gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge
0 1 0
merge default
1 file changed with 7 insertions and 7 deletions:
↑ Collapse diff ↑
Ignore white space 384 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2009
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_LIST_GRAPH_H
20 20
#define LEMON_LIST_GRAPH_H
21 21

	
22 22
///\ingroup graphs
23 23
///\file
24 24
///\brief ListDigraph and ListGraph classes.
25 25

	
26 26
#include <lemon/core.h>
27 27
#include <lemon/error.h>
28 28
#include <lemon/bits/graph_extender.h>
29 29

	
30 30
#include <vector>
31 31
#include <list>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  class ListDigraph;
36 36

	
37 37
  class ListDigraphBase {
38 38

	
39 39
  protected:
40 40
    struct NodeT {
41 41
      int first_in, first_out;
42 42
      int prev, next;
43 43
    };
44 44

	
45 45
    struct ArcT {
46 46
      int target, source;
47 47
      int prev_in, prev_out;
48 48
      int next_in, next_out;
49 49
    };
50 50

	
51 51
    std::vector<NodeT> nodes;
52 52

	
53 53
    int first_node;
54 54

	
55 55
    int first_free_node;
56 56

	
57 57
    std::vector<ArcT> arcs;
58 58

	
59 59
    int first_free_arc;
60 60

	
61 61
  public:
62 62

	
63 63
    typedef ListDigraphBase Digraph;
64 64

	
65 65
    class Node {
66 66
      friend class ListDigraphBase;
67 67
      friend class ListDigraph;
68 68
    protected:
69 69

	
70 70
      int id;
71 71
      explicit Node(int pid) { id = pid;}
72 72

	
73 73
    public:
74 74
      Node() {}
75 75
      Node (Invalid) { id = -1; }
76 76
      bool operator==(const Node& node) const {return id == node.id;}
77 77
      bool operator!=(const Node& node) const {return id != node.id;}
78 78
      bool operator<(const Node& node) const {return id < node.id;}
79 79
    };
80 80

	
81 81
    class Arc {
82 82
      friend class ListDigraphBase;
83 83
      friend class ListDigraph;
84 84
    protected:
85 85

	
86 86
      int id;
87 87
      explicit Arc(int pid) { id = pid;}
88 88

	
89 89
    public:
90 90
      Arc() {}
91 91
      Arc (Invalid) { id = -1; }
92 92
      bool operator==(const Arc& arc) const {return id == arc.id;}
93 93
      bool operator!=(const Arc& arc) const {return id != arc.id;}
94 94
      bool operator<(const Arc& arc) const {return id < arc.id;}
95 95
    };
96 96

	
97 97

	
98 98

	
99 99
    ListDigraphBase()
100 100
      : nodes(), first_node(-1),
101 101
        first_free_node(-1), arcs(), first_free_arc(-1) {}
102 102

	
103 103

	
104 104
    int maxNodeId() const { return nodes.size()-1; }
105 105
    int maxArcId() const { return arcs.size()-1; }
106 106

	
107 107
    Node source(Arc e) const { return Node(arcs[e.id].source); }
108 108
    Node target(Arc e) const { return Node(arcs[e.id].target); }
109 109

	
110 110

	
111 111
    void first(Node& node) const {
112 112
      node.id = first_node;
113 113
    }
114 114

	
115 115
    void next(Node& node) const {
116 116
      node.id = nodes[node.id].next;
117 117
    }
118 118

	
119 119

	
120 120
    void first(Arc& arc) const {
121 121
      int n;
122 122
      for(n = first_node;
123
          n!=-1 && nodes[n].first_in == -1;
123
          n != -1 && nodes[n].first_out == -1;
124 124
          n = nodes[n].next) {}
125
      arc.id = (n == -1) ? -1 : nodes[n].first_in;
125
      arc.id = (n == -1) ? -1 : nodes[n].first_out;
126 126
    }
127 127

