| ... | ... |
@@ -696,926 +696,926 @@ |
| 696 | 696 |
NetworkSimplex& upperMap(const UpperMap& map) {
|
| 697 | 697 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 698 | 698 |
_upper[_arc_id[a]] = map[a]; |
| 699 | 699 |
} |
| 700 | 700 |
return *this; |
| 701 | 701 |
} |
| 702 | 702 |
|
| 703 | 703 |
/// \brief Set the costs of the arcs. |
| 704 | 704 |
/// |
| 705 | 705 |
/// This function sets the costs of the arcs. |
| 706 | 706 |
/// If it is not used before calling \ref run(), the costs |
| 707 | 707 |
/// will be set to \c 1 on all arcs. |
| 708 | 708 |
/// |
| 709 | 709 |
/// \param map An arc map storing the costs. |
| 710 | 710 |
/// Its \c Value type must be convertible to the \c Cost type |
| 711 | 711 |
/// of the algorithm. |
| 712 | 712 |
/// |
| 713 | 713 |
/// \return <tt>(*this)</tt> |
| 714 | 714 |
template<typename CostMap> |
| 715 | 715 |
NetworkSimplex& costMap(const CostMap& map) {
|
| 716 | 716 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 717 | 717 |
_cost[_arc_id[a]] = map[a]; |
| 718 | 718 |
} |
| 719 | 719 |
return *this; |
| 720 | 720 |
} |
| 721 | 721 |
|
| 722 | 722 |
/// \brief Set the supply values of the nodes. |
| 723 | 723 |
/// |
| 724 | 724 |
/// This function sets the supply values of the nodes. |
| 725 | 725 |
/// If neither this function nor \ref stSupply() is used before |
| 726 | 726 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 727 | 727 |
/// |
| 728 | 728 |
/// \param map A node map storing the supply values. |
| 729 | 729 |
/// Its \c Value type must be convertible to the \c Value type |
| 730 | 730 |
/// of the algorithm. |
| 731 | 731 |
/// |
| 732 | 732 |
/// \return <tt>(*this)</tt> |
| 733 | 733 |
template<typename SupplyMap> |
| 734 | 734 |
NetworkSimplex& supplyMap(const SupplyMap& map) {
|
| 735 | 735 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 736 | 736 |
_supply[_node_id[n]] = map[n]; |
| 737 | 737 |
} |
| 738 | 738 |
return *this; |
| 739 | 739 |
} |
| 740 | 740 |
|
| 741 | 741 |
/// \brief Set single source and target nodes and a supply value. |
| 742 | 742 |
/// |
| 743 | 743 |
/// This function sets a single source node and a single target node |
| 744 | 744 |
/// and the required flow value. |
| 745 | 745 |
/// If neither this function nor \ref supplyMap() is used before |
| 746 | 746 |
/// calling \ref run(), the supply of each node will be set to zero. |
| 747 | 747 |
/// |
| 748 | 748 |
/// Using this function has the same effect as using \ref supplyMap() |
| 749 | 749 |
/// with such a map in which \c k is assigned to \c s, \c -k is |
| 750 | 750 |
/// assigned to \c t and all other nodes have zero supply value. |
| 751 | 751 |
/// |
| 752 | 752 |
/// \param s The source node. |
| 753 | 753 |
/// \param t The target node. |
| 754 | 754 |
/// \param k The required amount of flow from node \c s to node \c t |
| 755 | 755 |
/// (i.e. the supply of \c s and the demand of \c t). |
| 756 | 756 |
/// |
| 757 | 757 |
/// \return <tt>(*this)</tt> |
| 758 | 758 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) {
|
| 759 | 759 |
for (int i = 0; i != _node_num; ++i) {
|
| 760 | 760 |
_supply[i] = 0; |
| 761 | 761 |
} |
| 762 | 762 |
_supply[_node_id[s]] = k; |
| 763 | 763 |
_supply[_node_id[t]] = -k; |
| 764 | 764 |
return *this; |
| 765 | 765 |
} |
| 766 | 766 |
|
| 767 | 767 |
/// \brief Set the type of the supply constraints. |
| 768 | 768 |
/// |
| 769 | 769 |
/// This function sets the type of the supply/demand constraints. |
| 770 | 770 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
| 771 | 771 |
/// type will be used. |
| 772 | 772 |
/// |
| 773 | 773 |
/// For more information, see \ref SupplyType. |
| 774 | 774 |
/// |
| 775 | 775 |
/// \return <tt>(*this)</tt> |
| 776 | 776 |
NetworkSimplex& supplyType(SupplyType supply_type) {
|
| 777 | 777 |
_stype = supply_type; |
| 778 | 778 |
return *this; |
| 779 | 779 |
} |
| 780 | 780 |
|
| 781 | 781 |
/// @} |
| 782 | 782 |
|
| 783 | 783 |
/// \name Execution Control |
| 784 | 784 |
/// The algorithm can be executed using \ref run(). |
| 785 | 785 |
|
| 786 | 786 |
/// @{
|
| 787 | 787 |
|
| 788 | 788 |
/// \brief Run the algorithm. |
| 789 | 789 |
/// |
| 790 | 790 |
/// This function runs the algorithm. |
| 791 | 791 |
/// The paramters can be specified using functions \ref lowerMap(), |
| 792 | 792 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
| 793 | 793 |
/// \ref supplyType(). |
| 794 | 794 |
/// For example, |
| 795 | 795 |
/// \code |
| 796 | 796 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 797 | 797 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
| 798 | 798 |
/// .supplyMap(sup).run(); |
| 799 | 799 |
/// \endcode |
| 800 | 800 |
/// |
| 801 | 801 |
/// This function can be called more than once. All the given parameters |
| 802 | 802 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
| 803 | 803 |
