 |
implementation of the %concepts should provide, however completely |
635 | 636 |
without implementations and real data structures behind the |
636 | 637 |
interface. On the other hand they should provide nothing else. All |
637 | 638 |
the algorithms working on a data structure meeting a certain concept |
638 | 639 |
should compile with these classes. (Though it will not run properly, |
639 | 640 |
of course.) In this way it is easily to check if an algorithm |
640 | 641 |
doesn't use any extra feature of a certain implementation. |
641 | 642 |
|
642 | 643 |
- The concept descriptor classes also provide a <em>checker class</em> |
643 | 644 |
that makes it possible to check whether a certain implementation of a |
644 | 645 |
concept indeed provides all the required features. |
645 | 646 |
|
646 | 647 |
- Finally, They can serve as a skeleton of a new implementation of a concept. |
647 | 648 |
*/ |
648 | 649 |
|
649 | 650 |
/** |
650 | 651 |
@defgroup graph_concepts Graph Structure Concepts |
651 | 652 |
@ingroup concept |
652 | 653 |
\brief Skeleton and concept checking classes for graph structures |
653 | 654 |
|
654 | 655 |
This group contains the skeletons and concept checking classes of LEMON's |
655 | 656 |
graph structures and helper classes used to implement these. |
656 | 657 |
*/ |
657 | 658 |
|
658 | 659 |
/** |
659 | 660 |
@defgroup map_concepts Map Concepts |
660 | 661 |
@ingroup concept |
661 | 662 |
\brief Skeleton and concept checking classes for maps |
662 | 663 |
|
663 | 664 |
This group contains the skeletons and concept checking classes of maps. |
664 | 665 |
*/ |
665 | 666 |
|
666 | 667 |
/** |
667 | 668 |
\anchor demoprograms |
668 | 669 |
|
669 | 670 |
@defgroup demos Demo Programs |
670 | 671 |
|
671 | 672 |
Some demo programs are listed here. Their full source codes can be found in |
672 | 673 |
the \c demo subdirectory of the source tree. |
673 | 674 |
|
674 | 675 |
In order to compile them, use the <tt>make demo</tt> or the |
675 | 676 |
<tt>make check</tt> commands. |
676 | 677 |
*/ |
677 | 678 |
|
678 | 679 |
/** |
679 | 680 |
@defgroup tools Standalone Utility Applications |
680 | 681 |
|
681 | 682 |
Some utility applications are listed here. |
682 | 683 |
|
683 | 684 |
The standard compilation procedure (<tt>./configure;make</tt>) will compile |
684 | 685 |
them, as well. |
685 | 686 |
*/ |
686 | 687 |
|
687 | 688 |
} |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
lemon/lemon.pc.in \ |
3 | 3 |
lemon/CMakeLists.txt |
4 | 4 |
|
5 | 5 |
pkgconfig_DATA += lemon/lemon.pc |
6 | 6 |
|
7 | 7 |
lib_LTLIBRARIES += lemon/libemon.la |
8 | 8 |
|
9 | 9 |
lemon_libemon_la_SOURCES = \ |
10 | 10 |
lemon/arg_parser.cc \ |
11 | 11 |
lemon/base.cc \ |
12 | 12 |
lemon/color.cc \ |
13 | 13 |
lemon/lp_base.cc \ |
14 | 14 |
lemon/lp_skeleton.cc \ |
15 | 15 |
lemon/random.cc \ |
16 | 16 |
lemon/bits/windows.cc |
17 | 17 |
|
18 | 18 |
|
19 | 19 |
lemon_libemon_la_CXXFLAGS = \ |
20 | 20 |
$(AM_CXXFLAGS) \ |
21 | 21 |
$(GLPK_CFLAGS) \ |
22 | 22 |
$(CPLEX_CFLAGS) \ |
23 | 23 |
$(SOPLEX_CXXFLAGS) \ |
24 | 24 |
$(CLP_CXXFLAGS) \ |
25 | 25 |
$(CBC_CXXFLAGS) |
26 | 26 |
|
27 | 27 |
lemon_libemon_la_LDFLAGS = \ |
28 | 28 |
$(GLPK_LIBS) \ |
29 | 29 |
$(CPLEX_LIBS) \ |
30 | 30 |
$(SOPLEX_LIBS) \ |
31 | 31 |
$(CLP_LIBS) \ |
32 | 32 |
$(CBC_LIBS) |
33 | 33 |
|
34 | 34 |
if HAVE_GLPK |
35 | 35 |
lemon_libemon_la_SOURCES += lemon/glpk.cc |
36 | 36 |
endif |
37 | 37 |
|
38 | 38 |
if HAVE_CPLEX |
39 | 39 |
lemon_libemon_la_SOURCES += lemon/cplex.cc |
40 | 40 |
endif |
41 | 41 |
|
42 | 42 |
if HAVE_SOPLEX |
43 | 43 |
lemon_libemon_la_SOURCES += lemon/soplex.cc |
44 | 44 |
endif |
45 | 45 |
|
46 | 46 |
if HAVE_CLP |
47 | 47 |
lemon_libemon_la_SOURCES += lemon/clp.cc |
48 | 48 |
endif |
49 | 49 |
|
50 | 50 |
if HAVE_CBC |
51 | 51 |
lemon_libemon_la_SOURCES += lemon/cbc.cc |
52 | 52 |
endif |
53 | 53 |
|
54 | 54 |
lemon_HEADERS += \ |
55 | 55 |
lemon/adaptors.h \ |
56 | 56 |
lemon/arg_parser.h \ |
57 | 57 |
lemon/assert.h \ |
58 | 58 |
lemon/bfs.h \ |
59 | 59 |
lemon/bin_heap.h \ |
60 | 60 |
lemon/circulation.h \ |
61 | 61 |
lemon/clp.h \ |
62 | 62 |
lemon/color.h \ |
63 | 63 |
lemon/concept_check.h \ |
64 | 64 |
lemon/connectivity.h \ |
65 | 65 |
lemon/counter.h \ |
66 | 66 |
lemon/core.h \ |
67 | 67 |
lemon/cplex.h \ |
68 | 68 |
lemon/dfs.h \ |
69 | 69 |
lemon/dijkstra.h \ |
70 | 70 |
lemon/dim2.h \ |
71 | 71 |
lemon/dimacs.h \ |
72 | 72 |
lemon/edge_set.h \ |
73 | 73 |
lemon/elevator.h \ |
74 | 74 |
lemon/error.h \ |
75 | 75 |
lemon/euler.h \ |
76 | 76 |
lemon/full_graph.h \ |
77 | 77 |
lemon/glpk.h \ |
78 | 78 |
lemon/gomory_hu.h \ |
79 | 79 |
lemon/graph_to_eps.h \ |
80 | 80 |
lemon/grid_graph.h \ |
81 | 81 |
lemon/hypercube_graph.h \ |
82 | 82 |
lemon/kruskal.h \ |
83 | 83 |
lemon/hao_orlin.h \ |
84 | 84 |
lemon/lgf_reader.h \ |
85 | 85 |
lemon/lgf_writer.h \ |
86 | 86 |
lemon/list_graph.h \ |
87 | 87 |
lemon/lp.h \ |
88 | 88 |
lemon/lp_base.h \ |
89 | 89 |
lemon/lp_skeleton.h \ |
90 | 90 |
lemon/list_graph.h \ |
91 | 91 |
lemon/maps.h \ |
92 |
lemon/matching.h \ |
|
92 | 93 |
lemon/math.h \ |
93 |
lemon/max_matching.h \ |
|
94 | 94 |
lemon/min_cost_arborescence.h \ |
95 | 95 |
lemon/nauty_reader.h \ |
96 | 96 |
lemon/path.h \ |
97 | 97 |
lemon/preflow.h \ |
98 | 98 |
lemon/radix_sort.h \ |
99 | 99 |
lemon/random.h \ |
100 | 100 |
lemon/smart_graph.h \ |
101 | 101 |
lemon/soplex.h \ |
102 | 102 |
lemon/suurballe.h \ |
103 | 103 |
lemon/time_measure.h \ |
104 | 104 |
lemon/tolerance.h \ |
105 | 105 |
lemon/unionfind.h \ |
106 | 106 |
lemon/bits/windows.h |
107 | 107 |
|
108 | 108 |
bits_HEADERS += \ |
109 | 109 |
lemon/bits/alteration_notifier.h \ |
110 | 110 |
lemon/bits/array_map.h \ |
111 | 111 |
lemon/bits/base_extender.h \ |
112 | 112 |
lemon/bits/bezier.h \ |
113 | 113 |
lemon/bits/default_map.h \ |
114 | 114 |
lemon/bits/edge_set_extender.h \ |
115 | 115 |
lemon/bits/enable_if.h \ |
116 | 116 |
lemon/bits/graph_adaptor_extender.h \ |
117 | 117 |
lemon/bits/graph_extender.h \ |
118 | 118 |
lemon/bits/map_extender.h \ |
119 | 119 |
lemon/bits/path_dump.h \ |
120 | 120 |
lemon/bits/solver_bits.h \ |
121 | 121 |
lemon/bits/traits.h \ |
122 | 122 |
lemon/bits/variant.h \ |
123 | 123 |
lemon/bits/vector_map.h |
124 | 124 |
|
125 | 125 |
concept_HEADERS += \ |
126 | 126 |
lemon/concepts/digraph.h \ |
127 | 127 |
lemon/concepts/graph.h \ |
128 | 128 |
lemon/concepts/graph_components.h \ |
129 | 129 |
lemon/concepts/heap.h \ |
130 | 130 |
lemon/concepts/maps.h \ |
131 | 131 |
lemon/concepts/path.h |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_EULER_H |
20 | 20 |
#define LEMON_EULER_H |
21 | 21 |
|
22 | 22 |
#include<lemon/core.h> |
23 | 23 |
#include<lemon/adaptors.h> |
24 | 24 |
#include<lemon/connectivity.h> |
25 | 25 |
#include <list> |
26 | 26 |
|
27 | 27 |
/// \ingroup graph_properties |
28 | 28 |
/// \file |
29 |
/// \brief Euler tour |
|
29 |
/// \brief Euler tour iterators and a function for checking the \e Eulerian |
|
30 |
/// property. |
|
30 | 31 |
/// |
31 |
///This file provides an Euler tour iterator and ways to check |
|
32 |
///if a digraph is euler. |
|
33 |
|
|
32 |
///This file provides Euler tour iterators and a function to check |
|
33 |
///if a (di)graph is \e Eulerian. |
|
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 |
///Euler iterator for digraphs. |
|
37 |
///Euler tour iterator for digraphs. |
|
38 | 38 |
|
39 |
/// \ingroup graph_properties |
|
40 |
///This iterator converts to the \c Arc type of the digraph and using |
|
41 |
///operator ++, it provides an Euler tour of a \e directed |
|
42 |
///graph (if there exists). |
|
39 |
/// \ingroup graph_prop |
|
40 |
///This iterator provides an Euler tour (Eulerian circuit) of a \e directed |
|
41 |
///graph (if there exists) and it converts to the \c Arc type of the digraph. |
|
43 | 42 |
/// |
44 |
///For example |
|
45 |
///if the given digraph is Euler (i.e it has only one nontrivial component |
|
46 |
///and the in-degree is equal to the out-degree for all nodes), |
|
47 |
///the following code will put the arcs of \c g |
|
48 |
///to the vector \c et according to an |
|
49 |
///Euler tour of \c g. |
|
43 |
///For example, if the given digraph has an Euler tour (i.e it has only one |
|
44 |
///non-trivial component and the in-degree is equal to the out-degree |
|
45 |
///for all nodes), then the following code will put the arcs of \c g |
|
46 |
///to the vector \c et according to an Euler tour of \c g. |
|
50 | 47 |
///\code |
51 | 48 |
/// std::vector<ListDigraph::Arc> et; |
52 |
/// for(DiEulerIt<ListDigraph> e(g) |
|
49 |
/// for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e) |
|
53 | 50 |
/// et.push_back(e); |
54 | 51 |
///\endcode |
55 |
///If \c g |
|
52 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
|
53 |
///or not contain all arcs. |
|
56 | 54 |
///\sa EulerIt |
57 | 55 |
template<typename GR> |
58 | 56 |
class DiEulerIt |
59 | 57 |
{ |
60 | 58 |
typedef typename GR::Node Node; |
61 | 59 |
typedef typename GR::NodeIt NodeIt; |
62 | 60 |
typedef typename GR::Arc Arc; |
63 | 61 |
typedef typename GR::ArcIt ArcIt; |
64 | 62 |
typedef typename GR::OutArcIt OutArcIt; |
65 | 63 |
typedef typename GR::InArcIt InArcIt; |
66 | 64 |
|
67 | 65 |
const GR &g; |
68 |
typename GR::template NodeMap<OutArcIt> |
|
66 |
typename GR::template NodeMap<OutArcIt> narc; |
|
69 | 67 |
std::list<Arc> euler; |
70 | 68 |
|
71 | 69 |
public: |
72 | 70 |
|
73 | 71 |
///Constructor |
74 | 72 |
|
73 |
///Constructor. |
|
75 | 74 |
///\param gr A digraph. |
76 |
///\param start The starting point of the tour. If it is not given |
|
77 |
/// the tour will start from the first node. |
|
75 |
///\param start The starting point of the tour. If it is not given, |
|
76 |
///the tour will start from the first node that has an outgoing arc. |
|
78 | 77 |
DiEulerIt(const GR &gr, typename GR::Node start = INVALID) |
79 |
: g(gr), |
|
78 |
: g(gr), narc(g) |
|
80 | 79 |
{ |
81 |
if(start==INVALID) start=NodeIt(g); |
|
82 |
for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutArcIt(g,n); |
|
83 |
while(nedge[start]!=INVALID) { |
|
84 |
euler.push_back(nedge[start]); |
|
85 |
Node next=g.target(nedge[start]); |
|
86 |
++nedge[start]; |
|
80 |
if (start==INVALID) { |
|
81 |
NodeIt n(g); |
|
82 |
while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n; |
|
83 |
start=n; |
|
84 |
} |
|
85 |
if (start!=INVALID) { |
|
86 |
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n); |
|
87 |
while (narc[start]!=INVALID) { |
|
88 |
euler.push_back(narc[start]); |
|
89 |
Node next=g.target(narc[start]); |
|
90 |
++narc[start]; |
|
87 | 91 |
start=next; |
88 | 92 |
} |
89 | 93 |
} |
94 |
} |
|
90 | 95 |
|
91 |
///Arc |
|
96 |
///Arc conversion |
|
92 | 97 |
operator Arc() { return euler.empty()?INVALID:euler.front(); } |
98 |
///Compare with \c INVALID |
|
93 | 99 |
bool operator==(Invalid) { return euler.empty(); } |
100 |
///Compare with \c INVALID |
|
94 | 101 |
bool operator!=(Invalid) { return !euler.empty(); } |
95 | 102 |
|
96 | 103 |
///Next arc of the tour |
104 |
|
|
105 |
///Next arc of the tour |
|
106 |
/// |
|
97 | 107 |
DiEulerIt &operator++() { |
98 | 108 |
Node s=g.target(euler.front()); |
99 | 109 |
euler.pop_front(); |
100 |
//This produces a warning.Strange. |
|
101 |
//std::list<Arc>::iterator next=euler.begin(); |
|
102 | 110 |
typename std::list<Arc>::iterator next=euler.begin(); |
103 |
while(nedge[s]!=INVALID) { |
|
104 |
euler.insert(next,nedge[s]); |
|
105 |
Node n=g.target(nedge[s]); |
|
106 |
++nedge[s]; |
|
111 |
while(narc[s]!=INVALID) { |
|
112 |
euler.insert(next,narc[s]); |
|
113 |
Node n=g.target(narc[s]); |
|
114 |
++narc[s]; |
|
107 | 115 |
s=n; |
108 | 116 |
} |
109 | 117 |
return *this; |
110 | 118 |
} |
111 | 119 |
///Postfix incrementation |
112 | 120 |
|
121 |
/// Postfix incrementation. |
|
122 |
/// |
|
113 | 123 |
///\warning This incrementation |
114 |
///returns an \c Arc, not |
|
124 |
///returns an \c Arc, not a \ref DiEulerIt, as one may |
|
115 | 125 |
///expect. |
116 | 126 |
Arc operator++(int) |
117 | 127 |
{ |
118 | 128 |
Arc e=*this; |
119 | 129 |
++(*this); |
120 | 130 |
return e; |
121 | 131 |
} |
122 | 132 |
}; |
123 | 133 |
|
124 |
///Euler iterator for graphs. |
|
134 |
///Euler tour iterator for graphs. |
|
125 | 135 |
|
126 | 136 |
/// \ingroup graph_properties |
127 |
///This iterator converts to the \c Arc (or \c Edge) |
|
128 |
///type of the digraph and using |
|
129 |
///operator ++, it provides an Euler tour of an undirected |
|
130 |
///digraph (if there exists). |
|
137 |
///This iterator provides an Euler tour (Eulerian circuit) of an |
|
138 |
///\e undirected graph (if there exists) and it converts to the \c Arc |
|
139 |
///and \c Edge types of the graph. |
|
131 | 140 |
/// |
132 |
///For example |
|
133 |
///if the given digraph if Euler (i.e it has only one nontrivial component |
|
134 |
/// |
|
141 |
///For example, if the given graph has an Euler tour (i.e it has only one |
|
142 |
///non-trivial component and the degree of each node is even), |
|
135 | 143 |
///the following code will print the arc IDs according to an |
136 | 144 |
///Euler tour of \c g. |
137 | 145 |
///\code |
138 |
/// for(EulerIt<ListGraph> e(g) |
|
146 |
/// for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) { |
|
139 | 147 |
/// std::cout << g.id(Edge(e)) << std::eol; |
140 | 148 |
/// } |
141 | 149 |
///\endcode |
142 |
///Although the iterator provides an Euler tour of an graph, |
|
143 |
///it still returns Arcs in order to indicate the direction of the tour. |
|
144 |
/// |
|
150 |
///Although this iterator is for undirected graphs, it still returns |
|
151 |
///arcs in order to indicate the direction of the tour. |
|
152 |
///(But arcs convert to edges, of course.) |
|
145 | 153 |
/// |
146 |
///If \c g is not Euler then the resulted tour will not be full or closed. |
|
147 |
///\sa EulerIt |
|
154 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
|
155 |
///or not contain all edges. |
|
148 | 156 |
template<typename GR> |
149 | 157 |
class EulerIt |
150 | 158 |
{ |
151 | 159 |
typedef typename GR::Node Node; |
152 | 160 |
typedef typename GR::NodeIt NodeIt; |
153 | 161 |
typedef typename GR::Arc Arc; |
154 | 162 |
typedef typename GR::Edge Edge; |
155 | 163 |
typedef typename GR::ArcIt ArcIt; |
156 | 164 |
typedef typename GR::OutArcIt OutArcIt; |
157 | 165 |
typedef typename GR::InArcIt InArcIt; |
158 | 166 |
|
159 | 167 |
const GR &g; |
160 |
typename GR::template NodeMap<OutArcIt> |
|
168 |
typename GR::template NodeMap<OutArcIt> narc; |
|
161 | 169 |
typename GR::template EdgeMap<bool> visited; |
162 | 170 |
std::list<Arc> euler; |
163 | 171 |
|
164 | 172 |
public: |
165 | 173 |
|
166 | 174 |
///Constructor |
167 | 175 |
|
168 |
///\param gr An graph. |
|
169 |
///\param start The starting point of the tour. If it is not given |
|
170 |
/// |
|
176 |
///Constructor. |
|
177 |
///\param gr A graph. |
|
178 |
///\param start The starting point of the tour. If it is not given, |
|
179 |
///the tour will start from the first node that has an incident edge. |
|
171 | 180 |
EulerIt(const GR &gr, typename GR::Node start = INVALID) |
172 |
: g(gr), |
|
181 |
: g(gr), narc(g), visited(g, false) |
|
173 | 182 |
{ |
174 |
if(start==INVALID) start=NodeIt(g); |
|
175 |
for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutArcIt(g,n); |
|
176 |
while(nedge[start]!=INVALID) { |
|
177 |
euler.push_back(nedge[start]); |
|
178 |
visited[nedge[start]]=true; |
|
179 |
Node next=g.target(nedge[start]); |
|
180 |
|
|
183 |
if (start==INVALID) { |
|
184 |
NodeIt n(g); |
|
185 |
while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n; |
|
186 |
start=n; |
|
187 |
} |
|
188 |
if (start!=INVALID) { |
|
189 |
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n); |
|
190 |
while(narc[start]!=INVALID) { |
|
191 |
euler.push_back(narc[start]); |
|
192 |
visited[narc[start]]=true; |
|
193 |
Node next=g.target(narc[start]); |
|
194 |
++narc[start]; |
|
181 | 195 |
start=next; |
182 |
while( |
|
196 |
while(narc[start]!=INVALID && visited[narc[start]]) ++narc[start]; |
|
197 |
} |
|
183 | 198 |
} |
184 | 199 |
} |
185 | 200 |
|
186 |
///Arc |
|
201 |
///Arc conversion |
|
187 | 202 |
operator Arc() const { return euler.empty()?INVALID:euler.front(); } |
188 |
/// |
|
203 |
///Edge conversion |
|
189 | 204 |
operator Edge() const { return euler.empty()?INVALID:euler.front(); } |
190 |
///\ |
|
205 |
///Compare with \c INVALID |
|
191 | 206 |
bool operator==(Invalid) const { return euler.empty(); } |
192 |
///\ |
|
207 |
///Compare with \c INVALID |
|
193 | 208 |
bool operator!=(Invalid) const { return !euler.empty(); } |
194 | 209 |
|
195 | 210 |
///Next arc of the tour |
211 |
|
|
212 |
///Next arc of the tour |
|
213 |
/// |
|
196 | 214 |
EulerIt &operator++() { |
197 | 215 |
Node s=g.target(euler.front()); |
198 | 216 |
