gravatar
kpeter (Peter Kovacs)
kpeter@inf.elte.hu
Add creator functions for IdMap and RangeIdMap (#302)
0 1 0
default
1 file changed with 17 insertions and 0 deletions:
↑ Collapse diff ↑
Ignore white space 3072 line context
... ...
@@ -366,3388 +366,3405 @@
366 366
    /// Value type
367 367
    typedef V Value;
368 368
    /// Reference type
369 369
    typedef Value& Reference;
370 370
    /// Const reference type
371 371
    typedef const Value& ConstReference;
372 372

	
373 373
    typedef True ReferenceMapTag;
374 374

	
375 375
  private:
376 376

	
377 377
    typedef std::map<K, V, Comp> Map;
378 378
    Map _map;
379 379
    Value _value;
380 380

	
381 381
  public:
382 382

	
383 383
    /// \brief Constructor with specified default value.
384 384
    SparseMap(const Value &value = Value()) : _value(value) {}
385 385
    /// \brief Constructs the map from an appropriate \c std::map, and
386 386
    /// explicitly specifies a default value.
387 387
    template <typename V1, typename Comp1>
388 388
    SparseMap(const std::map<Key, V1, Comp1> &map,
389 389
              const Value &value = Value())
390 390
      : _map(map.begin(), map.end()), _value(value) {}
391 391

	
392 392
    /// \brief Constructs the map from another \c SparseMap.
393 393
    template<typename V1, typename Comp1>
394 394
    SparseMap(const SparseMap<Key, V1, Comp1> &c)
395 395
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
396 396

	
397 397
  private:
398 398

	
399 399
    SparseMap& operator=(const SparseMap&);
400 400

	
401 401
  public:
402 402

	
403 403
    ///\e
404 404
    Reference operator[](const Key &k) {
405 405
      typename Map::iterator it = _map.lower_bound(k);
406 406
      if (it != _map.end() && !_map.key_comp()(k, it->first))
407 407
        return it->second;
408 408
      else
409 409
        return _map.insert(it, std::make_pair(k, _value))->second;
410 410
    }
411 411

	
412 412
    ///\e
413 413
    ConstReference operator[](const Key &k) const {
414 414
      typename Map::const_iterator it = _map.find(k);
415 415
      if (it != _map.end())
416 416
        return it->second;
417 417
      else
418 418
        return _value;
419 419
    }
420 420

	
421 421
    ///\e
422 422
    void set(const Key &k, const Value &v) {
423 423
      typename Map::iterator it = _map.lower_bound(k);
424 424
      if (it != _map.end() && !_map.key_comp()(k, it->first))
425 425
        it->second = v;
426 426
      else
427 427
        _map.insert(it, std::make_pair(k, v));
428 428
    }
429 429

	
430 430
    ///\e
431 431
    void setAll(const Value &v) {
432 432
      _value = v;
433 433
      _map.clear();
434 434
    }
435 435
  };
436 436

	
437 437
  /// Returns a \c SparseMap class
438 438

	
439 439
  /// This function just returns a \c SparseMap class with specified
440 440
  /// default value.
441 441
  /// \relates SparseMap
442 442
  template<typename K, typename V, typename Compare>
443 443
  inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
444 444
    return SparseMap<K, V, Compare>(value);
445 445
  }
446 446

	
447 447
  template<typename K, typename V>
448 448
  inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
449 449
    return SparseMap<K, V, std::less<K> >(value);
450 450
  }
451 451

	
452 452
  /// \brief Returns a \c SparseMap class created from an appropriate
453 453
  /// \c std::map
454 454

	
455 455
  /// This function just returns a \c SparseMap class created from an
456 456
  /// appropriate \c std::map.
457 457
  /// \relates SparseMap
458 458
  template<typename K, typename V, typename Compare>
459 459
  inline SparseMap<K, V, Compare>
460 460
    sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
461 461
  {
462 462
    return SparseMap<K, V, Compare>(map, value);
463 463
  }
464 464

	
465 465
  /// @}
466 466

	
467 467
  /// \addtogroup map_adaptors
468 468
  /// @{
469 469

	
470 470
  /// Composition of two maps
471 471

	
472 472
  /// This \ref concepts::ReadMap "read-only map" returns the
473 473
  /// composition of two given maps. That is to say, if \c m1 is of
474 474
  /// type \c M1 and \c m2 is of \c M2, then for
475 475
  /// \code
476 476
  ///   ComposeMap<M1, M2> cm(m1,m2);
477 477
  /// \endcode
478 478
  /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>.
479 479
  ///
480 480
  /// The \c Key type of the map is inherited from \c M2 and the
481 481
  /// \c Value type is from \c M1.
482 482
  /// \c M2::Value must be convertible to \c M1::Key.
483 483
  ///
484 484
  /// The simplest way of using this map is through the composeMap()
485 485
  /// function.
486 486
  ///
487 487
  /// \sa CombineMap
488 488
  template <typename M1, typename M2>
489 489
  class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
490 490
    const M1 &_m1;
491 491
    const M2 &_m2;
492 492
  public:
493 493
    ///\e
494 494
    typedef typename M2::Key Key;
495 495
    ///\e
496 496
    typedef typename M1::Value Value;
497 497

	
498 498
    /// Constructor
499 499
    ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
500 500

	
501 501
    ///\e
502 502
    typename MapTraits<M1>::ConstReturnValue
503 503
    operator[](const Key &k) const { return _m1[_m2[k]]; }
504 504
  };
505 505

	
506 506
  /// Returns a \c ComposeMap class
507 507

	
508 508
  /// This function just returns a \c ComposeMap class.
509 509
  ///
510 510
  /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
511 511
  /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
512 512
  /// will be equal to <tt>m1[m2[x]]</tt>.
513 513
  ///
514 514
  /// \relates ComposeMap
515 515
  template <typename M1, typename M2>
516 516
  inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
517 517
    return ComposeMap<M1, M2>(m1, m2);
518 518
  }
519 519

	
520 520

	
521 521
  /// Combination of two maps using an STL (binary) functor.
522 522

	
523 523
  /// This \ref concepts::ReadMap "read-only map" takes two maps and a
524 524
  /// binary functor and returns the combination of the two given maps
525 525
  /// using the functor.
526 526
  /// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2
527 527
  /// and \c f is of \c F, then for
528 528
  /// \code
529 529
  ///   CombineMap<M1,M2,F,V> cm(m1,m2,f);
530 530
  /// \endcode
531 531
  /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>.
532 532
  ///
533 533
  /// The \c Key type of the map is inherited from \c M1 (\c M1::Key
534 534
  /// must be convertible to \c M2::Key) and the \c Value type is \c V.
535 535
  /// \c M2::Value and \c M1::Value must be convertible to the
536 536
  /// corresponding input parameter of \c F and the return type of \c F
537 537
  /// must be convertible to \c V.
538 538
  ///
539 539
  /// The simplest way of using this map is through the combineMap()
540 540
  /// function.
541 541
  ///
542 542
  /// \sa ComposeMap
543 543
  template<typename M1, typename M2, typename F,
544 544
           typename V = typename F::result_type>
545 545
  class CombineMap : public MapBase<typename M1::Key, V> {
546 546
    const M1 &_m1;
547 547
    const M2 &_m2;
548 548
    F _f;
549 549
  public:
550 550
    ///\e
551 551
    typedef typename M1::Key Key;
552 552
    ///\e
553 553
    typedef V Value;
554 554

	
555 555
    /// Constructor
556 556
    CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
557 557
      : _m1(m1), _m2(m2), _f(f) {}
558 558
    ///\e
559 559
    Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
560 560
  };
561 561

	
562 562
  /// Returns a \c CombineMap class
563 563

	
564 564
  /// This function just returns a \c CombineMap class.
565 565
  ///
566 566
  /// For example, if \c m1 and \c m2 are both maps with \c double
567 567
  /// values, then
568 568
  /// \code
569 569
  ///   combineMap(m1,m2,std::plus<double>())
570 570
  /// \endcode
571 571
  /// is equivalent to
572 572
  /// \code
573 573
  ///   addMap(m1,m2)
574 574
  /// \endcode
575 575
  ///
576 576
  /// This function is specialized for adaptable binary function
577 577
  /// classes and C++ functions.
578 578
  ///
579 579
  /// \relates CombineMap
580 580
  template<typename M1, typename M2, typename F, typename V>
581 581
  inline CombineMap<M1, M2, F, V>
582 582
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
583 583
    return CombineMap<M1, M2, F, V>(m1,m2,f);
584 584
  }
585 585

	
586 586
  template<typename M1, typename M2, typename F>
587 587
  inline CombineMap<M1, M2, F, typename F::result_type>
588 588
  combineMap(const M1 &m1, const M2 &m2, const F &f) {
589 589
    return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f);
590 590
  }
591 591

	
592 592
  template<typename M1, typename M2, typename K1, typename K2, typename V>
593 593
  inline CombineMap<M1, M2, V (*)(K1, K2), V>
594 594
  combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
595 595
    return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f);
596 596
  }
597 597

	
598 598

	
599 599
  /// Converts an STL style (unary) functor to a map
600 600

	
601 601
  /// This \ref concepts::ReadMap "read-only map" returns the value
602 602
  /// of a given functor. Actually, it just wraps the functor and
603 603
  /// provides the \c Key and \c Value typedefs.
604 604
  ///
605 605
  /// Template parameters \c K and \c V will become its \c Key and
606 606
  /// \c Value. In most cases they have to be given explicitly because
607 607
  /// a functor typically does not provide \c argument_type and
608 608
  /// \c result_type typedefs.
609 609
  /// Parameter \c F is the type of the used functor.
610 610
  ///
611 611
  /// The simplest way of using this map is through the functorToMap()
612 612
  /// function.
613 613
  ///
614 614
  /// \sa MapToFunctor
615 615
  template<typename F,
616 616
           typename K = typename F::argument_type,
617 617
           typename V = typename F::result_type>
618 618
  class FunctorToMap : public MapBase<K, V> {
619 619
    F _f;
620 620
  public:
621 621
    ///\e
622 622
    typedef K Key;
623 623
    ///\e
624 624
    typedef V Value;
625 625

	
626 626
    /// Constructor
627 627
    FunctorToMap(const F &f = F()) : _f(f) {}
628 628
    ///\e
629 629
    Value operator[](const Key &k) const { return _f(k); }
630 630
  };
631 631

	
632 632
  /// Returns a \c FunctorToMap class
633 633

	
634 634
  /// This function just returns a \c FunctorToMap class.
635 635
  ///
636 636
  /// This function is specialized for adaptable binary function
637 637
  /// classes and C++ functions.
638 638
  ///
639 639
  /// \relates FunctorToMap
640 640
  template<typename K, typename V, typename F>
641 641
  inline FunctorToMap<F, K, V> functorToMap(const F &f) {
642 642
    return FunctorToMap<F, K, V>(f);
643 643
  }
644 644

	
645 645
  template <typename F>
646 646
  inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
647 647
    functorToMap(const F &f)
648 648
  {
649 649
    return FunctorToMap<F, typename F::argument_type,
650 650
      typename F::result_type>(f);
651 651
  }
652 652

	
653 653
  template <typename K, typename V>
654 654
  inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
655 655
    return FunctorToMap<V (*)(K), K, V>(f);
656 656
  }
657 657

	
658 658

	
659 659
  /// Converts a map to an STL style (unary) functor
660 660

	
661 661
  /// This class converts a map to an STL style (unary) functor.
662 662
  /// That is it provides an <tt>operator()</tt> to read its values.
663 663
  ///
664 664
  /// For the sake of convenience it also works as a usual
665 665
  /// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt>
666 666
  /// and the \c Key and \c Value typedefs also exist.
667 667
  ///
668 668
  /// The simplest way of using this map is through the mapToFunctor()
669 669
  /// function.
670 670
  ///
671 671
  ///\sa FunctorToMap
672 672
  template <typename M>
673 673
  class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
674 674
    const M &_m;
675 675
  public:
676 676
    ///\e
677 677
    typedef typename M::Key Key;
678 678
    ///\e
679 679
    typedef typename M::Value Value;
680 680

	
681 681
    typedef typename M::Key argument_type;
682 682
    typedef typename M::Value result_type;
683 683

	
684 684
    /// Constructor
685 685
    MapToFunctor(const M &m) : _m(m) {}
686 686
    ///\e
687 687
    Value operator()(const Key &k) const { return _m[k]; }
688 688
    ///\e
689 689
    Value operator[](const Key &k) const { return _m[k]; }
690 690
  };
691 691

	
692 692
  /// Returns a \c MapToFunctor class
693 693

	
694 694
  /// This function just returns a \c MapToFunctor class.
695 695
  /// \relates MapToFunctor
696 696
  template<typename M>
697 697
  inline MapToFunctor<M> mapToFunctor(const M &m) {
698 698
    return MapToFunctor<M>(m);
699 699
  }
700 700

	
701 701

	
702 702
  /// \brief Map adaptor to convert the \c Value type of a map to
703 703
  /// another type using the default conversion.
704 704

	
705 705
  /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
706 706
  /// "readable map" to another type using the default conversion.
707 707
  /// The \c Key type of it is inherited from \c M and the \c Value
708 708
  /// type is \c V.
709 709
  /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
710 710
  ///
711 711
  /// The simplest way of using this map is through the convertMap()
712 712
  /// function.
713 713
  template <typename M, typename V>
714 714
  class ConvertMap : public MapBase<typename M::Key, V> {
715 715
    const M &_m;
716 716
  public:
717 717
    ///\e
718 718
    typedef typename M::Key Key;
719 719
    ///\e
720 720
    typedef V Value;
721 721

	
722 722
    /// Constructor
723 723

	
724 724
    /// Constructor.
725 725
    /// \param m The underlying map.
726 726
    ConvertMap(const M &m) : _m(m) {}
727 727

	
728 728
    ///\e
729 729
    Value operator[](const Key &k) const { return _m[k]; }
730 730
  };
731 731

	
732 732
  /// Returns a \c ConvertMap class
733 733

	
734 734
  /// This function just returns a \c ConvertMap class.
735 735
  /// \relates ConvertMap
736 736
  template<typename V, typename M>
737 737
  inline ConvertMap<M, V> convertMap(const M &map) {
738 738
    return ConvertMap<M, V>(map);
739 739
  }
740 740

	
741 741

	
742 742
  /// Applies all map setting operations to two maps
743 743

	
744 744
  /// This map has two \ref concepts::WriteMap "writable map" parameters
745 745
  /// and each write request will be passed to both of them.
746 746
  /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
747 747
  /// operations will return the corresponding values of \c M1.
748 748
  ///
749 749
  /// The \c Key and \c Value types are inherited from \c M1.
750 750
  /// The \c Key and \c Value of \c M2 must be convertible from those
751 751
  /// of \c M1.
752 752
  ///
753 753
  /// The simplest way of using this map is through the forkMap()
754 754
  /// function.
755 755
  template<typename  M1, typename M2>
756 756
  class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
757 757
    M1 &_m1;
758 758
    M2 &_m2;
759 759
  public:
760 760
    ///\e
761 761
    typedef typename M1::Key Key;
762 762
    ///\e
763 763
    typedef typename M1::Value Value;
764 764

	
765 765
    /// Constructor
766 766
    ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
767 767
    /// Returns the value associated with the given key in the first map.
768 768
    Value operator[](const Key &k) const { return _m1[k]; }
769 769
    /// Sets the value associated with the given key in both maps.
770 770
    void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
771 771
  };
772 772

	
773 773
  /// Returns a \c ForkMap class
774 774

	
775 775
  /// This function just returns a \c ForkMap class.
776 776
  /// \relates ForkMap
777 777
  template <typename M1, typename M2>
778 778
  inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
779 779
    return ForkMap<M1,M2>(m1,m2);
780 780
  }
781 781

	
782 782

	
783 783
  /// Sum of two maps
784 784

	
785 785
  /// This \ref concepts::ReadMap "read-only map" returns the sum
786 786
  /// of the values of the two given maps.
787 787
  /// Its \c Key and \c Value types are inherited from \c M1.
788 788
  /// The \c Key and \c Value of \c M2 must be convertible to those of
789 789
  /// \c M1.
790 790
  ///
791 791
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
792 792
  /// \code
793 793
  ///   AddMap<M1,M2> am(m1,m2);
794 794
  /// \endcode
795 795
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>.
796 796
  ///
797 797
  /// The simplest way of using this map is through the addMap()
798 798
  /// function.
799 799
  ///
800 800
  /// \sa SubMap, MulMap, DivMap
801 801
  /// \sa ShiftMap, ShiftWriteMap
802 802
  template<typename M1, typename M2>
803 803
  class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
804 804
    const M1 &_m1;
805 805
    const M2 &_m2;
806 806
  public:
807 807
    ///\e
808 808
    typedef typename M1::Key Key;
809 809
    ///\e
810 810
    typedef typename M1::Value Value;
811 811

	
812 812
    /// Constructor
813 813
    AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
814 814
    ///\e
815 815
    Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
816 816
  };
817 817

	
818 818
  /// Returns an \c AddMap class
819 819

	
820 820
  /// This function just returns an \c AddMap class.
821 821
  ///
822 822
  /// For example, if \c m1 and \c m2 are both maps with \c double
823 823
  /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
824 824
  /// <tt>m1[x]+m2[x]</tt>.
825 825
  ///
826 826
  /// \relates AddMap
827 827
  template<typename M1, typename M2>
828 828
  inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
829 829
    return AddMap<M1, M2>(m1,m2);
830 830
  }
831 831

