↑ Collapse diff ↑
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2008
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
19
namespace lemon {
20
/*!
21

	
22
\page migration Migration from the 0.x Series
23

	
24
This guide gives an in depth description on what has changed compared
25
to the 0.x release series.
26

	
27
Many of these changes adjusted automatically by the
28
<tt>script/lemon-0.x-to-1.x.sh</tt> tool. Those requiring manual
29
update are typeset <b>boldface</b>.
30

	
31
\section migration-graph Graph Related Name Changes
32

	
33
- \ref concepts::Digraph "Directed graphs" are called \c Digraph and
34
  they have <tt>Arc</tt>s (instead of <tt>Edge</tt>s), while
35
  \ref concepts::Graph "undirected graphs" are called \c Graph
36
  (instead of \c UGraph) and they have <tt>Edge</tt>s (instead of
37
  <tt>UEdge</tt>s). These changes reflected thoroughly everywhere in
38
  the library. Namely,
39
  - \c Graph -> \c Digraph
40
    - \c %ListGraph -> \c ListDigraph, \c %SmartGraph -> \c SmartDigraph etc.
41
  - \c UGraph -> \c Graph
42
    - \c ListUGraph -> \c ListGraph, \c SmartUGraph -> \c SmartGraph etc.
43
  - \c Edge -> \c Arc, \c UEdge -> \c Edge
44
  - \c EdgeMap -> \c ArcMap, \c UEdgeMap -> \c EdgeMap
45
  - \c EdgeIt -> \c ArcIt, \c UEdgeIt -> \c EdgeIt
46
  - Class names and function names containing the words \c graph,
47
    \c ugraph, \e edge or \e arc should also be updated.
48
- <b>The two endpoints of an (\e undirected) \c Edge can be obtained by the
49
  <tt>u()</tt> and <tt>v()</tt> member function of the graph
50
  (instead of <tt>source()</tt> and <tt>target()</tt>). This change
51
  must be done by hand.</b>
52
  \n Of course, you can still use <tt>source()</tt> and <tt>target()</tt>
53
  for <tt>Arc</tt>s (directed edges).
54

	
55
\warning
56
<b>The <tt>script/lemon-0.x-to-1.x.sh</tt> tool replaces all instances of
57
the words \c graph, \c digraph, \c edge and \c arc, so it replaces them
58
in strings, comments etc. as well as in all identifiers.</b>
59

	
60
\section migration-lgf LGF tools
61
 - The \ref lgf-format "LGF file format" has changed,
62
   <tt>\@nodeset</tt> has changed to <tt>\@nodes</tt>,
63
   <tt>\@edgeset</tt> and <tt>\@uedgeset</tt> to <tt>\@arcs</tt> or
64
   <tt>\@edges</tt>, which become completely equivalents. The
65
   <tt>\@nodes</tt>, <tt>\@edges</tt> and <tt>\@uedges</tt> sections are
66
   removed from the format, the content of them should be
67
   the part of <tt>\@attributes</tt> section. The data fields in
68
   the sections must follow a strict format, they must be either character
69
   sequences without whitespaces or quoted strings.
70
 - The <tt>LemonReader</tt> and <tt>LemonWriter</tt> core interfaces
71
   are no longer available.
72
 - The implementation of the general section readers and writers has changed
73
   they are simple functors now. Beside the old
74
   stream based section handling, currently line oriented section
75
   reading and writing are also supported. In the
76
   section readers the lines must be counted manually. The sections
77
   should be read and written with the SectionWriter and SectionReader
78
   classes.
79
 - Instead of the item readers and writers, item converters should be
80
   used. The converters are functors, which map the type to
81
   std::string or std::string to the type. The converters for standard
82
   containers hasn't yet been implemented in the new LEMON. The converters
83
   can return strings in any format, because if it is necessary, the LGF
84
   writer and reader will quote and unquote the given value.
85
 - The DigraphReader and DigraphWriter can used similarly to the
86
   0.x series, however the <tt>read</tt> or <tt>write</tt> prefix of
87
   the member functions are removed.
88
 - The new LEMON supports the function like interface, the \c
89
   digraphReader and \c digraphWriter functions are more convenient than
90
   using the classes directly.
91

	
92
\section migration-search BFS, DFS and Dijkstra
93
- <b>Using the function interface of BFS, DFS and %Dijkstra both source and
94
  target nodes can be given as parameters of the <tt>run()</tt> function
95
  (instead of \c bfs(), \c dfs() or \c dijkstra() itself).</b>
96
- \ref named-templ-param "Named class template parameters" of \c Bfs,
97
  \c Dfs, \c Dijkstra, \c BfsVisit, \c DfsVisit are renamed to start
98
  with "Set" instead of "Def". Namely,
99
  - \c DefPredMap -> \c SetPredMap
100
  - \c DefDistMap -> \c SetDistMap
101
  - \c DefReachedMap -> \c SetReachedMap
102
  - \c DefProcessedMap -> \c SetProcessedMap
103
  - \c DefHeap -> \c SetHeap
104
  - \c DefStandardHeap -> \c SetStandardHeap
105
  - \c DefOperationTraits -> \c SetOperationTraits
106
  - \c DefProcessedMapToBeDefaultMap -> \c SetStandardProcessedMap
107

	
108
\section migration-error Exceptions and Debug tools
109

	
110
<b>The class hierarchy of exceptions has largely been simplified. Now,
111
only the i/o related tools may throw exceptions. All other exceptions
112
have been replaced with either the \c LEMON_ASSERT or the \c LEMON_DEBUG
113
macros.</b>
114

	
115
<b>On the other hand, the parameter order of constructors of the
116
exceptions has been changed. See \ref IoError and \ref FormatError for
117
more details.</b>
118

	
119
\section migration-other Others
120
- <b>The contents of <tt>graph_utils.h</tt> are moved to <tt>core.h</tt>
121
  and <tt>maps.h</tt>. <tt>core.h</tt> is included by all graph types,
122
  therefore it usually do not have to be included directly.</b>
123
- <b><tt>path_utils.h</tt> is merged to \c path.h.</b>
124
- <b>The semantic of the assignment operations and copy constructors of maps
125
  are still under discussion. So, you must copy them by hand (i.e. copy
126
  each entry one-by-one)</b>
127
- <b>The parameters of the graph copying tools (i.e. \c GraphCopy,
128
  \c DigraphCopy) have to be given in the from-to order.</b>
129
- \c copyDigraph() and \c copyGraph() are renamed to \c digraphCopy()
130
  and \c graphCopy(), respectively.
131
- <b>The interface of \ref DynArcLookUp has changed. It is now the same as
132
  of \ref ArcLookUp and \ref AllArcLookUp</b>
133
- Some map types should also been renamed. Namely,
134
  - \c IntegerMap -> \c RangeMap
135
  - \c StdMap -> \c SparseMap
136
  - \c FunctorMap -> \c FunctorToMap
137
  - \c MapFunctor -> \c MapToFunctor
138
  - \c ForkWriteMap -> \c ForkMap
139
  - \c StoreBoolMap -> \c LoggerBoolMap
140
- \c dim2::BoundingBox -> \c dim2::Box
141

	
142
*/
143
}
Ignore white space 6 line context
1 1
ACLOCAL_AMFLAGS = -I m4
2 2

	
3 3
AM_CPPFLAGS = -I$(top_srcdir) -I$(top_builddir)
4 4
LDADD = $(top_builddir)/lemon/libemon.la
5 5

	
6 6
EXTRA_DIST = \
7 7
	LICENSE \
8 8
	m4/lx_check_cplex.m4 \
9 9
	m4/lx_check_glpk.m4 \
10 10
	m4/lx_check_soplex.m4 \
11 11
	CMakeLists.txt \
12 12
	cmake
13 13

	
14 14
pkgconfigdir = $(libdir)/pkgconfig
15 15
lemondir = $(pkgincludedir)
16 16
bitsdir = $(lemondir)/bits
17 17
conceptdir = $(lemondir)/concepts
18 18
pkgconfig_DATA =
19 19
lib_LTLIBRARIES =
20 20
lemon_HEADERS =
21 21
bits_HEADERS =
22 22
concept_HEADERS =
23 23
noinst_HEADERS =
24 24
noinst_PROGRAMS =
25 25
bin_PROGRAMS =
26 26
check_PROGRAMS =
27
dist_bin_SCRIPTS =
27 28
TESTS =
28 29
XFAIL_TESTS =
29 30

	
30 31
include lemon/Makefile.am
31 32
include test/Makefile.am
32 33
include doc/Makefile.am
33 34
include demo/Makefile.am
34
include benchmark/Makefile.am
35 35
include tools/Makefile.am
36 36