euler.pop_front(); |
199 | 217 |
typename std::list<Arc>::iterator next=euler.begin(); |
200 |
|
|
201 |
while(nedge[s]!=INVALID) { |
|
202 |
while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s]; |
|
203 |
if(nedge[s]==INVALID) break; |
|
218 |
while(narc[s]!=INVALID) { |
|
219 |
while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s]; |
|
220 |
if(narc[s]==INVALID) break; |
|
204 | 221 |
else { |
205 |
euler.insert(next,nedge[s]); |
|
206 |
visited[nedge[s]]=true; |
|
207 |
Node n=g.target(nedge[s]); |
|
208 |
++nedge[s]; |
|
222 |
euler.insert(next,narc[s]); |
|
223 |
visited[narc[s]]=true; |
|
224 |
Node n=g.target(narc[s]); |
|
225 |
++narc[s]; |
|
209 | 226 |
s=n; |
210 | 227 |
} |
211 | 228 |
} |
212 | 229 |
return *this; |
213 | 230 |
} |
214 | 231 |
|
215 | 232 |
///Postfix incrementation |
216 | 233 |
|
217 |
///\warning This incrementation |
|
218 |
///returns an \c Arc, not an \ref EulerIt, as one may |
|
219 |
/// |
|
234 |
/// Postfix incrementation. |
|
235 |
/// |
|
236 |
///\warning This incrementation returns an \c Arc (which converts to |
|
237 |
///an \c Edge), not an \ref EulerIt, as one may expect. |
|
220 | 238 |
Arc operator++(int) |
221 | 239 |
{ |
222 | 240 |
Arc e=*this; |
223 | 241 |
++(*this); |
224 | 242 |
return e; |
225 | 243 |
} |
226 | 244 |
}; |
227 | 245 |
|
228 | 246 |
|
229 |
/// |
|
247 |
///Check if the given graph is \e Eulerian |
|
230 | 248 |
|
231 | 249 |
/// \ingroup graph_properties |
232 |
///Checks if the graph is Eulerian. It works for both directed and undirected |
|
233 |
///graphs. |
|
234 |
///\note By definition, a digraph is called \e Eulerian if |
|
235 |
///and only if it is connected and the number of its incoming and outgoing |
|
250 |
///This function checks if the given graph is \e Eulerian. |
|
251 |
///It works for both directed and undirected graphs. |
|
252 |
/// |
|
253 |
///By definition, a digraph is called \e Eulerian if |
|
254 |
///and only if it is connected and the number of incoming and outgoing |
|
236 | 255 |
///arcs are the same for each node. |
237 | 256 |
///Similarly, an undirected graph is called \e Eulerian if |
238 |
///and only if it is connected and the number of incident arcs is even |
|
239 |
///for each node. <em>Therefore, there are digraphs which are not Eulerian, |
|
240 |
/// |
|
257 |
///and only if it is connected and the number of incident edges is even |
|
258 |
///for each node. |
|
259 |
/// |
|
260 |
///\note There are (di)graphs that are not Eulerian, but still have an |
|
261 |
/// Euler tour, since they may contain isolated nodes. |
|
262 |
/// |
|
263 |
///\sa DiEulerIt, EulerIt |
|
241 | 264 |
template<typename GR> |
242 | 265 |
#ifdef DOXYGEN |
243 | 266 |
bool |
244 | 267 |
#else |
245 | 268 |
typename enable_if<UndirectedTagIndicator<GR>,bool>::type |
246 | 269 |
eulerian(const GR &g) |
247 | 270 |
{ |
248 | 271 |
for(typename GR::NodeIt n(g);n!=INVALID;++n) |
249 | 272 |
if(countIncEdges(g,n)%2) return false; |
250 | 273 |
return connected(g); |
251 | 274 |
} |
252 | 275 |
template<class GR> |
253 | 276 |
typename disable_if<UndirectedTagIndicator<GR>,bool>::type |
254 | 277 |
#endif |
255 | 278 |
eulerian(const GR &g) |
256 | 279 |
{ |
257 | 280 |
for(typename GR::NodeIt n(g);n!=INVALID;++n) |
258 | 281 |
if(countInArcs(g,n)!=countOutArcs(g,n)) return false; |
259 |
return connected( |
|
282 |
return connected(undirector(g)); |
|
260 | 283 |
} |
261 | 284 |
|
262 | 285 |
} |
263 | 286 |
|
264 | 287 |
#endif |
1 | 1 |
INCLUDE_DIRECTORIES( |
2 | 2 |
${PROJECT_SOURCE_DIR} |
3 | 3 |
${PROJECT_BINARY_DIR} |
4 | 4 |
) |
5 | 5 |
|
6 | 6 |
IF(HAVE_GLPK) |
7 | 7 |
INCLUDE_DIRECTORIES(${GLPK_INCLUDE_DIR}) |
8 | 8 |
ENDIF(HAVE_GLPK) |
9 | 9 |
|
10 | 10 |
LINK_DIRECTORIES(${PROJECT_BINARY_DIR}/lemon) |
11 | 11 |
|
12 | 12 |
SET(TESTS |
13 | 13 |
adaptors_test |
14 | 14 |
bfs_test |
15 | 15 |
circulation_test |
16 | 16 |
counter_test |
17 | 17 |
dfs_test |
18 | 18 |
digraph_test |
19 | 19 |
dijkstra_test |
20 | 20 |
dim_test |
21 | 21 |
edge_set_test |
22 | 22 |
error_test |
23 | 23 |
euler_test |
24 | 24 |
gomory_hu_test |
25 | 25 |
graph_copy_test |
26 | 26 |
graph_test |
27 | 27 |
graph_utils_test |
28 | 28 |
hao_orlin_test |
29 | 29 |
heap_test |
30 | 30 |
kruskal_test |
31 | 31 |
maps_test |
32 |
|
|
32 |
matching_test |
|
33 | 33 |
min_cost_arborescence_test |
34 | 34 |
path_test |
35 | 35 |
preflow_test |
36 | 36 |
radix_sort_test |
37 | 37 |
random_test |
38 | 38 |
suurballe_test |
39 | 39 |
time_measure_test |
40 | 40 |
unionfind_test) |
41 | 41 |
|
42 | 42 |
IF(HAVE_LP) |
43 | 43 |
ADD_EXECUTABLE(lp_test lp_test.cc) |
44 | 44 |
IF(HAVE_GLPK) |
45 | 45 |
TARGET_LINK_LIBRARIES(lp_test lemon ${GLPK_LIBRARIES}) |
46 | 46 |
ENDIF(HAVE_GLPK) |
47 | 47 |
ADD_TEST(lp_test lp_test) |
48 | 48 |
|
49 | 49 |
IF(WIN32 AND HAVE_GLPK) |
50 | 50 |
GET_TARGET_PROPERTY(TARGET_LOC lp_test LOCATION) |
51 | 51 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
52 | 52 |
ADD_CUSTOM_COMMAND(TARGET lp_test POST_BUILD |
53 | 53 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
54 | 54 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
55 | 55 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
56 | 56 |
) |
57 | 57 |
ENDIF(WIN32 AND HAVE_GLPK) |
58 | 58 |
ENDIF(HAVE_LP) |
59 | 59 |
|
60 | 60 |
IF(HAVE_MIP) |
61 | 61 |
ADD_EXECUTABLE(mip_test mip_test.cc) |
62 | 62 |
IF(HAVE_GLPK) |
63 | 63 |
TARGET_LINK_LIBRARIES(mip_test lemon ${GLPK_LIBRARIES}) |
64 | 64 |
ENDIF(HAVE_GLPK) |
65 | 65 |
ADD_TEST(mip_test mip_test) |
66 | 66 |
|
67 | 67 |
IF(WIN32 AND HAVE_GLPK) |
68 | 68 |
GET_TARGET_PROPERTY(TARGET_LOC mip_test LOCATION) |
69 | 69 |
GET_FILENAME_COMPONENT(TARGET_PATH ${TARGET_LOC} PATH) |
70 | 70 |
ADD_CUSTOM_COMMAND(TARGET mip_test POST_BUILD |
71 | 71 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/glpk.dll ${TARGET_PATH} |
72 | 72 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/libltdl3.dll ${TARGET_PATH} |
73 | 73 |
COMMAND cmake -E copy ${GLPK_BIN_DIR}/zlib1.dll ${TARGET_PATH} |
74 | 74 |
) |
75 | 75 |
ENDIF(WIN32 AND HAVE_GLPK) |
76 | 76 |
ENDIF(HAVE_MIP) |
77 | 77 |
|
78 | 78 |
FOREACH(TEST_NAME ${TESTS}) |
79 | 79 |
ADD_EXECUTABLE(${TEST_NAME} ${TEST_NAME}.cc) |
80 | 80 |
TARGET_LINK_LIBRARIES(${TEST_NAME} lemon) |
81 | 81 |
ADD_TEST(${TEST_NAME} ${TEST_NAME}) |
82 | 82 |
ENDFOREACH(TEST_NAME) |
1 | 1 |
EXTRA_DIST += \ |
2 | 2 |
test/CMakeLists.txt |
3 | 3 |
|
4 | 4 |
noinst_HEADERS += \ |
5 | 5 |
test/graph_test.h \ |
6 | 6 |
test/test_tools.h |
7 | 7 |
|
8 | 8 |
check_PROGRAMS += \ |
9 | 9 |
test/adaptors_test \ |
10 | 10 |
test/bfs_test \ |
11 | 11 |
test/circulation_test \ |
12 | 12 |
test/counter_test \ |
13 | 13 |
test/dfs_test \ |
14 | 14 |
test/digraph_test \ |
15 | 15 |
test/dijkstra_test \ |
16 | 16 |
test/dim_test \ |
17 | 17 |
test/edge_set_test \ |
18 | 18 |
test/error_test \ |
19 | 19 |
test/euler_test \ |
20 | 20 |
test/gomory_hu_test \ |
21 | 21 |
test/graph_copy_test \ |
22 | 22 |
test/graph_test \ |
23 | 23 |
test/graph_utils_test \ |
24 | 24 |
test/hao_orlin_test \ |
25 | 25 |
test/heap_test \ |
26 | 26 |
test/kruskal_test \ |
27 | 27 |
test/maps_test \ |
28 |
test/ |
|
28 |
test/matching_test \ |
|
29 | 29 |
test/min_cost_arborescence_test \ |
30 | 30 |
test/path_test \ |
31 | 31 |
test/preflow_test \ |
32 | 32 |
test/radix_sort_test \ |
33 | 33 |
test/random_test \ |
34 | 34 |
test/suurballe_test \ |
35 | 35 |
test/test_tools_fail \ |
36 | 36 |
test/test_tools_pass \ |
37 | 37 |
test/time_measure_test \ |
38 | 38 |
test/unionfind_test |
39 | 39 |
|
40 | 40 |
test_test_tools_pass_DEPENDENCIES = demo |
41 | 41 |
|
42 | 42 |
if HAVE_LP |
43 | 43 |
check_PROGRAMS += test/lp_test |
44 | 44 |
endif HAVE_LP |
45 | 45 |
if HAVE_MIP |
46 | 46 |
check_PROGRAMS += test/mip_test |
47 | 47 |
endif HAVE_MIP |
48 | 48 |
|
49 | 49 |
TESTS += $(check_PROGRAMS) |
50 | 50 |
XFAIL_TESTS += test/test_tools_fail$(EXEEXT) |
51 | 51 |
|
52 | 52 |
test_adaptors_test_SOURCES = test/adaptors_test.cc |
53 | 53 |
test_bfs_test_SOURCES = test/bfs_test.cc |
54 | 54 |
test_circulation_test_SOURCES = test/circulation_test.cc |
55 | 55 |
test_counter_test_SOURCES = test/counter_test.cc |
56 | 56 |
test_dfs_test_SOURCES = test/dfs_test.cc |
57 | 57 |
test_digraph_test_SOURCES = test/digraph_test.cc |
58 | 58 |
test_dijkstra_test_SOURCES = test/dijkstra_test.cc |
59 | 59 |
test_dim_test_SOURCES = test/dim_test.cc |
60 | 60 |
test_edge_set_test_SOURCES = test/edge_set_test.cc |
61 | 61 |
test_error_test_SOURCES = test/error_test.cc |
62 | 62 |
test_euler_test_SOURCES = test/euler_test.cc |
63 | 63 |
test_gomory_hu_test_SOURCES = test/gomory_hu_test.cc |
64 | 64 |
test_graph_copy_test_SOURCES = test/graph_copy_test.cc |
65 | 65 |
test_graph_test_SOURCES = test/graph_test.cc |
66 | 66 |
test_graph_utils_test_SOURCES = test/graph_utils_test.cc |
67 | 67 |
test_heap_test_SOURCES = test/heap_test.cc |
68 | 68 |
test_kruskal_test_SOURCES = test/kruskal_test.cc |
69 | 69 |
test_hao_orlin_test_SOURCES = test/hao_orlin_test.cc |
70 | 70 |
test_lp_test_SOURCES = test/lp_test.cc |
71 | 71 |
test_maps_test_SOURCES = test/maps_test.cc |
72 | 72 |
test_mip_test_SOURCES = test/mip_test.cc |
73 |
|
|
73 |
test_matching_test_SOURCES = test/matching_test.cc |
|
74 | 74 |
test_min_cost_arborescence_test_SOURCES = test/min_cost_arborescence_test.cc |
75 | 75 |
test_path_test_SOURCES = test/path_test.cc |
76 | 76 |
test_preflow_test_SOURCES = test/preflow_test.cc |
77 | 77 |
test_radix_sort_test_SOURCES = test/radix_sort_test.cc |
78 | 78 |
test_suurballe_test_SOURCES = test/suurballe_test.cc |
79 | 79 |
test_random_test_SOURCES = test/random_test.cc |
80 | 80 |
test_test_tools_fail_SOURCES = test/test_tools_fail.cc |
81 | 81 |
test_test_tools_pass_SOURCES = test/test_tools_pass.cc |
82 | 82 |
test_time_measure_test_SOURCES = test/time_measure_test.cc |
83 | 83 |
test_unionfind_test_SOURCES = test/unionfind_test.cc |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2009 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
19 |
#ifndef LEMON_MAX_MATCHING_H |
|
20 |
#define LEMON_MAX_MATCHING_H |
|
21 |
|
|
22 |
#include <vector> |
|
23 |
#include <queue> |
|
24 |
#include <set> |
|
25 |
#include <limits> |
|
26 |
|
|
27 |
#include <lemon/core.h> |
|
28 |
#include <lemon/unionfind.h> |
|
29 |
#include <lemon/bin_heap.h> |
|
30 |
#include <lemon/maps.h> |
|
31 |
|
|
32 |
///\ingroup matching |
|
33 |
///\file |
|
34 |
///\brief Maximum matching algorithms in general graphs. |
|
35 |
|
|
36 |
namespace lemon { |
|
37 |
|
|
38 |
/// \ingroup matching |
|
39 |
/// |
|
40 |
/// \brief Edmonds' alternating forest maximum matching algorithm. |
|
41 |
/// |
|
42 |
/// This class implements Edmonds' alternating forest matching |
|
43 |
/// algorithm. The algorithm can be started from an arbitrary initial |
|
44 |
/// matching (the default is the empty one) |
|
45 |
/// |
|
46 |
/// The dual solution of the problem is a map of the nodes to |
|
47 |
/// MaxMatching::Status, having values \c EVEN/D, \c ODD/A and \c |
|
48 |
/// MATCHED/C showing the Gallai-Edmonds decomposition of the |
|
49 |
/// graph. The nodes in \c EVEN/D induce a graph with |
|
50 |
/// factor-critical components, the nodes in \c ODD/A form the |
|
51 |
/// barrier, and the nodes in \c MATCHED/C induce a graph having a |
|
52 |
/// perfect matching. The number of the factor-critical components |
|
53 |
/// minus the number of barrier nodes is a lower bound on the |
|
54 |
/// unmatched nodes, and the matching is optimal if and only if this bound is |
|
55 |
/// tight. This decomposition can be attained by calling \c |
|
56 |
/// decomposition() after running the algorithm. |
|
57 |
/// |
|
58 |
/// \param GR The graph type the algorithm runs on. |
|
59 |
template <typename GR> |
|
60 |
class MaxMatching { |
|
61 |
public: |
|
62 |
|
|
63 |
typedef GR Graph; |
|
64 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
|
65 |
MatchingMap; |
|
66 |
|
|
67 |
///\brief Indicates the Gallai-Edmonds decomposition of the graph. |
|
68 |
/// |
|
69 |
///Indicates the Gallai-Edmonds decomposition of the graph. The |
|
70 |
///nodes with Status \c EVEN/D induce a graph with factor-critical |
|
71 |
///components, the nodes in \c ODD/A form the canonical barrier, |
|
72 |
///and the nodes in \c MATCHED/C induce a graph having a perfect |
|
73 |
///matching. |
|
74 |
enum Status { |
|
75 |
EVEN = 1, D = 1, MATCHED = 0, C = 0, ODD = -1, A = -1, UNMATCHED = -2 |
|
76 |
}; |
|
77 |
|
|
78 |
typedef typename Graph::template NodeMap<Status> StatusMap; |
|
79 |
|
|
80 |
private: |
|
81 |
|
|
82 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
83 |
|
|
84 |
typedef UnionFindEnum<IntNodeMap> BlossomSet; |
|
85 |
typedef ExtendFindEnum<IntNodeMap> TreeSet; |
|
86 |
typedef RangeMap<Node> NodeIntMap; |
|
87 |
typedef MatchingMap EarMap; |
|
88 |
typedef std::vector<Node> NodeQueue; |
|
89 |
|
|
90 |
const Graph& _graph; |
|
91 |
MatchingMap* _matching; |
|
92 |
StatusMap* _status; |
|
93 |
|
|
94 |
EarMap* _ear; |
|
95 |
|
|
96 |
IntNodeMap* _blossom_set_index; |
|
97 |
BlossomSet* _blossom_set; |
|
98 |
NodeIntMap* _blossom_rep; |
|
99 |
|
|
100 |
IntNodeMap* _tree_set_index; |
|
101 |
TreeSet* _tree_set; |
|
102 |
|
|
103 |
NodeQueue _node_queue; |
|
104 |
int _process, _postpone, _last; |
|
105 |
|
|
106 |
int _node_num; |
|
107 |
|
|
108 |
private: |
|
109 |
|
|
110 |
void createStructures() { |
|
111 |
_node_num = countNodes(_graph); |
|
112 |
if (!_matching) { |
|
113 |
_matching = new MatchingMap(_graph); |
|
114 |
} |
|
115 |
if (!_status) { |
|
116 |
_status = new StatusMap(_graph); |
|
117 |
} |
|
118 |
if (!_ear) { |
|
119 |
_ear = new EarMap(_graph); |
|
120 |
} |
|
121 |
if (!_blossom_set) { |
|
122 |
_blossom_set_index = new IntNodeMap(_graph); |
|
123 |
_blossom_set = new BlossomSet(*_blossom_set_index); |
|
124 |
} |
|
125 |
if (!_blossom_rep) { |
|
126 |
_blossom_rep = new NodeIntMap(_node_num); |
|
127 |
} |
|
128 |
if (!_tree_set) { |
|
129 |
_tree_set_index = new IntNodeMap(_graph); |
|
130 |
_tree_set = new TreeSet(*_tree_set_index); |
|
131 |
} |
|
132 |
_node_queue.resize(_node_num); |
|
133 |
} |
|
134 |
|
|
135 |
void destroyStructures() { |
|
136 |
if (_matching) { |
|
137 |
delete _matching; |
|
138 |
} |
|
139 |
if (_status) { |
|
140 |
delete _status; |
|
141 |
} |
|
142 |
if (_ear) { |
|
143 |
delete _ear; |
|
144 |
} |
|
145 |
if (_blossom_set) { |
|
146 |
delete _blossom_set; |
|
147 |
delete _blossom_set_index; |
|
148 |
} |
|
149 |
if (_blossom_rep) { |
|
150 |
delete _blossom_rep; |
|
151 |
} |
|
152 |
if (_tree_set) { |
|
153 |
delete _tree_set_index; |
|
154 |
delete _tree_set; |
|
155 |
} |
|
156 |
} |
|
157 |
|
|
158 |
void processDense(const Node& n) { |
|
159 |
_process = _postpone = _last = 0; |
|
160 |
_node_queue[_last++] = n; |
|
161 |
|
|
162 |
while (_process != _last) { |
|
163 |
Node u = _node_queue[_process++]; |
|
164 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
|
165 |
Node v = _graph.target(a); |
|
166 |
if ((*_status)[v] == MATCHED) { |
|
167 |
extendOnArc(a); |
|
168 |
} else if ((*_status)[v] == UNMATCHED) { |
|
169 |
augmentOnArc(a); |
|
170 |
return; |
|
171 |
} |
|
172 |
} |
|
173 |
} |
|
174 |
|
|
175 |
while (_postpone != _last) { |
|
176 |
Node u = _node_queue[_postpone++]; |
|
177 |
|
|
178 |
for (OutArcIt a(_graph, u); a != INVALID ; ++a) { |
|
179 |
Node v = _graph.target(a); |
|
180 |
|
|
181 |
if ((*_status)[v] == EVEN) { |
|
182 |
if (_blossom_set->find(u) != _blossom_set->find(v)) { |
|
183 |
shrinkOnEdge(a); |
|
184 |
} |
|
185 |
} |
|
186 |
|
|
187 |
while (_process != _last) { |
|
188 |
Node w = _node_queue[_process++]; |
|
189 |
for (OutArcIt b(_graph, w); b != INVALID; ++b) { |
|
190 |
Node x = _graph.target(b); |
|
191 |
if ((*_status)[x] == MATCHED) { |
|
192 |
extendOnArc(b); |
|
193 |
} else if ((*_status)[x] == UNMATCHED) { |
|
194 |
augmentOnArc(b); |
|
195 |
return; |
|
196 |
} |
|
197 |
} |
|
198 |
} |
|
199 |
} |
|
200 |
} |
|
201 |
} |
|
202 |
|
|
203 |
void processSparse(const Node& n) { |
|
204 |
_process = _last = 0; |
|
205 |
_node_queue[_last++] = n; |
|
206 |
while (_process != _last) { |
|
207 |
Node u = _node_queue[_process++]; |
|
208 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) { |
|
209 |
Node v = _graph.target(a); |
|
210 |
|
|
211 |
if ((*_status)[v] == EVEN) { |
|
212 |
if (_blossom_set->find(u) != _blossom_set->find(v)) { |
|
213 |
shrinkOnEdge(a); |
|
214 |
} |
|
215 |
} else if ((*_status)[v] == MATCHED) { |
|
216 |
extendOnArc(a); |
|
217 |
} else if ((*_status)[v] == UNMATCHED) { |
|
218 |
augmentOnArc(a); |
|
219 |
return; |
|
220 |
} |
|
221 |
} |
|
222 |
} |
|
223 |
} |
|
224 |
|
|
225 |
void shrinkOnEdge(const Edge& e) { |
|
226 |
Node nca = INVALID; |
|
227 |
|
|
228 |
{ |
|
229 |
std::set<Node> left_set, right_set; |
|
230 |
|
|
231 |
Node left = (*_blossom_rep)[_blossom_set->find(_graph.u(e))]; |