	
832 832

	
833 833
  /// Difference of two maps
834 834

	
835 835
  /// This \ref concepts::ReadMap "read-only map" returns the difference
836 836
  /// of the values of the two given maps.
837 837
  /// Its \c Key and \c Value types are inherited from \c M1.
838 838
  /// The \c Key and \c Value of \c M2 must be convertible to those of
839 839
  /// \c M1.
840 840
  ///
841 841
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
842 842
  /// \code
843 843
  ///   SubMap<M1,M2> sm(m1,m2);
844 844
  /// \endcode
845 845
  /// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>.
846 846
  ///
847 847
  /// The simplest way of using this map is through the subMap()
848 848
  /// function.
849 849
  ///
850 850
  /// \sa AddMap, MulMap, DivMap
851 851
  template<typename M1, typename M2>
852 852
  class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
853 853
    const M1 &_m1;
854 854
    const M2 &_m2;
855 855
  public:
856 856
    ///\e
857 857
    typedef typename M1::Key Key;
858 858
    ///\e
859 859
    typedef typename M1::Value Value;
860 860

	
861 861
    /// Constructor
862 862
    SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
863 863
    ///\e
864 864
    Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
865 865
  };
866 866

	
867 867
  /// Returns a \c SubMap class
868 868

	
869 869
  /// This function just returns a \c SubMap class.
870 870
  ///
871 871
  /// For example, if \c m1 and \c m2 are both maps with \c double
872 872
  /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
873 873
  /// <tt>m1[x]-m2[x]</tt>.
874 874
  ///
875 875
  /// \relates SubMap
876 876
  template<typename M1, typename M2>
877 877
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
878 878
    return SubMap<M1, M2>(m1,m2);
879 879
  }
880 880

	
881 881

	
882 882
  /// Product of two maps
883 883

	
884 884
  /// This \ref concepts::ReadMap "read-only map" returns the product
885 885
  /// of the values of the two given maps.
886 886
  /// Its \c Key and \c Value types are inherited from \c M1.
887 887
  /// The \c Key and \c Value of \c M2 must be convertible to those of
888 888
  /// \c M1.
889 889
  ///
890 890
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
891 891
  /// \code
892 892
  ///   MulMap<M1,M2> mm(m1,m2);
893 893
  /// \endcode
894 894
  /// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>.
895 895
  ///
896 896
  /// The simplest way of using this map is through the mulMap()
897 897
  /// function.
898 898
  ///
899 899
  /// \sa AddMap, SubMap, DivMap
900 900
  /// \sa ScaleMap, ScaleWriteMap
901 901
  template<typename M1, typename M2>
902 902
  class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
903 903
    const M1 &_m1;
904 904
    const M2 &_m2;
905 905
  public:
906 906
    ///\e
907 907
    typedef typename M1::Key Key;
908 908
    ///\e
909 909
    typedef typename M1::Value Value;
910 910

	
911 911
    /// Constructor
912 912
    MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
913 913
    ///\e
914 914
    Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
915 915
  };
916 916

	
917 917
  /// Returns a \c MulMap class
918 918

	
919 919
  /// This function just returns a \c MulMap class.
920 920
  ///
921 921
  /// For example, if \c m1 and \c m2 are both maps with \c double
922 922
  /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
923 923
  /// <tt>m1[x]*m2[x]</tt>.
924 924
  ///
925 925
  /// \relates MulMap
926 926
  template<typename M1, typename M2>
927 927
  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
928 928
    return MulMap<M1, M2>(m1,m2);
929 929
  }
930 930

	
931 931

	
932 932
  /// Quotient of two maps
933 933

	
934 934
  /// This \ref concepts::ReadMap "read-only map" returns the quotient
935 935
  /// of the values of the two given maps.
936 936
  /// Its \c Key and \c Value types are inherited from \c M1.
937 937
  /// The \c Key and \c Value of \c M2 must be convertible to those of
938 938
  /// \c M1.
939 939
  ///
940 940
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
941 941
  /// \code
942 942
  ///   DivMap<M1,M2> dm(m1,m2);
943 943
  /// \endcode
944 944
  /// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>.
945 945
  ///
946 946
  /// The simplest way of using this map is through the divMap()
947 947
  /// function.
948 948
  ///
949 949
  /// \sa AddMap, SubMap, MulMap
950 950
  template<typename M1, typename M2>
951 951
  class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
952 952
    const M1 &_m1;
953 953
    const M2 &_m2;
954 954
  public:
955 955
    ///\e
956 956
    typedef typename M1::Key Key;
957 957
    ///\e
958 958
    typedef typename M1::Value Value;
959 959

	
960 960
    /// Constructor
961 961
    DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
962 962
    ///\e
963 963
    Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
964 964
  };
965 965

	
966 966
  /// Returns a \c DivMap class
967 967

	
968 968
  /// This function just returns a \c DivMap class.
969 969
  ///
970 970
  /// For example, if \c m1 and \c m2 are both maps with \c double
971 971
  /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
972 972
  /// <tt>m1[x]/m2[x]</tt>.
973 973
  ///
974 974
  /// \relates DivMap
975 975
  template<typename M1, typename M2>
976 976
  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
977 977
    return DivMap<M1, M2>(m1,m2);
978 978
  }
979 979

	
980 980

	
981 981
  /// Shifts a map with a constant.
982 982

	
983 983
  /// This \ref concepts::ReadMap "read-only map" returns the sum of
984 984
  /// the given map and a constant value (i.e. it shifts the map with
985 985
  /// the constant). Its \c Key and \c Value are inherited from \c M.
986 986
  ///
987 987
  /// Actually,
988 988
  /// \code
989 989
  ///   ShiftMap<M> sh(m,v);
990 990
  /// \endcode
991 991
  /// is equivalent to
992 992
  /// \code
993 993
  ///   ConstMap<M::Key, M::Value> cm(v);
994 994
  ///   AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm);
995 995
  /// \endcode
996 996
  ///
997 997
  /// The simplest way of using this map is through the shiftMap()
998 998
  /// function.
999 999
  ///
1000 1000
  /// \sa ShiftWriteMap
1001 1001
  template<typename M, typename C = typename M::Value>
1002 1002
  class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
1003 1003
    const M &_m;
1004 1004
    C _v;
1005 1005
  public:
1006 1006
    ///\e
1007 1007
    typedef typename M::Key Key;
1008 1008
    ///\e
1009 1009
    typedef typename M::Value Value;
1010 1010

	
1011 1011
    /// Constructor
1012 1012

	
1013 1013
    /// Constructor.
1014 1014
    /// \param m The undelying map.
1015 1015
    /// \param v The constant value.
1016 1016
    ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
1017 1017
    ///\e
1018 1018
    Value operator[](const Key &k) const { return _m[k]+_v; }
1019 1019
  };
1020 1020

	
1021 1021
  /// Shifts a map with a constant (read-write version).
1022 1022

	
1023 1023
  /// This \ref concepts::ReadWriteMap "read-write map" returns the sum
1024 1024
  /// of the given map and a constant value (i.e. it shifts the map with
1025 1025
  /// the constant). Its \c Key and \c Value are inherited from \c M.
1026 1026
  /// It makes also possible to write the map.
1027 1027
  ///
1028 1028
  /// The simplest way of using this map is through the shiftWriteMap()
1029 1029
  /// function.
1030 1030
  ///
1031 1031
  /// \sa ShiftMap
1032 1032
  template<typename M, typename C = typename M::Value>
1033 1033
  class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
1034 1034
    M &_m;
1035 1035
    C _v;
1036 1036
  public:
1037 1037
    ///\e
1038 1038
    typedef typename M::Key Key;
1039 1039
    ///\e
1040 1040
    typedef typename M::Value Value;
1041 1041

	
1042 1042
    /// Constructor
1043 1043

	
1044 1044
    /// Constructor.
1045 1045
    /// \param m The undelying map.
1046 1046
    /// \param v The constant value.
1047 1047
    ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1048 1048
    ///\e
1049 1049
    Value operator[](const Key &k) const { return _m[k]+_v; }
1050 1050
    ///\e
1051 1051
    void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
1052 1052
  };
1053 1053

	
1054 1054
  /// Returns a \c ShiftMap class
1055 1055

	
1056 1056
  /// This function just returns a \c ShiftMap class.
1057 1057
  ///
1058 1058
  /// For example, if \c m is a map with \c double values and \c v is
1059 1059
  /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
1060 1060
  /// <tt>m[x]+v</tt>.
1061 1061
  ///
1062 1062
  /// \relates ShiftMap
1063 1063
  template<typename M, typename C>
1064 1064
  inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
1065 1065
    return ShiftMap<M, C>(m,v);
1066 1066
  }
1067 1067

	
1068 1068
  /// Returns a \c ShiftWriteMap class
1069 1069

	
1070 1070
  /// This function just returns a \c ShiftWriteMap class.
1071 1071
  ///
1072 1072
  /// For example, if \c m is a map with \c double values and \c v is
1073 1073
  /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
1074 1074
  /// <tt>m[x]+v</tt>.
1075 1075
  /// Moreover it makes also possible to write the map.
1076 1076
  ///
1077 1077
  /// \relates ShiftWriteMap
1078 1078
  template<typename M, typename C>
1079 1079
  inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
1080 1080
    return ShiftWriteMap<M, C>(m,v);
1081 1081
  }
1082 1082

	
1083 1083

	
1084 1084
  /// Scales a map with a constant.
1085 1085

	
1086 1086
  /// This \ref concepts::ReadMap "read-only map" returns the value of
1087 1087
  /// the given map multiplied from the left side with a constant value.
1088 1088
  /// Its \c Key and \c Value are inherited from \c M.
1089 1089
  ///
1090 1090
  /// Actually,
1091 1091
  /// \code
1092 1092
  ///   ScaleMap<M> sc(m,v);
1093 1093
  /// \endcode
1094 1094
  /// is equivalent to
1095 1095
  /// \code
1096 1096
  ///   ConstMap<M::Key, M::Value> cm(v);
1097 1097
  ///   MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m);
1098 1098
  /// \endcode
1099 1099
  ///
1100 1100
  /// The simplest way of using this map is through the scaleMap()
1101 1101
  /// function.
1102 1102
  ///
1103 1103
  /// \sa ScaleWriteMap
1104 1104
  template<typename M, typename C = typename M::Value>
1105 1105
  class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
1106 1106
    const M &_m;
1107 1107
    C _v;
1108 1108
  public:
1109 1109
    ///\e
1110 1110
    typedef typename M::Key Key;
1111 1111
    ///\e
1112 1112
    typedef typename M::Value Value;
1113 1113

	
1114 1114
    /// Constructor
1115 1115

	
1116 1116
    /// Constructor.
1117 1117
    /// \param m The undelying map.
1118 1118
    /// \param v The constant value.
1119 1119
    ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
1120 1120
    ///\e
1121 1121
    Value operator[](const Key &k) const { return _v*_m[k]; }
1122 1122
  };
1123 1123

	
1124 1124
  /// Scales a map with a constant (read-write version).
1125 1125

	
1126 1126
  /// This \ref concepts::ReadWriteMap "read-write map" returns the value of
1127 1127
  /// the given map multiplied from the left side with a constant value.
1128 1128
  /// Its \c Key and \c Value are inherited from \c M.
1129 1129
  /// It can also be used as write map if the \c / operator is defined
1130 1130
  /// between \c Value and \c C and the given multiplier is not zero.
1131 1131
  ///
1132 1132
  /// The simplest way of using this map is through the scaleWriteMap()
1133 1133
  /// function.
1134 1134
  ///
1135 1135
  /// \sa ScaleMap
1136 1136
  template<typename M, typename C = typename M::Value>
1137 1137
  class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
1138 1138
    M &_m;
1139 1139
    C _v;
1140 1140
  public:
1141 1141
    ///\e
1142 1142
    typedef typename M::Key Key;
1143 1143
    ///\e
1144 1144
    typedef typename M::Value Value;
1145 1145

	
1146 1146
    /// Constructor
1147 1147

	
1148 1148
    /// Constructor.
1149 1149
    /// \param m The undelying map.
1150 1150
    /// \param v The constant value.
1151 1151
    ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1152 1152
    ///\e
1153 1153
    Value operator[](const Key &k) const { return _v*_m[k]; }
1154 1154
    ///\e
1155 1155
    void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
1156 1156
  };
1157 1157

	
1158 1158
  /// Returns a \c ScaleMap class
1159 1159

	
1160 1160
  /// This function just returns a \c ScaleMap class.
1161 1161
  ///
1162 1162
  /// For example, if \c m is a map with \c double values and \c v is
1163 1163
  /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
1164 1164
  /// <tt>v*m[x]</tt>.
1165 1165
  ///
1166 1166
  /// \relates ScaleMap
1167 1167
  template<typename M, typename C>
1168 1168
  inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
1169 1169
    return ScaleMap<M, C>(m,v);
1170 1170
  }
1171 1171

	
1172 1172
  /// Returns a \c ScaleWriteMap class
1173 1173

	
1174 1174
  /// This function just returns a \c ScaleWriteMap class.
1175 1175
  ///
1176 1176
  /// For example, if \c m is a map with \c double values and \c v is
1177 1177
  /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
1178 1178
  /// <tt>v*m[x]</tt>.
1179 1179
  /// Moreover it makes also possible to write the map.
1180 1180
  ///
1181 1181
  /// \relates ScaleWriteMap
1182 1182
  template<typename M, typename C>
1183 1183
  inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
1184 1184
    return ScaleWriteMap<M, C>(m,v);
1185 1185
  }
1186 1186

	
1187 1187

	
1188 1188
  /// Negative of a map
1189 1189

	
1190 1190
  /// This \ref concepts::ReadMap "read-only map" returns the negative
1191 1191
  /// of the values of the given map (using the unary \c - operator).
1192 1192
  /// Its \c Key and \c Value are inherited from \c M.
1193 1193
  ///
1194 1194
  /// If M::Value is \c int, \c double etc., then
1195 1195
  /// \code
1196 1196
  ///   NegMap<M> neg(m);
1197 1197
  /// \endcode
1198 1198
  /// is equivalent to
1199 1199
  /// \code
1200 1200
  ///   ScaleMap<M> neg(m,-1);
1201 1201
  /// \endcode
1202 1202
  ///
1203 1203
  /// The simplest way of using this map is through the negMap()
1204 1204
  /// function.
1205 1205
  ///
1206 1206
  /// \sa NegWriteMap
1207 1207
  template<typename M>
1208 1208
  class NegMap : public MapBase<typename M::Key, typename M::Value> {
1209 1209
    const M& _m;
1210 1210
  public:
1211 1211
    ///\e
1212 1212
    typedef typename M::Key Key;
1213 1213
    ///\e
1214 1214
    typedef typename M::Value Value;
1215 1215

	
1216 1216
    /// Constructor
1217 1217
    NegMap(const M &m) : _m(m) {}
1218 1218
    ///\e
1219 1219
    Value operator[](const Key &k) const { return -_m[k]; }
1220 1220
  };
1221 1221

	
1222 1222
  /// Negative of a map (read-write version)
1223 1223

	
1224 1224
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1225 1225
  /// negative of the values of the given map (using the unary \c -
1226 1226
  /// operator).
1227 1227
  /// Its \c Key and \c Value are inherited from \c M.
1228 1228
  /// It makes also possible to write the map.
1229 1229
  ///
1230 1230
  /// If M::Value is \c int, \c double etc., then
1231 1231
  /// \code
1232 1232
  ///   NegWriteMap<M> neg(m);
1233 1233
  /// \endcode
1234 1234
  /// is equivalent to
1235 1235
  /// \code
1236 1236
  ///   ScaleWriteMap<M> neg(m,-1);
1237 1237
  /// \endcode
1238 1238
  ///
1239 1239
  /// The simplest way of using this map is through the negWriteMap()
1240 1240
  /// function.
1241 1241
  ///
1242 1242
  /// \sa NegMap
1243 1243
  template<typename M>
1244 1244
  class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
1245 1245
    M &_m;
1246 1246
  public:
1247 1247
    ///\e
1248 1248
    typedef typename M::Key Key;
1249 1249
    ///\e
1250 1250
    typedef typename M::Value Value;
1251 1251

	
1252 1252
    /// Constructor
1253 1253
    NegWriteMap(M &m) : _m(m) {}
1254 1254
    ///\e
1255 1255
    Value operator[](const Key &k) const { return -_m[k]; }
1256 1256
    ///\e
1257 1257
    void set(const Key &k, const Value &v) { _m.set(k, -v); }
1258 1258
  };
1259 1259

	
1260 1260
  /// Returns a \c NegMap class
1261 1261

	
1262 1262
  /// This function just returns a \c NegMap class.
1263 1263
  ///
1264 1264
  /// For example, if \c m is a map with \c double values, then
1265 1265
  /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1266 1266
  ///
1267 1267
  /// \relates NegMap
1268 1268
  template <typename M>
1269 1269
  inline NegMap<M> negMap(const M &m) {
1270 1270
    return NegMap<M>(m);
1271 1271
  }
1272 1272

