1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LIST_GRAPH_H |
20 | 20 |
#define LEMON_LIST_GRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief ListDigraph and ListGraph classes. |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/error.h> |
28 | 28 |
#include <lemon/bits/graph_extender.h> |
29 | 29 |
|
30 | 30 |
#include <vector> |
31 | 31 |
#include <list> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
class ListDigraph; |
36 | 36 |
|
37 | 37 |
class ListDigraphBase { |
38 | 38 |
|
39 | 39 |
protected: |
40 | 40 |
struct NodeT { |
41 | 41 |
int first_in, first_out; |
42 | 42 |
int prev, next; |
43 | 43 |
}; |
44 | 44 |
|
45 | 45 |
struct ArcT { |
46 | 46 |
int target, source; |
47 | 47 |
int prev_in, prev_out; |
48 | 48 |
int next_in, next_out; |
49 | 49 |
}; |
50 | 50 |
|
51 | 51 |
std::vector<NodeT> nodes; |
52 | 52 |
|
53 | 53 |
int first_node; |
54 | 54 |
|
55 | 55 |
int first_free_node; |
56 | 56 |
|
57 | 57 |
std::vector<ArcT> arcs; |
58 | 58 |
|
59 | 59 |
int first_free_arc; |
60 | 60 |
|
61 | 61 |
public: |
62 | 62 |
|
63 | 63 |
typedef ListDigraphBase Digraph; |
64 | 64 |
|
65 | 65 |
class Node { |
66 | 66 |
friend class ListDigraphBase; |
67 | 67 |
friend class ListDigraph; |
68 | 68 |
protected: |
69 | 69 |
|
70 | 70 |
int id; |
71 | 71 |
explicit Node(int pid) { id = pid;} |
72 | 72 |
|
73 | 73 |
public: |
74 | 74 |
Node() {} |
75 | 75 |
Node (Invalid) { id = -1; } |
76 | 76 |
bool operator==(const Node& node) const {return id == node.id;} |
77 | 77 |
bool operator!=(const Node& node) const {return id != node.id;} |
78 | 78 |
bool operator<(const Node& node) const {return id < node.id;} |
79 | 79 |
}; |
80 | 80 |
|
81 | 81 |
class Arc { |
82 | 82 |
friend class ListDigraphBase; |
83 | 83 |
friend class ListDigraph; |
84 | 84 |
protected: |
85 | 85 |
|
86 | 86 |
int id; |
87 | 87 |
explicit Arc(int pid) { id = pid;} |
88 | 88 |
|
89 | 89 |
public: |
90 | 90 |
Arc() {} |
91 | 91 |
Arc (Invalid) { id = -1; } |
92 | 92 |
bool operator==(const Arc& arc) const {return id == arc.id;} |
93 | 93 |
bool operator!=(const Arc& arc) const {return id != arc.id;} |
94 | 94 |
bool operator<(const Arc& arc) const {return id < arc.id;} |
95 | 95 |
}; |
96 | 96 |
|
97 | 97 |
|
98 | 98 |
|
99 | 99 |
ListDigraphBase() |
100 | 100 |
: nodes(), first_node(-1), |
101 | 101 |
first_free_node(-1), arcs(), first_free_arc(-1) {} |
102 | 102 |
|
103 | 103 |
|
104 | 104 |
int maxNodeId() const { return nodes.size()-1; } |
105 | 105 |
int maxArcId() const { return arcs.size()-1; } |
106 | 106 |
|
107 | 107 |
Node source(Arc e) const { return Node(arcs[e.id].source); } |
108 | 108 |
Node target(Arc e) const { return Node(arcs[e.id].target); } |
109 | 109 |
|
110 | 110 |
|
111 | 111 |
void first(Node& node) const { |
112 | 112 |
node.id = first_node; |
113 | 113 |
} |
114 | 114 |
|
115 | 115 |
void next(Node& node) const { |
116 | 116 |
node.id = nodes[node.id].next; |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
|
120 | 120 |
void first(Arc& arc) const { |
121 | 121 |
int n; |
122 | 122 |
for(n = first_node; |
123 |
n!=-1 && nodes[n]. |
|
123 |
n != -1 && nodes[n].first_out == -1; |
|
124 | 124 |
n = nodes[n].next) {} |
125 |
arc.id = (n == -1) ? -1 : nodes[n]. |
|
125 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
|
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
void next(Arc& arc) const { |
129 |
if (arcs[arc.id].next_in != -1) { |
|
130 |
arc.id = arcs[arc.id].next_in; |
|
129 |
if (arcs[arc.id].next_out != -1) { |
|
130 |
arc.id = arcs[arc.id].next_out; |
|
131 | 131 |