|
232 |
left_set.insert(left); |
|
233 |
|
|
234 |
Node right = (*_blossom_rep)[_blossom_set->find(_graph.v(e))]; |
|
235 |
right_set.insert(right); |
|
236 |
|
|
237 |
while (true) { |
|
238 |
if ((*_matching)[left] == INVALID) break; |
|
239 |
left = _graph.target((*_matching)[left]); |
|
240 |
left = (*_blossom_rep)[_blossom_set-> |
|
241 |
find(_graph.target((*_ear)[left]))]; |
|
242 |
if (right_set.find(left) != right_set.end()) { |
|
243 |
nca = left; |
|
244 |
break; |
|
245 |
} |
|
246 |
left_set.insert(left); |
|
247 |
|
|
248 |
if ((*_matching)[right] == INVALID) break; |
|
249 |
right = _graph.target((*_matching)[right]); |
|
250 |
right = (*_blossom_rep)[_blossom_set-> |
|
251 |
find(_graph.target((*_ear)[right]))]; |
|
252 |
if (left_set.find(right) != left_set.end()) { |
|
253 |
nca = right; |
|
254 |
break; |
|
255 |
} |
|
256 |
right_set.insert(right); |
|
257 |
} |
|
258 |
|
|
259 |
if (nca == INVALID) { |
|
260 |
if ((*_matching)[left] == INVALID) { |
|
261 |
nca = right; |
|
262 |
while (left_set.find(nca) == left_set.end()) { |
|
263 |
nca = _graph.target((*_matching)[nca]); |
|
264 |
nca =(*_blossom_rep)[_blossom_set-> |
|
265 |
find(_graph.target((*_ear)[nca]))]; |
|
266 |
} |
|
267 |
} else { |
|
268 |
nca = left; |
|
269 |
while (right_set.find(nca) == right_set.end()) { |
|
270 |
nca = _graph.target((*_matching)[nca]); |
|
271 |
nca = (*_blossom_rep)[_blossom_set-> |
|
272 |
find(_graph.target((*_ear)[nca]))]; |
|
273 |
} |
|
274 |
} |
|
275 |
} |
|
276 |
} |
|
277 |
|
|
278 |
{ |
|
279 |
|
|
280 |
Node node = _graph.u(e); |
|
281 |
Arc arc = _graph.direct(e, true); |
|
282 |
Node base = (*_blossom_rep)[_blossom_set->find(node)]; |
|
283 |
|
|
284 |
while (base != nca) { |
|
285 |
(*_ear)[node] = arc; |
|
286 |
|
|
287 |
Node n = node; |
|
288 |
while (n != base) { |
|
289 |
n = _graph.target((*_matching)[n]); |
|
290 |
Arc a = (*_ear)[n]; |
|
291 |
n = _graph.target(a); |
|
292 |
(*_ear)[n] = _graph.oppositeArc(a); |
|
293 |
} |
|
294 |
node = _graph.target((*_matching)[base]); |
|
295 |
_tree_set->erase(base); |
|
296 |
_tree_set->erase(node); |
|
297 |
_blossom_set->insert(node, _blossom_set->find(base)); |
|
298 |
(*_status)[node] = EVEN; |
|
299 |
_node_queue[_last++] = node; |
|
300 |
arc = _graph.oppositeArc((*_ear)[node]); |
|
301 |
node = _graph.target((*_ear)[node]); |
|
302 |
base = (*_blossom_rep)[_blossom_set->find(node)]; |
|
303 |
_blossom_set->join(_graph.target(arc), base); |
|
304 |
} |
|
305 |
} |
|
306 |
|
|
307 |
(*_blossom_rep)[_blossom_set->find(nca)] = nca; |
|
308 |
|
|
309 |
{ |
|
310 |
|
|
311 |
Node node = _graph.v(e); |
|
312 |
Arc arc = _graph.direct(e, false); |
|
313 |
Node base = (*_blossom_rep)[_blossom_set->find(node)]; |
|
314 |
|
|
315 |
while (base != nca) { |
|
316 |
(*_ear)[node] = arc; |
|
317 |
|
|
318 |
Node n = node; |
|
319 |
while (n != base) { |
|
320 |
n = _graph.target((*_matching)[n]); |
|
321 |
Arc a = (*_ear)[n]; |
|
322 |
n = _graph.target(a); |
|
323 |
(*_ear)[n] = _graph.oppositeArc(a); |
|
324 |
} |
|
325 |
node = _graph.target((*_matching)[base]); |
|
326 |
_tree_set->erase(base); |
|
327 |
_tree_set->erase(node); |
|
328 |
_blossom_set->insert(node, _blossom_set->find(base)); |
|
329 |
(*_status)[node] = EVEN; |
|
330 |
_node_queue[_last++] = node; |
|
331 |
arc = _graph.oppositeArc((*_ear)[node]); |
|
332 |
node = _graph.target((*_ear)[node]); |
|
333 |
base = (*_blossom_rep)[_blossom_set->find(node)]; |
|
334 |
_blossom_set->join(_graph.target(arc), base); |
|
335 |
} |
|
336 |
} |
|
337 |
|
|
338 |
(*_blossom_rep)[_blossom_set->find(nca)] = nca; |
|
339 |
} |
|
340 |
|
|
341 |
|
|
342 |
|
|
343 |
void extendOnArc(const Arc& a) { |
|
344 |
Node base = _graph.source(a); |
|
345 |
Node odd = _graph.target(a); |
|
346 |
|
|
347 |
(*_ear)[odd] = _graph.oppositeArc(a); |
|
348 |
Node even = _graph.target((*_matching)[odd]); |
|
349 |
(*_blossom_rep)[_blossom_set->insert(even)] = even; |
|
350 |
(*_status)[odd] = ODD; |
|
351 |
(*_status)[even] = EVEN; |
|
352 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(base)]); |
|
353 |
_tree_set->insert(odd, tree); |
|
354 |
_tree_set->insert(even, tree); |
|
355 |
_node_queue[_last++] = even; |
|
356 |
|
|
357 |
} |
|
358 |
|
|
359 |
void augmentOnArc(const Arc& a) { |
|
360 |
Node even = _graph.source(a); |
|
361 |
Node odd = _graph.target(a); |
|
362 |
|
|
363 |
int tree = _tree_set->find((*_blossom_rep)[_blossom_set->find(even)]); |
|
364 |
|
|
365 |
(*_matching)[odd] = _graph.oppositeArc(a); |
|
366 |
(*_status)[odd] = MATCHED; |
|
367 |
|
|
368 |
Arc arc = (*_matching)[even]; |
|
369 |
(*_matching)[even] = a; |
|
370 |
|
|
371 |
while (arc != INVALID) { |
|
372 |
odd = _graph.target(arc); |
|
373 |
arc = (*_ear)[odd]; |
|
374 |
even = _graph.target(arc); |
|
375 |
(*_matching)[odd] = arc; |
|
376 |
arc = (*_matching)[even]; |
|
377 |
(*_matching)[even] = _graph.oppositeArc((*_matching)[odd]); |
|
378 |
} |
|
379 |
|
|
380 |
for (typename TreeSet::ItemIt it(*_tree_set, tree); |
|
381 |
it != INVALID; ++it) { |
|
382 |
if ((*_status)[it] == ODD) { |
|
383 |
(*_status)[it] = MATCHED; |
|
384 |
} else { |
|
385 |
int blossom = _blossom_set->find(it); |
|
386 |
for (typename BlossomSet::ItemIt jt(*_blossom_set, blossom); |
|
387 |
jt != INVALID; ++jt) { |
|
388 |
(*_status)[jt] = MATCHED; |
|
389 |
} |
|
390 |
_blossom_set->eraseClass(blossom); |
|
391 |
} |
|
392 |
} |
|
393 |
_tree_set->eraseClass(tree); |
|
394 |
|
|
395 |
} |
|
396 |
|
|
397 |
public: |
|
398 |
|
|
399 |
/// \brief Constructor |
|
400 |
/// |
|
401 |
/// Constructor. |
|
402 |
MaxMatching(const Graph& graph) |
|
403 |
: _graph(graph), _matching(0), _status(0), _ear(0), |
|
404 |
_blossom_set_index(0), _blossom_set(0), _blossom_rep(0), |
|
405 |
_tree_set_index(0), _tree_set(0) {} |
|
406 |
|
|
407 |
~MaxMatching() { |
|
408 |
destroyStructures(); |
|
409 |
} |
|
410 |
|
|
411 |
/// \name Execution control |
|
412 |
/// The simplest way to execute the algorithm is to use the |
|
413 |
/// \c run() member function. |
|
414 |
/// \n |
|
415 |
|
|
416 |
/// If you need better control on the execution, you must call |
|
417 |
/// \ref init(), \ref greedyInit() or \ref matchingInit() |
|
418 |
/// functions first, then you can start the algorithm with the \ref |
|
419 |
/// startSparse() or startDense() functions. |
|
420 |
|
|
421 |
///@{ |
|
422 |
|
|
423 |
/// \brief Sets the actual matching to the empty matching. |
|
424 |
/// |
|
425 |
/// Sets the actual matching to the empty matching. |
|
426 |
/// |
|
427 |
void init() { |
|
428 |
createStructures(); |
|
429 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
|
430 |
(*_matching)[n] = INVALID; |
|
431 |
(*_status)[n] = UNMATCHED; |
|
432 |
} |
|
433 |
} |
|
434 |
|
|
435 |
///\brief Finds an initial matching in a greedy way |
|
436 |
/// |
|
437 |
///It finds an initial matching in a greedy way. |
|
438 |
void greedyInit() { |
|
439 |
createStructures(); |
|
440 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
441 |
(*_matching)[n] = INVALID; |
|
442 |
(*_status)[n] = UNMATCHED; |
|
443 |
} |
|
444 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
445 |
if ((*_matching)[n] == INVALID) { |
|
446 |
for (OutArcIt a(_graph, n); a != INVALID ; ++a) { |
|
447 |
Node v = _graph.target(a); |
|
448 |
if ((*_matching)[v] == INVALID && v != n) { |
|
449 |
(*_matching)[n] = a; |
|
450 |
(*_status)[n] = MATCHED; |
|
451 |
(*_matching)[v] = _graph.oppositeArc(a); |
|
452 |
(*_status)[v] = MATCHED; |
|
453 |
break; |
|
454 |
} |
|
455 |
} |
|
456 |
} |
|
457 |
} |
|
458 |
} |
|
459 |
|
|
460 |
|
|
461 |
/// \brief Initialize the matching from a map containing. |
|
462 |
/// |
|
463 |
/// Initialize the matching from a \c bool valued \c Edge map. This |
|
464 |
/// map must have the property that there are no two incident edges |
|
465 |
/// with true value, ie. it contains a matching. |
|
466 |
/// \return \c true if the map contains a matching. |
|
467 |
template <typename MatchingMap> |
|
468 |
bool matchingInit(const MatchingMap& matching) { |
|
469 |
createStructures(); |
|
470 |
|
|
471 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
472 |
(*_matching)[n] = INVALID; |
|
473 |
(*_status)[n] = UNMATCHED; |
|
474 |
} |
|
475 |
for(EdgeIt e(_graph); e!=INVALID; ++e) { |
|
476 |
if (matching[e]) { |
|
477 |
|
|
478 |
Node u = _graph.u(e); |
|
479 |
if ((*_matching)[u] != INVALID) return false; |
|
480 |
(*_matching)[u] = _graph.direct(e, true); |
|
481 |
(*_status)[u] = MATCHED; |
|
482 |
|
|
483 |
Node v = _graph.v(e); |
|
484 |
if ((*_matching)[v] != INVALID) return false; |
|
485 |
(*_matching)[v] = _graph.direct(e, false); |
|
486 |
(*_status)[v] = MATCHED; |
|
487 |
} |
|
488 |
} |
|
489 |
return true; |
|
490 |
} |
|
491 |
|
|
492 |
/// \brief Starts Edmonds' algorithm |
|
493 |
/// |
|
494 |
/// If runs the original Edmonds' algorithm. |
|
495 |
void startSparse() { |
|
496 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
|
497 |
if ((*_status)[n] == UNMATCHED) { |
|
498 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
|
499 |
_tree_set->insert(n); |
|
500 |
(*_status)[n] = EVEN; |
|
501 |
processSparse(n); |
|
502 |
} |
|
503 |
} |
|
504 |
} |
|
505 |
|
|
506 |
/// \brief Starts Edmonds' algorithm. |
|
507 |
/// |
|
508 |
/// It runs Edmonds' algorithm with a heuristic of postponing |
|
509 |
/// shrinks, therefore resulting in a faster algorithm for dense graphs. |
|
510 |
void startDense() { |
|
511 |
for(NodeIt n(_graph); n != INVALID; ++n) { |
|
512 |
if ((*_status)[n] == UNMATCHED) { |
|
513 |
(*_blossom_rep)[_blossom_set->insert(n)] = n; |
|
514 |
_tree_set->insert(n); |
|
515 |
(*_status)[n] = EVEN; |
|
516 |
processDense(n); |
|
517 |
} |
|
518 |
} |
|
519 |
} |
|
520 |
|
|
521 |
|
|
522 |
/// \brief Runs Edmonds' algorithm |
|
523 |
/// |
|
524 |
/// Runs Edmonds' algorithm for sparse graphs (<tt>m<2*n</tt>) |
|
525 |
/// or Edmonds' algorithm with a heuristic of |
|
526 |
/// postponing shrinks for dense graphs. |
|
527 |
void run() { |
|
528 |
if (countEdges(_graph) < 2 * countNodes(_graph)) { |
|
529 |
greedyInit(); |
|
530 |
startSparse(); |
|
531 |
} else { |
|
532 |
init(); |
|
533 |
startDense(); |
|
534 |
} |
|
535 |
} |
|
536 |
|
|
537 |
/// @} |
|
538 |
|
|
539 |
/// \name Primal solution |
|
540 |
/// Functions to get the primal solution, ie. the matching. |
|
541 |
|
|
542 |
/// @{ |
|
543 |
|
|
544 |
///\brief Returns the size of the current matching. |
|
545 |
/// |
|
546 |
///Returns the size of the current matching. After \ref |
|
547 |
///run() it returns the size of the maximum matching in the graph. |
|
548 |
int matchingSize() const { |
|
549 |
int size = 0; |
|
550 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
551 |
if ((*_matching)[n] != INVALID) { |
|
552 |
++size; |
|
553 |
} |
|
554 |
} |
|
555 |
return size / 2; |
|
556 |
} |
|
557 |
|
|
558 |
/// \brief Returns true when the edge is in the matching. |
|
559 |
/// |
|
560 |
/// Returns true when the edge is in the matching. |
|
561 |
bool matching(const Edge& edge) const { |
|
562 |
return edge == (*_matching)[_graph.u(edge)]; |
|
563 |
} |
|
564 |
|
|
565 |
/// \brief Returns the matching edge incident to the given node. |
|
566 |
/// |
|
567 |
/// Returns the matching edge of a \c node in the actual matching or |
|
568 |
/// INVALID if the \c node is not covered by the actual matching. |
|
569 |
Arc matching(const Node& n) const { |
|
570 |
return (*_matching)[n]; |
|
571 |
} |
|
572 |
|
|
573 |
///\brief Returns the mate of a node in the actual matching. |
|
574 |
/// |
|
575 |
///Returns the mate of a \c node in the actual matching or |
|
576 |
///INVALID if the \c node is not covered by the actual matching. |
|
577 |
Node mate(const Node& n) const { |
|
578 |
return (*_matching)[n] != INVALID ? |
|
579 |
_graph.target((*_matching)[n]) : INVALID; |
|
580 |
} |
|
581 |
|
|
582 |
/// @} |
|
583 |
|
|
584 |
/// \name Dual solution |
|
585 |
/// Functions to get the dual solution, ie. the decomposition. |
|
586 |
|
|
587 |
/// @{ |
|
588 |
|
|
589 |
/// \brief Returns the class of the node in the Edmonds-Gallai |
|
590 |
/// decomposition. |
|
591 |
/// |
|
592 |
/// Returns the class of the node in the Edmonds-Gallai |
|
593 |
/// decomposition. |
|
594 |
Status decomposition(const Node& n) const { |
|
595 |
return (*_status)[n]; |
|
596 |
} |
|
597 |
|
|
598 |
/// \brief Returns true when the node is in the barrier. |
|
599 |
/// |
|
600 |
/// Returns true when the node is in the barrier. |
|
601 |
bool barrier(const Node& n) const { |
|
602 |
return (*_status)[n] == ODD; |
|
603 |
} |
|
604 |
|
|
605 |
/// @} |
|
606 |
|
|
607 |
}; |
|
608 |
|
|
609 |
/// \ingroup matching |
|
610 |
/// |
|
611 |
/// \brief Weighted matching in general graphs |
|
612 |
/// |
|
613 |
/// This class provides an efficient implementation of Edmond's |
|
614 |
/// maximum weighted matching algorithm. The implementation is based |
|
615 |
/// on extensive use of priority queues and provides |
|
616 |
/// \f$O(nm\log n)\f$ time complexity. |
|
617 |
/// |
|
618 |
/// The maximum weighted matching problem is to find undirected |
|
619 |
/// edges in the graph with maximum overall weight and no two of |
|
620 |
/// them shares their ends. The problem can be formulated with the |
|
621 |
/// following linear program. |
|
622 |
/// \f[ \sum_{e \in \delta(u)}x_e \le 1 \quad \forall u\in V\f] |
|
623 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
|
624 |
\quad \forall B\in\mathcal{O}\f] */ |
|
625 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
|
626 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
|
627 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
|
628 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
|
629 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
|
630 |
/// subsets of the nodes. |
|
631 |
/// |
|
632 |
/// The algorithm calculates an optimal matching and a proof of the |
|
633 |
/// optimality. The solution of the dual problem can be used to check |
|
634 |
/// the result of the algorithm. The dual linear problem is the |
|
635 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)} |
|
636 |
z_B \ge w_{uv} \quad \forall uv\in E\f] */ |
|
637 |
/// \f[y_u \ge 0 \quad \forall u \in V\f] |
|
638 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
|
639 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
|
640 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
|
641 |
/// |
|
642 |
/// The algorithm can be executed with \c run() or the \c init() and |
|
643 |
/// then the \c start() member functions. After it the matching can |
|
644 |
/// be asked with \c matching() or mate() functions. The dual |
|
645 |
/// solution can be get with \c nodeValue(), \c blossomNum() and \c |
|
646 |
/// blossomValue() members and \ref MaxWeightedMatching::BlossomIt |
|
647 |
/// "BlossomIt" nested class, which is able to iterate on the nodes |
|
648 |
/// of a blossom. If the value type is integral then the dual |
|
649 |
/// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". |
|
650 |
template <typename GR, |
|
651 |
typename WM = typename GR::template EdgeMap<int> > |
|
652 |
class MaxWeightedMatching { |
|
653 |
public: |
|
654 |
|
|
655 |
///\e |
|
656 |
typedef GR Graph; |
|
657 |
///\e |
|
658 |
typedef WM WeightMap; |
|
659 |
///\e |
|
660 |
typedef typename WeightMap::Value Value; |
|
661 |
|
|
662 |
/// \brief Scaling factor for dual solution |
|
663 |
/// |
|
664 |
/// Scaling factor for dual solution, it is equal to 4 or 1 |
|
665 |
/// according to the value type. |
|
666 |
static const int dualScale = |
|
667 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
|
668 |
|
|
669 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
|
670 |
MatchingMap; |
|
671 |
|
|
672 |
private: |
|
673 |
|
|
674 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
675 |
|
|
676 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
|
677 |
typedef std::vector<Node> BlossomNodeList; |
|
678 |
|
|
679 |
struct BlossomVariable { |
|
680 |
int begin, end; |
|
681 |
Value value; |
|
682 |
|
|
683 |
BlossomVariable(int _begin, int _end, Value _value) |
|
684 |
: begin(_begin), end(_end), value(_value) {} |
|
685 |
|
|
686 |
}; |
|
687 |
|
|
688 |
typedef std::vector<BlossomVariable> BlossomPotential; |
|
689 |
|
|
690 |
const Graph& _graph; |
|
691 |
const WeightMap& _weight; |
|
692 |
|
|
693 |
MatchingMap* _matching; |
|
694 |
|
|
695 |
NodePotential* _node_potential; |
|
696 |
|
|
697 |
BlossomPotential _blossom_potential; |
|
698 |
BlossomNodeList _blossom_node_list; |
|
699 |
|
|
700 |
int _node_num; |
|
701 |
int _blossom_num; |
|
702 |
|
|
703 |
typedef RangeMap<int> IntIntMap; |
|
704 |
|
|
705 |
enum Status { |
|
706 |
EVEN = -1, MATCHED = 0, ODD = 1, UNMATCHED = -2 |
|
707 |
}; |
|
708 |
|
|
709 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
|