	
37 37
MRPROPERFILES = \
38 38
	aclocal.m4 \
39 39
	config.h.in \
40 40
	config.h.in~ \
41 41
	configure \
42 42
	Makefile.in \
43 43
	build-aux/config.guess \
44 44
	build-aux/config.sub \
45 45
	build-aux/depcomp \
46 46
	build-aux/install-sh \
47 47
	build-aux/ltmain.sh \
48 48
	build-aux/missing \
49 49
	doc/doxygen.log
50 50

	
51 51
mrproper:
52 52
	$(MAKE) $(AM_MAKEFLAGS) maintainer-clean
53 53
	-rm -f $(MRPROPERFILES)
54 54

	
55 55
dist-bz2: dist
56 56
	zcat $(PACKAGE)-$(VERSION).tar.gz | \
57 57
	bzip2 --best -c > $(PACKAGE)-$(VERSION).tar.bz2
58 58

	
59 59
distcheck-bz2: distcheck
60 60
	zcat $(PACKAGE)-$(VERSION).tar.gz | \
61 61
	bzip2 --best -c > $(PACKAGE)-$(VERSION).tar.bz2
62 62

	
63 63
.PHONY: mrproper dist-bz2 distcheck-bz2
Ignore white space 6 line context
1 1
==================================================================
2 2
LEMON - a Library of Efficient Models and Optimization in Networks
3 3
==================================================================
4 4

	
5 5
LEMON is an open source library written in C++. It provides
6 6
easy-to-use implementations of common data structures and algorithms
7 7
in the area of optimization and helps implementing new ones. The main
8 8
focus is on graphs and graph algorithms, thus it is especially
9 9
suitable for solving design and optimization problems of
10 10
telecommunication networks. To achieve wide usability its data
11 11
structures and algorithms provide generic interfaces.
12 12

	
13 13
Contents
14 14
========
15 15

	
16 16
LICENSE
17 17

	
18 18
   Copying, distribution and modification conditions and terms.
19 19

	
20 20
INSTALL
21 21

	
22 22
   General building and installation instructions.
23 23

	
24 24
lemon/
25 25

	
26 26
   Source code of LEMON library.
27 27

	
28 28
doc/
29 29

	
30 30
   Documentation of LEMON. The starting page is doc/html/index.html.
31 31

	
32 32
demo/
33 33

	
34 34
   Some example programs to make you easier to get familiar with LEMON.
35 35

	
36 36
test/
37 37

	
38 38
   Contains programs to check the integrity and correctness of LEMON.
39 39

	
40
benchmark/
41
  
42
   Contains programs for measuring the performance of algorithms.
43

	
44 40
tools/
45 41

	
46 42
   Various utilities related to LEMON.
Ignore white space 256 line context
1 1
dnl Process this file with autoconf to produce a configure script.
2 2

	
3 3
dnl Version information.
4 4
m4_define([lemon_version_number],
5 5
	[m4_normalize(esyscmd([echo ${LEMON_VERSION}]))])
6 6
dnl m4_define([lemon_version_number], [])
7 7
m4_define([lemon_hg_path], [m4_normalize(esyscmd([./scripts/chg-len.py]))])
8 8
m4_define([lemon_hg_revision], [m4_normalize(esyscmd([hg id -i]))])
9 9
m4_define([lemon_version], [ifelse(lemon_version_number(),
10 10
			   [],
11 11
			   [lemon_hg_path().lemon_hg_revision()],
12 12
			   [lemon_version_number()])])
13 13

	
14 14
AC_PREREQ([2.59])
15 15
AC_INIT([LEMON], [lemon_version()], [lemon-user@lemon.cs.elte.hu], [lemon])
16 16
AC_CONFIG_AUX_DIR([build-aux])
17 17
AC_CONFIG_MACRO_DIR([m4])
18 18
AM_INIT_AUTOMAKE([-Wall -Werror foreign subdir-objects nostdinc])
19 19
AC_CONFIG_SRCDIR([lemon/list_graph.h])
20 20
AC_CONFIG_HEADERS([config.h lemon/config.h])
21 21

	
22 22
lx_cmdline_cxxflags_set=${CXXFLAGS+set}
23 23

	
24 24
dnl Do compilation tests using the C++ compiler.
25 25
AC_LANG([C++])
26 26

	
27 27
dnl Checks for programs.
28 28
AC_PROG_CXX
29 29
AC_PROG_CXXCPP
30 30
AC_PROG_INSTALL
31 31
AC_DISABLE_SHARED
32 32
AC_PROG_LIBTOOL
33 33

	
34 34
AC_CHECK_PROG([doxygen_found],[doxygen],[yes],[no])
35 35
AC_CHECK_PROG([gs_found],[gs],[yes],[no])
36 36

	
37 37
dnl Detect Intel compiler.
38 38
AC_MSG_CHECKING([whether we are using the Intel C++ compiler])
39 39
AC_COMPILE_IFELSE([#ifndef __INTEL_COMPILER
40 40
choke me
41 41
#endif], [ICC=[yes]], [ICC=[no]])
42 42
if test x"$ICC" = x"yes"; then
43 43
  AC_MSG_RESULT([yes])
44 44
else
45 45
  AC_MSG_RESULT([no])
46 46
fi
47 47

	
48 48
dnl Set custom compiler flags when using g++.
49 49
if test x"$lx_cmdline_cxxflags_set" != x"set" -a "$GXX" = yes -a "$ICC" = no; then
50 50
  CXXFLAGS="$CXXFLAGS -Wall -W -Wall -W -Wunused -Wformat=2 -Wctor-dtor-privacy -Wnon-virtual-dtor -Wno-char-subscripts -Wwrite-strings -Wno-char-subscripts -Wreturn-type -Wcast-qual -Wcast-align -Wsign-promo -Woverloaded-virtual -Woverloaded-virtual -ansi -fno-strict-aliasing -Wold-style-cast -Wno-unknown-pragmas"
51 51
fi
52 52

	
53 53
dnl Checks for libraries.
54 54
#LX_CHECK_GLPK
55 55
#LX_CHECK_CPLEX
56 56
#LX_CHECK_SOPLEX
57 57

	
58 58
dnl Disable/enable building the demo programs.
59 59
AC_ARG_ENABLE([demo],
60 60
AS_HELP_STRING([--enable-demo], [build the demo programs])
61 61
AS_HELP_STRING([--disable-demo], [do not build the demo programs @<:@default@:>@]),
62 62
              [], [enable_demo=no])
63 63
AC_MSG_CHECKING([whether to build the demo programs])
64 64
if test x"$enable_demo" != x"no"; then
65 65
  AC_MSG_RESULT([yes])
66 66
else
67 67
  AC_MSG_RESULT([no])
68 68
fi
69 69
AM_CONDITIONAL([WANT_DEMO], [test x"$enable_demo" != x"no"])
70 70

	
71 71
dnl Disable/enable building the binary tools.
72 72
AC_ARG_ENABLE([tools],
73 73
AS_HELP_STRING([--enable-tools], [build additional tools @<:@default@:>@])
74 74
AS_HELP_STRING([--disable-tools], [do not build additional tools]),
75 75
              [], [enable_tools=yes])
76 76
AC_MSG_CHECKING([whether to build the additional tools])
77 77
if test x"$enable_tools" != x"no"; then
78 78
  AC_MSG_RESULT([yes])
79 79
else
80 80
  AC_MSG_RESULT([no])
81 81
fi
82 82
AM_CONDITIONAL([WANT_TOOLS], [test x"$enable_tools" != x"no"])
83 83

	
84
dnl Disable/enable building the benchmarks.
85
AC_ARG_ENABLE([benchmark],
86
AS_HELP_STRING([--enable-benchmark], [build the benchmarks])
87
AS_HELP_STRING([--disable-benchmark], [do not build the benchmarks @<:@default@:>@]),
88
              [], [enable_benchmark=no])
89
AC_MSG_CHECKING([whether to build the benchmarks])
90
if test x"$enable_benchmark" != x"no"; then
91
  AC_MSG_RESULT([yes])
92
else
93
  AC_MSG_RESULT([no])
94
fi
95
AM_CONDITIONAL([WANT_BENCHMARK], [test x"$enable_benchmark" != x"no"])
96

	
97 84
dnl Checks for header files.
98 85
AC_CHECK_HEADERS(limits.h sys/time.h sys/times.h unistd.h)
99 86