/// is used, thus only the modified parameters have to be set again. |
| 804 | 804 |
/// If the underlying digraph was also modified after the construction |
| 805 | 805 |
/// of the class (or the last \ref reset() call), then the \ref reset() |
| 806 | 806 |
/// function must be called. |
| 807 | 807 |
/// |
| 808 | 808 |
/// \param pivot_rule The pivot rule that will be used during the |
| 809 | 809 |
/// algorithm. For more information, see \ref PivotRule. |
| 810 | 810 |
/// |
| 811 | 811 |
/// \return \c INFEASIBLE if no feasible flow exists, |
| 812 | 812 |
/// \n \c OPTIMAL if the problem has optimal solution |
| 813 | 813 |
/// (i.e. it is feasible and bounded), and the algorithm has found |
| 814 | 814 |
/// optimal flow and node potentials (primal and dual solutions), |
| 815 | 815 |
/// \n \c UNBOUNDED if the objective function of the problem is |
| 816 | 816 |
/// unbounded, i.e. there is a directed cycle having negative total |
| 817 | 817 |
/// cost and infinite upper bound. |
| 818 | 818 |
/// |
| 819 | 819 |
/// \see ProblemType, PivotRule |
| 820 | 820 |
/// \see resetParams(), reset() |
| 821 | 821 |
ProblemType run(PivotRule pivot_rule = BLOCK_SEARCH) {
|
| 822 | 822 |
if (!init()) return INFEASIBLE; |
| 823 | 823 |
return start(pivot_rule); |
| 824 | 824 |
} |
| 825 | 825 |
|
| 826 | 826 |
/// \brief Reset all the parameters that have been given before. |
| 827 | 827 |
/// |
| 828 | 828 |
/// This function resets all the paramaters that have been given |
| 829 | 829 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
| 830 | 830 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(), \ref supplyType(). |
| 831 | 831 |
/// |
| 832 | 832 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
| 833 | 833 |
/// parameters are kept for the next \ref run() call, unless |
| 834 | 834 |
/// \ref resetParams() or \ref reset() is used. |
| 835 | 835 |
/// If the underlying digraph was also modified after the construction |
| 836 | 836 |
/// of the class or the last \ref reset() call, then the \ref reset() |
| 837 | 837 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
| 838 | 838 |
/// |
| 839 | 839 |
/// For example, |
| 840 | 840 |
/// \code |
| 841 | 841 |
/// NetworkSimplex<ListDigraph> ns(graph); |
| 842 | 842 |
/// |
| 843 | 843 |
/// // First run |
| 844 | 844 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
| 845 | 845 |
/// .supplyMap(sup).run(); |
| 846 | 846 |
/// |
| 847 | 847 |
/// // Run again with modified cost map (resetParams() is not called, |
| 848 | 848 |
/// // so only the cost map have to be set again) |
| 849 | 849 |
/// cost[e] += 100; |
| 850 | 850 |
/// ns.costMap(cost).run(); |
| 851 | 851 |
/// |
| 852 | 852 |
/// // Run again from scratch using resetParams() |
| 853 | 853 |
/// // (the lower bounds will be set to zero on all arcs) |
| 854 | 854 |
/// ns.resetParams(); |
| 855 | 855 |
/// ns.upperMap(capacity).costMap(cost) |
| 856 | 856 |
/// .supplyMap(sup).run(); |
| 857 | 857 |
/// \endcode |
| 858 | 858 |
/// |
| 859 | 859 |
/// \return <tt>(*this)</tt> |
| 860 | 860 |
/// |
| 861 | 861 |
/// \see reset(), run() |
| 862 | 862 |
NetworkSimplex& resetParams() {
|
| 863 | 863 |
for (int i = 0; i != _node_num; ++i) {
|
| 864 | 864 |
_supply[i] = 0; |
| 865 | 865 |
} |
| 866 | 866 |
for (int i = 0; i != _arc_num; ++i) {
|
| 867 | 867 |
_lower[i] = 0; |
| 868 | 868 |
_upper[i] = INF; |
| 869 | 869 |
_cost[i] = 1; |
| 870 | 870 |
} |
| 871 | 871 |
_have_lower = false; |
| 872 | 872 |
_stype = GEQ; |
| 873 | 873 |
return *this; |
| 874 | 874 |
} |
| 875 | 875 |
|
| 876 | 876 |
/// \brief Reset the internal data structures and all the parameters |
| 877 | 877 |
/// that have been given before. |
| 878 | 878 |
/// |
| 879 | 879 |
/// This function resets the internal data structures and all the |
| 880 | 880 |
/// paramaters that have been given before using functions \ref lowerMap(), |
| 881 | 881 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
| 882 | 882 |
/// \ref supplyType(). |
| 883 | 883 |
/// |
| 884 | 884 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
| 885 | 885 |
/// parameters are kept for the next \ref run() call, unless |
| 886 | 886 |
/// \ref resetParams() or \ref reset() is used. |
| 887 | 887 |
/// If the underlying digraph was also modified after the construction |
| 888 | 888 |
/// of the class or the last \ref reset() call, then the \ref reset() |
| 889 | 889 |
/// function must be used, otherwise \ref resetParams() is sufficient. |
| 890 | 890 |
/// |
| 891 | 891 |
/// See \ref resetParams() for examples. |
| 892 | 892 |
/// |
| 893 | 893 |
/// \return <tt>(*this)</tt> |
| 894 | 894 |
/// |
| 895 | 895 |
/// \see resetParams(), run() |
| 896 | 896 |
NetworkSimplex& reset() {
|
| 897 | 897 |
// Resize vectors |
| 898 | 898 |
_node_num = countNodes(_graph); |
| 899 | 899 |
_arc_num = countArcs(_graph); |
| 900 | 900 |
int all_node_num = _node_num + 1; |
| 901 | 901 |
