↑ Collapse diff ↑
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
namespace lemon {
20
/*!
21

	
22
\page migration Migration from the 0.x Series
23

	
24
This guide gives an in depth description on what has changed compared
25
to the 0.x release series.
26

	
27
Many of these changes adjusted automatically by the
28
<tt>script/lemon-0.x-to-1.x.sh</tt> tool. Those requiring manual
29
update are typeset <b>boldface</b>.
30

	
31
\section migration-graph Graph Related Name Changes
32

	
33
- \ref concepts::Digraph "Directed graphs" are called \c Digraph and
34
  they have <tt>Arc</tt>s (instead of <tt>Edge</tt>s), while
35
  \ref concepts::Graph "undirected graphs" are called \c Graph
36
  (instead of \c UGraph) and they have <tt>Edge</tt>s (instead of
37
  <tt>UEdge</tt>s). These changes reflected thoroughly everywhere in
38
  the library. Namely,
39
  - \c Graph -> \c Digraph
40
    - \c %ListGraph -> \c ListDigraph, \c %SmartGraph -> \c SmartDigraph etc.
41
  - \c UGraph -> \c Graph
42
    - \c ListUGraph -> \c ListGraph, \c SmartUGraph -> \c SmartGraph etc.
43
  - \c Edge -> \c Arc, \c UEdge -> \c Edge
44
  - \c EdgeMap -> \c ArcMap, \c UEdgeMap -> \c EdgeMap
45
  - \c EdgeIt -> \c ArcIt, \c UEdgeIt -> \c EdgeIt
46
  - Class names and function names containing the words \c graph,
47
    \c ugraph, \e edge or \e arc should also be updated.
48
- <b>The two endpoints of an (\e undirected) \c Edge can be obtained by the
49
  <tt>u()</tt> and <tt>v()</tt> member function of the graph
50
  (instead of <tt>source()</tt> and <tt>target()</tt>). This change
51
  must be done by hand.</b>
52
  \n Of course, you can still use <tt>source()</tt> and <tt>target()</tt>
53
  for <tt>Arc</tt>s (directed edges).
54

	
55
\warning
56
<b>The <tt>script/lemon-0.x-to-1.x.sh</tt> tool replaces all instances of
57
the words \c graph, \c digraph, \c edge and \c arc, so it replaces them
58
in strings, comments etc. as well as in all identifiers.</b>
59

	
60
\section migration-lgf LGF tools
61
 - The \ref lgf-format "LGF file format" has changed,
62
   <tt>\@nodeset</tt> has changed to <tt>\@nodes</tt>,
63
   <tt>\@edgeset</tt> and <tt>\@uedgeset</tt> to <tt>\@arcs</tt> or
64
   <tt>\@edges</tt>, which become completely equivalents. The
65
   <tt>\@nodes</tt>, <tt>\@edges</tt> and <tt>\@uedges</tt> sections are
66
   removed from the format, the content of them should be
67
   the part of <tt>\@attributes</tt> section. The data fields in
68
   the sections must follow a strict format, they must be either character
69
   sequences without whitespaces or quoted strings.
70
 - The <tt>LemonReader</tt> and <tt>LemonWriter</tt> core interfaces
71
   are no longer available.
72
 - The implementation of the general section readers and writers has changed
73
   they are simple functors now. Beside the old
74
   stream based section handling, currently line oriented section
75
   reading and writing are also supported. In the
76
   section readers the lines must be counted manually. The sections
77
   should be read and written with the SectionWriter and SectionReader
78
   classes.
79
 - Instead of the item readers and writers, item converters should be
80
   used. The converters are functors, which map the type to
81
   std::string or std::string to the type. The converters for standard
82
   containers hasn't yet been implemented in the new LEMON. The converters
83
   can return strings in any format, because if it is necessary, the LGF
84
   writer and reader will quote and unquote the given value.
85
 - The DigraphReader and DigraphWriter can used similarly to the
86
   0.x series, however the <tt>read</tt> or <tt>write</tt> prefix of
87
   the member functions are removed.
88
 - The new LEMON supports the function like interface, the \c
89
   digraphReader and \c digraphWriter functions are more convenient than
90
   using the classes directly.
91

	
92
\section migration-search BFS, DFS and Dijkstra
93
- <b>Using the function interface of BFS, DFS and %Dijkstra both source and
94
  target nodes can be given as parameters of the <tt>run()</tt> function
95
  (instead of \c bfs(), \c dfs() or \c dijkstra() itself).</b>
96
- \ref named-templ-param "Named class template parameters" of \c Bfs,
97
  \c Dfs, \c Dijkstra, \c BfsVisit, \c DfsVisit are renamed to start
98
  with "Set" instead of "Def". Namely,
99
  - \c DefPredMap -> \c SetPredMap
100
  - \c DefDistMap -> \c SetDistMap
101
  - \c DefReachedMap -> \c SetReachedMap
102
  - \c DefProcessedMap -> \c SetProcessedMap
103
  - \c DefHeap -> \c SetHeap
104
  - \c DefStandardHeap -> \c SetStandardHeap
105
  - \c DefOperationTraits -> \c SetOperationTraits
106
  - \c DefProcessedMapToBeDefaultMap -> \c SetStandardProcessedMap
107

	
108
\section migration-error Exceptions and Debug tools
109

	
110
<b>The class hierarchy of exceptions has largely been simplified. Now,
111
only the i/o related tools may throw exceptions. All other exceptions
112
have been replaced with either the \c LEMON_ASSERT or the \c LEMON_DEBUG
113
macros.</b>
114

	
115
<b>On the other hand, the parameter order of constructors of the
116
exceptions has been changed. See \ref IoError and \ref FormatError for
117
more details.</b>
118

	
119
\section migration-other Others
120
- <b>The contents of <tt>graph_utils.h</tt> are moved to <tt>core.h</tt>
121
  and <tt>maps.h</tt>. <tt>core.h</tt> is included by all graph types,
122
  therefore it usually do not have to be included directly.</b>
123
- <b><tt>path_utils.h</tt> is merged to \c path.h.</b>
124
- <b>The semantic of the assignment operations and copy constructors of maps
125
  are still under discussion. So, you must copy them by hand (i.e. copy
126
  each entry one-by-one)</b>
127
- <b>The parameters of the graph copying tools (i.e. \c GraphCopy,
128
  \c DigraphCopy) have to be given in the from-to order.</b>
129
- \c copyDigraph() and \c copyGraph() are renamed to \c digraphCopy()
130
  and \c graphCopy(), respectively.
131
- <b>The interface of \ref DynArcLookUp has changed. It is now the same as
132
  of \ref ArcLookUp and \ref AllArcLookUp</b>
133
- Some map types should also been renamed. Namely,
134
  - \c IntegerMap -> \c RangeMap
135
  - \c StdMap -> \c SparseMap
136
  - \c FunctorMap -> \c FunctorToMap
137
  - \c MapFunctor -> \c MapToFunctor
138
  - \c ForkWriteMap -> \c ForkMap
139
  - \c StoreBoolMap -> \c LoggerBoolMap
140
- \c dim2::BoundingBox -> \c dim2::Box
141

	
142
*/
143
}
Ignore white space 6 line context
1
#!/bin/bash
2

	
3
set -e
4

	
5
if [ $# -eq 0 -o x$1 = "x-h" -o x$1 = "x-help" -o x$1 = "x--help" ]; then
6
	echo "Usage:"
7
	echo "  $0 source-file"
8
	exit
9
fi
10

	
11
TMP=`mktemp`
12

	
13
sed	-e "s/undirected graph/_gr_aph_label_/g"\
14
	-e "s/undirected edge/_ed_ge_label_/g"\
15
	-e "s/graph_/_gr_aph_label__/g"\
16
	-e "s/_graph/__gr_aph_label_/g"\
17
	-e "s/UGraph/_Gr_aph_label_/g"\
18
	-e "s/uGraph/_gr_aph_label_/g"\
19
	-e "s/ugraph/_gr_aph_label_/g"\
20
	-e "s/Graph/_Digr_aph_label_/g"\
21
	-e "s/graph/_digr_aph_label_/g"\
22
	-e "s/UEdge/_Ed_ge_label_/g"\
23
	-e "s/uEdge/_ed_ge_label_/g"\
24
	-e "s/uedge/_ed_ge_label_/g"\
25
	-e "s/IncEdgeIt/_In_cEd_geIt_label_/g"\
26
	-e "s/Edge/_Ar_c_label_/g"\
27
	-e "s/edge/_ar_c_label_/g"\
28
	-e "s/ANode/_Re_d_label_/g"\
29
	-e "s/BNode/_Blu_e_label_/g"\
30
	-e "s/A-Node/_Re_d_label_/g"\
31
	-e "s/B-Node/_Blu_e_label_/g"\
32
	-e "s/anode/_re_d_label_/g"\
33
	-e "s/bnode/_blu_e_label_/g"\
34
	-e "s/aNode/_re_d_label_/g"\
35
	-e "s/bNode/_blu_e_label_/g"\
36
	-e "s/_Digr_aph_label_/Digraph/g"\
37
	-e "s/_digr_aph_label_/digraph/g"\
38
	-e "s/_Gr_aph_label_/Graph/g"\
39
	-e "s/_gr_aph_label_/graph/g"\
40
	-e "s/_Ar_c_label_/Arc/g"\
41
	-e "s/_ar_c_label_/arc/g"\
42
	-e "s/_Ed_ge_label_/Edge/g"\
43
	-e "s/_ed_ge_label_/edge/g"\
44
	-e "s/_In_cEd_geIt_label_/IncEdgeIt/g"\
45
	-e "s/_Re_d_label_/Red/g"\
46
	-e "s/_Blu_e_label_/Blue/g"\
47
	-e "s/_re_d_label_/red/g"\
48
	-e "s/_blu_e_label_/blue/g"\
49
	-e "s/\(\W\)DefPredMap\(\W\)/\1SetPredMap\2/g"\
50
	-e "s/\(\W\)DefPredMap$/\1SetPredMap/g"\
51
	-e "s/^DefPredMap\(\W\)/SetPredMap\1/g"\
52
	-e "s/^DefPredMap$/SetPredMap/g"\
53
	-e "s/\(\W\)DefDistMap\(\W\)/\1SetDistMap\2/g"\
54
	-e "s/\(\W\)DefDistMap$/\1SetDistMap/g"\
55
	-e "s/^DefDistMap\(\W\)/SetDistMap\1/g"\
56
	-e "s/^DefDistMap$/SetDistMap/g"\
57
	-e "s/\(\W\)DefReachedMap\(\W\)/\1SetReachedMap\2/g"\
58
	-e "s/\(\W\)DefReachedMap$/\1SetReachedMap/g"\
59
	-e "s/^DefReachedMap\(\W\)/SetReachedMap\1/g"\
60
	-e "s/^DefReachedMap$/SetReachedMap/g"\
61
	-e "s/\(\W\)DefProcessedMap\(\W\)/\1SetProcessedMap\2/g"\
62
	-e "s/\(\W\)DefProcessedMap$/\1SetProcessedMap/g"\
63
	-e "s/^DefProcessedMap\(\W\)/SetProcessedMap\1/g"\
64
	-e "s/^DefProcessedMap$/SetProcessedMap/g"\
65
	-e "s/\(\W\)DefHeap\(\W\)/\1SetHeap\2/g"\
66
	-e "s/\(\W\)DefHeap$/\1SetHeap/g"\
67
	-e "s/^DefHeap\(\W\)/SetHeap\1/g"\
68
	-e "s/^DefHeap$/SetHeap/g"\
69
	-e "s/\(\W\)DefStandardHeap\(\W\)/\1SetStandradHeap\2/g"\
70
	-e "s/\(\W\)DefStandardHeap$/\1SetStandradHeap/g"\
71
	-e "s/^DefStandardHeap\(\W\)/SetStandradHeap\1/g"\
72
	-e "s/^DefStandardHeap$/SetStandradHeap/g"\
73
	-e "s/\(\W\)DefOperationTraits\(\W\)/\1SetOperationTraits\2/g"\
74
	-e "s/\(\W\)DefOperationTraits$/\1SetOperationTraits/g"\
75
	-e "s/^DefOperationTraits\(\W\)/SetOperationTraits\1/g"\
76
	-e "s/^DefOperationTraits$/SetOperationTraits/g"\
77
	-e "s/\(\W\)DefProcessedMapToBeDefaultMap\(\W\)/\1SetStandardProcessedMap\2/g"\
78
	-e "s/\(\W\)DefProcessedMapToBeDefaultMap$/\1SetStandardProcessedMap/g"\
79
	-e "s/^DefProcessedMapToBeDefaultMap\(\W\)/SetStandardProcessedMap\1/g"\
80
	-e "s/^DefProcessedMapToBeDefaultMap$/SetStandardProcessedMap/g"\
81
	-e "s/\(\W\)IntegerMap\(\W\)/\1RangeMap\2/g"\
82
	-e "s/\(\W\)IntegerMap$/\1RangeMap/g"\
83
	-e "s/^IntegerMap\(\W\)/RangeMap\1/g"\
84
	-e "s/^IntegerMap$/RangeMap/g"\
85
	-e "s/\(\W\)integerMap\(\W\)/\1rangeMap\2/g"\
86
	-e "s/\(\W\)integerMap$/\1rangeMap/g"\
87
	-e "s/^integerMap\(\W\)/rangeMap\1/g"\
88
	-e "s/^integerMap$/rangeMap/g"\
89
	-e "s/\(\W\)copyGraph\(\W\)/\1graphCopy\2/g"\
90
	-e "s/\(\W\)copyGraph$/\1graphCopy/g"\
91
	-e "s/^copyGraph\(\W\)/graphCopy\1/g"\
92
	-e "s/^copyGraph$/graphCopy/g"\
93
	-e "s/\(\W\)copyDigraph\(\W\)/\1digraphCopy\2/g"\
94
	-e "s/\(\W\)copyDigraph$/\1digraphCopy/g"\
95
	-e "s/^copyDigraph\(\W\)/digraphCopy\1/g"\
96
	-e "s/^copyDigraph$/digraphCopy/g"\
97
	-e "s/\(\W\)\([sS]\)tdMap\(\W\)/\1\2parseMap\3/g"\
98
	-e "s/\(\W\)\([sS]\)tdMap$/\1\2parseMap/g"\
99
	-e "s/^\([sS]\)tdMap\(\W\)/\1parseMap\2/g"\
100
	-e "s/^\([sS]\)tdMap$/\1parseMap/g"\
101
	-e "s/\(\W\)\([Ff]\)unctorMap\(\W\)/\1\2unctorToMap\3/g"\
102
	-e "s/\(\W\)\([Ff]\)unctorMap$/\1\2unctorToMap/g"\
103
	-e "s/^\([Ff]\)unctorMap\(\W\)/\1unctorToMap\2/g"\
104
	-e "s/^\([Ff]\)unctorMap$/\1unctorToMap/g"\
105
	-e "s/\(\W\)\([Mm]\)apFunctor\(\W\)/\1\2apToFunctor\3/g"\
106
	-e "s/\(\W\)\([Mm]\)apFunctor$/\1\2apToFunctor/g"\
107
	-e "s/^\([Mm]\)apFunctor\(\W\)/\1apToFunctor\2/g"\
108
	-e "s/^\([Mm]\)apFunctor$/\1apToFunctor/g"\
109
	-e "s/\(\W\)\([Ff]\)orkWriteMap\(\W\)/\1\2orkMap\3/g"\
110
	-e "s/\(\W\)\([Ff]\)orkWriteMap$/\1\2orkMap/g"\
111
	-e "s/^\([Ff]\)orkWriteMap\(\W\)/\1orkMap\2/g"\
112
	-e "s/^\([Ff]\)orkWriteMap$/\1orkMap/g"\
113
	-e "s/\(\W\)StoreBoolMap\(\W\)/\1LoggerBoolMap\2/g"\
114
	-e "s/\(\W\)StoreBoolMap$/\1LoggerBoolMap/g"\
115
	-e "s/^StoreBoolMap\(\W\)/LoggerBoolMap\1/g"\
116
	-e "s/^StoreBoolMap$/LoggerBoolMap/g"\
117
	-e "s/\(\W\)storeBoolMap\(\W\)/\1loggerBoolMap\2/g"\
118
	-e "s/\(\W\)storeBoolMap$/\1loggerBoolMap/g"\
119
	-e "s/^storeBoolMap\(\W\)/loggerBoolMap\1/g"\
120
	-e "s/^storeBoolMap$/loggerBoolMap/g"\
121
	-e "s/\(\W\)BoundingBox\(\W\)/\1Box\2/g"\
122
	-e "s/\(\W\)BoundingBox$/\1Box/g"\
123
	-e "s/^BoundingBox\(\W\)/Box\1/g"\
124
	-e "s/^BoundingBox$/Box/g"\
125
<$1 > $TMP
126

	
127
mv $TMP $1
... ...
 No newline at end of file
Ignore white space 6 line context
... ...
@@ -15,32 +15,32 @@
15 15
lemondir = $(pkgincludedir)
16 16
bitsdir = $(lemondir)/bits
17 17
conceptdir = $(lemondir)/concepts
18 18
pkgconfig_DATA =
19 19
lib_LTLIBRARIES =
20 20
lemon_HEADERS =
21 21
bits_HEADERS =
22 22
concept_HEADERS =
23 23
noinst_HEADERS =
24 24
noinst_PROGRAMS =
25 25
bin_PROGRAMS =
26 26
check_PROGRAMS =
27
dist_bin_SCRIPTS =
27 28
TESTS =
28 29
XFAIL_TESTS =
29 30

	
30 31
include lemon/Makefile.am
31 32
include test/Makefile.am
32 33
include doc/Makefile.am
33 34
include demo/Makefile.am
34
include benchmark/Makefile.am
35 35
include tools/Makefile.am
36 36

	
37 37
MRPROPERFILES = \
38 38
	aclocal.m4 \
39 39
	config.h.in \
40 40
	config.h.in~ \
41 41
	configure \
42 42
	Makefile.in \
43 43
	build-aux/config.guess \
44 44
	build-aux/config.sub \
45 45
	build-aux/depcomp \
46 46
	build-aux/install-sh \
Ignore white space 6 line context
... ...
@@ -28,19 +28,15 @@
28 28
doc/
29 29

	
30 30
   Documentation of LEMON. The starting page is doc/html/index.html.
31 31

	
32 32
demo/
33 33

	
34 34
   Some example programs to make you easier to get familiar with LEMON.
35 35

	
36 36
test/
37 37

	
38 38
   Contains programs to check the integrity and correctness of LEMON.
39 39

	
40
benchmark/
41
  
42
   Contains programs for measuring the performance of algorithms.
43

	
44 40
tools/
45 41

	
46 42
   Various utilities related to LEMON.
Ignore white space 6 line context
... ...
@@ -72,37 +72,24 @@
72 72
AC_ARG_ENABLE([tools],
73 73
AS_HELP_STRING([--enable-tools], [build additional tools @<:@default@:>@])
74 74
AS_HELP_STRING([--disable-tools], [do not build additional tools]),
75 75
              [], [enable_tools=yes])
76 76
AC_MSG_CHECKING([whether to build the additional tools])
77 77
if test x"$enable_tools" != x"no"; then
78 78
  AC_MSG_RESULT([yes])
79 79
else
80 80
  AC_MSG_RESULT([no])
81 81
fi
82 82
AM_CONDITIONAL([WANT_TOOLS], [test x"$enable_tools" != x"no"])
83 83

	
84
dnl Disable/enable building the benchmarks.
85
AC_ARG_ENABLE([benchmark],
86
AS_HELP_STRING([--enable-benchmark], [build the benchmarks])
87
AS_HELP_STRING([--disable-benchmark], [do not build the benchmarks @<:@default@:>@]),
88
              [], [enable_benchmark=no])
89
AC_MSG_CHECKING([whether to build the benchmarks])
90
if test x"$enable_benchmark" != x"no"; then
91
  AC_MSG_RESULT([yes])
92
else
93
  AC_MSG_RESULT([no])
94
fi
95
AM_CONDITIONAL([WANT_BENCHMARK], [test x"$enable_benchmark" != x"no"])
96

	
97 84
dnl Checks for header files.
98 85
AC_CHECK_HEADERS(limits.h sys/time.h sys/times.h unistd.h)
99 86

	
100 87
dnl Checks for typedefs, structures, and compiler characteristics.
101 88
AC_C_CONST
102 89
AC_C_INLINE
103 90
AC_TYPE_SIZE_T
104 91
AC_HEADER_TIME
105 92
AC_STRUCT_TM
106 93

	
107 94
dnl Checks for library functions.
108 95
AC_HEADER_STDC
... ...
@@ -123,25 +110,24 @@
123 110
echo
124 111
echo '****************************** SUMMARY ******************************'
125 112
echo
126 113
echo Package version............... : $PACKAGE-$VERSION
127 114
echo
128 115
echo C++ compiler.................. : $CXX
129 116
echo C++ compiles flags............ : $CXXFLAGS
130 117
echo
131 118
#echo GLPK support.................. : $lx_glpk_found
132 119
#echo CPLEX support................. : $lx_cplex_found
133 120
#echo SOPLEX support................ : $lx_soplex_found
134 121
#echo
135
echo Build benchmarks.............. : $enable_benchmark
136 122
echo Build demo programs........... : $enable_demo
137 123
echo Build additional tools........ : $enable_tools
138 124
echo
139 125
echo The packace will be installed in
140 126
echo -n '  '
141 127
echo $prefix.
142 128
echo
143 129
echo '*********************************************************************'
144 130

	
145 131
echo
146 132
echo Configure complete, now type \'make\' and then \'make install\'.
147 133
echo
Ignore white space 6 line context
... ...
@@ -18,25 +18,25 @@
18 18

	
19 19
///\ingroup demos
20 20
///\file
21 21
///\brief Argument parser demo
22 22
///
23 23
/// This example shows how the argument parser can be used.
24 24
///
25 25
/// \include arg_parser_demo.cc
26 26

	
27 27
#include <lemon/arg_parser.h>
28 28

	
29 29
using namespace lemon;
30
int main(int argc, const char **argv)
30
int main(int argc, char **argv)
31 31
{
32 32
  // Initialize the argument parser
33 33
  ArgParser ap(argc, argv);
34 34
  int i;
35 35
  std::string s;
36 36
  double d = 1.0;
37 37
  bool b, nh;
38 38
  bool g1, g2, g3;
39 39

	
40 40
  // Add a mandatory integer option with storage reference
41 41
  ap.refOption("n", "An integer input.", i, true);
42 42
  // Add a double option with storage reference (the default value is 1.0)
Ignore white space 6 line context
... ...
@@ -17,25 +17,25 @@
17 17
 */
18 18

	
19 19
/// \ingroup demos
20 20
/// \file
21 21
/// \brief Demo of the graph drawing function \ref graphToEps()
22 22
///
23 23
/// This demo program shows examples how to use the function \ref
24 24
/// graphToEps(). It takes no input but simply creates seven
25 25
/// <tt>.eps</tt> files demonstrating the capability of \ref
26 26
/// graphToEps(), and showing how to draw directed graphs,
27 27
/// how to handle parallel egdes, how to change the properties (like
28 28
/// color, shape, size, title etc.) of nodes and arcs individually
29
/// using appropriate \ref maps-page "graph maps".
29
/// using appropriate graph maps.
30 30
///
31 31
/// \include graph_to_eps_demo.cc
32 32

	
33 33
#include<lemon/list_graph.h>
34 34
#include<lemon/graph_to_eps.h>
35 35
#include<lemon/math.h>
36 36

	
37 37
using namespace std;
38 38
using namespace lemon;
39 39

	
40 40
int main()
41 41
{
Ignore white space 6 line context
1 1
EXTRA_DIST += \
2 2
	doc/Doxyfile.in \
3 3
	doc/coding_style.dox \
4 4
	doc/dirs.dox \
5 5
	doc/groups.dox \
6 6
	doc/lgf.dox \
7 7
	doc/license.dox \
8 8
	doc/mainpage.dox \
9
	doc/migration.dox \
9 10
	doc/named-param.dox \
10 11
	doc/namespaces.dox \
11 12
	doc/html \
12 13
	doc/CMakeLists.txt
13 14

	
14 15
DOC_EPS_IMAGES18 = \
15 16
	nodeshape_0.eps \
16 17
	nodeshape_1.eps \
17 18
	nodeshape_2.eps \
18 19
	nodeshape_3.eps \
19 20
	nodeshape_4.eps
20 21

	
Ignore white space 6 line context
... ...
@@ -33,85 +33,88 @@
33 33

	
34 34
The most efficient implementation of diverse applications require the
35 35
usage of different physical graph implementations. These differences
36 36
appear in the size of graph we require to handle, memory or time usage
37 37
limitations or in the set of operations through which the graph can be
38 38
accessed.  LEMON provides several physical graph structures to meet
39 39
the diverging requirements of the possible users.  In order to save on
40 40
running time or on memory usage, some structures may fail to provide
41 41
some graph features like arc/edge or node deletion.
42 42

	
43 43
You are free to use the graph structure that fit your requirements
44 44
the best, most graph algorithms and auxiliary data structures can be used
45
with any graph structures.
45
with any graph structure.
46

	
47
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
46 48
*/
47 49

	
48 50
/**
49 51
@defgroup maps Maps
50 52
@ingroup datas
51 53
\brief Map structures implemented in LEMON.
52 54

	
53 55
This group describes the map structures implemented in LEMON.
54 56

	
55
LEMON provides several special purpose maps that e.g. combine
57
LEMON provides several special purpose maps and map adaptors that e.g. combine
56 58
new maps from existing ones.
59

	
60
<b>See also:</b> \ref map_concepts "Map Concepts".
57 61
*/
58 62

	
59 63
/**
60 64
@defgroup graph_maps Graph Maps
61 65
@ingroup maps
62 66
\brief Special graph-related maps.
63 67

	
64 68
This group describes maps that are specifically designed to assign
65 69
values to the nodes and arcs of graphs.
66 70
*/
67 71

	
68

	
69 72
/**
70 73
\defgroup map_adaptors Map Adaptors
71 74
\ingroup maps
72 75
\brief Tools to create new maps from existing ones
73 76

	
74 77
This group describes map adaptors that are used to create "implicit"
75 78
maps from other maps.
76 79

	
77 80
Most of them are \ref lemon::concepts::ReadMap "read-only maps".
78 81
They can make arithmetic and logical operations between one or two maps
79 82
(negation, shifting, addition, multiplication, logical 'and', 'or',
80 83
'not' etc.) or e.g. convert a map to another one of different Value type.
81 84

	
82 85
The typical usage of this classes is passing implicit maps to
83 86
algorithms.  If a function type algorithm is called then the function
84 87
type map adaptors can be used comfortable. For example let's see the
85
usage of map adaptors with the \c digraphToEps() function.
88
usage of map adaptors with the \c graphToEps() function.
86 89
\code
87 90
  Color nodeColor(int deg) {
88 91
    if (deg >= 2) {
89 92
      return Color(0.5, 0.0, 0.5);
90 93
    } else if (deg == 1) {
91 94
      return Color(1.0, 0.5, 1.0);
92 95
    } else {
93 96
      return Color(0.0, 0.0, 0.0);
94 97
    }
95 98
  }
96 99

	
97 100
  Digraph::NodeMap<int> degree_map(graph);
98 101

	
99
  digraphToEps(graph, "graph.eps")
102
  graphToEps(graph, "graph.eps")
100 103
    .coords(coords).scaleToA4().undirected()
101 104
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
102 105
    .run();
103 106
\endcode
104 107
The \c functorToMap() function makes an \c int to \c Color map from the
105
\e nodeColor() function. The \c composeMap() compose the \e degree_map
108
\c nodeColor() function. The \c composeMap() compose the \c degree_map
106 109
and the previously created map. The composed map is a proper function to
107 110
get the color of each node.
108 111

	
109 112
The usage with class type algorithms is little bit harder. In this
110 113
case the function type map adaptors can not be used, because the
111 114
function map adaptors give back temporary objects.
112 115
\code
113 116
  Digraph graph;
114 117

	
115 118
  typedef Digraph::ArcMap<double> DoubleArcMap;
116 119
  DoubleArcMap length(graph);
117 120
  DoubleArcMap speed(graph);
... ...
@@ -134,72 +137,71 @@
134 137
@ingroup datas
135 138
\brief Path structures implemented in LEMON.
136 139

	
137 140
This group describes the path structures implemented in LEMON.
138 141

	
139 142
LEMON provides flexible data structures to work with paths.
140 143
All of them have similar interfaces and they can be copied easily with
141 144
assignment operators and copy constructors. This makes it easy and
142 145
efficient to have e.g. the Dijkstra algorithm to store its result in
143 146
any kind of path structure.
144 147

	
145 148
\sa lemon::concepts::Path
146

	
147 149
*/
148 150

	
149 151
/**
150 152
@defgroup auxdat Auxiliary Data Structures
151 153
@ingroup datas
152 154
\brief Auxiliary data structures implemented in LEMON.
153 155

	
154 156
This group describes some data structures implemented in LEMON in
155 157
order to make it easier to implement combinatorial algorithms.
156 158
*/
157 159

	
158

	
159 160
/**
160 161
@defgroup algs Algorithms
161 162
\brief This group describes the several algorithms
162 163
implemented in LEMON.
163 164

	
164 165
This group describes the several algorithms
165 166
implemented in LEMON.
166 167
*/
167 168

	
168 169
/**
169 170
@defgroup search Graph Search
170 171
@ingroup algs
171 172
\brief Common graph search algorithms.
172 173

	
173 174
This group describes the common graph search algorithms like
174
Breadth-first search (Bfs) and Depth-first search (Dfs).
175
Breadth-First Search (BFS) and Depth-First Search (DFS).
175 176
*/
176 177

	
177 178
/**
178
@defgroup shortest_path Shortest Path algorithms
179
@defgroup shortest_path Shortest Path Algorithms
179 180
@ingroup algs
180 181
\brief Algorithms for finding shortest paths.
181 182

	
182 183
This group describes the algorithms for finding shortest paths in graphs.
183 184
*/
184 185

	
185 186
/**
186
@defgroup spantree Minimum Spanning Tree algorithms
187
@defgroup spantree Minimum Spanning Tree Algorithms
187 188
@ingroup algs
188 189
\brief Algorithms for finding a minimum cost spanning tree in a graph.
189 190

	
190 191
This group describes the algorithms for finding a minimum cost spanning
191 192
tree in a graph
192 193
*/
193 194

	
195
@ingroup algs
194 196
/**
195 197
@defgroup utils Tools and Utilities
196 198
\brief Tools and utilities for programming in LEMON
197 199

	
198 200
Tools and utilities for programming in LEMON.
199 201
*/
200 202

	
201 203
/**
202 204
@defgroup gutils Basic Graph Utilities
203 205
@ingroup utils
204 206
\brief Simple basic graph utilities.
205 207

	
... ...
@@ -207,68 +209,68 @@
207 209
*/
208 210

	
209 211
/**
210 212
@defgroup misc Miscellaneous Tools
211 213
@ingroup utils
212 214
\brief Tools for development, debugging and testing.
213 215

	
214 216
This group describes several useful tools for development,
215 217
debugging and testing.
216 218
*/
217 219

	
218 220
/**
219
@defgroup timecount Time measuring and Counting
221
@defgroup timecount Time Measuring and Counting
220 222
@ingroup misc
221 223
\brief Simple tools for measuring the performance of algorithms.
222 224

	
223 225
This group describes simple tools for measuring the performance
224 226
of algorithms.
225 227
*/
226 228

	
227 229
/**
228 230
@defgroup exceptions Exceptions
229 231
@ingroup utils
230 232
\brief Exceptions defined in LEMON.
231 233

	
232 234
This group describes the exceptions defined in LEMON.
233 235
*/
234 236

	
235 237
/**
236 238
@defgroup io_group Input-Output
237 239
\brief Graph Input-Output methods
238 240

	
239 241
This group describes the tools for importing and exporting graphs
240 242
and graph related data. Now it supports the LEMON format
241 243
and the encapsulated postscript (EPS) format.
244
postscript (EPS) format.
242 245
*/
243 246