} else { |
132 | 132 |
int n; |
133 |
for(n = nodes[arcs[arc.id].target].next; |
|
134 |
n!=-1 && nodes[n].first_in == -1; |
|
133 |
for(n = nodes[arcs[arc.id].source].next; |
|
134 |
n != -1 && nodes[n].first_out == -1; |
|
135 | 135 |
n = nodes[n].next) {} |
136 |
arc.id = (n == -1) ? -1 : nodes[n]. |
|
136 |
arc.id = (n == -1) ? -1 : nodes[n].first_out; |
|
137 | 137 |
} |
138 | 138 |
} |
139 | 139 |
|
140 | 140 |
void firstOut(Arc &e, const Node& v) const { |
141 | 141 |
e.id = nodes[v.id].first_out; |
142 | 142 |
} |
143 | 143 |
void nextOut(Arc &e) const { |
144 | 144 |
e.id=arcs[e.id].next_out; |
145 | 145 |
} |
146 | 146 |
|
147 | 147 |
void firstIn(Arc &e, const Node& v) const { |
148 | 148 |
e.id = nodes[v.id].first_in; |
149 | 149 |
} |
150 | 150 |
void nextIn(Arc &e) const { |
151 | 151 |
e.id=arcs[e.id].next_in; |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
|
155 | 155 |
static int id(Node v) { return v.id; } |
156 | 156 |
static int id(Arc e) { return e.id; } |
157 | 157 |
|
158 | 158 |
static Node nodeFromId(int id) { return Node(id);} |
159 | 159 |
static Arc arcFromId(int id) { return Arc(id);} |
160 | 160 |
|
161 | 161 |
bool valid(Node n) const { |
162 | 162 |
return n.id >= 0 && n.id < static_cast<int>(nodes.size()) && |
163 | 163 |
nodes[n.id].prev != -2; |
164 | 164 |
} |
165 | 165 |
|
166 | 166 |
bool valid(Arc a) const { |
167 | 167 |
return a.id >= 0 && a.id < static_cast<int>(arcs.size()) && |
168 | 168 |
arcs[a.id].prev_in != -2; |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
Node addNode() { |
172 | 172 |
int n; |
173 | 173 |
|
174 | 174 |
if(first_free_node==-1) { |
175 | 175 |
n = nodes.size(); |
176 | 176 |
nodes.push_back(NodeT()); |
177 | 177 |
} else { |
178 | 178 |
n = first_free_node; |
179 | 179 |
first_free_node = nodes[n].next; |
180 | 180 |
} |
181 | 181 |
|
182 | 182 |
nodes[n].next = first_node; |
183 | 183 |
if(first_node != -1) nodes[first_node].prev = n; |
184 | 184 |
first_node = n; |
185 | 185 |
nodes[n].prev = -1; |
186 | 186 |
|
187 | 187 |
nodes[n].first_in = nodes[n].first_out = -1; |
188 | 188 |
|
189 | 189 |
return Node(n); |
190 | 190 |
} |
191 | 191 |
|
192 | 192 |
Arc addArc(Node u, Node v) { |
193 | 193 |
int n; |
194 | 194 |
|
195 | 195 |
if (first_free_arc == -1) { |
196 | 196 |
n = arcs.size(); |
197 | 197 |
arcs.push_back(ArcT()); |
198 | 198 |
} else { |
199 | 199 |
n = first_free_arc; |
200 | 200 |
first_free_arc = arcs[n].next_in; |
201 | 201 |
} |
202 | 202 |
|
203 | 203 |
arcs[n].source = u.id; |
204 | 204 |
arcs[n].target = v.id; |
205 | 205 |
|
206 | 206 |
arcs[n].next_out = nodes[u.id].first_out; |
207 | 207 |
if(nodes[u.id].first_out != -1) { |
208 | 208 |
arcs[nodes[u.id].first_out].prev_out = n; |
209 | 209 |
} |
210 | 210 |
|
211 | 211 |
arcs[n].next_in = nodes[v.id].first_in; |
212 | 212 |
if(nodes[v.id].first_in != -1) { |
213 | 213 |
arcs[nodes[v.id].first_in].prev_in = n; |
214 | 214 |
} |
215 | 215 |
|
216 | 216 |
arcs[n].prev_in = arcs[n].prev_out = -1; |
217 | 217 |
|
218 | 218 |
nodes[u.id].first_out = nodes[v.id].first_in = n; |
219 | 219 |
|
220 | 220 |
return Arc(n); |
221 | 221 |
} |
222 | 222 |
|
223 | 223 |
void erase(const Node& node) { |
224 | 224 |
int n = node.id; |
225 | 225 |
|
226 | 226 |
if(nodes[n].next != -1) { |
227 | 227 |
nodes[nodes[n].next].prev = nodes[n].prev; |
228 | 228 |
} |
229 | 229 |
|
230 | 230 |
if(nodes[n].prev != -1) { |
231 | 231 |
nodes[nodes[n].prev].next = nodes[n].next; |
232 | 232 |
} else { |
233 | 233 |
first_node = nodes[n].next; |
234 | 234 |
} |
235 | 235 |
|