int max_arc_num = _arc_num + 2 * _node_num; |
| 902 | 902 |
|
| 903 | 903 |
_source.resize(max_arc_num); |
| 904 | 904 |
_target.resize(max_arc_num); |
| 905 | 905 |
|
| 906 | 906 |
_lower.resize(_arc_num); |
| 907 | 907 |
_upper.resize(_arc_num); |
| 908 | 908 |
_cap.resize(max_arc_num); |
| 909 | 909 |
_cost.resize(max_arc_num); |
| 910 | 910 |
_supply.resize(all_node_num); |
| 911 | 911 |
_flow.resize(max_arc_num); |
| 912 | 912 |
_pi.resize(all_node_num); |
| 913 | 913 |
|
| 914 | 914 |
_parent.resize(all_node_num); |
| 915 | 915 |
_pred.resize(all_node_num); |
| 916 | 916 |
_forward.resize(all_node_num); |
| 917 | 917 |
_thread.resize(all_node_num); |
| 918 | 918 |
_rev_thread.resize(all_node_num); |
| 919 | 919 |
_succ_num.resize(all_node_num); |
| 920 | 920 |
_last_succ.resize(all_node_num); |
| 921 | 921 |
_state.resize(max_arc_num); |
| 922 | 922 |
|
| 923 | 923 |
// Copy the graph |
| 924 | 924 |
int i = 0; |
| 925 | 925 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) {
|
| 926 | 926 |
_node_id[n] = i; |
| 927 | 927 |
} |
| 928 | 928 |
if (_arc_mixing) {
|
| 929 | 929 |
// Store the arcs in a mixed order |
| 930 | 930 |
int k = std::max(int(std::sqrt(double(_arc_num))), 10); |
| 931 | 931 |
int i = 0, j = 0; |
| 932 | 932 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 933 | 933 |
_arc_id[a] = i; |
| 934 | 934 |
_source[i] = _node_id[_graph.source(a)]; |
| 935 | 935 |
_target[i] = _node_id[_graph.target(a)]; |
| 936 | 936 |
if ((i += k) >= _arc_num) i = ++j; |
| 937 | 937 |
} |
| 938 | 938 |
} else {
|
| 939 | 939 |
// Store the arcs in the original order |
| 940 | 940 |
int i = 0; |
| 941 | 941 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
|
| 942 | 942 |
_arc_id[a] = i; |
| 943 | 943 |
_source[i] = _node_id[_graph.source(a)]; |
| 944 | 944 |
_target[i] = _node_id[_graph.target(a)]; |
| 945 | 945 |
} |
| 946 | 946 |
} |
| 947 | 947 |
|
| 948 | 948 |
// Reset parameters |
| 949 | 949 |
resetParams(); |
| 950 | 950 |
return *this; |
| 951 | 951 |
} |
| 952 | 952 |
|
| 953 | 953 |
/// @} |
| 954 | 954 |
|
| 955 | 955 |
/// \name Query Functions |
| 956 | 956 |
/// The results of the algorithm can be obtained using these |
| 957 | 957 |
/// functions.\n |
| 958 | 958 |
/// The \ref run() function must be called before using them. |
| 959 | 959 |
|
| 960 | 960 |
/// @{
|
| 961 | 961 |
|
| 962 | 962 |
/// \brief Return the total cost of the found flow. |
| 963 | 963 |
/// |
| 964 | 964 |
/// This function returns the total cost of the found flow. |
| 965 | 965 |
/// Its complexity is O(e). |
| 966 | 966 |
/// |
| 967 | 967 |
/// \note The return type of the function can be specified as a |
| 968 | 968 |
/// template parameter. For example, |
| 969 | 969 |
/// \code |
| 970 | 970 |
/// ns.totalCost<double>(); |
| 971 | 971 |
/// \endcode |
| 972 | 972 |
/// It is useful if the total cost cannot be stored in the \c Cost |
| 973 | 973 |
/// type of the algorithm, which is the default return type of the |
| 974 | 974 |
/// function. |
| 975 | 975 |
/// |
| 976 | 976 |
/// \pre \ref run() must be called before using this function. |
| 977 | 977 |
template <typename Number> |
| 978 | 978 |
Number totalCost() const {
|
| 979 | 979 |
Number c = 0; |
| 980 | 980 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 981 | 981 |
int i = _arc_id[a]; |
| 982 | 982 |
c += Number(_flow[i]) * Number(_cost[i]); |
| 983 | 983 |
} |
| 984 | 984 |
return c; |
| 985 | 985 |
} |
| 986 | 986 |
|
| 987 | 987 |
#ifndef DOXYGEN |
| 988 | 988 |
Cost totalCost() const {
|
| 989 | 989 |
return totalCost<Cost>(); |
| 990 | 990 |
} |
| 991 | 991 |
#endif |
| 992 | 992 |
|
| 993 | 993 |
/// \brief Return the flow on the given arc. |
| 994 | 994 |
/// |
| 995 | 995 |
/// This function returns the flow on the given arc. |
| 996 | 996 |
/// |
| 997 | 997 |
/// \pre \ref run() must be called before using this function. |
| 998 | 998 |
Value flow(const Arc& a) const {
|
| 999 | 999 |
return _flow[_arc_id[a]]; |
| 1000 | 1000 |
} |
| 1001 | 1001 |
|
| 1002 | 1002 |
/// \brief Return the flow map (the primal solution). |
| 1003 | 1003 |
/// |
| 1004 | 1004 |
/// This function copies the flow value on each arc into the given |
| 1005 | 1005 |
/// map. The \c Value type of the algorithm must be convertible to |
| 1006 | 1006 |
/// the \c Value type of the map. |
| 1007 | 1007 |
/// |
| 1008 | 1008 |
/// \pre \ref run() must be called before using this function. |
| 1009 | 1009 |
template <typename FlowMap> |
| 1010 | 1010 |
void flowMap(FlowMap &map) const {
|
| 1011 | 1011 |
for (ArcIt a(_graph); a != INVALID; ++a) {
|
| 1012 | 1012 |
map.set(a, _flow[_arc_id[a]]); |
| 1013 | 1013 |
} |
| 1014 | 1014 |
} |
| 1015 | 1015 |
|
| 1016 | 1016 |
/// \brief Return the potential (dual value) of the given node. |
| 1017 | 1017 |
/// |
| 1018 | 1018 |
/// This function returns the potential (dual value) of the |
| 1019 | 1019 |