	
244 247
/**
245 248
@defgroup lemon_io LEMON Input-Output
246 249
@ingroup io_group
247
\brief Reading and writing \ref lgf-format "LEMON Graph Format".
250
\brief Reading and writing LEMON Graph Format.
248 251

	
249 252
This group describes methods for reading and writing
250 253
\ref lgf-format "LEMON Graph Format".
251 254
*/
252 255

	
253 256
/**
254
@defgroup eps_io Postscript exporting
257
@defgroup eps_io Postscript Exporting
255 258
@ingroup io_group
256 259
\brief General \c EPS drawer and graph exporter
257 260

	
258 261
This group describes general \c EPS drawing methods and special
259 262
graph exporting tools.
260 263
*/
261 264

	
262

	
263 265
/**
264 266
@defgroup concept Concepts
265 267
\brief Skeleton classes and concept checking classes
266 268

	
267 269
This group describes the data/algorithm skeletons and concept checking
268 270
classes implemented in LEMON.
269 271

	
270 272
The purpose of the classes in this group is fourfold.
271 273

	
272 274
- These classes contain the documentations of the concepts. In order
273 275
  to avoid document multiplications, an implementation of a concept
274 276
  simply refers to the corresponding concept class.
... ...
@@ -278,36 +280,36 @@
278 280
  without implementations and real data structures behind the
279 281
  interface. On the other hand they should provide nothing else. All
280 282
  the algorithms working on a data structure meeting a certain concept
281 283
  should compile with these classes. (Though it will not run properly,
282 284
  of course.) In this way it is easily to check if an algorithm
283 285
  doesn't use any extra feature of a certain implementation.
284 286

	
285 287
- The concept descriptor classes also provide a <em>checker class</em>
286 288
  that makes it possible to check whether a certain implementation of a
287 289
  concept indeed provides all the required features.
288 290

	
289 291
- Finally, They can serve as a skeleton of a new implementation of a concept.
290

	
291 292
*/
292 293

	
293

	
294 294
/**
295 295
@defgroup graph_concepts Graph Structure Concepts
296 296
@ingroup concept
297 297
\brief Skeleton and concept checking classes for graph structures
298 298

	
299 299
This group describes the skeletons and concept checking classes of LEMON's
300 300
graph structures and helper classes used to implement these.
301 301
*/
302 302

	
303

	
304
This group describes the skeletons and concept checking classes of maps.
303 305
/**
304 306
\anchor demoprograms
305 307

	
306 308
@defgroup demos Demo programs
307 309

	
308 310
Some demo programs are listed here. Their full source codes can be found in
309 311
the \c demo subdirectory of the source tree.
310 312

	
311 313
It order to compile them, use <tt>--enable-demo</tt> configure option when
312 314
build the library.
313 315
*/
Ignore white space 6 line context
... ...
@@ -69,25 +69,25 @@
69 69
describe the arcs. The first two tokens of each line are
70 70
the source and the target node of the arc, respectively, then come the map
71 71
values. The source and target tokens must be node labels.
72 72

	
73 73
\code
74 74
 @arcs
75 75
         capacity
76 76
 1   2   16
77 77
 1   3   12
78 78
 2   3   18
79 79
\endcode
80 80

	
81
The \c \@edges is just a synonym of \c \@arcs. The @arcs section can
81
The \c \@edges is just a synonym of \c \@arcs. The \@arcs section can
82 82
also store the edge set of an undirected graph. In such case there is
83 83
a conventional method for store arc maps in the file, if two columns
84 84
has the same caption with \c '+' and \c '-' prefix, then these columns
85 85
can be regarded as the values of an arc map.
86 86

	
87 87
The \c \@attributes section contains key-value pairs, each line
88 88
consists of two tokens, an attribute name, and then an attribute
89 89
value. The value of the attribute could be also a label value of a
90 90
node or an edge, or even an edge label prefixed with \c '+' or \c '-',
91 91
which regards to the forward or backward directed arc of the
92 92
corresponding edge.
93 93

	
Ignore white space 6 line context
... ...
@@ -34,20 +34,21 @@
34 34
<b>
35 35
LEMON is an <a class="el" href="http://opensource.org/">open&nbsp;source</a>
36 36
project.
37 37
You are free to use it in your commercial or
38 38
non-commercial applications under very permissive
39 39
\ref license "license terms".
40 40
</b>
41 41

	
42 42
\subsection howtoread How to read the documentation
43 43

	
44 44
If you
45 45
want to see how LEMON works, see
46
some \ref demoprograms "demo programs"!
46
some \ref demoprograms "demo programs".
47 47

	
48 48
If you know what you are looking for then try to find it under the
49 49
<a class="el" href="modules.html">Modules</a>
50 50
section.
51 51

	
52

	
52
If you are a user of the old (0.x) series of LEMON, please check out the
53
\ref migration "Migration Guide" for the backward incompatibilities.
53 54
*/
Ignore white space 24 line context
... ...
@@ -17,30 +17,29 @@
17 17
 */
18 18

	
19 19
#include <lemon/arg_parser.h>
20 20

	
21 21
namespace lemon {
22 22

	
23 23
  void ArgParser::_showHelp(void *p)
24 24
  {
25 25
    (static_cast<ArgParser*>(p))->showHelp();
26 26
    exit(1);
27 27
  }
28 28

	
29
  ArgParser::ArgParser(int argc, const char **argv) :_argc(argc), _argv(argv),
30
                                                     _command_name(argv[0]) {
29
  ArgParser::ArgParser(int argc, const char * const *argv)
30
    :_argc(argc), _argv(argv), _command_name(argv[0]) {
31 31
    funcOption("-help","Print a short help message",_showHelp,this);
32 32
    synonym("help","-help");
33 33
    synonym("h","-help");
34

	
35 34
  }
36 35

	
37 36
  ArgParser::~ArgParser()
38 37
  {
39 38
    for(Opts::iterator i=_opts.begin();i!=_opts.end();++i)
40 39
      if(i->second.self_delete)
41 40
        switch(i->second.type) {
42 41
        case BOOL:
43 42
          delete i->second.bool_p;
44 43
          break;
45 44
        case STRING:
46 45
          delete i->second.string_p;
Ignore white space 6 line context
... ...
@@ -37,25 +37,25 @@
37 37
  ///Command line arguments parser
38 38

	
39 39
  ///\ingroup misc
40 40
  ///Command line arguments parser.
41 41
  ///
42 42
  ///For a complete example see the \ref arg_parser_demo.cc demo file.
43 43
  class ArgParser {
44 44

	
45 45
    static void _showHelp(void *p);
46 46
  protected:
47 47

	
48 48
    int _argc;
49
    const char **_argv;
49
    const char * const *_argv;
50 50

	
51 51
    enum OptType { UNKNOWN=0, BOOL=1, STRING=2, DOUBLE=3, INTEGER=4, FUNC=5 };
52 52

	
53 53
    class ParData {
54 54
    public:
55 55
      union {
56 56
        bool *bool_p;
57 57
        int *int_p;
58 58
        double *double_p;
59 59
        std::string *string_p;
60 60
        struct {
61 61
          void (*p)(void *);
... ...
@@ -110,25 +110,25 @@
110 110
    //\param name The name of the option. The leading '-' must be omitted.
111 111
    //\param help A help string.
112 112
    //\retval func The function to be called when the option is given. It
113 113
    //  must be of type "void f(void *)"
114 114
    //\param data Data to be passed to \c func
115 115
    ArgParser &funcOption(const std::string &name,
116 116
                    const std::string &help,
117 117
                    void (*func)(void *),void *data);
118 118

	
119 119
  public:
120 120

	
121 121
    ///Constructor
122
    ArgParser(int argc, const char **argv);
122
    ArgParser(int argc, const char * const *argv);
123 123

	
124 124
    ~ArgParser();
125 125

	
126 126
    ///\name Options
127 127
    ///
128 128

	
129 129
    ///@{
130 130

	
131 131
    ///Add a new integer type option
132 132

	
133 133
    ///Add a new integer type option.
134 134
    ///\param name The name of the option. The leading '-' must be omitted.
Ignore white space 6 line context
... ...
@@ -40,78 +40,78 @@
40 40
  struct BfsDefaultTraits
41 41
  {
42 42
    ///The type of the digraph the algorithm runs on.
43 43
    typedef GR Digraph;
44 44

	
45 45
    ///\brief The type of the map that stores the predecessor
46 46
    ///arcs of the shortest paths.
47 47
    ///
48 48
    ///The type of the map that stores the predecessor
49 49
    ///arcs of the shortest paths.
50 50
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
51 51
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
52
    ///Instantiates a \ref PredMap.
52
    ///Instantiates a PredMap.
53 53

	
54
    ///This function instantiates a \ref PredMap.
54
    ///This function instantiates a PredMap.
55 55
    ///\param g is the digraph, to which we would like to define the
56
    ///\ref PredMap.
56
    ///PredMap.
57 57
    static PredMap *createPredMap(const Digraph &g)
58 58
    {
59 59
      return new PredMap(g);
60 60
    }
61 61

	
62 62
    ///The type of the map that indicates which nodes are processed.
63 63

	
64 64
    ///The type of the map that indicates which nodes are processed.
65 65
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
66 66
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
67
    ///Instantiates a \ref ProcessedMap.
67
    ///Instantiates a ProcessedMap.
68 68

	
69
    ///This function instantiates a \ref ProcessedMap.
69
    ///This function instantiates a ProcessedMap.
70 70
    ///\param g is the digraph, to which
71
    ///we would like to define the \ref ProcessedMap
71
    ///we would like to define the ProcessedMap
72 72
#ifdef DOXYGEN
73 73
    static ProcessedMap *createProcessedMap(const Digraph &g)
74 74
#else
75 75
    static ProcessedMap *createProcessedMap(const Digraph &)
76 76
#endif
77 77
    {
78 78
      return new ProcessedMap();
79 79
    }
80 80

	
81 81
    ///The type of the map that indicates which nodes are reached.
82 82

	
83 83
    ///The type of the map that indicates which nodes are reached.
84 84
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
85 85
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
86
    ///Instantiates a \ref ReachedMap.
86
    ///Instantiates a ReachedMap.
87 87

	
88
    ///This function instantiates a \ref ReachedMap.
88
    ///This function instantiates a ReachedMap.
89 89
    ///\param g is the digraph, to which
90
    ///we would like to define the \ref ReachedMap.
90
    ///we would like to define the ReachedMap.
91 91
    static ReachedMap *createReachedMap(const Digraph &g)
92 92
    {
93 93
      return new ReachedMap(g);
94 94
    }
95 95

	
96 96
    ///The type of the map that stores the distances of the nodes.
97 97

	
98 98
    ///The type of the map that stores the distances of the nodes.
99 99
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
100 100
    typedef typename Digraph::template NodeMap<int> DistMap;
101
    ///Instantiates a \ref DistMap.
101
    ///Instantiates a DistMap.
102 102

	
103
    ///This function instantiates a \ref DistMap.
103
    ///This function instantiates a DistMap.
104 104
    ///\param g is the digraph, to which we would like to define the
105
    ///\ref DistMap.
105
    ///DistMap.
106 106
    static DistMap *createDistMap(const Digraph &g)
107 107
    {
108 108
      return new DistMap(g);
109 109
    }
110 110
  };
111 111

	
112 112
  ///%BFS algorithm class.
113 113

	
114 114
  ///\ingroup search
115 115
  ///This class provides an efficient implementation of the %BFS algorithm.
116 116
  ///
117 117
  ///There is also a \ref bfs() "function-type interface" for the BFS
... ...
@@ -218,103 +218,103 @@
218 218
    ///@{
219 219

	
220 220
    template <class T>
221 221
    struct SetPredMapTraits : public Traits {
222 222
      typedef T PredMap;
223 223
      static PredMap *createPredMap(const Digraph &)
224 224
      {
225 225
        LEMON_ASSERT(false, "PredMap is not initialized");
226 226
        return 0; // ignore warnings
227 227
      }
228 228
    };
229 229
    ///\brief \ref named-templ-param "Named parameter" for setting
230
    ///\ref PredMap type.
230
    ///PredMap type.
231 231
    ///
232 232
    ///\ref named-templ-param "Named parameter" for setting
233
    ///\ref PredMap type.
233
    ///PredMap type.
234 234
    template <class T>
235 235
    struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
236 236
      typedef Bfs< Digraph, SetPredMapTraits<T> > Create;
237 237
    };
238 238

	
239 239
    template <class T>
240 240
    struct SetDistMapTraits : public Traits {
241 241
      typedef T DistMap;
242 242
      static DistMap *createDistMap(const Digraph &)
243 243
      {
244 244
        LEMON_ASSERT(false, "DistMap is not initialized");
245 245
        return 0; // ignore warnings
246 246
      }
247 247
    };
248 248
    ///\brief \ref named-templ-param "Named parameter" for setting
249
    ///\ref DistMap type.
249
    ///DistMap type.
250 250
    ///
251 251
    ///\ref named-templ-param "Named parameter" for setting
252
    ///\ref DistMap type.
252
    ///DistMap type.
253 253
    template <class T>
254 254
    struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
255 255
      typedef Bfs< Digraph, SetDistMapTraits<T> > Create;
256 256
    };
257 257

	
258 258
    template <class T>
259 259
    struct SetReachedMapTraits : public Traits {
260 260
      typedef T ReachedMap;
261 261
      static ReachedMap *createReachedMap(const Digraph &)
262 262
      {
263 263
        LEMON_ASSERT(false, "ReachedMap is not initialized");
264 264
        return 0; // ignore warnings
265 265
      }
266 266
    };
267 267
    ///\brief \ref named-templ-param "Named parameter" for setting
268
    ///\ref ReachedMap type.
268
    ///ReachedMap type.
269 269
    ///
270 270
    ///\ref named-templ-param "Named parameter" for setting
271
    ///\ref ReachedMap type.
271
    ///ReachedMap type.
272 272
    template <class T>
273 273
    struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
274 274
      typedef Bfs< Digraph, SetReachedMapTraits<T> > Create;
275 275
    };
276 276

	
277 277
    template <class T>
278 278
    struct SetProcessedMapTraits : public Traits {
279 279
      typedef T ProcessedMap;
280 280
      static ProcessedMap *createProcessedMap(const Digraph &)
281 281
      {
282 282
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
283 283
        return 0; // ignore warnings
284 284
      }
285 285
    };
286 286
    ///\brief \ref named-templ-param "Named parameter" for setting
287
    ///\ref ProcessedMap type.
287
    ///ProcessedMap type.
288 288
    ///
289 289
    ///\ref named-templ-param "Named parameter" for setting
290
    ///\ref ProcessedMap type.
290
    ///ProcessedMap type.
291 291
    template <class T>
292 292
    struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
293 293
      typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create;
294 294
    };
295 295

	
296 296
    struct SetStandardProcessedMapTraits : public Traits {
297 297
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
298 298
      static ProcessedMap *createProcessedMap(const Digraph &g)
299 299
      {
300 300
        return new ProcessedMap(g);
301 301
        return 0; // ignore warnings
302 302
      }
303 303
    };
304 304
    ///\brief \ref named-templ-param "Named parameter" for setting
305
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
305
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
306 306
    ///
307 307
    ///\ref named-templ-param "Named parameter" for setting
308
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
308
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
309 309
    ///If you don't set it explicitly, it will be automatically allocated.
310 310
    struct SetStandardProcessedMap :
311 311
      public Bfs< Digraph, SetStandardProcessedMapTraits > {
312 312
      typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create;
313 313
    };
314 314

	
315 315
    ///@}
316 316

	
317 317
  public:
318 318

	
319 319
    ///Constructor.
320 320

	
... ...
@@ -826,92 +826,92 @@
826 826
  struct BfsWizardDefaultTraits
827 827
  {
828 828
    ///The type of the digraph the algorithm runs on.
829 829
    typedef GR Digraph;
830 830

	
831 831
    ///\brief The type of the map that stores the predecessor
832 832
    ///arcs of the shortest paths.
833 833
    ///
834 834
    ///The type of the map that stores the predecessor
835 835
    ///arcs of the shortest paths.
836 836
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
837 837
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
838
    ///Instantiates a \ref PredMap.
838
    ///Instantiates a PredMap.
839 839

	
840
    ///This function instantiates a \ref PredMap.
840
    ///This function instantiates a PredMap.
841 841
    ///\param g is the digraph, to which we would like to define the
842
    ///\ref PredMap.
842
    ///PredMap.
843 843
    static PredMap *createPredMap(const Digraph &g)
844 844
    {
845 845
      return new PredMap(g);
846 846
    }
847 847

	
848 848
    ///The type of the map that indicates which nodes are processed.
849 849

	
850 850
    ///The type of the map that indicates which nodes are processed.
851 851
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
852 852
    ///By default it is a NullMap.
853 853
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
854
    ///Instantiates a \ref ProcessedMap.
854
    ///Instantiates a ProcessedMap.
855 855

	
856
    ///This function instantiates a \ref ProcessedMap.
856
    ///This function instantiates a ProcessedMap.
857 857
    ///\param g is the digraph, to which
858
    ///we would like to define the \ref ProcessedMap.
858
    ///we would like to define the ProcessedMap.
859 859
#ifdef DOXYGEN
860 860
    static ProcessedMap *createProcessedMap(const Digraph &g)
861 861
#else
862 862
    static ProcessedMap *createProcessedMap(const Digraph &)
863 863
#endif
864 864
    {
865 865
      return new ProcessedMap();
866 866
    }
867 867

	
868 868
    ///The type of the map that indicates which nodes are reached.
869 869

	
870 870
    ///The type of the map that indicates which nodes are reached.
871 871
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
872 872
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
873
    ///Instantiates a \ref ReachedMap.
873
    ///Instantiates a ReachedMap.
874 874

	
875
    ///This function instantiates a \ref ReachedMap.
875
    ///This function instantiates a ReachedMap.
876 876
    ///\param g is the digraph, to which
877
    ///we would like to define the \ref ReachedMap.
877
    ///we would like to define the ReachedMap.
878 878
    static ReachedMap *createReachedMap(const Digraph &g)
879 879
    {
880 880
      return new ReachedMap(g);
881 881
    }
882 882

	
883 883
    ///The type of the map that stores the distances of the nodes.
884 884

	
885 885
    ///The type of the map that stores the distances of the nodes.
886 886
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
887 887
    typedef typename Digraph::template NodeMap<int> DistMap;
888
    ///Instantiates a \ref DistMap.
888
    ///Instantiates a DistMap.
889 889

	
890
    ///This function instantiates a \ref DistMap.
890
    ///This function instantiates a DistMap.
891 891
    ///\param g is the digraph, to which we would like to define
892
    ///the \ref DistMap
892
    ///the DistMap
893 893
    static DistMap *createDistMap(const Digraph &g)
894 894
    {
895 895
      return new DistMap(g);
896 896
    }
897 897

	
898 898
    ///The type of the shortest paths.
899 899

	
900 900
    ///The type of the shortest paths.
901 901
    ///It must meet the \ref concepts::Path "Path" concept.
902 902
    typedef lemon::Path<Digraph> Path;
903 903
  };
904 904

	
905
  /// Default traits class used by \ref BfsWizard
905
  /// Default traits class used by BfsWizard
906 906

	
907 907
  /// To make it easier to use Bfs algorithm
908 908
  /// we have created a wizard class.
909 909
  /// This \ref BfsWizard class needs default traits,
910 910
  /// as well as the \ref Bfs class.
911 911
  /// The \ref BfsWizardBase is a class to be the default traits of the
912 912
  /// \ref BfsWizard class.
913 913
  template<class GR>
914 914
  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
915 915
  {
916 916

	
917 917
    typedef BfsWizardDefaultTraits<GR> Base;
... ...
@@ -1059,82 +1059,82 @@
1059 1059
    void run()
1060 1060
    {
1061 1061
      run(INVALID);
1062 1062
    }
1063 1063

	
1064 1064
    template<class T>
1065 1065
    struct SetPredMapBase : public Base {
1066 1066
      typedef T PredMap;
1067 1067
      static PredMap *createPredMap(const Digraph &) { return 0; };
1068 1068
      SetPredMapBase(const TR &b) : TR(b) {}
1069 1069
    };
1070 1070
    ///\brief \ref named-func-param "Named parameter"
1071
    ///for setting \ref PredMap object.
1071
    ///for setting PredMap object.
1072 1072
    ///
1073 1073
    ///\ref named-func-param "Named parameter"
1074
    ///for setting \ref PredMap object.
1074
    ///for setting PredMap object.
1075 1075
    template<class T>
1076 1076
    BfsWizard<SetPredMapBase<T> > predMap(const T &t)
1077 1077
    {
1078 1078
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1079 1079
      return BfsWizard<SetPredMapBase<T> >(*this);
1080 1080
    }
1081 1081

	
1082 1082
    template<class T>
1083 1083
    struct SetReachedMapBase : public Base {
1084 1084
      typedef T ReachedMap;
1085 1085
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
1086 1086
      SetReachedMapBase(const TR &b) : TR(b) {}
1087 1087
    };
1088 1088
    ///\brief \ref named-func-param "Named parameter"
1089
    ///for setting \ref ReachedMap object.
1089
    ///for setting ReachedMap object.
1090 1090
    ///
1091 1091
    /// \ref named-func-param "Named parameter"
1092
    ///for setting \ref ReachedMap object.
1092
    ///for setting ReachedMap object.
1093 1093
    template<class T>
1094 1094
    BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
1095 1095
    {
1096 1096
      Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
1097 1097
      return BfsWizard<SetReachedMapBase<T> >(*this);
1098 1098
    }
1099 1099

	
1100 1100
    template<class T>
1101 1101
    struct SetDistMapBase : public Base {
1102 1102
      typedef T DistMap;
1103 1103
      static DistMap *createDistMap(const Digraph &) { return 0; };
1104 1104
      SetDistMapBase(const TR &b) : TR(b) {}
1105 1105
    };
1106 1106
    ///\brief \ref named-func-param "Named parameter"
1107
    ///for setting \ref DistMap object.
1107
    ///for setting DistMap object.
1108 1108
    ///
1109 1109
    /// \ref named-func-param "Named parameter"
1110
    ///for setting \ref DistMap object.
1110
    ///for setting DistMap object.
1111 1111
    template<class T>
1112 1112
    BfsWizard<SetDistMapBase<T> > distMap(const T &t)
1113 1113
    {
1114 1114
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1115 1115
      return BfsWizard<SetDistMapBase<T> >(*this);
1116 1116
    }
1117 1117

	
1118 1118
    template<class T>
1119 1119
    struct SetProcessedMapBase : public Base {
1120 1120
      typedef T ProcessedMap;
1121 1121
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1122 1122
      SetProcessedMapBase(const TR &b) : TR(b) {}
1123 1123
    };
1124 1124
    ///\brief \ref named-func-param "Named parameter"
1125
    ///for setting \ref ProcessedMap object.
1125
    ///for setting ProcessedMap object.
1126 1126
    ///
1127 1127
    /// \ref named-func-param "Named parameter"
1128
    ///for setting \ref ProcessedMap object.
1128
    ///for setting ProcessedMap object.
1129 1129
    template<class T>
1130 1130
    BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1131 1131
    {
1132 1132
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1133 1133
      return BfsWizard<SetProcessedMapBase<T> >(*this);
1134 1134
    }
1135 1135

	
1136 1136
    template<class T>
1137 1137
    struct SetPathBase : public Base {
1138 1138
      typedef T Path;
1139 1139
      SetPathBase(const TR &b) : TR(b) {}
1140 1140
    };
... ...
@@ -1258,29 +1258,29 @@
1258 1258
  template<class _Digraph>
1259 1259
  struct BfsVisitDefaultTraits {
1260 1260

	
1261 1261
    /// \brief The type of the digraph the algorithm runs on.
1262 1262
    typedef _Digraph Digraph;
1263 1263

	
1264 1264
    /// \brief The type of the map that indicates which nodes are reached.
1265 1265
    ///
1266 1266
    /// The type of the map that indicates which nodes are reached.
1267 1267
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1268 1268
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
1269 1269

	
1270
    /// \brief Instantiates a \ref ReachedMap.
1270
    /// \brief Instantiates a ReachedMap.
1271 1271
    ///
1272
    /// This function instantiates a \ref ReachedMap.
1272
    /// This function instantiates a ReachedMap.
1273 1273
    /// \param digraph is the digraph, to which
1274
    /// we would like to define the \ref ReachedMap.
1274
    /// we would like to define the ReachedMap.
1275 1275
    static ReachedMap *createReachedMap(const Digraph &digraph) {
1276 1276
      return new ReachedMap(digraph);
1277 1277
    }
1278 1278

	
1279 1279
  };
1280 1280

	
1281 1281
  /// \ingroup search
1282 1282
  ///
1283 1283
  /// \brief %BFS algorithm class with visitor interface.
1284 1284
  ///
1285 1285
  /// This class provides an efficient implementation of the %BFS algorithm
1286 1286
  /// with visitor interface.
Ignore white space 6 line context
... ...
@@ -15,461 +15,447 @@
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_ALTERATION_NOTIFIER_H
20 20
#define LEMON_BITS_ALTERATION_NOTIFIER_H
21 21

	
22 22
#include <vector>
23 23
#include <list>
24 24

	
25 25
#include <lemon/core.h>
26 26

	
27
///\ingroup graphbits
28
///\file
29
///\brief Observer notifier for graph alteration observers.
27
//\ingroup graphbits
28
//\file
29
//\brief Observer notifier for graph alteration observers.
30 30

	
31 31
namespace lemon {
32 32

	
33
  /// \ingroup graphbits
34
  ///
35
  /// \brief Notifier class to notify observes about alterations in
36
  /// a container.
37
  ///
38
  /// The simple graph's can be refered as two containers, one node container
39
  /// and one edge container. But they are not standard containers they
40
  /// does not store values directly they are just key continars for more
41
  /// value containers which are the node and edge maps.
42
  ///
43
  /// The graph's node and edge sets can be changed as we add or erase
44
  /// nodes and edges in the graph. LEMON would like to handle easily
45
  /// that the node and edge maps should contain values for all nodes or
46
  /// edges. If we want to check on every indicing if the map contains
47
  /// the current indicing key that cause a drawback in the performance
48
  /// in the library. We use another solution we notify all maps about
49
  /// an alteration in the graph, which cause only drawback on the
50
  /// alteration of the graph.
51
  ///
52
  /// This class provides an interface to the container. The \e first() and \e
53
  /// next() member functions make possible to iterate on the keys of the
54
  /// container. The \e id() function returns an integer id for each key.
55
  /// The \e maxId() function gives back an upper bound of the ids.
56
  ///
57
  /// For the proper functonality of this class, we should notify it
58
  /// about each alteration in the container. The alterations have four type
59
  /// as \e add(), \e erase(), \e build() and \e clear(). The \e add() and
60
  /// \e erase() signals that only one or few items added or erased to or
61
  /// from the graph. If all items are erased from the graph or from an empty
62
  /// graph a new graph is builded then it can be signaled with the
63
  /// clear() and build() members. Important rule that if we erase items
64
  /// from graph we should first signal the alteration and after that erase
65
  /// them from the container, on the other way on item addition we should
66
  /// first extend the container and just after that signal the alteration.
67
  ///
68
  /// The alteration can be observed with a class inherited from the
69
  /// \e ObserverBase nested class. The signals can be handled with
70
  /// overriding the virtual functions defined in the base class.  The
71
  /// observer base can be attached to the notifier with the
72
  /// \e attach() member and can be detached with detach() function. The
73
  /// alteration handlers should not call any function which signals
74
  /// an other alteration in the same notifier and should not
75
  /// detach any observer from the notifier.
76
  ///
77
  /// Alteration observers try to be exception safe. If an \e add() or
78
  /// a \e clear() function throws an exception then the remaining
79
  /// observeres will not be notified and the fulfilled additions will
80
  /// be rolled back by calling the \e erase() or \e clear()
81
  /// functions. Thence the \e erase() and \e clear() should not throw
82
  /// exception. Actullay, it can be throw only
83
  /// \ref AlterationObserver::ImmediateDetach ImmediateDetach
84
  /// exception which detach the observer from the notifier.
85
  ///
86
  /// There are some place when the alteration observing is not completly
87
  /// reliable. If we want to carry out the node degree in the graph
88
  /// as in the \ref InDegMap and we use the reverseEdge that cause
89
  /// unreliable functionality. Because the alteration observing signals
90
  /// only erasing and adding but not the reversing it will stores bad
91
  /// degrees. The sub graph adaptors cannot signal the alterations because
92
  /// just a setting in the filter map can modify the graph and this cannot
93
  /// be watched in any way.
94
  ///
95
  /// \param _Container The container which is observed.
96
  /// \param _Item The item type which is obserbved.
33
  // \ingroup graphbits
34
  //
35
  // \brief Notifier class to notify observes about alterations in
36
  // a container.
37
  //
38
  // The simple graph's can be refered as two containers, one node container
39
  // and one edge container. But they are not standard containers they
40
  // does not store values directly they are just key continars for more
41
  // value containers which are the node and edge maps.
42
  //
43
  // The graph's node and edge sets can be changed as we add or erase
44
  // nodes and edges in the graph. LEMON would like to handle easily
45
  // that the node and edge maps should contain values for all nodes or
46
  // edges. If we want to check on every indicing if the map contains
47
  // the current indicing key that cause a drawback in the performance
48
  // in the library. We use another solution we notify all maps about
49
  // an alteration in the graph, which cause only drawback on the
50
  // alteration of the graph.
51
  //
52
  // This class provides an interface to the container. The \e first() and \e
53
  // next() member functions make possible to iterate on the keys of the
54
  // container. The \e id() function returns an integer id for each key.
55
  // The \e maxId() function gives back an upper bound of the ids.
56
  //
57
  // For the proper functonality of this class, we should notify it
58
  // about each alteration in the container. The alterations have four type
59
  // as \e add(), \e erase(), \e build() and \e clear(). The \e add() and
60
  // \e erase() signals that only one or few items added or erased to or
61
  // from the graph. If all items are erased from the graph or from an empty
62
  // graph a new graph is builded then it can be signaled with the
63
  // clear() and build() members. Important rule that if we erase items
64
  // from graph we should first signal the alteration and after that erase
65
  // them from the container, on the other way on item addition we should
66
  // first extend the container and just after that signal the alteration.
67
  //
68
  // The alteration can be observed with a class inherited from the
69
  // \e ObserverBase nested class. The signals can be handled with
70
  // overriding the virtual functions defined in the base class.  The
71
  // observer base can be attached to the notifier with the
72
  // \e attach() member and can be detached with detach() function. The
73
  // alteration handlers should not call any function which signals
74
  // an other alteration in the same notifier and should not
75
  // detach any observer from the notifier.
76
  //
77
  // Alteration observers try to be exception safe. If an \e add() or
78
  // a \e clear() function throws an exception then the remaining
79
  // observeres will not be notified and the fulfilled additions will
80
  // be rolled back by calling the \e erase() or \e clear()
81
  // functions. Thence the \e erase() and \e clear() should not throw
82
  // exception. Actullay, it can be throw only \ref ImmediateDetach
83
  // exception which detach the observer from the notifier.
84
  //
85
  // There are some place when the alteration observing is not completly
86
  // reliable. If we want to carry out the node degree in the graph
87
  // as in the \ref InDegMap and we use the reverseEdge that cause
88
  // unreliable functionality. Because the alteration observing signals
89
  // only erasing and adding but not the reversing it will stores bad
90
  // degrees. The sub graph adaptors cannot signal the alterations because
91
  // just a setting in the filter map can modify the graph and this cannot
92
  // be watched in any way.
93
  //
94
  // \param _Container The container which is observed.
95
  // \param _Item The item type which is obserbved.
97 96

	
98 97
  template <typename _Container, typename _Item>
99 98
  class AlterationNotifier {
100 99
  public:
101 100

	
102 101
    typedef True Notifier;
103 102

	
104 103
    typedef _Container Container;
105 104
    typedef _Item Item;
106 105