	
128 128
    void next(Arc& arc) const {
129
      if (arcs[arc.id].next_in != -1) {
130
        arc.id = arcs[arc.id].next_in;
129
      if (arcs[arc.id].next_out != -1) {
130
        arc.id = arcs[arc.id].next_out;
131 131
      } else {
132 132
        int n;
133
        for(n = nodes[arcs[arc.id].target].next;
134
            n!=-1 && nodes[n].first_in == -1;
133
        for(n = nodes[arcs[arc.id].source].next;
134
            n != -1 && nodes[n].first_out == -1;
135 135
            n = nodes[n].next) {}
136
        arc.id = (n == -1) ? -1 : nodes[n].first_in;
136
        arc.id = (n == -1) ? -1 : nodes[n].first_out;
137 137
      }
138 138
    }
139 139

	
140 140
    void firstOut(Arc &e, const Node& v) const {
141 141
      e.id = nodes[v.id].first_out;
142 142
    }
143 143
    void nextOut(Arc &e) const {
144 144
      e.id=arcs[e.id].next_out;
145 145
    }
146 146

	
147 147
    void firstIn(Arc &e, const Node& v) const {
148 148
      e.id = nodes[v.id].first_in;
149 149
    }
150 150
    void nextIn(Arc &e) const {
151 151
      e.id=arcs[e.id].next_in;
152 152
    }
153 153

	
154 154

	
155 155
    static int id(Node v) { return v.id; }
156 156
    static int id(Arc e) { return e.id; }
157 157

	
158 158
    static Node nodeFromId(int id) { return Node(id);}
159 159
    static Arc arcFromId(int id) { return Arc(id);}
160 160

	
161 161
    bool valid(Node n) const {
162 162
      return n.id >= 0 && n.id < static_cast<int>(nodes.size()) &&
163 163
        nodes[n.id].prev != -2;
164 164
    }
165 165

	
166 166
    bool valid(Arc a) const {
167 167
      return a.id >= 0 && a.id < static_cast<int>(arcs.size()) &&
168 168
        arcs[a.id].prev_in != -2;
169 169
    }
170 170

	
171 171
    Node addNode() {
172 172
      int n;
173 173

	
174 174
      if(first_free_node==-1) {
175 175
        n = nodes.size();
176 176
        nodes.push_back(NodeT());
177 177
      } else {
178 178
        n = first_free_node;
179 179
        first_free_node = nodes[n].next;
180 180
      }
181 181

	
182 182
      nodes[n].next = first_node;
183 183
      if(first_node != -1) nodes[first_node].prev = n;
184 184
      first_node = n;
185 185
      nodes[n].prev = -1;
186 186

	
187 187
      nodes[n].first_in = nodes[n].first_out = -1;
188 188

	
189 189
      return Node(n);
190 190
    }
191 191

	
192 192
    Arc addArc(Node u, Node v) {
193 193
      int n;
194 194

	
195 195
      if (first_free_arc == -1) {
196 196
        n = arcs.size();
197 197
        arcs.push_back(ArcT());
198 198
      } else {
199 199
        n = first_free_arc;
200 200
        first_free_arc = arcs[n].next_in;
201 201
      }
202 202

	
203 203
      arcs[n].source = u.id;
204 204
      arcs[n].target = v.id;
205 205

	
206 206
      arcs[n].next_out = nodes[u.id].first_out;
207 207
      if(nodes[u.id].first_out != -1) {
208 208
        arcs[nodes[u.id].first_out].prev_out = n;
209 209
      }
210 210

	
211 211
      arcs[n].next_in = nodes[v.id].first_in;
212 212
      if(nodes[v.id].first_in != -1) {
213 213
        arcs[nodes[v.id].first_in].prev_in = n;
214 214
      }
215 215

	
216 216
      arcs[n].prev_in = arcs[n].prev_out = -1;
217 217

	
218 218
      nodes[u.id].first_out = nodes[v.id].first_in = n;
219 219

	
220 220
      return Arc(n);
221 221
    }
222 222

	
223 223
    void erase(const Node& node) {
224 224
      int n = node.id;
225 225

	
226 226
      if(nodes[n].next != -1) {
227 227
        nodes[nodes[n].next].prev = nodes[n].prev;
228 228
      }
229 229