	
1273 1273
  /// Returns a \c NegWriteMap class
1274 1274

	
1275 1275
  /// This function just returns a \c NegWriteMap class.
1276 1276
  ///
1277 1277
  /// For example, if \c m is a map with \c double values, then
1278 1278
  /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1279 1279
  /// Moreover it makes also possible to write the map.
1280 1280
  ///
1281 1281
  /// \relates NegWriteMap
1282 1282
  template <typename M>
1283 1283
  inline NegWriteMap<M> negWriteMap(M &m) {
1284 1284
    return NegWriteMap<M>(m);
1285 1285
  }
1286 1286

	
1287 1287

	
1288 1288
  /// Absolute value of a map
1289 1289

	
1290 1290
  /// This \ref concepts::ReadMap "read-only map" returns the absolute
1291 1291
  /// value of the values of the given map.
1292 1292
  /// Its \c Key and \c Value are inherited from \c M.
1293 1293
  /// \c Value must be comparable to \c 0 and the unary \c -
1294 1294
  /// operator must be defined for it, of course.
1295 1295
  ///
1296 1296
  /// The simplest way of using this map is through the absMap()
1297 1297
  /// function.
1298 1298
  template<typename M>
1299 1299
  class AbsMap : public MapBase<typename M::Key, typename M::Value> {
1300 1300
    const M &_m;
1301 1301
  public:
1302 1302
    ///\e
1303 1303
    typedef typename M::Key Key;
1304 1304
    ///\e
1305 1305
    typedef typename M::Value Value;
1306 1306

	
1307 1307
    /// Constructor
1308 1308
    AbsMap(const M &m) : _m(m) {}
1309 1309
    ///\e
1310 1310
    Value operator[](const Key &k) const {
1311 1311
      Value tmp = _m[k];
1312 1312
      return tmp >= 0 ? tmp : -tmp;
1313 1313
    }
1314 1314

	
1315 1315
  };
1316 1316

	
1317 1317
  /// Returns an \c AbsMap class
1318 1318

	
1319 1319
  /// This function just returns an \c AbsMap class.
1320 1320
  ///
1321 1321
  /// For example, if \c m is a map with \c double values, then
1322 1322
  /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
1323 1323
  /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
1324 1324
  /// negative.
1325 1325
  ///
1326 1326
  /// \relates AbsMap
1327 1327
  template<typename M>
1328 1328
  inline AbsMap<M> absMap(const M &m) {
1329 1329
    return AbsMap<M>(m);
1330 1330
  }
1331 1331

	
1332 1332
  /// @}
1333 1333

	
1334 1334
  // Logical maps and map adaptors:
1335 1335

	
1336 1336
  /// \addtogroup maps
1337 1337
  /// @{
1338 1338

	
1339 1339
  /// Constant \c true map.
1340 1340

	
1341 1341
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1342 1342
  /// each key.
1343 1343
  ///
1344 1344
  /// Note that
1345 1345
  /// \code
1346 1346
  ///   TrueMap<K> tm;
1347 1347
  /// \endcode
1348 1348
  /// is equivalent to
1349 1349
  /// \code
1350 1350
  ///   ConstMap<K,bool> tm(true);
1351 1351
  /// \endcode
1352 1352
  ///
1353 1353
  /// \sa FalseMap
1354 1354
  /// \sa ConstMap
1355 1355
  template <typename K>
1356 1356
  class TrueMap : public MapBase<K, bool> {
1357 1357
  public:
1358 1358
    ///\e
1359 1359
    typedef K Key;
1360 1360
    ///\e
1361 1361
    typedef bool Value;
1362 1362

	
1363 1363
    /// Gives back \c true.
1364 1364
    Value operator[](const Key&) const { return true; }
1365 1365
  };
1366 1366

	
1367 1367
  /// Returns a \c TrueMap class
1368 1368

	
1369 1369
  /// This function just returns a \c TrueMap class.
1370 1370
  /// \relates TrueMap
1371 1371
  template<typename K>
1372 1372
  inline TrueMap<K> trueMap() {
1373 1373
    return TrueMap<K>();
1374 1374
  }
1375 1375

	
1376 1376

	
1377 1377
  /// Constant \c false map.
1378 1378

	
1379 1379
  /// This \ref concepts::ReadMap "read-only map" assigns \c false to
1380 1380
  /// each key.
1381 1381
  ///
1382 1382
  /// Note that
1383 1383
  /// \code
1384 1384
  ///   FalseMap<K> fm;
1385 1385
  /// \endcode
1386 1386
  /// is equivalent to
1387 1387
  /// \code
1388 1388
  ///   ConstMap<K,bool> fm(false);
1389 1389
  /// \endcode
1390 1390
  ///
1391 1391
  /// \sa TrueMap
1392 1392
  /// \sa ConstMap
1393 1393
  template <typename K>
1394 1394
  class FalseMap : public MapBase<K, bool> {
1395 1395
  public:
1396 1396
    ///\e
1397 1397
    typedef K Key;
1398 1398
    ///\e
1399 1399
    typedef bool Value;
1400 1400

	
1401 1401
    /// Gives back \c false.
1402 1402
    Value operator[](const Key&) const { return false; }
1403 1403
  };
1404 1404

	
1405 1405
  /// Returns a \c FalseMap class
1406 1406

	
1407 1407
  /// This function just returns a \c FalseMap class.
1408 1408
  /// \relates FalseMap
1409 1409
  template<typename K>
1410 1410
  inline FalseMap<K> falseMap() {
1411 1411
    return FalseMap<K>();
1412 1412
  }
1413 1413

	
1414 1414
  /// @}
1415 1415

	
1416 1416
  /// \addtogroup map_adaptors
1417 1417
  /// @{
1418 1418

	
1419 1419
  /// Logical 'and' of two maps
1420 1420

	
1421 1421
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1422 1422
  /// 'and' of the values of the two given maps.
1423 1423
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1424 1424
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1425 1425
  ///
1426 1426
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1427 1427
  /// \code
1428 1428
  ///   AndMap<M1,M2> am(m1,m2);
1429 1429
  /// \endcode
1430 1430
  /// <tt>am[x]</tt> will be equal to <tt>m1[x]&&m2[x]</tt>.
1431 1431
  ///
1432 1432
  /// The simplest way of using this map is through the andMap()
1433 1433
  /// function.
1434 1434
  ///
1435 1435
  /// \sa OrMap
1436 1436
  /// \sa NotMap, NotWriteMap
1437 1437
  template<typename M1, typename M2>
1438 1438
  class AndMap : public MapBase<typename M1::Key, bool> {
1439 1439
    const M1 &_m1;
1440 1440
    const M2 &_m2;
1441 1441
  public:
1442 1442
    ///\e
1443 1443
    typedef typename M1::Key Key;
1444 1444
    ///\e
1445 1445
    typedef bool Value;
1446 1446

	
1447 1447
    /// Constructor
1448 1448
    AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1449 1449
    ///\e
1450 1450
    Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
1451 1451
  };
1452 1452

	
1453 1453
  /// Returns an \c AndMap class
1454 1454

	
1455 1455
  /// This function just returns an \c AndMap class.
1456 1456
  ///
1457 1457
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1458 1458
  /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
1459 1459
  /// <tt>m1[x]&&m2[x]</tt>.
1460 1460
  ///
1461 1461
  /// \relates AndMap
1462 1462
  template<typename M1, typename M2>
1463 1463
  inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
1464 1464
    return AndMap<M1, M2>(m1,m2);
1465 1465
  }
1466 1466

	
1467 1467

	
1468 1468
  /// Logical 'or' of two maps
1469 1469

	
1470 1470
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1471 1471
  /// 'or' of the values of the two given maps.
1472 1472
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1473 1473
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1474 1474
  ///
1475 1475
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1476 1476
  /// \code
1477 1477
  ///   OrMap<M1,M2> om(m1,m2);
1478 1478
  /// \endcode
1479 1479
  /// <tt>om[x]</tt> will be equal to <tt>m1[x]||m2[x]</tt>.
1480 1480
  ///
1481 1481
  /// The simplest way of using this map is through the orMap()
1482 1482
  /// function.
1483 1483
  ///
1484 1484
  /// \sa AndMap
1485 1485
  /// \sa NotMap, NotWriteMap
1486 1486
  template<typename M1, typename M2>
1487 1487
  class OrMap : public MapBase<typename M1::Key, bool> {
1488 1488
    const M1 &_m1;
1489 1489
    const M2 &_m2;
1490 1490
  public:
1491 1491
    ///\e
1492 1492
    typedef typename M1::Key Key;
1493 1493
    ///\e
1494 1494
    typedef bool Value;
1495 1495

	
1496 1496
    /// Constructor
1497 1497
    OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1498 1498
    ///\e
1499 1499
    Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
1500 1500
  };
1501 1501

	
1502 1502
  /// Returns an \c OrMap class
1503 1503

	
1504 1504
  /// This function just returns an \c OrMap class.
1505 1505
  ///
1506 1506
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1507 1507
  /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
1508 1508
  /// <tt>m1[x]||m2[x]</tt>.
1509 1509
  ///
1510 1510
  /// \relates OrMap
1511 1511
  template<typename M1, typename M2>
1512 1512
  inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
1513 1513
    return OrMap<M1, M2>(m1,m2);
1514 1514
  }
1515 1515

	
1516 1516

	
1517 1517
  /// Logical 'not' of a map
1518 1518

	
1519 1519
  /// This \ref concepts::ReadMap "read-only map" returns the logical
1520 1520
  /// negation of the values of the given map.
1521 1521
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1522 1522
  ///
1523 1523
  /// The simplest way of using this map is through the notMap()
1524 1524
  /// function.
1525 1525
  ///
1526 1526
  /// \sa NotWriteMap
1527 1527
  template <typename M>
1528 1528
  class NotMap : public MapBase<typename M::Key, bool> {
1529 1529
    const M &_m;
1530 1530
  public:
1531 1531
    ///\e
1532 1532
    typedef typename M::Key Key;
1533 1533
    ///\e
1534 1534
    typedef bool Value;
1535 1535

	
1536 1536
    /// Constructor
1537 1537
    NotMap(const M &m) : _m(m) {}
1538 1538
    ///\e
1539 1539
    Value operator[](const Key &k) const { return !_m[k]; }
1540 1540
  };
1541 1541

	
1542 1542
  /// Logical 'not' of a map (read-write version)
1543 1543

	
1544 1544
  /// This \ref concepts::ReadWriteMap "read-write map" returns the
1545 1545
  /// logical negation of the values of the given map.
1546 1546
  /// Its \c Key is inherited from \c M and its \c Value is \c bool.
1547 1547
  /// It makes also possible to write the map. When a value is set,
1548 1548
  /// the opposite value is set to the original map.
1549 1549
  ///
1550 1550
  /// The simplest way of using this map is through the notWriteMap()
1551 1551
  /// function.
1552 1552
  ///
1553 1553
  /// \sa NotMap
1554 1554
  template <typename M>
1555 1555
  class NotWriteMap : public MapBase<typename M::Key, bool> {
1556 1556
    M &_m;
1557 1557
  public:
1558 1558
    ///\e
1559 1559
    typedef typename M::Key Key;
1560 1560
    ///\e
1561 1561
    typedef bool Value;
1562 1562

	
1563 1563
    /// Constructor
1564 1564
    NotWriteMap(M &m) : _m(m) {}
1565 1565
    ///\e
1566 1566
    Value operator[](const Key &k) const { return !_m[k]; }
1567 1567
    ///\e
1568 1568
    void set(const Key &k, bool v) { _m.set(k, !v); }
1569 1569
  };
1570 1570

	
1571 1571
  /// Returns a \c NotMap class
1572 1572

	
1573 1573
  /// This function just returns a \c NotMap class.
1574 1574
  ///
1575 1575
  /// For example, if \c m is a map with \c bool values, then
1576 1576
  /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1577 1577
  ///
1578 1578
  /// \relates NotMap
1579 1579
  template <typename M>
1580 1580
  inline NotMap<M> notMap(const M &m) {
1581 1581
    return NotMap<M>(m);
1582 1582
  }
1583 1583

	
1584 1584
  /// Returns a \c NotWriteMap class
1585 1585

	
1586 1586
  /// This function just returns a \c NotWriteMap class.
1587 1587
  ///
1588 1588
  /// For example, if \c m is a map with \c bool values, then
1589 1589
  /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1590 1590
  /// Moreover it makes also possible to write the map.
1591 1591
  ///
1592 1592
  /// \relates NotWriteMap
1593 1593
  template <typename M>
1594 1594
  inline NotWriteMap<M> notWriteMap(M &m) {
1595 1595
    return NotWriteMap<M>(m);
1596 1596
  }
1597 1597

	
1598 1598

	
1599 1599
  /// Combination of two maps using the \c == operator
1600 1600

	
1601 1601
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1602 1602
  /// the keys for which the corresponding values of the two maps are
1603 1603
  /// equal.
1604 1604
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1605 1605
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1606 1606
  ///
1607 1607
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1608 1608
  /// \code
1609 1609
  ///   EqualMap<M1,M2> em(m1,m2);
1610 1610
  /// \endcode
1611 1611
  /// <tt>em[x]</tt> will be equal to <tt>m1[x]==m2[x]</tt>.
1612 1612
  ///
1613 1613
  /// The simplest way of using this map is through the equalMap()
1614 1614
  /// function.
1615 1615
  ///
1616 1616
  /// \sa LessMap
1617 1617
  template<typename M1, typename M2>
1618 1618
  class EqualMap : public MapBase<typename M1::Key, bool> {
1619 1619
    const M1 &_m1;
1620 1620
    const M2 &_m2;
1621 1621
  public:
1622 1622
    ///\e
1623 1623
    typedef typename M1::Key Key;
1624 1624
    ///\e
1625 1625
    typedef bool Value;
1626 1626

	
1627 1627
    /// Constructor
1628 1628
    EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1629 1629
    ///\e
1630 1630
    Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
1631 1631
  };
1632 1632

	
1633 1633
  /// Returns an \c EqualMap class
1634 1634

	
1635 1635
  /// This function just returns an \c EqualMap class.
1636 1636
  ///
1637 1637
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1638 1638
  /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
1639 1639
  /// <tt>m1[x]==m2[x]</tt>.
1640 1640
  ///
1641 1641
  /// \relates EqualMap
1642 1642
  template<typename M1, typename M2>
1643 1643
  inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
1644 1644
    return EqualMap<M1, M2>(m1,m2);
1645 1645
  }
1646 1646

	
1647 1647

	
1648 1648
  /// Combination of two maps using the \c < operator
1649 1649

	
1650 1650
  /// This \ref concepts::ReadMap "read-only map" assigns \c true to
1651 1651
  /// the keys for which the corresponding value of the first map is
1652 1652
  /// less then the value of the second map.
1653 1653
  /// Its \c Key type is inherited from \c M1 and its \c Value type is
1654 1654
  /// \c bool. \c M2::Key must be convertible to \c M1::Key.
1655 1655
  ///
1656 1656
  /// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for
1657 1657
  /// \code
1658 1658
  ///   LessMap<M1,M2> lm(m1,m2);
1659 1659
  /// \endcode
1660 1660
  /// <tt>lm[x]</tt> will be equal to <tt>m1[x]<m2[x]</tt>.
1661 1661
  ///
1662 1662
  /// The simplest way of using this map is through the lessMap()
1663 1663
  /// function.
1664 1664
  ///
1665 1665
  /// \sa EqualMap
1666 1666
  template<typename M1, typename M2>
1667 1667
  class LessMap : public MapBase<typename M1::Key, bool> {
1668 1668
    const M1 &_m1;
1669 1669
    const M2 &_m2;
1670 1670
  public:
1671 1671
    ///\e
1672 1672
    typedef typename M1::Key Key;
1673 1673
    ///\e
1674 1674
    typedef bool Value;
1675 1675

	
1676 1676
    /// Constructor
1677 1677
    LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1678 1678
    ///\e
1679 1679
    Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
1680 1680
  };
1681 1681

	
1682 1682
  /// Returns an \c LessMap class
1683 1683

	
1684 1684
  /// This function just returns an \c LessMap class.
1685 1685
  ///
1686 1686
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1687 1687
  /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
1688 1688
  /// <tt>m1[x]<m2[x]</tt>.
1689 1689
  ///
1690 1690
  /// \relates LessMap
1691 1691
  template<typename M1, typename M2>
1692 1692
  inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
1693 1693
    return LessMap<M1, M2>(m1,m2);
1694 1694
  }
1695 1695

	
1696 1696
  namespace _maps_bits {
1697 1697

	
1698 1698
    template <typename _Iterator, typename Enable = void>
1699 1699
    struct IteratorTraits {
1700 1700
      typedef typename std::iterator_traits<_Iterator>::value_type Value;
1701 1701
    };
1702 1702

	
1703 1703
    template <typename _Iterator>
1704 1704
    struct IteratorTraits<_Iterator,
1705 1705
      typename exists<typename _Iterator::container_type>::type>
1706 1706
    {
1707 1707
      typedef typename _Iterator::container_type::value_type Value;
1708 1708
    };
1709 1709