	
107
    /// \brief Exception which can be called from \e clear() and
108
    /// \e erase().
109
    ///
110
    /// From the \e clear() and \e erase() function only this
111
    /// exception is allowed to throw. The exception immediatly
112
    /// detaches the current observer from the notifier. Because the
113
    /// \e clear() and \e erase() should not throw other exceptions
114
    /// it can be used to invalidate the observer.
106
    // \brief Exception which can be called from \e clear() and
107
    // \e erase().
108
    //
109
    // From the \e clear() and \e erase() function only this
110
    // exception is allowed to throw. The exception immediatly
111
    // detaches the current observer from the notifier. Because the
112
    // \e clear() and \e erase() should not throw other exceptions
113
    // it can be used to invalidate the observer.
115 114
    struct ImmediateDetach {};
116 115

	
117
    /// \brief ObserverBase is the base class for the observers.
118
    ///
119
    /// ObserverBase is the abstract base class for the observers.
120
    /// It will be notified about an item was inserted into or
121
    /// erased from the graph.
122
    ///
123
    /// The observer interface contains some pure virtual functions
124
    /// to override. The add() and erase() functions are
125
    /// to notify the oberver when one item is added or
126
    /// erased.
127
    ///
128
    /// The build() and clear() members are to notify the observer
129
    /// about the container is built from an empty container or
130
    /// is cleared to an empty container.
131

	
116
    // \brief ObserverBase is the base class for the observers.
117
    //
118
    // ObserverBase is the abstract base class for the observers.
119
    // It will be notified about an item was inserted into or
120
    // erased from the graph.
121
    //
122
    // The observer interface contains some pure virtual functions
123
    // to override. The add() and erase() functions are
124
    // to notify the oberver when one item is added or
125
    // erased.
126
    //
127
    // The build() and clear() members are to notify the observer
128
    // about the container is built from an empty container or
129
    // is cleared to an empty container.
132 130
    class ObserverBase {
133 131
    protected:
134 132
      typedef AlterationNotifier Notifier;
135 133

	
136 134
      friend class AlterationNotifier;
137 135

	
138
      /// \brief Default constructor.
139
      ///
140
      /// Default constructor for ObserverBase.
141
      ///
136
      // \brief Default constructor.
137
      //
138
      // Default constructor for ObserverBase.
142 139
      ObserverBase() : _notifier(0) {}
143 140

	
144
      /// \brief Constructor which attach the observer into notifier.
145
      ///
146
      /// Constructor which attach the observer into notifier.
141
      // \brief Constructor which attach the observer into notifier.
142
      //
143
      // Constructor which attach the observer into notifier.
147 144
      ObserverBase(AlterationNotifier& nf) {
148 145
        attach(nf);
149 146
      }
150 147

	
151
      /// \brief Constructor which attach the obserever to the same notifier.
152
      ///
153
      /// Constructor which attach the obserever to the same notifier as
154
      /// the other observer is attached to.
148
      // \brief Constructor which attach the obserever to the same notifier.
149
      //
150
      // Constructor which attach the obserever to the same notifier as
151
      // the other observer is attached to.
155 152
      ObserverBase(const ObserverBase& copy) {
156 153
        if (copy.attached()) {
157 154
          attach(*copy.notifier());
158 155
        }
159 156
      }
160 157

	
161
      /// \brief Destructor
158
      // \brief Destructor
162 159
      virtual ~ObserverBase() {
163 160
        if (attached()) {
164 161
          detach();
165 162
        }
166 163
      }
167 164

	
168
      /// \brief Attaches the observer into an AlterationNotifier.
169
      ///
170
      /// This member attaches the observer into an AlterationNotifier.
171
      ///
165
      // \brief Attaches the observer into an AlterationNotifier.
166
      //
167
      // This member attaches the observer into an AlterationNotifier.
172 168
      void attach(AlterationNotifier& nf) {
173 169
        nf.attach(*this);
174 170
      }
175 171

	
176
      /// \brief Detaches the observer into an AlterationNotifier.
177
      ///
178
      /// This member detaches the observer from an AlterationNotifier.
179
      ///
172
      // \brief Detaches the observer into an AlterationNotifier.
173
      //
174
      // This member detaches the observer from an AlterationNotifier.
180 175
      void detach() {
181 176
        _notifier->detach(*this);
182 177
      }
183 178

	
184
      /// \brief Gives back a pointer to the notifier which the map
185
      /// attached into.
186
      ///
187
      /// This function gives back a pointer to the notifier which the map
188
      /// attached into.
189
      ///
179
      // \brief Gives back a pointer to the notifier which the map
180
      // attached into.
181
      //
182
      // This function gives back a pointer to the notifier which the map
183
      // attached into.
190 184
      Notifier* notifier() const { return const_cast<Notifier*>(_notifier); }
191 185

	
192
      /// Gives back true when the observer is attached into a notifier.
186
      // Gives back true when the observer is attached into a notifier.
193 187
      bool attached() const { return _notifier != 0; }
194 188

	
195 189
    private:
196 190

	
197 191
      ObserverBase& operator=(const ObserverBase& copy);
198 192

	
199 193
    protected:
200 194

	
201 195
      Notifier* _notifier;
202 196
      typename std::list<ObserverBase*>::iterator _index;
203 197

	
204
      /// \brief The member function to notificate the observer about an
205
      /// item is added to the container.
206
      ///
207
      /// The add() member function notificates the observer about an item
208
      /// is added to the container. It have to be overrided in the
209
      /// subclasses.
198
      // \brief The member function to notificate the observer about an
199
      // item is added to the container.
200
      //
201
      // The add() member function notificates the observer about an item
202
      // is added to the container. It have to be overrided in the
203
      // subclasses.
210 204
      virtual void add(const Item&) = 0;
211 205

	
212
      /// \brief The member function to notificate the observer about
213
      /// more item is added to the container.
214
      ///
215
      /// The add() member function notificates the observer about more item
216
      /// is added to the container. It have to be overrided in the
217
      /// subclasses.
206
      // \brief The member function to notificate the observer about
207
      // more item is added to the container.
208
      //
209
      // The add() member function notificates the observer about more item
210
      // is added to the container. It have to be overrided in the
211
      // subclasses.
218 212
      virtual void add(const std::vector<Item>& items) = 0;
219 213

	
220
      /// \brief The member function to notificate the observer about an
221
      /// item is erased from the container.
222
      ///
223
      /// The erase() member function notificates the observer about an
224
      /// item is erased from the container. It have to be overrided in
225
      /// the subclasses.
214
      // \brief The member function to notificate the observer about an
215
      // item is erased from the container.
216
      //
217
      // The erase() member function notificates the observer about an
218
      // item is erased from the container. It have to be overrided in
219
      // the subclasses.
226 220
      virtual void erase(const Item&) = 0;
227 221

	
228
      /// \brief The member function to notificate the observer about
229
      /// more item is erased from the container.
230
      ///
231
      /// The erase() member function notificates the observer about more item
232
      /// is erased from the container. It have to be overrided in the
233
      /// subclasses.
222
      // \brief The member function to notificate the observer about
223
      // more item is erased from the container.
224
      //
225
      // The erase() member function notificates the observer about more item
226
      // is erased from the container. It have to be overrided in the
227
      // subclasses.
234 228
      virtual void erase(const std::vector<Item>& items) = 0;
235 229

	
236
      /// \brief The member function to notificate the observer about the
237
      /// container is built.
238
      ///
239
      /// The build() member function notificates the observer about the
240
      /// container is built from an empty container. It have to be
241
      /// overrided in the subclasses.
242

	
230
      // \brief The member function to notificate the observer about the
231
      // container is built.
232
      //
233
      // The build() member function notificates the observer about the
234
      // container is built from an empty container. It have to be
235
      // overrided in the subclasses.
243 236
      virtual void build() = 0;
244 237

	
245
      /// \brief The member function to notificate the observer about all
246
      /// items are erased from the container.
247
      ///
248
      /// The clear() member function notificates the observer about all
249
      /// items are erased from the container. It have to be overrided in
250
      /// the subclasses.
238
      // \brief The member function to notificate the observer about all
239
      // items are erased from the container.
240
      //
241
      // The clear() member function notificates the observer about all
242
      // items are erased from the container. It have to be overrided in
243
      // the subclasses.
251 244
      virtual void clear() = 0;
252 245

	
253 246
    };
254 247

	
255 248
  protected:
256 249

	
257 250
    const Container* container;
258 251

	
259 252
    typedef std::list<ObserverBase*> Observers;
260 253
    Observers _observers;
261 254

	
262 255

	
263 256
  public:
264 257

	
265
    /// \brief Default constructor.
266
    ///
267
    /// The default constructor of the AlterationNotifier.
268
    /// It creates an empty notifier.
258
    // \brief Default constructor.
259
    //
260
    // The default constructor of the AlterationNotifier.
261
    // It creates an empty notifier.
269 262
    AlterationNotifier()
270 263
      : container(0) {}
271 264

	
272
    /// \brief Constructor.
273
    ///
274
    /// Constructor with the observed container parameter.
265
    // \brief Constructor.
266
    //
267
    // Constructor with the observed container parameter.
275 268
    AlterationNotifier(const Container& _container)
276 269
      : container(&_container) {}
277 270

	
278
    /// \brief Copy Constructor of the AlterationNotifier.
279
    ///
280
    /// Copy constructor of the AlterationNotifier.
281
    /// It creates only an empty notifier because the copiable
282
    /// notifier's observers have to be registered still into that notifier.
271
    // \brief Copy Constructor of the AlterationNotifier.
272
    //
273
    // Copy constructor of the AlterationNotifier.
274
    // It creates only an empty notifier because the copiable
275
    // notifier's observers have to be registered still into that notifier.
283 276
    AlterationNotifier(const AlterationNotifier& _notifier)
284 277
      : container(_notifier.container) {}
285 278

	
286
    /// \brief Destructor.
287
    ///
288
    /// Destructor of the AlterationNotifier.
289
    ///
279
    // \brief Destructor.
280
    //
281
    // Destructor of the AlterationNotifier.
290 282
    ~AlterationNotifier() {
291 283
      typename Observers::iterator it;
292 284
      for (it = _observers.begin(); it != _observers.end(); ++it) {
293 285
        (*it)->_notifier = 0;
294 286
      }
295 287
    }
296 288

	
297
    /// \brief Sets the container.
298
    ///
299
    /// Sets the container.
289
    // \brief Sets the container.
290
    //
291
    // Sets the container.
300 292
    void setContainer(const Container& _container) {
301 293
      container = &_container;
302 294
    }
303 295

	
304 296
  protected:
305 297

	
306 298
    AlterationNotifier& operator=(const AlterationNotifier&);
307 299

	
308 300
  public:
309 301

	
310

	
311

	
312
    /// \brief First item in the container.
313
    ///
314
    /// Returns the first item in the container. It is
315
    /// for start the iteration on the container.
302
    // \brief First item in the container.
303
    //
304
    // Returns the first item in the container. It is
305
    // for start the iteration on the container.
316 306
    void first(Item& item) const {
317 307
      container->first(item);
318 308
    }
319 309

	
320
    /// \brief Next item in the container.
321
    ///
322
    /// Returns the next item in the container. It is
323
    /// for iterate on the container.
310
    // \brief Next item in the container.
311
    //
312
    // Returns the next item in the container. It is
313
    // for iterate on the container.
324 314
    void next(Item& item) const {
325 315
      container->next(item);
326 316
    }
327 317

	
328
    /// \brief Returns the id of the item.
329
    ///
330
    /// Returns the id of the item provided by the container.
318
    // \brief Returns the id of the item.
319
    //
320
    // Returns the id of the item provided by the container.
331 321
    int id(const Item& item) const {
332 322
      return container->id(item);
333 323
    }
334 324

	
335
    /// \brief Returns the maximum id of the container.
336
    ///
337
    /// Returns the maximum id of the container.
325
    // \brief Returns the maximum id of the container.
326
    //
327
    // Returns the maximum id of the container.
338 328
    int maxId() const {
339 329
      return container->maxId(Item());
340 330
    }
341 331

	
342 332
  protected:
343 333

	
344 334
    void attach(ObserverBase& observer) {
345 335
      observer._index = _observers.insert(_observers.begin(), &observer);
346 336
      observer._notifier = this;
347 337
    }
348 338

	
349 339
    void detach(ObserverBase& observer) {
350 340
      _observers.erase(observer._index);
351 341
      observer._index = _observers.end();
352 342
      observer._notifier = 0;
353 343
    }
354 344

	
355 345
  public:
356 346

	
357
    /// \brief Notifies all the registed observers about an item added to
358
    /// the container.
359
    ///
360
    /// It notifies all the registed observers about an item added to
361
    /// the container.
362
    ///
347
    // \brief Notifies all the registed observers about an item added to
348
    // the container.
349
    //
350
    // It notifies all the registed observers about an item added to
351
    // the container.
363 352
    void add(const Item& item) {
364 353
      typename Observers::reverse_iterator it;
365 354
      try {
366 355
        for (it = _observers.rbegin(); it != _observers.rend(); ++it) {
367 356
          (*it)->add(item);
368 357
        }
369 358
      } catch (...) {
370 359
        typename Observers::iterator jt;
371 360
        for (jt = it.base(); jt != _observers.end(); ++jt) {
372 361
          (*jt)->erase(item);
373 362
        }
374 363
        throw;
375 364
      }
376 365
    }
377 366

	
378
    /// \brief Notifies all the registed observers about more item added to
379
    /// the container.
380
    ///
381
    /// It notifies all the registed observers about more item added to
382
    /// the container.
383
    ///
367
    // \brief Notifies all the registed observers about more item added to
368
    // the container.
369
    //
370
    // It notifies all the registed observers about more item added to
371
    // the container.
384 372
    void add(const std::vector<Item>& items) {
385 373
      typename Observers::reverse_iterator it;
386 374
      try {
387 375
        for (it = _observers.rbegin(); it != _observers.rend(); ++it) {
388 376
          (*it)->add(items);
389 377
        }
390 378
      } catch (...) {
391 379
        typename Observers::iterator jt;
392 380
        for (jt = it.base(); jt != _observers.end(); ++jt) {
393 381
          (*jt)->erase(items);
394 382
        }
395 383
        throw;
396 384
      }
397 385
    }
398 386

	
399
    /// \brief Notifies all the registed observers about an item erased from
400
    /// the container.
401
    ///
402
    /// It notifies all the registed observers about an item erased from
403
    /// the container.
404
    ///
387
    // \brief Notifies all the registed observers about an item erased from
388
    // the container.
389
    //
390
    // It notifies all the registed observers about an item erased from
391
    // the container.
405 392
    void erase(const Item& item) throw() {
406 393
      typename Observers::iterator it = _observers.begin();
407 394
      while (it != _observers.end()) {
408 395
        try {
409 396
          (*it)->erase(item);
410 397
          ++it;
411 398
        } catch (const ImmediateDetach&) {
412 399
          (*it)->_index = _observers.end();
413 400
          (*it)->_notifier = 0;
414 401
          it = _observers.erase(it);
415 402
        }
416 403
      }
417 404
    }
418 405

	
419
    /// \brief Notifies all the registed observers about more item erased
420
    /// from the container.
421
    ///
422
    /// It notifies all the registed observers about more item erased from
423
    /// the container.
424
    ///
406
    // \brief Notifies all the registed observers about more item erased
407
    // from the container.
408
    //
409
    // It notifies all the registed observers about more item erased from
410
    // the container.
425 411
    void erase(const std::vector<Item>& items) {
426 412
      typename Observers::iterator it = _observers.begin();
427 413
      while (it != _observers.end()) {
428 414
        try {
429 415
          (*it)->erase(items);
430 416
          ++it;
431 417
        } catch (const ImmediateDetach&) {
432 418
          (*it)->_index = _observers.end();
433 419
          (*it)->_notifier = 0;
434 420
          it = _observers.erase(it);
435 421
        }
436 422
      }
437 423
    }
438 424

	
439
    /// \brief Notifies all the registed observers about the container is
440
    /// built.
441
    ///
442
    /// Notifies all the registed observers about the container is built
443
    /// from an empty container.
425
    // \brief Notifies all the registed observers about the container is
426
    // built.
427
    //
428
    // Notifies all the registed observers about the container is built
429
    // from an empty container.
444 430
    void build() {
445 431
      typename Observers::reverse_iterator it;
446 432
      try {
447 433
        for (it = _observers.rbegin(); it != _observers.rend(); ++it) {
448 434
          (*it)->build();
449 435
        }
450 436
      } catch (...) {
451 437
        typename Observers::iterator jt;
452 438
        for (jt = it.base(); jt != _observers.end(); ++jt) {
453 439
          (*jt)->clear();
454 440
        }
455 441
        throw;
456 442
      }
457 443
    }
458 444

	
459
    /// \brief Notifies all the registed observers about all items are
460
    /// erased.
461
    ///
462
    /// Notifies all the registed observers about all items are erased
463
    /// from the container.
445
    // \brief Notifies all the registed observers about all items are
446
    // erased.
447
    //
448
    // Notifies all the registed observers about all items are erased
449
    // from the container.
464 450
    void clear() {
465 451
      typename Observers::iterator it = _observers.begin();
466 452
      while (it != _observers.end()) {
467 453
        try {
468 454
          (*it)->clear();
469 455
          ++it;
470 456
        } catch (const ImmediateDetach&) {
471 457
          (*it)->_index = _observers.end();
472 458
          (*it)->_notifier = 0;
473 459
          it = _observers.erase(it);
474 460
        }
475 461
      }
Ignore white space 6 line context
... ...
@@ -17,228 +17,228 @@
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_ARRAY_MAP_H
20 20
#define LEMON_BITS_ARRAY_MAP_H
21 21

	
22 22
#include <memory>
23 23

	
24 24
#include <lemon/bits/traits.h>
25 25
#include <lemon/bits/alteration_notifier.h>
26 26
#include <lemon/concept_check.h>
27 27
#include <lemon/concepts/maps.h>
28 28

	
29
/// \ingroup graphbits
30
/// \file
31
/// \brief Graph map based on the array storage.
29
// \ingroup graphbits
30
// \file
31
// \brief Graph map based on the array storage.
32 32

	
33 33
namespace lemon {
34 34

	
35
  /// \ingroup graphbits
36
  ///
37
  /// \brief Graph map based on the array storage.
38
  ///
39
  /// The ArrayMap template class is graph map structure what
40
  /// automatically updates the map when a key is added to or erased from
41
  /// the map. This map uses the allocators to implement
42
  /// the container functionality.
43
  ///
44
  /// The template parameters are the Graph the current Item type and
45
  /// the Value type of the map.
35
  // \ingroup graphbits
36
  //
37
  // \brief Graph map based on the array storage.
38
  //
39
  // The ArrayMap template class is graph map structure what
40
  // automatically updates the map when a key is added to or erased from
41
  // the map. This map uses the allocators to implement
42
  // the container functionality.
43
  //
44
  // The template parameters are the Graph the current Item type and
45
  // the Value type of the map.
46 46
  template <typename _Graph, typename _Item, typename _Value>
47 47
  class ArrayMap
48 48
    : public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
49 49
  public:
50
    /// The graph type of the maps.
50
    // The graph type of the maps.
51 51
    typedef _Graph Graph;
52
    /// The item type of the map.
52
    // The item type of the map.
53 53
    typedef _Item Item;
54
    /// The reference map tag.
54
    // The reference map tag.
55 55
    typedef True ReferenceMapTag;
56 56

	
57
    /// The key type of the maps.
57
    // The key type of the maps.
58 58
    typedef _Item Key;
59
    /// The value type of the map.
59
    // The value type of the map.
60 60
    typedef _Value Value;
61 61

	
62
    /// The const reference type of the map.
62
    // The const reference type of the map.
63 63
    typedef const _Value& ConstReference;
64
    /// The reference type of the map.
64
    // The reference type of the map.
65 65
    typedef _Value& Reference;
66 66

	
67
    /// The notifier type.
67
    // The notifier type.
68 68
    typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier;
69 69

	
70
    /// The MapBase of the Map which imlements the core regisitry function.
70
    // The MapBase of the Map which imlements the core regisitry function.
71 71
    typedef typename Notifier::ObserverBase Parent;
72 72

	
73 73
  private:
74 74
    typedef std::allocator<Value> Allocator;
75 75

	
76 76
  public:
77 77

	
78
    /// \brief Graph initialized map constructor.
79
    ///
80
    /// Graph initialized map constructor.
78
    // \brief Graph initialized map constructor.
79
    //
80
    // Graph initialized map constructor.
81 81
    explicit ArrayMap(const Graph& graph) {
82 82
      Parent::attach(graph.notifier(Item()));
83 83
      allocate_memory();
84 84
      Notifier* nf = Parent::notifier();
85 85
      Item it;
86 86
      for (nf->first(it); it != INVALID; nf->next(it)) {
87 87
        int id = nf->id(it);;
88 88
        allocator.construct(&(values[id]), Value());
89 89
      }
90 90
    }
91 91

	
92
    /// \brief Constructor to use default value to initialize the map.
93
    ///
94
    /// It constructs a map and initialize all of the the map.
92
    // \brief Constructor to use default value to initialize the map.
93
    //
94
    // It constructs a map and initialize all of the the map.
95 95
    ArrayMap(const Graph& graph, const Value& value) {
96 96
      Parent::attach(graph.notifier(Item()));
97 97
      allocate_memory();
98 98
      Notifier* nf = Parent::notifier();
99 99
      Item it;
100 100
      for (nf->first(it); it != INVALID; nf->next(it)) {
101 101
        int id = nf->id(it);;
102 102
        allocator.construct(&(values[id]), value);
103 103
      }
104 104
    }
105 105

	
106 106
  private:
107
    /// \brief Constructor to copy a map of the same map type.
108
    ///
109
    /// Constructor to copy a map of the same map type.
107
    // \brief Constructor to copy a map of the same map type.
108
    //
109
    // Constructor to copy a map of the same map type.
110 110
    ArrayMap(const ArrayMap& copy) : Parent() {
111 111
      if (copy.attached()) {
112 112
        attach(*copy.notifier());
113 113
      }
114 114
      capacity = copy.capacity;
115 115
      if (capacity == 0) return;
116 116
      values = allocator.allocate(capacity);
117 117
      Notifier* nf = Parent::notifier();
118 118
      Item it;
119 119
      for (nf->first(it); it != INVALID; nf->next(it)) {
120 120
        int id = nf->id(it);;
121 121
        allocator.construct(&(values[id]), copy.values[id]);
122 122
      }
123 123
    }
124 124

	
125
    /// \brief Assign operator.
126
    ///
127
    /// This operator assigns for each item in the map the
128
    /// value mapped to the same item in the copied map.
129
    /// The parameter map should be indiced with the same
130
    /// itemset because this assign operator does not change
131
    /// the container of the map.
125
    // \brief Assign operator.
126
    //
127
    // This operator assigns for each item in the map the
128
    // value mapped to the same item in the copied map.
129
    // The parameter map should be indiced with the same
130
    // itemset because this assign operator does not change
131
    // the container of the map.
132 132
    ArrayMap& operator=(const ArrayMap& cmap) {
133 133
      return operator=<ArrayMap>(cmap);
134 134
    }
135 135

	
136 136

	
137
    /// \brief Template assign operator.
138
    ///
139
    /// The given parameter should be conform to the ReadMap
140
    /// concecpt and could be indiced by the current item set of
141
    /// the NodeMap. In this case the value for each item
142
    /// is assigned by the value of the given ReadMap.
137
    // \brief Template assign operator.
138
    //
139
    // The given parameter should be conform to the ReadMap
140
    // concecpt and could be indiced by the current item set of
141
    // the NodeMap. In this case the value for each item
142
    // is assigned by the value of the given ReadMap.
143 143
    template <typename CMap>
144 144
    ArrayMap& operator=(const CMap& cmap) {
145 145
      checkConcept<concepts::ReadMap<Key, _Value>, CMap>();
146 146
      const typename Parent::Notifier* nf = Parent::notifier();
147 147
      Item it;
148 148
      for (nf->first(it); it != INVALID; nf->next(it)) {
149 149
        set(it, cmap[it]);
150 150
      }
151 151
      return *this;
152 152
    }
153 153

	
154 154
  public:
155
    /// \brief The destructor of the map.
156
    ///
157
    /// The destructor of the map.
155
    // \brief The destructor of the map.
156
    //
157
    // The destructor of the map.
158 158
    virtual ~ArrayMap() {
159 159
      if (attached()) {
160 160
        clear();
161 161
        detach();
162 162
      }
163 163
    }
164 164

	
165 165
  protected:
166 166

	
167 167
    using Parent::attach;
168 168
    using Parent::detach;
169 169
    using Parent::attached;
170 170

	
171 171
  public:
172 172

	
173
    /// \brief The subscript operator.
174
    ///
175
    /// The subscript operator. The map can be subscripted by the
176
    /// actual keys of the graph.
173
    // \brief The subscript operator.
174
    //
175
    // The subscript operator. The map can be subscripted by the
176
    // actual keys of the graph.
177 177
    Value& operator[](const Key& key) {
178 178
      int id = Parent::notifier()->id(key);
179 179
      return values[id];
180 180
    }
181 181

	
182
    /// \brief The const subscript operator.
183
    ///
184
    /// The const subscript operator. The map can be subscripted by the
185
    /// actual keys of the graph.
182
    // \brief The const subscript operator.
183
    //
184
    // The const subscript operator. The map can be subscripted by the
185
    // actual keys of the graph.
186 186
    const Value& operator[](const Key& key) const {
187 187
      int id = Parent::notifier()->id(key);
188 188
      return values[id];
189 189
    }
190 190

	
191
    /// \brief Setter function of the map.
192
    ///
193
    /// Setter function of the map. Equivalent with map[key] = val.
194
    /// This is a compatibility feature with the not dereferable maps.
191
    // \brief Setter function of the map.
192
    //
193
    // Setter function of the map. Equivalent with map[key] = val.
194
    // This is a compatibility feature with the not dereferable maps.
195 195
    void set(const Key& key, const Value& val) {
196 196
      (*this)[key] = val;
197 197
    }
198 198

	
199 199
  protected:
200 200

	
201
    /// \brief Adds a new key to the map.
202
    ///
203
    /// It adds a new key to the map. It called by the observer notifier
204
    /// and it overrides the add() member function of the observer base.
201
    // \brief Adds a new key to the map.
202
    //
203
    // It adds a new key to the map. It called by the observer notifier
204
    // and it overrides the add() member function of the observer base.
205 205
    virtual void add(const Key& key) {
206 206
      Notifier* nf = Parent::notifier();
207 207
      int id = nf->id(key);
208 208
      if (id >= capacity) {
209 209
        int new_capacity = (capacity == 0 ? 1 : capacity);
210 210
        while (new_capacity <= id) {
211 211
          new_capacity <<= 1;
212 212
        }
213 213
        Value* new_values = allocator.allocate(new_capacity);
214 214
        Item it;
215 215
        for (nf->first(it); it != INVALID; nf->next(it)) {
216 216
          int jd = nf->id(it);;
217 217
          if (id != jd) {
218 218
            allocator.construct(&(new_values[jd]), values[jd]);
219 219
            allocator.destroy(&(values[jd]));
220 220
          }
221 221
        }
222 222
        if (capacity != 0) allocator.deallocate(values, capacity);
223 223
        values = new_values;
224 224
        capacity = new_capacity;
225 225
      }
226 226
      allocator.construct(&(values[id]), Value());
227 227
    }
228 228

	
229
    /// \brief Adds more new keys to the map.
230
    ///
231
    /// It adds more new keys to the map. It called by the observer notifier
232
    /// and it overrides the add() member function of the observer base.
229
    // \brief Adds more new keys to the map.
230
    //
231
    // It adds more new keys to the map. It called by the observer notifier
232
    // and it overrides the add() member function of the observer base.
233 233
    virtual void add(const std::vector<Key>& keys) {
234 234
      Notifier* nf = Parent::notifier();
235 235
      int max_id = -1;
236 236
      for (int i = 0; i < int(keys.size()); ++i) {
237 237
        int id = nf->id(keys[i]);
238 238
        if (id > max_id) {
239 239
          max_id = id;
240 240
        }
241 241
      }
242 242
      if (max_id >= capacity) {
243 243
        int new_capacity = (capacity == 0 ? 1 : capacity);
244 244
        while (new_capacity <= max_id) {
... ...
@@ -261,62 +261,62 @@
261 261
          allocator.destroy(&(values[id]));
262 262
        }
263 263
        if (capacity != 0) allocator.deallocate(values, capacity);
264 264
        values = new_values;
265 265
        capacity = new_capacity;
266 266
      }
267 267
      for (int i = 0; i < int(keys.size()); ++i) {
268 268
        int id = nf->id(keys[i]);
269 269
        allocator.construct(&(values[id]), Value());
270 270
      }
271 271
    }
272 272

	
273
    /// \brief Erase a key from the map.
274
    ///
275
    /// Erase a key from the map. It called by the observer notifier
276
    /// and it overrides the erase() member function of the observer base.
273
    // \brief Erase a key from the map.
274
    //
275
    // Erase a key from the map. It called by the observer notifier
276
    // and it overrides the erase() member function of the observer base.
277 277
    virtual void erase(const Key& key) {
278 278
      int id = Parent::notifier()->id(key);
279 279
      allocator.destroy(&(values[id]));
280 280
    }
281 281

	
282
    /// \brief Erase more keys from the map.
283
    ///
284
    /// Erase more keys from the map. It called by the observer notifier
285
    /// and it overrides the erase() member function of the observer base.
282
    // \brief Erase more keys from the map.
283
    //
284
    // Erase more keys from the map. It called by the observer notifier
285
    // and it overrides the erase() member function of the observer base.
286 286
    virtual void erase(const std::vector<Key>& keys) {
287 287
      for (int i = 0; i < int(keys.size()); ++i) {
288 288
        int id = Parent::notifier()->id(keys[i]);
289 289
        allocator.destroy(&(values[id]));
290 290
      }
291 291
    }
292 292

	
293
    /// \brief Buildes the map.
294
    ///
295
    /// It buildes the map. It called by the observer notifier
296
    /// and it overrides the build() member function of the observer base.
293
    // \brief Buildes the map.
294
    //
295
    // It buildes the map. It called by the observer notifier
296
    // and it overrides the build() member function of the observer base.
297 297
    virtual void build() {
298 298
      Notifier* nf = Parent::notifier();
299 299
      allocate_memory();
300 300
      Item it;
301 301
      for (nf->first(it); it != INVALID; nf->next(it)) {
302 302
        int id = nf->id(it);;
303 303
        allocator.construct(&(values[id]), Value());
304 304
      }
305 305
    }
306 306

	
307
    /// \brief Clear the map.
308
    ///
309
    /// It erase all items from the map. It called by the observer notifier
310
    /// and it overrides the clear() member function of the observer base.
307
    // \brief Clear the map.
308
    //
309
    // It erase all items from the map. It called by the observer notifier
310
    // and it overrides the clear() member function of the observer base.
311 311
    virtual void clear() {
312 312
      Notifier* nf = Parent::notifier();
313 313
      if (capacity != 0) {
314 314
        Item it;
315 315
        for (nf->first(it); it != INVALID; nf->next(it)) {
316 316
          int id = nf->id(it);
317 317
          allocator.destroy(&(values[id]));
318 318
        }
319 319
        allocator.deallocate(values, capacity);
320 320
        capacity = 0;
321 321
      }
322 322
    }
Ignore white space 6 line context
... ...
@@ -19,32 +19,32 @@
19 19
#ifndef LEMON_BITS_BASE_EXTENDER_H
20 20
#define LEMON_BITS_BASE_EXTENDER_H
21 21

	
22 22
#include <lemon/core.h>
23 23
#include <lemon/error.h>
24 24

	
25 25
#include <lemon/bits/map_extender.h>
26 26
#include <lemon/bits/default_map.h>
27 27

	
28 28
#include <lemon/concept_check.h>
29 29
#include <lemon/concepts/maps.h>
30 30

	
31
///\ingroup digraphbits
32
///\file
33
///\brief Extenders for the digraph types
31
//\ingroup digraphbits
32
//\file
33
//\brief Extenders for the digraph types
34 34
namespace lemon {
35 35