	
100 87
dnl Checks for typedefs, structures, and compiler characteristics.
101 88
AC_C_CONST
102 89
AC_C_INLINE
103 90
AC_TYPE_SIZE_T
104 91
AC_HEADER_TIME
105 92
AC_STRUCT_TM
106 93

	
107 94
dnl Checks for library functions.
108 95
AC_HEADER_STDC
109 96
AC_CHECK_FUNCS(gettimeofday times ctime_r)
110 97

	
111 98
dnl Add dependencies on files generated by configure.
112 99
AC_SUBST([CONFIG_STATUS_DEPENDENCIES],
113 100
  ['$(top_srcdir)/doc/Doxyfile.in $(top_srcdir)/lemon/lemon.pc.in'])
114 101

	
115 102
AC_CONFIG_FILES([
116 103
Makefile
117 104
doc/Doxyfile
118 105
lemon/lemon.pc
119 106
])
120 107

	
121 108
AC_OUTPUT
122 109

	
123 110
echo
124 111
echo '****************************** SUMMARY ******************************'
125 112
echo
126 113
echo Package version............... : $PACKAGE-$VERSION
127 114
echo
128 115
echo C++ compiler.................. : $CXX
129 116
echo C++ compiles flags............ : $CXXFLAGS
130 117
echo
131 118
#echo GLPK support.................. : $lx_glpk_found
132 119
#echo CPLEX support................. : $lx_cplex_found
133 120
#echo SOPLEX support................ : $lx_soplex_found
134 121
#echo
135
echo Build benchmarks.............. : $enable_benchmark
136 122
echo Build demo programs........... : $enable_demo
137 123
echo Build additional tools........ : $enable_tools
138 124
echo
139 125
echo The packace will be installed in
140 126
echo -n '  '
141 127
echo $prefix.
142 128
echo
143 129
echo '*********************************************************************'
144 130

	
145 131
echo
146 132
echo Configure complete, now type \'make\' and then \'make install\'.
147 133
echo
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
///\ingroup demos
20 20
///\file
21 21
///\brief Argument parser demo
22 22
///
23 23
/// This example shows how the argument parser can be used.
24 24
///
25 25
/// \include arg_parser_demo.cc
26 26

	
27 27
#include <lemon/arg_parser.h>
28 28

	
29 29
using namespace lemon;
30
int main(int argc, const char **argv)
30
int main(int argc, char **argv)
31 31
{
32 32
  // Initialize the argument parser
33 33
  ArgParser ap(argc, argv);
34 34
  int i;
35 35
  std::string s;
36 36
  double d = 1.0;
37 37
  bool b, nh;
38 38
  bool g1, g2, g3;
39 39

	
40 40
  // Add a mandatory integer option with storage reference
41 41
  ap.refOption("n", "An integer input.", i, true);
42 42
  // Add a double option with storage reference (the default value is 1.0)
43 43
  ap.refOption("val", "A double input.", d);
44 44
  // Add a double option without storage reference (the default value is 3.14)
45 45
  ap.doubleOption("val2", "A double input.", 3.14);
46 46
  // Set synonym for -val option
47 47
  ap.synonym("vals", "val");
48 48
  // Add a string option
49 49
  ap.refOption("name", "A string input.", s);
50 50
  // Add bool options
51 51
  ap.refOption("f", "A switch.", b)
52 52
    .refOption("nohelp", "", nh)
53 53
    .refOption("gra", "Choice A", g1)
54 54
    .refOption("grb", "Choice B", g2)
55 55
    .refOption("grc", "Choice C", g3);
56 56
  // Bundle -gr* options into a group
57 57
  ap.optionGroup("gr", "gra")
58 58
    .optionGroup("gr", "grb")
59 59
    .optionGroup("gr", "grc");
60 60
  // Set the group mandatory
61 61
  ap.mandatoryGroup("gr");
62 62
  // Set the options of the group exclusive (only one option can be given)
63 63
  ap.onlyOneGroup("gr");
64 64
  // Add non-parsed arguments (e.g. input files)
65 65
  ap.other("infile", "The input file.")
66 66
    .other("...");
67 67

	
68 68
  // Perform the parsing process
69 69
  // (in case of any error it terminates the program)
70 70
  ap.parse();
71 71

	
72 72
  // Check each option if it has been given and print its value
73 73
  std::cout << "Parameters of '" << ap.commandName() << "':\n";
74 74

	
75 75
  std::cout << "  Value of -n: " << i << std::endl;
76 76
  if(ap.given("val")) std::cout << "  Value of -val: " << d << std::endl;
77 77
  if(ap.given("val2")) {
78 78
    d = ap["val2"];
79 79
    std::cout << "  Value of -val2: " << d << std::endl;
80 80
  }
81 81
  if(ap.given("name")) std::cout << "  Value of -name: " << s << std::endl;
82 82
  if(ap.given("f")) std::cout << "  -f is given\n";
83 83
  if(ap.given("nohelp")) std::cout << "  Value of -nohelp: " << nh << std::endl;
84 84
  if(ap.given("gra")) std::cout << "  -gra is given\n";
85 85
  if(ap.given("grb")) std::cout << "  -grb is given\n";
86 86
  if(ap.given("grc")) std::cout << "  -grc is given\n";
87 87

	
88 88
  switch(ap.files().size()) {
89 89
  case 0:
90 90
    std::cout << "  No file argument was given.\n";
91 91
    break;
92 92
  case 1:
93 93
    std::cout << "  1 file argument was given. It is:\n";
94 94
    break;
95 95
  default:
96 96
    std::cout << "  "
97 97
              << ap.files().size() << " file arguments were given. They are:\n";
98 98
  }
99 99
  for(unsigned int i=0;i<ap.files().size();++i)
100 100
    std::cout << "    '" << ap.files()[i] << "'\n";
101 101

	
102 102
  return 0;
103 103
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/// \ingroup demos
20 20
/// \file
21 21
/// \brief Demo of the graph drawing function \ref graphToEps()
22 22
///
23 23
/// This demo program shows examples how to use the function \ref
24 24
/// graphToEps(). It takes no input but simply creates seven
25 25
/// <tt>.eps</tt> files demonstrating the capability of \ref
26 26
/// graphToEps(), and showing how to draw directed graphs,
27 27
/// how to handle parallel egdes, how to change the properties (like
28 28
/// color, shape, size, title etc.) of nodes and arcs individually
29
/// using appropriate \ref maps-page "graph maps".
29
/// using appropriate graph maps.
30 30
///
31 31
/// \include graph_to_eps_demo.cc
32 32

	
33 33
#include<lemon/list_graph.h>
34 34
#include<lemon/graph_to_eps.h>
35 35
#include<lemon/math.h>
36 36

	
37 37
using namespace std;
38 38
using namespace lemon;
39 39

	
40 40
int main()
41 41
{
42 42
  Palette palette;
43 43
  Palette paletteW(true);
44 44

	
45 45
  // Create a small digraph
46 46
  ListDigraph g;
47 47
  typedef ListDigraph::Node Node;
48 48
  typedef ListDigraph::NodeIt NodeIt;
49 49
  typedef ListDigraph::Arc Arc;
50 50
  typedef dim2::Point<int> Point;
51 51

	
52 52
  Node n1=g.addNode();
53 53
  Node n2=g.addNode();
54 54
  Node n3=g.addNode();
55 55
  Node n4=g.addNode();
56 56
  Node n5=g.addNode();
57 57

	
58 58
  ListDigraph::NodeMap<Point> coords(g);
59 59
  ListDigraph::NodeMap<double> sizes(g);
60 60
  ListDigraph::NodeMap<int> colors(g);
61 61
  ListDigraph::NodeMap<int> shapes(g);
62 62
  ListDigraph::ArcMap<int> acolors(g);
63 63
  ListDigraph::ArcMap<int> widths(g);
64 64

	
65 65
  coords[n1]=Point(50,50);  sizes[n1]=1; colors[n1]=1; shapes[n1]=0;
66 66
  coords[n2]=Point(50,70);  sizes[n2]=2; colors[n2]=2; shapes[n2]=2;
67 67
  coords[n3]=Point(70,70);  sizes[n3]=1; colors[n3]=3; shapes[n3]=0;
68 68
  coords[n4]=Point(70,50);  sizes[n4]=2; colors[n4]=4; shapes[n4]=1;
69 69
  coords[n5]=Point(85,60);  sizes[n5]=3; colors[n5]=5; shapes[n5]=2;
70 70