236 | 236 |
nodes[n].next = first_free_node; |
237 | 237 |
first_free_node = n; |
238 | 238 |
nodes[n].prev = -2; |
239 | 239 |
|
240 | 240 |
} |
241 | 241 |
|
242 | 242 |
void erase(const Arc& arc) { |
243 | 243 |
int n = arc.id; |
244 | 244 |
|
245 | 245 |
if(arcs[n].next_in!=-1) { |
246 | 246 |
arcs[arcs[n].next_in].prev_in = arcs[n].prev_in; |
247 | 247 |
} |
248 | 248 |
|
249 | 249 |
if(arcs[n].prev_in!=-1) { |
250 | 250 |
arcs[arcs[n].prev_in].next_in = arcs[n].next_in; |
251 | 251 |
} else { |
252 | 252 |
nodes[arcs[n].target].first_in = arcs[n].next_in; |
253 | 253 |
} |
254 | 254 |
|
255 | 255 |
|
256 | 256 |
if(arcs[n].next_out!=-1) { |
257 | 257 |
arcs[arcs[n].next_out].prev_out = arcs[n].prev_out; |
258 | 258 |
} |
259 | 259 |
|
260 | 260 |
if(arcs[n].prev_out!=-1) { |
261 | 261 |
arcs[arcs[n].prev_out].next_out = arcs[n].next_out; |
262 | 262 |
} else { |
263 | 263 |
nodes[arcs[n].source].first_out = arcs[n].next_out; |
264 | 264 |
} |
265 | 265 |
|
266 | 266 |
arcs[n].next_in = first_free_arc; |
267 | 267 |
first_free_arc = n; |
268 | 268 |
arcs[n].prev_in = -2; |
269 | 269 |
} |
270 | 270 |
|
271 | 271 |
void clear() { |
272 | 272 |
arcs.clear(); |
273 | 273 |
nodes.clear(); |
274 | 274 |
first_node = first_free_node = first_free_arc = -1; |
275 | 275 |
} |
276 | 276 |
|
277 | 277 |
protected: |
278 | 278 |
void changeTarget(Arc e, Node n) |
279 | 279 |
{ |
280 | 280 |
if(arcs[e.id].next_in != -1) |
281 | 281 |
arcs[arcs[e.id].next_in].prev_in = arcs[e.id].prev_in; |
282 | 282 |
if(arcs[e.id].prev_in != -1) |
283 | 283 |
arcs[arcs[e.id].prev_in].next_in = arcs[e.id].next_in; |
284 | 284 |
else nodes[arcs[e.id].target].first_in = arcs[e.id].next_in; |
285 | 285 |
if (nodes[n.id].first_in != -1) { |
286 | 286 |
arcs[nodes[n.id].first_in].prev_in = e.id; |
287 | 287 |
} |
288 | 288 |
arcs[e.id].target = n.id; |
289 | 289 |
arcs[e.id].prev_in = -1; |
290 | 290 |
arcs[e.id].next_in = nodes[n.id].first_in; |
291 | 291 |
nodes[n.id].first_in = e.id; |
292 | 292 |
} |
293 | 293 |
void changeSource(Arc e, Node n) |
294 | 294 |
{ |
295 | 295 |
if(arcs[e.id].next_out != -1) |
296 | 296 |
arcs[arcs[e.id].next_out].prev_out = arcs[e.id].prev_out; |
297 | 297 |
if(arcs[e.id].prev_out != -1) |
298 | 298 |
arcs[arcs[e.id].prev_out].next_out = arcs[e.id].next_out; |
299 | 299 |
else nodes[arcs[e.id].source].first_out = arcs[e.id].next_out; |
300 | 300 |
if (nodes[n.id].first_out != -1) { |
301 | 301 |
arcs[nodes[n.id].first_out].prev_out = e.id; |
302 | 302 |
} |
303 | 303 |
arcs[e.id].source = n.id; |
304 | 304 |
arcs[e.id].prev_out = -1; |
305 | 305 |
arcs[e.id].next_out = nodes[n.id].first_out; |
306 | 306 |
nodes[n.id].first_out = e.id; |
307 | 307 |
} |
308 | 308 |
|
309 | 309 |
}; |
310 | 310 |
|
311 | 311 |
typedef DigraphExtender<ListDigraphBase> ExtendedListDigraphBase; |
312 | 312 |
|
313 | 313 |
/// \addtogroup graphs |
314 | 314 |
/// @{ |
315 | 315 |
|
316 | 316 |
///A general directed graph structure. |
317 | 317 |
|
318 | 318 |
///\ref ListDigraph is a versatile and fast directed graph |
319 | 319 |
///implementation based on linked lists that are stored in |
320 | 320 |
///\c std::vector structures. |
321 | 321 |
/// |
322 | 322 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
323 | 323 |
///and it also provides several useful additional functionalities. |
324 | 324 |
///Most of its member functions and nested classes are documented |
325 | 325 |
///only in the concept class. |
326 | 326 |
/// |
327 | 327 |
///\sa concepts::Digraph |
328 | 328 |
///\sa ListGraph |
0 comments (0 inline)