	
36
  /// \ingroup digraphbits
37
  ///
38
  /// \brief BaseDigraph to BaseGraph extender
36
  // \ingroup digraphbits
37
  //
38
  // \brief BaseDigraph to BaseGraph extender
39 39
  template <typename Base>
40 40
  class UndirDigraphExtender : public Base {
41 41

	
42 42
  public:
43 43

	
44 44
    typedef Base Parent;
45 45
    typedef typename Parent::Arc Edge;
46 46
    typedef typename Parent::Node Node;
47 47

	
48 48
    typedef True UndirectedTag;
49 49

	
50 50
    class Arc : public Edge {
... ...
@@ -65,55 +65,55 @@
65 65
      bool operator==(const Arc &that) const {
66 66
        return forward==that.forward && Edge(*this)==Edge(that);
67 67
      }
68 68
      bool operator!=(const Arc &that) const {
69 69
        return forward!=that.forward || Edge(*this)!=Edge(that);
70 70
      }
71 71
      bool operator<(const Arc &that) const {
72 72
        return forward<that.forward ||
73 73
          (!(that.forward<forward) && Edge(*this)<Edge(that));
74 74
      }
75 75
    };
76 76

	
77
    /// First node of the edge
77
    // First node of the edge
78 78
    Node u(const Edge &e) const {
79 79
      return Parent::source(e);
80 80
    }
81 81

	
82
    /// Source of the given arc
82
    // Source of the given arc
83 83
    Node source(const Arc &e) const {
84 84
      return e.forward ? Parent::source(e) : Parent::target(e);
85 85
    }
86 86

	
87
    /// Second node of the edge
87
    // Second node of the edge
88 88
    Node v(const Edge &e) const {
89 89
      return Parent::target(e);
90 90
    }
91 91

	
92
    /// Target of the given arc
92
    // Target of the given arc
93 93
    Node target(const Arc &e) const {
94 94
      return e.forward ? Parent::target(e) : Parent::source(e);
95 95
    }
96 96

	
97
    /// \brief Directed arc from an edge.
98
    ///
99
    /// Returns a directed arc corresponding to the specified edge.
100
    /// If the given bool is true, the first node of the given edge and
101
    /// the source node of the returned arc are the same.
97
    // \brief Directed arc from an edge.
98
    //
99
    // Returns a directed arc corresponding to the specified edge.
100
    // If the given bool is true, the first node of the given edge and
101
    // the source node of the returned arc are the same.
102 102
    static Arc direct(const Edge &e, bool d) {
103 103
      return Arc(e, d);
104 104
    }
105 105

	
106
    /// Returns whether the given directed arc has the same orientation
107
    /// as the corresponding edge.
106
    // Returns whether the given directed arc has the same orientation
107
    // as the corresponding edge.
108 108
    static bool direction(const Arc &a) { return a.forward; }
109 109

	
110 110
    using Parent::first;
111 111
    using Parent::next;
112 112

	
113 113
    void first(Arc &e) const {
114 114
      Parent::first(e);
115 115
      e.forward=true;
116 116
    }
117 117

	
118 118
    void next(Arc &e) const {
119 119
      if( e.forward ) {
Ignore white space 6 line context
... ...
@@ -10,29 +10,29 @@
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BEZIER_H
20 20
#define LEMON_BEZIER_H
21 21

	
22
///\ingroup misc
23
///\file
24
///\brief Classes to compute with Bezier curves.
25
///
26
///Up to now this file is used internally by \ref graph_to_eps.h
22
//\ingroup misc
23
//\file
24
//\brief Classes to compute with Bezier curves.
25
//
26
//Up to now this file is used internally by \ref graph_to_eps.h
27 27

	
28 28
#include<lemon/dim2.h>
29 29

	
30 30
namespace lemon {
31 31
  namespace dim2 {
32 32

	
33 33
class BezierBase {
34 34
public:
35 35
  typedef lemon::dim2::Point<double> Point;
36 36
protected:
37 37
  static Point conv(Point x,Point y,double t) {return (1-t)*x+t*y;}
38 38
};
Ignore white space 6 line context
... ...
@@ -10,32 +10,31 @@
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_DEFAULT_MAP_H
20 20
#define LEMON_BITS_DEFAULT_MAP_H
21 21

	
22

	
23 22
#include <lemon/bits/array_map.h>
24 23
#include <lemon/bits/vector_map.h>
25 24
//#include <lemon/bits/debug_map.h>
26 25

	
27
///\ingroup graphbits
28
///\file
29
///\brief Graph maps that construct and destruct their elements dynamically.
26
//\ingroup graphbits
27
//\file
28
//\brief Graph maps that construct and destruct their elements dynamically.
30 29

	
31 30
namespace lemon {
32 31

	
33 32

	
34 33
  //#ifndef LEMON_USE_DEBUG_MAP
35 34

	
36 35
  template <typename _Graph, typename _Item, typename _Value>
37 36
  struct DefaultMapSelector {
38 37
    typedef ArrayMap<_Graph, _Item, _Value> Map;
39 38
  };
40 39

	
41 40
  // bool
... ...
@@ -140,25 +139,25 @@
140 139
    typedef VectorMap<_Graph, _Item, _Ptr*> Map;
141 140
  };
142 141

	
143 142
// #else
144 143

	
145 144
//   template <typename _Graph, typename _Item, typename _Value>
146 145
//   struct DefaultMapSelector {
147 146
//     typedef DebugMap<_Graph, _Item, _Value> Map;
148 147
//   };
149 148

	
150 149
// #endif
151 150

	
152
  /// \e
151
  // DefaultMap class
153 152
  template <typename _Graph, typename _Item, typename _Value>
154 153
  class DefaultMap
155 154
    : public DefaultMapSelector<_Graph, _Item, _Value>::Map {
156 155
  public:
157 156
    typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent;
158 157
    typedef DefaultMap<_Graph, _Item, _Value> Map;
159 158

	
160 159
    typedef typename Parent::Graph Graph;
161 160
    typedef typename Parent::Value Value;
162 161

	
163 162
    explicit DefaultMap(const Graph& graph) : Parent(graph) {}
164 163
    DefaultMap(const Graph& graph, const Value& value)
Ignore white space 6 line context
... ...
@@ -26,47 +26,47 @@
26 26
// Use, modification, and distribution is subject to the Boost Software
27 27
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
28 28
// http://www.boost.org/LICENSE_1_0.txt)
29 29

	
30 30
//    Authors: Jaakko Jarvi (jajarvi at osl.iu.edu)
31 31
//             Jeremiah Willcock (jewillco at osl.iu.edu)
32 32
//             Andrew Lumsdaine (lums at osl.iu.edu)
33 33

	
34 34

	
35 35
#ifndef LEMON_BITS_ENABLE_IF_H
36 36
#define LEMON_BITS_ENABLE_IF_H
37 37

	
38
///\file
39
///\brief Miscellaneous basic utilities
38
//\file
39
//\brief Miscellaneous basic utilities
40 40

	
41 41
namespace lemon
42 42
{
43 43

	
44
  /// Basic type for defining "tags". A "YES" condition for \c enable_if.
44
  // Basic type for defining "tags". A "YES" condition for \c enable_if.
45 45

	
46
  /// Basic type for defining "tags". A "YES" condition for \c enable_if.
47
  ///
48
  ///\sa False
46
  // Basic type for defining "tags". A "YES" condition for \c enable_if.
47
  //
48
  //\sa False
49 49
  struct True {
50
    ///\e
50
    //\e
51 51
    static const bool value = true;
52 52
  };
53 53

	
54
  /// Basic type for defining "tags". A "NO" condition for \c enable_if.
54
  // Basic type for defining "tags". A "NO" condition for \c enable_if.
55 55

	
56
  /// Basic type for defining "tags". A "NO" condition for \c enable_if.
57
  ///
58
  ///\sa True
56
  // Basic type for defining "tags". A "NO" condition for \c enable_if.
57
  //
58
  //\sa True
59 59
  struct False {
60
    ///\e
60
    //\e
61 61
    static const bool value = false;
62 62
  };
63 63

	
64 64

	
65 65

	
66 66
  template <typename T>
67 67
  struct Wrap {
68 68
    const T &value;
69 69
    Wrap(const T &t) : value(t) {}
70 70
  };
71 71

	
72 72
  /**************** dummy class to avoid ambiguity ****************/
Ignore white space 6 line context
... ...
@@ -18,32 +18,32 @@
18 18

	
19 19
#ifndef LEMON_BITS_GRAPH_EXTENDER_H
20 20
#define LEMON_BITS_GRAPH_EXTENDER_H
21 21

	
22 22
#include <lemon/core.h>
23 23

	
24 24
#include <lemon/bits/map_extender.h>
25 25
#include <lemon/bits/default_map.h>
26 26

	
27 27
#include <lemon/concept_check.h>
28 28
#include <lemon/concepts/maps.h>
29 29

	
30
///\ingroup graphbits
31
///\file
32
///\brief Extenders for the digraph types
30
//\ingroup graphbits
31
//\file
32
//\brief Extenders for the digraph types
33 33
namespace lemon {
34 34

	
35
  /// \ingroup graphbits
36
  ///
37
  /// \brief Extender for the Digraphs
35
  // \ingroup graphbits
36
  //
37
  // \brief Extender for the Digraphs
38 38
  template <typename Base>
39 39
  class DigraphExtender : public Base {
40 40
  public:
41 41

	
42 42
    typedef Base Parent;
43 43
    typedef DigraphExtender Digraph;
44 44

	
45 45
    // Base extensions
46 46

	
47 47
    typedef typename Parent::Node Node;
48 48
    typedef typename Parent::Arc Arc;
49 49

	
... ...
@@ -177,48 +177,48 @@
177 177
      }
178 178

	
179 179
      InArcIt(const Digraph& digraph, const Arc& arc) :
180 180
        Arc(arc), _digraph(&digraph) {}
181 181

	
182 182
      InArcIt& operator++() {
183 183
        _digraph->nextIn(*this);
184 184
        return *this;
185 185
      }
186 186

	
187 187
    };
188 188

	
189
    /// \brief Base node of the iterator
190
    ///
191
    /// Returns the base node (i.e. the source in this case) of the iterator
189
    // \brief Base node of the iterator
190
    //
191
    // Returns the base node (i.e. the source in this case) of the iterator
192 192
    Node baseNode(const OutArcIt &arc) const {
193 193
      return Parent::source(arc);
194 194
    }
195
    /// \brief Running node of the iterator
196
    ///
197
    /// Returns the running node (i.e. the target in this case) of the
198
    /// iterator
195
    // \brief Running node of the iterator
196
    //
197
    // Returns the running node (i.e. the target in this case) of the
198
    // iterator
199 199
    Node runningNode(const OutArcIt &arc) const {
200 200
      return Parent::target(arc);
201 201
    }
202 202

	
203
    /// \brief Base node of the iterator
204
    ///
205
    /// Returns the base node (i.e. the target in this case) of the iterator
203
    // \brief Base node of the iterator
204
    //
205
    // Returns the base node (i.e. the target in this case) of the iterator
206 206
    Node baseNode(const InArcIt &arc) const {
207 207
      return Parent::target(arc);
208 208
    }
209
    /// \brief Running node of the iterator
210
    ///
211
    /// Returns the running node (i.e. the source in this case) of the
212
    /// iterator
209
    // \brief Running node of the iterator
210
    //
211
    // Returns the running node (i.e. the source in this case) of the
212
    // iterator
213 213
    Node runningNode(const InArcIt &arc) const {
214 214
      return Parent::source(arc);
215 215
    }
216 216

	
217 217

	
218 218
    template <typename _Value>
219 219
    class NodeMap
220 220
      : public MapExtender<DefaultMap<Digraph, Node, _Value> > {
221 221
    public:
222 222
      typedef DigraphExtender Digraph;
223 223
      typedef MapExtender<DefaultMap<Digraph, Node, _Value> > Parent;
224 224

	
... ...
@@ -316,27 +316,27 @@
316 316
    DigraphExtender() {
317 317
      node_notifier.setContainer(*this);
318 318
      arc_notifier.setContainer(*this);
319 319
    }
320 320

	
321 321

	
322 322
    ~DigraphExtender() {
323 323
      arc_notifier.clear();
324 324
      node_notifier.clear();
325 325
    }
326 326
  };
327 327

	
328
  /// \ingroup _graphbits
329
  ///
330
  /// \brief Extender for the Graphs
328
  // \ingroup _graphbits
329
  //
330
  // \brief Extender for the Graphs
331 331
  template <typename Base>
332 332
  class GraphExtender : public Base {
333 333
  public:
334 334

	
335 335
    typedef Base Parent;
336 336
    typedef GraphExtender Graph;
337 337

	
338 338
    typedef True UndirectedTag;
339 339

	
340 340
    typedef typename Parent::Node Node;
341 341
    typedef typename Parent::Arc Arc;
342 342
    typedef typename Parent::Edge Edge;
... ...
@@ -546,61 +546,61 @@
546 546

	
547 547
      IncEdgeIt(const Graph& graph, const Edge &edge, const Node &node)
548 548
        : _graph(&graph), Edge(edge) {
549 549
        _direction = (_graph->source(edge) == node);
550 550
      }
551 551

	
552 552
      IncEdgeIt& operator++() {
553 553
        _graph->nextInc(*this, _direction);
554 554
        return *this;
555 555
      }
556 556
    };
557 557

	
558
    /// \brief Base node of the iterator
559
    ///
560
    /// Returns the base node (ie. the source in this case) of the iterator
558
    // \brief Base node of the iterator
559
    //
560
    // Returns the base node (ie. the source in this case) of the iterator
561 561
    Node baseNode(const OutArcIt &arc) const {
562 562
      return Parent::source(static_cast<const Arc&>(arc));
563 563
    }
564
    /// \brief Running node of the iterator
565
    ///
566
    /// Returns the running node (ie. the target in this case) of the
567
    /// iterator
564
    // \brief Running node of the iterator
565
    //
566
    // Returns the running node (ie. the target in this case) of the
567
    // iterator
568 568
    Node runningNode(const OutArcIt &arc) const {
569 569
      return Parent::target(static_cast<const Arc&>(arc));
570 570
    }
571 571

	
572
    /// \brief Base node of the iterator
573
    ///
574
    /// Returns the base node (ie. the target in this case) of the iterator
572
    // \brief Base node of the iterator
573
    //
574
    // Returns the base node (ie. the target in this case) of the iterator
575 575
    Node baseNode(const InArcIt &arc) const {
576 576
      return Parent::target(static_cast<const Arc&>(arc));
577 577
    }
578
    /// \brief Running node of the iterator
579
    ///
580
    /// Returns the running node (ie. the source in this case) of the
581
    /// iterator
578
    // \brief Running node of the iterator
579
    //
580
    // Returns the running node (ie. the source in this case) of the
581
    // iterator
582 582
    Node runningNode(const InArcIt &arc) const {
583 583
      return Parent::source(static_cast<const Arc&>(arc));
584 584
    }
585 585

	
586
    /// Base node of the iterator
587
    ///
588
    /// Returns the base node of the iterator
586
    // Base node of the iterator
587
    //
588
    // Returns the base node of the iterator
589 589
    Node baseNode(const IncEdgeIt &edge) const {
590 590
      return edge._direction ? u(edge) : v(edge);
591 591
    }
592
    /// Running node of the iterator
593
    ///
594
    /// Returns the running node of the iterator
592
    // Running node of the iterator
593
    //
594
    // Returns the running node of the iterator
595 595
    Node runningNode(const IncEdgeIt &edge) const {
596 596
      return edge._direction ? v(edge) : u(edge);
597 597
    }
598 598

	
599 599
    // Mappable extension
600 600

	
601 601
    template <typename _Value>
602 602
    class NodeMap
603 603
      : public MapExtender<DefaultMap<Graph, Node, _Value> > {
604 604
    public:
605 605
      typedef GraphExtender Graph;
606 606
      typedef MapExtender<DefaultMap<Graph, Node, _Value> > Parent;
Ignore white space 6 line context
... ...
@@ -17,32 +17,32 @@
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_MAP_EXTENDER_H
20 20
#define LEMON_BITS_MAP_EXTENDER_H
21 21

	
22 22
#include <iterator>
23 23

	
24 24
#include <lemon/bits/traits.h>
25 25

	
26 26
#include <lemon/concept_check.h>
27 27
#include <lemon/concepts/maps.h>
28 28

	
29
///\file
30
///\brief Extenders for iterable maps.
29
//\file
30
//\brief Extenders for iterable maps.
31 31

	
32 32
namespace lemon {
33 33

	
34
  /// \ingroup graphbits
35
  ///
36
  /// \brief Extender for maps
34
  // \ingroup graphbits
35
  //
36
  // \brief Extender for maps
37 37
  template <typename _Map>
38 38
  class MapExtender : public _Map {
39 39
  public:
40 40

	
41 41
    typedef _Map Parent;
42 42
    typedef MapExtender Map;
43 43

	
44 44

	
45 45
    typedef typename Parent::Graph Graph;
46 46
    typedef typename Parent::Key Item;
47 47

	
48 48
    typedef typename Parent::Key Key;
... ...
@@ -162,27 +162,27 @@
162 162

	
163 163
      ItemIt& operator++() {
164 164
        map.notifier()->next(*this);
165 165
        return *this;
166 166
      }
167 167

	
168 168
    protected:
169 169
      const Map& map;
170 170

	
171 171
    };
172 172
  };
173 173

	
174
  /// \ingroup graphbits
175
  ///
176
  /// \brief Extender for maps which use a subset of the items.
174
  // \ingroup graphbits
175
  //
176
  // \brief Extender for maps which use a subset of the items.
177 177
  template <typename _Graph, typename _Map>
178 178
  class SubMapExtender : public _Map {
179 179
  public:
180 180

	
181 181
    typedef _Map Parent;
182 182
    typedef SubMapExtender Map;
183 183

	
184 184
    typedef _Graph Graph;
185 185

	
186 186
    typedef typename Parent::Key Item;
187 187

	
188 188
    typedef typename Parent::Key Key;
Ignore white space 6 line context
... ...
@@ -10,27 +10,27 @@
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_TRAITS_H
20 20
#define LEMON_BITS_TRAITS_H
21 21

	
22
///\file
23
///\brief Traits for graphs and maps
24
///
22
//\file
23
//\brief Traits for graphs and maps
24
//
25 25

	
26 26
#include <lemon/bits/enable_if.h>
27 27

	
28 28
namespace lemon {
29 29

	
30 30
  struct InvalidType {};
31 31

	
32 32
  template <typename _Graph, typename _Item>
33 33
  class ItemSetTraits {};
34 34

	
35 35

	
36 36
  template <typename Graph, typename Enable = void>
Ignore white space 6 line context
... ...
@@ -19,221 +19,221 @@
19 19
#ifndef LEMON_BITS_VECTOR_MAP_H
20 20
#define LEMON_BITS_VECTOR_MAP_H
21 21

	
22 22
#include <vector>
23 23
#include <algorithm>
24 24

	
25 25
#include <lemon/core.h>
26 26
#include <lemon/bits/alteration_notifier.h>
27 27

	
28 28
#include <lemon/concept_check.h>
29 29
#include <lemon/concepts/maps.h>
30 30

	
31
///\ingroup graphbits
32
///
33
///\file
34
///\brief Vector based graph maps.
31
//\ingroup graphbits
32
//
33
//\file
34
//\brief Vector based graph maps.
35 35
namespace lemon {
36 36

	
37
  /// \ingroup graphbits
38
  ///
39
  /// \brief Graph map based on the std::vector storage.
40
  ///
41
  /// The VectorMap template class is graph map structure what
42
  /// automatically updates the map when a key is added to or erased from
43
  /// the map. This map type uses the std::vector to store the values.
44
  ///
45
  /// \tparam _Graph The graph this map is attached to.
46
  /// \tparam _Item The item type of the graph items.
47
  /// \tparam _Value The value type of the map.
37
  // \ingroup graphbits
38
  //
39
  // \brief Graph map based on the std::vector storage.
40
  //
41
  // The VectorMap template class is graph map structure what
42
  // automatically updates the map when a key is added to or erased from
43
  // the map. This map type uses the std::vector to store the values.
44
  //
45
  // \tparam _Graph The graph this map is attached to.
46
  // \tparam _Item The item type of the graph items.
47
  // \tparam _Value The value type of the map.
48 48
  template <typename _Graph, typename _Item, typename _Value>
49 49
  class VectorMap
50 50
    : public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
51 51
  private:
52 52

	
53
    /// The container type of the map.
53
    // The container type of the map.
54 54
    typedef std::vector<_Value> Container;
55 55

	
56 56
  public:
57 57

	
58
    /// The graph type of the map.
58
    // The graph type of the map.
59 59
    typedef _Graph Graph;
60
    /// The item type of the map.
60
    // The item type of the map.
61 61
    typedef _Item Item;
62
    /// The reference map tag.
62
    // The reference map tag.
63 63
    typedef True ReferenceMapTag;
64 64

	
65
    /// The key type of the map.
65
    // The key type of the map.
66 66
    typedef _Item Key;
67
    /// The value type of the map.
67
    // The value type of the map.
68 68
    typedef _Value Value;
69 69

	
70
    /// The notifier type.
70
    // The notifier type.
71 71
    typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier;
72 72

	
73
    /// The map type.
73
    // The map type.
74 74
    typedef VectorMap Map;
75
    /// The base class of the map.
75
    // The base class of the map.
76 76
    typedef typename Notifier::ObserverBase Parent;
77 77

	
78
    /// The reference type of the map;
78
    // The reference type of the map;
79 79
    typedef typename Container::reference Reference;
80
    /// The const reference type of the map;
80
    // The const reference type of the map;
81 81
    typedef typename Container::const_reference ConstReference;
82 82

	
83 83

	
84
    /// \brief Constructor to attach the new map into the notifier.
85
    ///
86
    /// It constructs a map and attachs it into the notifier.
87
    /// It adds all the items of the graph to the map.
84
    // \brief Constructor to attach the new map into the notifier.
85
    //
86
    // It constructs a map and attachs it into the notifier.
87
    // It adds all the items of the graph to the map.
88 88
    VectorMap(const Graph& graph) {
89 89
      Parent::attach(graph.notifier(Item()));
90 90
      container.resize(Parent::notifier()->maxId() + 1);
91 91
    }
92 92

	
93
    /// \brief Constructor uses given value to initialize the map.
94
    ///
95
    /// It constructs a map uses a given value to initialize the map.
96
    /// It adds all the items of the graph to the map.
93
    // \brief Constructor uses given value to initialize the map.
94
    //
95
    // It constructs a map uses a given value to initialize the map.
96
    // It adds all the items of the graph to the map.
97 97
    VectorMap(const Graph& graph, const Value& value) {
98 98
      Parent::attach(graph.notifier(Item()));
99 99
      container.resize(Parent::notifier()->maxId() + 1, value);
100 100
    }
101 101

	
102 102
  private:
103
    /// \brief Copy constructor
104
    ///
105
    /// Copy constructor.
103
    // \brief Copy constructor
104
    //
105
    // Copy constructor.
106 106
    VectorMap(const VectorMap& _copy) : Parent() {
107 107
      if (_copy.attached()) {
108 108
        Parent::attach(*_copy.notifier());
109 109
        container = _copy.container;
110 110
      }
111 111
    }
112 112

	
113
    /// \brief Assign operator.
114
    ///
115
    /// This operator assigns for each item in the map the
116
    /// value mapped to the same item in the copied map.
117
    /// The parameter map should be indiced with the same
118
    /// itemset because this assign operator does not change
119
    /// the container of the map.
113
    // \brief Assign operator.
114
    //
115
    // This operator assigns for each item in the map the
116
    // value mapped to the same item in the copied map.
117
    // The parameter map should be indiced with the same
118
    // itemset because this assign operator does not change
119
    // the container of the map.
120 120
    VectorMap& operator=(const VectorMap& cmap) {
121 121
      return operator=<VectorMap>(cmap);
122 122
    }
123 123

	
124 124

	
125
    /// \brief Template assign operator.
126
    ///
127
    /// The given parameter should be conform to the ReadMap
128
    /// concecpt and could be indiced by the current item set of
129
    /// the NodeMap. In this case the value for each item
130
    /// is assigned by the value of the given ReadMap.
125
    // \brief Template assign operator.
126
    //
127
    // The given parameter should be conform to the ReadMap
128
    // concecpt and could be indiced by the current item set of
129
    // the NodeMap. In this case the value for each item
130
    // is assigned by the value of the given ReadMap.
131 131
    template <typename CMap>
132 132
    VectorMap& operator=(const CMap& cmap) {
133 133
      checkConcept<concepts::ReadMap<Key, _Value>, CMap>();
134 134
      const typename Parent::Notifier* nf = Parent::notifier();
135 135
      Item it;
136 136
      for (nf->first(it); it != INVALID; nf->next(it)) {
137 137
        set(it, cmap[it]);
138 138
      }
139 139
      return *this;
140 140
    }
141 141

	
142 142
  public:
143 143

	
144
    /// \brief The subcript operator.
145
    ///
146
    /// The subscript operator. The map can be subscripted by the
147
    /// actual items of the graph.
144
    // \brief The subcript operator.
145
    //
146
    // The subscript operator. The map can be subscripted by the
147
    // actual items of the graph.
148 148
    Reference operator[](const Key& key) {
149 149
      return container[Parent::notifier()->id(key)];
150 150
    }
151 151

	
152
    /// \brief The const subcript operator.
153
    ///
154
    /// The const subscript operator. The map can be subscripted by the
155
    /// actual items of the graph.
152
    // \brief The const subcript operator.
153
    //
154
    // The const subscript operator. The map can be subscripted by the
155
    // actual items of the graph.
156 156
    ConstReference operator[](const Key& key) const {
157 157
      return container[Parent::notifier()->id(key)];
158 158
    }
159 159

	
160 160

	
161
    /// \brief The setter function of the map.
162
    ///
163
    /// It the same as operator[](key) = value expression.
161
    // \brief The setter function of the map.
162
    //
163
    // It the same as operator[](key) = value expression.
164 164
    void set(const Key& key, const Value& value) {
165 165
      (*this)[key] = value;
166 166
    }
167 167

	
168 168
  protected:
169 169

	
170
    /// \brief Adds a new key to the map.
171
    ///
172
    /// It adds a new key to the map. It called by the observer notifier
173
    /// and it overrides the add() member function of the observer base.
170
    // \brief Adds a new key to the map.
171
    //
172
    // It adds a new key to the map. It called by the observer notifier
173
    // and it overrides the add() member function of the observer base.
174 174
    virtual void add(const Key& key) {
175 175
      int id = Parent::notifier()->id(key);
176 176
      if (id >= int(container.size())) {
177 177
        container.resize(id + 1);
178 178
      }
179 179
    }
180 180

	
181
    /// \brief Adds more new keys to the map.
182
    ///
183
    /// It adds more new keys to the map. It called by the observer notifier
184
    /// and it overrides the add() member function of the observer base.
181
    // \brief Adds more new keys to the map.
182
    //
183
    // It adds more new keys to the map. It called by the observer notifier
184
    // and it overrides the add() member function of the observer base.
185 185
    virtual void add(const std::vector<Key>& keys) {
186 186
      int max = container.size() - 1;
187 187
      for (int i = 0; i < int(keys.size()); ++i) {
188 188
        int id = Parent::notifier()->id(keys[i]);
189 189
        if (id >= max) {
190 190
          max = id;
191 191
        }
192 192
      }
193 193
      container.resize(max + 1);
194 194
    }
195 195

	
196
    /// \brief Erase a key from the map.
197
    ///
198
    /// Erase a key from the map. It called by the observer notifier
199
    /// and it overrides the erase() member function of the observer base.
196
    // \brief Erase a key from the map.
197
    //
198
    // Erase a key from the map. It called by the observer notifier
199
    // and it overrides the erase() member function of the observer base.
200 200
    virtual void erase(const Key& key) {
201 201
      container[Parent::notifier()->id(key)] = Value();
202 202
    }
203 203

	
204
    /// \brief Erase more keys from the map.
205
    ///
206
    /// Erase more keys from the map. It called by the observer notifier
207
    /// and it overrides the erase() member function of the observer base.
204
    // \brief Erase more keys from the map.
205
    //
206
    // Erase more keys from the map. It called by the observer notifier
207
    // and it overrides the erase() member function of the observer base.
208 208
    virtual void erase(const std::vector<Key>& keys) {
209 209
      for (int i = 0; i < int(keys.size()); ++i) {
210 210
        container[Parent::notifier()->id(keys[i])] = Value();
211 211
      }
212 212
    }
213 213

	
214
    /// \brief Buildes the map.
215
    ///
216
    /// It buildes the map. It called by the observer notifier
217
    /// and it overrides the build() member function of the observer base.
214
    // \brief Buildes the map.
215
    //
216
    // It buildes the map. It called by the observer notifier
217
    // and it overrides the build() member function of the observer base.
218 218
    virtual void build() {
219 219
      int size = Parent::notifier()->maxId() + 1;
220 220
      container.reserve(size);
221 221
      container.resize(size);
222 222
    }
223 223

	
224
    /// \brief Clear the map.
225
    ///
226
    /// It erase all items from the map. It called by the observer notifier
227
    /// and it overrides the clear() member function of the observer base.
224
    // \brief Clear the map.
225
    //
226
    // It erase all items from the map. It called by the observer notifier
227
    // and it overrides the clear() member function of the observer base.
228 228
    virtual void clear() {
229 229
      container.clear();
230 230
    }
231 231

	
232 232
  private:
233 233

	
234 234
    Container container;
235 235

	
236 236
  };
237 237

	
238 238
}
239 239

	
Ignore white space 6 line context
... ...
@@ -83,25 +83,25 @@
83 83
  extern const Color DARK_RED;
84 84
  /// Dark green color constant
85 85
  extern const Color DARK_GREEN;
86 86
  /// Drak blue color constant
87 87
  extern const Color DARK_BLUE;
88 88
  /// Dark yellow color constant
89 89
  extern const Color DARK_YELLOW;
90 90
  /// Dark magenta color constant
91 91
  extern const Color DARK_MAGENTA;
92 92
  /// Dark cyan color constant
93 93
  extern const Color DARK_CYAN;
94 94

	
95
  ///Map <tt>int</tt>s to different \ref Color "Color"s
95
  ///Map <tt>int</tt>s to different <tt>Color</tt>s
96 96

	
97 97
  ///This map assigns one of the predefined \ref Color "Color"s to
98 98
  ///each <tt>int</tt>. It is possible to change the colors as well as
99 99
  ///their number. The integer range is cyclically mapped to the
100 100
  ///provided set of colors.
101 101
  ///
102 102
  ///This is a true \ref concepts::ReferenceMap "reference map", so
103 103
  ///you can also change the actual colors.
104 104

	
105 105
  class Palette : public MapBase<int,Color>
106 106
  {
107 107
    std::vector<Color> colors;
Ignore white space 6 line context
... ...
@@ -973,25 +973,25 @@
973 973
          ignore_unused_variable_warning(uen);
974 974
        }
975 975

	
976 976
        const _Graph& graph;
977 977

	
978 978
      };
979 979

	
980 980
    };
981 981

	
982 982
    /// \brief Class describing the concept of graph maps
983 983
    ///
984 984
    /// This class describes the common interface of the graph maps
985
    /// (NodeMap, ArcMap), that is \ref maps-page "maps" which can be used to
985
    /// (NodeMap, ArcMap), that is maps that can be used to
986 986
    /// associate data to graph descriptors (nodes or arcs).
987 987
    template <typename _Graph, typename _Item, typename _Value>
988 988
    class GraphMap : public ReadWriteMap<_Item, _Value> {
989 989
    public:
990 990

	
991 991
      typedef ReadWriteMap<_Item, _Value> Parent;
992 992

	
993 993
      /// The graph type of the map.
994 994
      typedef _Graph Graph;
995 995
      /// The key type of the map.
996 996
      typedef _Item Key;
997 997
      /// The value type of the map.
Ignore white space 6 line context
... ...
@@ -13,33 +13,33 @@
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CONCEPT_MAPS_H
20 20
#define LEMON_CONCEPT_MAPS_H
21 21