	
71 71
  Arc a;
72 72

	
73 73
  a=g.addArc(n1,n2); acolors[a]=0; widths[a]=1;
74 74
  a=g.addArc(n2,n3); acolors[a]=0; widths[a]=1;
75 75
  a=g.addArc(n3,n5); acolors[a]=0; widths[a]=3;
76 76
  a=g.addArc(n5,n4); acolors[a]=0; widths[a]=1;
77 77
  a=g.addArc(n4,n1); acolors[a]=0; widths[a]=1;
78 78
  a=g.addArc(n2,n4); acolors[a]=1; widths[a]=2;
79 79
  a=g.addArc(n3,n4); acolors[a]=2; widths[a]=1;
80 80

	
81 81
  IdMap<ListDigraph,Node> id(g);
82 82

	
83 83
  // Create .eps files showing the digraph with different options
84 84
  cout << "Create 'graph_to_eps_demo_out_1_pure.eps'" << endl;
85 85
  graphToEps(g,"graph_to_eps_demo_out_1_pure.eps").
86 86
    coords(coords).
87 87
    title("Sample .eps figure").
88 88
    copyright("(C) 2003-2008 LEMON Project").
89 89
    run();
90 90

	
91 91
  cout << "Create 'graph_to_eps_demo_out_2.eps'" << endl;
92 92
  graphToEps(g,"graph_to_eps_demo_out_2.eps").
93 93
    coords(coords).
94 94
    title("Sample .eps figure").
95 95
    copyright("(C) 2003-2008 LEMON Project").
96 96
    absoluteNodeSizes().absoluteArcWidths().
97 97
    nodeScale(2).nodeSizes(sizes).
98 98
    nodeShapes(shapes).
99 99
    nodeColors(composeMap(palette,colors)).
100 100
    arcColors(composeMap(palette,acolors)).
101 101
    arcWidthScale(.4).arcWidths(widths).
102 102
    nodeTexts(id).nodeTextSize(3).
103 103
    run();
104 104

	
105 105
  cout << "Create 'graph_to_eps_demo_out_3_arr.eps'" << endl;
106 106
  graphToEps(g,"graph_to_eps_demo_out_3_arr.eps").
107 107
    title("Sample .eps figure (with arrowheads)").
108 108
    copyright("(C) 2003-2008 LEMON Project").
109 109
    absoluteNodeSizes().absoluteArcWidths().
110 110
    nodeColors(composeMap(palette,colors)).
111 111
    coords(coords).
112 112
    nodeScale(2).nodeSizes(sizes).
113 113
    nodeShapes(shapes).
114 114
    arcColors(composeMap(palette,acolors)).
115 115
    arcWidthScale(.4).arcWidths(widths).
116 116
    nodeTexts(id).nodeTextSize(3).
117 117
    drawArrows().arrowWidth(2).arrowLength(2).
118 118
    run();
119 119

	
120 120
  // Add more arcs to the digraph
121 121
  a=g.addArc(n1,n4); acolors[a]=2; widths[a]=1;
122 122
  a=g.addArc(n4,n1); acolors[a]=1; widths[a]=2;
123 123

	
124 124
  a=g.addArc(n1,n2); acolors[a]=1; widths[a]=1;
125 125
  a=g.addArc(n1,n2); acolors[a]=2; widths[a]=1;
126 126
  a=g.addArc(n1,n2); acolors[a]=3; widths[a]=1;
127 127
  a=g.addArc(n1,n2); acolors[a]=4; widths[a]=1;
128 128
  a=g.addArc(n1,n2); acolors[a]=5; widths[a]=1;
129 129
  a=g.addArc(n1,n2); acolors[a]=6; widths[a]=1;
130 130
  a=g.addArc(n1,n2); acolors[a]=7; widths[a]=1;
131 131

	
132 132
  cout << "Create 'graph_to_eps_demo_out_4_par.eps'" << endl;
133 133
  graphToEps(g,"graph_to_eps_demo_out_4_par.eps").
134 134
    title("Sample .eps figure (parallel arcs)").
135 135
    copyright("(C) 2003-2008 LEMON Project").
136 136
    absoluteNodeSizes().absoluteArcWidths().
137 137
    nodeShapes(shapes).
138 138
    coords(coords).
139 139
    nodeScale(2).nodeSizes(sizes).
140 140
    nodeColors(composeMap(palette,colors)).
141 141
    arcColors(composeMap(palette,acolors)).
142 142
    arcWidthScale(.4).arcWidths(widths).
143 143
    nodeTexts(id).nodeTextSize(3).
144 144
    enableParallel().parArcDist(1.5).
145 145
    run();
146 146

	
147 147
  cout << "Create 'graph_to_eps_demo_out_5_par_arr.eps'" << endl;
148 148
  graphToEps(g,"graph_to_eps_demo_out_5_par_arr.eps").
149 149
    title("Sample .eps figure (parallel arcs and arrowheads)").
150 150
    copyright("(C) 2003-2008 LEMON Project").
151 151
    absoluteNodeSizes().absoluteArcWidths().
152 152
    nodeScale(2).nodeSizes(sizes).
153 153
    coords(coords).
154 154
    nodeShapes(shapes).
155 155
    nodeColors(composeMap(palette,colors)).
156 156
    arcColors(composeMap(palette,acolors)).
157 157
    arcWidthScale(.3).arcWidths(widths).
Ignore white space 6 line context
1 1
EXTRA_DIST += \
2 2
	doc/Doxyfile.in \
3 3
	doc/coding_style.dox \
4 4
	doc/dirs.dox \
5 5
	doc/groups.dox \
6 6
	doc/lgf.dox \
7 7
	doc/license.dox \
8 8
	doc/mainpage.dox \
9
	doc/migration.dox \
9 10
	doc/named-param.dox \
10 11
	doc/namespaces.dox \
11 12
	doc/html \
12 13
	doc/CMakeLists.txt
13 14

	
14 15
DOC_EPS_IMAGES18 = \
15 16
	nodeshape_0.eps \
16 17
	nodeshape_1.eps \
17 18
	nodeshape_2.eps \
18 19
	nodeshape_3.eps \
19 20
	nodeshape_4.eps
20 21

	
21 22
DOC_EPS_IMAGES = \
22 23
	$(DOC_EPS_IMAGES18)
23 24

	
24 25
DOC_PNG_IMAGES = \
25 26
	$(DOC_EPS_IMAGES:%.eps=doc/gen-images/%.png)
26 27

	
27 28
EXTRA_DIST += $(DOC_EPS_IMAGES:%=doc/images/%)
28 29

	
29 30
doc/html:
30 31
	$(MAKE) $(AM_MAKEFLAGS) html
31 32

	
32 33
GS_COMMAND=gs -dNOPAUSE -dBATCH -q -dEPSCrop -dTextAlphaBits=4 -dGraphicsAlphaBits=4
33 34

	
34 35
$(DOC_EPS_IMAGES18:%.eps=doc/gen-images/%.png): doc/gen-images/%.png: doc/images/%.eps
35 36
	-mkdir doc/gen-images
36 37
	if test ${gs_found} = yes; then \
37 38
	  $(GS_COMMAND) -sDEVICE=pngalpha -r18 -sOutputFile=$@ $<; \
38 39
	else \
39 40
	  echo; \
40 41
	  echo "Ghostscript not found."; \
41 42
	  echo; \
42 43
	  exit 1; \
43 44
	fi
44 45

	
45 46
html-local: $(DOC_PNG_IMAGES)
46 47
	if test ${doxygen_found} = yes; then \
47 48
	  cd doc; \
48 49
	  doxygen Doxyfile; \
49 50
	  cd ..; \
50 51
	else \
51 52
	  echo; \
52 53
	  echo "Doxygen not found."; \
53 54
	  echo; \
54 55
	  exit 1; \
55 56
	fi
56 57

	
57 58
clean-local:
58 59
	-rm -rf doc/html
59 60
	-rm -f doc/doxygen.log
60 61
	-rm -f $(DOC_PNG_IMAGES)
61 62
	-rm -rf doc/gen-images
62 63

	
63 64
update-external-tags:
64 65
	wget -O doc/libstdc++.tag.tmp http://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/libstdc++.tag && \
65 66
	mv doc/libstdc++.tag.tmp doc/libstdc++.tag || \
66 67
	rm doc/libstdc++.tag.tmp
67 68

	
68 69
install-html-local: doc/html
69 70
	@$(NORMAL_INSTALL)
70 71
	$(mkinstalldirs) $(DESTDIR)$(htmldir)/docs
71 72
	for p in doc/html/*.{html,css,png,map,gif,tag} ; do \
72 73
	  f="`echo $$p | sed -e 's|^.*/||'`"; \
73 74
	  echo " $(INSTALL_DATA) $$p $(DESTDIR)$(htmldir)/docs/$$f"; \
74 75
	  $(INSTALL_DATA) $$p $(DESTDIR)$(htmldir)/docs/$$f; \
75 76
	done
76 77