	
230 230
      if(nodes[n].prev != -1) {
231 231
        nodes[nodes[n].prev].next = nodes[n].next;
232 232
      } else {
233 233
        first_node = nodes[n].next;
234 234
      }
235 235

	
236 236
      nodes[n].next = first_free_node;
237 237
      first_free_node = n;
238 238
      nodes[n].prev = -2;
239 239

	
240 240
    }
241 241

	
242 242
    void erase(const Arc& arc) {
243 243
      int n = arc.id;
244 244

	
245 245
      if(arcs[n].next_in!=-1) {
246 246
        arcs[arcs[n].next_in].prev_in = arcs[n].prev_in;
247 247
      }
248 248

	
249 249
      if(arcs[n].prev_in!=-1) {
250 250
        arcs[arcs[n].prev_in].next_in = arcs[n].next_in;
251 251
      } else {
252 252
        nodes[arcs[n].target].first_in = arcs[n].next_in;
253 253
      }
254 254

	
255 255

	
256 256
      if(arcs[n].next_out!=-1) {
257 257
        arcs[arcs[n].next_out].prev_out = arcs[n].prev_out;
258 258
      }
259 259

	
260 260
      if(arcs[n].prev_out!=-1) {
261 261
        arcs[arcs[n].prev_out].next_out = arcs[n].next_out;
262 262
      } else {
263 263
        nodes[arcs[n].source].first_out = arcs[n].next_out;
264 264
      }
265 265

	
266 266
      arcs[n].next_in = first_free_arc;
267 267
      first_free_arc = n;
268 268
      arcs[n].prev_in = -2;
269 269
    }
270 270

	
271 271
    void clear() {
272 272
      arcs.clear();
273 273
      nodes.clear();
274 274
      first_node = first_free_node = first_free_arc = -1;
275 275
    }
276 276

	
277 277
  protected:
278 278
    void changeTarget(Arc e, Node n)
279 279
    {
280 280
      if(arcs[e.id].next_in != -1)
281 281
        arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in;
282 282
      if(arcs[e.id].prev_in != -1)
283 283
        arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in;
284 284
      else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in;
285 285
      if (nodes[n.id].first_in != -1) {
286 286
        arcs[nodes[n.id].first_in].prev_in = e.id;
287 287
      }
288 288
      arcs[e.id].target = n.id;
289 289
      arcs[e.id].prev_in = -1;
290 290
      arcs[e.id].next_in = nodes[n.id].first_in;
291 291
      nodes[n.id].first_in = e.id;
292 292
    }
293 293
    void changeSource(Arc e, Node n)
294 294
    {
295 295
      if(arcs[e.id].next_out != -1)
296 296
        arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out;
297 297
      if(arcs[e.id].prev_out != -1)
298 298
        arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out;
299 299
      else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out;
300 300
      if (nodes[n.id].first_out != -1) {
301 301
        arcs[nodes[n.id].first_out].prev_out = e.id;
302 302
      }
303 303
      arcs[e.id].source = n.id;
304 304
      arcs[e.id].prev_out = -1;
305 305
      arcs[e.id].next_out = nodes[n.id].first_out;
306 306
      nodes[n.id].first_out = e.id;
307 307
    }
308 308

	
309 309
  };
310 310

	
311 311
  typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase;
312 312

	
313 313
  /// \addtogroup graphs
314 314
  /// @{
315 315

	
316 316
  ///A general directed graph structure.
317 317

	
318 318
  ///\ref ListDigraph is a versatile and fast directed graph
319 319
  ///implementation based on linked lists that are stored in
320 320
  ///\c std::vector structures.
321 321
  ///
322 322
  ///This type fully conforms to the \ref concepts::Digraph "Digraph concept"
323 323
  ///and it also provides several useful additional functionalities.
324 324
  ///Most of its member functions and nested classes are documented
325 325
  ///only in the concept class.
326 326
  ///
327 327
  ///\sa concepts::Digraph
328 328
  ///\sa ListGraph
0 comments (0 inline)