/// given node. |
| 1020 | 1020 |
/// |
| 1021 | 1021 |
/// \pre \ref run() must be called before using this function. |
| 1022 | 1022 |
Cost potential(const Node& n) const {
|
| 1023 | 1023 |
return _pi[_node_id[n]]; |
| 1024 | 1024 |
} |
| 1025 | 1025 |
|
| 1026 | 1026 |
/// \brief Return the potential map (the dual solution). |
| 1027 | 1027 |
/// |
| 1028 | 1028 |
/// This function copies the potential (dual value) of each node |
| 1029 | 1029 |
/// into the given map. |
| 1030 | 1030 |
/// The \c Cost type of the algorithm must be convertible to the |
| 1031 | 1031 |
/// \c Value type of the map. |
| 1032 | 1032 |
/// |
| 1033 | 1033 |
/// \pre \ref run() must be called before using this function. |
| 1034 | 1034 |
template <typename PotentialMap> |
| 1035 | 1035 |
void potentialMap(PotentialMap &map) const {
|
| 1036 | 1036 |
for (NodeIt n(_graph); n != INVALID; ++n) {
|
| 1037 | 1037 |
map.set(n, _pi[_node_id[n]]); |
| 1038 | 1038 |
} |
| 1039 | 1039 |
} |
| 1040 | 1040 |
|
| 1041 | 1041 |
/// @} |
| 1042 | 1042 |
|
| 1043 | 1043 |
private: |
| 1044 | 1044 |
|
| 1045 | 1045 |
// Initialize internal data structures |
| 1046 | 1046 |
bool init() {
|
| 1047 | 1047 |
if (_node_num == 0) return false; |
| 1048 | 1048 |
|
| 1049 | 1049 |
// Check the sum of supply values |
| 1050 | 1050 |
_sum_supply = 0; |
| 1051 | 1051 |
for (int i = 0; i != _node_num; ++i) {
|
| 1052 | 1052 |
_sum_supply += _supply[i]; |
| 1053 | 1053 |
} |
| 1054 | 1054 |
if ( !((_stype == GEQ && _sum_supply <= 0) || |
| 1055 | 1055 |
(_stype == LEQ && _sum_supply >= 0)) ) return false; |
| 1056 | 1056 |
|
| 1057 | 1057 |
// Remove non-zero lower bounds |
| 1058 | 1058 |
if (_have_lower) {
|
| 1059 | 1059 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1060 | 1060 |
Value c = _lower[i]; |
| 1061 | 1061 |
if (c >= 0) {
|
| 1062 | 1062 |
_cap[i] = _upper[i] < MAX ? _upper[i] - c : INF; |
| 1063 | 1063 |
} else {
|
| 1064 | 1064 |
_cap[i] = _upper[i] < MAX + c ? _upper[i] - c : INF; |
| 1065 | 1065 |
} |
| 1066 | 1066 |
_supply[_source[i]] -= c; |
| 1067 | 1067 |
_supply[_target[i]] += c; |
| 1068 | 1068 |
} |
| 1069 | 1069 |
} else {
|
| 1070 | 1070 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1071 | 1071 |
_cap[i] = _upper[i]; |
| 1072 | 1072 |
} |
| 1073 | 1073 |
} |
| 1074 | 1074 |
|
| 1075 | 1075 |
// Initialize artifical cost |
| 1076 | 1076 |
Cost ART_COST; |
| 1077 | 1077 |
if (std::numeric_limits<Cost>::is_exact) {
|
| 1078 | 1078 |
ART_COST = std::numeric_limits<Cost>::max() / 2 + 1; |
| 1079 | 1079 |
} else {
|
| 1080 |
ART_COST = |
|
| 1080 |
ART_COST = 0; |
|
| 1081 | 1081 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1082 | 1082 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
| 1083 | 1083 |
} |
| 1084 | 1084 |
ART_COST = (ART_COST + 1) * _node_num; |
| 1085 | 1085 |
} |
| 1086 | 1086 |
|
| 1087 | 1087 |
// Initialize arc maps |
| 1088 | 1088 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1089 | 1089 |
_flow[i] = 0; |
| 1090 | 1090 |
_state[i] = STATE_LOWER; |
| 1091 | 1091 |
} |
| 1092 | 1092 |
|
| 1093 | 1093 |
// Set data for the artificial root node |
| 1094 | 1094 |
_root = _node_num; |
| 1095 | 1095 |
_parent[_root] = -1; |
| 1096 | 1096 |
_pred[_root] = -1; |
| 1097 | 1097 |
_thread[_root] = 0; |
| 1098 | 1098 |
_rev_thread[0] = _root; |
| 1099 | 1099 |
_succ_num[_root] = _node_num + 1; |
| 1100 | 1100 |
_last_succ[_root] = _root - 1; |
| 1101 | 1101 |
_supply[_root] = -_sum_supply; |
| 1102 | 1102 |
_pi[_root] = 0; |
| 1103 | 1103 |
|
| 1104 | 1104 |
// Add artificial arcs and initialize the spanning tree data structure |
| 1105 | 1105 |
if (_sum_supply == 0) {
|
| 1106 | 1106 |
// EQ supply constraints |
| 1107 | 1107 |
_search_arc_num = _arc_num; |
| 1108 | 1108 |
_all_arc_num = _arc_num + _node_num; |
| 1109 | 1109 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1110 | 1110 |
_parent[u] = _root; |
| 1111 | 1111 |
_pred[u] = e; |
| 1112 | 1112 |
_thread[u] = u + 1; |
| 1113 | 1113 |
_rev_thread[u + 1] = u; |
| 1114 | 1114 |
_succ_num[u] = 1; |
| 1115 | 1115 |
_last_succ[u] = u; |
| 1116 | 1116 |
_cap[e] = INF; |
| 1117 | 1117 |
_state[e] = STATE_TREE; |
| 1118 | 1118 |
if (_supply[u] >= 0) {
|
| 1119 | 1119 |
_forward[u] = true; |
| 1120 | 1120 |
_pi[u] = 0; |
| 1121 | 1121 |
_source[e] = u; |
| 1122 | 1122 |
_target[e] = _root; |
| 1123 | 1123 |
_flow[e] = _supply[u]; |
| 1124 | 1124 |
_cost[e] = 0; |
| 1125 | 1125 |
} else {
|
| 1126 | 1126 |
_forward[u] = false; |
| 1127 | 1127 |
_pi[u] = ART_COST; |
| 1128 | 1128 |
_source[e] = _root; |
| 1129 | 1129 |
_target[e] = u; |
| 1130 | 1130 |
_flow[e] = -_supply[u]; |
| 1131 | 1131 |
_cost[e] = ART_COST; |
| 1132 | 1132 |
} |
| 1133 | 1133 |
} |
| 1134 | 1134 |
} |
| 1135 | 1135 |
else if (_sum_supply > 0) {
|
| 1136 | 1136 |
// LEQ supply constraints |
| 1137 | 1137 |
_search_arc_num = _arc_num + _node_num; |
| 1138 | 1138 |