	
1710 1710
  }
1711 1711

	
1712 1712
  /// @}
1713 1713

	
1714 1714
  /// \addtogroup maps
1715 1715
  /// @{
1716 1716

	
1717 1717
  /// \brief Writable bool map for logging each \c true assigned element
1718 1718
  ///
1719 1719
  /// A \ref concepts::WriteMap "writable" bool map for logging
1720 1720
  /// each \c true assigned element, i.e it copies subsequently each
1721 1721
  /// keys set to \c true to the given iterator.
1722 1722
  /// The most important usage of it is storing certain nodes or arcs
1723 1723
  /// that were marked \c true by an algorithm.
1724 1724
  ///
1725 1725
  /// There are several algorithms that provide solutions through bool
1726 1726
  /// maps and most of them assign \c true at most once for each key.
1727 1727
  /// In these cases it is a natural request to store each \c true
1728 1728
  /// assigned elements (in order of the assignment), which can be
1729 1729
  /// easily done with LoggerBoolMap.
1730 1730
  ///
1731 1731
  /// The simplest way of using this map is through the loggerBoolMap()
1732 1732
  /// function.
1733 1733
  ///
1734 1734
  /// \tparam IT The type of the iterator.
1735 1735
  /// \tparam KEY The key type of the map. The default value set
1736 1736
  /// according to the iterator type should work in most cases.
1737 1737
  ///
1738 1738
  /// \note The container of the iterator must contain enough space
1739 1739
  /// for the elements or the iterator should be an inserter iterator.
1740 1740
#ifdef DOXYGEN
1741 1741
  template <typename IT, typename KEY>
1742 1742
#else
1743 1743
  template <typename IT,
1744 1744
            typename KEY = typename _maps_bits::IteratorTraits<IT>::Value>
1745 1745
#endif
1746 1746
  class LoggerBoolMap : public MapBase<KEY, bool> {
1747 1747
  public:
1748 1748

	
1749 1749
    ///\e
1750 1750
    typedef KEY Key;
1751 1751
    ///\e
1752 1752
    typedef bool Value;
1753 1753
    ///\e
1754 1754
    typedef IT Iterator;
1755 1755

	
1756 1756
    /// Constructor
1757 1757
    LoggerBoolMap(Iterator it)
1758 1758
      : _begin(it), _end(it) {}
1759 1759

	
1760 1760
    /// Gives back the given iterator set for the first key
1761 1761
    Iterator begin() const {
1762 1762
      return _begin;
1763 1763
    }
1764 1764

	
1765 1765
    /// Gives back the the 'after the last' iterator
1766 1766
    Iterator end() const {
1767 1767
      return _end;
1768 1768
    }
1769 1769

	
1770 1770
    /// The set function of the map
1771 1771
    void set(const Key& key, Value value) {
1772 1772
      if (value) {
1773 1773
        *_end++ = key;
1774 1774
      }
1775 1775
    }
1776 1776

	
1777 1777
  private:
1778 1778
    Iterator _begin;
1779 1779
    Iterator _end;
1780 1780
  };
1781 1781

	
1782 1782
  /// Returns a \c LoggerBoolMap class
1783 1783

	
1784 1784
  /// This function just returns a \c LoggerBoolMap class.
1785 1785
  ///
1786 1786
  /// The most important usage of it is storing certain nodes or arcs
1787 1787
  /// that were marked \c true by an algorithm.
1788 1788
  /// For example it makes easier to store the nodes in the processing
1789 1789
  /// order of Dfs algorithm, as the following examples show.
1790 1790
  /// \code
1791 1791
  ///   std::vector<Node> v;
1792 1792
  ///   dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
1793 1793
  /// \endcode
1794 1794
  /// \code
1795 1795
  ///   std::vector<Node> v(countNodes(g));
1796 1796
  ///   dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
1797 1797
  /// \endcode
1798 1798
  ///
1799 1799
  /// \note The container of the iterator must contain enough space
1800 1800
  /// for the elements or the iterator should be an inserter iterator.
1801 1801
  ///
1802 1802
  /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
1803 1803
  /// it cannot be used when a readable map is needed, for example as
1804 1804
  /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
1805 1805
  ///
1806 1806
  /// \relates LoggerBoolMap
1807 1807
  template<typename Iterator>
1808 1808
  inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
1809 1809
    return LoggerBoolMap<Iterator>(it);
1810 1810
  }
1811 1811

	
1812 1812
  /// @}
1813 1813

	
1814 1814
  /// \addtogroup graph_maps
1815 1815
  /// @{
1816 1816

	
1817 1817
  /// \brief Provides an immutable and unique id for each item in a graph.
1818 1818
  ///
1819 1819
  /// IdMap provides a unique and immutable id for each item of the
1820 1820
  /// same type (\c Node, \c Arc or \c Edge) in a graph. This id is
1821 1821
  ///  - \b unique: different items get different ids,
1822 1822
  ///  - \b immutable: the id of an item does not change (even if you
1823 1823
  ///    delete other nodes).
1824 1824
  ///
1825 1825
  /// Using this map you get access (i.e. can read) the inner id values of
1826 1826
  /// the items stored in the graph, which is returned by the \c id()
1827 1827
  /// function of the graph. This map can be inverted with its member
1828 1828
  /// class \c InverseMap or with the \c operator()() member.
1829 1829
  ///
1830 1830
  /// \tparam GR The graph type.
1831 1831
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1832 1832
  /// \c GR::Edge).
1833 1833
  ///
1834 1834
  /// \see RangeIdMap
1835 1835
  template <typename GR, typename K>
1836 1836
  class IdMap : public MapBase<K, int> {
1837 1837
  public:
1838 1838
    /// The graph type of IdMap.
1839 1839
    typedef GR Graph;
1840 1840
    typedef GR Digraph;
1841 1841
    /// The key type of IdMap (\c Node, \c Arc or \c Edge).
1842 1842
    typedef K Item;
1843 1843
    /// The key type of IdMap (\c Node, \c Arc or \c Edge).
1844 1844
    typedef K Key;
1845 1845
    /// The value type of IdMap.
1846 1846
    typedef int Value;
1847 1847

	
1848 1848
    /// \brief Constructor.
1849 1849
    ///
1850 1850
    /// Constructor of the map.
1851 1851
    explicit IdMap(const Graph& graph) : _graph(&graph) {}
1852 1852

	
1853 1853
    /// \brief Gives back the \e id of the item.
1854 1854
    ///
1855 1855
    /// Gives back the immutable and unique \e id of the item.
1856 1856
    int operator[](const Item& item) const { return _graph->id(item);}
1857 1857

	
1858 1858
    /// \brief Gives back the \e item by its id.
1859 1859
    ///
1860 1860
    /// Gives back the \e item by its id.
1861 1861
    Item operator()(int id) { return _graph->fromId(id, Item()); }
1862 1862

	
1863 1863
  private:
1864 1864
    const Graph* _graph;
1865 1865

	
1866 1866
  public:
1867 1867

	
1868 1868
    /// \brief The inverse map type of IdMap.
1869 1869
    ///
1870 1870
    /// The inverse map type of IdMap. The subscript operator gives back
1871 1871
    /// an item by its id.
1872 1872
    /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
1873 1873
    /// \see inverse()
1874 1874
    class InverseMap {
1875 1875
    public:
1876 1876

	
1877 1877
      /// \brief Constructor.
1878 1878
      ///
1879 1879
      /// Constructor for creating an id-to-item map.
1880 1880
      explicit InverseMap(const Graph& graph) : _graph(&graph) {}
1881 1881

	
1882 1882
      /// \brief Constructor.
1883 1883
      ///
1884 1884
      /// Constructor for creating an id-to-item map.
1885 1885
      explicit InverseMap(const IdMap& map) : _graph(map._graph) {}
1886 1886

	
1887 1887
      /// \brief Gives back an item by its id.
1888 1888
      ///
1889 1889
      /// Gives back an item by its id.
1890 1890
      Item operator[](int id) const { return _graph->fromId(id, Item());}
1891 1891

	
1892 1892
    private:
1893 1893
      const Graph* _graph;
1894 1894
    };
1895 1895

	
1896 1896
    /// \brief Gives back the inverse of the map.
1897 1897
    ///
1898 1898
    /// Gives back the inverse of the IdMap.
1899 1899
    InverseMap inverse() const { return InverseMap(*_graph);}
1900 1900
  };
1901 1901

	
1902
  /// \brief Returns an \c IdMap class.
1903
  ///
1904
  /// This function just returns an \c IdMap class.
1905
  /// \relates IdMap
1906
  template <typename K, typename GR>
1907
  inline IdMap<GR, K> idMap(const GR& graph) {
1908
    return IdMap<GR, K>(graph);
1909
  }
1902 1910

	
1903 1911
  /// \brief General cross reference graph map type.
1904 1912

	
1905 1913
  /// This class provides simple invertable graph maps.
1906 1914
  /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
1907 1915
  /// and if a key is set to a new value, then stores it in the inverse map.
1908 1916
  /// The graph items can be accessed by their values either using
1909 1917
  /// \c InverseMap or \c operator()(), and the values of the map can be
1910 1918
  /// accessed with an STL compatible forward iterator (\c ValueIt).
1911 1919
  /// 
1912 1920
  /// This map is intended to be used when all associated values are
1913 1921
  /// different (the map is actually invertable) or there are only a few
1914 1922
  /// items with the same value.
1915 1923
  /// Otherwise consider to use \c IterableValueMap, which is more 
1916 1924
  /// suitable and more efficient for such cases. It provides iterators
1917 1925
  /// to traverse the items with the same associated value, however
1918 1926
  /// it does not have \c InverseMap.
1919 1927
  ///
1920 1928
  /// This type is not reference map, so it cannot be modified with
1921 1929
  /// the subscript operator.
1922 1930
  ///
1923 1931
  /// \tparam GR The graph type.
1924 1932
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
1925 1933
  /// \c GR::Edge).
1926 1934
  /// \tparam V The value type of the map.
1927 1935
  ///
1928 1936
  /// \see IterableValueMap
1929 1937
  template <typename GR, typename K, typename V>
1930 1938
  class CrossRefMap
1931 1939
    : protected ItemSetTraits<GR, K>::template Map<V>::Type {
1932 1940
  private:
1933 1941

	
1934 1942
    typedef typename ItemSetTraits<GR, K>::
1935 1943
      template Map<V>::Type Map;
1936 1944

	
1937 1945
    typedef std::multimap<V, K> Container;
1938 1946
    Container _inv_map;
1939 1947

	
1940 1948
  public:
1941 1949

	
1942 1950
    /// The graph type of CrossRefMap.
1943 1951
    typedef GR Graph;
1944 1952
    typedef GR Digraph;
1945 1953
    /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
1946 1954
    typedef K Item;
1947 1955
    /// The key type of CrossRefMap (\c Node, \c Arc or \c Edge).
1948 1956
    typedef K Key;
1949 1957
    /// The value type of CrossRefMap.
1950 1958
    typedef V Value;
1951 1959

	
1952 1960
    /// \brief Constructor.
1953 1961
    ///
1954 1962
    /// Construct a new CrossRefMap for the given graph.
1955 1963
    explicit CrossRefMap(const Graph& graph) : Map(graph) {}
1956 1964

	
1957 1965
    /// \brief Forward iterator for values.
1958 1966
    ///
1959 1967
    /// This iterator is an STL compatible forward
1960 1968
    /// iterator on the values of the map. The values can
1961 1969
    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
1962 1970
    /// They are considered with multiplicity, so each value is
1963 1971
    /// traversed for each item it is assigned to.
1964 1972
    class ValueIt
1965 1973
      : public std::iterator<std::forward_iterator_tag, Value> {
1966 1974
      friend class CrossRefMap;
1967 1975
    private:
1968 1976
      ValueIt(typename Container::const_iterator _it)
1969 1977
        : it(_it) {}
1970 1978
    public:
1971 1979

	
1972 1980
      /// Constructor
1973 1981
      ValueIt() {}
1974 1982

	
1975 1983
      /// \e
1976 1984
      ValueIt& operator++() { ++it; return *this; }
1977 1985
      /// \e
1978 1986
      ValueIt operator++(int) {
1979 1987
        ValueIt tmp(*this);
1980 1988
        operator++();
1981 1989
        return tmp;
1982 1990
      }
1983 1991

	
1984 1992
      /// \e
1985 1993
      const Value& operator*() const { return it->first; }
1986 1994
      /// \e
1987 1995
      const Value* operator->() const { return &(it->first); }
1988 1996

	
1989 1997
      /// \e
1990 1998
      bool operator==(ValueIt jt) const { return it == jt.it; }
1991 1999
      /// \e
1992 2000
      bool operator!=(ValueIt jt) const { return it != jt.it; }
1993 2001

	
1994 2002
    private:
1995 2003
      typename Container::const_iterator it;
1996 2004
    };
1997 2005
    
1998 2006
    /// Alias for \c ValueIt
1999 2007
    typedef ValueIt ValueIterator;
2000 2008

	
2001 2009
    /// \brief Returns an iterator to the first value.
2002 2010
    ///
2003 2011
    /// Returns an STL compatible iterator to the
2004 2012
    /// first value of the map. The values of the
2005 2013
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
2006 2014
    /// range.
2007 2015
    ValueIt beginValue() const {
2008 2016
      return ValueIt(_inv_map.begin());
2009 2017
    }
2010 2018

	
2011 2019
    /// \brief Returns an iterator after the last value.
2012 2020
    ///
2013 2021
    /// Returns an STL compatible iterator after the
2014 2022
    /// last value of the map. The values of the
2015 2023
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
2016 2024
    /// range.
2017 2025
    ValueIt endValue() const {
2018 2026
      return ValueIt(_inv_map.end());
2019 2027
    }
2020 2028

	
2021 2029
    /// \brief Sets the value associated with the given key.
2022 2030
    ///
2023 2031
    /// Sets the value associated with the given key.
2024 2032
    void set(const Key& key, const Value& val) {
2025 2033
      Value oldval = Map::operator[](key);
2026 2034
      typename Container::iterator it;
2027 2035
      for (it = _inv_map.equal_range(oldval).first;
2028 2036
           it != _inv_map.equal_range(oldval).second; ++it) {
2029 2037
        if (it->second == key) {
2030 2038
          _inv_map.erase(it);
2031 2039
          break;
2032 2040
        }
2033 2041
      }
2034 2042
      _inv_map.insert(std::make_pair(val, key));
2035 2043
      Map::set(key, val);
2036 2044
    }
2037 2045

	
2038 2046
    /// \brief Returns the value associated with the given key.
2039 2047
    ///
2040 2048
    /// Returns the value associated with the given key.
2041 2049
    typename MapTraits<Map>::ConstReturnValue
2042 2050
    operator[](const Key& key) const {
2043 2051
      return Map::operator[](key);
2044 2052
    }
2045 2053

	
2046 2054
    /// \brief Gives back an item by its value.
2047 2055
    ///
2048 2056
    /// This function gives back an item that is assigned to
2049 2057
    /// the given value or \c INVALID if no such item exists.
2050 2058
    /// If there are more items with the same associated value,
2051 2059
    /// only one of them is returned.
2052 2060
    Key operator()(const Value& val) const {
2053 2061
      typename Container::const_iterator it = _inv_map.find(val);
2054 2062
      return it != _inv_map.end() ? it->second : INVALID;
2055 2063
    }
2056 2064
    
2057 2065
    /// \brief Returns the number of items with the given value.
2058 2066
    ///
2059 2067
    /// This function returns the number of items with the given value
2060 2068
    /// associated with it.
2061 2069
    int count(const Value &val) const {
2062 2070
      return _inv_map.count(val);
2063 2071
    }
2064 2072

	
2065 2073
  protected:
2066 2074

	
2067 2075
    /// \brief Erase the key from the map and the inverse map.
2068 2076
    ///
2069 2077
    /// Erase the key from the map and the inverse map. It is called by the
2070 2078
    /// \c AlterationNotifier.
2071 2079
    virtual void erase(const Key& key) {
2072 2080
      Value val = Map::operator[](key);
2073 2081
      typename Container::iterator it;
2074 2082
      for (it = _inv_map.equal_range(val).first;
2075 2083
           it != _inv_map.equal_range(val).second; ++it) {
2076 2084
        if (it->second == key) {
2077 2085
          _inv_map.erase(it);
2078 2086
          break;
2079 2087
        }
2080 2088
      }
2081 2089
      Map::erase(key);
2082 2090
    }
2083 2091

	
2084 2092
    /// \brief Erase more keys from the map and the inverse map.
2085 2093
    ///
2086 2094
    /// Erase more keys from the map and the inverse map. It is called by the
2087 2095
    /// \c AlterationNotifier.
2088 2096
    virtual void erase(const std::vector<Key>& keys) {
2089 2097
      for (int i = 0; i < int(keys.size()); ++i) {
2090 2098
        Value val = Map::operator[](keys[i]);
2091 2099
        typename Container::iterator it;
2092 2100
        for (it = _inv_map.equal_range(val).first;
2093 2101
             it != _inv_map.equal_range(val).second; ++it) {
2094 2102
          if (it->second == keys[i]) {
2095 2103
            _inv_map.erase(it);
2096 2104
            break;
2097 2105
          }
2098 2106
        }
2099 2107
      }
2100 2108
      Map::erase(keys);
2101 2109
    }
2102 2110

	
2103 2111
    /// \brief Clear the keys from the map and the inverse map.
2104 2112
    ///
2105 2113
    /// Clear the keys from the map and the inverse map. It is called by the
2106 2114
    /// \c AlterationNotifier.
2107 2115
    virtual void clear() {
2108 2116
      _inv_map.clear();
2109 2117
      Map::clear();
2110 2118
    }
2111 2119