710 |
struct BlossomData { |
|
711 |
int tree; |
|
712 |
Status status; |
|
713 |
Arc pred, next; |
|
714 |
Value pot, offset; |
|
715 |
Node base; |
|
716 |
}; |
|
717 |
|
|
718 |
IntNodeMap *_blossom_index; |
|
719 |
BlossomSet *_blossom_set; |
|
720 |
RangeMap<BlossomData>* _blossom_data; |
|
721 |
|
|
722 |
IntNodeMap *_node_index; |
|
723 |
IntArcMap *_node_heap_index; |
|
724 |
|
|
725 |
struct NodeData { |
|
726 |
|
|
727 |
NodeData(IntArcMap& node_heap_index) |
|
728 |
: heap(node_heap_index) {} |
|
729 |
|
|
730 |
int blossom; |
|
731 |
Value pot; |
|
732 |
BinHeap<Value, IntArcMap> heap; |
|
733 |
std::map<int, Arc> heap_index; |
|
734 |
|
|
735 |
int tree; |
|
736 |
}; |
|
737 |
|
|
738 |
RangeMap<NodeData>* _node_data; |
|
739 |
|
|
740 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
|
741 |
|
|
742 |
IntIntMap *_tree_set_index; |
|
743 |
TreeSet *_tree_set; |
|
744 |
|
|
745 |
IntNodeMap *_delta1_index; |
|
746 |
BinHeap<Value, IntNodeMap> *_delta1; |
|
747 |
|
|
748 |
IntIntMap *_delta2_index; |
|
749 |
BinHeap<Value, IntIntMap> *_delta2; |
|
750 |
|
|
751 |
IntEdgeMap *_delta3_index; |
|
752 |
BinHeap<Value, IntEdgeMap> *_delta3; |
|
753 |
|
|
754 |
IntIntMap *_delta4_index; |
|
755 |
BinHeap<Value, IntIntMap> *_delta4; |
|
756 |
|
|
757 |
Value _delta_sum; |
|
758 |
|
|
759 |
void createStructures() { |
|
760 |
_node_num = countNodes(_graph); |
|
761 |
_blossom_num = _node_num * 3 / 2; |
|
762 |
|
|
763 |
if (!_matching) { |
|
764 |
_matching = new MatchingMap(_graph); |
|
765 |
} |
|
766 |
if (!_node_potential) { |
|
767 |
_node_potential = new NodePotential(_graph); |
|
768 |
} |
|
769 |
if (!_blossom_set) { |
|
770 |
_blossom_index = new IntNodeMap(_graph); |
|
771 |
_blossom_set = new BlossomSet(*_blossom_index); |
|
772 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
|
773 |
} |
|
774 |
|
|
775 |
if (!_node_index) { |
|
776 |
_node_index = new IntNodeMap(_graph); |
|
777 |
_node_heap_index = new IntArcMap(_graph); |
|
778 |
_node_data = new RangeMap<NodeData>(_node_num, |
|
779 |
NodeData(*_node_heap_index)); |
|
780 |
} |
|
781 |
|
|
782 |
if (!_tree_set) { |
|
783 |
_tree_set_index = new IntIntMap(_blossom_num); |
|
784 |
_tree_set = new TreeSet(*_tree_set_index); |
|
785 |
} |
|
786 |
if (!_delta1) { |
|
787 |
_delta1_index = new IntNodeMap(_graph); |
|
788 |
_delta1 = new BinHeap<Value, IntNodeMap>(*_delta1_index); |
|
789 |
} |
|
790 |
if (!_delta2) { |
|
791 |
_delta2_index = new IntIntMap(_blossom_num); |
|
792 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
|
793 |
} |
|
794 |
if (!_delta3) { |
|
795 |
_delta3_index = new IntEdgeMap(_graph); |
|
796 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
|
797 |
} |
|
798 |
if (!_delta4) { |
|
799 |
_delta4_index = new IntIntMap(_blossom_num); |
|
800 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
|
801 |
} |
|
802 |
} |
|
803 |
|
|
804 |
void destroyStructures() { |
|
805 |
_node_num = countNodes(_graph); |
|
806 |
_blossom_num = _node_num * 3 / 2; |
|
807 |
|
|
808 |
if (_matching) { |
|
809 |
delete _matching; |
|
810 |
} |
|
811 |
if (_node_potential) { |
|
812 |
delete _node_potential; |
|
813 |
} |
|
814 |
if (_blossom_set) { |
|
815 |
delete _blossom_index; |
|
816 |
delete _blossom_set; |
|
817 |
delete _blossom_data; |
|
818 |
} |
|
819 |
|
|
820 |
if (_node_index) { |
|
821 |
delete _node_index; |
|
822 |
delete _node_heap_index; |
|
823 |
delete _node_data; |
|
824 |
} |
|
825 |
|
|
826 |
if (_tree_set) { |
|
827 |
delete _tree_set_index; |
|
828 |
delete _tree_set; |
|
829 |
} |
|
830 |
if (_delta1) { |
|
831 |
delete _delta1_index; |
|
832 |
delete _delta1; |
|
833 |
} |
|
834 |
if (_delta2) { |
|
835 |
delete _delta2_index; |
|
836 |
delete _delta2; |
|
837 |
} |
|
838 |
if (_delta3) { |
|
839 |
delete _delta3_index; |
|
840 |
delete _delta3; |
|
841 |
} |
|
842 |
if (_delta4) { |
|
843 |
delete _delta4_index; |
|
844 |
delete _delta4; |
|
845 |
} |
|
846 |
} |
|
847 |
|
|
848 |
void matchedToEven(int blossom, int tree) { |
|
849 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
850 |
_delta2->erase(blossom); |
|
851 |
} |
|
852 |
|
|
853 |
if (!_blossom_set->trivial(blossom)) { |
|
854 |
(*_blossom_data)[blossom].pot -= |
|
855 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
|
856 |
} |
|
857 |
|
|
858 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
859 |
n != INVALID; ++n) { |
|
860 |
|
|
861 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
862 |
int ni = (*_node_index)[n]; |
|
863 |
|
|
864 |
(*_node_data)[ni].heap.clear(); |
|
865 |
(*_node_data)[ni].heap_index.clear(); |
|
866 |
|
|
867 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
|
868 |
|
|
869 |
_delta1->push(n, (*_node_data)[ni].pot); |
|
870 |
|
|
871 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
872 |
Node v = _graph.source(e); |
|
873 |
int vb = _blossom_set->find(v); |
|
874 |
int vi = (*_node_index)[v]; |
|
875 |
|
|
876 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
877 |
dualScale * _weight[e]; |
|
878 |
|
|
879 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
880 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
|
881 |
_delta3->push(e, rw / 2); |
|
882 |
} |
|
883 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
|
884 |
if (_delta3->state(e) != _delta3->IN_HEAP) { |
|
885 |
_delta3->push(e, rw); |
|
886 |
} |
|
887 |
} else { |
|
888 |
typename std::map<int, Arc>::iterator it = |
|
889 |
(*_node_data)[vi].heap_index.find(tree); |
|
890 |
|
|
891 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
892 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
|
893 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
894 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
895 |
it->second = e; |
|
896 |
} |
|
897 |
} else { |
|
898 |
(*_node_data)[vi].heap.push(e, rw); |
|
899 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
900 |
} |
|
901 |
|
|
902 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
|
903 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
904 |
|
|
905 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
906 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
|
907 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
908 |
(*_blossom_data)[vb].offset); |
|
909 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
910 |
(*_blossom_data)[vb].offset){ |
|
911 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
912 |
(*_blossom_data)[vb].offset); |
|
913 |
} |
|
914 |
} |
|
915 |
} |
|
916 |
} |
|
917 |
} |
|
918 |
} |
|
919 |
(*_blossom_data)[blossom].offset = 0; |
|
920 |
} |
|
921 |
|
|
922 |
void matchedToOdd(int blossom) { |
|
923 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
924 |
_delta2->erase(blossom); |
|
925 |
} |
|
926 |
(*_blossom_data)[blossom].offset += _delta_sum; |
|
927 |
if (!_blossom_set->trivial(blossom)) { |
|
928 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
|
929 |
(*_blossom_data)[blossom].offset); |
|
930 |
} |
|
931 |
} |
|
932 |
|
|
933 |
void evenToMatched(int blossom, int tree) { |
|
934 |
if (!_blossom_set->trivial(blossom)) { |
|
935 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
|
936 |
} |
|
937 |
|
|
938 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
939 |
n != INVALID; ++n) { |
|
940 |
int ni = (*_node_index)[n]; |
|
941 |
(*_node_data)[ni].pot -= _delta_sum; |
|
942 |
|
|
943 |
_delta1->erase(n); |
|
944 |
|
|
945 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
946 |
Node v = _graph.source(e); |
|
947 |
int vb = _blossom_set->find(v); |
|
948 |
int vi = (*_node_index)[v]; |
|
949 |
|
|
950 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
951 |
dualScale * _weight[e]; |
|
952 |
|
|
953 |
if (vb == blossom) { |
|
954 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
955 |
_delta3->erase(e); |
|
956 |
} |
|
957 |
} else if ((*_blossom_data)[vb].status == EVEN) { |
|
958 |
|
|
959 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
960 |
_delta3->erase(e); |
|
961 |
} |
|
962 |
|
|
963 |
int vt = _tree_set->find(vb); |
|
964 |
|
|
965 |
if (vt != tree) { |
|
966 |
|
|
967 |
Arc r = _graph.oppositeArc(e); |
|
968 |
|
|
969 |
typename std::map<int, Arc>::iterator it = |
|
970 |
(*_node_data)[ni].heap_index.find(vt); |
|
971 |
|
|
972 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
973 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
974 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
975 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
976 |
it->second = r; |
|
977 |
} |
|
978 |
} else { |
|
979 |
(*_node_data)[ni].heap.push(r, rw); |
|
980 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
981 |
} |
|
982 |
|
|
983 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
|
984 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
985 |
|
|
986 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
|
987 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
988 |
(*_blossom_data)[blossom].offset); |
|
989 |
} else if ((*_delta2)[blossom] > |
|
990 |
_blossom_set->classPrio(blossom) - |
|
991 |
(*_blossom_data)[blossom].offset){ |
|
992 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
993 |
(*_blossom_data)[blossom].offset); |
|
994 |
} |
|
995 |
} |
|
996 |
} |
|
997 |
|
|
998 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
|
999 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1000 |
_delta3->erase(e); |
|
1001 |
} |
|
1002 |
} else { |
|
1003 |
|
|
1004 |
typename std::map<int, Arc>::iterator it = |
|
1005 |
(*_node_data)[vi].heap_index.find(tree); |
|
1006 |
|
|
1007 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
1008 |
(*_node_data)[vi].heap.erase(it->second); |
|
1009 |
(*_node_data)[vi].heap_index.erase(it); |
|
1010 |
if ((*_node_data)[vi].heap.empty()) { |
|
1011 |
_blossom_set->increase(v, std::numeric_limits<Value>::max()); |
|
1012 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
|
1013 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
|
1014 |
} |
|
1015 |
|
|
1016 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
1017 |
if (_blossom_set->classPrio(vb) == |
|
1018 |
std::numeric_limits<Value>::max()) { |
|
1019 |
_delta2->erase(vb); |
|
1020 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
|
1021 |
(*_blossom_data)[vb].offset) { |
|
1022 |
_delta2->increase(vb, _blossom_set->classPrio(vb) - |
|
1023 |
(*_blossom_data)[vb].offset); |
|
1024 |
} |
|
1025 |
} |
|
1026 |
} |
|
1027 |
} |
|
1028 |
} |
|
1029 |
} |
|
1030 |
} |
|
1031 |
|
|
1032 |
void oddToMatched(int blossom) { |
|
1033 |
(*_blossom_data)[blossom].offset -= _delta_sum; |
|
1034 |
|
|
1035 |
if (_blossom_set->classPrio(blossom) != |
|
1036 |
std::numeric_limits<Value>::max()) { |
|
1037 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
1038 |
(*_blossom_data)[blossom].offset); |
|
1039 |
} |
|
1040 |
|
|
1041 |
if (!_blossom_set->trivial(blossom)) { |
|
1042 |
_delta4->erase(blossom); |
|
1043 |
} |
|
1044 |
} |
|
1045 |
|
|
1046 |
void oddToEven(int blossom, int tree) { |
|
1047 |
if (!_blossom_set->trivial(blossom)) { |
|
1048 |
_delta4->erase(blossom); |
|
1049 |
(*_blossom_data)[blossom].pot -= |
|
1050 |
2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
|
1051 |
} |
|
1052 |
|
|
1053 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
1054 |
n != INVALID; ++n) { |
|
1055 |
int ni = (*_node_index)[n]; |
|
1056 |
|
|
1057 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
1058 |
|
|
1059 |
(*_node_data)[ni].heap.clear(); |
|
1060 |
(*_node_data)[ni].heap_index.clear(); |
|
1061 |
(*_node_data)[ni].pot += |
|
1062 |
2 * _delta_sum - (*_blossom_data)[blossom].offset; |
|
1063 |
|
|
1064 |
_delta1->push(n, (*_node_data)[ni].pot); |
|
1065 |
|
|
1066 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
1067 |
Node v = _graph.source(e); |
|
1068 |
int vb = _blossom_set->find(v); |
|
1069 |
int vi = (*_node_index)[v]; |
|
1070 |
|
|
1071 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
1072 |
dualScale * _weight[e]; |
|
1073 |
|
|
1074 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
1075 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
|
1076 |
_delta3->push(e, rw / 2); |
|
1077 |
} |
|
1078 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
|
1079 |
if (_delta3->state(e) != _delta3->IN_HEAP) { |
|
1080 |
_delta3->push(e, rw); |
|
1081 |
} |
|
1082 |
} else { |
|
1083 |
|
|
1084 |
typename std::map<int, Arc>::iterator it = |
|
1085 |
(*_node_data)[vi].heap_index.find(tree); |
|
1086 |
|
|
1087 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
1088 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
|
1089 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
1090 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
1091 |
it->second = e; |
|
1092 |
} |
|
1093 |
} else { |
|
1094 |
(*_node_data)[vi].heap.push(e, rw); |
|
1095 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
1096 |
} |
|
1097 |
|
|
1098 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
|
1099 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
1100 |
|
|
1101 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
1102 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
|
1103 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
1104 |
(*_blossom_data)[vb].offset); |
|
1105 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
1106 |
(*_blossom_data)[vb].offset) { |
|
1107 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
1108 |
(*_blossom_data)[vb].offset); |
|
1109 |
} |
|
1110 |
} |
|
1111 |
} |
|
1112 |
} |
|
1113 |
} |
|
1114 |
} |
|
1115 |
(*_blossom_data)[blossom].offset = 0; |
|
1116 |
} |
|
1117 |
|
|
1118 |
|
|
1119 |
void matchedToUnmatched(int blossom) { |
|
1120 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
1121 |
_delta2->erase(blossom); |
|
1122 |
} |
|
1123 |
|
|
1124 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
1125 |
n != INVALID; ++n) { |
|
1126 |
int ni = (*_node_index)[n]; |
|
1127 |
|
|
1128 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
1129 |
|
|
1130 |
(*_node_data)[ni].heap.clear(); |
|
1131 |
(*_node_data)[ni].heap_index.clear(); |
|
1132 |
|
|
1133 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
1134 |
Node v = _graph.target(e); |
|
1135 |
int vb = _blossom_set->find(v); |
|
1136 |
int vi = (*_node_index)[v]; |
|
1137 |
|
|
1138 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
1139 |
dualScale * _weight[e]; |
|
1140 |
|
|
1141 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
1142 |
if (_delta3->state(e) != _delta3->IN_HEAP) { |
|
1143 |
_delta3->push(e, rw); |
|
1144 |
} |
|
1145 |
} |
|
1146 |
} |
|
1147 |
} |
|
1148 |
} |
|
1149 |
|
|
1150 |
void unmatchedToMatched(int blossom) { |
|
1151 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
1152 |
n != INVALID; ++n) { |
|
1153 |
int ni = (*_node_index)[n]; |
|
1154 |
|
|
1155 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
1156 |
Node v = _graph.source(e); |
|
1157 |
int vb = _blossom_set->find(v); |
|
1158 |
int vi = (*_node_index)[v]; |
|
1159 |
|
|
1160 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
1161 |
dualScale * _weight[e]; |
|
1162 |
|
|
1163 |
if (vb == blossom) { |
|
1164 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1165 |
_delta3->erase(e); |
|
1166 |
} |
|
1167 |
} else if ((*_blossom_data)[vb].status == EVEN) { |
|
1168 |
|
|
1169 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1170 |
_delta3->erase(e); |
|
1171 |
} |
|
1172 |
|
|
1173 |
int vt = _tree_set->find(vb); |
|
1174 |
|
|
1175 |
Arc r = _graph.oppositeArc(e); |
|
1176 |
|
|
1177 |
typename std::map<int, Arc>::iterator it = |
|
1178 |
(*_node_data)[ni].heap_index.find(vt); |
|
1179 |
|
|
1180 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
1181 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
1182 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
1183 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
1184 |
it->second = r; |
|
1185 |
} |
|
1186 |
} else { |
|
1187 |
(*_node_data)[ni].heap.push(r, rw); |
|
1188 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
1189 |
} |
|
1190 |
|
|
1191 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
|
1192 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
1193 |
|
|
1194 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
|
1195 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
1196 |
(*_blossom_data)[blossom].offset); |
|
1197 |
} else if ((*_delta2)[blossom] > _blossom_set->classPrio(blossom)- |
|
1198 |
(*_blossom_data)[blossom].offset){ |
|
1199 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
1200 |
(*_blossom_data)[blossom].offset); |
|
1201 |
} |
|
1202 |
} |
|
1203 |
|
|
1204 |
} else if ((*_blossom_data)[vb].status == UNMATCHED) { |
|
1205 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
1206 |
_delta3->erase(e); |
|
1207 |
} |
|
1208 |
} |
|
1209 |
} |
|
1210 |
} |
|
1211 |
} |
|
1212 |
|
|
1213 |
void alternatePath(int even, int tree) { |