	
77 78
uninstall-local:
78 79
	@$(NORMAL_UNINSTALL)
79 80
	for p in doc/html/*.{html,css,png,map,gif,tag} ; do \
80 81
	  f="`echo $$p | sed -e 's|^.*/||'`"; \
81 82
	  echo " rm -f $(DESTDIR)$(htmldir)/docs/$$f"; \
82 83
	  rm -f $(DESTDIR)$(htmldir)/docs/$$f; \
83 84
	done
84 85

	
85 86
.PHONY: update-external-tags
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/**
20 20
@defgroup datas Data Structures
21 21
This group describes the several data structures implemented in LEMON.
22 22
*/
23 23

	
24 24
/**
25 25
@defgroup graphs Graph Structures
26 26
@ingroup datas
27 27
\brief Graph structures implemented in LEMON.
28 28

	
29 29
The implementation of combinatorial algorithms heavily relies on
30 30
efficient graph implementations. LEMON offers data structures which are
31 31
planned to be easily used in an experimental phase of implementation studies,
32 32
and thereafter the program code can be made efficient by small modifications.
33 33

	
34 34
The most efficient implementation of diverse applications require the
35 35
usage of different physical graph implementations. These differences
36 36
appear in the size of graph we require to handle, memory or time usage
37 37
limitations or in the set of operations through which the graph can be
38 38
accessed.  LEMON provides several physical graph structures to meet
39 39
the diverging requirements of the possible users.  In order to save on
40 40
running time or on memory usage, some structures may fail to provide
41 41
some graph features like arc/edge or node deletion.
42 42

	
43 43
You are free to use the graph structure that fit your requirements
44 44
the best, most graph algorithms and auxiliary data structures can be used
45
with any graph structures.
45
with any graph structure.
46

	
47
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts".
46 48
*/
47 49

	
48 50
/**
49 51
@defgroup maps Maps
50 52
@ingroup datas
51 53
\brief Map structures implemented in LEMON.
52 54

	
53 55
This group describes the map structures implemented in LEMON.
54 56

	
55
LEMON provides several special purpose maps that e.g. combine
57
LEMON provides several special purpose maps and map adaptors that e.g. combine
56 58
new maps from existing ones.
59

	
60
<b>See also:</b> \ref map_concepts "Map Concepts".
57 61
*/
58 62

	
59 63
/**
60 64
@defgroup graph_maps Graph Maps
61 65
@ingroup maps
62 66
\brief Special graph-related maps.
63 67

	
64 68
This group describes maps that are specifically designed to assign
65 69
values to the nodes and arcs of graphs.
66 70
*/
67 71

	
68

	
69 72
/**
70 73
\defgroup map_adaptors Map Adaptors
71 74
\ingroup maps
72 75
\brief Tools to create new maps from existing ones
73 76

	
74 77
This group describes map adaptors that are used to create "implicit"
75 78
maps from other maps.
76 79

	
77 80
Most of them are \ref lemon::concepts::ReadMap "read-only maps".
78 81
They can make arithmetic and logical operations between one or two maps
79 82
(negation, shifting, addition, multiplication, logical 'and', 'or',
80 83
'not' etc.) or e.g. convert a map to another one of different Value type.
81 84

	
82 85
The typical usage of this classes is passing implicit maps to
83 86
algorithms.  If a function type algorithm is called then the function
84 87
type map adaptors can be used comfortable. For example let's see the
85
usage of map adaptors with the \c digraphToEps() function.
88
usage of map adaptors with the \c graphToEps() function.
86 89
\code
87 90
  Color nodeColor(int deg) {
88 91
    if (deg >= 2) {
89 92
      return Color(0.5, 0.0, 0.5);
90 93
    } else if (deg == 1) {
91 94
      return Color(1.0, 0.5, 1.0);
92 95
    } else {
93 96
      return Color(0.0, 0.0, 0.0);
94 97
    }
95 98
  }
96 99

	
97 100
  Digraph::NodeMap<int> degree_map(graph);
98 101

	
99
  digraphToEps(graph, "graph.eps")
102
  graphToEps(graph, "graph.eps")
100 103
    .coords(coords).scaleToA4().undirected()
101 104
    .nodeColors(composeMap(functorToMap(nodeColor), degree_map))
102 105
    .run();
103 106
\endcode
104 107
The \c functorToMap() function makes an \c int to \c Color map from the
105
\e nodeColor() function. The \c composeMap() compose the \e degree_map
108
\c nodeColor() function. The \c composeMap() compose the \c degree_map
106 109
and the previously created map. The composed map is a proper function to
107 110
get the color of each node.
108 111

	
109 112
The usage with class type algorithms is little bit harder. In this
110 113
case the function type map adaptors can not be used, because the
111 114
function map adaptors give back temporary objects.
112 115
\code
113 116
  Digraph graph;
114 117

	
115 118
  typedef Digraph::ArcMap<double> DoubleArcMap;
116 119
  DoubleArcMap length(graph);
117 120
  DoubleArcMap speed(graph);
118 121

	
119 122
  typedef DivMap<DoubleArcMap, DoubleArcMap> TimeMap;
120 123
  TimeMap time(length, speed);
121 124

	
122 125
  Dijkstra<Digraph, TimeMap> dijkstra(graph, time);
123 126
  dijkstra.run(source, target);
124 127
\endcode
125 128
We have a length map and a maximum speed map on the arcs of a digraph.
126 129
The minimum time to pass the arc can be calculated as the division of
127 130
the two maps which can be done implicitly with the \c DivMap template
128 131
class. We use the implicit minimum time map as the length map of the
129 132
\c Dijkstra algorithm.
130 133
*/
131 134

	
132 135
/**
133 136
@defgroup paths Path Structures
134 137
@ingroup datas
135 138
\brief Path structures implemented in LEMON.
136 139

	
137 140
This group describes the path structures implemented in LEMON.
138 141

	
139 142
LEMON provides flexible data structures to work with paths.
140 143
All of them have similar interfaces and they can be copied easily with
141 144
assignment operators and copy constructors. This makes it easy and
142 145
efficient to have e.g. the Dijkstra algorithm to store its result in
143 146
any kind of path structure.
144 147

	
145 148
\sa lemon::concepts::Path
146

	
147 149
*/
148 150

	
149 151
/**
150 152
@defgroup auxdat Auxiliary Data Structures
151 153
@ingroup datas
152 154
\brief Auxiliary data structures implemented in LEMON.
153 155

	
154 156
This group describes some data structures implemented in LEMON in
155 157
order to make it easier to implement combinatorial algorithms.
156 158
*/
157 159

	
158

	
159 160
/**
160 161
@defgroup algs Algorithms
161 162
\brief This group describes the several algorithms
162 163
implemented in LEMON.
163 164

	
164 165
This group describes the several algorithms
165 166
implemented in LEMON.
166 167
*/
167 168

	
168 169
/**
169 170
@defgroup search Graph Search
170 171
@ingroup algs
171 172
\brief Common graph search algorithms.
172 173

	
173 174
This group describes the common graph search algorithms like
174
Breadth-first search (Bfs) and Depth-first search (Dfs).
175
Breadth-First Search (BFS) and Depth-First Search (DFS).
175 176
*/
176 177

	
177 178
/**
178
@defgroup shortest_path Shortest Path algorithms
179
@defgroup shortest_path Shortest Path Algorithms
179 180
@ingroup algs
180 181
\brief Algorithms for finding shortest paths.
181 182

	
182 183
This group describes the algorithms for finding shortest paths in graphs.
183 184
*/
184 185

	
185 186
/**
186
@defgroup spantree Minimum Spanning Tree algorithms
187
@defgroup spantree Minimum Spanning Tree Algorithms
187 188
@ingroup algs
188 189
\brief Algorithms for finding a minimum cost spanning tree in a graph.
189 190

	
190 191
This group describes the algorithms for finding a minimum cost spanning
191 192
tree in a graph
192 193
*/
193 194

	
195
@ingroup algs
194 196
/**
195 197
@defgroup utils Tools and Utilities
196 198
\brief Tools and utilities for programming in LEMON
197 199

	
198 200
Tools and utilities for programming in LEMON.
199 201
*/
200 202

	
201 203
/**
202 204
@defgroup gutils Basic Graph Utilities
203 205
@ingroup utils
204 206
\brief Simple basic graph utilities.
205 207

	
206 208
This group describes some simple basic graph utilities.
207 209
*/
208 210