int f = _arc_num + _node_num; |
| 1139 | 1139 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1140 | 1140 |
_parent[u] = _root; |
| 1141 | 1141 |
_thread[u] = u + 1; |
| 1142 | 1142 |
_rev_thread[u + 1] = u; |
| 1143 | 1143 |
_succ_num[u] = 1; |
| 1144 | 1144 |
_last_succ[u] = u; |
| 1145 | 1145 |
if (_supply[u] >= 0) {
|
| 1146 | 1146 |
_forward[u] = true; |
| 1147 | 1147 |
_pi[u] = 0; |
| 1148 | 1148 |
_pred[u] = e; |
| 1149 | 1149 |
_source[e] = u; |
| 1150 | 1150 |
_target[e] = _root; |
| 1151 | 1151 |
_cap[e] = INF; |
| 1152 | 1152 |
_flow[e] = _supply[u]; |
| 1153 | 1153 |
_cost[e] = 0; |
| 1154 | 1154 |
_state[e] = STATE_TREE; |
| 1155 | 1155 |
} else {
|
| 1156 | 1156 |
_forward[u] = false; |
| 1157 | 1157 |
_pi[u] = ART_COST; |
| 1158 | 1158 |
_pred[u] = f; |
| 1159 | 1159 |
_source[f] = _root; |
| 1160 | 1160 |
_target[f] = u; |
| 1161 | 1161 |
_cap[f] = INF; |
| 1162 | 1162 |
_flow[f] = -_supply[u]; |
| 1163 | 1163 |
_cost[f] = ART_COST; |
| 1164 | 1164 |
_state[f] = STATE_TREE; |
| 1165 | 1165 |
_source[e] = u; |
| 1166 | 1166 |
_target[e] = _root; |
| 1167 | 1167 |
_cap[e] = INF; |
| 1168 | 1168 |
_flow[e] = 0; |
| 1169 | 1169 |
_cost[e] = 0; |
| 1170 | 1170 |
_state[e] = STATE_LOWER; |
| 1171 | 1171 |
++f; |
| 1172 | 1172 |
} |
| 1173 | 1173 |
} |
| 1174 | 1174 |
_all_arc_num = f; |
| 1175 | 1175 |
} |
| 1176 | 1176 |
else {
|
| 1177 | 1177 |
// GEQ supply constraints |
| 1178 | 1178 |
_search_arc_num = _arc_num + _node_num; |
| 1179 | 1179 |
int f = _arc_num + _node_num; |
| 1180 | 1180 |
for (int u = 0, e = _arc_num; u != _node_num; ++u, ++e) {
|
| 1181 | 1181 |
_parent[u] = _root; |
| 1182 | 1182 |
_thread[u] = u + 1; |
| 1183 | 1183 |
_rev_thread[u + 1] = u; |
| 1184 | 1184 |
_succ_num[u] = 1; |
| 1185 | 1185 |
_last_succ[u] = u; |
| 1186 | 1186 |
if (_supply[u] <= 0) {
|
| 1187 | 1187 |
_forward[u] = false; |
| 1188 | 1188 |
_pi[u] = 0; |
| 1189 | 1189 |
_pred[u] = e; |
| 1190 | 1190 |
_source[e] = _root; |
| 1191 | 1191 |
_target[e] = u; |
| 1192 | 1192 |
_cap[e] = INF; |
| 1193 | 1193 |
_flow[e] = -_supply[u]; |
| 1194 | 1194 |
_cost[e] = 0; |
| 1195 | 1195 |
_state[e] = STATE_TREE; |
| 1196 | 1196 |
} else {
|
| 1197 | 1197 |
_forward[u] = true; |
| 1198 | 1198 |
_pi[u] = -ART_COST; |
| 1199 | 1199 |
_pred[u] = f; |
| 1200 | 1200 |
_source[f] = u; |
| 1201 | 1201 |
_target[f] = _root; |
| 1202 | 1202 |
_cap[f] = INF; |
| 1203 | 1203 |
_flow[f] = _supply[u]; |
| 1204 | 1204 |
_state[f] = STATE_TREE; |
| 1205 | 1205 |
_cost[f] = ART_COST; |
| 1206 | 1206 |
_source[e] = _root; |
| 1207 | 1207 |
_target[e] = u; |
| 1208 | 1208 |
_cap[e] = INF; |
| 1209 | 1209 |
_flow[e] = 0; |
| 1210 | 1210 |
_cost[e] = 0; |
| 1211 | 1211 |
_state[e] = STATE_LOWER; |
| 1212 | 1212 |
++f; |
| 1213 | 1213 |
} |
| 1214 | 1214 |
} |
| 1215 | 1215 |
_all_arc_num = f; |
| 1216 | 1216 |
} |
| 1217 | 1217 |
|
| 1218 | 1218 |
return true; |
| 1219 | 1219 |
} |
| 1220 | 1220 |
|
| 1221 | 1221 |
// Find the join node |
| 1222 | 1222 |
void findJoinNode() {
|
| 1223 | 1223 |
int u = _source[in_arc]; |
| 1224 | 1224 |
int v = _target[in_arc]; |
| 1225 | 1225 |
while (u != v) {
|
| 1226 | 1226 |
if (_succ_num[u] < _succ_num[v]) {
|
| 1227 | 1227 |
u = _parent[u]; |
| 1228 | 1228 |
} else {
|
| 1229 | 1229 |
v = _parent[v]; |
| 1230 | 1230 |
} |
| 1231 | 1231 |
} |
| 1232 | 1232 |
join = u; |
| 1233 | 1233 |
} |
| 1234 | 1234 |
|
| 1235 | 1235 |
// Find the leaving arc of the cycle and returns true if the |
| 1236 | 1236 |
// leaving arc is not the same as the entering arc |
| 1237 | 1237 |
bool findLeavingArc() {
|
| 1238 | 1238 |
// Initialize first and second nodes according to the direction |
| 1239 | 1239 |
// of the cycle |
| 1240 | 1240 |
if (_state[in_arc] == STATE_LOWER) {
|
| 1241 | 1241 |
first = _source[in_arc]; |
| 1242 | 1242 |
second = _target[in_arc]; |
| 1243 | 1243 |
} else {
|
| 1244 | 1244 |
first = _target[in_arc]; |
| 1245 | 1245 |
second = _source[in_arc]; |
| 1246 | 1246 |
} |
| 1247 | 1247 |
delta = _cap[in_arc]; |
| 1248 | 1248 |
int result = 0; |
| 1249 | 1249 |
Value d; |
| 1250 | 1250 |
int e; |
| 1251 | 1251 |
|
| 1252 | 1252 |
// Search the cycle along the path form the first node to the root |
| 1253 | 1253 |
for (int u = first; u != join; u = _parent[u]) {
|
| 1254 | 1254 |
e = _pred[u]; |
| 1255 | 1255 |
d = _forward[u] ? |
| 1256 | 1256 |
_flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]); |
| 1257 | 1257 |
if (d < delta) {
|
| 1258 | 1258 |
delta = d; |
| 1259 | 1259 |
u_out = u; |
| 1260 | 1260 |
result = 1; |
| 1261 | 1261 |
} |
| 1262 | 1262 |
} |
| 1263 | 1263 |
// Search the cycle along the path form the second node to the root |
| 1264 | 1264 |
for (int u = second; u != join; u = _parent[u]) {
|
| 1265 | 1265 |
e = _pred[u]; |
| 1266 | 1266 |
d = _forward[u] ? |
| 1267 | 1267 |
(_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e]; |
| 1268 | 1268 |
if (d <= delta) {
|
| 1269 | 1269 |