|
1214 |
int odd; |
|
1215 |
|
|
1216 |
evenToMatched(even, tree); |
|
1217 |
(*_blossom_data)[even].status = MATCHED; |
|
1218 |
|
|
1219 |
while ((*_blossom_data)[even].pred != INVALID) { |
|
1220 |
odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
|
1221 |
(*_blossom_data)[odd].status = MATCHED; |
|
1222 |
oddToMatched(odd); |
|
1223 |
(*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
|
1224 |
|
|
1225 |
even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
|
1226 |
(*_blossom_data)[even].status = MATCHED; |
|
1227 |
evenToMatched(even, tree); |
|
1228 |
(*_blossom_data)[even].next = |
|
1229 |
_graph.oppositeArc((*_blossom_data)[odd].pred); |
|
1230 |
} |
|
1231 |
|
|
1232 |
} |
|
1233 |
|
|
1234 |
void destroyTree(int tree) { |
|
1235 |
for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
|
1236 |
if ((*_blossom_data)[b].status == EVEN) { |
|
1237 |
(*_blossom_data)[b].status = MATCHED; |
|
1238 |
evenToMatched(b, tree); |
|
1239 |
} else if ((*_blossom_data)[b].status == ODD) { |
|
1240 |
(*_blossom_data)[b].status = MATCHED; |
|
1241 |
oddToMatched(b); |
|
1242 |
} |
|
1243 |
} |
|
1244 |
_tree_set->eraseClass(tree); |
|
1245 |
} |
|
1246 |
|
|
1247 |
|
|
1248 |
void unmatchNode(const Node& node) { |
|
1249 |
int blossom = _blossom_set->find(node); |
|
1250 |
int tree = _tree_set->find(blossom); |
|
1251 |
|
|
1252 |
alternatePath(blossom, tree); |
|
1253 |
destroyTree(tree); |
|
1254 |
|
|
1255 |
(*_blossom_data)[blossom].status = UNMATCHED; |
|
1256 |
(*_blossom_data)[blossom].base = node; |
|
1257 |
matchedToUnmatched(blossom); |
|
1258 |
} |
|
1259 |
|
|
1260 |
|
|
1261 |
void augmentOnEdge(const Edge& edge) { |
|
1262 |
|
|
1263 |
int left = _blossom_set->find(_graph.u(edge)); |
|
1264 |
int right = _blossom_set->find(_graph.v(edge)); |
|
1265 |
|
|
1266 |
if ((*_blossom_data)[left].status == EVEN) { |
|
1267 |
int left_tree = _tree_set->find(left); |
|
1268 |
alternatePath(left, left_tree); |
|
1269 |
destroyTree(left_tree); |
|
1270 |
} else { |
|
1271 |
(*_blossom_data)[left].status = MATCHED; |
|
1272 |
unmatchedToMatched(left); |
|
1273 |
} |
|
1274 |
|
|
1275 |
if ((*_blossom_data)[right].status == EVEN) { |
|
1276 |
int right_tree = _tree_set->find(right); |
|
1277 |
alternatePath(right, right_tree); |
|
1278 |
destroyTree(right_tree); |
|
1279 |
} else { |
|
1280 |
(*_blossom_data)[right].status = MATCHED; |
|
1281 |
unmatchedToMatched(right); |
|
1282 |
} |
|
1283 |
|
|
1284 |
(*_blossom_data)[left].next = _graph.direct(edge, true); |
|
1285 |
(*_blossom_data)[right].next = _graph.direct(edge, false); |
|
1286 |
} |
|
1287 |
|
|
1288 |
void extendOnArc(const Arc& arc) { |
|
1289 |
int base = _blossom_set->find(_graph.target(arc)); |
|
1290 |
int tree = _tree_set->find(base); |
|
1291 |
|
|
1292 |
int odd = _blossom_set->find(_graph.source(arc)); |
|
1293 |
_tree_set->insert(odd, tree); |
|
1294 |
(*_blossom_data)[odd].status = ODD; |
|
1295 |
matchedToOdd(odd); |
|
1296 |
(*_blossom_data)[odd].pred = arc; |
|
1297 |
|
|
1298 |
int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
|
1299 |
(*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
|
1300 |
_tree_set->insert(even, tree); |
|
1301 |
(*_blossom_data)[even].status = EVEN; |
|
1302 |
matchedToEven(even, tree); |
|
1303 |
} |
|
1304 |
|
|
1305 |
void shrinkOnEdge(const Edge& edge, int tree) { |
|
1306 |
int nca = -1; |
|
1307 |
std::vector<int> left_path, right_path; |
|
1308 |
|
|
1309 |
{ |
|
1310 |
std::set<int> left_set, right_set; |
|
1311 |
int left = _blossom_set->find(_graph.u(edge)); |
|
1312 |
left_path.push_back(left); |
|
1313 |
left_set.insert(left); |
|
1314 |
|
|
1315 |
int right = _blossom_set->find(_graph.v(edge)); |
|
1316 |
right_path.push_back(right); |
|
1317 |
right_set.insert(right); |
|
1318 |
|
|
1319 |
while (true) { |
|
1320 |
|
|
1321 |
if ((*_blossom_data)[left].pred == INVALID) break; |
|
1322 |
|
|
1323 |
left = |
|
1324 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
|
1325 |
left_path.push_back(left); |
|
1326 |
left = |
|
1327 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
|
1328 |
left_path.push_back(left); |
|
1329 |
|
|
1330 |
left_set.insert(left); |
|
1331 |
|
|
1332 |
if (right_set.find(left) != right_set.end()) { |
|
1333 |
nca = left; |
|
1334 |
break; |
|
1335 |
} |
|
1336 |
|
|
1337 |
if ((*_blossom_data)[right].pred == INVALID) break; |
|
1338 |
|
|
1339 |
right = |
|
1340 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
|
1341 |
right_path.push_back(right); |
|
1342 |
right = |
|
1343 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
|
1344 |
right_path.push_back(right); |
|
1345 |
|
|
1346 |
right_set.insert(right); |
|
1347 |
|
|
1348 |
if (left_set.find(right) != left_set.end()) { |
|
1349 |
nca = right; |
|
1350 |
break; |
|
1351 |
} |
|
1352 |
|
|
1353 |
} |
|
1354 |
|
|
1355 |
if (nca == -1) { |
|
1356 |
if ((*_blossom_data)[left].pred == INVALID) { |
|
1357 |
nca = right; |
|
1358 |
while (left_set.find(nca) == left_set.end()) { |
|
1359 |
nca = |
|
1360 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
1361 |
right_path.push_back(nca); |
|
1362 |
nca = |
|
1363 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
1364 |
right_path.push_back(nca); |
|
1365 |
} |
|
1366 |
} else { |
|
1367 |
nca = left; |
|
1368 |
while (right_set.find(nca) == right_set.end()) { |
|
1369 |
nca = |
|
1370 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
1371 |
left_path.push_back(nca); |
|
1372 |
nca = |
|
1373 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
1374 |
left_path.push_back(nca); |
|
1375 |
} |
|
1376 |
} |
|
1377 |
} |
|
1378 |
} |
|
1379 |
|
|
1380 |
std::vector<int> subblossoms; |
|
1381 |
Arc prev; |
|
1382 |
|
|
1383 |
prev = _graph.direct(edge, true); |
|
1384 |
for (int i = 0; left_path[i] != nca; i += 2) { |
|
1385 |
subblossoms.push_back(left_path[i]); |
|
1386 |
(*_blossom_data)[left_path[i]].next = prev; |
|
1387 |
_tree_set->erase(left_path[i]); |
|
1388 |
|
|
1389 |
subblossoms.push_back(left_path[i + 1]); |
|
1390 |
(*_blossom_data)[left_path[i + 1]].status = EVEN; |
|
1391 |
oddToEven(left_path[i + 1], tree); |
|
1392 |
_tree_set->erase(left_path[i + 1]); |
|
1393 |
prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
|
1394 |
} |
|
1395 |
|
|
1396 |
int k = 0; |
|
1397 |
while (right_path[k] != nca) ++k; |
|
1398 |
|
|
1399 |
subblossoms.push_back(nca); |
|
1400 |
(*_blossom_data)[nca].next = prev; |
|
1401 |
|
|
1402 |
for (int i = k - 2; i >= 0; i -= 2) { |
|
1403 |
subblossoms.push_back(right_path[i + 1]); |
|
1404 |
(*_blossom_data)[right_path[i + 1]].status = EVEN; |
|
1405 |
oddToEven(right_path[i + 1], tree); |
|
1406 |
_tree_set->erase(right_path[i + 1]); |
|
1407 |
|
|
1408 |
(*_blossom_data)[right_path[i + 1]].next = |
|
1409 |
(*_blossom_data)[right_path[i + 1]].pred; |
|
1410 |
|
|
1411 |
subblossoms.push_back(right_path[i]); |
|
1412 |
_tree_set->erase(right_path[i]); |
|
1413 |
} |
|
1414 |
|
|
1415 |
int surface = |
|
1416 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
1417 |
|
|
1418 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
|
1419 |
if (!_blossom_set->trivial(subblossoms[i])) { |
|
1420 |
(*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
|
1421 |
} |
|
1422 |
(*_blossom_data)[subblossoms[i]].status = MATCHED; |
|
1423 |
} |
|
1424 |
|
|
1425 |
(*_blossom_data)[surface].pot = -2 * _delta_sum; |
|
1426 |
(*_blossom_data)[surface].offset = 0; |
|
1427 |
(*_blossom_data)[surface].status = EVEN; |
|
1428 |
(*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
|
1429 |
(*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
|
1430 |
|
|
1431 |
_tree_set->insert(surface, tree); |
|
1432 |
_tree_set->erase(nca); |
|
1433 |
} |
|
1434 |
|
|
1435 |
void splitBlossom(int blossom) { |
|
1436 |
Arc next = (*_blossom_data)[blossom].next; |
|
1437 |
Arc pred = (*_blossom_data)[blossom].pred; |
|
1438 |
|
|
1439 |
int tree = _tree_set->find(blossom); |
|
1440 |
|
|
1441 |
(*_blossom_data)[blossom].status = MATCHED; |
|
1442 |
oddToMatched(blossom); |
|
1443 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
1444 |
_delta2->erase(blossom); |
|
1445 |
} |
|
1446 |
|
|
1447 |
std::vector<int> subblossoms; |
|
1448 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
|
1449 |
|
|
1450 |
Value offset = (*_blossom_data)[blossom].offset; |
|
1451 |
int b = _blossom_set->find(_graph.source(pred)); |
|
1452 |
int d = _blossom_set->find(_graph.source(next)); |
|
1453 |
|
|
1454 |
int ib = -1, id = -1; |
|
1455 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
|
1456 |
if (subblossoms[i] == b) ib = i; |
|
1457 |
if (subblossoms[i] == d) id = i; |
|
1458 |
|
|
1459 |
(*_blossom_data)[subblossoms[i]].offset = offset; |
|
1460 |
if (!_blossom_set->trivial(subblossoms[i])) { |
|
1461 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
|
1462 |
} |
|
1463 |
if (_blossom_set->classPrio(subblossoms[i]) != |
|
1464 |
std::numeric_limits<Value>::max()) { |
|
1465 |
_delta2->push(subblossoms[i], |
|
1466 |
_blossom_set->classPrio(subblossoms[i]) - |
|
1467 |
(*_blossom_data)[subblossoms[i]].offset); |
|
1468 |
} |
|
1469 |
} |
|
1470 |
|
|
1471 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
|
1472 |
for (int i = (id + 1) % subblossoms.size(); |
|
1473 |
i != ib; i = (i + 2) % subblossoms.size()) { |
|
1474 |
int sb = subblossoms[i]; |
|
1475 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
1476 |
(*_blossom_data)[sb].next = |
|
1477 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
1478 |
} |
|
1479 |
|
|
1480 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
|
1481 |
int sb = subblossoms[i]; |
|
1482 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
1483 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
|
1484 |
|
|
1485 |
(*_blossom_data)[sb].status = ODD; |
|
1486 |
matchedToOdd(sb); |
|
1487 |
_tree_set->insert(sb, tree); |
|
1488 |
(*_blossom_data)[sb].pred = pred; |
|
1489 |
(*_blossom_data)[sb].next = |
|
1490 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
1491 |
|
|
1492 |
pred = (*_blossom_data)[ub].next; |
|
1493 |
|
|
1494 |
(*_blossom_data)[tb].status = EVEN; |
|
1495 |
matchedToEven(tb, tree); |
|
1496 |
_tree_set->insert(tb, tree); |
|
1497 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
|
1498 |
} |
|
1499 |
|
|
1500 |
(*_blossom_data)[subblossoms[id]].status = ODD; |
|
1501 |
matchedToOdd(subblossoms[id]); |
|
1502 |
_tree_set->insert(subblossoms[id], tree); |
|
1503 |
(*_blossom_data)[subblossoms[id]].next = next; |
|
1504 |
(*_blossom_data)[subblossoms[id]].pred = pred; |
|
1505 |
|
|
1506 |
} else { |
|
1507 |
|
|
1508 |
for (int i = (ib + 1) % subblossoms.size(); |
|
1509 |
i != id; i = (i + 2) % subblossoms.size()) { |
|
1510 |
int sb = subblossoms[i]; |
|
1511 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
1512 |
(*_blossom_data)[sb].next = |
|
1513 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
1514 |
} |
|
1515 |
|
|
1516 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
|
1517 |
int sb = subblossoms[i]; |
|
1518 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
1519 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
|
1520 |
|
|
1521 |
(*_blossom_data)[sb].status = ODD; |
|
1522 |
matchedToOdd(sb); |
|
1523 |
_tree_set->insert(sb, tree); |
|
1524 |
(*_blossom_data)[sb].next = next; |
|
1525 |
(*_blossom_data)[sb].pred = |
|
1526 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
1527 |
|
|
1528 |
(*_blossom_data)[tb].status = EVEN; |
|
1529 |
matchedToEven(tb, tree); |
|
1530 |
_tree_set->insert(tb, tree); |
|
1531 |
(*_blossom_data)[tb].pred = |
|
1532 |
(*_blossom_data)[tb].next = |
|
1533 |
_graph.oppositeArc((*_blossom_data)[ub].next); |
|
1534 |
next = (*_blossom_data)[ub].next; |
|
1535 |
} |
|
1536 |
|
|
1537 |
(*_blossom_data)[subblossoms[ib]].status = ODD; |
|
1538 |
matchedToOdd(subblossoms[ib]); |
|
1539 |
_tree_set->insert(subblossoms[ib], tree); |
|
1540 |
(*_blossom_data)[subblossoms[ib]].next = next; |
|
1541 |
(*_blossom_data)[subblossoms[ib]].pred = pred; |
|
1542 |
} |
|
1543 |
_tree_set->erase(blossom); |
|
1544 |
} |
|
1545 |
|
|
1546 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
|
1547 |
if (_blossom_set->trivial(blossom)) { |
|
1548 |
int bi = (*_node_index)[base]; |
|
1549 |
Value pot = (*_node_data)[bi].pot; |
|
1550 |
|
|
1551 |
(*_matching)[base] = matching; |
|
1552 |
_blossom_node_list.push_back(base); |
|
1553 |
(*_node_potential)[base] = pot; |
|
1554 |
} else { |
|
1555 |
|
|
1556 |
Value pot = (*_blossom_data)[blossom].pot; |
|
1557 |
int bn = _blossom_node_list.size(); |
|
1558 |
|
|
1559 |
std::vector<int> subblossoms; |
|
1560 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
|
1561 |
int b = _blossom_set->find(base); |
|
1562 |
int ib = -1; |
|
1563 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
|
1564 |
if (subblossoms[i] == b) { ib = i; break; } |
|
1565 |
} |
|
1566 |
|
|
1567 |
for (int i = 1; i < int(subblossoms.size()); i += 2) { |
|
1568 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
|
1569 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
|
1570 |
|
|
1571 |
Arc m = (*_blossom_data)[tb].next; |
|
1572 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
|
1573 |
extractBlossom(tb, _graph.source(m), m); |
|
1574 |
} |
|
1575 |
extractBlossom(subblossoms[ib], base, matching); |
|
1576 |
|
|
1577 |
int en = _blossom_node_list.size(); |
|
1578 |
|
|
1579 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
|
1580 |
} |
|
1581 |
} |
|
1582 |
|
|
1583 |
void extractMatching() { |
|
1584 |
std::vector<int> blossoms; |
|
1585 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
|
1586 |
blossoms.push_back(c); |
|
1587 |
} |
|
1588 |
|
|
1589 |
for (int i = 0; i < int(blossoms.size()); ++i) { |
|
1590 |
if ((*_blossom_data)[blossoms[i]].status == MATCHED) { |
|
1591 |
|
|
1592 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
|
1593 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
|
1594 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
|
1595 |
n != INVALID; ++n) { |
|
1596 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
|
1597 |
} |
|
1598 |
|
|
1599 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
|
1600 |
Node base = _graph.source(matching); |
|
1601 |
extractBlossom(blossoms[i], base, matching); |
|
1602 |
} else { |
|
1603 |
Node base = (*_blossom_data)[blossoms[i]].base; |
|
1604 |
extractBlossom(blossoms[i], base, INVALID); |
|
1605 |
} |
|
1606 |
} |
|
1607 |
} |
|
1608 |
|
|
1609 |
public: |
|
1610 |
|
|
1611 |
/// \brief Constructor |
|
1612 |
/// |
|
1613 |
/// Constructor. |
|
1614 |
MaxWeightedMatching(const Graph& graph, const WeightMap& weight) |
|
1615 |
: _graph(graph), _weight(weight), _matching(0), |
|
1616 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
|
1617 |
_node_num(0), _blossom_num(0), |
|
1618 |
|
|
1619 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
|
1620 |
_node_index(0), _node_heap_index(0), _node_data(0), |
|
1621 |
_tree_set_index(0), _tree_set(0), |
|
1622 |
|
|
1623 |
_delta1_index(0), _delta1(0), |
|
1624 |
_delta2_index(0), _delta2(0), |
|
1625 |
_delta3_index(0), _delta3(0), |
|
1626 |
_delta4_index(0), _delta4(0), |
|
1627 |
|
|
1628 |
_delta_sum() {} |
|
1629 |
|
|
1630 |
~MaxWeightedMatching() { |
|
1631 |
destroyStructures(); |
|
1632 |
} |
|
1633 |
|
|
1634 |
/// \name Execution control |
|
1635 |
/// The simplest way to execute the algorithm is to use the |
|
1636 |
/// \c run() member function. |
|
1637 |
|
|
1638 |
///@{ |
|
1639 |
|
|
1640 |
/// \brief Initialize the algorithm |
|
1641 |
/// |
|
1642 |
/// Initialize the algorithm |
|
1643 |
void init() { |
|
1644 |
createStructures(); |
|
1645 |
|
|
1646 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
1647 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
1648 |
} |
|
1649 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1650 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
|
1651 |
} |
|
1652 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1653 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
1654 |
} |
|
1655 |
for (int i = 0; i < _blossom_num; ++i) { |
|
1656 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
1657 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
1658 |
} |
|
1659 |
|
|
1660 |
int index = 0; |
|
1661 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1662 |
Value max = 0; |
|
1663 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
1664 |
if (_graph.target(e) == n) continue; |
|
1665 |
if ((dualScale * _weight[e]) / 2 > max) { |
|
1666 |
max = (dualScale * _weight[e]) / 2; |
|
1667 |
} |
|
1668 |
} |
|
1669 |
(*_node_index)[n] = index; |
|
1670 |
(*_node_data)[index].pot = max; |
|
1671 |
_delta1->push(n, max); |
|
1672 |
int blossom = |
|
1673 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
1674 |
|
|
1675 |
_tree_set->insert(blossom); |
|
1676 |
|
|
1677 |