	
2112 2120
  public:
2113 2121

	
2114 2122
    /// \brief The inverse map type of CrossRefMap.
2115 2123
    ///
2116 2124
    /// The inverse map type of CrossRefMap. The subscript operator gives
2117 2125
    /// back an item by its value.
2118 2126
    /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
2119 2127
    /// \see inverse()
2120 2128
    class InverseMap {
2121 2129
    public:
2122 2130
      /// \brief Constructor
2123 2131
      ///
2124 2132
      /// Constructor of the InverseMap.
2125 2133
      explicit InverseMap(const CrossRefMap& inverted)
2126 2134
        : _inverted(inverted) {}
2127 2135

	
2128 2136
      /// The value type of the InverseMap.
2129 2137
      typedef typename CrossRefMap::Key Value;
2130 2138
      /// The key type of the InverseMap.
2131 2139
      typedef typename CrossRefMap::Value Key;
2132 2140

	
2133 2141
      /// \brief Subscript operator.
2134 2142
      ///
2135 2143
      /// Subscript operator. It gives back an item
2136 2144
      /// that is assigned to the given value or \c INVALID
2137 2145
      /// if no such item exists.
2138 2146
      Value operator[](const Key& key) const {
2139 2147
        return _inverted(key);
2140 2148
      }
2141 2149

	
2142 2150
    private:
2143 2151
      const CrossRefMap& _inverted;
2144 2152
    };
2145 2153

	
2146 2154
    /// \brief Gives back the inverse of the map.
2147 2155
    ///
2148 2156
    /// Gives back the inverse of the CrossRefMap.
2149 2157
    InverseMap inverse() const {
2150 2158
      return InverseMap(*this);
2151 2159
    }
2152 2160

	
2153 2161
  };
2154 2162

	
2155 2163
  /// \brief Provides continuous and unique id for the
2156 2164
  /// items of a graph.
2157 2165
  ///
2158 2166
  /// RangeIdMap provides a unique and continuous
2159 2167
  /// id for each item of a given type (\c Node, \c Arc or
2160 2168
  /// \c Edge) in a graph. This id is
2161 2169
  ///  - \b unique: different items get different ids,
2162 2170
  ///  - \b continuous: the range of the ids is the set of integers
2163 2171
  ///    between 0 and \c n-1, where \c n is the number of the items of
2164 2172
  ///    this type (\c Node, \c Arc or \c Edge).
2165 2173
  ///  - So, the ids can change when deleting an item of the same type.
2166 2174
  ///
2167 2175
  /// Thus this id is not (necessarily) the same as what can get using
2168 2176
  /// the \c id() function of the graph or \ref IdMap.
2169 2177
  /// This map can be inverted with its member class \c InverseMap,
2170 2178
  /// or with the \c operator()() member.
2171 2179
  ///
2172 2180
  /// \tparam GR The graph type.
2173 2181
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2174 2182
  /// \c GR::Edge).
2175 2183
  ///
2176 2184
  /// \see IdMap
2177 2185
  template <typename GR, typename K>
2178 2186
  class RangeIdMap
2179 2187
    : protected ItemSetTraits<GR, K>::template Map<int>::Type {
2180 2188

	
2181 2189
    typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Map;
2182 2190

	
2183 2191
  public:
2184 2192
    /// The graph type of RangeIdMap.
2185 2193
    typedef GR Graph;
2186 2194
    typedef GR Digraph;
2187 2195
    /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
2188 2196
    typedef K Item;
2189 2197
    /// The key type of RangeIdMap (\c Node, \c Arc or \c Edge).
2190 2198
    typedef K Key;
2191 2199
    /// The value type of RangeIdMap.
2192 2200
    typedef int Value;
2193 2201

	
2194 2202
    /// \brief Constructor.
2195 2203
    ///
2196 2204
    /// Constructor.
2197 2205
    explicit RangeIdMap(const Graph& gr) : Map(gr) {
2198 2206
      Item it;
2199 2207
      const typename Map::Notifier* nf = Map::notifier();
2200 2208
      for (nf->first(it); it != INVALID; nf->next(it)) {
2201 2209
        Map::set(it, _inv_map.size());
2202 2210
        _inv_map.push_back(it);
2203 2211
      }
2204 2212
    }
2205 2213

	
2206 2214
  protected:
2207 2215

	
2208 2216
    /// \brief Adds a new key to the map.
2209 2217
    ///
2210 2218
    /// Add a new key to the map. It is called by the
2211 2219
    /// \c AlterationNotifier.
2212 2220
    virtual void add(const Item& item) {
2213 2221
      Map::add(item);
2214 2222
      Map::set(item, _inv_map.size());
2215 2223
      _inv_map.push_back(item);
2216 2224
    }
2217 2225

	
2218 2226
    /// \brief Add more new keys to the map.
2219 2227
    ///
2220 2228
    /// Add more new keys to the map. It is called by the
2221 2229
    /// \c AlterationNotifier.
2222 2230
    virtual void add(const std::vector<Item>& items) {
2223 2231
      Map::add(items);
2224 2232
      for (int i = 0; i < int(items.size()); ++i) {
2225 2233
        Map::set(items[i], _inv_map.size());
2226 2234
        _inv_map.push_back(items[i]);
2227 2235
      }
2228 2236
    }
2229 2237

	
2230 2238
    /// \brief Erase the key from the map.
2231 2239
    ///
2232 2240
    /// Erase the key from the map. It is called by the
2233 2241
    /// \c AlterationNotifier.
2234 2242
    virtual void erase(const Item& item) {
2235 2243
      Map::set(_inv_map.back(), Map::operator[](item));
2236 2244
      _inv_map[Map::operator[](item)] = _inv_map.back();
2237 2245
      _inv_map.pop_back();
2238 2246
      Map::erase(item);
2239 2247
    }
2240 2248

	
2241 2249
    /// \brief Erase more keys from the map.
2242 2250
    ///
2243 2251
    /// Erase more keys from the map. It is called by the
2244 2252
    /// \c AlterationNotifier.
2245 2253
    virtual void erase(const std::vector<Item>& items) {
2246 2254
      for (int i = 0; i < int(items.size()); ++i) {
2247 2255
        Map::set(_inv_map.back(), Map::operator[](items[i]));
2248 2256
        _inv_map[Map::operator[](items[i])] = _inv_map.back();
2249 2257
        _inv_map.pop_back();
2250 2258
      }
2251 2259
      Map::erase(items);
2252 2260
    }
2253 2261

	
2254 2262
    /// \brief Build the unique map.
2255 2263
    ///
2256 2264
    /// Build the unique map. It is called by the
2257 2265
    /// \c AlterationNotifier.
2258 2266
    virtual void build() {
2259 2267
      Map::build();
2260 2268
      Item it;
2261 2269
      const typename Map::Notifier* nf = Map::notifier();
2262 2270
      for (nf->first(it); it != INVALID; nf->next(it)) {
2263 2271
        Map::set(it, _inv_map.size());
2264 2272
        _inv_map.push_back(it);
2265 2273
      }
2266 2274
    }
2267 2275

	
2268 2276
    /// \brief Clear the keys from the map.
2269 2277
    ///
2270 2278
    /// Clear the keys from the map. It is called by the
2271 2279
    /// \c AlterationNotifier.
2272 2280
    virtual void clear() {
2273 2281
      _inv_map.clear();
2274 2282
      Map::clear();
2275 2283
    }
2276 2284

	
2277 2285
  public:
2278 2286

	
2279 2287
    /// \brief Returns the maximal value plus one.
2280 2288
    ///
2281 2289
    /// Returns the maximal value plus one in the map.
2282 2290
    unsigned int size() const {
2283 2291
      return _inv_map.size();
2284 2292
    }
2285 2293

	
2286 2294
    /// \brief Swaps the position of the two items in the map.
2287 2295
    ///
2288 2296
    /// Swaps the position of the two items in the map.
2289 2297
    void swap(const Item& p, const Item& q) {
2290 2298
      int pi = Map::operator[](p);
2291 2299
      int qi = Map::operator[](q);
2292 2300
      Map::set(p, qi);
2293 2301
      _inv_map[qi] = p;
2294 2302
      Map::set(q, pi);
2295 2303
      _inv_map[pi] = q;
2296 2304
    }
2297 2305

	
2298 2306
    /// \brief Gives back the \e range \e id of the item
2299 2307
    ///
2300 2308
    /// Gives back the \e range \e id of the item.
2301 2309
    int operator[](const Item& item) const {
2302 2310
      return Map::operator[](item);
2303 2311
    }
2304 2312

	
2305 2313
    /// \brief Gives back the item belonging to a \e range \e id
2306 2314
    ///
2307 2315
    /// Gives back the item belonging to the given \e range \e id.
2308 2316
    Item operator()(int id) const {
2309 2317
      return _inv_map[id];
2310 2318
    }
2311 2319

	
2312 2320
  private:
2313 2321

	
2314 2322
    typedef std::vector<Item> Container;
2315 2323
    Container _inv_map;
2316 2324

	
2317 2325
  public:
2318 2326

	
2319 2327
    /// \brief The inverse map type of RangeIdMap.
2320 2328
    ///
2321 2329
    /// The inverse map type of RangeIdMap. The subscript operator gives
2322 2330
    /// back an item by its \e range \e id.
2323 2331
    /// This type conforms to the \ref concepts::ReadMap "ReadMap" concept.
2324 2332
    class InverseMap {
2325 2333
    public:
2326 2334
      /// \brief Constructor
2327 2335
      ///
2328 2336
      /// Constructor of the InverseMap.
2329 2337
      explicit InverseMap(const RangeIdMap& inverted)
2330 2338
        : _inverted(inverted) {}
2331 2339

	
2332 2340

	
2333 2341
      /// The value type of the InverseMap.
2334 2342
      typedef typename RangeIdMap::Key Value;
2335 2343
      /// The key type of the InverseMap.
2336 2344
      typedef typename RangeIdMap::Value Key;
2337 2345

	
2338 2346
      /// \brief Subscript operator.
2339 2347
      ///
2340 2348
      /// Subscript operator. It gives back the item
2341 2349
      /// that the given \e range \e id currently belongs to.
2342 2350
      Value operator[](const Key& key) const {
2343 2351
        return _inverted(key);
2344 2352
      }
2345 2353

	
2346 2354
      /// \brief Size of the map.
2347 2355
      ///
2348 2356
      /// Returns the size of the map.
2349 2357
      unsigned int size() const {
2350 2358
        return _inverted.size();
2351 2359
      }
2352 2360

	
2353 2361
    private:
2354 2362
      const RangeIdMap& _inverted;
2355 2363
    };
2356 2364

	
2357 2365
    /// \brief Gives back the inverse of the map.
2358 2366
    ///
2359 2367
    /// Gives back the inverse of the RangeIdMap.
2360 2368
    const InverseMap inverse() const {
2361 2369
      return InverseMap(*this);
2362 2370
    }
2363 2371
  };
2364 2372

	
2373
  /// \brief Returns a \c RangeIdMap class.
2374
  ///
2375
  /// This function just returns an \c RangeIdMap class.
2376
  /// \relates RangeIdMap
2377
  template <typename K, typename GR>
2378
  inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
2379
    return RangeIdMap<GR, K>(graph);
2380
  }
2381
  
2365 2382
  /// \brief Dynamic iterable \c bool map.
2366 2383
  ///
2367 2384
  /// This class provides a special graph map type which can store a
2368 2385
  /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
2369 2386
  /// For both \c true and \c false values it is possible to iterate on
2370 2387
  /// the keys mapped to the value.
2371 2388
  ///
2372 2389
  /// This type is a reference map, so it can be modified with the
2373 2390
  /// subscript operator.
2374 2391
  ///
2375 2392
  /// \tparam GR The graph type.
2376 2393
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2377 2394
  /// \c GR::Edge).
2378 2395
  ///
2379 2396
  /// \see IterableIntMap, IterableValueMap
2380 2397
  /// \see CrossRefMap
2381 2398
  template <typename GR, typename K>
2382 2399
  class IterableBoolMap
2383 2400
    : protected ItemSetTraits<GR, K>::template Map<int>::Type {
2384 2401
  private:
2385 2402
    typedef GR Graph;
2386 2403

	
2387 2404
    typedef typename ItemSetTraits<GR, K>::ItemIt KeyIt;
2388 2405
    typedef typename ItemSetTraits<GR, K>::template Map<int>::Type Parent;
2389 2406

	
2390 2407
    std::vector<K> _array;
2391 2408
    int _sep;
2392 2409

	
2393 2410
  public:
2394 2411

	
2395 2412
    /// Indicates that the map is reference map.
2396 2413
    typedef True ReferenceMapTag;
2397 2414

	
2398 2415
    /// The key type
2399 2416
    typedef K Key;
2400 2417
    /// The value type
2401 2418
    typedef bool Value;
2402 2419
    /// The const reference type.
2403 2420
    typedef const Value& ConstReference;
2404 2421

	
2405 2422
  private:
2406 2423

	
2407 2424
    int position(const Key& key) const {
2408 2425
      return Parent::operator[](key);
2409 2426
    }
2410 2427

	
2411 2428
  public:
2412 2429

	
2413 2430
    /// \brief Reference to the value of the map.
2414 2431
    ///
2415 2432
    /// This class is similar to the \c bool type. It can be converted to
2416 2433
    /// \c bool and it provides the same operators.
2417 2434
    class Reference {
2418 2435
      friend class IterableBoolMap;
2419 2436
    private:
2420 2437
      Reference(IterableBoolMap& map, const Key& key)
2421 2438
        : _key(key), _map(map) {}
2422 2439
    public:
2423 2440

	
2424 2441
      Reference& operator=(const Reference& value) {
2425 2442
        _map.set(_key, static_cast<bool>(value));
2426 2443
         return *this;
2427 2444
      }
2428 2445

	
2429 2446
      operator bool() const {
2430 2447
        return static_cast<const IterableBoolMap&>(_map)[_key];
2431 2448
      }
2432 2449

	
2433 2450
      Reference& operator=(bool value) {
2434 2451
        _map.set(_key, value);
2435 2452
        return *this;
2436 2453
      }
2437 2454
      Reference& operator&=(bool value) {
2438 2455
        _map.set(_key, _map[_key] & value);
2439 2456
        return *this;
2440 2457
      }
2441 2458
      Reference& operator|=(bool value) {
2442 2459
        _map.set(_key, _map[_key] | value);
2443 2460
        return *this;
2444 2461
      }
2445 2462
      Reference& operator^=(bool value) {
2446 2463
        _map.set(_key, _map[_key] ^ value);
2447 2464
        return *this;
2448 2465
      }
2449 2466
    private:
2450 2467
      Key _key;
2451 2468
      IterableBoolMap& _map;
2452 2469
    };
2453 2470

	
2454 2471
    /// \brief Constructor of the map with a default value.
2455 2472
    ///
2456 2473
    /// Constructor of the map with a default value.
2457 2474
    explicit IterableBoolMap(const Graph& graph, bool def = false)
2458 2475
      : Parent(graph) {
2459 2476
      typename Parent::Notifier* nf = Parent::notifier();
2460 2477
      Key it;
2461 2478
      for (nf->first(it); it != INVALID; nf->next(it)) {
2462 2479
        Parent::set(it, _array.size());
2463 2480
        _array.push_back(it);
2464 2481
      }
2465 2482
      _sep = (def ? _array.size() : 0);
2466 2483
    }
2467 2484

	
2468 2485
    /// \brief Const subscript operator of the map.
2469 2486
    ///
2470 2487
    /// Const subscript operator of the map.
2471 2488
    bool operator[](const Key& key) const {
2472 2489
      return position(key) < _sep;
2473 2490
    }
2474 2491

	
2475 2492
    /// \brief Subscript operator of the map.
2476 2493
    ///
2477 2494
    /// Subscript operator of the map.
2478 2495
    Reference operator[](const Key& key) {
2479 2496
      return Reference(*this, key);
2480 2497
    }
2481 2498

	
2482 2499
    /// \brief Set operation of the map.
2483 2500
    ///
2484 2501
    /// Set operation of the map.
2485 2502
    void set(const Key& key, bool value) {
2486 2503
      int pos = position(key);
2487 2504
      if (value) {
2488 2505
        if (pos < _sep) return;
2489 2506
        Key tmp = _array[_sep];
2490 2507
        _array[_sep] = key;
2491 2508
        Parent::set(key, _sep);
2492 2509
        _array[pos] = tmp;
2493 2510
        Parent::set(tmp, pos);
2494 2511
        ++_sep;
2495 2512
      } else {
2496 2513
        if (pos >= _sep) return;
2497 2514
        --_sep;
2498 2515
        Key tmp = _array[_sep];
2499 2516
        _array[_sep] = key;
2500 2517
        Parent::set(key, _sep);
2501 2518
        _array[pos] = tmp;
2502 2519
        Parent::set(tmp, pos);
2503 2520
      }
2504 2521
    }
2505 2522

	
2506 2523
    /// \brief Set all items.
2507 2524
    ///
2508 2525
    /// Set all items in the map.
2509 2526
    /// \note Constant time operation.
2510 2527
    void setAll(bool value) {
2511 2528
      _sep = (value ? _array.size() : 0);
2512 2529
    }
2513 2530

	
2514 2531
    /// \brief Returns the number of the keys mapped to \c true.
2515 2532
    ///
2516 2533
    /// Returns the number of the keys mapped to \c true.
2517 2534
    int trueNum() const {
2518 2535
      return _sep;
2519 2536
    }
2520 2537

	
2521 2538
    /// \brief Returns the number of the keys mapped to \c false.
2522 2539
    ///
2523 2540
    /// Returns the number of the keys mapped to \c false.
2524 2541
    int falseNum() const {
2525 2542
      return _array.size() - _sep;
2526 2543
    }
2527 2544