delta = d; |
| 1270 | 1270 |
u_out = u; |
| 1271 | 1271 |
result = 2; |
| 1272 | 1272 |
} |
| 1273 | 1273 |
} |
| 1274 | 1274 |
|
| 1275 | 1275 |
if (result == 1) {
|
| 1276 | 1276 |
u_in = first; |
| 1277 | 1277 |
v_in = second; |
| 1278 | 1278 |
} else {
|
| 1279 | 1279 |
u_in = second; |
| 1280 | 1280 |
v_in = first; |
| 1281 | 1281 |
} |
| 1282 | 1282 |
return result != 0; |
| 1283 | 1283 |
} |
| 1284 | 1284 |
|
| 1285 | 1285 |
// Change _flow and _state vectors |
| 1286 | 1286 |
void changeFlow(bool change) {
|
| 1287 | 1287 |
// Augment along the cycle |
| 1288 | 1288 |
if (delta > 0) {
|
| 1289 | 1289 |
Value val = _state[in_arc] * delta; |
| 1290 | 1290 |
_flow[in_arc] += val; |
| 1291 | 1291 |
for (int u = _source[in_arc]; u != join; u = _parent[u]) {
|
| 1292 | 1292 |
_flow[_pred[u]] += _forward[u] ? -val : val; |
| 1293 | 1293 |
} |
| 1294 | 1294 |
for (int u = _target[in_arc]; u != join; u = _parent[u]) {
|
| 1295 | 1295 |
_flow[_pred[u]] += _forward[u] ? val : -val; |
| 1296 | 1296 |
} |
| 1297 | 1297 |
} |
| 1298 | 1298 |
// Update the state of the entering and leaving arcs |
| 1299 | 1299 |
if (change) {
|
| 1300 | 1300 |
_state[in_arc] = STATE_TREE; |
| 1301 | 1301 |
_state[_pred[u_out]] = |
| 1302 | 1302 |
(_flow[_pred[u_out]] == 0) ? STATE_LOWER : STATE_UPPER; |
| 1303 | 1303 |
} else {
|
| 1304 | 1304 |
_state[in_arc] = -_state[in_arc]; |
| 1305 | 1305 |
} |
| 1306 | 1306 |
} |
| 1307 | 1307 |
|
| 1308 | 1308 |
// Update the tree structure |
| 1309 | 1309 |
void updateTreeStructure() {
|
| 1310 | 1310 |
int u, w; |
| 1311 | 1311 |
int old_rev_thread = _rev_thread[u_out]; |
| 1312 | 1312 |
int old_succ_num = _succ_num[u_out]; |
| 1313 | 1313 |
int old_last_succ = _last_succ[u_out]; |
| 1314 | 1314 |
v_out = _parent[u_out]; |
| 1315 | 1315 |
|
| 1316 | 1316 |
u = _last_succ[u_in]; // the last successor of u_in |
| 1317 | 1317 |
right = _thread[u]; // the node after it |
| 1318 | 1318 |
|
| 1319 | 1319 |
// Handle the case when old_rev_thread equals to v_in |
| 1320 | 1320 |
// (it also means that join and v_out coincide) |
| 1321 | 1321 |
if (old_rev_thread == v_in) {
|
| 1322 | 1322 |
last = _thread[_last_succ[u_out]]; |
| 1323 | 1323 |
} else {
|
| 1324 | 1324 |
last = _thread[v_in]; |
| 1325 | 1325 |
} |
| 1326 | 1326 |
|
| 1327 | 1327 |
// Update _thread and _parent along the stem nodes (i.e. the nodes |
| 1328 | 1328 |
// between u_in and u_out, whose parent have to be changed) |
| 1329 | 1329 |
_thread[v_in] = stem = u_in; |
| 1330 | 1330 |
_dirty_revs.clear(); |
| 1331 | 1331 |
_dirty_revs.push_back(v_in); |
| 1332 | 1332 |
par_stem = v_in; |
| 1333 | 1333 |
while (stem != u_out) {
|
| 1334 | 1334 |
// Insert the next stem node into the thread list |
| 1335 | 1335 |
new_stem = _parent[stem]; |
| 1336 | 1336 |
_thread[u] = new_stem; |
| 1337 | 1337 |
_dirty_revs.push_back(u); |
| 1338 | 1338 |
|
| 1339 | 1339 |
// Remove the subtree of stem from the thread list |
| 1340 | 1340 |
w = _rev_thread[stem]; |
| 1341 | 1341 |
_thread[w] = right; |
| 1342 | 1342 |
_rev_thread[right] = w; |
| 1343 | 1343 |
|
| 1344 | 1344 |
// Change the parent node and shift stem nodes |
| 1345 | 1345 |
_parent[stem] = par_stem; |
| 1346 | 1346 |
par_stem = stem; |
| 1347 | 1347 |
stem = new_stem; |
| 1348 | 1348 |
|
| 1349 | 1349 |
// Update u and right |
| 1350 | 1350 |
u = _last_succ[stem] == _last_succ[par_stem] ? |
| 1351 | 1351 |
_rev_thread[par_stem] : _last_succ[stem]; |
| 1352 | 1352 |
right = _thread[u]; |
| 1353 | 1353 |
} |
| 1354 | 1354 |
_parent[u_out] = par_stem; |
| 1355 | 1355 |
_thread[u] = last; |
| 1356 | 1356 |
_rev_thread[last] = u; |
| 1357 | 1357 |
_last_succ[u_out] = u; |
| 1358 | 1358 |
|
| 1359 | 1359 |
// Remove the subtree of u_out from the thread list except for |
| 1360 | 1360 |
// the case when old_rev_thread equals to v_in |
| 1361 | 1361 |
// (it also means that join and v_out coincide) |
| 1362 | 1362 |
if (old_rev_thread != v_in) {
|
| 1363 | 1363 |
_thread[old_rev_thread] = right; |
| 1364 | 1364 |
_rev_thread[right] = old_rev_thread; |
| 1365 | 1365 |
} |
| 1366 | 1366 |
|
| 1367 | 1367 |
// Update _rev_thread using the new _thread values |
| 1368 | 1368 |
for (int i = 0; i != int(_dirty_revs.size()); ++i) {
|
| 1369 | 1369 |
u = _dirty_revs[i]; |
| 1370 | 1370 |
_rev_thread[_thread[u]] = u; |
| 1371 | 1371 |
} |
| 1372 | 1372 |
|
| 1373 | 1373 |
// Update _pred, _forward, _last_succ and _succ_num for the |
| 1374 | 1374 |
// stem nodes from u_out to u_in |
| 1375 | 1375 |
int tmp_sc = 0, tmp_ls = _last_succ[u_out]; |
| 1376 | 1376 |
u = u_out; |
| 1377 | 1377 |
while (u != u_in) {
|
| 1378 | 1378 |
w = _parent[u]; |
| 1379 | 1379 |
_pred[u] = _pred[w]; |
| 1380 | 1380 |
_forward[u] = !_forward[w]; |
| 1381 | 1381 |
tmp_sc += _succ_num[u] - _succ_num[w]; |
| 1382 | 1382 |
_succ_num[u] = tmp_sc; |
| 1383 | 1383 |
_last_succ[w] = tmp_ls; |
| 1384 | 1384 |
u = w; |
| 1385 | 1385 |