	
22 22
#include <lemon/core.h>
23 23
#include <lemon/concept_check.h>
24 24

	
25
///\ingroup concept
25
///\ingroup map_concepts
26 26
///\file
27 27
///\brief The concept of maps.
28 28

	
29 29
namespace lemon {
30 30

	
31 31
  namespace concepts {
32 32

	
33
    /// \addtogroup concept
33
    /// \addtogroup map_concepts
34 34
    /// @{
35 35

	
36 36
    /// Readable map concept
37 37

	
38 38
    /// Readable map concept.
39 39
    ///
40 40
    template<typename K, typename T>
41 41
    class ReadMap
42 42
    {
43 43
    public:
44 44
      /// The key type of the map.
45 45
      typedef K Key;
Ignore white space 6 line context
... ...
@@ -49,101 +49,101 @@
49 49
  ///
50 50
  /// \ref Invalid is a global type that converts to each iterator
51 51
  /// in such a way that the value of the target iterator will be invalid.
52 52
#ifdef LEMON_ONLY_TEMPLATES
53 53
  const Invalid INVALID = Invalid();
54 54
#else
55 55
  extern const Invalid INVALID;
56 56
#endif
57 57

	
58 58
  /// \addtogroup gutils
59 59
  /// @{
60 60

	
61
  ///Create convenient typedefs for the digraph types and iterators
61
  ///Create convenience typedefs for the digraph types and iterators
62 62

	
63 63
  ///This \c \#define creates convenient type definitions for the following
64 64
  ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
65 65
  ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
66 66
  ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
67 67
  ///
68 68
  ///\note If the graph type is a dependent type, ie. the graph type depend
69 69
  ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
70 70
  ///macro.
71 71
#define DIGRAPH_TYPEDEFS(Digraph)                                       \
72 72
  typedef Digraph::Node Node;                                           \
73 73
  typedef Digraph::NodeIt NodeIt;                                       \
74 74
  typedef Digraph::Arc Arc;                                             \
75 75
  typedef Digraph::ArcIt ArcIt;                                         \
76 76
  typedef Digraph::InArcIt InArcIt;                                     \
77 77
  typedef Digraph::OutArcIt OutArcIt;                                   \
78 78
  typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
79 79
  typedef Digraph::NodeMap<int> IntNodeMap;                             \
80 80
  typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
81 81
  typedef Digraph::ArcMap<bool> BoolArcMap;                             \
82 82
  typedef Digraph::ArcMap<int> IntArcMap;                               \
83
  typedef Digraph::ArcMap<double> DoubleArcMap;
83
  typedef Digraph::ArcMap<double> DoubleArcMap
84 84

	
85
  ///Create convenient typedefs for the digraph types and iterators
85
  ///Create convenience typedefs for the digraph types and iterators
86 86

	
87 87
  ///\see DIGRAPH_TYPEDEFS
88 88
  ///
89 89
  ///\note Use this macro, if the graph type is a dependent type,
90 90
  ///ie. the graph type depend on a template parameter.
91 91
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
92 92
  typedef typename Digraph::Node Node;                                  \
93 93
  typedef typename Digraph::NodeIt NodeIt;                              \
94 94
  typedef typename Digraph::Arc Arc;                                    \
95 95
  typedef typename Digraph::ArcIt ArcIt;                                \
96 96
  typedef typename Digraph::InArcIt InArcIt;                            \
97 97
  typedef typename Digraph::OutArcIt OutArcIt;                          \
98 98
  typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
99 99
  typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
100 100
  typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
101 101
  typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
102 102
  typedef typename Digraph::template ArcMap<int> IntArcMap;             \
103
  typedef typename Digraph::template ArcMap<double> DoubleArcMap;
103
  typedef typename Digraph::template ArcMap<double> DoubleArcMap
104 104

	
105
  ///Create convenient typedefs for the graph types and iterators
105
  ///Create convenience typedefs for the graph types and iterators
106 106

	
107 107
  ///This \c \#define creates the same convenient type definitions as defined
108 108
  ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
109 109
  ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
110 110
  ///\c DoubleEdgeMap.
111 111
  ///
112 112
  ///\note If the graph type is a dependent type, ie. the graph type depend
113 113
  ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
114 114
  ///macro.
115 115
#define GRAPH_TYPEDEFS(Graph)                                           \
116 116
  DIGRAPH_TYPEDEFS(Graph);                                              \
117 117
  typedef Graph::Edge Edge;                                             \
118 118
  typedef Graph::EdgeIt EdgeIt;                                         \
119 119
  typedef Graph::IncEdgeIt IncEdgeIt;                                   \
120 120
  typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
121 121
  typedef Graph::EdgeMap<int> IntEdgeMap;                               \
122
  typedef Graph::EdgeMap<double> DoubleEdgeMap;
122
  typedef Graph::EdgeMap<double> DoubleEdgeMap
123 123

	
124
  ///Create convenient typedefs for the graph types and iterators
124
  ///Create convenience typedefs for the graph types and iterators
125 125

	
126 126
  ///\see GRAPH_TYPEDEFS
127 127
  ///
128 128
  ///\note Use this macro, if the graph type is a dependent type,
129 129
  ///ie. the graph type depend on a template parameter.
130 130
#define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
131 131
  TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
132 132
  typedef typename Graph::Edge Edge;                                    \
133 133
  typedef typename Graph::EdgeIt EdgeIt;                                \
134 134
  typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
135 135
  typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
136 136
  typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
137
  typedef typename Graph::template EdgeMap<double> DoubleEdgeMap;
137
  typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
138 138

	
139 139
  /// \brief Function to count the items in a graph.
140 140
  ///
141 141
  /// This function counts the items (nodes, arcs etc.) in a graph.
142 142
  /// The complexity of the function is linear because
143 143
  /// it iterates on all of the items.
144 144
  template <typename Graph, typename Item>
145 145
  inline int countItems(const Graph& g) {
146 146
    typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
147 147
    int num = 0;
148 148
    for (ItemIt it(g); it != INVALID; ++it) {
149 149
      ++num;
... ...
@@ -1545,25 +1545,25 @@
1545 1545
    ///int n = 0;
1546 1546
    ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
1547 1547
    ///\endcode
1548 1548
    ///
1549 1549
    ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
1550 1550
    ///amortized time, specifically, the time complexity of the lookups
1551 1551
    ///is equal to the optimal search tree implementation for the
1552 1552
    ///current query distribution in a constant factor.
1553 1553
    ///
1554 1554
    ///\note This is a dynamic data structure, therefore the data
1555 1555
    ///structure is updated after each graph alteration. Thus although
1556 1556
    ///this data structure is theoretically faster than \ref ArcLookUp
1557
    ///and \ref AllArcLookup, it often provides worse performance than
1557
    ///and \ref AllArcLookUp, it often provides worse performance than
1558 1558
    ///them.
1559 1559
    Arc operator()(Node s, Node t, Arc p = INVALID) const  {
1560 1560
      if (p == INVALID) {
1561 1561
        Arc a = _head[s];
1562 1562
        if (a == INVALID) return INVALID;
1563 1563
        Arc r = INVALID;
1564 1564
        while (true) {
1565 1565
          if (_g.target(a) < t) {
1566 1566
            if (_right[a] == INVALID) {
1567 1567
              const_cast<DynArcLookUp&>(*this).splay(a);
1568 1568
              return r;
1569 1569
            } else {
... ...
@@ -1690,26 +1690,26 @@
1690 1690
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
1691 1691
    ///
1692 1692
    ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1693 1693
    ///the number of the arcs in the digraph and <em>D</em> is the maximum
1694 1694
    ///out-degree of the digraph.
1695 1695
    void refresh()
1696 1696
    {
1697 1697
      for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
1698 1698
    }
1699 1699

	
1700 1700
    ///Find an arc between two nodes.
1701 1701

	
1702
    ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>), where
1703
    ///<em>d</em> is the number of outgoing arcs of \c s.
1702
    ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
1703
    ///where <em>d</em> is the number of outgoing arcs of \c s.
1704 1704
    ///\param s The source node.
1705 1705
    ///\param t The target node.
1706 1706
    ///\return An arc from \c s to \c t if there exists,
1707 1707
    ///\ref INVALID otherwise.
1708 1708
    ///
1709 1709
    ///\warning If you change the digraph, refresh() must be called before using
1710 1710
    ///this operator. If you change the outgoing arcs of
1711 1711
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1712 1712
    Arc operator()(Node s, Node t) const
1713 1713
    {
1714 1714
      Arc e;
1715 1715
      for(e=_head[s];
... ...
@@ -1808,26 +1808,26 @@
1808 1808
    ///\return An arc from \c s to \c t after \c prev or
1809 1809
    ///\ref INVALID if there is no more.
1810 1810
    ///
1811 1811
    ///For example, you can count the number of arcs from \c u to \c v in the
1812 1812
    ///following way.
1813 1813
    ///\code
1814 1814
    ///AllArcLookUp<ListDigraph> ae(g);
1815 1815
    ///...
1816 1816
    ///int n = 0;
1817 1817
    ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
1818 1818
    ///\endcode
1819 1819
    ///
1820
    ///Finding the first arc take <em>O</em>(log<em>d</em>) time, where
1821
    ///<em>d</em> is the number of outgoing arcs of \c s. Then, the
1820
    ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
1821
    ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
1822 1822
    ///consecutive arcs are found in constant time.
1823 1823
    ///
1824 1824
    ///\warning If you change the digraph, refresh() must be called before using
1825 1825
    ///this operator. If you change the outgoing arcs of
1826 1826
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1827 1827
    ///
1828 1828
#ifdef DOXYGEN
1829 1829
    Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
1830 1830
#else
1831 1831
    using ArcLookUp<G>::operator() ;
1832 1832
    Arc operator()(Node s, Node t, Arc prev) const
1833 1833
    {
Ignore white space 6 line context
... ...
@@ -41,78 +41,78 @@
41 41
  struct DfsDefaultTraits
42 42
  {
43 43
    ///The type of the digraph the algorithm runs on.
44 44
    typedef GR Digraph;
45 45

	
46 46
    ///\brief The type of the map that stores the predecessor
47 47
    ///arcs of the %DFS paths.
48 48
    ///
49 49
    ///The type of the map that stores the predecessor
50 50
    ///arcs of the %DFS paths.
51 51
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
52 52
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
53
    ///Instantiates a \ref PredMap.
53
    ///Instantiates a PredMap.
54 54

	
55
    ///This function instantiates a \ref PredMap.
55
    ///This function instantiates a PredMap.
56 56
    ///\param g is the digraph, to which we would like to define the
57
    ///\ref PredMap.
57
    ///PredMap.
58 58
    static PredMap *createPredMap(const Digraph &g)
59 59
    {
60 60
      return new PredMap(g);
61 61
    }
62 62

	
63 63
    ///The type of the map that indicates which nodes are processed.
64 64

	
65 65
    ///The type of the map that indicates which nodes are processed.
66 66
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
67 67
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
68
    ///Instantiates a \ref ProcessedMap.
68
    ///Instantiates a ProcessedMap.
69 69

	
70
    ///This function instantiates a \ref ProcessedMap.
70
    ///This function instantiates a ProcessedMap.
71 71
    ///\param g is the digraph, to which
72
    ///we would like to define the \ref ProcessedMap
72
    ///we would like to define the ProcessedMap
73 73
#ifdef DOXYGEN
74 74
    static ProcessedMap *createProcessedMap(const Digraph &g)
75 75
#else
76 76
    static ProcessedMap *createProcessedMap(const Digraph &)
77 77
#endif
78 78
    {
79 79
      return new ProcessedMap();
80 80
    }
81 81

	
82 82
    ///The type of the map that indicates which nodes are reached.
83 83

	
84 84
    ///The type of the map that indicates which nodes are reached.
85 85
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
86 86
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
87
    ///Instantiates a \ref ReachedMap.
87
    ///Instantiates a ReachedMap.
88 88

	
89
    ///This function instantiates a \ref ReachedMap.
89
    ///This function instantiates a ReachedMap.
90 90
    ///\param g is the digraph, to which
91
    ///we would like to define the \ref ReachedMap.
91
    ///we would like to define the ReachedMap.
92 92
    static ReachedMap *createReachedMap(const Digraph &g)
93 93
    {
94 94
      return new ReachedMap(g);
95 95
    }
96 96

	
97 97
    ///The type of the map that stores the distances of the nodes.
98 98

	
99 99
    ///The type of the map that stores the distances of the nodes.
100 100
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
101 101
    typedef typename Digraph::template NodeMap<int> DistMap;
102
    ///Instantiates a \ref DistMap.
102
    ///Instantiates a DistMap.
103 103

	
104
    ///This function instantiates a \ref DistMap.
104
    ///This function instantiates a DistMap.
105 105
    ///\param g is the digraph, to which we would like to define the
106
    ///\ref DistMap.
106
    ///DistMap.
107 107
    static DistMap *createDistMap(const Digraph &g)
108 108
    {
109 109
      return new DistMap(g);
110 110
    }
111 111
  };
112 112

	
113 113
  ///%DFS algorithm class.
114 114

	
115 115
  ///\ingroup search
116 116
  ///This class provides an efficient implementation of the %DFS algorithm.
117 117
  ///
118 118
  ///There is also a \ref dfs() "function-type interface" for the DFS
... ...
@@ -218,102 +218,102 @@
218 218
    ///@{
219 219

	
220 220
    template <class T>
221 221
    struct SetPredMapTraits : public Traits {
222 222
      typedef T PredMap;
223 223
      static PredMap *createPredMap(const Digraph &)
224 224
      {
225 225
        LEMON_ASSERT(false, "PredMap is not initialized");
226 226
        return 0; // ignore warnings
227 227
      }
228 228
    };
229 229
    ///\brief \ref named-templ-param "Named parameter" for setting
230
    ///\ref PredMap type.
230
    ///PredMap type.
231 231
    ///
232 232
    ///\ref named-templ-param "Named parameter" for setting
233
    ///\ref PredMap type.
233
    ///PredMap type.
234 234
    template <class T>
235 235
    struct SetPredMap : public Dfs<Digraph, SetPredMapTraits<T> > {
236 236
      typedef Dfs<Digraph, SetPredMapTraits<T> > Create;
237 237
    };
238 238

	
239 239
    template <class T>
240 240
    struct SetDistMapTraits : public Traits {
241 241
      typedef T DistMap;
242 242
      static DistMap *createDistMap(const Digraph &)
243 243
      {
244 244
        LEMON_ASSERT(false, "DistMap is not initialized");
245 245
        return 0; // ignore warnings
246 246
      }
247 247
    };
248 248
    ///\brief \ref named-templ-param "Named parameter" for setting
249
    ///\ref DistMap type.
249
    ///DistMap type.
250 250
    ///
251 251
    ///\ref named-templ-param "Named parameter" for setting
252
    ///\ref DistMap type.
252
    ///DistMap type.
253 253
    template <class T>
254 254
    struct SetDistMap : public Dfs< Digraph, SetDistMapTraits<T> > {
255 255
      typedef Dfs<Digraph, SetDistMapTraits<T> > Create;
256 256
    };
257 257

	
258 258
    template <class T>
259 259
    struct SetReachedMapTraits : public Traits {
260 260
      typedef T ReachedMap;
261 261
      static ReachedMap *createReachedMap(const Digraph &)
262 262
      {
263 263
        LEMON_ASSERT(false, "ReachedMap is not initialized");
264 264
        return 0; // ignore warnings
265 265
      }
266 266
    };
267 267
    ///\brief \ref named-templ-param "Named parameter" for setting
268
    ///\ref ReachedMap type.
268
    ///ReachedMap type.
269 269
    ///
270 270
    ///\ref named-templ-param "Named parameter" for setting
271
    ///\ref ReachedMap type.
271
    ///ReachedMap type.
272 272
    template <class T>
273 273
    struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
274 274
      typedef Dfs< Digraph, SetReachedMapTraits<T> > Create;
275 275
    };
276 276

	
277 277
    template <class T>
278 278
    struct SetProcessedMapTraits : public Traits {
279 279
      typedef T ProcessedMap;
280 280
      static ProcessedMap *createProcessedMap(const Digraph &)
281 281
      {
282 282
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
283 283
        return 0; // ignore warnings
284 284
      }
285 285
    };
286 286
    ///\brief \ref named-templ-param "Named parameter" for setting
287
    ///\ref ProcessedMap type.
287
    ///ProcessedMap type.
288 288
    ///
289 289
    ///\ref named-templ-param "Named parameter" for setting
290
    ///\ref ProcessedMap type.
290
    ///ProcessedMap type.
291 291
    template <class T>
292 292
    struct SetProcessedMap : public Dfs< Digraph, SetProcessedMapTraits<T> > {
293 293
      typedef Dfs< Digraph, SetProcessedMapTraits<T> > Create;
294 294
    };
295 295

	
296 296
    struct SetStandardProcessedMapTraits : public Traits {
297 297
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
298 298
      static ProcessedMap *createProcessedMap(const Digraph &g)
299 299
      {
300 300
        return new ProcessedMap(g);
301 301
      }
302 302
    };
303 303
    ///\brief \ref named-templ-param "Named parameter" for setting
304
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
304
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
305 305
    ///
306 306
    ///\ref named-templ-param "Named parameter" for setting
307
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
307
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
308 308
    ///If you don't set it explicitly, it will be automatically allocated.
309 309
    struct SetStandardProcessedMap :
310 310
      public Dfs< Digraph, SetStandardProcessedMapTraits > {
311 311
      typedef Dfs< Digraph, SetStandardProcessedMapTraits > Create;
312 312
    };
313 313

	
314 314
    ///@}
315 315

	
316 316
  public:
317 317

	
318 318
    ///Constructor.
319 319

	
... ...
@@ -759,92 +759,92 @@
759 759
  struct DfsWizardDefaultTraits
760 760
  {
761 761
    ///The type of the digraph the algorithm runs on.
762 762
    typedef GR Digraph;
763 763

	
764 764
    ///\brief The type of the map that stores the predecessor
765 765
    ///arcs of the %DFS paths.
766 766
    ///
767 767
    ///The type of the map that stores the predecessor
768 768
    ///arcs of the %DFS paths.
769 769
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
770 770
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
771
    ///Instantiates a \ref PredMap.
771
    ///Instantiates a PredMap.
772 772

	
773
    ///This function instantiates a \ref PredMap.
773
    ///This function instantiates a PredMap.
774 774
    ///\param g is the digraph, to which we would like to define the
775
    ///\ref PredMap.
775
    ///PredMap.
776 776
    static PredMap *createPredMap(const Digraph &g)
777 777
    {
778 778
      return new PredMap(g);
779 779
    }
780 780

	
781 781
    ///The type of the map that indicates which nodes are processed.
782 782

	
783 783
    ///The type of the map that indicates which nodes are processed.
784 784
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
785 785
    ///By default it is a NullMap.
786 786
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
787
    ///Instantiates a \ref ProcessedMap.
787
    ///Instantiates a ProcessedMap.
788 788

	
789
    ///This function instantiates a \ref ProcessedMap.
789
    ///This function instantiates a ProcessedMap.
790 790
    ///\param g is the digraph, to which
791
    ///we would like to define the \ref ProcessedMap.
791
    ///we would like to define the ProcessedMap.
792 792
#ifdef DOXYGEN
793 793
    static ProcessedMap *createProcessedMap(const Digraph &g)
794 794
#else
795 795
    static ProcessedMap *createProcessedMap(const Digraph &)
796 796
#endif
797 797
    {
798 798
      return new ProcessedMap();
799 799
    }
800 800

	
801 801
    ///The type of the map that indicates which nodes are reached.
802 802

	
803 803
    ///The type of the map that indicates which nodes are reached.
804 804
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
805 805
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
806
    ///Instantiates a \ref ReachedMap.
806
    ///Instantiates a ReachedMap.
807 807

	
808
    ///This function instantiates a \ref ReachedMap.
808
    ///This function instantiates a ReachedMap.
809 809
    ///\param g is the digraph, to which
810
    ///we would like to define the \ref ReachedMap.
810
    ///we would like to define the ReachedMap.
811 811
    static ReachedMap *createReachedMap(const Digraph &g)
812 812
    {
813 813
      return new ReachedMap(g);
814 814
    }
815 815

	
816 816
    ///The type of the map that stores the distances of the nodes.
817 817

	
818 818
    ///The type of the map that stores the distances of the nodes.
819 819
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
820 820
    typedef typename Digraph::template NodeMap<int> DistMap;
821
    ///Instantiates a \ref DistMap.
821
    ///Instantiates a DistMap.
822 822

	
823
    ///This function instantiates a \ref DistMap.
823
    ///This function instantiates a DistMap.
824 824
    ///\param g is the digraph, to which we would like to define
825
    ///the \ref DistMap
825
    ///the DistMap
826 826
    static DistMap *createDistMap(const Digraph &g)
827 827
    {
828 828
      return new DistMap(g);
829 829
    }
830 830

	
831 831
    ///The type of the DFS paths.
832 832

	
833 833
    ///The type of the DFS paths.
834 834
    ///It must meet the \ref concepts::Path "Path" concept.
835 835
    typedef lemon::Path<Digraph> Path;
836 836
  };
837 837

	
838
  /// Default traits class used by \ref DfsWizard
838
  /// Default traits class used by DfsWizard
839 839

	
840 840
  /// To make it easier to use Dfs algorithm
841 841
  /// we have created a wizard class.
842 842
  /// This \ref DfsWizard class needs default traits,
843 843
  /// as well as the \ref Dfs class.
844 844
  /// The \ref DfsWizardBase is a class to be the default traits of the
845 845
  /// \ref DfsWizard class.
846 846
  template<class GR>
847 847
  class DfsWizardBase : public DfsWizardDefaultTraits<GR>
848 848
  {
849 849

	
850 850
    typedef DfsWizardDefaultTraits<GR> Base;
... ...
@@ -992,82 +992,82 @@
992 992
    void run()
993 993
    {
994 994
      run(INVALID);
995 995
    }
996 996

	
997 997
    template<class T>
998 998
    struct SetPredMapBase : public Base {
999 999
      typedef T PredMap;
1000 1000
      static PredMap *createPredMap(const Digraph &) { return 0; };
1001 1001
      SetPredMapBase(const TR &b) : TR(b) {}
1002 1002
    };
1003 1003
    ///\brief \ref named-func-param "Named parameter"
1004
    ///for setting \ref PredMap object.
1004
    ///for setting PredMap object.
1005 1005
    ///
1006 1006
    ///\ref named-func-param "Named parameter"
1007
    ///for setting \ref PredMap object.
1007
    ///for setting PredMap object.
1008 1008
    template<class T>
1009 1009
    DfsWizard<SetPredMapBase<T> > predMap(const T &t)
1010 1010
    {
1011 1011
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1012 1012
      return DfsWizard<SetPredMapBase<T> >(*this);
1013 1013
    }
1014 1014

	
1015 1015
    template<class T>
1016 1016
    struct SetReachedMapBase : public Base {
1017 1017
      typedef T ReachedMap;
1018 1018
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
1019 1019
      SetReachedMapBase(const TR &b) : TR(b) {}
1020 1020
    };
1021 1021
    ///\brief \ref named-func-param "Named parameter"
1022
    ///for setting \ref ReachedMap object.
1022
    ///for setting ReachedMap object.
1023 1023
    ///
1024 1024
    /// \ref named-func-param "Named parameter"
1025
    ///for setting \ref ReachedMap object.
1025
    ///for setting ReachedMap object.
1026 1026
    template<class T>
1027 1027
    DfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
1028 1028
    {
1029 1029
      Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
1030 1030
      return DfsWizard<SetReachedMapBase<T> >(*this);
1031 1031
    }
1032 1032

	
1033 1033
    template<class T>
1034 1034
    struct SetDistMapBase : public Base {
1035 1035
      typedef T DistMap;
1036 1036
      static DistMap *createDistMap(const Digraph &) { return 0; };
1037 1037
      SetDistMapBase(const TR &b) : TR(b) {}
1038 1038
    };
1039 1039
    ///\brief \ref named-func-param "Named parameter"
1040
    ///for setting \ref DistMap object.
1040
    ///for setting DistMap object.
1041 1041
    ///
1042 1042
    /// \ref named-func-param "Named parameter"
1043
    ///for setting \ref DistMap object.
1043
    ///for setting DistMap object.
1044 1044
    template<class T>
1045 1045
    DfsWizard<SetDistMapBase<T> > distMap(const T &t)
1046 1046
    {
1047 1047
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1048 1048
      return DfsWizard<SetDistMapBase<T> >(*this);
1049 1049
    }
1050 1050

	
1051 1051
    template<class T>
1052 1052
    struct SetProcessedMapBase : public Base {
1053 1053
      typedef T ProcessedMap;
1054 1054
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1055 1055
      SetProcessedMapBase(const TR &b) : TR(b) {}
1056 1056
    };
1057 1057
    ///\brief \ref named-func-param "Named parameter"
1058
    ///for setting \ref ProcessedMap object.
1058
    ///for setting ProcessedMap object.
1059 1059
    ///
1060 1060
    /// \ref named-func-param "Named parameter"
1061
    ///for setting \ref ProcessedMap object.
1061
    ///for setting ProcessedMap object.
1062 1062
    template<class T>
1063 1063
    DfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1064 1064
    {
1065 1065
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1066 1066
      return DfsWizard<SetProcessedMapBase<T> >(*this);
1067 1067
    }
1068 1068

	
1069 1069
    template<class T>
1070 1070
    struct SetPathBase : public Base {
1071 1071
      typedef T Path;
1072 1072
      SetPathBase(const TR &b) : TR(b) {}
1073 1073
    };
... ...
@@ -1204,29 +1204,29 @@
1204 1204
  template<class _Digraph>
1205 1205
  struct DfsVisitDefaultTraits {
1206 1206

	
1207 1207
    /// \brief The type of the digraph the algorithm runs on.
1208 1208
    typedef _Digraph Digraph;
1209 1209

	
1210 1210
    /// \brief The type of the map that indicates which nodes are reached.
1211 1211
    ///
1212 1212
    /// The type of the map that indicates which nodes are reached.
1213 1213
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1214 1214
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
1215 1215

	
1216
    /// \brief Instantiates a \ref ReachedMap.
1216
    /// \brief Instantiates a ReachedMap.
1217 1217
    ///
1218
    /// This function instantiates a \ref ReachedMap.
1218
    /// This function instantiates a ReachedMap.
1219 1219
    /// \param digraph is the digraph, to which
1220
    /// we would like to define the \ref ReachedMap.
1220
    /// we would like to define the ReachedMap.
1221 1221
    static ReachedMap *createReachedMap(const Digraph &digraph) {
1222 1222
      return new ReachedMap(digraph);
1223 1223
    }
1224 1224

	
1225 1225
  };
1226 1226

	
1227 1227
  /// \ingroup search
1228 1228
  ///
1229 1229
  /// \brief %DFS algorithm class with visitor interface.
1230 1230
  ///
1231 1231
  /// This class provides an efficient implementation of the %DFS algorithm
1232 1232
  /// with visitor interface.
Ignore white space 6 line context
... ...
@@ -130,64 +130,64 @@
130 130
    static Heap *createHeap(HeapCrossRef& r)
131 131
    {
132 132
      return new Heap(r);
133 133
    }
134 134

	
135 135
    ///\brief The type of the map that stores the predecessor
136 136
    ///arcs of the shortest paths.
137 137
    ///
138 138
    ///The type of the map that stores the predecessor
139 139
    ///arcs of the shortest paths.
140 140
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
141 141
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
142
    ///Instantiates a \ref PredMap.
142
    ///Instantiates a PredMap.
143 143

	
144
    ///This function instantiates a \ref PredMap.
144
    ///This function instantiates a PredMap.
145 145
    ///\param g is the digraph, to which we would like to define the
146
    ///\ref PredMap.
146
    ///PredMap.
147 147
    static PredMap *createPredMap(const Digraph &g)
148 148
    {
149 149
      return new PredMap(g);
150 150
    }
151 151

	
152 152
    ///The type of the map that indicates which nodes are processed.
153 153

	
154 154
    ///The type of the map that indicates which nodes are processed.
155 155
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
156 156
    ///By default it is a NullMap.
157 157
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
158
    ///Instantiates a \ref ProcessedMap.
158
    ///Instantiates a ProcessedMap.
159 159

	
160
    ///This function instantiates a \ref ProcessedMap.
160
    ///This function instantiates a ProcessedMap.
161 161
    ///\param g is the digraph, to which
162
    ///we would like to define the \ref ProcessedMap
162
    ///we would like to define the ProcessedMap
163 163
#ifdef DOXYGEN
164 164
    static ProcessedMap *createProcessedMap(const Digraph &g)
165 165
#else
166 166
    static ProcessedMap *createProcessedMap(const Digraph &)
167 167
#endif
168 168
    {
169 169
      return new ProcessedMap();
170 170
    }
171 171

	
172 172
    ///The type of the map that stores the distances of the nodes.
173 173

	
174 174
    ///The type of the map that stores the distances of the nodes.
175 175
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
176 176
    typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
177
    ///Instantiates a \ref DistMap.
177
    ///Instantiates a DistMap.
178 178

	
179
    ///This function instantiates a \ref DistMap.
179
    ///This function instantiates a DistMap.
180 180
    ///\param g is the digraph, to which we would like to define
181
    ///the \ref DistMap
181
    ///the DistMap
182 182
    static DistMap *createDistMap(const Digraph &g)
183 183
    {
184 184
      return new DistMap(g);
185 185
    }
186 186
  };
187 187

	
188 188
  ///%Dijkstra algorithm class.
189 189

	
190 190
  /// \ingroup shortest_path
191 191
  ///This class provides an efficient implementation of the %Dijkstra algorithm.
192 192
  ///
193 193
  ///The arc lengths are passed to the algorithm using a
... ...
@@ -318,86 +318,86 @@
318 318
    ///@{
319 319

	
320 320
    template <class T>
321 321
    struct SetPredMapTraits : public Traits {
322 322
      typedef T PredMap;
323 323
      static PredMap *createPredMap(const Digraph &)
324 324
      {
325 325
        LEMON_ASSERT(false, "PredMap is not initialized");
326 326
        return 0; // ignore warnings
327 327
      }
328 328
    };
329 329
    ///\brief \ref named-templ-param "Named parameter" for setting
330
    ///\ref PredMap type.
330
    ///PredMap type.
331 331
    ///
332 332
    ///\ref named-templ-param "Named parameter" for setting
333
    ///\ref PredMap type.
333
    ///PredMap type.
334 334
    template <class T>
335 335
    struct SetPredMap
336 336
      : public Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > {
337 337
      typedef Dijkstra< Digraph, LengthMap, SetPredMapTraits<T> > Create;
338 338
    };
339 339

	
340 340
    template <class T>
341 341
    struct SetDistMapTraits : public Traits {
342 342
      typedef T DistMap;
343 343
      static DistMap *createDistMap(const Digraph &)
344 344
      {
345 345
        LEMON_ASSERT(false, "DistMap is not initialized");
346 346
        return 0; // ignore warnings
347 347
      }
348 348
    };
349 349
    ///\brief \ref named-templ-param "Named parameter" for setting
350
    ///\ref DistMap type.
350
    ///DistMap type.
351 351
    ///
352 352
    ///\ref named-templ-param "Named parameter" for setting
353
    ///\ref DistMap type.
353
    ///DistMap type.
354 354
    template <class T>
355 355
    struct SetDistMap
356 356
      : public Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > {
357 357
      typedef Dijkstra< Digraph, LengthMap, SetDistMapTraits<T> > Create;
358 358
    };
359 359

	
360 360
    template <class T>
361 361
    struct SetProcessedMapTraits : public Traits {
362 362
      typedef T ProcessedMap;
363 363
      static ProcessedMap *createProcessedMap(const Digraph &)
364 364
      {
365 365
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
366 366
        return 0; // ignore warnings
367 367
      }
368 368
    };
369 369
    ///\brief \ref named-templ-param "Named parameter" for setting
370
    ///\ref ProcessedMap type.
370
    ///ProcessedMap type.
371 371
    ///
372 372
    ///\ref named-templ-param "Named parameter" for setting
373
    ///\ref ProcessedMap type.
373
    ///ProcessedMap type.
374 374
    template <class T>
375 375
    struct SetProcessedMap
376 376
      : public Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > {
377 377
      typedef Dijkstra< Digraph, LengthMap, SetProcessedMapTraits<T> > Create;
378 378
    };
379 379