	
209 211
/**
210 212
@defgroup misc Miscellaneous Tools
211 213
@ingroup utils
212 214
\brief Tools for development, debugging and testing.
213 215

	
214 216
This group describes several useful tools for development,
215 217
debugging and testing.
216 218
*/
217 219

	
218 220
/**
219
@defgroup timecount Time measuring and Counting
221
@defgroup timecount Time Measuring and Counting
220 222
@ingroup misc
221 223
\brief Simple tools for measuring the performance of algorithms.
222 224

	
223 225
This group describes simple tools for measuring the performance
224 226
of algorithms.
225 227
*/
226 228

	
227 229
/**
228 230
@defgroup exceptions Exceptions
229 231
@ingroup utils
230 232
\brief Exceptions defined in LEMON.
231 233

	
232 234
This group describes the exceptions defined in LEMON.
233 235
*/
234 236

	
235 237
/**
236 238
@defgroup io_group Input-Output
237 239
\brief Graph Input-Output methods
238 240

	
239 241
This group describes the tools for importing and exporting graphs
240 242
and graph related data. Now it supports the LEMON format
241 243
and the encapsulated postscript (EPS) format.
244
postscript (EPS) format.
242 245
*/
243 246

	
244 247
/**
245 248
@defgroup lemon_io LEMON Input-Output
246 249
@ingroup io_group
247
\brief Reading and writing \ref lgf-format "LEMON Graph Format".
250
\brief Reading and writing LEMON Graph Format.
248 251

	
249 252
This group describes methods for reading and writing
250 253
\ref lgf-format "LEMON Graph Format".
251 254
*/
252 255

	
253 256
/**
254
@defgroup eps_io Postscript exporting
257
@defgroup eps_io Postscript Exporting
255 258
@ingroup io_group
256 259
\brief General \c EPS drawer and graph exporter
257 260

	
258 261
This group describes general \c EPS drawing methods and special
259 262
graph exporting tools.
260 263
*/
261 264

	
262

	
263 265
/**
264 266
@defgroup concept Concepts
265 267
\brief Skeleton classes and concept checking classes
266 268

	
267 269
This group describes the data/algorithm skeletons and concept checking
268 270
classes implemented in LEMON.
269 271

	
270 272
The purpose of the classes in this group is fourfold.
271 273

	
272 274
- These classes contain the documentations of the concepts. In order
273 275
  to avoid document multiplications, an implementation of a concept
274 276
  simply refers to the corresponding concept class.
275 277

	
276 278
- These classes declare every functions, <tt>typedef</tt>s etc. an
277 279
  implementation of the concepts should provide, however completely
278 280
  without implementations and real data structures behind the
279 281
  interface. On the other hand they should provide nothing else. All
280 282
  the algorithms working on a data structure meeting a certain concept
281 283
  should compile with these classes. (Though it will not run properly,
282 284
  of course.) In this way it is easily to check if an algorithm
283 285
  doesn't use any extra feature of a certain implementation.
284 286

	
285 287
- The concept descriptor classes also provide a <em>checker class</em>
286 288
  that makes it possible to check whether a certain implementation of a
287 289
  concept indeed provides all the required features.
288 290

	
289 291
- Finally, They can serve as a skeleton of a new implementation of a concept.
290

	
291 292
*/
292 293

	
293

	
294 294
/**
295 295
@defgroup graph_concepts Graph Structure Concepts
296 296
@ingroup concept
297 297
\brief Skeleton and concept checking classes for graph structures
298 298

	
299 299
This group describes the skeletons and concept checking classes of LEMON's
300 300
graph structures and helper classes used to implement these.
301 301
*/
302 302

	
303

	
304
This group describes the skeletons and concept checking classes of maps.
303 305
/**
304 306
\anchor demoprograms
305 307

	
306 308
@defgroup demos Demo programs
307 309

	
308 310
Some demo programs are listed here. Their full source codes can be found in
309 311
the \c demo subdirectory of the source tree.
310 312

	
311 313
It order to compile them, use <tt>--enable-demo</tt> configure option when
312 314
build the library.
313 315
*/
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
namespace lemon {
20 20
/*!
21 21

	
22 22

	
23 23

	
24 24
\page lgf-format LEMON Graph Format (LGF)
25 25

	
26 26
The \e LGF is a <em>column oriented</em>
27 27
file format for storing graphs and associated data like
28 28
node and edge maps.
29 29

	
30 30
Each line with \c '#' first non-whitespace
31 31
character is considered as a comment line.
32 32

	
33 33
Otherwise the file consists of sections starting with
34 34
a header line. The header lines starts with an \c '@' character followed by the
35 35
type of section. The standard section types are \c \@nodes, \c
36 36
\@arcs and \c \@edges
37 37
and \@attributes. Each header line may also have an optional
38 38
\e name, which can be use to distinguish the sections of the same
39 39
type.
40 40

	
41 41
The standard sections are column oriented, each line consists of
42 42
<em>token</em>s separated by whitespaces. A token can be \e plain or
43 43
\e quoted. A plain token is just a sequence of non-whitespace characters,
44 44
while a quoted token is a
45 45
character sequence surrounded by double quotes, and it can also
46 46
contain whitespaces and escape sequences.
47 47

	
48 48
The \c \@nodes section describes a set of nodes and associated
49 49
maps. The first is a header line, its columns are the names of the
50 50
maps appearing in the following lines.
51 51
One of the maps must be called \c
52 52
"label", which plays special role in the file.
53 53
The following
54 54
non-empty lines until the next section describes nodes of the
55 55
graph. Each line contains the values of the node maps
56 56
associated to the current node.
57 57

	
58 58
\code
59 59
 @nodes
60 60
 label  coordinates  size    title
61 61
 1      (10,20)      10      "First node"
62 62
 2      (80,80)      8       "Second node"
63 63
 3      (40,10)      10      "Third node"
64 64
\endcode
65 65

	
66 66
The \c \@arcs section is very similar to the \c \@nodes section,
67 67
it again starts with a header line describing the names of the maps,
68 68
but the \c "label" map is not obligatory here. The following lines
69 69
describe the arcs. The first two tokens of each line are
70 70
the source and the target node of the arc, respectively, then come the map
71 71
values. The source and target tokens must be node labels.
72 72

	
73 73
\code
74 74
 @arcs
75 75
         capacity
76 76
 1   2   16
77 77
 1   3   12
78 78
 2   3   18
79 79
\endcode
80 80

	
81
The \c \@edges is just a synonym of \c \@arcs. The @arcs section can
81
The \c \@edges is just a synonym of \c \@arcs. The \@arcs section can
82 82
also store the edge set of an undirected graph. In such case there is
83 83
a conventional method for store arc maps in the file, if two columns
84 84
has the same caption with \c '+' and \c '-' prefix, then these columns
85 85
can be regarded as the values of an arc map.
86 86

	
87 87
The \c \@attributes section contains key-value pairs, each line
88 88
consists of two tokens, an attribute name, and then an attribute
89 89
value. The value of the attribute could be also a label value of a
90 90
node or an edge, or even an edge label prefixed with \c '+' or \c '-',
91 91
which regards to the forward or backward directed arc of the
92 92
corresponding edge.
93 93

	
94 94
\code
95 95
 @attributes
96 96
 source 1
97 97
 target 3
98 98
 caption "LEMON test digraph"
99 99
\endcode
100 100

	
101 101
The \e LGF can contain extra sections, but there is no restriction on
102 102
the format of such sections.
103 103

	
104 104
*/
105 105
}
106 106

	
107 107
//  LocalWords:  whitespace whitespaces
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
/**
20 20
\mainpage LEMON Documentation
21 21

	
22 22
\section intro Introduction
23 23

	
24 24
\subsection whatis What is LEMON
25 25

	
26 26
LEMON stands for
27 27
<b>L</b>ibrary of <b>E</b>fficient <b>M</b>odels
28 28
and <b>O</b>ptimization in <b>N</b>etworks.
29 29
It is a C++ template
30 30
library aimed at combinatorial optimization tasks which
31 31
often involve in working
32 32
with graphs.
33 33

	
34 34
<b>
35 35
LEMON is an <a class="el" href="http://opensource.org/">open&nbsp;source</a>
36 36
project.
37 37
You are free to use it in your commercial or
38 38
non-commercial applications under very permissive
39 39
\ref license "license terms".
40 40
</b>
41 41

	
42 42
\subsection howtoread How to read the documentation
43 43

	
44 44
If you
45 45
want to see how LEMON works, see
46
some \ref demoprograms "demo programs"!
46
some \ref demoprograms "demo programs".
47 47