} |
| 1386 | 1386 |
_pred[u_in] = in_arc; |
| 1387 | 1387 |
_forward[u_in] = (u_in == _source[in_arc]); |
| 1388 | 1388 |
_succ_num[u_in] = old_succ_num; |
| 1389 | 1389 |
|
| 1390 | 1390 |
// Set limits for updating _last_succ form v_in and v_out |
| 1391 | 1391 |
// towards the root |
| 1392 | 1392 |
int up_limit_in = -1; |
| 1393 | 1393 |
int up_limit_out = -1; |
| 1394 | 1394 |
if (_last_succ[join] == v_in) {
|
| 1395 | 1395 |
up_limit_out = join; |
| 1396 | 1396 |
} else {
|
| 1397 | 1397 |
up_limit_in = join; |
| 1398 | 1398 |
} |
| 1399 | 1399 |
|
| 1400 | 1400 |
// Update _last_succ from v_in towards the root |
| 1401 | 1401 |
for (u = v_in; u != up_limit_in && _last_succ[u] == v_in; |
| 1402 | 1402 |
u = _parent[u]) {
|
| 1403 | 1403 |
_last_succ[u] = _last_succ[u_out]; |
| 1404 | 1404 |
} |
| 1405 | 1405 |
// Update _last_succ from v_out towards the root |
| 1406 | 1406 |
if (join != old_rev_thread && v_in != old_rev_thread) {
|
| 1407 | 1407 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1408 | 1408 |
u = _parent[u]) {
|
| 1409 | 1409 |
_last_succ[u] = old_rev_thread; |
| 1410 | 1410 |
} |
| 1411 | 1411 |
} else {
|
| 1412 | 1412 |
for (u = v_out; u != up_limit_out && _last_succ[u] == old_last_succ; |
| 1413 | 1413 |
u = _parent[u]) {
|
| 1414 | 1414 |
_last_succ[u] = _last_succ[u_out]; |
| 1415 | 1415 |
} |
| 1416 | 1416 |
} |
| 1417 | 1417 |
|
| 1418 | 1418 |
// Update _succ_num from v_in to join |
| 1419 | 1419 |
for (u = v_in; u != join; u = _parent[u]) {
|
| 1420 | 1420 |
_succ_num[u] += old_succ_num; |
| 1421 | 1421 |
} |
| 1422 | 1422 |
// Update _succ_num from v_out to join |
| 1423 | 1423 |
for (u = v_out; u != join; u = _parent[u]) {
|
| 1424 | 1424 |
_succ_num[u] -= old_succ_num; |
| 1425 | 1425 |
} |
| 1426 | 1426 |
} |
| 1427 | 1427 |
|
| 1428 | 1428 |
// Update potentials |
| 1429 | 1429 |
void updatePotential() {
|
| 1430 | 1430 |
Cost sigma = _forward[u_in] ? |
| 1431 | 1431 |
_pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] : |
| 1432 | 1432 |
_pi[v_in] - _pi[u_in] + _cost[_pred[u_in]]; |
| 1433 | 1433 |
// Update potentials in the subtree, which has been moved |
| 1434 | 1434 |
int end = _thread[_last_succ[u_in]]; |
| 1435 | 1435 |
for (int u = u_in; u != end; u = _thread[u]) {
|
| 1436 | 1436 |
_pi[u] += sigma; |
| 1437 | 1437 |
} |
| 1438 | 1438 |
} |
| 1439 | 1439 |
|
| 1440 | 1440 |
// Heuristic initial pivots |
| 1441 | 1441 |
bool initialPivots() {
|
| 1442 | 1442 |
Value curr, total = 0; |
| 1443 | 1443 |
std::vector<Node> supply_nodes, demand_nodes; |
| 1444 | 1444 |
for (NodeIt u(_graph); u != INVALID; ++u) {
|
| 1445 | 1445 |
curr = _supply[_node_id[u]]; |
| 1446 | 1446 |
if (curr > 0) {
|
| 1447 | 1447 |
total += curr; |
| 1448 | 1448 |
supply_nodes.push_back(u); |
| 1449 | 1449 |
} |
| 1450 | 1450 |
else if (curr < 0) {
|
| 1451 | 1451 |
demand_nodes.push_back(u); |
| 1452 | 1452 |
} |
| 1453 | 1453 |
} |
| 1454 | 1454 |
if (_sum_supply > 0) total -= _sum_supply; |
| 1455 | 1455 |
if (total <= 0) return true; |
| 1456 | 1456 |
|
| 1457 | 1457 |
IntVector arc_vector; |
| 1458 | 1458 |
if (_sum_supply >= 0) {
|
| 1459 | 1459 |
if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
|
| 1460 | 1460 |
// Perform a reverse graph search from the sink to the source |
| 1461 | 1461 |
typename GR::template NodeMap<bool> reached(_graph, false); |
| 1462 | 1462 |
Node s = supply_nodes[0], t = demand_nodes[0]; |
| 1463 | 1463 |
std::vector<Node> stack; |
| 1464 | 1464 |
reached[t] = true; |
| 1465 | 1465 |
stack.push_back(t); |
| 1466 | 1466 |
while (!stack.empty()) {
|
| 1467 | 1467 |
Node u, v = stack.back(); |
| 1468 | 1468 |
stack.pop_back(); |
| 1469 | 1469 |
if (v == s) break; |
| 1470 | 1470 |
for (InArcIt a(_graph, v); a != INVALID; ++a) {
|
| 1471 | 1471 |
if (reached[u = _graph.source(a)]) continue; |
| 1472 | 1472 |
int j = _arc_id[a]; |
| 1473 | 1473 |
if (_cap[j] >= total) {
|
| 1474 | 1474 |
arc_vector.push_back(j); |
| 1475 | 1475 |
reached[u] = true; |
| 1476 | 1476 |
stack.push_back(u); |
| 1477 | 1477 |
} |
| 1478 | 1478 |
} |
| 1479 | 1479 |
} |
| 1480 | 1480 |
} else {
|
| 1481 | 1481 |
// Find the min. cost incomming arc for each demand node |
| 1482 | 1482 |
for (int i = 0; i != int(demand_nodes.size()); ++i) {
|
| 1483 | 1483 |
Node v = demand_nodes[i]; |
| 1484 | 1484 |
Cost c, min_cost = std::numeric_limits<Cost>::max(); |
| 1485 | 1485 |
Arc min_arc = INVALID; |
| 1486 | 1486 |
for (InArcIt a(_graph, v); a != INVALID; ++a) {
|
| 1487 | 1487 |
c = _cost[_arc_id[a]]; |
| 1488 | 1488 |
if (c < min_cost) {
|
| 1489 | 1489 |
min_cost = c; |
| 1490 | 1490 |
min_arc = a; |
| 1491 | 1491 |
} |
| 1492 | 1492 |
} |
| 1493 | 1493 |
if (min_arc != INVALID) {
|
| 1494 | 1494 |
arc_vector.push_back(_arc_id[min_arc]); |
| 1495 | 1495 |
} |
| 1496 | 1496 |
} |
| 1497 | 1497 |
} |
| 1498 | 1498 |
} else {
|
| 1499 | 1499 |
// Find the min. cost outgoing arc for each supply node |