(*_blossom_data)[blossom].status = EVEN; |
|
1678 |
(*_blossom_data)[blossom].pred = INVALID; |
|
1679 |
(*_blossom_data)[blossom].next = INVALID; |
|
1680 |
(*_blossom_data)[blossom].pot = 0; |
|
1681 |
(*_blossom_data)[blossom].offset = 0; |
|
1682 |
++index; |
|
1683 |
} |
|
1684 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
1685 |
int si = (*_node_index)[_graph.u(e)]; |
|
1686 |
int ti = (*_node_index)[_graph.v(e)]; |
|
1687 |
if (_graph.u(e) != _graph.v(e)) { |
|
1688 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
1689 |
dualScale * _weight[e]) / 2); |
|
1690 |
} |
|
1691 |
} |
|
1692 |
} |
|
1693 |
|
|
1694 |
/// \brief Starts the algorithm |
|
1695 |
/// |
|
1696 |
/// Starts the algorithm |
|
1697 |
void start() { |
|
1698 |
enum OpType { |
|
1699 |
D1, D2, D3, D4 |
|
1700 |
}; |
|
1701 |
|
|
1702 |
int unmatched = _node_num; |
|
1703 |
while (unmatched > 0) { |
|
1704 |
Value d1 = !_delta1->empty() ? |
|
1705 |
_delta1->prio() : std::numeric_limits<Value>::max(); |
|
1706 |
|
|
1707 |
Value d2 = !_delta2->empty() ? |
|
1708 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
|
1709 |
|
|
1710 |
Value d3 = !_delta3->empty() ? |
|
1711 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
|
1712 |
|
|
1713 |
Value d4 = !_delta4->empty() ? |
|
1714 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
|
1715 |
|
|
1716 |
_delta_sum = d1; OpType ot = D1; |
|
1717 |
if (d2 < _delta_sum) { _delta_sum = d2; ot = D2; } |
|
1718 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
|
1719 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
|
1720 |
|
|
1721 |
|
|
1722 |
switch (ot) { |
|
1723 |
case D1: |
|
1724 |
{ |
|
1725 |
Node n = _delta1->top(); |
|
1726 |
unmatchNode(n); |
|
1727 |
--unmatched; |
|
1728 |
} |
|
1729 |
break; |
|
1730 |
case D2: |
|
1731 |
{ |
|
1732 |
int blossom = _delta2->top(); |
|
1733 |
Node n = _blossom_set->classTop(blossom); |
|
1734 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
|
1735 |
extendOnArc(e); |
|
1736 |
} |
|
1737 |
break; |
|
1738 |
case D3: |
|
1739 |
{ |
|
1740 |
Edge e = _delta3->top(); |
|
1741 |
|
|
1742 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
|
1743 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
|
1744 |
|
|
1745 |
if (left_blossom == right_blossom) { |
|
1746 |
_delta3->pop(); |
|
1747 |
} else { |
|
1748 |
int left_tree; |
|
1749 |
if ((*_blossom_data)[left_blossom].status == EVEN) { |
|
1750 |
left_tree = _tree_set->find(left_blossom); |
|
1751 |
} else { |
|
1752 |
left_tree = -1; |
|
1753 |
++unmatched; |
|
1754 |
} |
|
1755 |
int right_tree; |
|
1756 |
if ((*_blossom_data)[right_blossom].status == EVEN) { |
|
1757 |
right_tree = _tree_set->find(right_blossom); |
|
1758 |
} else { |
|
1759 |
right_tree = -1; |
|
1760 |
++unmatched; |
|
1761 |
} |
|
1762 |
|
|
1763 |
if (left_tree == right_tree) { |
|
1764 |
shrinkOnEdge(e, left_tree); |
|
1765 |
} else { |
|
1766 |
augmentOnEdge(e); |
|
1767 |
unmatched -= 2; |
|
1768 |
} |
|
1769 |
} |
|
1770 |
} break; |
|
1771 |
case D4: |
|
1772 |
splitBlossom(_delta4->top()); |
|
1773 |
break; |
|
1774 |
} |
|
1775 |
} |
|
1776 |
extractMatching(); |
|
1777 |
} |
|
1778 |
|
|
1779 |
/// \brief Runs %MaxWeightedMatching algorithm. |
|
1780 |
/// |
|
1781 |
/// This method runs the %MaxWeightedMatching algorithm. |
|
1782 |
/// |
|
1783 |
/// \note mwm.run() is just a shortcut of the following code. |
|
1784 |
/// \code |
|
1785 |
/// mwm.init(); |
|
1786 |
/// mwm.start(); |
|
1787 |
/// \endcode |
|
1788 |
void run() { |
|
1789 |
init(); |
|
1790 |
start(); |
|
1791 |
} |
|
1792 |
|
|
1793 |
/// @} |
|
1794 |
|
|
1795 |
/// \name Primal solution |
|
1796 |
/// Functions to get the primal solution, ie. the matching. |
|
1797 |
|
|
1798 |
/// @{ |
|
1799 |
|
|
1800 |
/// \brief Returns the weight of the matching. |
|
1801 |
/// |
|
1802 |
/// Returns the weight of the matching. |
|
1803 |
Value matchingValue() const { |
|
1804 |
Value sum = 0; |
|
1805 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1806 |
if ((*_matching)[n] != INVALID) { |
|
1807 |
sum += _weight[(*_matching)[n]]; |
|
1808 |
} |
|
1809 |
} |
|
1810 |
return sum /= 2; |
|
1811 |
} |
|
1812 |
|
|
1813 |
/// \brief Returns the cardinality of the matching. |
|
1814 |
/// |
|
1815 |
/// Returns the cardinality of the matching. |
|
1816 |
int matchingSize() const { |
|
1817 |
int num = 0; |
|
1818 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1819 |
if ((*_matching)[n] != INVALID) { |
|
1820 |
++num; |
|
1821 |
} |
|
1822 |
} |
|
1823 |
return num /= 2; |
|
1824 |
} |
|
1825 |
|
|
1826 |
/// \brief Returns true when the edge is in the matching. |
|
1827 |
/// |
|
1828 |
/// Returns true when the edge is in the matching. |
|
1829 |
bool matching(const Edge& edge) const { |
|
1830 |
return edge == (*_matching)[_graph.u(edge)]; |
|
1831 |
} |
|
1832 |
|
|
1833 |
/// \brief Returns the incident matching arc. |
|
1834 |
/// |
|
1835 |
/// Returns the incident matching arc from given node. If the |
|
1836 |
/// node is not matched then it gives back \c INVALID. |
|
1837 |
Arc matching(const Node& node) const { |
|
1838 |
return (*_matching)[node]; |
|
1839 |
} |
|
1840 |
|
|
1841 |
/// \brief Returns the mate of the node. |
|
1842 |
/// |
|
1843 |
/// Returns the adjancent node in a mathcing arc. If the node is |
|
1844 |
/// not matched then it gives back \c INVALID. |
|
1845 |
Node mate(const Node& node) const { |
|
1846 |
return (*_matching)[node] != INVALID ? |
|
1847 |
_graph.target((*_matching)[node]) : INVALID; |
|
1848 |
} |
|
1849 |
|
|
1850 |
/// @} |
|
1851 |
|
|
1852 |
/// \name Dual solution |
|
1853 |
/// Functions to get the dual solution. |
|
1854 |
|
|
1855 |
/// @{ |
|
1856 |
|
|
1857 |
/// \brief Returns the value of the dual solution. |
|
1858 |
/// |
|
1859 |
/// Returns the value of the dual solution. It should be equal to |
|
1860 |
/// the primal value scaled by \ref dualScale "dual scale". |
|
1861 |
Value dualValue() const { |
|
1862 |
Value sum = 0; |
|
1863 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
1864 |
sum += nodeValue(n); |
|
1865 |
} |
|
1866 |
for (int i = 0; i < blossomNum(); ++i) { |
|
1867 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
|
1868 |
} |
|
1869 |
return sum; |
|
1870 |
} |
|
1871 |
|
|
1872 |
/// \brief Returns the value of the node. |
|
1873 |
/// |
|
1874 |
/// Returns the the value of the node. |
|
1875 |
Value nodeValue(const Node& n) const { |
|
1876 |
return (*_node_potential)[n]; |
|
1877 |
} |
|
1878 |
|
|
1879 |
/// \brief Returns the number of the blossoms in the basis. |
|
1880 |
/// |
|
1881 |
/// Returns the number of the blossoms in the basis. |
|
1882 |
/// \see BlossomIt |
|
1883 |
int blossomNum() const { |
|
1884 |
return _blossom_potential.size(); |
|
1885 |
} |
|
1886 |
|
|
1887 |
|
|
1888 |
/// \brief Returns the number of the nodes in the blossom. |
|
1889 |
/// |
|
1890 |
/// Returns the number of the nodes in the blossom. |
|
1891 |
int blossomSize(int k) const { |
|
1892 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
|
1893 |
} |
|
1894 |
|
|
1895 |
/// \brief Returns the value of the blossom. |
|
1896 |
/// |
|
1897 |
/// Returns the the value of the blossom. |
|
1898 |
/// \see BlossomIt |
|
1899 |
Value blossomValue(int k) const { |
|
1900 |
return _blossom_potential[k].value; |
|
1901 |
} |
|
1902 |
|
|
1903 |
/// \brief Iterator for obtaining the nodes of the blossom. |
|
1904 |
/// |
|
1905 |
/// Iterator for obtaining the nodes of the blossom. This class |
|
1906 |
/// provides a common lemon style iterator for listing a |
|
1907 |
/// subset of the nodes. |
|
1908 |
class BlossomIt { |
|
1909 |
public: |
|
1910 |
|
|
1911 |
/// \brief Constructor. |
|
1912 |
/// |
|
1913 |
/// Constructor to get the nodes of the variable. |
|
1914 |
BlossomIt(const MaxWeightedMatching& algorithm, int variable) |
|
1915 |
: _algorithm(&algorithm) |
|
1916 |
{ |
|
1917 |
_index = _algorithm->_blossom_potential[variable].begin; |
|
1918 |
_last = _algorithm->_blossom_potential[variable].end; |
|
1919 |
} |
|
1920 |
|
|
1921 |
/// \brief Conversion to node. |
|
1922 |
/// |
|
1923 |
/// Conversion to node. |
|
1924 |
operator Node() const { |
|
1925 |
return _algorithm->_blossom_node_list[_index]; |
|
1926 |
} |
|
1927 |
|
|
1928 |
/// \brief Increment operator. |
|
1929 |
/// |
|
1930 |
/// Increment operator. |
|
1931 |
BlossomIt& operator++() { |
|
1932 |
++_index; |
|
1933 |
return *this; |
|
1934 |
} |
|
1935 |
|
|
1936 |
/// \brief Validity checking |
|
1937 |
/// |
|
1938 |
/// Checks whether the iterator is invalid. |
|
1939 |
bool operator==(Invalid) const { return _index == _last; } |
|
1940 |
|
|
1941 |
/// \brief Validity checking |
|
1942 |
/// |
|
1943 |
/// Checks whether the iterator is valid. |
|
1944 |
bool operator!=(Invalid) const { return _index != _last; } |
|
1945 |
|
|
1946 |
private: |
|
1947 |
const MaxWeightedMatching* _algorithm; |
|
1948 |
int _last; |
|
1949 |
int _index; |
|
1950 |
}; |
|
1951 |
|
|
1952 |
/// @} |
|
1953 |
|
|
1954 |
}; |
|
1955 |
|
|
1956 |
/// \ingroup matching |
|
1957 |
/// |
|
1958 |
/// \brief Weighted perfect matching in general graphs |
|
1959 |
/// |
|
1960 |
/// This class provides an efficient implementation of Edmond's |
|
1961 |
/// maximum weighted perfect matching algorithm. The implementation |
|
1962 |
/// is based on extensive use of priority queues and provides |
|
1963 |
/// \f$O(nm\log n)\f$ time complexity. |
|
1964 |
/// |
|
1965 |
/// The maximum weighted matching problem is to find undirected |
|
1966 |
/// edges in the graph with maximum overall weight and no two of |
|
1967 |
/// them shares their ends and covers all nodes. The problem can be |
|
1968 |
/// formulated with the following linear program. |
|
1969 |
/// \f[ \sum_{e \in \delta(u)}x_e = 1 \quad \forall u\in V\f] |
|
1970 |
/** \f[ \sum_{e \in \gamma(B)}x_e \le \frac{\vert B \vert - 1}{2} |
|
1971 |
\quad \forall B\in\mathcal{O}\f] */ |
|
1972 |
/// \f[x_e \ge 0\quad \forall e\in E\f] |
|
1973 |
/// \f[\max \sum_{e\in E}x_ew_e\f] |
|
1974 |
/// where \f$\delta(X)\f$ is the set of edges incident to a node in |
|
1975 |
/// \f$X\f$, \f$\gamma(X)\f$ is the set of edges with both ends in |
|
1976 |
/// \f$X\f$ and \f$\mathcal{O}\f$ is the set of odd cardinality |
|
1977 |
/// subsets of the nodes. |
|
1978 |
/// |
|
1979 |
/// The algorithm calculates an optimal matching and a proof of the |
|
1980 |
/// optimality. The solution of the dual problem can be used to check |
|
1981 |
/// the result of the algorithm. The dual linear problem is the |
|
1982 |
/** \f[ y_u + y_v + \sum_{B \in \mathcal{O}, uv \in \gamma(B)}z_B \ge |
|
1983 |
w_{uv} \quad \forall uv\in E\f] */ |
|
1984 |
/// \f[z_B \ge 0 \quad \forall B \in \mathcal{O}\f] |
|
1985 |
/** \f[\min \sum_{u \in V}y_u + \sum_{B \in \mathcal{O}} |
|
1986 |
\frac{\vert B \vert - 1}{2}z_B\f] */ |
|
1987 |
/// |
|
1988 |
/// The algorithm can be executed with \c run() or the \c init() and |
|
1989 |
/// then the \c start() member functions. After it the matching can |
|
1990 |
/// be asked with \c matching() or mate() functions. The dual |
|
1991 |
/// solution can be get with \c nodeValue(), \c blossomNum() and \c |
|
1992 |
/// blossomValue() members and \ref MaxWeightedMatching::BlossomIt |
|
1993 |
/// "BlossomIt" nested class which is able to iterate on the nodes |
|
1994 |
/// of a blossom. If the value type is integral then the dual |
|
1995 |
/// solution is multiplied by \ref MaxWeightedMatching::dualScale "4". |
|
1996 |
template <typename GR, |
|
1997 |
typename WM = typename GR::template EdgeMap<int> > |
|
1998 |
class MaxWeightedPerfectMatching { |
|
1999 |
public: |
|
2000 |
|
|
2001 |
typedef GR Graph; |
|
2002 |
typedef WM WeightMap; |
|
2003 |
typedef typename WeightMap::Value Value; |
|
2004 |
|
|
2005 |
/// \brief Scaling factor for dual solution |
|
2006 |
/// |
|
2007 |
/// Scaling factor for dual solution, it is equal to 4 or 1 |
|
2008 |
/// according to the value type. |
|
2009 |
static const int dualScale = |
|
2010 |
std::numeric_limits<Value>::is_integer ? 4 : 1; |
|
2011 |
|
|
2012 |
typedef typename Graph::template NodeMap<typename Graph::Arc> |
|
2013 |
MatchingMap; |
|
2014 |
|
|
2015 |
private: |
|
2016 |
|
|
2017 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
|
2018 |
|
|
2019 |
typedef typename Graph::template NodeMap<Value> NodePotential; |
|
2020 |
typedef std::vector<Node> BlossomNodeList; |
|
2021 |
|
|
2022 |
struct BlossomVariable { |
|
2023 |
int begin, end; |
|
2024 |
Value value; |
|
2025 |
|
|
2026 |
BlossomVariable(int _begin, int _end, Value _value) |
|
2027 |
: begin(_begin), end(_end), value(_value) {} |
|
2028 |
|
|
2029 |
}; |
|
2030 |
|
|
2031 |
typedef std::vector<BlossomVariable> BlossomPotential; |
|
2032 |
|
|
2033 |
const Graph& _graph; |
|
2034 |
const WeightMap& _weight; |
|
2035 |
|
|
2036 |
MatchingMap* _matching; |
|
2037 |
|
|
2038 |
NodePotential* _node_potential; |
|
2039 |
|
|
2040 |
BlossomPotential _blossom_potential; |
|
2041 |
BlossomNodeList _blossom_node_list; |
|
2042 |
|
|
2043 |
int _node_num; |
|
2044 |
int _blossom_num; |
|
2045 |
|
|
2046 |
typedef RangeMap<int> IntIntMap; |
|
2047 |
|
|
2048 |
enum Status { |
|
2049 |
EVEN = -1, MATCHED = 0, ODD = 1 |
|
2050 |
}; |
|
2051 |
|
|
2052 |
typedef HeapUnionFind<Value, IntNodeMap> BlossomSet; |
|
2053 |
struct BlossomData { |
|
2054 |
int tree; |
|
2055 |
Status status; |
|
2056 |
Arc pred, next; |
|
2057 |
Value pot, offset; |
|
2058 |
}; |
|
2059 |
|
|
2060 |
IntNodeMap *_blossom_index; |
|
2061 |
BlossomSet *_blossom_set; |
|
2062 |
RangeMap<BlossomData>* _blossom_data; |
|
2063 |
|
|
2064 |
IntNodeMap *_node_index; |
|
2065 |
IntArcMap *_node_heap_index; |
|
2066 |
|
|
2067 |
struct NodeData { |
|
2068 |
|
|
2069 |
NodeData(IntArcMap& node_heap_index) |
|
2070 |
: heap(node_heap_index) {} |
|
2071 |
|
|
2072 |
int blossom; |
|
2073 |
Value pot; |
|
2074 |
BinHeap<Value, IntArcMap> heap; |
|
2075 |
std::map<int, Arc> heap_index; |
|
2076 |
|
|
2077 |
int tree; |
|
2078 |
}; |
|
2079 |
|
|
2080 |
RangeMap<NodeData>* _node_data; |
|
2081 |
|
|
2082 |
typedef ExtendFindEnum<IntIntMap> TreeSet; |
|
2083 |
|
|
2084 |
IntIntMap *_tree_set_index; |
|
2085 |
TreeSet *_tree_set; |
|
2086 |
|
|
2087 |
IntIntMap *_delta2_index; |
|
2088 |
BinHeap<Value, IntIntMap> *_delta2; |
|
2089 |
|
|
2090 |
IntEdgeMap *_delta3_index; |
|
2091 |
BinHeap<Value, IntEdgeMap> *_delta3; |
|
2092 |
|
|
2093 |
IntIntMap *_delta4_index; |
|
2094 |
BinHeap<Value, IntIntMap> *_delta4; |
|
2095 |
|
|
2096 |
Value _delta_sum; |
|
2097 |
|
|
2098 |
void createStructures() { |
|
2099 |
_node_num = countNodes(_graph); |
|
2100 |
_blossom_num = _node_num * 3 / 2; |
|
2101 |
|
|
2102 |
if (!_matching) { |
|
2103 |
_matching = new MatchingMap(_graph); |
|
2104 |
} |
|
2105 |
if (!_node_potential) { |
|
2106 |
_node_potential = new NodePotential(_graph); |
|
2107 |
} |
|
2108 |
if (!_blossom_set) { |
|
2109 |
_blossom_index = new IntNodeMap(_graph); |
|
2110 |
_blossom_set = new BlossomSet(*_blossom_index); |
|
2111 |
_blossom_data = new RangeMap<BlossomData>(_blossom_num); |
|
2112 |
} |
|
2113 |
|
|
2114 |
if (!_node_index) { |
|
2115 |
_node_index = new IntNodeMap(_graph); |
|
2116 |
_node_heap_index = new IntArcMap(_graph); |
|
2117 |
_node_data = new RangeMap<NodeData>(_node_num, |
|
2118 |
NodeData(*_node_heap_index)); |
|
2119 |
} |
|
2120 |
|
|
2121 |
if (!_tree_set) { |
|
2122 |
_tree_set_index = new IntIntMap(_blossom_num); |
|
2123 |
_tree_set = new TreeSet(*_tree_set_index); |
|
2124 |
} |
|
2125 |
if (!_delta2) { |
|
2126 |
_delta2_index = new IntIntMap(_blossom_num); |
|
2127 |
_delta2 = new BinHeap<Value, IntIntMap>(*_delta2_index); |
|
2128 |
} |
|
2129 |
if (!_delta3) { |
|
2130 |
_delta3_index = new IntEdgeMap(_graph); |
|
2131 |
_delta3 = new BinHeap<Value, IntEdgeMap>(*_delta3_index); |
|
2132 |
} |
|
2133 |
if (!_delta4) { |
|
2134 |
_delta4_index = new IntIntMap(_blossom_num); |
|
2135 |
_delta4 = new BinHeap<Value, IntIntMap>(*_delta4_index); |
|
2136 |
} |
|
2137 |
} |
|
2138 |
|
|
2139 |
void destroyStructures() { |
|
2140 |
_node_num = countNodes(_graph); |
|
2141 |
_blossom_num = _node_num * 3 / 2; |
|
2142 |
|
|
2143 |
if (_matching) { |
|
2144 |
delete _matching; |
|
2145 |
} |
|
2146 |
if (_node_potential) { |
|
2147 |
delete _node_potential; |
|
2148 |
} |
|
2149 |
if (_blossom_set) { |
|
2150 |
delete _blossom_index; |
|
2151 |
delete _blossom_set; |
|
2152 |
delete _blossom_data; |
|
2153 |
} |
|
2154 |
|
|
2155 |
if (_node_index) { |
|
2156 |
delete _node_index; |
|
2157 |
delete _node_heap_index; |
|
2158 |
delete _node_data; |
|
2159 |
} |
|
2160 |
|
|
2161 |
if (_tree_set) { |
|
2162 |
delete _tree_set_index; |
|
2163 |
delete _tree_set; |
|
2164 |
} |
|
2165 |
if (_delta2) { |
|
2166 |
delete _delta2_index; |
|
2167 |
delete _delta2; |
|
2168 |
} |