	
2528 2545
    /// \brief Iterator for the keys mapped to \c true.
2529 2546
    ///
2530 2547
    /// Iterator for the keys mapped to \c true. It works
2531 2548
    /// like a graph item iterator, it can be converted to
2532 2549
    /// the key type of the map, incremented with \c ++ operator, and
2533 2550
    /// if the iterator leaves the last valid key, it will be equal to
2534 2551
    /// \c INVALID.
2535 2552
    class TrueIt : public Key {
2536 2553
    public:
2537 2554
      typedef Key Parent;
2538 2555

	
2539 2556
      /// \brief Creates an iterator.
2540 2557
      ///
2541 2558
      /// Creates an iterator. It iterates on the
2542 2559
      /// keys mapped to \c true.
2543 2560
      /// \param map The IterableBoolMap.
2544 2561
      explicit TrueIt(const IterableBoolMap& map)
2545 2562
        : Parent(map._sep > 0 ? map._array[map._sep - 1] : INVALID),
2546 2563
          _map(&map) {}
2547 2564

	
2548 2565
      /// \brief Invalid constructor \& conversion.
2549 2566
      ///
2550 2567
      /// This constructor initializes the iterator to be invalid.
2551 2568
      /// \sa Invalid for more details.
2552 2569
      TrueIt(Invalid) : Parent(INVALID), _map(0) {}
2553 2570

	
2554 2571
      /// \brief Increment operator.
2555 2572
      ///
2556 2573
      /// Increment operator.
2557 2574
      TrueIt& operator++() {
2558 2575
        int pos = _map->position(*this);
2559 2576
        Parent::operator=(pos > 0 ? _map->_array[pos - 1] : INVALID);
2560 2577
        return *this;
2561 2578
      }
2562 2579

	
2563 2580
    private:
2564 2581
      const IterableBoolMap* _map;
2565 2582
    };
2566 2583

	
2567 2584
    /// \brief Iterator for the keys mapped to \c false.
2568 2585
    ///
2569 2586
    /// Iterator for the keys mapped to \c false. It works
2570 2587
    /// like a graph item iterator, it can be converted to
2571 2588
    /// the key type of the map, incremented with \c ++ operator, and
2572 2589
    /// if the iterator leaves the last valid key, it will be equal to
2573 2590
    /// \c INVALID.
2574 2591
    class FalseIt : public Key {
2575 2592
    public:
2576 2593
      typedef Key Parent;
2577 2594

	
2578 2595
      /// \brief Creates an iterator.
2579 2596
      ///
2580 2597
      /// Creates an iterator. It iterates on the
2581 2598
      /// keys mapped to \c false.
2582 2599
      /// \param map The IterableBoolMap.
2583 2600
      explicit FalseIt(const IterableBoolMap& map)
2584 2601
        : Parent(map._sep < int(map._array.size()) ?
2585 2602
                 map._array.back() : INVALID), _map(&map) {}
2586 2603

	
2587 2604
      /// \brief Invalid constructor \& conversion.
2588 2605
      ///
2589 2606
      /// This constructor initializes the iterator to be invalid.
2590 2607
      /// \sa Invalid for more details.
2591 2608
      FalseIt(Invalid) : Parent(INVALID), _map(0) {}
2592 2609

	
2593 2610
      /// \brief Increment operator.
2594 2611
      ///
2595 2612
      /// Increment operator.
2596 2613
      FalseIt& operator++() {
2597 2614
        int pos = _map->position(*this);
2598 2615
        Parent::operator=(pos > _map->_sep ? _map->_array[pos - 1] : INVALID);
2599 2616
        return *this;
2600 2617
      }
2601 2618

	
2602 2619
    private:
2603 2620
      const IterableBoolMap* _map;
2604 2621
    };
2605 2622

	
2606 2623
    /// \brief Iterator for the keys mapped to a given value.
2607 2624
    ///
2608 2625
    /// Iterator for the keys mapped to a given value. It works
2609 2626
    /// like a graph item iterator, it can be converted to
2610 2627
    /// the key type of the map, incremented with \c ++ operator, and
2611 2628
    /// if the iterator leaves the last valid key, it will be equal to
2612 2629
    /// \c INVALID.
2613 2630
    class ItemIt : public Key {
2614 2631
    public:
2615 2632
      typedef Key Parent;
2616 2633

	
2617 2634
      /// \brief Creates an iterator with a value.
2618 2635
      ///
2619 2636
      /// Creates an iterator with a value. It iterates on the
2620 2637
      /// keys mapped to the given value.
2621 2638
      /// \param map The IterableBoolMap.
2622 2639
      /// \param value The value.
2623 2640
      ItemIt(const IterableBoolMap& map, bool value)
2624 2641
        : Parent(value ? 
2625 2642
                 (map._sep > 0 ?
2626 2643
                  map._array[map._sep - 1] : INVALID) :
2627 2644
                 (map._sep < int(map._array.size()) ?
2628 2645
                  map._array.back() : INVALID)), _map(&map) {}
2629 2646

	
2630 2647
      /// \brief Invalid constructor \& conversion.
2631 2648
      ///
2632 2649
      /// This constructor initializes the iterator to be invalid.
2633 2650
      /// \sa Invalid for more details.
2634 2651
      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
2635 2652

	
2636 2653
      /// \brief Increment operator.
2637 2654
      ///
2638 2655
      /// Increment operator.
2639 2656
      ItemIt& operator++() {
2640 2657
        int pos = _map->position(*this);
2641 2658
        int _sep = pos >= _map->_sep ? _map->_sep : 0;
2642 2659
        Parent::operator=(pos > _sep ? _map->_array[pos - 1] : INVALID);
2643 2660
        return *this;
2644 2661
      }
2645 2662

	
2646 2663
    private:
2647 2664
      const IterableBoolMap* _map;
2648 2665
    };
2649 2666

	
2650 2667
  protected:
2651 2668

	
2652 2669
    virtual void add(const Key& key) {
2653 2670
      Parent::add(key);
2654 2671
      Parent::set(key, _array.size());
2655 2672
      _array.push_back(key);
2656 2673
    }
2657 2674

	
2658 2675
    virtual void add(const std::vector<Key>& keys) {
2659 2676
      Parent::add(keys);
2660 2677
      for (int i = 0; i < int(keys.size()); ++i) {
2661 2678
        Parent::set(keys[i], _array.size());
2662 2679
        _array.push_back(keys[i]);
2663 2680
      }
2664 2681
    }
2665 2682

	
2666 2683
    virtual void erase(const Key& key) {
2667 2684
      int pos = position(key);
2668 2685
      if (pos < _sep) {
2669 2686
        --_sep;
2670 2687
        Parent::set(_array[_sep], pos);
2671 2688
        _array[pos] = _array[_sep];
2672 2689
        Parent::set(_array.back(), _sep);
2673 2690
        _array[_sep] = _array.back();
2674 2691
        _array.pop_back();
2675 2692
      } else {
2676 2693
        Parent::set(_array.back(), pos);
2677 2694
        _array[pos] = _array.back();
2678 2695
        _array.pop_back();
2679 2696
      }
2680 2697
      Parent::erase(key);
2681 2698
    }
2682 2699

	
2683 2700
    virtual void erase(const std::vector<Key>& keys) {
2684 2701
      for (int i = 0; i < int(keys.size()); ++i) {
2685 2702
        int pos = position(keys[i]);
2686 2703
        if (pos < _sep) {
2687 2704
          --_sep;
2688 2705
          Parent::set(_array[_sep], pos);
2689 2706
          _array[pos] = _array[_sep];
2690 2707
          Parent::set(_array.back(), _sep);
2691 2708
          _array[_sep] = _array.back();
2692 2709
          _array.pop_back();
2693 2710
        } else {
2694 2711
          Parent::set(_array.back(), pos);
2695 2712
          _array[pos] = _array.back();
2696 2713
          _array.pop_back();
2697 2714
        }
2698 2715
      }
2699 2716
      Parent::erase(keys);
2700 2717
    }
2701 2718

	
2702 2719
    virtual void build() {
2703 2720
      Parent::build();
2704 2721
      typename Parent::Notifier* nf = Parent::notifier();
2705 2722
      Key it;
2706 2723
      for (nf->first(it); it != INVALID; nf->next(it)) {
2707 2724
        Parent::set(it, _array.size());
2708 2725
        _array.push_back(it);
2709 2726
      }
2710 2727
      _sep = 0;
2711 2728
    }
2712 2729

	
2713 2730
    virtual void clear() {
2714 2731
      _array.clear();
2715 2732
      _sep = 0;
2716 2733
      Parent::clear();
2717 2734
    }
2718 2735

	
2719 2736
  };
2720 2737

	
2721 2738

	
2722 2739
  namespace _maps_bits {
2723 2740
    template <typename Item>
2724 2741
    struct IterableIntMapNode {
2725 2742
      IterableIntMapNode() : value(-1) {}
2726 2743
      IterableIntMapNode(int _value) : value(_value) {}
2727 2744
      Item prev, next;
2728 2745
      int value;
2729 2746
    };
2730 2747
  }
2731 2748

	
2732 2749
  /// \brief Dynamic iterable integer map.
2733 2750
  ///
2734 2751
  /// This class provides a special graph map type which can store an
2735 2752
  /// integer value for graph items (\c Node, \c Arc or \c Edge).
2736 2753
  /// For each non-negative value it is possible to iterate on the keys
2737 2754
  /// mapped to the value.
2738 2755
  ///
2739 2756
  /// This map is intended to be used with small integer values, for which
2740 2757
  /// it is efficient, and supports iteration only for non-negative values.
2741 2758
  /// If you need large values and/or iteration for negative integers,
2742 2759
  /// consider to use \ref IterableValueMap instead.
2743 2760
  ///
2744 2761
  /// This type is a reference map, so it can be modified with the
2745 2762
  /// subscript operator.
2746 2763
  ///
2747 2764
  /// \note The size of the data structure depends on the largest
2748 2765
  /// value in the map.
2749 2766
  ///
2750 2767
  /// \tparam GR The graph type.
2751 2768
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
2752 2769
  /// \c GR::Edge).
2753 2770
  ///
2754 2771
  /// \see IterableBoolMap, IterableValueMap
2755 2772
  /// \see CrossRefMap
2756 2773
  template <typename GR, typename K>
2757 2774
  class IterableIntMap
2758 2775
    : protected ItemSetTraits<GR, K>::
2759 2776
        template Map<_maps_bits::IterableIntMapNode<K> >::Type {
2760 2777
  public:
2761 2778
    typedef typename ItemSetTraits<GR, K>::
2762 2779
      template Map<_maps_bits::IterableIntMapNode<K> >::Type Parent;
2763 2780

	
2764 2781
    /// The key type
2765 2782
    typedef K Key;
2766 2783
    /// The value type
2767 2784
    typedef int Value;
2768 2785
    /// The graph type
2769 2786
    typedef GR Graph;
2770 2787

	
2771 2788
    /// \brief Constructor of the map.
2772 2789
    ///
2773 2790
    /// Constructor of the map. It sets all values to -1.
2774 2791
    explicit IterableIntMap(const Graph& graph)
2775 2792
      : Parent(graph) {}
2776 2793

	
2777 2794
    /// \brief Constructor of the map with a given value.
2778 2795
    ///
2779 2796
    /// Constructor of the map with a given value.
2780 2797
    explicit IterableIntMap(const Graph& graph, int value)
2781 2798
      : Parent(graph, _maps_bits::IterableIntMapNode<K>(value)) {
2782 2799
      if (value >= 0) {
2783 2800
        for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
2784 2801
          lace(it);
2785 2802
        }
2786 2803
      }
2787 2804
    }
2788 2805

	
2789 2806
  private:
2790 2807

	
2791 2808
    void unlace(const Key& key) {
2792 2809
      typename Parent::Value& node = Parent::operator[](key);
2793 2810
      if (node.value < 0) return;
2794 2811
      if (node.prev != INVALID) {
2795 2812
        Parent::operator[](node.prev).next = node.next;
2796 2813
      } else {
2797 2814
        _first[node.value] = node.next;
2798 2815
      }
2799 2816
      if (node.next != INVALID) {
2800 2817
        Parent::operator[](node.next).prev = node.prev;
2801 2818
      }
2802 2819
      while (!_first.empty() && _first.back() == INVALID) {
2803 2820
        _first.pop_back();
2804 2821
      }
2805 2822
    }
2806 2823

	
2807 2824
    void lace(const Key& key) {
2808 2825
      typename Parent::Value& node = Parent::operator[](key);
2809 2826
      if (node.value < 0) return;
2810 2827
      if (node.value >= int(_first.size())) {
2811 2828
        _first.resize(node.value + 1, INVALID);
2812 2829
      }
2813 2830
      node.prev = INVALID;
2814 2831
      node.next = _first[node.value];
2815 2832
      if (node.next != INVALID) {
2816 2833
        Parent::operator[](node.next).prev = key;
2817 2834
      }
2818 2835
      _first[node.value] = key;
2819 2836
    }
2820 2837

	
2821 2838
  public:
2822 2839

	
2823 2840
    /// Indicates that the map is reference map.
2824 2841
    typedef True ReferenceMapTag;
2825 2842

	
2826 2843
    /// \brief Reference to the value of the map.
2827 2844
    ///
2828 2845
    /// This class is similar to the \c int type. It can
2829 2846
    /// be converted to \c int and it has the same operators.
2830 2847
    class Reference {
2831 2848
      friend class IterableIntMap;
2832 2849
    private:
2833 2850
      Reference(IterableIntMap& map, const Key& key)
2834 2851
        : _key(key), _map(map) {}
2835 2852
    public:
2836 2853

	
2837 2854
      Reference& operator=(const Reference& value) {
2838 2855
        _map.set(_key, static_cast<const int&>(value));
2839 2856
         return *this;
2840 2857
      }
2841 2858

	
2842 2859
      operator const int&() const {
2843 2860
        return static_cast<const IterableIntMap&>(_map)[_key];
2844 2861
      }
2845 2862

	
2846 2863
      Reference& operator=(int value) {
2847 2864
        _map.set(_key, value);
2848 2865
        return *this;
2849 2866
      }
2850 2867
      Reference& operator++() {
2851 2868
        _map.set(_key, _map[_key] + 1);
2852 2869
        return *this;
2853 2870
      }
2854 2871
      int operator++(int) {
2855 2872
        int value = _map[_key];
2856 2873
        _map.set(_key, value + 1);
2857 2874
        return value;
2858 2875
      }
2859 2876
      Reference& operator--() {
2860 2877
        _map.set(_key, _map[_key] - 1);
2861 2878
        return *this;
2862 2879
      }
2863 2880
      int operator--(int) {
2864 2881
        int value = _map[_key];
2865 2882
        _map.set(_key, value - 1);
2866 2883
        return value;
2867 2884
      }
2868 2885
      Reference& operator+=(int value) {
2869 2886
        _map.set(_key, _map[_key] + value);
2870 2887
        return *this;
2871 2888
      }
2872 2889
      Reference& operator-=(int value) {
2873 2890
        _map.set(_key, _map[_key] - value);
2874 2891
        return *this;
2875 2892
      }
2876 2893
      Reference& operator*=(int value) {
2877 2894
        _map.set(_key, _map[_key] * value);
2878 2895
        return *this;
2879 2896
      }
2880 2897
      Reference& operator/=(int value) {
2881 2898
        _map.set(_key, _map[_key] / value);
2882 2899
        return *this;
2883 2900
      }
2884 2901
      Reference& operator%=(int value) {
2885 2902
        _map.set(_key, _map[_key] % value);
2886 2903
        return *this;
2887 2904
      }
2888 2905
      Reference& operator&=(int value) {
2889 2906
        _map.set(_key, _map[_key] & value);
2890 2907
        return *this;
2891 2908
      }
2892 2909
      Reference& operator|=(int value) {
2893 2910
        _map.set(_key, _map[_key] | value);
2894 2911
        return *this;
2895 2912
      }
2896 2913
      Reference& operator^=(int value) {
2897 2914
        _map.set(_key, _map[_key] ^ value);
2898 2915
        return *this;
2899 2916
      }
2900 2917
      Reference& operator<<=(int value) {
2901 2918
        _map.set(_key, _map[_key] << value);
2902 2919
        return *this;
2903 2920
      }
2904 2921
      Reference& operator>>=(int value) {
2905 2922
        _map.set(_key, _map[_key] >> value);
2906 2923
        return *this;
2907 2924
      }
2908 2925

	
2909 2926
    private:
2910 2927
      Key _key;
2911 2928
      IterableIntMap& _map;
2912 2929
    };
2913 2930

	
2914 2931
    /// The const reference type.
2915 2932
    typedef const Value& ConstReference;
2916 2933

	
2917 2934
    /// \brief Gives back the maximal value plus one.
2918 2935
    ///
2919 2936
    /// Gives back the maximal value plus one.
2920 2937
    int size() const {
2921 2938
      return _first.size();
2922 2939
    }
2923 2940

	
2924 2941
    /// \brief Set operation of the map.
2925 2942
    ///
2926 2943
    /// Set operation of the map.
2927 2944
    void set(const Key& key, const Value& value) {
2928 2945
      unlace(key);
2929 2946
      Parent::operator[](key).value = value;
2930 2947
      lace(key);
2931 2948
    }
2932 2949