| 1500 | 1500 |
for (int i = 0; i != int(supply_nodes.size()); ++i) {
|
| 1501 | 1501 |
Node u = supply_nodes[i]; |
| 1502 | 1502 |
Cost c, min_cost = std::numeric_limits<Cost>::max(); |
| 1503 | 1503 |
Arc min_arc = INVALID; |
| 1504 | 1504 |
for (OutArcIt a(_graph, u); a != INVALID; ++a) {
|
| 1505 | 1505 |
c = _cost[_arc_id[a]]; |
| 1506 | 1506 |
if (c < min_cost) {
|
| 1507 | 1507 |
min_cost = c; |
| 1508 | 1508 |
min_arc = a; |
| 1509 | 1509 |
} |
| 1510 | 1510 |
} |
| 1511 | 1511 |
if (min_arc != INVALID) {
|
| 1512 | 1512 |
arc_vector.push_back(_arc_id[min_arc]); |
| 1513 | 1513 |
} |
| 1514 | 1514 |
} |
| 1515 | 1515 |
} |
| 1516 | 1516 |
|
| 1517 | 1517 |
// Perform heuristic initial pivots |
| 1518 | 1518 |
for (int i = 0; i != int(arc_vector.size()); ++i) {
|
| 1519 | 1519 |
in_arc = arc_vector[i]; |
| 1520 | 1520 |
if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] - |
| 1521 | 1521 |
_pi[_target[in_arc]]) >= 0) continue; |
| 1522 | 1522 |
findJoinNode(); |
| 1523 | 1523 |
bool change = findLeavingArc(); |
| 1524 | 1524 |
if (delta >= MAX) return false; |
| 1525 | 1525 |
changeFlow(change); |
| 1526 | 1526 |
if (change) {
|
| 1527 | 1527 |
updateTreeStructure(); |
| 1528 | 1528 |
updatePotential(); |
| 1529 | 1529 |
} |
| 1530 | 1530 |
} |
| 1531 | 1531 |
return true; |
| 1532 | 1532 |
} |
| 1533 | 1533 |
|
| 1534 | 1534 |
// Execute the algorithm |
| 1535 | 1535 |
ProblemType start(PivotRule pivot_rule) {
|
| 1536 | 1536 |
// Select the pivot rule implementation |
| 1537 | 1537 |
switch (pivot_rule) {
|
| 1538 | 1538 |
case FIRST_ELIGIBLE: |
| 1539 | 1539 |
return start<FirstEligiblePivotRule>(); |
| 1540 | 1540 |
case BEST_ELIGIBLE: |
| 1541 | 1541 |
return start<BestEligiblePivotRule>(); |
| 1542 | 1542 |
case BLOCK_SEARCH: |
| 1543 | 1543 |
return start<BlockSearchPivotRule>(); |
| 1544 | 1544 |
case CANDIDATE_LIST: |
| 1545 | 1545 |
return start<CandidateListPivotRule>(); |
| 1546 | 1546 |
case ALTERING_LIST: |
| 1547 | 1547 |
return start<AlteringListPivotRule>(); |
| 1548 | 1548 |
} |
| 1549 | 1549 |
return INFEASIBLE; // avoid warning |
| 1550 | 1550 |
} |
| 1551 | 1551 |
|
| 1552 | 1552 |
template <typename PivotRuleImpl> |
| 1553 | 1553 |
ProblemType start() {
|
| 1554 | 1554 |
PivotRuleImpl pivot(*this); |
| 1555 | 1555 |
|
| 1556 | 1556 |
// Perform heuristic initial pivots |
| 1557 | 1557 |
if (!initialPivots()) return UNBOUNDED; |
| 1558 | 1558 |
|
| 1559 | 1559 |
// Execute the Network Simplex algorithm |
| 1560 | 1560 |
while (pivot.findEnteringArc()) {
|
| 1561 | 1561 |
findJoinNode(); |
| 1562 | 1562 |
bool change = findLeavingArc(); |
| 1563 | 1563 |
if (delta >= MAX) return UNBOUNDED; |
| 1564 | 1564 |
changeFlow(change); |
| 1565 | 1565 |
if (change) {
|
| 1566 | 1566 |
updateTreeStructure(); |
| 1567 | 1567 |
updatePotential(); |
| 1568 | 1568 |
} |
| 1569 | 1569 |
} |
| 1570 | 1570 |
|
| 1571 | 1571 |
// Check feasibility |
| 1572 | 1572 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) {
|
| 1573 | 1573 |
if (_flow[e] != 0) return INFEASIBLE; |
| 1574 | 1574 |
} |
| 1575 | 1575 |
|
| 1576 | 1576 |
// Transform the solution and the supply map to the original form |
| 1577 | 1577 |
if (_have_lower) {
|
| 1578 | 1578 |
for (int i = 0; i != _arc_num; ++i) {
|
| 1579 | 1579 |
Value c = _lower[i]; |
| 1580 | 1580 |
if (c != 0) {
|
| 1581 | 1581 |
_flow[i] += c; |
| 1582 | 1582 |
_supply[_source[i]] += c; |
| 1583 | 1583 |
_supply[_target[i]] -= c; |
| 1584 | 1584 |
} |
| 1585 | 1585 |
} |
| 1586 | 1586 |
} |
| 1587 | 1587 |
|
| 1588 | 1588 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
| 1589 | 1589 |
// optimality conditions |
| 1590 | 1590 |
if (_sum_supply == 0) {
|
| 1591 | 1591 |
if (_stype == GEQ) {
|
| 1592 |
Cost max_pot = std::numeric_limits<Cost>:: |
|
| 1592 |
Cost max_pot = -std::numeric_limits<Cost>::max(); |
|
| 1593 | 1593 |
for (int i = 0; i != _node_num; ++i) {
|
| 1594 | 1594 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
| 1595 | 1595 |
} |
| 1596 | 1596 |
if (max_pot > 0) {
|
| 1597 | 1597 |
for (int i = 0; i != _node_num; ++i) |
| 1598 | 1598 |
_pi[i] -= max_pot; |
| 1599 | 1599 |
} |
| 1600 | 1600 |
} else {
|
| 1601 | 1601 |
Cost min_pot = std::numeric_limits<Cost>::max(); |
| 1602 | 1602 |
for (int i = 0; i != _node_num; ++i) {
|
| 1603 | 1603 |
if (_pi[i] < min_pot) min_pot = _pi[i]; |
| 1604 | 1604 |
} |
| 1605 | 1605 |
if (min_pot < 0) {
|
| 1606 | 1606 |
for (int i = 0; i != _node_num; ++i) |
| 1607 | 1607 |
_pi[i] -= min_pot; |
| 1608 | 1608 |
} |
| 1609 | 1609 |
} |
| 1610 | 1610 |
} |
| 1611 | 1611 |
|
| 1612 | 1612 |
return OPTIMAL; |
| 1613 | 1613 |
} |
| 1614 | 1614 |
|
| 1615 | 1615 |
}; //class NetworkSimplex |
| 1616 | 1616 |
|
| 1617 | 1617 |
///@} |
| 1618 | 1618 |
|
| 1619 | 1619 |
} //namespace lemon |
| 1620 | 1620 |
|
| 1621 | 1621 |
#endif //LEMON_NETWORK_SIMPLEX_H |
0 comments (0 inline)