	
380 380
    struct SetStandardProcessedMapTraits : public Traits {
381 381
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
382 382
      static ProcessedMap *createProcessedMap(const Digraph &g)
383 383
      {
384 384
        return new ProcessedMap(g);
385 385
      }
386 386
    };
387 387
    ///\brief \ref named-templ-param "Named parameter" for setting
388
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
388
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
389 389
    ///
390 390
    ///\ref named-templ-param "Named parameter" for setting
391
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
391
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
392 392
    ///If you don't set it explicitly, it will be automatically allocated.
393 393
    struct SetStandardProcessedMap
394 394
      : public Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits > {
395 395
      typedef Dijkstra< Digraph, LengthMap, SetStandardProcessedMapTraits >
396 396
      Create;
397 397
    };
398 398

	
399 399
    template <class H, class CR>
400 400
    struct SetHeapTraits : public Traits {
401 401
      typedef CR HeapCrossRef;
402 402
      typedef H Heap;
403 403
      static HeapCrossRef *createHeapCrossRef(const Digraph &) {
... ...
@@ -444,25 +444,25 @@
444 444
    struct SetStandardHeap
445 445
      : public Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> > {
446 446
      typedef Dijkstra< Digraph, LengthMap, SetStandardHeapTraits<H, CR> >
447 447
      Create;
448 448
    };
449 449

	
450 450
    template <class T>
451 451
    struct SetOperationTraitsTraits : public Traits {
452 452
      typedef T OperationTraits;
453 453
    };
454 454

	
455 455
    /// \brief \ref named-templ-param "Named parameter" for setting
456
    ///\ref OperationTraits type
456
    ///\c OperationTraits type
457 457
    ///
458 458
    ///\ref named-templ-param "Named parameter" for setting
459 459
    ///\ref OperationTraits type.
460 460
    template <class T>
461 461
    struct SetOperationTraits
462 462
      : public Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> > {
463 463
      typedef Dijkstra<Digraph, LengthMap, SetOperationTraitsTraits<T> >
464 464
      Create;
465 465
    };
466 466

	
467 467
    ///@}
468 468

	
... ...
@@ -977,77 +977,77 @@
977 977
    static Heap *createHeap(HeapCrossRef& r)
978 978
    {
979 979
      return new Heap(r);
980 980
    }
981 981

	
982 982
    ///\brief The type of the map that stores the predecessor
983 983
    ///arcs of the shortest paths.
984 984
    ///
985 985
    ///The type of the map that stores the predecessor
986 986
    ///arcs of the shortest paths.
987 987
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
988 988
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
989
    ///Instantiates a \ref PredMap.
989
    ///Instantiates a PredMap.
990 990

	
991
    ///This function instantiates a \ref PredMap.
991
    ///This function instantiates a PredMap.
992 992
    ///\param g is the digraph, to which we would like to define the
993
    ///\ref PredMap.
993
    ///PredMap.
994 994
    static PredMap *createPredMap(const Digraph &g)
995 995
    {
996 996
      return new PredMap(g);
997 997
    }
998 998

	
999 999
    ///The type of the map that indicates which nodes are processed.
1000 1000

	
1001 1001
    ///The type of the map that indicates which nodes are processed.
1002 1002
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
1003 1003
    ///By default it is a NullMap.
1004 1004
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
1005
    ///Instantiates a \ref ProcessedMap.
1005
    ///Instantiates a ProcessedMap.
1006 1006

	
1007
    ///This function instantiates a \ref ProcessedMap.
1007
    ///This function instantiates a ProcessedMap.
1008 1008
    ///\param g is the digraph, to which
1009
    ///we would like to define the \ref ProcessedMap.
1009
    ///we would like to define the ProcessedMap.
1010 1010
#ifdef DOXYGEN
1011 1011
    static ProcessedMap *createProcessedMap(const Digraph &g)
1012 1012
#else
1013 1013
    static ProcessedMap *createProcessedMap(const Digraph &)
1014 1014
#endif
1015 1015
    {
1016 1016
      return new ProcessedMap();
1017 1017
    }
1018 1018

	
1019 1019
    ///The type of the map that stores the distances of the nodes.
1020 1020

	
1021 1021
    ///The type of the map that stores the distances of the nodes.
1022 1022
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
1023 1023
    typedef typename Digraph::template NodeMap<typename LM::Value> DistMap;
1024
    ///Instantiates a \ref DistMap.
1024
    ///Instantiates a DistMap.
1025 1025

	
1026
    ///This function instantiates a \ref DistMap.
1026
    ///This function instantiates a DistMap.
1027 1027
    ///\param g is the digraph, to which we would like to define
1028
    ///the \ref DistMap
1028
    ///the DistMap
1029 1029
    static DistMap *createDistMap(const Digraph &g)
1030 1030
    {
1031 1031
      return new DistMap(g);
1032 1032
    }
1033 1033

	
1034 1034
    ///The type of the shortest paths.
1035 1035

	
1036 1036
    ///The type of the shortest paths.
1037 1037
    ///It must meet the \ref concepts::Path "Path" concept.
1038 1038
    typedef lemon::Path<Digraph> Path;
1039 1039
  };
1040 1040

	
1041
  /// Default traits class used by \ref DijkstraWizard
1041
  /// Default traits class used by DijkstraWizard
1042 1042

	
1043 1043
  /// To make it easier to use Dijkstra algorithm
1044 1044
  /// we have created a wizard class.
1045 1045
  /// This \ref DijkstraWizard class needs default traits,
1046 1046
  /// as well as the \ref Dijkstra class.
1047 1047
  /// The \ref DijkstraWizardBase is a class to be the default traits of the
1048 1048
  /// \ref DijkstraWizard class.
1049 1049
  template<class GR,class LM>
1050 1050
  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
1051 1051
  {
1052 1052
    typedef DijkstraWizardDefaultTraits<GR,LM> Base;
1053 1053
  protected:
... ...
@@ -1189,64 +1189,64 @@
1189 1189
      if (Base::_di)
1190 1190
        *reinterpret_cast<Value*>(Base::_di) = dijk.dist(t);
1191 1191
      return dijk.reached(t);
1192 1192
    }
1193 1193

	
1194 1194
    template<class T>
1195 1195
    struct SetPredMapBase : public Base {
1196 1196
      typedef T PredMap;
1197 1197
      static PredMap *createPredMap(const Digraph &) { return 0; };
1198 1198
      SetPredMapBase(const TR &b) : TR(b) {}
1199 1199
    };
1200 1200
    ///\brief \ref named-func-param "Named parameter"
1201
    ///for setting \ref PredMap object.
1201
    ///for setting PredMap object.
1202 1202
    ///
1203 1203
    ///\ref named-func-param "Named parameter"
1204
    ///for setting \ref PredMap object.
1204
    ///for setting PredMap object.
1205 1205
    template<class T>
1206 1206
    DijkstraWizard<SetPredMapBase<T> > predMap(const T &t)
1207 1207
    {
1208 1208
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1209 1209
      return DijkstraWizard<SetPredMapBase<T> >(*this);
1210 1210
    }
1211 1211

	
1212 1212
    template<class T>
1213 1213
    struct SetDistMapBase : public Base {
1214 1214
      typedef T DistMap;
1215 1215
      static DistMap *createDistMap(const Digraph &) { return 0; };
1216 1216
      SetDistMapBase(const TR &b) : TR(b) {}
1217 1217
    };
1218 1218
    ///\brief \ref named-func-param "Named parameter"
1219
    ///for setting \ref DistMap object.
1219
    ///for setting DistMap object.
1220 1220
    ///
1221 1221
    ///\ref named-func-param "Named parameter"
1222
    ///for setting \ref DistMap object.
1222
    ///for setting DistMap object.
1223 1223
    template<class T>
1224 1224
    DijkstraWizard<SetDistMapBase<T> > distMap(const T &t)
1225 1225
    {
1226 1226
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1227 1227
      return DijkstraWizard<SetDistMapBase<T> >(*this);
1228 1228
    }
1229 1229

	
1230 1230
    template<class T>
1231 1231
    struct SetProcessedMapBase : public Base {
1232 1232
      typedef T ProcessedMap;
1233 1233
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1234 1234
      SetProcessedMapBase(const TR &b) : TR(b) {}
1235 1235
    };
1236 1236
    ///\brief \ref named-func-param "Named parameter"
1237
    ///for setting \ref ProcessedMap object.
1237
    ///for setting ProcessedMap object.
1238 1238
    ///
1239 1239
    /// \ref named-func-param "Named parameter"
1240
    ///for setting \ref ProcessedMap object.
1240
    ///for setting ProcessedMap object.
1241 1241
    template<class T>
1242 1242
    DijkstraWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1243 1243
    {
1244 1244
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1245 1245
      return DijkstraWizard<SetProcessedMapBase<T> >(*this);
1246 1246
    }
1247 1247

	
1248 1248
    template<class T>
1249 1249
    struct SetPathBase : public Base {
1250 1250
      typedef T Path;
1251 1251
      SetPathBase(const TR &b) : TR(b) {}
1252 1252
    };
Ignore white space 6 line context
... ...
@@ -250,28 +250,28 @@
250 250

	
251 251
  ///Returns the parameter rotated by 90 degrees in negative direction.
252 252
  ///\relates Point
253 253
  ///
254 254
  template<typename T>
255 255
  inline Point<T> rot270(const Point<T> &z)
256 256
  {
257 257
    return Point<T>(z.y,-z.x);
258 258
  }
259 259

	
260 260

	
261 261

	
262
  /// Bounding box of plain vectors (\ref Point points).
262
  /// Bounding box of plain vectors (points).
263 263

	
264 264
  /// A class to calculate or store the bounding box of plain vectors
265
  /// (\ref Point points).
265
  /// (\ref Point "points").
266 266
  template<typename T>
267 267
  class Box {
268 268
      Point<T> _bottom_left, _top_right;
269 269
      bool _empty;
270 270
    public:
271 271

	
272 272
      ///Default constructor: creates an empty box
273 273
      Box() { _empty = true; }
274 274

	
275 275
      ///Construct a box from one point
276 276
      Box(Point<T> a) {
277 277
        _bottom_left = _top_right = a;
... ...
@@ -564,183 +564,167 @@
564 564

	
565 565
  ///Write a box to a stream
566 566

	
567 567
  ///Write a box to a stream.
568 568
  ///\relates Box
569 569
  template<typename T>
570 570
  inline std::ostream& operator<<(std::ostream &os, const Box<T>& b)
571 571
  {
572 572
    os << "(" << b.bottomLeft() << "," << b.topRight() << ")";
573 573
    return os;
574 574
  }
575 575

	
576
  ///Map of x-coordinates of a \ref Point "Point"-map
576
  ///Map of x-coordinates of a <tt>Point</tt>-map
577 577

	
578
  ///\ingroup maps
579 578
  ///Map of x-coordinates of a \ref Point "Point"-map.
580 579
  ///
581 580
  template<class M>
582 581
  class XMap
583 582
  {
584 583
    M& _map;
585 584
  public:
586 585

	
587 586
    typedef typename M::Value::Value Value;
588 587
    typedef typename M::Key Key;
589 588
    ///\e
590 589
    XMap(M& map) : _map(map) {}
591 590
    Value operator[](Key k) const {return _map[k].x;}
592 591
    void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));}
593 592
  };
594 593

	
595
  ///Returns an \ref XMap class
594
  ///Returns an XMap class
596 595

	
597
  ///This function just returns an \ref XMap class.
598
  ///
599
  ///\ingroup maps
596
  ///This function just returns an XMap class.
600 597
  ///\relates XMap
601 598
  template<class M>
602 599
  inline XMap<M> xMap(M &m)
603 600
  {
604 601
    return XMap<M>(m);
605 602
  }
606 603

	
607 604
  template<class M>
608 605
  inline XMap<M> xMap(const M &m)
609 606
  {
610 607
    return XMap<M>(m);
611 608
  }
612 609

	
613
  ///Constant (read only) version of \ref XMap
610
  ///Constant (read only) version of XMap
614 611

	
615
  ///\ingroup maps
616
  ///Constant (read only) version of \ref XMap
612
  ///Constant (read only) version of XMap.
617 613
  ///
618 614
  template<class M>
619 615
  class ConstXMap
620 616
  {
621 617
    const M& _map;
622 618
  public:
623 619

	
624 620
    typedef typename M::Value::Value Value;
625 621
    typedef typename M::Key Key;
626 622
    ///\e
627 623
    ConstXMap(const M &map) : _map(map) {}
628 624
    Value operator[](Key k) const {return _map[k].x;}
629 625
  };
630 626

	
631
  ///Returns a \ref ConstXMap class
627
  ///Returns a ConstXMap class
632 628

	
633
  ///This function just returns a \ref ConstXMap class.
634
  ///
635
  ///\ingroup maps
629
  ///This function just returns a ConstXMap class.
636 630
  ///\relates ConstXMap
637 631
  template<class M>
638 632
  inline ConstXMap<M> xMap(const M &m)
639 633
  {
640 634
    return ConstXMap<M>(m);
641 635
  }
642 636

	
643
  ///Map of y-coordinates of a \ref Point "Point"-map
637
  ///Map of y-coordinates of a <tt>Point</tt>-map
644 638

	
645
  ///\ingroup maps
646 639
  ///Map of y-coordinates of a \ref Point "Point"-map.
647 640
  ///
648 641
  template<class M>
649 642
  class YMap
650 643
  {
651 644
    M& _map;
652 645
  public:
653 646

	
654 647
    typedef typename M::Value::Value Value;
655 648
    typedef typename M::Key Key;
656 649
    ///\e
657 650
    YMap(M& map) : _map(map) {}
658 651
    Value operator[](Key k) const {return _map[k].y;}
659 652
    void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));}
660 653
  };
661 654

	
662
  ///Returns a \ref YMap class
655
  ///Returns a YMap class
663 656

	
664
  ///This function just returns a \ref YMap class.
665
  ///
666
  ///\ingroup maps
657
  ///This function just returns a YMap class.
667 658
  ///\relates YMap
668 659
  template<class M>
669 660
  inline YMap<M> yMap(M &m)
670 661
  {
671 662
    return YMap<M>(m);
672 663
  }
673 664

	
674 665
  template<class M>
675 666
  inline YMap<M> yMap(const M &m)
676 667
  {
677 668
    return YMap<M>(m);
678 669
  }
679 670

	
680
  ///Constant (read only) version of \ref YMap
671
  ///Constant (read only) version of YMap
681 672

	
682
  ///\ingroup maps
683
  ///Constant (read only) version of \ref YMap
673
  ///Constant (read only) version of YMap.
684 674
  ///
685 675
  template<class M>
686 676
  class ConstYMap
687 677
  {
688 678
    const M& _map;
689 679
  public:
690 680

	
691 681
    typedef typename M::Value::Value Value;
692 682
    typedef typename M::Key Key;
693 683
    ///\e
694 684
    ConstYMap(const M &map) : _map(map) {}
695 685
    Value operator[](Key k) const {return _map[k].y;}
696 686
  };
697 687

	
698
  ///Returns a \ref ConstYMap class
688
  ///Returns a ConstYMap class
699 689

	
700
  ///This function just returns a \ref ConstYMap class.
701
  ///
702
  ///\ingroup maps
690
  ///This function just returns a ConstYMap class.
703 691
  ///\relates ConstYMap
704 692
  template<class M>
705 693
  inline ConstYMap<M> yMap(const M &m)
706 694
  {
707 695
    return ConstYMap<M>(m);
708 696
  }
709 697

	
710 698

	
711
  ///\brief Map of the \ref Point::normSquare() "normSquare()"
712
  ///of a \ref Point "Point"-map
699
  ///\brief Map of the normSquare() of a <tt>Point</tt>-map
713 700
  ///
714 701
  ///Map of the \ref Point::normSquare() "normSquare()"
715 702
  ///of a \ref Point "Point"-map.
716
  ///\ingroup maps
717 703
  template<class M>
718 704
  class NormSquareMap
719 705
  {
720 706
    const M& _map;
721 707
  public:
722 708

	
723 709
    typedef typename M::Value::Value Value;
724 710
    typedef typename M::Key Key;
725 711
    ///\e
726 712
    NormSquareMap(const M &map) : _map(map) {}
727 713
    Value operator[](Key k) const {return _map[k].normSquare();}
728 714
  };
729 715

	
730
  ///Returns a \ref NormSquareMap class
716
  ///Returns a NormSquareMap class
731 717

	
732
  ///This function just returns a \ref NormSquareMap class.
733
  ///
734
  ///\ingroup maps
718
  ///This function just returns a NormSquareMap class.
735 719
  ///\relates NormSquareMap
736 720
  template<class M>
737 721
  inline NormSquareMap<M> normSquareMap(const M &m)
738 722
  {
739 723
    return NormSquareMap<M>(m);
740 724
  }
741 725

	
742 726
  /// @}
743 727

	
744 728
  } //namespce dim2
745 729

	
746 730
} //namespace lemon
Ignore white space 6 line context
... ...
@@ -53,25 +53,25 @@
53 53
    template<class MT>
54 54
    class _NegY {
55 55
    public:
56 56
      typedef typename MT::Key Key;
57 57
      typedef typename MT::Value Value;
58 58
      const MT &map;
59 59
      int yscale;
60 60
      _NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {}
61 61
      Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);}
62 62
    };
63 63
  }
64 64

	
65
///Default traits class of \ref GraphToEps
65
///Default traits class of GraphToEps
66 66

	
67 67
///Default traits class of \ref GraphToEps.
68 68
///
69 69
///\c G is the type of the underlying graph.
70 70
template<class G>
71 71
struct DefaultGraphToEpsTraits
72 72
{
73 73
  typedef G Graph;
74 74
  typedef typename Graph::Node Node;
75 75
  typedef typename Graph::NodeIt NodeIt;
76 76
  typedef typename Graph::Arc Arc;
77 77
  typedef typename Graph::ArcIt ArcIt;
Ignore white space 6 line context
... ...
@@ -382,33 +382,55 @@
382 382
          }
383 383
        }
384 384
        if (is) is.putback(c);
385 385
        else if (is.eof()) is.clear();
386 386
      }
387 387
    };
388 388

	
389 389
  }
390 390

	
391 391
  template <typename Digraph>
392 392
  class DigraphReader;
393 393

	
394
  /// \brief Return a \ref DigraphReader class
395
  ///
396
  /// This function just returns a \ref DigraphReader class.
397
  /// \relates DigraphReader
394 398
  template <typename Digraph>
395 399
  DigraphReader<Digraph> digraphReader(Digraph& digraph,
396
                                       std::istream& is = std::cin);
397

	
400
                                       std::istream& is = std::cin) {
401
    DigraphReader<Digraph> tmp(digraph, is);
402
    return tmp;
403
  }
404

	
405
  /// \brief Return a \ref DigraphReader class
406
  ///
407
  /// This function just returns a \ref DigraphReader class.
408
  /// \relates DigraphReader
398 409
  template <typename Digraph>
399
  DigraphReader<Digraph> digraphReader(Digraph& digraph, const std::string& fn);
400

	
410
  DigraphReader<Digraph> digraphReader(Digraph& digraph,
411
                                       const std::string& fn) {
412
    DigraphReader<Digraph> tmp(digraph, fn);
413
    return tmp;
414
  }
415

	
416
  /// \brief Return a \ref DigraphReader class
417
  ///
418
  /// This function just returns a \ref DigraphReader class.
419
  /// \relates DigraphReader
401 420
  template <typename Digraph>
402
  DigraphReader<Digraph> digraphReader(Digraph& digraph, const char *fn);
421
  DigraphReader<Digraph> digraphReader(Digraph& digraph, const char* fn) {
422
    DigraphReader<Digraph> tmp(digraph, fn);
423
    return tmp;
424
  }
403 425

	
404 426
  /// \ingroup lemon_io
405 427
  ///
406 428
  /// \brief \ref lgf-format "LGF" reader for directed graphs
407 429
  ///
408 430
  /// This utility reads an \ref lgf-format "LGF" file.
409 431
  ///
410 432
  /// The reading method does a batch processing. The user creates a
411 433
  /// reader object, then various reading rules can be added to the
412 434
  /// reader, and eventually the reading is executed with the \c run()
413 435
  /// member function. A map reading rule can be added to the reader
414 436
  /// with the \c nodeMap() or \c arcMap() members. An optional
... ...
@@ -1180,69 +1202,57 @@
1180 1202
      }
1181 1203

	
1182 1204
      if (!attributes_done && !_attributes.empty()) {
1183 1205
        throw FormatError("Section @attributes not found");
1184 1206
      }
1185 1207

	
1186 1208
    }
1187 1209

	
1188 1210
    /// @}
1189 1211

	
1190 1212
  };
1191 1213

	
1192
  /// \brief Return a \ref DigraphReader class
1214
  template <typename Graph>
1215
  class GraphReader;
1216

	
1217
  /// \brief Return a \ref GraphReader class
1193 1218
  ///
1194
  /// This function just returns a \ref DigraphReader class.
1195
  /// \relates DigraphReader
1196
  template <typename Digraph>
1197
  DigraphReader<Digraph> digraphReader(Digraph& digraph,
1198
                                       std::istream& is = std::cin) {
1199
    DigraphReader<Digraph> tmp(digraph, is);
1219
  /// This function just returns a \ref GraphReader class.
1220
  /// \relates GraphReader
1221
  template <typename Graph>
1222
  GraphReader<Graph> graphReader(Graph& graph, std::istream& is = std::cin) {
1223
    GraphReader<Graph> tmp(graph, is);
1200 1224
    return tmp;
1201 1225
  }
1202 1226

	
1203
  /// \brief Return a \ref DigraphReader class
1227
  /// \brief Return a \ref GraphReader class
1204 1228
  ///
1205
  /// This function just returns a \ref DigraphReader class.
1206
  /// \relates DigraphReader
1207
  template <typename Digraph>
1208
  DigraphReader<Digraph> digraphReader(Digraph& digraph,
1209
                                       const std::string& fn) {
1210
    DigraphReader<Digraph> tmp(digraph, fn);
1229
  /// This function just returns a \ref GraphReader class.
1230
  /// \relates GraphReader
1231
  template <typename Graph>
1232
  GraphReader<Graph> graphReader(Graph& graph, const std::string& fn) {
1233
    GraphReader<Graph> tmp(graph, fn);
1211 1234
    return tmp;
1212 1235
  }
1213 1236

	
1214
  /// \brief Return a \ref DigraphReader class
1237
  /// \brief Return a \ref GraphReader class
1215 1238
  ///
1216
  /// This function just returns a \ref DigraphReader class.
1217
  /// \relates DigraphReader
1218
  template <typename Digraph>
1219
  DigraphReader<Digraph> digraphReader(Digraph& digraph, const char* fn) {
1220
    DigraphReader<Digraph> tmp(digraph, fn);
1239
  /// This function just returns a \ref GraphReader class.
1240
  /// \relates GraphReader
1241
  template <typename Graph>
1242
  GraphReader<Graph> graphReader(Graph& graph, const char* fn) {
1243
    GraphReader<Graph> tmp(graph, fn);
1221 1244
    return tmp;
1222 1245
  }
1223 1246

	
1224
  template <typename Graph>
1225
  class GraphReader;
1226

	
1227
  template <typename Graph>
1228
  GraphReader<Graph> graphReader(Graph& graph,
1229
                                 std::istream& is = std::cin);
1230

	
1231
  template <typename Graph>
1232
  GraphReader<Graph> graphReader(Graph& graph, const std::string& fn);
1233

	
1234
  template <typename Graph>
1235
  GraphReader<Graph> graphReader(Graph& graph, const char *fn);
1236

	
1237 1247
  /// \ingroup lemon_io
1238 1248
  ///
1239 1249
  /// \brief \ref lgf-format "LGF" reader for undirected graphs
1240 1250
  ///
1241 1251
  /// This utility reads an \ref lgf-format "LGF" file.
1242 1252
  ///
1243 1253
  /// It can be used almost the same way as \c DigraphReader.
1244 1254
  /// The only difference is that this class can handle edges and
1245 1255
  /// edge maps as well as arcs and arc maps.
1246 1256
  ///
1247 1257
  /// The columns in the \c \@edges (or \c \@arcs) section are the
1248 1258
  /// edge maps. However, if there are two maps with the same name
... ...
@@ -2022,54 +2032,24 @@
2022 2032
      }
2023 2033

	
2024 2034
      if (!attributes_done && !_attributes.empty()) {
2025 2035
        throw FormatError("Section @attributes not found");
2026 2036
      }
2027 2037

	
2028 2038
    }
2029 2039

	
2030 2040
    /// @}
2031 2041

	
2032 2042
  };
2033 2043

	
2034
  /// \brief Return a \ref GraphReader class
2035
  ///
2036
  /// This function just returns a \ref GraphReader class.
2037
  /// \relates GraphReader
2038
  template <typename Graph>
2039
  GraphReader<Graph> graphReader(Graph& graph, std::istream& is = std::cin) {
2040
    GraphReader<Graph> tmp(graph, is);
2041
    return tmp;
2042
  }
2043

	
2044
  /// \brief Return a \ref GraphReader class
2045
  ///
2046
  /// This function just returns a \ref GraphReader class.
2047
  /// \relates GraphReader
2048
  template <typename Graph>
2049
  GraphReader<Graph> graphReader(Graph& graph, const std::string& fn) {
2050
    GraphReader<Graph> tmp(graph, fn);
2051
    return tmp;
2052
  }
2053

	
2054
  /// \brief Return a \ref GraphReader class
2055
  ///
2056
  /// This function just returns a \ref GraphReader class.
2057
  /// \relates GraphReader
2058
  template <typename Graph>
2059
  GraphReader<Graph> graphReader(Graph& graph, const char* fn) {
2060
    GraphReader<Graph> tmp(graph, fn);
2061
    return tmp;
2062
  }
2063

	
2064 2044
  class SectionReader;
2065 2045

	
2066 2046
  SectionReader sectionReader(std::istream& is);
2067 2047
  SectionReader sectionReader(const std::string& fn);
2068 2048
  SectionReader sectionReader(const char* fn);
2069 2049

	
2070 2050
  /// \ingroup lemon_io
2071 2051
  ///
2072 2052
  /// \brief Section reader class
2073 2053
  ///
2074 2054
  /// In the \ref lgf-format "LGF" file extra sections can be placed,
2075 2055
  /// which contain any data in arbitrary format. Such sections can be
Ignore white space 6 line context
... ...
@@ -342,35 +342,56 @@
342 342
      virtual ~StreamSection() {}
343 343

	
344 344
      virtual void process(std::ostream& os) {
345 345
        _functor(os);
346 346
      }
347 347
    };
348 348

	
349 349
  }
350 350

	
351 351
  template <typename Digraph>
352 352
  class DigraphWriter;
353 353

	
354
  /// \brief Return a \ref DigraphWriter class
355
  ///
356
  /// This function just returns a \ref DigraphWriter class.
357
  /// \relates DigraphWriter
354 358
  template <typename Digraph>
355 359
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
356
                                       std::ostream& os = std::cout);
360
                                       std::ostream& os = std::cout) {
361
    DigraphWriter<Digraph> tmp(digraph, os);
362
    return tmp;
363
  }
357 364

	
365
  /// \brief Return a \ref DigraphWriter class
366
  ///
367
  /// This function just returns a \ref DigraphWriter class.
368
  /// \relates DigraphWriter
358 369
  template <typename Digraph>
359 370
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
360
                                       const std::string& fn);
371
                                       const std::string& fn) {
372
    DigraphWriter<Digraph> tmp(digraph, fn);
373
    return tmp;
374
  }
361 375

	
376
  /// \brief Return a \ref DigraphWriter class
377
  ///
378
  /// This function just returns a \ref DigraphWriter class.
379
  /// \relates DigraphWriter
362 380
  template <typename Digraph>
363 381
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
364
                                       const char *fn);
382
                                       const char* fn) {
383
    DigraphWriter<Digraph> tmp(digraph, fn);
384
    return tmp;
385
  }
365 386

	
366 387
  /// \ingroup lemon_io
367 388
  ///
368 389
  /// \brief \ref lgf-format "LGF" writer for directed graphs
369 390
  ///
370 391
  /// This utility writes an \ref lgf-format "LGF" file.
371 392
  ///
372 393
  /// The writing method does a batch processing. The user creates a
373 394
  /// writer object, then various writing rules can be added to the
374 395
  /// writer, and eventually the writing is executed with the \c run()
375 396
  /// member function. A map writing rule can be added to the writer
376 397
  /// with the \c nodeMap() or \c arcMap() members. An optional
... ...
@@ -904,70 +925,58 @@
904 925
    }
905 926

	
906 927
    /// \brief Give back the stream of the writer
907 928
    ///
908 929
    /// Give back the stream of the writer.
909 930
    std::ostream& ostream() {
910 931
      return *_os;
911 932
    }
912 933

	
913 934
    /// @}
914 935
  };
915 936

	
916
  /// \brief Return a \ref DigraphWriter class
937
  template <typename Graph>
938
  class GraphWriter;
939

	
940
  /// \brief Return a \ref GraphWriter class
917 941
  ///
918
  /// This function just returns a \ref DigraphWriter class.
919
  /// \relates DigraphWriter
920
  template <typename Digraph>
921
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
922
                                       std::ostream& os = std::cout) {
923
    DigraphWriter<Digraph> tmp(digraph, os);
942
  /// This function just returns a \ref GraphWriter class.
943
  /// \relates GraphWriter
944
  template <typename Graph>
945
  GraphWriter<Graph> graphWriter(const Graph& graph,
946
                                 std::ostream& os = std::cout) {
947
    GraphWriter<Graph> tmp(graph, os);
924 948
    return tmp;
925 949
  }
926 950

	
927
  /// \brief Return a \ref DigraphWriter class
951
  /// \brief Return a \ref GraphWriter class
928 952
  ///
929
  /// This function just returns a \ref DigraphWriter class.
930
  /// \relates DigraphWriter
931
  template <typename Digraph>
932
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
933
                                       const std::string& fn) {
934
    DigraphWriter<Digraph> tmp(digraph, fn);
953
  /// This function just returns a \ref GraphWriter class.
954
  /// \relates GraphWriter
955
  template <typename Graph>
956
  GraphWriter<Graph> graphWriter(const Graph& graph, const std::string& fn) {
957
    GraphWriter<Graph> tmp(graph, fn);
935 958
    return tmp;
936 959
  }
937 960

	
938
  /// \brief Return a \ref DigraphWriter class
961
  /// \brief Return a \ref GraphWriter class
939 962
  ///
940
  /// This function just returns a \ref DigraphWriter class.
941
  /// \relates DigraphWriter
942
  template <typename Digraph>
943
  DigraphWriter<Digraph> digraphWriter(const Digraph& digraph,
944
                                       const char* fn) {
945
    DigraphWriter<Digraph> tmp(digraph, fn);
963
  /// This function just returns a \ref GraphWriter class.
964
  /// \relates GraphWriter
965
  template <typename Graph>
966
  GraphWriter<Graph> graphWriter(const Graph& graph, const char* fn) {
967
    GraphWriter<Graph> tmp(graph, fn);
946 968
    return tmp;
947 969
  }
948 970

	
949
  template <typename Graph>
950
  class GraphWriter;
951

	
952
  template <typename Graph>
953
  GraphWriter<Graph> graphWriter(const Graph& graph,
954
                                 std::ostream& os = std::cout);
955

	
956
  template <typename Graph>
957
  GraphWriter<Graph> graphWriter(const Graph& graph, const std::string& fn);
958

	
959
  template <typename Graph>
960
  GraphWriter<Graph> graphWriter(const Graph& graph, const char *fn);
961