|
2169 |
if (_delta3) { |
|
2170 |
delete _delta3_index; |
|
2171 |
delete _delta3; |
|
2172 |
} |
|
2173 |
if (_delta4) { |
|
2174 |
delete _delta4_index; |
|
2175 |
delete _delta4; |
|
2176 |
} |
|
2177 |
} |
|
2178 |
|
|
2179 |
void matchedToEven(int blossom, int tree) { |
|
2180 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
2181 |
_delta2->erase(blossom); |
|
2182 |
} |
|
2183 |
|
|
2184 |
if (!_blossom_set->trivial(blossom)) { |
|
2185 |
(*_blossom_data)[blossom].pot -= |
|
2186 |
2 * (_delta_sum - (*_blossom_data)[blossom].offset); |
|
2187 |
} |
|
2188 |
|
|
2189 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
2190 |
n != INVALID; ++n) { |
|
2191 |
|
|
2192 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
2193 |
int ni = (*_node_index)[n]; |
|
2194 |
|
|
2195 |
(*_node_data)[ni].heap.clear(); |
|
2196 |
(*_node_data)[ni].heap_index.clear(); |
|
2197 |
|
|
2198 |
(*_node_data)[ni].pot += _delta_sum - (*_blossom_data)[blossom].offset; |
|
2199 |
|
|
2200 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
2201 |
Node v = _graph.source(e); |
|
2202 |
int vb = _blossom_set->find(v); |
|
2203 |
int vi = (*_node_index)[v]; |
|
2204 |
|
|
2205 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
2206 |
dualScale * _weight[e]; |
|
2207 |
|
|
2208 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
2209 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
|
2210 |
_delta3->push(e, rw / 2); |
|
2211 |
} |
|
2212 |
} else { |
|
2213 |
typename std::map<int, Arc>::iterator it = |
|
2214 |
(*_node_data)[vi].heap_index.find(tree); |
|
2215 |
|
|
2216 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
2217 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
|
2218 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
2219 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
2220 |
it->second = e; |
|
2221 |
} |
|
2222 |
} else { |
|
2223 |
(*_node_data)[vi].heap.push(e, rw); |
|
2224 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
2225 |
} |
|
2226 |
|
|
2227 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
|
2228 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
2229 |
|
|
2230 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
2231 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
|
2232 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
2233 |
(*_blossom_data)[vb].offset); |
|
2234 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
2235 |
(*_blossom_data)[vb].offset){ |
|
2236 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
2237 |
(*_blossom_data)[vb].offset); |
|
2238 |
} |
|
2239 |
} |
|
2240 |
} |
|
2241 |
} |
|
2242 |
} |
|
2243 |
} |
|
2244 |
(*_blossom_data)[blossom].offset = 0; |
|
2245 |
} |
|
2246 |
|
|
2247 |
void matchedToOdd(int blossom) { |
|
2248 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
2249 |
_delta2->erase(blossom); |
|
2250 |
} |
|
2251 |
(*_blossom_data)[blossom].offset += _delta_sum; |
|
2252 |
if (!_blossom_set->trivial(blossom)) { |
|
2253 |
_delta4->push(blossom, (*_blossom_data)[blossom].pot / 2 + |
|
2254 |
(*_blossom_data)[blossom].offset); |
|
2255 |
} |
|
2256 |
} |
|
2257 |
|
|
2258 |
void evenToMatched(int blossom, int tree) { |
|
2259 |
if (!_blossom_set->trivial(blossom)) { |
|
2260 |
(*_blossom_data)[blossom].pot += 2 * _delta_sum; |
|
2261 |
} |
|
2262 |
|
|
2263 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
2264 |
n != INVALID; ++n) { |
|
2265 |
int ni = (*_node_index)[n]; |
|
2266 |
(*_node_data)[ni].pot -= _delta_sum; |
|
2267 |
|
|
2268 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
2269 |
Node v = _graph.source(e); |
|
2270 |
int vb = _blossom_set->find(v); |
|
2271 |
int vi = (*_node_index)[v]; |
|
2272 |
|
|
2273 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
2274 |
dualScale * _weight[e]; |
|
2275 |
|
|
2276 |
if (vb == blossom) { |
|
2277 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
2278 |
_delta3->erase(e); |
|
2279 |
} |
|
2280 |
} else if ((*_blossom_data)[vb].status == EVEN) { |
|
2281 |
|
|
2282 |
if (_delta3->state(e) == _delta3->IN_HEAP) { |
|
2283 |
_delta3->erase(e); |
|
2284 |
} |
|
2285 |
|
|
2286 |
int vt = _tree_set->find(vb); |
|
2287 |
|
|
2288 |
if (vt != tree) { |
|
2289 |
|
|
2290 |
Arc r = _graph.oppositeArc(e); |
|
2291 |
|
|
2292 |
typename std::map<int, Arc>::iterator it = |
|
2293 |
(*_node_data)[ni].heap_index.find(vt); |
|
2294 |
|
|
2295 |
if (it != (*_node_data)[ni].heap_index.end()) { |
|
2296 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
|
2297 |
(*_node_data)[ni].heap.replace(it->second, r); |
|
2298 |
(*_node_data)[ni].heap.decrease(r, rw); |
|
2299 |
it->second = r; |
|
2300 |
} |
|
2301 |
} else { |
|
2302 |
(*_node_data)[ni].heap.push(r, rw); |
|
2303 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, r)); |
|
2304 |
} |
|
2305 |
|
|
2306 |
if ((*_blossom_set)[n] > (*_node_data)[ni].heap.prio()) { |
|
2307 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
|
2308 |
|
|
2309 |
if (_delta2->state(blossom) != _delta2->IN_HEAP) { |
|
2310 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
2311 |
(*_blossom_data)[blossom].offset); |
|
2312 |
} else if ((*_delta2)[blossom] > |
|
2313 |
_blossom_set->classPrio(blossom) - |
|
2314 |
(*_blossom_data)[blossom].offset){ |
|
2315 |
_delta2->decrease(blossom, _blossom_set->classPrio(blossom) - |
|
2316 |
(*_blossom_data)[blossom].offset); |
|
2317 |
} |
|
2318 |
} |
|
2319 |
} |
|
2320 |
} else { |
|
2321 |
|
|
2322 |
typename std::map<int, Arc>::iterator it = |
|
2323 |
(*_node_data)[vi].heap_index.find(tree); |
|
2324 |
|
|
2325 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
2326 |
(*_node_data)[vi].heap.erase(it->second); |
|
2327 |
(*_node_data)[vi].heap_index.erase(it); |
|
2328 |
if ((*_node_data)[vi].heap.empty()) { |
|
2329 |
_blossom_set->increase(v, std::numeric_limits<Value>::max()); |
|
2330 |
} else if ((*_blossom_set)[v] < (*_node_data)[vi].heap.prio()) { |
|
2331 |
_blossom_set->increase(v, (*_node_data)[vi].heap.prio()); |
|
2332 |
} |
|
2333 |
|
|
2334 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
2335 |
if (_blossom_set->classPrio(vb) == |
|
2336 |
std::numeric_limits<Value>::max()) { |
|
2337 |
_delta2->erase(vb); |
|
2338 |
} else if ((*_delta2)[vb] < _blossom_set->classPrio(vb) - |
|
2339 |
(*_blossom_data)[vb].offset) { |
|
2340 |
_delta2->increase(vb, _blossom_set->classPrio(vb) - |
|
2341 |
(*_blossom_data)[vb].offset); |
|
2342 |
} |
|
2343 |
} |
|
2344 |
} |
|
2345 |
} |
|
2346 |
} |
|
2347 |
} |
|
2348 |
} |
|
2349 |
|
|
2350 |
void oddToMatched(int blossom) { |
|
2351 |
(*_blossom_data)[blossom].offset -= _delta_sum; |
|
2352 |
|
|
2353 |
if (_blossom_set->classPrio(blossom) != |
|
2354 |
std::numeric_limits<Value>::max()) { |
|
2355 |
_delta2->push(blossom, _blossom_set->classPrio(blossom) - |
|
2356 |
(*_blossom_data)[blossom].offset); |
|
2357 |
} |
|
2358 |
|
|
2359 |
if (!_blossom_set->trivial(blossom)) { |
|
2360 |
_delta4->erase(blossom); |
|
2361 |
} |
|
2362 |
} |
|
2363 |
|
|
2364 |
void oddToEven(int blossom, int tree) { |
|
2365 |
if (!_blossom_set->trivial(blossom)) { |
|
2366 |
_delta4->erase(blossom); |
|
2367 |
(*_blossom_data)[blossom].pot -= |
|
2368 |
2 * (2 * _delta_sum - (*_blossom_data)[blossom].offset); |
|
2369 |
} |
|
2370 |
|
|
2371 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossom); |
|
2372 |
n != INVALID; ++n) { |
|
2373 |
int ni = (*_node_index)[n]; |
|
2374 |
|
|
2375 |
_blossom_set->increase(n, std::numeric_limits<Value>::max()); |
|
2376 |
|
|
2377 |
(*_node_data)[ni].heap.clear(); |
|
2378 |
(*_node_data)[ni].heap_index.clear(); |
|
2379 |
(*_node_data)[ni].pot += |
|
2380 |
2 * _delta_sum - (*_blossom_data)[blossom].offset; |
|
2381 |
|
|
2382 |
for (InArcIt e(_graph, n); e != INVALID; ++e) { |
|
2383 |
Node v = _graph.source(e); |
|
2384 |
int vb = _blossom_set->find(v); |
|
2385 |
int vi = (*_node_index)[v]; |
|
2386 |
|
|
2387 |
Value rw = (*_node_data)[ni].pot + (*_node_data)[vi].pot - |
|
2388 |
dualScale * _weight[e]; |
|
2389 |
|
|
2390 |
if ((*_blossom_data)[vb].status == EVEN) { |
|
2391 |
if (_delta3->state(e) != _delta3->IN_HEAP && blossom != vb) { |
|
2392 |
_delta3->push(e, rw / 2); |
|
2393 |
} |
|
2394 |
} else { |
|
2395 |
|
|
2396 |
typename std::map<int, Arc>::iterator it = |
|
2397 |
(*_node_data)[vi].heap_index.find(tree); |
|
2398 |
|
|
2399 |
if (it != (*_node_data)[vi].heap_index.end()) { |
|
2400 |
if ((*_node_data)[vi].heap[it->second] > rw) { |
|
2401 |
(*_node_data)[vi].heap.replace(it->second, e); |
|
2402 |
(*_node_data)[vi].heap.decrease(e, rw); |
|
2403 |
it->second = e; |
|
2404 |
} |
|
2405 |
} else { |
|
2406 |
(*_node_data)[vi].heap.push(e, rw); |
|
2407 |
(*_node_data)[vi].heap_index.insert(std::make_pair(tree, e)); |
|
2408 |
} |
|
2409 |
|
|
2410 |
if ((*_blossom_set)[v] > (*_node_data)[vi].heap.prio()) { |
|
2411 |
_blossom_set->decrease(v, (*_node_data)[vi].heap.prio()); |
|
2412 |
|
|
2413 |
if ((*_blossom_data)[vb].status == MATCHED) { |
|
2414 |
if (_delta2->state(vb) != _delta2->IN_HEAP) { |
|
2415 |
_delta2->push(vb, _blossom_set->classPrio(vb) - |
|
2416 |
(*_blossom_data)[vb].offset); |
|
2417 |
} else if ((*_delta2)[vb] > _blossom_set->classPrio(vb) - |
|
2418 |
(*_blossom_data)[vb].offset) { |
|
2419 |
_delta2->decrease(vb, _blossom_set->classPrio(vb) - |
|
2420 |
(*_blossom_data)[vb].offset); |
|
2421 |
} |
|
2422 |
} |
|
2423 |
} |
|
2424 |
} |
|
2425 |
} |
|
2426 |
} |
|
2427 |
(*_blossom_data)[blossom].offset = 0; |
|
2428 |
} |
|
2429 |
|
|
2430 |
void alternatePath(int even, int tree) { |
|
2431 |
int odd; |
|
2432 |
|
|
2433 |
evenToMatched(even, tree); |
|
2434 |
(*_blossom_data)[even].status = MATCHED; |
|
2435 |
|
|
2436 |
while ((*_blossom_data)[even].pred != INVALID) { |
|
2437 |
odd = _blossom_set->find(_graph.target((*_blossom_data)[even].pred)); |
|
2438 |
(*_blossom_data)[odd].status = MATCHED; |
|
2439 |
oddToMatched(odd); |
|
2440 |
(*_blossom_data)[odd].next = (*_blossom_data)[odd].pred; |
|
2441 |
|
|
2442 |
even = _blossom_set->find(_graph.target((*_blossom_data)[odd].pred)); |
|
2443 |
(*_blossom_data)[even].status = MATCHED; |
|
2444 |
evenToMatched(even, tree); |
|
2445 |
(*_blossom_data)[even].next = |
|
2446 |
_graph.oppositeArc((*_blossom_data)[odd].pred); |
|
2447 |
} |
|
2448 |
|
|
2449 |
} |
|
2450 |
|
|
2451 |
void destroyTree(int tree) { |
|
2452 |
for (TreeSet::ItemIt b(*_tree_set, tree); b != INVALID; ++b) { |
|
2453 |
if ((*_blossom_data)[b].status == EVEN) { |
|
2454 |
(*_blossom_data)[b].status = MATCHED; |
|
2455 |
evenToMatched(b, tree); |
|
2456 |
} else if ((*_blossom_data)[b].status == ODD) { |
|
2457 |
(*_blossom_data)[b].status = MATCHED; |
|
2458 |
oddToMatched(b); |
|
2459 |
} |
|
2460 |
} |
|
2461 |
_tree_set->eraseClass(tree); |
|
2462 |
} |
|
2463 |
|
|
2464 |
void augmentOnEdge(const Edge& edge) { |
|
2465 |
|
|
2466 |
int left = _blossom_set->find(_graph.u(edge)); |
|
2467 |
int right = _blossom_set->find(_graph.v(edge)); |
|
2468 |
|
|
2469 |
int left_tree = _tree_set->find(left); |
|
2470 |
alternatePath(left, left_tree); |
|
2471 |
destroyTree(left_tree); |
|
2472 |
|
|
2473 |
int right_tree = _tree_set->find(right); |
|
2474 |
alternatePath(right, right_tree); |
|
2475 |
destroyTree(right_tree); |
|
2476 |
|
|
2477 |
(*_blossom_data)[left].next = _graph.direct(edge, true); |
|
2478 |
(*_blossom_data)[right].next = _graph.direct(edge, false); |
|
2479 |
} |
|
2480 |
|
|
2481 |
void extendOnArc(const Arc& arc) { |
|
2482 |
int base = _blossom_set->find(_graph.target(arc)); |
|
2483 |
int tree = _tree_set->find(base); |
|
2484 |
|
|
2485 |
int odd = _blossom_set->find(_graph.source(arc)); |
|
2486 |
_tree_set->insert(odd, tree); |
|
2487 |
(*_blossom_data)[odd].status = ODD; |
|
2488 |
matchedToOdd(odd); |
|
2489 |
(*_blossom_data)[odd].pred = arc; |
|
2490 |
|
|
2491 |
int even = _blossom_set->find(_graph.target((*_blossom_data)[odd].next)); |
|
2492 |
(*_blossom_data)[even].pred = (*_blossom_data)[even].next; |
|
2493 |
_tree_set->insert(even, tree); |
|
2494 |
(*_blossom_data)[even].status = EVEN; |
|
2495 |
matchedToEven(even, tree); |
|
2496 |
} |
|
2497 |
|
|
2498 |
void shrinkOnEdge(const Edge& edge, int tree) { |
|
2499 |
int nca = -1; |
|
2500 |
std::vector<int> left_path, right_path; |
|
2501 |
|
|
2502 |
{ |
|
2503 |
std::set<int> left_set, right_set; |
|
2504 |
int left = _blossom_set->find(_graph.u(edge)); |
|
2505 |
left_path.push_back(left); |
|
2506 |
left_set.insert(left); |
|
2507 |
|
|
2508 |
int right = _blossom_set->find(_graph.v(edge)); |
|
2509 |
right_path.push_back(right); |
|
2510 |
right_set.insert(right); |
|
2511 |
|
|
2512 |
while (true) { |
|
2513 |
|
|
2514 |
if ((*_blossom_data)[left].pred == INVALID) break; |
|
2515 |
|
|
2516 |
left = |
|
2517 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
|
2518 |
left_path.push_back(left); |
|
2519 |
left = |
|
2520 |
_blossom_set->find(_graph.target((*_blossom_data)[left].pred)); |
|
2521 |
left_path.push_back(left); |
|
2522 |
|
|
2523 |
left_set.insert(left); |
|
2524 |
|
|
2525 |
if (right_set.find(left) != right_set.end()) { |
|
2526 |
nca = left; |
|
2527 |
break; |
|
2528 |
} |
|
2529 |
|
|
2530 |
if ((*_blossom_data)[right].pred == INVALID) break; |
|
2531 |
|
|
2532 |
right = |
|
2533 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
|
2534 |
right_path.push_back(right); |
|
2535 |
right = |
|
2536 |
_blossom_set->find(_graph.target((*_blossom_data)[right].pred)); |
|
2537 |
right_path.push_back(right); |
|
2538 |
|
|
2539 |
right_set.insert(right); |
|
2540 |
|
|
2541 |
if (left_set.find(right) != left_set.end()) { |
|
2542 |
nca = right; |
|
2543 |
break; |
|
2544 |
} |
|
2545 |
|
|
2546 |
} |
|
2547 |
|
|
2548 |
if (nca == -1) { |
|
2549 |
if ((*_blossom_data)[left].pred == INVALID) { |
|
2550 |
nca = right; |
|
2551 |
while (left_set.find(nca) == left_set.end()) { |
|
2552 |
nca = |
|
2553 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
2554 |
right_path.push_back(nca); |
|
2555 |
nca = |
|
2556 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
2557 |
right_path.push_back(nca); |
|
2558 |
} |
|
2559 |
} else { |
|
2560 |
nca = left; |
|
2561 |
while (right_set.find(nca) == right_set.end()) { |
|
2562 |
nca = |
|
2563 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
2564 |
left_path.push_back(nca); |
|
2565 |
nca = |
|
2566 |
_blossom_set->find(_graph.target((*_blossom_data)[nca].pred)); |
|
2567 |
left_path.push_back(nca); |
|
2568 |
} |
|
2569 |
} |
|
2570 |
} |
|
2571 |
} |
|
2572 |
|
|
2573 |
std::vector<int> subblossoms; |
|
2574 |
Arc prev; |
|
2575 |
|
|
2576 |
prev = _graph.direct(edge, true); |
|
2577 |
for (int i = 0; left_path[i] != nca; i += 2) { |
|
2578 |
subblossoms.push_back(left_path[i]); |
|
2579 |
(*_blossom_data)[left_path[i]].next = prev; |
|
2580 |
_tree_set->erase(left_path[i]); |
|
2581 |
|
|
2582 |
subblossoms.push_back(left_path[i + 1]); |
|
2583 |
(*_blossom_data)[left_path[i + 1]].status = EVEN; |
|
2584 |
oddToEven(left_path[i + 1], tree); |
|
2585 |
_tree_set->erase(left_path[i + 1]); |
|
2586 |
prev = _graph.oppositeArc((*_blossom_data)[left_path[i + 1]].pred); |
|
2587 |
} |
|
2588 |
|
|
2589 |
int k = 0; |
|
2590 |
while (right_path[k] != nca) ++k; |
|
2591 |
|
|
2592 |
subblossoms.push_back(nca); |
|
2593 |
(*_blossom_data)[nca].next = prev; |
|
2594 |
|
|
2595 |
for (int i = k - 2; i >= 0; i -= 2) { |
|
2596 |
subblossoms.push_back(right_path[i + 1]); |
|
2597 |
(*_blossom_data)[right_path[i + 1]].status = EVEN; |
|
2598 |
oddToEven(right_path[i + 1], tree); |
|
2599 |
_tree_set->erase(right_path[i + 1]); |
|
2600 |
|
|
2601 |
(*_blossom_data)[right_path[i + 1]].next = |
|
2602 |
(*_blossom_data)[right_path[i + 1]].pred; |
|
2603 |
|
|
2604 |
subblossoms.push_back(right_path[i]); |
|
2605 |
_tree_set->erase(right_path[i]); |
|
2606 |
} |
|
2607 |
|
|
2608 |
int surface = |
|
2609 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
|
2610 |
|
|
2611 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
|
2612 |
if (!_blossom_set->trivial(subblossoms[i])) { |
|
2613 |
(*_blossom_data)[subblossoms[i]].pot += 2 * _delta_sum; |
|
2614 |
} |
|
2615 |
(*_blossom_data)[subblossoms[i]].status = MATCHED; |
|
2616 |
} |
|
2617 |
|
|
2618 |
(*_blossom_data)[surface].pot = -2 * _delta_sum; |
|
2619 |
(*_blossom_data)[surface].offset = 0; |
|
2620 |
(*_blossom_data)[surface].status = EVEN; |
|
2621 |
(*_blossom_data)[surface].pred = (*_blossom_data)[nca].pred; |
|
2622 |
(*_blossom_data)[surface].next = (*_blossom_data)[nca].pred; |
|
2623 |
|
|
2624 |
_tree_set->insert(surface, tree); |
|
2625 |
_tree_set->erase(nca); |
|
2626 |
} |
|
2627 |
|
|
2628 |
void splitBlossom(int blossom) { |
|
2629 |
Arc next = (*_blossom_data)[blossom].next; |
|
2630 |
Arc pred = (*_blossom_data)[blossom].pred; |
|
2631 |
|
|
2632 |
int tree = _tree_set->find(blossom); |
|
2633 |
|
|
2634 |
(*_blossom_data)[blossom].status = MATCHED; |