	
2933 2950
    /// \brief Const subscript operator of the map.
2934 2951
    ///
2935 2952
    /// Const subscript operator of the map.
2936 2953
    const Value& operator[](const Key& key) const {
2937 2954
      return Parent::operator[](key).value;
2938 2955
    }
2939 2956

	
2940 2957
    /// \brief Subscript operator of the map.
2941 2958
    ///
2942 2959
    /// Subscript operator of the map.
2943 2960
    Reference operator[](const Key& key) {
2944 2961
      return Reference(*this, key);
2945 2962
    }
2946 2963

	
2947 2964
    /// \brief Iterator for the keys with the same value.
2948 2965
    ///
2949 2966
    /// Iterator for the keys with the same value. It works
2950 2967
    /// like a graph item iterator, it can be converted to
2951 2968
    /// the item type of the map, incremented with \c ++ operator, and
2952 2969
    /// if the iterator leaves the last valid item, it will be equal to
2953 2970
    /// \c INVALID.
2954 2971
    class ItemIt : public Key {
2955 2972
    public:
2956 2973
      typedef Key Parent;
2957 2974

	
2958 2975
      /// \brief Invalid constructor \& conversion.
2959 2976
      ///
2960 2977
      /// This constructor initializes the iterator to be invalid.
2961 2978
      /// \sa Invalid for more details.
2962 2979
      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
2963 2980

	
2964 2981
      /// \brief Creates an iterator with a value.
2965 2982
      ///
2966 2983
      /// Creates an iterator with a value. It iterates on the
2967 2984
      /// keys mapped to the given value.
2968 2985
      /// \param map The IterableIntMap.
2969 2986
      /// \param value The value.
2970 2987
      ItemIt(const IterableIntMap& map, int value) : _map(&map) {
2971 2988
        if (value < 0 || value >= int(_map->_first.size())) {
2972 2989
          Parent::operator=(INVALID);
2973 2990
        } else {
2974 2991
          Parent::operator=(_map->_first[value]);
2975 2992
        }
2976 2993
      }
2977 2994

	
2978 2995
      /// \brief Increment operator.
2979 2996
      ///
2980 2997
      /// Increment operator.
2981 2998
      ItemIt& operator++() {
2982 2999
        Parent::operator=(_map->IterableIntMap::Parent::
2983 3000
                          operator[](static_cast<Parent&>(*this)).next);
2984 3001
        return *this;
2985 3002
      }
2986 3003

	
2987 3004
    private:
2988 3005
      const IterableIntMap* _map;
2989 3006
    };
2990 3007

	
2991 3008
  protected:
2992 3009

	
2993 3010
    virtual void erase(const Key& key) {
2994 3011
      unlace(key);
2995 3012
      Parent::erase(key);
2996 3013
    }
2997 3014

	
2998 3015
    virtual void erase(const std::vector<Key>& keys) {
2999 3016
      for (int i = 0; i < int(keys.size()); ++i) {
3000 3017
        unlace(keys[i]);
3001 3018
      }
3002 3019
      Parent::erase(keys);
3003 3020
    }
3004 3021

	
3005 3022
    virtual void clear() {
3006 3023
      _first.clear();
3007 3024
      Parent::clear();
3008 3025
    }
3009 3026

	
3010 3027
  private:
3011 3028
    std::vector<Key> _first;
3012 3029
  };
3013 3030

	
3014 3031
  namespace _maps_bits {
3015 3032
    template <typename Item, typename Value>
3016 3033
    struct IterableValueMapNode {
3017 3034
      IterableValueMapNode(Value _value = Value()) : value(_value) {}
3018 3035
      Item prev, next;
3019 3036
      Value value;
3020 3037
    };
3021 3038
  }
3022 3039

	
3023 3040
  /// \brief Dynamic iterable map for comparable values.
3024 3041
  ///
3025 3042
  /// This class provides a special graph map type which can store a
3026 3043
  /// comparable value for graph items (\c Node, \c Arc or \c Edge).
3027 3044
  /// For each value it is possible to iterate on the keys mapped to
3028 3045
  /// the value (\c ItemIt), and the values of the map can be accessed
3029 3046
  /// with an STL compatible forward iterator (\c ValueIt).
3030 3047
  /// The map stores a linked list for each value, which contains
3031 3048
  /// the items mapped to the value, and the used values are stored
3032 3049
  /// in balanced binary tree (\c std::map).
3033 3050
  ///
3034 3051
  /// \ref IterableBoolMap and \ref IterableIntMap are similar classes
3035 3052
  /// specialized for \c bool and \c int values, respectively.
3036 3053
  ///
3037 3054
  /// This type is not reference map, so it cannot be modified with
3038 3055
  /// the subscript operator.
3039 3056
  ///
3040 3057
  /// \tparam GR The graph type.
3041 3058
  /// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or
3042 3059
  /// \c GR::Edge).
3043 3060
  /// \tparam V The value type of the map. It can be any comparable
3044 3061
  /// value type.
3045 3062
  ///
3046 3063
  /// \see IterableBoolMap, IterableIntMap
3047 3064
  /// \see CrossRefMap
3048 3065
  template <typename GR, typename K, typename V>
3049 3066
  class IterableValueMap
3050 3067
    : protected ItemSetTraits<GR, K>::
3051 3068
        template Map<_maps_bits::IterableValueMapNode<K, V> >::Type {
3052 3069
  public:
3053 3070
    typedef typename ItemSetTraits<GR, K>::
3054 3071
      template Map<_maps_bits::IterableValueMapNode<K, V> >::Type Parent;
3055 3072

	
3056 3073
    /// The key type
3057 3074
    typedef K Key;
3058 3075
    /// The value type
3059 3076
    typedef V Value;
3060 3077
    /// The graph type
3061 3078
    typedef GR Graph;
3062 3079

	
3063 3080
  public:
3064 3081

	
3065 3082
    /// \brief Constructor of the map with a given value.
3066 3083
    ///
3067 3084
    /// Constructor of the map with a given value.
3068 3085
    explicit IterableValueMap(const Graph& graph,
3069 3086
                              const Value& value = Value())
3070 3087
      : Parent(graph, _maps_bits::IterableValueMapNode<K, V>(value)) {
3071 3088
      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
3072 3089
        lace(it);
3073 3090
      }
3074 3091
    }
3075 3092

	
3076 3093
  protected:
3077 3094

	
3078 3095
    void unlace(const Key& key) {
3079 3096
      typename Parent::Value& node = Parent::operator[](key);
3080 3097
      if (node.prev != INVALID) {
3081 3098
        Parent::operator[](node.prev).next = node.next;
3082 3099
      } else {
3083 3100
        if (node.next != INVALID) {
3084 3101
          _first[node.value] = node.next;
3085 3102
        } else {
3086 3103
          _first.erase(node.value);
3087 3104
        }
3088 3105
      }
3089 3106
      if (node.next != INVALID) {
3090 3107
        Parent::operator[](node.next).prev = node.prev;
3091 3108
      }
3092 3109
    }
3093 3110

	
3094 3111
    void lace(const Key& key) {
3095 3112
      typename Parent::Value& node = Parent::operator[](key);
3096 3113
      typename std::map<Value, Key>::iterator it = _first.find(node.value);
3097 3114
      if (it == _first.end()) {
3098 3115
        node.prev = node.next = INVALID;
3099 3116
        _first.insert(std::make_pair(node.value, key));
3100 3117
      } else {
3101 3118
        node.prev = INVALID;
3102 3119
        node.next = it->second;
3103 3120
        if (node.next != INVALID) {
3104 3121
          Parent::operator[](node.next).prev = key;
3105 3122
        }
3106 3123
        it->second = key;
3107 3124
      }
3108 3125
    }
3109 3126

	
3110 3127
  public:
3111 3128

	
3112 3129
    /// \brief Forward iterator for values.
3113 3130
    ///
3114 3131
    /// This iterator is an STL compatible forward
3115 3132
    /// iterator on the values of the map. The values can
3116 3133
    /// be accessed in the <tt>[beginValue, endValue)</tt> range.
3117 3134
    class ValueIt
3118 3135
      : public std::iterator<std::forward_iterator_tag, Value> {
3119 3136
      friend class IterableValueMap;
3120 3137
    private:
3121 3138
      ValueIt(typename std::map<Value, Key>::const_iterator _it)
3122 3139
        : it(_it) {}
3123 3140
    public:
3124 3141

	
3125 3142
      /// Constructor
3126 3143
      ValueIt() {}
3127 3144

	
3128 3145
      /// \e
3129 3146
      ValueIt& operator++() { ++it; return *this; }
3130 3147
      /// \e
3131 3148
      ValueIt operator++(int) {
3132 3149
        ValueIt tmp(*this);
3133 3150
        operator++();
3134 3151
        return tmp;
3135 3152
      }
3136 3153

	
3137 3154
      /// \e
3138 3155
      const Value& operator*() const { return it->first; }
3139 3156
      /// \e
3140 3157
      const Value* operator->() const { return &(it->first); }
3141 3158

	
3142 3159
      /// \e
3143 3160
      bool operator==(ValueIt jt) const { return it == jt.it; }
3144 3161
      /// \e
3145 3162
      bool operator!=(ValueIt jt) const { return it != jt.it; }
3146 3163

	
3147 3164
    private:
3148 3165
      typename std::map<Value, Key>::const_iterator it;
3149 3166
    };
3150 3167

	
3151 3168
    /// \brief Returns an iterator to the first value.
3152 3169
    ///
3153 3170
    /// Returns an STL compatible iterator to the
3154 3171
    /// first value of the map. The values of the
3155 3172
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
3156 3173
    /// range.
3157 3174
    ValueIt beginValue() const {
3158 3175
      return ValueIt(_first.begin());
3159 3176
    }
3160 3177

	
3161 3178
    /// \brief Returns an iterator after the last value.
3162 3179
    ///
3163 3180
    /// Returns an STL compatible iterator after the
3164 3181
    /// last value of the map. The values of the
3165 3182
    /// map can be accessed in the <tt>[beginValue, endValue)</tt>
3166 3183
    /// range.
3167 3184
    ValueIt endValue() const {
3168 3185
      return ValueIt(_first.end());
3169 3186
    }
3170 3187

	
3171 3188
    /// \brief Set operation of the map.
3172 3189
    ///
3173 3190
    /// Set operation of the map.
3174 3191
    void set(const Key& key, const Value& value) {
3175 3192
      unlace(key);
3176 3193
      Parent::operator[](key).value = value;
3177 3194
      lace(key);
3178 3195
    }
3179 3196

	
3180 3197
    /// \brief Const subscript operator of the map.
3181 3198
    ///
3182 3199
    /// Const subscript operator of the map.
3183 3200
    const Value& operator[](const Key& key) const {
3184 3201
      return Parent::operator[](key).value;
3185 3202
    }
3186 3203

	
3187 3204
    /// \brief Iterator for the keys with the same value.
3188 3205
    ///
3189 3206
    /// Iterator for the keys with the same value. It works
3190 3207
    /// like a graph item iterator, it can be converted to
3191 3208
    /// the item type of the map, incremented with \c ++ operator, and
3192 3209
    /// if the iterator leaves the last valid item, it will be equal to
3193 3210
    /// \c INVALID.
3194 3211
    class ItemIt : public Key {
3195 3212
    public:
3196 3213
      typedef Key Parent;
3197 3214

	
3198 3215
      /// \brief Invalid constructor \& conversion.
3199 3216
      ///
3200 3217
      /// This constructor initializes the iterator to be invalid.
3201 3218
      /// \sa Invalid for more details.
3202 3219
      ItemIt(Invalid) : Parent(INVALID), _map(0) {}
3203 3220

	
3204 3221
      /// \brief Creates an iterator with a value.
3205 3222
      ///
3206 3223
      /// Creates an iterator with a value. It iterates on the
3207 3224
      /// keys which have the given value.
3208 3225
      /// \param map The IterableValueMap
3209 3226
      /// \param value The value
3210 3227
      ItemIt(const IterableValueMap& map, const Value& value) : _map(&map) {
3211 3228
        typename std::map<Value, Key>::const_iterator it =
3212 3229
          map._first.find(value);
3213 3230
        if (it == map._first.end()) {
3214 3231
          Parent::operator=(INVALID);
3215 3232
        } else {
3216 3233
          Parent::operator=(it->second);
3217 3234
        }
3218 3235
      }
3219 3236

	
3220 3237
      /// \brief Increment operator.
3221 3238
      ///
3222 3239
      /// Increment Operator.
3223 3240
      ItemIt& operator++() {
3224 3241
        Parent::operator=(_map->IterableValueMap::Parent::
3225 3242
                          operator[](static_cast<Parent&>(*this)).next);
3226 3243
        return *this;
3227 3244
      }
3228 3245

	
3229 3246

	
3230 3247
    private:
3231 3248
      const IterableValueMap* _map;
3232 3249
    };
3233 3250

	
3234 3251
  protected:
3235 3252

	
3236 3253
    virtual void add(const Key& key) {
3237 3254
      Parent::add(key);
3238 3255
      unlace(key);
3239 3256
    }
3240 3257

	
3241 3258
    virtual void add(const std::vector<Key>& keys) {
3242 3259
      Parent::add(keys);
3243 3260
      for (int i = 0; i < int(keys.size()); ++i) {
3244 3261
        lace(keys[i]);
3245 3262
      }
3246 3263
    }
3247 3264

	
3248 3265
    virtual void erase(const Key& key) {
3249 3266
      unlace(key);
3250 3267
      Parent::erase(key);
3251 3268
    }
3252 3269

	
3253 3270
    virtual void erase(const std::vector<Key>& keys) {
3254 3271
      for (int i = 0; i < int(keys.size()); ++i) {
3255 3272
        unlace(keys[i]);
3256 3273
      }
3257 3274
      Parent::erase(keys);
3258 3275
    }
3259 3276

	
3260 3277
    virtual void build() {
3261 3278
      Parent::build();
3262 3279
      for (typename Parent::ItemIt it(*this); it != INVALID; ++it) {
3263 3280
        lace(it);
3264 3281
      }
3265 3282
    }
3266 3283

	
3267 3284
    virtual void clear() {
3268 3285
      _first.clear();
3269 3286
      Parent::clear();
3270 3287
    }
3271 3288

	
3272 3289
  private:
3273 3290
    std::map<Value, Key> _first;
3274 3291
  };
3275 3292

	
3276 3293
  /// \brief Map of the source nodes of arcs in a digraph.
3277 3294
  ///
3278 3295
  /// SourceMap provides access for the source node of each arc in a digraph,
3279 3296
  /// which is returned by the \c source() function of the digraph.
3280 3297
  /// \tparam GR The digraph type.
3281 3298
  /// \see TargetMap
3282 3299
  template <typename GR>
3283 3300
  class SourceMap {
3284 3301
  public:
3285 3302

	
3286 3303
    /// The key type (the \c Arc type of the digraph).
3287 3304
    typedef typename GR::Arc Key;
3288 3305
    /// The value type (the \c Node type of the digraph).
3289 3306
    typedef typename GR::Node Value;
3290 3307

	
3291 3308
    /// \brief Constructor
3292 3309
    ///
3293 3310
    /// Constructor.
3294 3311
    /// \param digraph The digraph that the map belongs to.
3295 3312
    explicit SourceMap(const GR& digraph) : _graph(digraph) {}
3296 3313

	
3297 3314
    /// \brief Returns the source node of the given arc.
3298 3315
    ///
3299 3316
    /// Returns the source node of the given arc.
3300 3317
    Value operator[](const Key& arc) const {
3301 3318
      return _graph.source(arc);
3302 3319
    }
3303 3320

	
3304 3321
  private:
3305 3322
    const GR& _graph;
3306 3323
  };
3307 3324

	
3308 3325
  /// \brief Returns a \c SourceMap class.
3309 3326
  ///
3310 3327
  /// This function just returns an \c SourceMap class.
3311 3328
  /// \relates SourceMap
3312 3329
  template <typename GR>
3313 3330
  inline SourceMap<GR> sourceMap(const GR& graph) {
3314 3331
    return SourceMap<GR>(graph);
3315 3332
  }
3316 3333

	
3317 3334
  /// \brief Map of the target nodes of arcs in a digraph.
3318 3335
  ///
3319 3336
  /// TargetMap provides access for the target node of each arc in a digraph,
3320 3337
  /// which is returned by the \c target() function of the digraph.
3321 3338
  /// \tparam GR The digraph type.
3322 3339
  /// \see SourceMap
3323 3340
  template <typename GR>
3324 3341
  class TargetMap {
3325 3342
  public:
3326 3343

	
3327 3344
    /// The key type (the \c Arc type of the digraph).
3328 3345
    typedef typename GR::Arc Key;
3329 3346
    /// The value type (the \c Node type of the digraph).
3330 3347
    typedef typename GR::Node Value;
3331 3348

	
3332 3349
    /// \brief Constructor
3333 3350
    ///
3334 3351
    /// Constructor.
3335 3352
    /// \param digraph The digraph that the map belongs to.
3336 3353
    explicit TargetMap(const GR& digraph) : _graph(digraph) {}
3337 3354

	
3338 3355
    /// \brief Returns the target node of the given arc.
3339 3356
    ///
3340 3357
    /// Returns the target node of the given arc.
3341 3358
    Value operator[](const Key& e) const {
3342 3359
      return _graph.target(e);
3343 3360
    }
3344 3361