	
48 48
If you know what you are looking for then try to find it under the
49 49
<a class="el" href="modules.html">Modules</a>
50 50
section.
51 51

	
52

	
52
If you are a user of the old (0.x) series of LEMON, please check out the
53
\ref migration "Migration Guide" for the backward incompatibilities.
53 54
*/
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#include <lemon/arg_parser.h>
20 20

	
21 21
namespace lemon {
22 22

	
23 23
  void ArgParser::_showHelp(void *p)
24 24
  {
25 25
    (static_cast<ArgParser*>(p))->showHelp();
26 26
    exit(1);
27 27
  }
28 28

	
29
  ArgParser::ArgParser(int argc, const char **argv) :_argc(argc), _argv(argv),
30
                                                     _command_name(argv[0]) {
29
  ArgParser::ArgParser(int argc, const char * const *argv)
30
    :_argc(argc), _argv(argv), _command_name(argv[0]) {
31 31
    funcOption("-help","Print a short help message",_showHelp,this);
32 32
    synonym("help","-help");
33 33
    synonym("h","-help");
34

	
35 34
  }
36 35

	
37 36
  ArgParser::~ArgParser()
38 37
  {
39 38
    for(Opts::iterator i=_opts.begin();i!=_opts.end();++i)
40 39
      if(i->second.self_delete)
41 40
        switch(i->second.type) {
42 41
        case BOOL:
43 42
          delete i->second.bool_p;
44 43
          break;
45 44
        case STRING:
46 45
          delete i->second.string_p;
47 46
          break;
48 47
        case DOUBLE:
49 48
          delete i->second.double_p;
50 49
          break;
51 50
        case INTEGER:
52 51
          delete i->second.int_p;
53 52
          break;
54 53
        case UNKNOWN:
55 54
          break;
56 55
        case FUNC:
57 56
          break;
58 57
        }
59 58
  }
60 59

	
61 60

	
62 61
  ArgParser &ArgParser::intOption(const std::string &name,
63 62
                               const std::string &help,
64 63
                               int value, bool obl)
65 64
  {
66 65
    ParData p;
67 66
    p.int_p=new int(value);
68 67
    p.self_delete=true;
69 68
    p.help=help;
70 69
    p.type=INTEGER;
71 70
    p.mandatory=obl;
72 71
    _opts[name]=p;
73 72
    return *this;
74 73
  }
75 74

	
76 75
  ArgParser &ArgParser::doubleOption(const std::string &name,
77 76
                               const std::string &help,
78 77
                               double value, bool obl)
79 78
  {
80 79
    ParData p;
81 80
    p.double_p=new double(value);
82 81
    p.self_delete=true;
83 82
    p.help=help;
84 83
    p.type=DOUBLE;
85 84
    p.mandatory=obl;
86 85
    _opts[name]=p;
87 86
    return *this;
88 87
  }
89 88

	
90 89
  ArgParser &ArgParser::boolOption(const std::string &name,
91 90
                               const std::string &help,
92 91
                               bool value, bool obl)
93 92
  {
94 93
    ParData p;
95 94
    p.bool_p=new bool(value);
96 95
    p.self_delete=true;
97 96
    p.help=help;
98 97
    p.type=BOOL;
99 98
    p.mandatory=obl;
100 99
    _opts[name]=p;
101 100
    return *this;
102 101
  }
103 102

	
104 103
  ArgParser &ArgParser::stringOption(const std::string &name,
105 104
                               const std::string &help,
106 105
                               std::string value, bool obl)
107 106
  {
108 107
    ParData p;
109 108
    p.string_p=new std::string(value);
110 109
    p.self_delete=true;
111 110
    p.help=help;
112 111
    p.type=STRING;
113 112
    p.mandatory=obl;
114 113
    _opts[name]=p;
115 114
    return *this;
116 115
  }
117 116

	
118 117
  ArgParser &ArgParser::refOption(const std::string &name,
119 118
                               const std::string &help,
120 119
                               int &ref, bool obl)
121 120
  {
122 121
    ParData p;
123 122
    p.int_p=&ref;
124 123
    p.self_delete=false;
125 124
    p.help=help;
126 125
    p.type=INTEGER;
127 126
    p.mandatory=obl;
128 127
    _opts[name]=p;
129 128
    return *this;
130 129
  }
131 130

	
132 131
  ArgParser &ArgParser::refOption(const std::string &name,
133 132
                                  const std::string &help,
134 133
                                  double &ref, bool obl)
135 134
  {
136 135
    ParData p;
137 136
    p.double_p=&ref;
138 137
    p.self_delete=false;
139 138
    p.help=help;
140 139
    p.type=DOUBLE;
141 140
    p.mandatory=obl;
142 141
    _opts[name]=p;
143 142
    return *this;
144 143
  }
145 144

	
146 145
  ArgParser &ArgParser::refOption(const std::string &name,
147 146
                                  const std::string &help,
148 147
                                  bool &ref, bool obl)
149 148
  {
150 149
    ParData p;
151 150
    p.bool_p=&ref;
152 151
    p.self_delete=false;
153 152
    p.help=help;
154 153
    p.type=BOOL;
155 154
    p.mandatory=obl;
156 155
    _opts[name]=p;
157 156

	
158 157
    ref = false;
159 158

	
160 159
    return *this;
161 160
  }
162 161

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_ARG_PARSER_H
20 20
#define LEMON_ARG_PARSER_H
21 21

	
22 22
#include <vector>
23 23
#include <map>
24 24
#include <list>
25 25
#include <string>
26 26
#include <iostream>
27 27
#include <sstream>
28 28
#include <algorithm>
29 29
#include <lemon/assert.h>
30 30

	
31 31
///\ingroup misc
32 32
///\file
33 33
///\brief A tool to parse command line arguments.
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  ///Command line arguments parser
38 38

	
39 39
  ///\ingroup misc
40 40
  ///Command line arguments parser.
41 41
  ///
42 42
  ///For a complete example see the \ref arg_parser_demo.cc demo file.
43 43
  class ArgParser {
44 44

	
45 45
    static void _showHelp(void *p);
46 46
  protected:
47 47

	
48 48
    int _argc;
49
    const char **_argv;
49
    const char * const *_argv;
50 50

	
51 51
    enum OptType { UNKNOWN=0, BOOL=1, STRING=2, DOUBLE=3, INTEGER=4, FUNC=5 };
52 52

	
53 53
    class ParData {
54 54
    public:
55 55
      union {
56 56
        bool *bool_p;
57 57
        int *int_p;
58 58
        double *double_p;
59 59
        std::string *string_p;
60 60
        struct {
61 61
          void (*p)(void *);
62 62
          void *data;
63 63
        } func_p;
64 64

	
65 65
      };
66 66
      std::string help;
67 67
      bool mandatory;
68 68
      OptType type;
69 69
      bool set;
70 70
      bool ingroup;
71 71
      bool has_syn;
72 72
      bool syn;
73 73
      bool self_delete;
74 74
      ParData() : mandatory(false), type(UNKNOWN), set(false), ingroup(false),
75 75
                  has_syn(false), syn(false), self_delete(false) {}
76 76
    };
77 77

	
78 78
    typedef std::map<std::string,ParData> Opts;
79 79
    Opts _opts;
80 80

	
81 81
    class GroupData
82 82
    {
83 83
    public:
84 84
      typedef std::list<std::string> Opts;
85 85
      Opts opts;
86 86
      bool only_one;
87 87
      bool mandatory;
88 88
      GroupData() :only_one(false), mandatory(false) {}
89 89
    };
90 90

	
91 91
    typedef std::map<std::string,GroupData> Groups;
92 92
    Groups _groups;
93 93

	
94 94
    struct OtherArg
95 95
    {
96 96
      std::string name;
97 97
      std::string help;
98 98
      OtherArg(std::string n, std::string h) :name(n), help(h) {}
99 99

	
100 100
    };
101 101

	
102 102
    std::vector<OtherArg> _others_help;
103 103
    std::vector<std::string> _file_args;
104 104
    std::string _command_name;
105 105

	
106 106

	
107 107
  private:
108 108
    //Bind a function to an option.
109 109

	
110 110
    //\param name The name of the option. The leading '-' must be omitted.
111 111
    //\param help A help string.
112 112
    //\retval func The function to be called when the option is given. It
113 113
    //  must be of type "void f(void *)"
114 114
    //\param data Data to be passed to \c func
115 115
    ArgParser &funcOption(const std::string &name,
116 116
                    const std::string &help,
117 117
                    void (*func)(void *),void *data);
118 118