	
962 971
  /// \ingroup lemon_io
963 972
  ///
964 973
  /// \brief \ref lgf-format "LGF" writer for directed graphs
965 974
  ///
966 975
  /// This utility writes an \ref lgf-format "LGF" file.
967 976
  ///
968 977
  /// It can be used almost the same way as \c DigraphWriter.
969 978
  /// The only difference is that this class can handle edges and
970 979
  /// edge maps as well as arcs and arc maps.
971 980
  ///
972 981
  /// The arc maps are written into the file as two columns, the
973 982
  /// caption of the columns are the name of the map prefixed with \c
... ...
@@ -1517,55 +1526,24 @@
1517 1526
    }
1518 1527

	
1519 1528
    /// \brief Give back the stream of the writer
1520 1529
    ///
1521 1530
    /// Give back the stream of the writer
1522 1531
    std::ostream& ostream() {
1523 1532
      return *_os;
1524 1533
    }
1525 1534

	
1526 1535
    /// @}
1527 1536
  };
1528 1537

	
1529
  /// \brief Return a \ref GraphWriter class
1530
  ///
1531
  /// This function just returns a \ref GraphWriter class.
1532
  /// \relates GraphWriter
1533
  template <typename Graph>
1534
  GraphWriter<Graph> graphWriter(const Graph& graph,
1535
                                 std::ostream& os = std::cout) {
1536
    GraphWriter<Graph> tmp(graph, os);
1537
    return tmp;
1538
  }
1539

	
1540
  /// \brief Return a \ref GraphWriter class
1541
  ///
1542
  /// This function just returns a \ref GraphWriter class.
1543
  /// \relates GraphWriter
1544
  template <typename Graph>
1545
  GraphWriter<Graph> graphWriter(const Graph& graph, const std::string& fn) {
1546
    GraphWriter<Graph> tmp(graph, fn);
1547
    return tmp;
1548
  }
1549

	
1550
  /// \brief Return a \ref GraphWriter class
1551
  ///
1552
  /// This function just returns a \ref GraphWriter class.
1553
  /// \relates GraphWriter
1554
  template <typename Graph>
1555
  GraphWriter<Graph> graphWriter(const Graph& graph, const char* fn) {
1556
    GraphWriter<Graph> tmp(graph, fn);
1557
    return tmp;
1558
  }
1559

	
1560 1538
  class SectionWriter;
1561 1539

	
1562 1540
  SectionWriter sectionWriter(std::istream& is);
1563 1541
  SectionWriter sectionWriter(const std::string& fn);
1564 1542
  SectionWriter sectionWriter(const char* fn);
1565 1543

	
1566 1544
  /// \ingroup lemon_io
1567 1545
  ///
1568 1546
  /// \brief Section writer class
1569 1547
  ///
1570 1548
  /// In the \ref lgf-format "LGF" file extra sections can be placed,
1571 1549
  /// which contain any data in arbitrary format. Such sections can be
Ignore white space 6 line context
... ...
@@ -404,25 +404,25 @@
404 404
    ///invalidated.
405 405
    ///
406 406
    ///\warning This functionality cannot be used together with the Snapshot
407 407
    ///feature.
408 408
    void changeTarget(Arc a, Node n) {
409 409
      Parent::changeTarget(a,n);
410 410
    }
411 411
    /// Change the source of \c a to \c n
412 412

	
413 413
    /// Change the source of \c a to \c n
414 414
    ///
415 415
    ///\note The <tt>InArcIt</tt>s referencing the changed arc remain
416
    ///valid. However the <tt>ArcIt<tt>s and <tt>OutArcIt</tt>s are
416
    ///valid. However the <tt>ArcIt</tt>s and <tt>OutArcIt</tt>s are
417 417
    ///invalidated.
418 418
    ///
419 419
    ///\warning This functionality cannot be used together with the Snapshot
420 420
    ///feature.
421 421
    void changeSource(Arc a, Node n) {
422 422
      Parent::changeSource(a,n);
423 423
    }
424 424

	
425 425
    /// Invert the direction of an arc.
426 426

	
427 427
    ///\note The <tt>ArcIt</tt>s referencing the changed arc remain
428 428
    ///valid. However <tt>OutArcIt</tt>s and <tt>InArcIt</tt>s are
Ignore white space 6 line context
... ...
@@ -34,25 +34,25 @@
34 34
namespace lemon {
35 35

	
36 36
  /// \addtogroup maps
37 37
  /// @{
38 38

	
39 39
  /// Base class of maps.
40 40

	
41 41
  /// Base class of maps. It provides the necessary type definitions
42 42
  /// required by the map %concepts.
43 43
  template<typename K, typename V>
44 44
  class MapBase {
45 45
  public:
46
    /// \biref The key type of the map.
46
    /// \brief The key type of the map.
47 47
    typedef K Key;
48 48
    /// \brief The value type of the map.
49 49
    /// (The type of objects associated with the keys).
50 50
    typedef V Value;
51 51
  };
52 52

	
53 53

	
54 54
  /// Null map. (a.k.a. DoNothingMap)
55 55

	
56 56
  /// This map can be used if you have to provide a map only for
57 57
  /// its type definitions, or if you have to provide a writable map,
58 58
  /// but data written to it is not required (i.e. it will be sent to
... ...
@@ -64,40 +64,40 @@
64 64
  class NullMap : public MapBase<K, V> {
65 65
  public:
66 66
    typedef MapBase<K, V> Parent;
67 67
    typedef typename Parent::Key Key;
68 68
    typedef typename Parent::Value Value;
69 69

	
70 70
    /// Gives back a default constructed element.
71 71
    Value operator[](const Key&) const { return Value(); }
72 72
    /// Absorbs the value.
73 73
    void set(const Key&, const Value&) {}
74 74
  };
75 75

	
76
  /// Returns a \ref NullMap class
76
  /// Returns a \c NullMap class
77 77

	
78
  /// This function just returns a \ref NullMap class.
78
  /// This function just returns a \c NullMap class.
79 79
  /// \relates NullMap
80 80
  template <typename K, typename V>
81 81
  NullMap<K, V> nullMap() {
82 82
    return NullMap<K, V>();
83 83
  }
84 84

	
85 85

	
86 86
  /// Constant map.
87 87

	
88 88
  /// This \ref concepts::ReadMap "readable map" assigns a specified
89 89
  /// value to each key.
90 90
  ///
91
  /// In other aspects it is equivalent to \ref NullMap.
91
  /// In other aspects it is equivalent to \c NullMap.
92 92
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
93 93
  /// concept, but it absorbs the data written to it.
94 94
  ///
95 95
  /// The simplest way of using this map is through the constMap()
96 96
  /// function.
97 97
  ///
98 98
  /// \sa NullMap
99 99
  /// \sa IdentityMap
100 100
  template<typename K, typename V>
101 101
  class ConstMap : public MapBase<K, V> {
102 102
  private:
103 103
    V _value;
... ...
@@ -124,48 +124,48 @@
124 124
    /// Absorbs the value.
125 125
    void set(const Key&, const Value&) {}
126 126

	
127 127
    /// Sets the value that is assigned to each key.
128 128
    void setAll(const Value &v) {
129 129
      _value = v;
130 130
    }
131 131

	
132 132
    template<typename V1>
133 133
    ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
134 134
  };
135 135

	
136
  /// Returns a \ref ConstMap class
136
  /// Returns a \c ConstMap class
137 137

	
138
  /// This function just returns a \ref ConstMap class.
138
  /// This function just returns a \c ConstMap class.
139 139
  /// \relates ConstMap
140 140
  template<typename K, typename V>
141 141
  inline ConstMap<K, V> constMap(const V &v) {
142 142
    return ConstMap<K, V>(v);
143 143
  }
144 144

	
145 145
  template<typename K, typename V>
146 146
  inline ConstMap<K, V> constMap() {
147 147
    return ConstMap<K, V>();
148 148
  }
149 149

	
150 150

	
151 151
  template<typename T, T v>
152 152
  struct Const {};
153 153

	
154 154
  /// Constant map with inlined constant value.
155 155

	
156 156
  /// This \ref concepts::ReadMap "readable map" assigns a specified
157 157
  /// value to each key.
158 158
  ///
159
  /// In other aspects it is equivalent to \ref NullMap.
159
  /// In other aspects it is equivalent to \c NullMap.
160 160
  /// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap"
161 161
  /// concept, but it absorbs the data written to it.
162 162
  ///
163 163
  /// The simplest way of using this map is through the constMap()
164 164
  /// function.
165 165
  ///
166 166
  /// \sa NullMap
167 167
  /// \sa IdentityMap
168 168
  template<typename K, typename V, V v>
169 169
  class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
170 170
  public:
171 171
    typedef MapBase<K, V> Parent;
... ...
@@ -173,27 +173,27 @@
173 173
    typedef typename Parent::Value Value;
174 174

	
175 175
    /// Constructor.
176 176
    ConstMap() {}
177 177

	
178 178
    /// Gives back the specified value.
179 179
    Value operator[](const Key&) const { return v; }
180 180

	
181 181
    /// Absorbs the value.
182 182
    void set(const Key&, const Value&) {}
183 183
  };
184 184

	
185
  /// Returns a \ref ConstMap class with inlined constant value
185
  /// Returns a \c ConstMap class with inlined constant value
186 186

	
187
  /// This function just returns a \ref ConstMap class with inlined
187
  /// This function just returns a \c ConstMap class with inlined
188 188
  /// constant value.
189 189
  /// \relates ConstMap
190 190
  template<typename K, typename V, V v>
191 191
  inline ConstMap<K, Const<V, v> > constMap() {
192 192
    return ConstMap<K, Const<V, v> >();
193 193
  }
194 194

	
195 195

	
196 196
  /// Identity map.
197 197

	
198 198
  /// This \ref concepts::ReadMap "read-only map" gives back the given
199 199
  /// key as value without any modification.
... ...
@@ -203,41 +203,41 @@
203 203
  class IdentityMap : public MapBase<T, T> {
204 204
  public:
205 205
    typedef MapBase<T, T> Parent;
206 206
    typedef typename Parent::Key Key;
207 207
    typedef typename Parent::Value Value;
208 208

	
209 209
    /// Gives back the given value without any modification.
210 210
    Value operator[](const Key &k) const {
211 211
      return k;
212 212
    }
213 213
  };
214 214

	
215
  /// Returns an \ref IdentityMap class
215
  /// Returns an \c IdentityMap class
216 216

	
217
  /// This function just returns an \ref IdentityMap class.
217
  /// This function just returns an \c IdentityMap class.
218 218
  /// \relates IdentityMap
219 219
  template<typename T>
220 220
  inline IdentityMap<T> identityMap() {
221 221
    return IdentityMap<T>();
222 222
  }
223 223

	
224 224

	
225 225
  /// \brief Map for storing values for integer keys from the range
226 226
  /// <tt>[0..size-1]</tt>.
227 227
  ///
228 228
  /// This map is essentially a wrapper for \c std::vector. It assigns
229 229
  /// values to integer keys from the range <tt>[0..size-1]</tt>.
230 230
  /// It can be used with some data structures, for example
231
  /// \ref UnionFind, \ref BinHeap, when the used items are small
231
  /// \c UnionFind, \c BinHeap, when the used items are small
232 232
  /// integers. This map conforms the \ref concepts::ReferenceMap
233 233
  /// "ReferenceMap" concept.
234 234
  ///
235 235
  /// The simplest way of using this map is through the rangeMap()
236 236
  /// function.
237 237
  template <typename V>
238 238
  class RangeMap : public MapBase<int, V> {
239 239
    template <typename V1>
240 240
    friend class RangeMap;
241 241
  private:
242 242

	
243 243
    typedef std::vector<V> Vector;
... ...
@@ -259,25 +259,25 @@
259 259

	
260 260
  public:
261 261

	
262 262
    /// Constructor with specified default value.
263 263
    RangeMap(int size = 0, const Value &value = Value())
264 264
      : _vector(size, value) {}
265 265

	
266 266
    /// Constructs the map from an appropriate \c std::vector.
267 267
    template <typename V1>
268 268
    RangeMap(const std::vector<V1>& vector)
269 269
      : _vector(vector.begin(), vector.end()) {}
270 270

	
271
    /// Constructs the map from another \ref RangeMap.
271
    /// Constructs the map from another \c RangeMap.
272 272
    template <typename V1>
273 273
    RangeMap(const RangeMap<V1> &c)
274 274
      : _vector(c._vector.begin(), c._vector.end()) {}
275 275

	
276 276
    /// Returns the size of the map.
277 277
    int size() {
278 278
      return _vector.size();
279 279
    }
280 280

	
281 281
    /// Resizes the map.
282 282

	
283 283
    /// Resizes the underlying \c std::vector container, so changes the
... ...
@@ -302,37 +302,37 @@
302 302

	
303 303
    ///\e
304 304
    ConstReference operator[](const Key &k) const {
305 305
      return _vector[k];
306 306
    }
307 307

	
308 308
    ///\e
309 309
    void set(const Key &k, const Value &v) {
310 310
      _vector[k] = v;
311 311
    }
312 312
  };
313 313

	
314
  /// Returns a \ref RangeMap class
314
  /// Returns a \c RangeMap class
315 315

	
316
  /// This function just returns a \ref RangeMap class.
316
  /// This function just returns a \c RangeMap class.
317 317
  /// \relates RangeMap
318 318
  template<typename V>
319 319
  inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
320 320
    return RangeMap<V>(size, value);
321 321
  }
322 322

	
323
  /// \brief Returns a \ref RangeMap class created from an appropriate
323
  /// \brief Returns a \c RangeMap class created from an appropriate
324 324
  /// \c std::vector
325 325

	
326
  /// This function just returns a \ref RangeMap class created from an
326
  /// This function just returns a \c RangeMap class created from an
327 327
  /// appropriate \c std::vector.
328 328
  /// \relates RangeMap
329 329
  template<typename V>
330 330
  inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
331 331
    return RangeMap<V>(vector);
332 332
  }
333 333

	
334 334

	
335 335
  /// Map type based on \c std::map
336 336

	
337 337
  /// This map is essentially a wrapper for \c std::map with addition
338 338
  /// that you can specify a default value for the keys that are not
... ...
@@ -379,25 +379,25 @@
379 379

	
380 380
  public:
381 381

	
382 382
    /// \brief Constructor with specified default value.
383 383
    SparseMap(const Value &value = Value()) : _value(value) {}
384 384
    /// \brief Constructs the map from an appropriate \c std::map, and
385 385
    /// explicitly specifies a default value.
386 386
    template <typename V1, typename Comp1>
387 387
    SparseMap(const std::map<Key, V1, Comp1> &map,
388 388
              const Value &value = Value())
389 389
      : _map(map.begin(), map.end()), _value(value) {}
390 390

	
391
    /// \brief Constructs the map from another \ref SparseMap.
391
    /// \brief Constructs the map from another \c SparseMap.
392 392
    template<typename V1, typename Comp1>
393 393
    SparseMap(const SparseMap<Key, V1, Comp1> &c)
394 394
      : _map(c._map.begin(), c._map.end()), _value(c._value) {}
395 395

	
396 396
  private:
397 397

	
398 398
    SparseMap& operator=(const SparseMap&);
399 399

	
400 400
  public:
401 401

	
402 402
    ///\e
403 403
    Reference operator[](const Key &k) {
... ...
@@ -424,43 +424,43 @@
424 424
        it->second = v;
425 425
      else
426 426
        _map.insert(it, std::make_pair(k, v));
427 427
    }
428 428

	
429 429
    ///\e
430 430
    void setAll(const Value &v) {
431 431
      _value = v;
432 432
      _map.clear();
433 433
    }
434 434
  };
435 435

	
436
  /// Returns a \ref SparseMap class
436
  /// Returns a \c SparseMap class
437 437

	
438
  /// This function just returns a \ref SparseMap class with specified
438
  /// This function just returns a \c SparseMap class with specified
439 439
  /// default value.
440 440
  /// \relates SparseMap
441 441
  template<typename K, typename V, typename Compare>
442 442
  inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
443 443
    return SparseMap<K, V, Compare>(value);
444 444
  }
445 445

	
446 446
  template<typename K, typename V>
447 447
  inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
448 448
    return SparseMap<K, V, std::less<K> >(value);
449 449
  }
450 450

	
451
  /// \brief Returns a \ref SparseMap class created from an appropriate
451
  /// \brief Returns a \c SparseMap class created from an appropriate
452 452
  /// \c std::map
453 453

	
454
  /// This function just returns a \ref SparseMap class created from an
454
  /// This function just returns a \c SparseMap class created from an
455 455
  /// appropriate \c std::map.
456 456
  /// \relates SparseMap
457 457
  template<typename K, typename V, typename Compare>
458 458
  inline SparseMap<K, V, Compare>
459 459
    sparseMap(const std::map<K, V, Compare> &map, const V& value = V())
460 460
  {
461 461
    return SparseMap<K, V, Compare>(map, value);
462 462
  }
463 463

	
464 464
  /// @}
465 465

	
466 466
  /// \addtogroup map_adaptors
... ...
@@ -492,27 +492,27 @@
492 492
    typedef MapBase<typename M2::Key, typename M1::Value> Parent;
493 493
    typedef typename Parent::Key Key;
494 494
    typedef typename Parent::Value Value;
495 495

	
496 496
    /// Constructor
497 497
    ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
498 498

	
499 499
    /// \e
500 500
    typename MapTraits<M1>::ConstReturnValue
501 501
    operator[](const Key &k) const { return _m1[_m2[k]]; }
502 502
  };
503 503

	
504
  /// Returns a \ref ComposeMap class
504
  /// Returns a \c ComposeMap class
505 505

	
506
  /// This function just returns a \ref ComposeMap class.
506
  /// This function just returns a \c ComposeMap class.
507 507
  ///
508 508
  /// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is
509 509
  /// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt>
510 510
  /// will be equal to <tt>m1[m2[x]]</tt>.
511 511
  ///
512 512
  /// \relates ComposeMap
513 513
  template <typename M1, typename M2>
514 514
  inline ComposeMap<M1, M2> composeMap(const M1 &m1, const M2 &m2) {
515 515
    return ComposeMap<M1, M2>(m1, m2);
516 516
  }
517 517

	
518 518

	
... ...
@@ -547,27 +547,27 @@
547 547
  public:
548 548
    typedef MapBase<typename M1::Key, V> Parent;
549 549
    typedef typename Parent::Key Key;
550 550
    typedef typename Parent::Value Value;
551 551

	
552 552
    /// Constructor
553 553
    CombineMap(const M1 &m1, const M2 &m2, const F &f = F())
554 554
      : _m1(m1), _m2(m2), _f(f) {}
555 555
    /// \e
556 556
    Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
557 557
  };
558 558

	
559
  /// Returns a \ref CombineMap class
559
  /// Returns a \c CombineMap class
560 560

	
561
  /// This function just returns a \ref CombineMap class.
561
  /// This function just returns a \c CombineMap class.
562 562
  ///
563 563
  /// For example, if \c m1 and \c m2 are both maps with \c double
564 564
  /// values, then
565 565
  /// \code
566 566
  ///   combineMap(m1,m2,std::plus<double>())
567 567
  /// \endcode
568 568
  /// is equivalent to
569 569
  /// \code
570 570
  ///   addMap(m1,m2)
571 571
  /// \endcode
572 572
  ///
573 573
  /// This function is specialized for adaptable binary function
... ...
@@ -616,27 +616,27 @@
616 616
    F _f;
617 617
  public:
618 618
    typedef MapBase<K, V> Parent;
619 619
    typedef typename Parent::Key Key;
620 620
    typedef typename Parent::Value Value;
621 621

	
622 622
    /// Constructor
623 623
    FunctorToMap(const F &f = F()) : _f(f) {}
624 624
    /// \e
625 625
    Value operator[](const Key &k) const { return _f(k); }
626 626
  };
627 627

	
628
  /// Returns a \ref FunctorToMap class
628
  /// Returns a \c FunctorToMap class
629 629

	
630
  /// This function just returns a \ref FunctorToMap class.
630
  /// This function just returns a \c FunctorToMap class.
631 631
  ///
632 632
  /// This function is specialized for adaptable binary function
633 633
  /// classes and C++ functions.
634 634
  ///
635 635
  /// \relates FunctorToMap
636 636
  template<typename K, typename V, typename F>
637 637
  inline FunctorToMap<F, K, V> functorToMap(const F &f) {
638 638
    return FunctorToMap<F, K, V>(f);
639 639
  }
640 640

	
641 641
  template <typename F>
642 642
  inline FunctorToMap<F, typename F::argument_type, typename F::result_type>
... ...
@@ -675,27 +675,27 @@
675 675

	
676 676
    typedef typename Parent::Key argument_type;
677 677
    typedef typename Parent::Value result_type;
678 678

	
679 679
    /// Constructor
680 680
    MapToFunctor(const M &m) : _m(m) {}
681 681
    /// \e
682 682
    Value operator()(const Key &k) const { return _m[k]; }
683 683
    /// \e
684 684
    Value operator[](const Key &k) const { return _m[k]; }
685 685
  };
686 686

	
687
  /// Returns a \ref MapToFunctor class
687
  /// Returns a \c MapToFunctor class
688 688

	
689
  /// This function just returns a \ref MapToFunctor class.
689
  /// This function just returns a \c MapToFunctor class.
690 690
  /// \relates MapToFunctor
691 691
  template<typename M>
692 692
  inline MapToFunctor<M> mapToFunctor(const M &m) {
693 693
    return MapToFunctor<M>(m);
694 694
  }
695 695

	
696 696

	
697 697
  /// \brief Map adaptor to convert the \c Value type of a map to
698 698
  /// another type using the default conversion.
699 699

	
700 700
  /// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap
701 701
  /// "readable map" to another type using the default conversion.
... ...
@@ -714,27 +714,27 @@
714 714
    typedef typename Parent::Value Value;
715 715

	
716 716
    /// Constructor
717 717

	
718 718
    /// Constructor.
719 719
    /// \param m The underlying map.
720 720
    ConvertMap(const M &m) : _m(m) {}
721 721

	
722 722
    /// \e
723 723
    Value operator[](const Key &k) const { return _m[k]; }
724 724
  };
725 725

	
726
  /// Returns a \ref ConvertMap class
726
  /// Returns a \c ConvertMap class
727 727

	
728
  /// This function just returns a \ref ConvertMap class.
728
  /// This function just returns a \c ConvertMap class.
729 729
  /// \relates ConvertMap
730 730
  template<typename V, typename M>
731 731
  inline ConvertMap<M, V> convertMap(const M &map) {
732 732
    return ConvertMap<M, V>(map);
733 733
  }
734 734

	
735 735

	
736 736
  /// Applies all map setting operations to two maps
737 737

	
738 738
  /// This map has two \ref concepts::WriteMap "writable map" parameters
739 739
  /// and each write request will be passed to both of them.
740 740
  /// If \c M1 is also \ref concepts::ReadMap "readable", then the read
... ...
@@ -754,27 +754,27 @@
754 754
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
755 755
    typedef typename Parent::Key Key;
756 756
    typedef typename Parent::Value Value;
757 757

	
758 758
    /// Constructor
759 759
    ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
760 760
    /// Returns the value associated with the given key in the first map.
761 761
    Value operator[](const Key &k) const { return _m1[k]; }
762 762
    /// Sets the value associated with the given key in both maps.
763 763
    void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
764 764
  };
765 765

	
766
  /// Returns a \ref ForkMap class
766
  /// Returns a \c ForkMap class
767 767

	
768
  /// This function just returns a \ref ForkMap class.
768
  /// This function just returns a \c ForkMap class.
769 769
  /// \relates ForkMap
770 770
  template <typename M1, typename M2>
771 771
  inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
772 772
    return ForkMap<M1,M2>(m1,m2);
773 773
  }
774 774

	
775 775

	
776 776
  /// Sum of two maps
777 777

	
778 778
  /// This \ref concepts::ReadMap "read-only map" returns the sum
779 779
  /// of the values of the two given maps.
780 780
  /// Its \c Key and \c Value types are inherited from \c M1.
... ...
@@ -798,27 +798,27 @@
798 798
    const M2 &_m2;
799 799
  public:
800 800
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
801 801
    typedef typename Parent::Key Key;
802 802
    typedef typename Parent::Value Value;
803 803

	
804 804
    /// Constructor
805 805
    AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
806 806
    /// \e
807 807
    Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
808 808
  };
809 809

	
810
  /// Returns an \ref AddMap class
810
  /// Returns an \c AddMap class
811 811

	
812
  /// This function just returns an \ref AddMap class.
812
  /// This function just returns an \c AddMap class.
813 813
  ///
814 814
  /// For example, if \c m1 and \c m2 are both maps with \c double
815 815
  /// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to
816 816
  /// <tt>m1[x]+m2[x]</tt>.
817 817
  ///
818 818
  /// \relates AddMap
819 819
  template<typename M1, typename M2>
820 820
  inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
821 821
    return AddMap<M1, M2>(m1,m2);
822 822
  }
823 823

	
824 824

	
... ...
@@ -846,27 +846,27 @@
846 846
    const M2 &_m2;
847 847
  public:
848 848
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
849 849
    typedef typename Parent::Key Key;
850 850
    typedef typename Parent::Value Value;
851 851

	
852 852
    /// Constructor
853 853
    SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
854 854
    /// \e
855 855
    Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
856 856
  };
857 857

	
858
  /// Returns a \ref SubMap class
858
  /// Returns a \c SubMap class
859 859

	
860
  /// This function just returns a \ref SubMap class.
860
  /// This function just returns a \c SubMap class.
861 861
  ///
862 862
  /// For example, if \c m1 and \c m2 are both maps with \c double
863 863
  /// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to
864 864
  /// <tt>m1[x]-m2[x]</tt>.
865 865
  ///
866 866
  /// \relates SubMap
867 867
  template<typename M1, typename M2>
868 868
  inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
869 869
    return SubMap<M1, M2>(m1,m2);
870 870
  }
871 871

	
872 872

	
... ...
@@ -895,27 +895,27 @@
895 895
    const M2 &_m2;
896 896
  public:
897 897
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
898 898
    typedef typename Parent::Key Key;
899 899
    typedef typename Parent::Value Value;
900 900

	
901 901
    /// Constructor
902 902
    MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
903 903
    /// \e
904 904
    Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
905 905
  };
906 906

	
907
  /// Returns a \ref MulMap class
907
  /// Returns a \c MulMap class
908 908

	
909
  /// This function just returns a \ref MulMap class.
909
  /// This function just returns a \c MulMap class.
910 910
  ///
911 911
  /// For example, if \c m1 and \c m2 are both maps with \c double
912 912
  /// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to
913 913
  /// <tt>m1[x]*m2[x]</tt>.
914 914
  ///
915 915
  /// \relates MulMap
916 916
  template<typename M1, typename M2>
917 917
  inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
918 918
    return MulMap<M1, M2>(m1,m2);
919 919
  }
920 920

	
921 921

	
... ...
@@ -943,27 +943,27 @@
943 943
    const M2 &_m2;
944 944
  public:
945 945
    typedef MapBase<typename M1::Key, typename M1::Value> Parent;
946 946
    typedef typename Parent::Key Key;
947 947
    typedef typename Parent::Value Value;
948 948

	
949 949
    /// Constructor
950 950
    DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
951 951
    /// \e
952 952
    Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
953 953
  };
954 954

	
955
  /// Returns a \ref DivMap class
955
  /// Returns a \c DivMap class
956 956

	
957
  /// This function just returns a \ref DivMap class.
957
  /// This function just returns a \c DivMap class.
958 958
  ///
959 959
  /// For example, if \c m1 and \c m2 are both maps with \c double
960 960
  /// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to
961 961
  /// <tt>m1[x]/m2[x]</tt>.
962 962
  ///
963 963
  /// \relates DivMap
964 964
  template<typename M1, typename M2>
965 965
  inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
966 966
    return DivMap<M1, M2>(m1,m2);
967 967
  }
968 968

	
969 969

	
... ...
@@ -1029,41 +1029,41 @@
1029 1029
    /// Constructor
1030 1030

	
1031 1031
    /// Constructor.
1032 1032
    /// \param m The undelying map.
1033 1033
    /// \param v The constant value.
1034 1034
    ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1035 1035
    /// \e
1036 1036
    Value operator[](const Key &k) const { return _m[k]+_v; }
1037 1037
    /// \e
1038 1038
    void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
1039 1039
  };
1040 1040

	
1041
  /// Returns a \ref ShiftMap class
1041
  /// Returns a \c ShiftMap class
1042 1042

	
1043
  /// This function just returns a \ref ShiftMap class.
1043
  /// This function just returns a \c ShiftMap class.
1044 1044
  ///
1045 1045
  /// For example, if \c m is a map with \c double values and \c v is
1046 1046
  /// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to
1047 1047
  /// <tt>m[x]+v</tt>.
1048 1048
  ///
1049 1049
  /// \relates ShiftMap
1050 1050
  template<typename M, typename C>
1051 1051
  inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
1052 1052
    return ShiftMap<M, C>(m,v);
1053 1053
  }
1054 1054

	
1055
  /// Returns a \ref ShiftWriteMap class
1055
  /// Returns a \c ShiftWriteMap class
1056 1056

	
1057
  /// This function just returns a \ref ShiftWriteMap class.
1057
  /// This function just returns a \c ShiftWriteMap class.
1058 1058
  ///
1059 1059
  /// For example, if \c m is a map with \c double values and \c v is
1060 1060
  /// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to
1061 1061
  /// <tt>m[x]+v</tt>.
1062 1062
  /// Moreover it makes also possible to write the map.
1063 1063
  ///
1064 1064
  /// \relates ShiftWriteMap
1065 1065
  template<typename M, typename C>
1066 1066
  inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
1067 1067
    return ShiftWriteMap<M, C>(m,v);
1068 1068
  }
1069 1069

	
... ...
@@ -1131,41 +1131,41 @@
1131 1131
    /// Constructor
1132 1132

	
1133 1133
    /// Constructor.
1134 1134
    /// \param m The undelying map.
1135 1135
    /// \param v The constant value.
1136 1136
    ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
1137 1137
    /// \e
1138 1138
    Value operator[](const Key &k) const { return _v*_m[k]; }
1139 1139
    /// \e
1140 1140
    void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
1141 1141
  };
1142 1142

	
1143
  /// Returns a \ref ScaleMap class
1143
  /// Returns a \c ScaleMap class
1144 1144

	
1145
  /// This function just returns a \ref ScaleMap class.
1145
  /// This function just returns a \c ScaleMap class.
1146 1146
  ///
1147 1147
  /// For example, if \c m is a map with \c double values and \c v is
1148 1148
  /// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to
1149 1149
  /// <tt>v*m[x]</tt>.
1150 1150
  ///
1151 1151
  /// \relates ScaleMap
1152 1152
  template<typename M, typename C>
1153 1153
  inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
1154 1154
    return ScaleMap<M, C>(m,v);
1155 1155
  }
1156 1156

	
1157
  /// Returns a \ref ScaleWriteMap class
1157
  /// Returns a \c ScaleWriteMap class
1158 1158

	
1159
  /// This function just returns a \ref ScaleWriteMap class.
1159
  /// This function just returns a \c ScaleWriteMap class.
1160 1160
  ///
1161 1161
  /// For example, if \c m is a map with \c double values and \c v is
1162 1162
  /// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to
1163 1163
  /// <tt>v*m[x]</tt>.
1164 1164
  /// Moreover it makes also possible to write the map.
1165 1165
  ///
1166 1166
  /// \relates ScaleWriteMap
1167 1167
  template<typename M, typename C>
1168 1168
  inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
1169 1169
    return ScaleWriteMap<M, C>(m,v);
1170 1170
  }
1171 1171

	
... ...
@@ -1231,40 +1231,40 @@
1231 1231
    typedef MapBase<typename M::Key, typename M::Value> Parent;
1232 1232
    typedef typename Parent::Key Key;
1233 1233
    typedef typename Parent::Value Value;
1234 1234

	
1235 1235
    /// Constructor
1236 1236
    NegWriteMap(M &m) : _m(m) {}
1237 1237
    /// \e
1238 1238
    Value operator[](const Key &k) const { return -_m[k]; }
1239 1239
    /// \e
1240 1240
    void set(const Key &k, const Value &v) { _m.set(k, -v); }
1241 1241
  };
1242 1242

	
1243
  /// Returns a \ref NegMap class
1243
  /// Returns a \c NegMap class
1244 1244