|
2635 |
oddToMatched(blossom); |
|
2636 |
if (_delta2->state(blossom) == _delta2->IN_HEAP) { |
|
2637 |
_delta2->erase(blossom); |
|
2638 |
} |
|
2639 |
|
|
2640 |
std::vector<int> subblossoms; |
|
2641 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
|
2642 |
|
|
2643 |
Value offset = (*_blossom_data)[blossom].offset; |
|
2644 |
int b = _blossom_set->find(_graph.source(pred)); |
|
2645 |
int d = _blossom_set->find(_graph.source(next)); |
|
2646 |
|
|
2647 |
int ib = -1, id = -1; |
|
2648 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
|
2649 |
if (subblossoms[i] == b) ib = i; |
|
2650 |
if (subblossoms[i] == d) id = i; |
|
2651 |
|
|
2652 |
(*_blossom_data)[subblossoms[i]].offset = offset; |
|
2653 |
if (!_blossom_set->trivial(subblossoms[i])) { |
|
2654 |
(*_blossom_data)[subblossoms[i]].pot -= 2 * offset; |
|
2655 |
} |
|
2656 |
if (_blossom_set->classPrio(subblossoms[i]) != |
|
2657 |
std::numeric_limits<Value>::max()) { |
|
2658 |
_delta2->push(subblossoms[i], |
|
2659 |
_blossom_set->classPrio(subblossoms[i]) - |
|
2660 |
(*_blossom_data)[subblossoms[i]].offset); |
|
2661 |
} |
|
2662 |
} |
|
2663 |
|
|
2664 |
if (id > ib ? ((id - ib) % 2 == 0) : ((ib - id) % 2 == 1)) { |
|
2665 |
for (int i = (id + 1) % subblossoms.size(); |
|
2666 |
i != ib; i = (i + 2) % subblossoms.size()) { |
|
2667 |
int sb = subblossoms[i]; |
|
2668 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
2669 |
(*_blossom_data)[sb].next = |
|
2670 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
2671 |
} |
|
2672 |
|
|
2673 |
for (int i = ib; i != id; i = (i + 2) % subblossoms.size()) { |
|
2674 |
int sb = subblossoms[i]; |
|
2675 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
2676 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
|
2677 |
|
|
2678 |
(*_blossom_data)[sb].status = ODD; |
|
2679 |
matchedToOdd(sb); |
|
2680 |
_tree_set->insert(sb, tree); |
|
2681 |
(*_blossom_data)[sb].pred = pred; |
|
2682 |
(*_blossom_data)[sb].next = |
|
2683 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
2684 |
|
|
2685 |
pred = (*_blossom_data)[ub].next; |
|
2686 |
|
|
2687 |
(*_blossom_data)[tb].status = EVEN; |
|
2688 |
matchedToEven(tb, tree); |
|
2689 |
_tree_set->insert(tb, tree); |
|
2690 |
(*_blossom_data)[tb].pred = (*_blossom_data)[tb].next; |
|
2691 |
} |
|
2692 |
|
|
2693 |
(*_blossom_data)[subblossoms[id]].status = ODD; |
|
2694 |
matchedToOdd(subblossoms[id]); |
|
2695 |
_tree_set->insert(subblossoms[id], tree); |
|
2696 |
(*_blossom_data)[subblossoms[id]].next = next; |
|
2697 |
(*_blossom_data)[subblossoms[id]].pred = pred; |
|
2698 |
|
|
2699 |
} else { |
|
2700 |
|
|
2701 |
for (int i = (ib + 1) % subblossoms.size(); |
|
2702 |
i != id; i = (i + 2) % subblossoms.size()) { |
|
2703 |
int sb = subblossoms[i]; |
|
2704 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
2705 |
(*_blossom_data)[sb].next = |
|
2706 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
2707 |
} |
|
2708 |
|
|
2709 |
for (int i = id; i != ib; i = (i + 2) % subblossoms.size()) { |
|
2710 |
int sb = subblossoms[i]; |
|
2711 |
int tb = subblossoms[(i + 1) % subblossoms.size()]; |
|
2712 |
int ub = subblossoms[(i + 2) % subblossoms.size()]; |
|
2713 |
|
|
2714 |
(*_blossom_data)[sb].status = ODD; |
|
2715 |
matchedToOdd(sb); |
|
2716 |
_tree_set->insert(sb, tree); |
|
2717 |
(*_blossom_data)[sb].next = next; |
|
2718 |
(*_blossom_data)[sb].pred = |
|
2719 |
_graph.oppositeArc((*_blossom_data)[tb].next); |
|
2720 |
|
|
2721 |
(*_blossom_data)[tb].status = EVEN; |
|
2722 |
matchedToEven(tb, tree); |
|
2723 |
_tree_set->insert(tb, tree); |
|
2724 |
(*_blossom_data)[tb].pred = |
|
2725 |
(*_blossom_data)[tb].next = |
|
2726 |
_graph.oppositeArc((*_blossom_data)[ub].next); |
|
2727 |
next = (*_blossom_data)[ub].next; |
|
2728 |
} |
|
2729 |
|
|
2730 |
(*_blossom_data)[subblossoms[ib]].status = ODD; |
|
2731 |
matchedToOdd(subblossoms[ib]); |
|
2732 |
_tree_set->insert(subblossoms[ib], tree); |
|
2733 |
(*_blossom_data)[subblossoms[ib]].next = next; |
|
2734 |
(*_blossom_data)[subblossoms[ib]].pred = pred; |
|
2735 |
} |
|
2736 |
_tree_set->erase(blossom); |
|
2737 |
} |
|
2738 |
|
|
2739 |
void extractBlossom(int blossom, const Node& base, const Arc& matching) { |
|
2740 |
if (_blossom_set->trivial(blossom)) { |
|
2741 |
int bi = (*_node_index)[base]; |
|
2742 |
Value pot = (*_node_data)[bi].pot; |
|
2743 |
|
|
2744 |
(*_matching)[base] = matching; |
|
2745 |
_blossom_node_list.push_back(base); |
|
2746 |
(*_node_potential)[base] = pot; |
|
2747 |
} else { |
|
2748 |
|
|
2749 |
Value pot = (*_blossom_data)[blossom].pot; |
|
2750 |
int bn = _blossom_node_list.size(); |
|
2751 |
|
|
2752 |
std::vector<int> subblossoms; |
|
2753 |
_blossom_set->split(blossom, std::back_inserter(subblossoms)); |
|
2754 |
int b = _blossom_set->find(base); |
|
2755 |
int ib = -1; |
|
2756 |
for (int i = 0; i < int(subblossoms.size()); ++i) { |
|
2757 |
if (subblossoms[i] == b) { ib = i; break; } |
|
2758 |
} |
|
2759 |
|
|
2760 |
for (int i = 1; i < int(subblossoms.size()); i += 2) { |
|
2761 |
int sb = subblossoms[(ib + i) % subblossoms.size()]; |
|
2762 |
int tb = subblossoms[(ib + i + 1) % subblossoms.size()]; |
|
2763 |
|
|
2764 |
Arc m = (*_blossom_data)[tb].next; |
|
2765 |
extractBlossom(sb, _graph.target(m), _graph.oppositeArc(m)); |
|
2766 |
extractBlossom(tb, _graph.source(m), m); |
|
2767 |
} |
|
2768 |
extractBlossom(subblossoms[ib], base, matching); |
|
2769 |
|
|
2770 |
int en = _blossom_node_list.size(); |
|
2771 |
|
|
2772 |
_blossom_potential.push_back(BlossomVariable(bn, en, pot)); |
|
2773 |
} |
|
2774 |
} |
|
2775 |
|
|
2776 |
void extractMatching() { |
|
2777 |
std::vector<int> blossoms; |
|
2778 |
for (typename BlossomSet::ClassIt c(*_blossom_set); c != INVALID; ++c) { |
|
2779 |
blossoms.push_back(c); |
|
2780 |
} |
|
2781 |
|
|
2782 |
for (int i = 0; i < int(blossoms.size()); ++i) { |
|
2783 |
|
|
2784 |
Value offset = (*_blossom_data)[blossoms[i]].offset; |
|
2785 |
(*_blossom_data)[blossoms[i]].pot += 2 * offset; |
|
2786 |
for (typename BlossomSet::ItemIt n(*_blossom_set, blossoms[i]); |
|
2787 |
n != INVALID; ++n) { |
|
2788 |
(*_node_data)[(*_node_index)[n]].pot -= offset; |
|
2789 |
} |
|
2790 |
|
|
2791 |
Arc matching = (*_blossom_data)[blossoms[i]].next; |
|
2792 |
Node base = _graph.source(matching); |
|
2793 |
extractBlossom(blossoms[i], base, matching); |
|
2794 |
} |
|
2795 |
} |
|
2796 |
|
|
2797 |
public: |
|
2798 |
|
|
2799 |
/// \brief Constructor |
|
2800 |
/// |
|
2801 |
/// Constructor. |
|
2802 |
MaxWeightedPerfectMatching(const Graph& graph, const WeightMap& weight) |
|
2803 |
: _graph(graph), _weight(weight), _matching(0), |
|
2804 |
_node_potential(0), _blossom_potential(), _blossom_node_list(), |
|
2805 |
_node_num(0), _blossom_num(0), |
|
2806 |
|
|
2807 |
_blossom_index(0), _blossom_set(0), _blossom_data(0), |
|
2808 |
_node_index(0), _node_heap_index(0), _node_data(0), |
|
2809 |
_tree_set_index(0), _tree_set(0), |
|
2810 |
|
|
2811 |
_delta2_index(0), _delta2(0), |
|
2812 |
_delta3_index(0), _delta3(0), |
|
2813 |
_delta4_index(0), _delta4(0), |
|
2814 |
|
|
2815 |
_delta_sum() {} |
|
2816 |
|
|
2817 |
~MaxWeightedPerfectMatching() { |
|
2818 |
destroyStructures(); |
|
2819 |
} |
|
2820 |
|
|
2821 |
/// \name Execution control |
|
2822 |
/// The simplest way to execute the algorithm is to use the |
|
2823 |
/// \c run() member function. |
|
2824 |
|
|
2825 |
///@{ |
|
2826 |
|
|
2827 |
/// \brief Initialize the algorithm |
|
2828 |
/// |
|
2829 |
/// Initialize the algorithm |
|
2830 |
void init() { |
|
2831 |
createStructures(); |
|
2832 |
|
|
2833 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
|
2834 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
|
2835 |
} |
|
2836 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
2837 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
|
2838 |
} |
|
2839 |
for (int i = 0; i < _blossom_num; ++i) { |
|
2840 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
|
2841 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
|
2842 |
} |
|
2843 |
|
|
2844 |
int index = 0; |
|
2845 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
2846 |
Value max = - std::numeric_limits<Value>::max(); |
|
2847 |
for (OutArcIt e(_graph, n); e != INVALID; ++e) { |
|
2848 |
if (_graph.target(e) == n) continue; |
|
2849 |
if ((dualScale * _weight[e]) / 2 > max) { |
|
2850 |
max = (dualScale * _weight[e]) / 2; |
|
2851 |
} |
|
2852 |
} |
|
2853 |
(*_node_index)[n] = index; |
|
2854 |
(*_node_data)[index].pot = max; |
|
2855 |
int blossom = |
|
2856 |
_blossom_set->insert(n, std::numeric_limits<Value>::max()); |
|
2857 |
|
|
2858 |
_tree_set->insert(blossom); |
|
2859 |
|
|
2860 |
(*_blossom_data)[blossom].status = EVEN; |
|
2861 |
(*_blossom_data)[blossom].pred = INVALID; |
|
2862 |
(*_blossom_data)[blossom].next = INVALID; |
|
2863 |
(*_blossom_data)[blossom].pot = 0; |
|
2864 |
(*_blossom_data)[blossom].offset = 0; |
|
2865 |
++index; |
|
2866 |
} |
|
2867 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
|
2868 |
int si = (*_node_index)[_graph.u(e)]; |
|
2869 |
int ti = (*_node_index)[_graph.v(e)]; |
|
2870 |
if (_graph.u(e) != _graph.v(e)) { |
|
2871 |
_delta3->push(e, ((*_node_data)[si].pot + (*_node_data)[ti].pot - |
|
2872 |
dualScale * _weight[e]) / 2); |
|
2873 |
} |
|
2874 |
} |
|
2875 |
} |
|
2876 |
|
|
2877 |
/// \brief Starts the algorithm |
|
2878 |
/// |
|
2879 |
/// Starts the algorithm |
|
2880 |
bool start() { |
|
2881 |
enum OpType { |
|
2882 |
D2, D3, D4 |
|
2883 |
}; |
|
2884 |
|
|
2885 |
int unmatched = _node_num; |
|
2886 |
while (unmatched > 0) { |
|
2887 |
Value d2 = !_delta2->empty() ? |
|
2888 |
_delta2->prio() : std::numeric_limits<Value>::max(); |
|
2889 |
|
|
2890 |
Value d3 = !_delta3->empty() ? |
|
2891 |
_delta3->prio() : std::numeric_limits<Value>::max(); |
|
2892 |
|
|
2893 |
Value d4 = !_delta4->empty() ? |
|
2894 |
_delta4->prio() : std::numeric_limits<Value>::max(); |
|
2895 |
|
|
2896 |
_delta_sum = d2; OpType ot = D2; |
|
2897 |
if (d3 < _delta_sum) { _delta_sum = d3; ot = D3; } |
|
2898 |
if (d4 < _delta_sum) { _delta_sum = d4; ot = D4; } |
|
2899 |
|
|
2900 |
if (_delta_sum == std::numeric_limits<Value>::max()) { |
|
2901 |
return false; |
|
2902 |
} |
|
2903 |
|
|
2904 |
switch (ot) { |
|
2905 |
case D2: |
|
2906 |
{ |
|
2907 |
int blossom = _delta2->top(); |
|
2908 |
Node n = _blossom_set->classTop(blossom); |
|
2909 |
Arc e = (*_node_data)[(*_node_index)[n]].heap.top(); |
|
2910 |
extendOnArc(e); |
|
2911 |
} |
|
2912 |
break; |
|
2913 |
case D3: |
|
2914 |
{ |
|
2915 |
Edge e = _delta3->top(); |
|
2916 |
|
|
2917 |
int left_blossom = _blossom_set->find(_graph.u(e)); |
|
2918 |
int right_blossom = _blossom_set->find(_graph.v(e)); |
|
2919 |
|
|
2920 |
if (left_blossom == right_blossom) { |
|
2921 |
_delta3->pop(); |
|
2922 |
} else { |
|
2923 |
int left_tree = _tree_set->find(left_blossom); |
|
2924 |
int right_tree = _tree_set->find(right_blossom); |
|
2925 |
|
|
2926 |
if (left_tree == right_tree) { |
|
2927 |
shrinkOnEdge(e, left_tree); |
|
2928 |
} else { |
|
2929 |
augmentOnEdge(e); |
|
2930 |
unmatched -= 2; |
|
2931 |
} |
|
2932 |
} |
|
2933 |
} break; |
|
2934 |
case D4: |
|
2935 |
splitBlossom(_delta4->top()); |
|
2936 |
break; |
|
2937 |
} |
|
2938 |
} |
|
2939 |
extractMatching(); |
|
2940 |
return true; |
|
2941 |
} |
|
2942 |
|
|
2943 |
/// \brief Runs %MaxWeightedPerfectMatching algorithm. |
|
2944 |
/// |
|
2945 |
/// This method runs the %MaxWeightedPerfectMatching algorithm. |
|
2946 |
/// |
|
2947 |
/// \note mwm.run() is just a shortcut of the following code. |
|
2948 |
/// \code |
|
2949 |
/// mwm.init(); |
|
2950 |
/// mwm.start(); |
|
2951 |
/// \endcode |
|
2952 |
bool run() { |
|
2953 |
init(); |
|
2954 |
return start(); |
|
2955 |
} |
|
2956 |
|
|
2957 |
/// @} |
|
2958 |
|
|
2959 |
/// \name Primal solution |
|
2960 |
/// Functions to get the primal solution, ie. the matching. |
|
2961 |
|
|
2962 |
/// @{ |
|
2963 |
|
|
2964 |
/// \brief Returns the matching value. |
|
2965 |
/// |
|
2966 |
/// Returns the matching value. |
|
2967 |
Value matchingValue() const { |
|
2968 |
Value sum = 0; |
|
2969 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
2970 |
if ((*_matching)[n] != INVALID) { |
|
2971 |
sum += _weight[(*_matching)[n]]; |
|
2972 |
} |
|
2973 |
} |
|
2974 |
return sum /= 2; |
|
2975 |
} |
|
2976 |
|
|
2977 |
/// \brief Returns true when the edge is in the matching. |
|
2978 |
/// |
|
2979 |
/// Returns true when the edge is in the matching. |
|
2980 |
bool matching(const Edge& edge) const { |
|
2981 |
return static_cast<const Edge&>((*_matching)[_graph.u(edge)]) == edge; |
|
2982 |
} |
|
2983 |
|
|
2984 |
/// \brief Returns the incident matching edge. |
|
2985 |
/// |
|
2986 |
/// Returns the incident matching arc from given edge. |
|
2987 |
Arc matching(const Node& node) const { |
|
2988 |
return (*_matching)[node]; |
|
2989 |
} |
|
2990 |
|
|
2991 |
/// \brief Returns the mate of the node. |
|
2992 |
/// |
|
2993 |
/// Returns the adjancent node in a mathcing arc. |
|
2994 |
Node mate(const Node& node) const { |
|
2995 |
return _graph.target((*_matching)[node]); |
|
2996 |
} |
|
2997 |
|
|
2998 |
/// @} |
|
2999 |
|
|
3000 |
/// \name Dual solution |
|
3001 |
/// Functions to get the dual solution. |
|
3002 |
|
|
3003 |
/// @{ |
|
3004 |
|
|
3005 |
/// \brief Returns the value of the dual solution. |
|
3006 |
/// |
|
3007 |
/// Returns the value of the dual solution. It should be equal to |
|
3008 |
/// the primal value scaled by \ref dualScale "dual scale". |
|
3009 |
Value dualValue() const { |
|
3010 |
Value sum = 0; |
|
3011 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
|
3012 |
sum += nodeValue(n); |
|
3013 |
} |
|
3014 |
for (int i = 0; i < blossomNum(); ++i) { |
|
3015 |
sum += blossomValue(i) * (blossomSize(i) / 2); |
|
3016 |
} |
|
3017 |
return sum; |
|
3018 |
} |
|
3019 |
|
|
3020 |
/// \brief Returns the value of the node. |
|
3021 |
/// |
|
3022 |
/// Returns the the value of the node. |
|
3023 |
Value nodeValue(const Node& n) const { |
|
3024 |
return (*_node_potential)[n]; |
|
3025 |
} |
|
3026 |
|
|
3027 |
/// \brief Returns the number of the blossoms in the basis. |
|
3028 |
/// |
|
3029 |
/// Returns the number of the blossoms in the basis. |
|
3030 |
/// \see BlossomIt |
|
3031 |
int blossomNum() const { |
|
3032 |
return _blossom_potential.size(); |
|
3033 |
} |
|
3034 |
|
|
3035 |
|
|
3036 |
/// \brief Returns the number of the nodes in the blossom. |
|
3037 |
/// |
|
3038 |
/// Returns the number of the nodes in the blossom. |
|
3039 |
int blossomSize(int k) const { |
|
3040 |
return _blossom_potential[k].end - _blossom_potential[k].begin; |
|
3041 |
} |
|
3042 |
|
|
3043 |
/// \brief Returns the value of the blossom. |
|
3044 |
/// |
|
3045 |
/// Returns the the value of the blossom. |
|
3046 |
/// \see BlossomIt |
|
3047 |
Value blossomValue(int k) const { |
|
3048 |
return _blossom_potential[k].value; |
|
3049 |
} |
|
3050 |
|
|
3051 |
/// \brief Iterator for obtaining the nodes of the blossom. |
|
3052 |
/// |
|
3053 |
/// Iterator for obtaining the nodes of the blossom. This class |
|
3054 |
/// provides a common lemon style iterator for listing a |
|
3055 |
/// subset of the nodes. |
|
3056 |
class BlossomIt { |
|
3057 |
public: |
|
3058 |
|
|
3059 |
/// \brief Constructor. |
|
3060 |
/// |
|
3061 |
/// Constructor to get the nodes of the variable. |
|
3062 |
BlossomIt(const MaxWeightedPerfectMatching& algorithm, int variable) |
|
3063 |
: _algorithm(&algorithm) |
|
3064 |
{ |
|
3065 |
_index = _algorithm->_blossom_potential[variable].begin; |
|
3066 |
_last = _algorithm->_blossom_potential[variable].end; |
|
3067 |
} |
|
3068 |
|
|
3069 |
/// \brief Conversion to node. |
|
3070 |
/// |
|
3071 |
/// Conversion to node. |
|
3072 |
operator Node() const { |
|
3073 |
return _algorithm->_blossom_node_list[_index]; |
|
3074 |
} |
|
3075 |
|
|
3076 |
/// \brief Increment operator. |
|
3077 |
/// |
|
3078 |
/// Increment operator. |
|
3079 |
BlossomIt& operator++() { |
|
3080 |
++_index; |
|
3081 |
return *this; |
|
3082 |
} |
|
3083 |
|
|
3084 |
/// \brief Validity checking |
|
3085 |
/// |
|
3086 |
/// Checks whether the iterator is invalid. |
|
3087 |
bool operator==(Invalid) const { return _index == _last; } |
|
3088 |
|
|
3089 |
/// \brief Validity checking |
|
3090 |
/// |
|
3091 |
/// Checks whether the iterator is valid. |
|
3092 |
bool operator!=(Invalid) const { return _index != _last; } |
|
3093 |
|
|
3094 |
private: |
|
3095 |
const MaxWeightedPerfectMatching* _algorithm; |
|
3096 |
int _last; |
|
3097 |
int _index; |
|
3098 |
}; |
|
3099 |
|
|
3100 |
/// @} |
|
3101 |
|
|
3102 |
}; |
|
3103 |
|
|
3104 |
|
|
3105 |
} //END OF NAMESPACE LEMON |
|
3106 |
|
|
3107 |
#endif //LEMON_MAX_MATCHING_H |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)