	
3345 3362
  private:
3346 3363
    const GR& _graph;
3347 3364
  };
3348 3365

	
3349 3366
  /// \brief Returns a \c TargetMap class.
3350 3367
  ///
3351 3368
  /// This function just returns a \c TargetMap class.
3352 3369
  /// \relates TargetMap
3353 3370
  template <typename GR>
3354 3371
  inline TargetMap<GR> targetMap(const GR& graph) {
3355 3372
    return TargetMap<GR>(graph);
3356 3373
  }
3357 3374

	
3358 3375
  /// \brief Map of the "forward" directed arc view of edges in a graph.
3359 3376
  ///
3360 3377
  /// ForwardMap provides access for the "forward" directed arc view of
3361 3378
  /// each edge in a graph, which is returned by the \c direct() function
3362 3379
  /// of the graph with \c true parameter.
3363 3380
  /// \tparam GR The graph type.
3364 3381
  /// \see BackwardMap
3365 3382
  template <typename GR>
3366 3383
  class ForwardMap {
3367 3384
  public:
3368 3385

	
3369 3386
    /// The key type (the \c Edge type of the digraph).
3370 3387
    typedef typename GR::Edge Key;
3371 3388
    /// The value type (the \c Arc type of the digraph).
3372 3389
    typedef typename GR::Arc Value;
3373 3390

	
3374 3391
    /// \brief Constructor
3375 3392
    ///
3376 3393
    /// Constructor.
3377 3394
    /// \param graph The graph that the map belongs to.
3378 3395
    explicit ForwardMap(const GR& graph) : _graph(graph) {}
3379 3396

	
3380 3397
    /// \brief Returns the "forward" directed arc view of the given edge.
3381 3398
    ///
3382 3399
    /// Returns the "forward" directed arc view of the given edge.
3383 3400
    Value operator[](const Key& key) const {
3384 3401
      return _graph.direct(key, true);
3385 3402
    }
3386 3403

	
3387 3404
  private:
3388 3405
    const GR& _graph;
3389 3406
  };
3390 3407

	
3391 3408
  /// \brief Returns a \c ForwardMap class.
3392 3409
  ///
3393 3410
  /// This function just returns an \c ForwardMap class.
3394 3411
  /// \relates ForwardMap
3395 3412
  template <typename GR>
3396 3413
  inline ForwardMap<GR> forwardMap(const GR& graph) {
3397 3414
    return ForwardMap<GR>(graph);
3398 3415
  }
3399 3416

	
3400 3417
  /// \brief Map of the "backward" directed arc view of edges in a graph.
3401 3418
  ///
3402 3419
  /// BackwardMap provides access for the "backward" directed arc view of
3403 3420
  /// each edge in a graph, which is returned by the \c direct() function
3404 3421
  /// of the graph with \c false parameter.
3405 3422
  /// \tparam GR The graph type.
3406 3423
  /// \see ForwardMap
3407 3424
  template <typename GR>
3408 3425
  class BackwardMap {
3409 3426
  public:
3410 3427

	
3411 3428
    /// The key type (the \c Edge type of the digraph).
3412 3429
    typedef typename GR::Edge Key;
3413 3430
    /// The value type (the \c Arc type of the digraph).
3414 3431
    typedef typename GR::Arc Value;
3415 3432

	
3416 3433
    /// \brief Constructor
3417 3434
    ///
3418 3435
    /// Constructor.
3419 3436
    /// \param graph The graph that the map belongs to.
3420 3437
    explicit BackwardMap(const GR& graph) : _graph(graph) {}
3421 3438

	
3422 3439
    /// \brief Returns the "backward" directed arc view of the given edge.
3423 3440
    ///
3424 3441
    /// Returns the "backward" directed arc view of the given edge.
3425 3442
    Value operator[](const Key& key) const {
3426 3443
      return _graph.direct(key, false);
3427 3444
    }
3428 3445

	
3429 3446
  private:
3430 3447
    const GR& _graph;
3431 3448
  };
3432 3449

	
3433 3450
  /// \brief Returns a \c BackwardMap class
3434 3451

	
3435 3452
  /// This function just returns a \c BackwardMap class.
3436 3453
  /// \relates BackwardMap
3437 3454
  template <typename GR>
3438 3455
  inline BackwardMap<GR> backwardMap(const GR& graph) {
3439 3456
    return BackwardMap<GR>(graph);
3440 3457
  }
3441 3458

	
3442 3459
  /// \brief Map of the in-degrees of nodes in a digraph.
3443 3460
  ///
3444 3461
  /// This map returns the in-degree of a node. Once it is constructed,
3445 3462
  /// the degrees are stored in a standard \c NodeMap, so each query is done
3446 3463
  /// in constant time. On the other hand, the values are updated automatically
3447 3464
  /// whenever the digraph changes.
3448 3465
  ///
3449 3466
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
3450 3467
  /// may provide alternative ways to modify the digraph.
3451 3468
  /// The correct behavior of InDegMap is not guarantied if these additional
3452 3469
  /// features are used. For example the functions
3453 3470
  /// \ref ListDigraph::changeSource() "changeSource()",
3454 3471
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
3455 3472
  /// \ref ListDigraph::reverseArc() "reverseArc()"
3456 3473
  /// of \ref ListDigraph will \e not update the degree values correctly.
3457 3474
  ///
3458 3475
  /// \sa OutDegMap
3459 3476
  template <typename GR>
3460 3477
  class InDegMap
3461 3478
    : protected ItemSetTraits<GR, typename GR::Arc>
3462 3479
      ::ItemNotifier::ObserverBase {
3463 3480

	
3464 3481
  public:
3465 3482

	
3466 3483
    /// The graph type of InDegMap
3467 3484
    typedef GR Graph;
3468 3485
    typedef GR Digraph;
3469 3486
    /// The key type
3470 3487
    typedef typename Digraph::Node Key;
3471 3488
    /// The value type
3472 3489
    typedef int Value;
3473 3490

	
3474 3491
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
3475 3492
    ::ItemNotifier::ObserverBase Parent;
3476 3493

	
3477 3494
  private:
3478 3495

	
3479 3496
    class AutoNodeMap
3480 3497
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
3481 3498
    public:
3482 3499

	
3483 3500
      typedef typename ItemSetTraits<Digraph, Key>::
3484 3501
      template Map<int>::Type Parent;
3485 3502

	
3486 3503
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
3487 3504

	
3488 3505
      virtual void add(const Key& key) {
3489 3506
        Parent::add(key);
3490 3507
        Parent::set(key, 0);
3491 3508
      }
3492 3509

	
3493 3510
      virtual void add(const std::vector<Key>& keys) {
3494 3511
        Parent::add(keys);
3495 3512
        for (int i = 0; i < int(keys.size()); ++i) {
3496 3513
          Parent::set(keys[i], 0);
3497 3514
        }
3498 3515
      }
3499 3516

	
3500 3517
      virtual void build() {
3501 3518
        Parent::build();
3502 3519
        Key it;
3503 3520
        typename Parent::Notifier* nf = Parent::notifier();
3504 3521
        for (nf->first(it); it != INVALID; nf->next(it)) {
3505 3522
          Parent::set(it, 0);
3506 3523
        }
3507 3524
      }
3508 3525
    };
3509 3526

	
3510 3527
  public:
3511 3528

	
3512 3529
    /// \brief Constructor.
3513 3530
    ///
3514 3531
    /// Constructor for creating an in-degree map.
3515 3532
    explicit InDegMap(const Digraph& graph)
3516 3533
      : _digraph(graph), _deg(graph) {
3517 3534
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
3518 3535

	
3519 3536
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3520 3537
        _deg[it] = countInArcs(_digraph, it);
3521 3538
      }
3522 3539
    }
3523 3540

	
3524 3541
    /// \brief Gives back the in-degree of a Node.
3525 3542
    ///
3526 3543
    /// Gives back the in-degree of a Node.
3527 3544
    int operator[](const Key& key) const {
3528 3545
      return _deg[key];
3529 3546
    }
3530 3547

	
3531 3548
  protected:
3532 3549

	
3533 3550
    typedef typename Digraph::Arc Arc;
3534 3551

	
3535 3552
    virtual void add(const Arc& arc) {
3536 3553
      ++_deg[_digraph.target(arc)];
3537 3554
    }
3538 3555

	
3539 3556
    virtual void add(const std::vector<Arc>& arcs) {
3540 3557
      for (int i = 0; i < int(arcs.size()); ++i) {
3541 3558
        ++_deg[_digraph.target(arcs[i])];
3542 3559
      }
3543 3560
    }
3544 3561

	
3545 3562
    virtual void erase(const Arc& arc) {
3546 3563
      --_deg[_digraph.target(arc)];
3547 3564
    }
3548 3565

	
3549 3566
    virtual void erase(const std::vector<Arc>& arcs) {
3550 3567
      for (int i = 0; i < int(arcs.size()); ++i) {
3551 3568
        --_deg[_digraph.target(arcs[i])];
3552 3569
      }
3553 3570
    }
3554 3571

	
3555 3572
    virtual void build() {
3556 3573
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3557 3574
        _deg[it] = countInArcs(_digraph, it);
3558 3575
      }
3559 3576
    }
3560 3577

	
3561 3578
    virtual void clear() {
3562 3579
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3563 3580
        _deg[it] = 0;
3564 3581
      }
3565 3582
    }
3566 3583
  private:
3567 3584

	
3568 3585
    const Digraph& _digraph;
3569 3586
    AutoNodeMap _deg;
3570 3587
  };
3571 3588

	
3572 3589
  /// \brief Map of the out-degrees of nodes in a digraph.
3573 3590
  ///
3574 3591
  /// This map returns the out-degree of a node. Once it is constructed,
3575 3592
  /// the degrees are stored in a standard \c NodeMap, so each query is done
3576 3593
  /// in constant time. On the other hand, the values are updated automatically
3577 3594
  /// whenever the digraph changes.
3578 3595
  ///
3579 3596
  /// \warning Besides \c addNode() and \c addArc(), a digraph structure
3580 3597
  /// may provide alternative ways to modify the digraph.
3581 3598
  /// The correct behavior of OutDegMap is not guarantied if these additional
3582 3599
  /// features are used. For example the functions
3583 3600
  /// \ref ListDigraph::changeSource() "changeSource()",
3584 3601
  /// \ref ListDigraph::changeTarget() "changeTarget()" and
3585 3602
  /// \ref ListDigraph::reverseArc() "reverseArc()"
3586 3603
  /// of \ref ListDigraph will \e not update the degree values correctly.
3587 3604
  ///
3588 3605
  /// \sa InDegMap
3589 3606
  template <typename GR>
3590 3607
  class OutDegMap
3591 3608
    : protected ItemSetTraits<GR, typename GR::Arc>
3592 3609
      ::ItemNotifier::ObserverBase {
3593 3610

	
3594 3611
  public:
3595 3612

	
3596 3613
    /// The graph type of OutDegMap
3597 3614
    typedef GR Graph;
3598 3615
    typedef GR Digraph;
3599 3616
    /// The key type
3600 3617
    typedef typename Digraph::Node Key;
3601 3618
    /// The value type
3602 3619
    typedef int Value;
3603 3620

	
3604 3621
    typedef typename ItemSetTraits<Digraph, typename Digraph::Arc>
3605 3622
    ::ItemNotifier::ObserverBase Parent;
3606 3623

	
3607 3624
  private:
3608 3625

	
3609 3626
    class AutoNodeMap
3610 3627
      : public ItemSetTraits<Digraph, Key>::template Map<int>::Type {
3611 3628
    public:
3612 3629

	
3613 3630
      typedef typename ItemSetTraits<Digraph, Key>::
3614 3631
      template Map<int>::Type Parent;
3615 3632

	
3616 3633
      AutoNodeMap(const Digraph& digraph) : Parent(digraph, 0) {}
3617 3634

	
3618 3635
      virtual void add(const Key& key) {
3619 3636
        Parent::add(key);
3620 3637
        Parent::set(key, 0);
3621 3638
      }
3622 3639
      virtual void add(const std::vector<Key>& keys) {
3623 3640
        Parent::add(keys);
3624 3641
        for (int i = 0; i < int(keys.size()); ++i) {
3625 3642
          Parent::set(keys[i], 0);
3626 3643
        }
3627 3644
      }
3628 3645
      virtual void build() {
3629 3646
        Parent::build();
3630 3647
        Key it;
3631 3648
        typename Parent::Notifier* nf = Parent::notifier();
3632 3649
        for (nf->first(it); it != INVALID; nf->next(it)) {
3633 3650
          Parent::set(it, 0);
3634 3651
        }
3635 3652
      }
3636 3653
    };
3637 3654

	
3638 3655
  public:
3639 3656

	
3640 3657
    /// \brief Constructor.
3641 3658
    ///
3642 3659
    /// Constructor for creating an out-degree map.
3643 3660
    explicit OutDegMap(const Digraph& graph)
3644 3661
      : _digraph(graph), _deg(graph) {
3645 3662
      Parent::attach(_digraph.notifier(typename Digraph::Arc()));
3646 3663

	
3647 3664
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3648 3665
        _deg[it] = countOutArcs(_digraph, it);
3649 3666
      }
3650 3667
    }
3651 3668

	
3652 3669
    /// \brief Gives back the out-degree of a Node.
3653 3670
    ///
3654 3671
    /// Gives back the out-degree of a Node.
3655 3672
    int operator[](const Key& key) const {
3656 3673
      return _deg[key];
3657 3674
    }
3658 3675

	
3659 3676
  protected:
3660 3677

	
3661 3678
    typedef typename Digraph::Arc Arc;
3662 3679

	
3663 3680
    virtual void add(const Arc& arc) {
3664 3681
      ++_deg[_digraph.source(arc)];
3665 3682
    }
3666 3683

	
3667 3684
    virtual void add(const std::vector<Arc>& arcs) {
3668 3685
      for (int i = 0; i < int(arcs.size()); ++i) {
3669 3686
        ++_deg[_digraph.source(arcs[i])];
3670 3687
      }
3671 3688
    }
3672 3689

	
3673 3690
    virtual void erase(const Arc& arc) {
3674 3691
      --_deg[_digraph.source(arc)];
3675 3692
    }
3676 3693

	
3677 3694
    virtual void erase(const std::vector<Arc>& arcs) {
3678 3695
      for (int i = 0; i < int(arcs.size()); ++i) {
3679 3696
        --_deg[_digraph.source(arcs[i])];
3680 3697
      }
3681 3698
    }
3682 3699

	
3683 3700
    virtual void build() {
3684 3701
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3685 3702
        _deg[it] = countOutArcs(_digraph, it);
3686 3703
      }
3687 3704
    }
3688 3705

	
3689 3706
    virtual void clear() {
3690 3707
      for(typename Digraph::NodeIt it(_digraph); it != INVALID; ++it) {
3691 3708
        _deg[it] = 0;
3692 3709
      }
3693 3710
    }
3694 3711
  private:
3695 3712

	
3696 3713
    const Digraph& _digraph;
3697 3714
    AutoNodeMap _deg;
3698 3715
  };
3699 3716

	
3700 3717
  /// \brief Potential difference map
3701 3718
  ///
3702 3719
  /// PotentialDifferenceMap returns the difference between the potentials of
3703 3720
  /// the source and target nodes of each arc in a digraph, i.e. it returns
3704 3721
  /// \code
3705 3722
  ///   potential[gr.target(arc)] - potential[gr.source(arc)].
3706 3723
  /// \endcode
3707 3724
  /// \tparam GR The digraph type.
3708 3725
  /// \tparam POT A node map storing the potentials.
3709 3726
  template <typename GR, typename POT>
3710 3727
  class PotentialDifferenceMap {
3711 3728
  public:
3712 3729
    /// Key type
3713 3730
    typedef typename GR::Arc Key;
3714 3731
    /// Value type
3715 3732
    typedef typename POT::Value Value;
3716 3733

	
3717 3734
    /// \brief Constructor
3718 3735
    ///
3719 3736
    /// Contructor of the map.
3720 3737
    explicit PotentialDifferenceMap(const GR& gr,
3721 3738
                                    const POT& potential)
3722 3739
      : _digraph(gr), _potential(potential) {}
3723 3740

	
3724 3741
    /// \brief Returns the potential difference for the given arc.
3725 3742
    ///
3726 3743
    /// Returns the potential difference for the given arc, i.e.
3727 3744
    /// \code
3728 3745
    ///   potential[gr.target(arc)] - potential[gr.source(arc)].
3729 3746
    /// \endcode
3730 3747
    Value operator[](const Key& arc) const {
3731 3748
      return _potential[_digraph.target(arc)] -
3732 3749
        _potential[_digraph.source(arc)];
3733 3750
    }
3734 3751

	
3735 3752
  private:
3736 3753
    const GR& _digraph;
3737 3754
    const POT& _potential;
3738 3755
  };
3739 3756

	
3740 3757
  /// \brief Returns a PotentialDifferenceMap.
3741 3758
  ///
3742 3759
  /// This function just returns a PotentialDifferenceMap.
3743 3760
  /// \relates PotentialDifferenceMap
3744 3761
  template <typename GR, typename POT>
3745 3762
  PotentialDifferenceMap<GR, POT>
3746 3763
  potentialDifferenceMap(const GR& gr, const POT& potential) {
3747 3764
    return PotentialDifferenceMap<GR, POT>(gr, potential);
3748 3765
  }
3749 3766

	
3750 3767
  /// @}
3751 3768
}
3752 3769

	
3753 3770
#endif // LEMON_MAPS_H
0 comments (0 inline)