	
1245
  /// This function just returns a \ref NegMap class.
1245
  /// This function just returns a \c NegMap class.
1246 1246
  ///
1247 1247
  /// For example, if \c m is a map with \c double values, then
1248 1248
  /// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1249 1249
  ///
1250 1250
  /// \relates NegMap
1251 1251
  template <typename M>
1252 1252
  inline NegMap<M> negMap(const M &m) {
1253 1253
    return NegMap<M>(m);
1254 1254
  }
1255 1255

	
1256
  /// Returns a \ref NegWriteMap class
1256
  /// Returns a \c NegWriteMap class
1257 1257

	
1258
  /// This function just returns a \ref NegWriteMap class.
1258
  /// This function just returns a \c NegWriteMap class.
1259 1259
  ///
1260 1260
  /// For example, if \c m is a map with \c double values, then
1261 1261
  /// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>.
1262 1262
  /// Moreover it makes also possible to write the map.
1263 1263
  ///
1264 1264
  /// \relates NegWriteMap
1265 1265
  template <typename M>
1266 1266
  inline NegWriteMap<M> negWriteMap(M &m) {
1267 1267
    return NegWriteMap<M>(m);
1268 1268
  }
1269 1269

	
1270 1270

	
... ...
@@ -1287,27 +1287,27 @@
1287 1287
    typedef typename Parent::Value Value;
1288 1288

	
1289 1289
    /// Constructor
1290 1290
    AbsMap(const M &m) : _m(m) {}
1291 1291
    /// \e
1292 1292
    Value operator[](const Key &k) const {
1293 1293
      Value tmp = _m[k];
1294 1294
      return tmp >= 0 ? tmp : -tmp;
1295 1295
    }
1296 1296

	
1297 1297
  };
1298 1298

	
1299
  /// Returns an \ref AbsMap class
1299
  /// Returns an \c AbsMap class
1300 1300

	
1301
  /// This function just returns an \ref AbsMap class.
1301
  /// This function just returns an \c AbsMap class.
1302 1302
  ///
1303 1303
  /// For example, if \c m is a map with \c double values, then
1304 1304
  /// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if
1305 1305
  /// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is
1306 1306
  /// negative.
1307 1307
  ///
1308 1308
  /// \relates AbsMap
1309 1309
  template<typename M>
1310 1310
  inline AbsMap<M> absMap(const M &m) {
1311 1311
    return AbsMap<M>(m);
1312 1312
  }
1313 1313

	
... ...
@@ -1336,27 +1336,27 @@
1336 1336
  /// \sa ConstMap
1337 1337
  template <typename K>
1338 1338
  class TrueMap : public MapBase<K, bool> {
1339 1339
  public:
1340 1340
    typedef MapBase<K, bool> Parent;
1341 1341
    typedef typename Parent::Key Key;
1342 1342
    typedef typename Parent::Value Value;
1343 1343

	
1344 1344
    /// Gives back \c true.
1345 1345
    Value operator[](const Key&) const { return true; }
1346 1346
  };
1347 1347

	
1348
  /// Returns a \ref TrueMap class
1348
  /// Returns a \c TrueMap class
1349 1349

	
1350
  /// This function just returns a \ref TrueMap class.
1350
  /// This function just returns a \c TrueMap class.
1351 1351
  /// \relates TrueMap
1352 1352
  template<typename K>
1353 1353
  inline TrueMap<K> trueMap() {
1354 1354
    return TrueMap<K>();
1355 1355
  }
1356 1356

	
1357 1357

	
1358 1358
  /// Constant \c false map.
1359 1359

	
1360 1360
  /// This \ref concepts::ReadMap "read-only map" assigns \c false to
1361 1361
  /// each key.
1362 1362
  ///
... ...
@@ -1373,27 +1373,27 @@
1373 1373
  /// \sa ConstMap
1374 1374
  template <typename K>
1375 1375
  class FalseMap : public MapBase<K, bool> {
1376 1376
  public:
1377 1377
    typedef MapBase<K, bool> Parent;
1378 1378
    typedef typename Parent::Key Key;
1379 1379
    typedef typename Parent::Value Value;
1380 1380

	
1381 1381
    /// Gives back \c false.
1382 1382
    Value operator[](const Key&) const { return false; }
1383 1383
  };
1384 1384

	
1385
  /// Returns a \ref FalseMap class
1385
  /// Returns a \c FalseMap class
1386 1386

	
1387
  /// This function just returns a \ref FalseMap class.
1387
  /// This function just returns a \c FalseMap class.
1388 1388
  /// \relates FalseMap
1389 1389
  template<typename K>
1390 1390
  inline FalseMap<K> falseMap() {
1391 1391
    return FalseMap<K>();
1392 1392
  }
1393 1393

	
1394 1394
  /// @}
1395 1395

	
1396 1396
  /// \addtogroup map_adaptors
1397 1397
  /// @{
1398 1398

	
1399 1399
  /// Logical 'and' of two maps
... ...
@@ -1420,27 +1420,27 @@
1420 1420
    const M2 &_m2;
1421 1421
  public:
1422 1422
    typedef MapBase<typename M1::Key, bool> Parent;
1423 1423
    typedef typename Parent::Key Key;
1424 1424
    typedef typename Parent::Value Value;
1425 1425

	
1426 1426
    /// Constructor
1427 1427
    AndMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1428 1428
    /// \e
1429 1429
    Value operator[](const Key &k) const { return _m1[k]&&_m2[k]; }
1430 1430
  };
1431 1431

	
1432
  /// Returns an \ref AndMap class
1432
  /// Returns an \c AndMap class
1433 1433

	
1434
  /// This function just returns an \ref AndMap class.
1434
  /// This function just returns an \c AndMap class.
1435 1435
  ///
1436 1436
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1437 1437
  /// then <tt>andMap(m1,m2)[x]</tt> will be equal to
1438 1438
  /// <tt>m1[x]&&m2[x]</tt>.
1439 1439
  ///
1440 1440
  /// \relates AndMap
1441 1441
  template<typename M1, typename M2>
1442 1442
  inline AndMap<M1, M2> andMap(const M1 &m1, const M2 &m2) {
1443 1443
    return AndMap<M1, M2>(m1,m2);
1444 1444
  }
1445 1445

	
1446 1446

	
... ...
@@ -1468,27 +1468,27 @@
1468 1468
    const M2 &_m2;
1469 1469
  public:
1470 1470
    typedef MapBase<typename M1::Key, bool> Parent;
1471 1471
    typedef typename Parent::Key Key;
1472 1472
    typedef typename Parent::Value Value;
1473 1473

	
1474 1474
    /// Constructor
1475 1475
    OrMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1476 1476
    /// \e
1477 1477
    Value operator[](const Key &k) const { return _m1[k]||_m2[k]; }
1478 1478
  };
1479 1479

	
1480
  /// Returns an \ref OrMap class
1480
  /// Returns an \c OrMap class
1481 1481

	
1482
  /// This function just returns an \ref OrMap class.
1482
  /// This function just returns an \c OrMap class.
1483 1483
  ///
1484 1484
  /// For example, if \c m1 and \c m2 are both maps with \c bool values,
1485 1485
  /// then <tt>orMap(m1,m2)[x]</tt> will be equal to
1486 1486
  /// <tt>m1[x]||m2[x]</tt>.
1487 1487
  ///
1488 1488
  /// \relates OrMap
1489 1489
  template<typename M1, typename M2>
1490 1490
  inline OrMap<M1, M2> orMap(const M1 &m1, const M2 &m2) {
1491 1491
    return OrMap<M1, M2>(m1,m2);
1492 1492
  }
1493 1493

	
1494 1494

	
... ...
@@ -1535,40 +1535,40 @@
1535 1535
    typedef MapBase<typename M::Key, bool> Parent;
1536 1536
    typedef typename Parent::Key Key;
1537 1537
    typedef typename Parent::Value Value;
1538 1538

	
1539 1539
    /// Constructor
1540 1540
    NotWriteMap(M &m) : _m(m) {}
1541 1541
    /// \e
1542 1542
    Value operator[](const Key &k) const { return !_m[k]; }
1543 1543
    /// \e
1544 1544
    void set(const Key &k, bool v) { _m.set(k, !v); }
1545 1545
  };
1546 1546

	
1547
  /// Returns a \ref NotMap class
1547
  /// Returns a \c NotMap class
1548 1548

	
1549
  /// This function just returns a \ref NotMap class.
1549
  /// This function just returns a \c NotMap class.
1550 1550
  ///
1551 1551
  /// For example, if \c m is a map with \c bool values, then
1552 1552
  /// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1553 1553
  ///
1554 1554
  /// \relates NotMap
1555 1555
  template <typename M>
1556 1556
  inline NotMap<M> notMap(const M &m) {
1557 1557
    return NotMap<M>(m);
1558 1558
  }
1559 1559

	
1560
  /// Returns a \ref NotWriteMap class
1560
  /// Returns a \c NotWriteMap class
1561 1561

	
1562
  /// This function just returns a \ref NotWriteMap class.
1562
  /// This function just returns a \c NotWriteMap class.
1563 1563
  ///
1564 1564
  /// For example, if \c m is a map with \c bool values, then
1565 1565
  /// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>.
1566 1566
  /// Moreover it makes also possible to write the map.
1567 1567
  ///
1568 1568
  /// \relates NotWriteMap
1569 1569
  template <typename M>
1570 1570
  inline NotWriteMap<M> notWriteMap(M &m) {
1571 1571
    return NotWriteMap<M>(m);
1572 1572
  }
1573 1573

	
1574 1574

	
... ...
@@ -1596,27 +1596,27 @@
1596 1596
    const M2 &_m2;
1597 1597
  public:
1598 1598
    typedef MapBase<typename M1::Key, bool> Parent;
1599 1599
    typedef typename Parent::Key Key;
1600 1600
    typedef typename Parent::Value Value;
1601 1601

	
1602 1602
    /// Constructor
1603 1603
    EqualMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1604 1604
    /// \e
1605 1605
    Value operator[](const Key &k) const { return _m1[k]==_m2[k]; }
1606 1606
  };
1607 1607

	
1608
  /// Returns an \ref EqualMap class
1608
  /// Returns an \c EqualMap class
1609 1609

	
1610
  /// This function just returns an \ref EqualMap class.
1610
  /// This function just returns an \c EqualMap class.
1611 1611
  ///
1612 1612
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1613 1613
  /// the same type, then <tt>equalMap(m1,m2)[x]</tt> will be equal to
1614 1614
  /// <tt>m1[x]==m2[x]</tt>.
1615 1615
  ///
1616 1616
  /// \relates EqualMap
1617 1617
  template<typename M1, typename M2>
1618 1618
  inline EqualMap<M1, M2> equalMap(const M1 &m1, const M2 &m2) {
1619 1619
    return EqualMap<M1, M2>(m1,m2);
1620 1620
  }
1621 1621

	
1622 1622

	
... ...
@@ -1644,27 +1644,27 @@
1644 1644
    const M2 &_m2;
1645 1645
  public:
1646 1646
    typedef MapBase<typename M1::Key, bool> Parent;
1647 1647
    typedef typename Parent::Key Key;
1648 1648
    typedef typename Parent::Value Value;
1649 1649

	
1650 1650
    /// Constructor
1651 1651
    LessMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
1652 1652
    /// \e
1653 1653
    Value operator[](const Key &k) const { return _m1[k]<_m2[k]; }
1654 1654
  };
1655 1655

	
1656
  /// Returns an \ref LessMap class
1656
  /// Returns an \c LessMap class
1657 1657

	
1658
  /// This function just returns an \ref LessMap class.
1658
  /// This function just returns an \c LessMap class.
1659 1659
  ///
1660 1660
  /// For example, if \c m1 and \c m2 are maps with keys and values of
1661 1661
  /// the same type, then <tt>lessMap(m1,m2)[x]</tt> will be equal to
1662 1662
  /// <tt>m1[x]<m2[x]</tt>.
1663 1663
  ///
1664 1664
  /// \relates LessMap
1665 1665
  template<typename M1, typename M2>
1666 1666
  inline LessMap<M1, M2> lessMap(const M1 &m1, const M2 &m2) {
1667 1667
    return LessMap<M1, M2>(m1,m2);
1668 1668
  }
1669 1669

	
1670 1670
  namespace _maps_bits {
... ...
@@ -1674,24 +1674,29 @@
1674 1674
      typedef typename std::iterator_traits<_Iterator>::value_type Value;
1675 1675
    };
1676 1676

	
1677 1677
    template <typename _Iterator>
1678 1678
    struct IteratorTraits<_Iterator,
1679 1679
      typename exists<typename _Iterator::container_type>::type>
1680 1680
    {
1681 1681
      typedef typename _Iterator::container_type::value_type Value;
1682 1682
    };
1683 1683

	
1684 1684
  }
1685 1685

	
1686
  /// @}
1687

	
1688
  /// \addtogroup maps
1689
  /// @{
1690

	
1686 1691
  /// \brief Writable bool map for logging each \c true assigned element
1687 1692
  ///
1688 1693
  /// A \ref concepts::WriteMap "writable" bool map for logging
1689 1694
  /// each \c true assigned element, i.e it copies subsequently each
1690 1695
  /// keys set to \c true to the given iterator.
1691 1696
  /// The most important usage of it is storing certain nodes or arcs
1692 1697
  /// that were marked \c true by an algorithm.
1693 1698
  ///
1694 1699
  /// There are several algorithms that provide solutions through bool
1695 1700
  /// maps and most of them assign \c true at most once for each key.
1696 1701
  /// In these cases it is a natural request to store each \c true
1697 1702
  /// assigned elements (in order of the assignment), which can be
... ...
@@ -1736,54 +1741,59 @@
1736 1741
    /// The set function of the map
1737 1742
    void set(const Key& key, Value value) {
1738 1743
      if (value) {
1739 1744
        *_end++ = key;
1740 1745
      }
1741 1746
    }
1742 1747

	
1743 1748
  private:
1744 1749
    Iterator _begin;
1745 1750
    Iterator _end;
1746 1751
  };
1747 1752

	
1748
  /// Returns a \ref LoggerBoolMap class
1753
  /// Returns a \c LoggerBoolMap class
1749 1754

	
1750
  /// This function just returns a \ref LoggerBoolMap class.
1755
  /// This function just returns a \c LoggerBoolMap class.
1751 1756
  ///
1752 1757
  /// The most important usage of it is storing certain nodes or arcs
1753 1758
  /// that were marked \c true by an algorithm.
1754 1759
  /// For example it makes easier to store the nodes in the processing
1755 1760
  /// order of Dfs algorithm, as the following examples show.
1756 1761
  /// \code
1757 1762
  ///   std::vector<Node> v;
1758 1763
  ///   dfs(g,s).processedMap(loggerBoolMap(std::back_inserter(v))).run();
1759 1764
  /// \endcode
1760 1765
  /// \code
1761 1766
  ///   std::vector<Node> v(countNodes(g));
1762 1767
  ///   dfs(g,s).processedMap(loggerBoolMap(v.begin())).run();
1763 1768
  /// \endcode
1764 1769
  ///
1765 1770
  /// \note The container of the iterator must contain enough space
1766 1771
  /// for the elements or the iterator should be an inserter iterator.
1767 1772
  ///
1768 1773
  /// \note LoggerBoolMap is just \ref concepts::WriteMap "writable", so
1769 1774
  /// it cannot be used when a readable map is needed, for example as
1770
  /// \c ReachedMap for \ref Bfs, \ref Dfs and \ref Dijkstra algorithms.
1775
  /// \c ReachedMap for \c Bfs, \c Dfs and \c Dijkstra algorithms.
1771 1776
  ///
1772 1777
  /// \relates LoggerBoolMap
1773 1778
  template<typename Iterator>
1774 1779
  inline LoggerBoolMap<Iterator> loggerBoolMap(Iterator it) {
1775 1780
    return LoggerBoolMap<Iterator>(it);
1776 1781
  }
1777 1782

	
1783
  /// @}
1784

	
1785
  /// \addtogroup graph_maps
1786
  /// @{
1787

	
1778 1788
  /// Provides an immutable and unique id for each item in the graph.
1779 1789

	
1780 1790
  /// The IdMap class provides a unique and immutable id for each item of the
1781 1791
  /// same type (e.g. node) in the graph. This id is <ul><li>\b unique:
1782 1792
  /// different items (nodes) get different ids <li>\b immutable: the id of an
1783 1793
  /// item (node) does not change (even if you delete other nodes).  </ul>
1784 1794
  /// Through this map you get access (i.e. can read) the inner id values of
1785 1795
  /// the items stored in the graph. This map can be inverted with its member
1786 1796
  /// class \c InverseMap or with the \c operator() member.
1787 1797
  ///
1788 1798
  template <typename _Graph, typename _Item>
1789 1799
  class IdMap {
... ...
@@ -1852,160 +1862,160 @@
1852 1862
  /// The SourceMap gives back the source Node of the given arc.
1853 1863
  /// \see TargetMap
1854 1864
  template <typename Digraph>
1855 1865
  class SourceMap {
1856 1866
  public:
1857 1867

	
1858 1868
    typedef typename Digraph::Node Value;
1859 1869
    typedef typename Digraph::Arc Key;
1860 1870

	
1861 1871
    /// \brief Constructor
1862 1872
    ///
1863 1873
    /// Constructor
1864
    /// \param _digraph The digraph that the map belongs to.
1874
    /// \param digraph The digraph that the map belongs to.
1865 1875
    explicit SourceMap(const Digraph& digraph) : _digraph(digraph) {}
1866 1876

	
1867 1877
    /// \brief The subscript operator.
1868 1878
    ///
1869 1879
    /// The subscript operator.
1870 1880
    /// \param arc The arc
1871 1881
    /// \return The source of the arc
1872 1882
    Value operator[](const Key& arc) const {
1873 1883
      return _digraph.source(arc);
1874 1884
    }
1875 1885

	
1876 1886
  private:
1877 1887
    const Digraph& _digraph;
1878 1888
  };
1879 1889

	
1880
  /// \brief Returns a \ref SourceMap class.
1890
  /// \brief Returns a \c SourceMap class.
1881 1891
  ///
1882
  /// This function just returns an \ref SourceMap class.
1892
  /// This function just returns an \c SourceMap class.
1883 1893
  /// \relates SourceMap
1884 1894
  template <typename Digraph>
1885 1895
  inline SourceMap<Digraph> sourceMap(const Digraph& digraph) {
1886 1896
    return SourceMap<Digraph>(digraph);
1887 1897
  }
1888 1898

	
1889 1899
  /// \brief Returns the target of the given arc.
1890 1900
  ///
1891 1901
  /// The TargetMap gives back the target Node of the given arc.
1892 1902
  /// \see SourceMap
1893 1903
  template <typename Digraph>
1894 1904
  class TargetMap {
1895 1905
  public:
1896 1906

	
1897 1907
    typedef typename Digraph::Node Value;
1898 1908
    typedef typename Digraph::Arc Key;
1899 1909

	
1900 1910
    /// \brief Constructor
1901 1911
    ///
1902 1912
    /// Constructor
1903
    /// \param _digraph The digraph that the map belongs to.
1913
    /// \param digraph The digraph that the map belongs to.
1904 1914
    explicit TargetMap(const Digraph& digraph) : _digraph(digraph) {}
1905 1915

	
1906 1916
    /// \brief The subscript operator.
1907 1917
    ///
1908 1918
    /// The subscript operator.
1909 1919
    /// \param e The arc
1910 1920
    /// \return The target of the arc
1911 1921
    Value operator[](const Key& e) const {
1912 1922
      return _digraph.target(e);
1913 1923
    }
1914 1924

	
1915 1925
  private:
1916 1926
    const Digraph& _digraph;
1917 1927
  };
1918 1928

	
1919
  /// \brief Returns a \ref TargetMap class.
1929
  /// \brief Returns a \c TargetMap class.
1920 1930
  ///
1921
  /// This function just returns a \ref TargetMap class.
1931
  /// This function just returns a \c TargetMap class.
1922 1932
  /// \relates TargetMap
1923 1933
  template <typename Digraph>
1924 1934
  inline TargetMap<Digraph> targetMap(const Digraph& digraph) {
1925 1935
    return TargetMap<Digraph>(digraph);
1926 1936
  }
1927 1937

	
1928 1938
  /// \brief Returns the "forward" directed arc view of an edge.
1929 1939
  ///
1930 1940
  /// Returns the "forward" directed arc view of an edge.
1931 1941
  /// \see BackwardMap
1932 1942
  template <typename Graph>
1933 1943
  class ForwardMap {
1934 1944
  public:
1935 1945

	
1936 1946
    typedef typename Graph::Arc Value;
1937 1947
    typedef typename Graph::Edge Key;
1938 1948

	
1939 1949
    /// \brief Constructor
1940 1950
    ///
1941 1951
    /// Constructor
1942
    /// \param _graph The graph that the map belongs to.
1952
    /// \param graph The graph that the map belongs to.
1943 1953
    explicit ForwardMap(const Graph& graph) : _graph(graph) {}
1944 1954

	
1945 1955
    /// \brief The subscript operator.
1946 1956
    ///
1947 1957
    /// The subscript operator.
1948 1958
    /// \param key An edge
1949 1959
    /// \return The "forward" directed arc view of edge
1950 1960
    Value operator[](const Key& key) const {
1951 1961
      return _graph.direct(key, true);
1952 1962
    }
1953 1963

	
1954 1964
  private:
1955 1965
    const Graph& _graph;
1956 1966
  };
1957 1967

	
1958
  /// \brief Returns a \ref ForwardMap class.
1968
  /// \brief Returns a \c ForwardMap class.
1959 1969
  ///
1960
  /// This function just returns an \ref ForwardMap class.
1970
  /// This function just returns an \c ForwardMap class.
1961 1971
  /// \relates ForwardMap
1962 1972
  template <typename Graph>
1963 1973
  inline ForwardMap<Graph> forwardMap(const Graph& graph) {
1964 1974
    return ForwardMap<Graph>(graph);
1965 1975
  }
1966 1976

	
1967 1977
  /// \brief Returns the "backward" directed arc view of an edge.
1968 1978
  ///
1969 1979
  /// Returns the "backward" directed arc view of an edge.
1970 1980
  /// \see ForwardMap
1971 1981
  template <typename Graph>
1972 1982
  class BackwardMap {
1973 1983
  public:
1974 1984

	
1975 1985
    typedef typename Graph::Arc Value;
1976 1986
    typedef typename Graph::Edge Key;
1977 1987

	
1978 1988
    /// \brief Constructor
1979 1989
    ///
1980 1990
    /// Constructor
1981
    /// \param _graph The graph that the map belongs to.
1991
    /// \param graph The graph that the map belongs to.
1982 1992
    explicit BackwardMap(const Graph& graph) : _graph(graph) {}
1983 1993

	
1984 1994
    /// \brief The subscript operator.
1985 1995
    ///
1986 1996
    /// The subscript operator.
1987 1997
    /// \param key An edge
1988 1998
    /// \return The "backward" directed arc view of edge
1989 1999
    Value operator[](const Key& key) const {
1990 2000
      return _graph.direct(key, false);
1991 2001
    }
1992 2002

	
1993 2003
  private:
1994 2004
    const Graph& _graph;
1995 2005
  };
1996 2006

	
1997
  /// \brief Returns a \ref BackwardMap class
2007
  /// \brief Returns a \c BackwardMap class
1998 2008

	
1999
  /// This function just returns a \ref BackwardMap class.
2009
  /// This function just returns a \c BackwardMap class.
2000 2010
  /// \relates BackwardMap
2001 2011
  template <typename Graph>
2002 2012
  inline BackwardMap<Graph> backwardMap(const Graph& graph) {
2003 2013
    return BackwardMap<Graph>(graph);
2004 2014
  }
2005 2015

	
2006 2016
  /// \brief Potential difference map
2007 2017
  ///
2008 2018
  /// If there is an potential map on the nodes then we
2009 2019
  /// can get an arc map as we get the substraction of the
2010 2020
  /// values of the target and source.
2011 2021
  template <typename Digraph, typename NodeMap>
Ignore white space 6 line context
... ...
@@ -840,25 +840,25 @@
840 840

	
841 841
    /// \brief The arc iterator pointing to the nth arc.
842 842
    ArcIt nthIt(int n) const {
843 843
      return ArcIt(*this, n);
844 844
    }
845 845

	
846 846
    /// \brief The length of the path.
847 847
    int length() const { return len; }
848 848

	
849 849
    /// \brief Return true when the path is empty.
850 850
    int empty() const { return len == 0; }
851 851

	
852
    /// \break Erase all arcs in the digraph.
852
    /// \brief Erase all arcs in the digraph.
853 853
    void clear() {
854 854
      len = 0;
855 855
      if (arcs) delete[] arcs;
856 856
      arcs = 0;
857 857
    }
858 858

	
859 859
    /// \brief The first arc of the path.
860 860
    const Arc& front() const {
861 861
      return arcs[0];
862 862
    }
863 863

	
864 864
    /// \brief The last arc of the path.
Ignore white space 6 line context
... ...
@@ -356,37 +356,37 @@
356 356
      unsigned int node_num;
357 357
      unsigned int arc_num;
358 358
    public:
359 359
      ///Default constructor.
360 360

	
361 361
      ///Default constructor.
362 362
      ///To actually make a snapshot you must call save().
363 363
      ///
364 364
      Snapshot() : _graph(0) {}
365 365
      ///Constructor that immediately makes a snapshot
366 366

	
367 367
      ///This constructor immediately makes a snapshot of the digraph.
368
      ///\param _g The digraph we make a snapshot of.
368
      ///\param graph The digraph we make a snapshot of.
369 369
      Snapshot(SmartDigraph &graph) : _graph(&graph) {
370 370
        node_num=_graph->nodes.size();
371 371
        arc_num=_graph->arcs.size();
372 372
      }
373 373

	
374 374
      ///Make a snapshot.
375 375

	
376 376
      ///Make a snapshot of the digraph.
377 377
      ///
378 378
      ///This function can be called more than once. In case of a repeated
379 379
      ///call, the previous snapshot gets lost.
380
      ///\param _g The digraph we make the snapshot of.
380
      ///\param graph The digraph we make the snapshot of.
381 381
      void save(SmartDigraph &graph)
382 382
      {
383 383
        _graph=&graph;
384 384
        node_num=_graph->nodes.size();
385 385
        arc_num=_graph->arcs.size();
386 386
      }
387 387

	
388 388
      ///Undo the changes until a snapshot.
389 389

	
390 390
      ///Undo the changes until a snapshot created by save().
391 391
      ///
392 392
      ///\note After you restored a state, you cannot restore
... ...
@@ -766,36 +766,36 @@
766 766
      unsigned int node_num;
767 767
      unsigned int arc_num;
768 768
    public:
769 769
      ///Default constructor.
770 770

	
771 771
      ///Default constructor.
772 772
      ///To actually make a snapshot you must call save().
773 773
      ///
774 774
      Snapshot() : _graph(0) {}
775 775
      ///Constructor that immediately makes a snapshot
776 776

	
777 777
      ///This constructor immediately makes a snapshot of the digraph.
778
      ///\param g The digraph we make a snapshot of.
778
      ///\param graph The digraph we make a snapshot of.
779 779
      Snapshot(SmartGraph &graph) {
780 780
        graph.saveSnapshot(*this);
781 781
      }
782 782

	
783 783
      ///Make a snapshot.
784 784

	
785 785
      ///Make a snapshot of the graph.
786 786
      ///
787 787
      ///This function can be called more than once. In case of a repeated
788 788
      ///call, the previous snapshot gets lost.
789
      ///\param g The digraph we make the snapshot of.
789
      ///\param graph The digraph we make the snapshot of.
790 790
      void save(SmartGraph &graph)
791 791
      {
792 792
        graph.saveSnapshot(*this);
793 793
      }
794 794

	
795 795
      ///Undo the changes until a snapshot.
796 796

	
797 797
      ///Undo the changes until a snapshot created by save().
798 798
      ///
799 799
      ///\note After you restored a state, you cannot restore
800 800
      ///a later state, in other word you cannot add again the arcs deleted
801 801
      ///by restore().
Ignore white space 6 line context
... ...
@@ -302,30 +302,29 @@
302 302
    void _reset() {if(_running) start_time.stamp(); else start_time.reset();}
303 303

	
304 304
  public:
305 305
    ///Constructor.
306 306

	
307 307
    ///\param run indicates whether or not the timer starts immediately.
308 308
    ///
309 309
    Timer(bool run=true) :_running(run) {_reset();}
310 310

	
311 311
    ///\name Control the state of the timer
312 312
    ///Basically a Timer can be either running or stopped,
313 313
    ///but it provides a bit finer control on the execution.
314
    ///The \ref Timer also counts the number of \ref start()
315
    ///executions, and is stops only after the same amount (or more)
316
    ///\ref stop() "stop()"s. This can be useful e.g. to compute
317
    ///the running time
314
    ///The \ref lemon::Timer "Timer" also counts the number of
315
    ///\ref lemon::Timer::start() "start()" executions, and it stops
316
    ///only after the same amount (or more) \ref lemon::Timer::stop()
317
    ///"stop()"s. This can be useful e.g. to compute the running time
318 318
    ///of recursive functions.
319
    ///
320 319

	
321 320
    ///@{
322 321

	
323 322
    ///Reset and stop the time counters
324 323

	
325 324
    ///This function resets and stops the time counters
326 325
    ///\sa restart()
327 326
    void reset()
328 327
    {
329 328
      _running=0;
330 329
      _reset();
331 330
    }
... ...
@@ -463,59 +462,59 @@
463 462
    ///\endcode
464 463
    operator TimeStamp () const
465 464
    {
466 465
      TimeStamp t;
467 466
      t.stamp();
468 467
      return _running?t-start_time:start_time;
469 468
    }
470 469

	
471 470

	
472 471
    ///@}
473 472
  };
474 473

	
475
  ///Same as \ref Timer but prints a report on destruction.
474
  ///Same as Timer but prints a report on destruction.
476 475

	
477 476
  ///Same as \ref Timer but prints a report on destruction.
478 477
  ///This example shows its usage.
479 478
  ///\code
480 479
  ///  void myAlg(ListGraph &g,int n)
481 480
  ///  {
482 481
  ///    TimeReport tr("Running time of myAlg: ");
483 482
  ///    ... //Here comes the algorithm
484 483
  ///  }
485 484
  ///\endcode
486 485
  ///
487 486
  ///\sa Timer
488 487
  ///\sa NoTimeReport
489 488
  class TimeReport : public Timer
490 489
  {
491 490
    std::string _title;
492 491
    std::ostream &_os;
493 492
  public:
494
    ///\e
493
    ///Constructor
495 494

	
495
    ///Constructor.
496 496
    ///\param title This text will be printed before the ellapsed time.
497 497
    ///\param os The stream to print the report to.
498 498
    ///\param run Sets whether the timer should start immediately.
499

	
500 499
    TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true)
501 500
      : Timer(run), _title(title), _os(os){}
502
    ///\e Prints the ellapsed time on destruction.
501
    ///Destructor that prints the ellapsed time
503 502
    ~TimeReport()
504 503
    {
505 504
      _os << _title << *this << std::endl;
506 505
    }
507 506
  };
508 507

	
509
  ///'Do nothing' version of \ref TimeReport
508
  ///'Do nothing' version of TimeReport
510 509

	
511 510
  ///\sa TimeReport
512 511
  ///
513 512
  class NoTimeReport
514 513
  {
515 514
  public:
516 515
    ///\e
517 516
    NoTimeReport(std::string,std::ostream &,bool) {}
518 517
    ///\e
519 518
    NoTimeReport(std::string,std::ostream &) {}
520 519
    ///\e
521 520
    NoTimeReport(std::string) {}
Ignore white space 6 line context
1 1
if WANT_TOOLS
2 2

	
3 3
bin_PROGRAMS +=
4
dist_bin_SCRIPTS += tools/lemon-0.x-to-1.x.sh
4 5

	
5 6
endif WANT_TOOLS
Ignore white space 6 line context
1
if WANT_BENCHMARK
2

	
3
noinst_HEADERS +=
4

	
5
noinst_PROGRAMS +=
6

	
7
endif WANT_BENCHMARK
0 comments (0 inline)