	
119 119
  public:
120 120

	
121 121
    ///Constructor
122
    ArgParser(int argc, const char **argv);
122
    ArgParser(int argc, const char * const *argv);
123 123

	
124 124
    ~ArgParser();
125 125

	
126 126
    ///\name Options
127 127
    ///
128 128

	
129 129
    ///@{
130 130

	
131 131
    ///Add a new integer type option
132 132

	
133 133
    ///Add a new integer type option.
134 134
    ///\param name The name of the option. The leading '-' must be omitted.
135 135
    ///\param help A help string.
136 136
    ///\param value A default value for the option.
137 137
    ///\param obl Indicate if the option is mandatory.
138 138
    ArgParser &intOption(const std::string &name,
139 139
                    const std::string &help,
140 140
                    int value=0, bool obl=false);
141 141

	
142 142
    ///Add a new floating point type option
143 143

	
144 144
    ///Add a new floating point type option.
145 145
    ///\param name The name of the option. The leading '-' must be omitted.
146 146
    ///\param help A help string.
147 147
    ///\param value A default value for the option.
148 148
    ///\param obl Indicate if the option is mandatory.
149 149
    ArgParser &doubleOption(const std::string &name,
150 150
                      const std::string &help,
151 151
                      double value=0, bool obl=false);
152 152

	
153 153
    ///Add a new bool type option
154 154

	
155 155
    ///Add a new bool type option.
156 156
    ///\param name The name of the option. The leading '-' must be omitted.
157 157
    ///\param help A help string.
158 158
    ///\param value A default value for the option.
159 159
    ///\param obl Indicate if the option is mandatory.
160 160
    ///\note A mandatory bool obtion is of very little use.
161 161
    ArgParser &boolOption(const std::string &name,
162 162
                      const std::string &help,
163 163
                      bool value=false, bool obl=false);
164 164

	
165 165
    ///Add a new string type option
166 166

	
167 167
    ///Add a new string type option.
168 168
    ///\param name The name of the option. The leading '-' must be omitted.
169 169
    ///\param help A help string.
170 170
    ///\param value A default value for the option.
171 171
    ///\param obl Indicate if the option is mandatory.
172 172
    ArgParser &stringOption(const std::string &name,
173 173
                      const std::string &help,
174 174
                      std::string value="", bool obl=false);
175 175

	
176 176
    ///Give help string for non-parsed arguments.
177 177

	
178 178
    ///With this function you can give help string for non-parsed arguments.
179 179
    ///The parameter \c name will be printed in the short usage line, while
180 180
    ///\c help gives a more detailed description.
181 181
    ArgParser &other(const std::string &name,
182 182
                     const std::string &help="");
183 183

	
184 184
    ///@}
185 185

	
186 186
    ///\name Options with External Storage
187 187
    ///Using this functions, the value of the option will be directly written
188 188
    ///into a variable once the option appears in the command line.
189 189

	
190 190
    ///@{
191 191

	
192 192
    ///Add a new integer type option with a storage reference
193 193

	
194 194
    ///Add a new integer type option with a storage reference.
195 195
    ///\param name The name of the option. The leading '-' must be omitted.
196 196
    ///\param help A help string.
197 197
    ///\param obl Indicate if the option is mandatory.
198 198
    ///\retval ref The value of the argument will be written to this variable.
199 199
    ArgParser &refOption(const std::string &name,
200 200
                    const std::string &help,
201 201
                    int &ref, bool obl=false);
202 202

	
203 203
    ///Add a new floating type option with a storage reference
204 204

	
205 205
    ///Add a new floating type option with a storage reference.
206 206
    ///\param name The name of the option. The leading '-' must be omitted.
207 207
    ///\param help A help string.
208 208
    ///\param obl Indicate if the option is mandatory.
209 209
    ///\retval ref The value of the argument will be written to this variable.
210 210
    ArgParser &refOption(const std::string &name,
211 211
                      const std::string &help,
212 212
                      double &ref, bool obl=false);
213 213

	
214 214
    ///Add a new bool type option with a storage reference
215 215

	
216 216
    ///Add a new bool type option with a storage reference.
217 217
    ///\param name The name of the option. The leading '-' must be omitted.
218 218
    ///\param help A help string.
219 219
    ///\param obl Indicate if the option is mandatory.
220 220
    ///\retval ref The value of the argument will be written to this variable.
221 221
    ///\note A mandatory bool obtion is of very little use.
222 222
    ArgParser &refOption(const std::string &name,
223 223
                      const std::string &help,
224 224
                      bool &ref, bool obl=false);
225 225

	
226 226
    ///Add a new string type option with a storage reference
227 227

	
228 228
    ///Add a new string type option with a storage reference.
229 229
    ///\param name The name of the option. The leading '-' must be omitted.
230 230
    ///\param help A help string.
231 231
    ///\param obl Indicate if the option is mandatory.
232 232
    ///\retval ref The value of the argument will be written to this variable.
233 233
    ArgParser &refOption(const std::string &name,
234 234
                      const std::string &help,
235 235
                      std::string &ref, bool obl=false);
236 236

	
237 237
    ///@}
238 238

	
239 239
    ///\name Option Groups and Synonyms
240 240
    ///
241 241

	
242 242
    ///@{
243 243

	
244 244
    ///Bundle some options into a group
245 245

	
246 246
    /// You can group some option by calling this function repeatedly for each
247 247
    /// option to be grouped with the same groupname.
248 248
    ///\param group The group name.
249 249
    ///\param opt The option name.
250 250
    ArgParser &optionGroup(const std::string &group,
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BFS_H
20 20
#define LEMON_BFS_H
21 21

	
22 22
///\ingroup search
23 23
///\file
24 24
///\brief BFS algorithm.
25 25

	
26 26
#include <lemon/list_graph.h>
27 27
#include <lemon/bits/path_dump.h>
28 28
#include <lemon/core.h>
29 29
#include <lemon/error.h>
30 30
#include <lemon/maps.h>
31 31
#include <lemon/path.h>
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  ///Default traits class of Bfs class.
36 36

	
37 37
  ///Default traits class of Bfs class.
38 38
  ///\tparam GR Digraph type.
39 39
  template<class GR>
40 40
  struct BfsDefaultTraits
41 41
  {
42 42
    ///The type of the digraph the algorithm runs on.
43 43
    typedef GR Digraph;
44 44

	
45 45
    ///\brief The type of the map that stores the predecessor
46 46
    ///arcs of the shortest paths.
47 47
    ///
48 48
    ///The type of the map that stores the predecessor
49 49
    ///arcs of the shortest paths.
50 50
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
51 51
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
52
    ///Instantiates a \ref PredMap.
52
    ///Instantiates a PredMap.
53 53

	
54
    ///This function instantiates a \ref PredMap.
54
    ///This function instantiates a PredMap.
55 55
    ///\param g is the digraph, to which we would like to define the
56
    ///\ref PredMap.
56
    ///PredMap.
57 57
    static PredMap *createPredMap(const Digraph &g)
58 58
    {
59 59
      return new PredMap(g);
60 60
    }
61 61

	
62 62
    ///The type of the map that indicates which nodes are processed.
63 63

	
64 64
    ///The type of the map that indicates which nodes are processed.
65 65
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
66 66
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
67
    ///Instantiates a \ref ProcessedMap.
67
    ///Instantiates a ProcessedMap.
68 68

	
69
    ///This function instantiates a \ref ProcessedMap.
69
    ///This function instantiates a ProcessedMap.
70 70
    ///\param g is the digraph, to which
71
    ///we would like to define the \ref ProcessedMap
71
    ///we would like to define the ProcessedMap
72 72
#ifdef DOXYGEN
73 73
    static ProcessedMap *createProcessedMap(const Digraph &g)
74 74
#else
75 75
    static ProcessedMap *createProcessedMap(const Digraph &)
76 76
#endif
77 77
    {
78 78
      return new ProcessedMap();
79 79
    }
80 80

	
81 81
    ///The type of the map that indicates which nodes are reached.
82 82

	
83 83
    ///The type of the map that indicates which nodes are reached.
84 84
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
85 85
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
86
    ///Instantiates a \ref ReachedMap.
86
    ///Instantiates a ReachedMap.
87 87

	
88
    ///This function instantiates a \ref ReachedMap.
88
    ///This function instantiates a ReachedMap.
89 89
    ///\param g is the digraph, to which
90
    ///we would like to define the \ref ReachedMap.
90
    ///we would like to define the ReachedMap.
91 91
    static ReachedMap *createReachedMap(const Digraph &g)
92 92
    {
93 93
      return new ReachedMap(g);
94 94
    }
95 95

	
96 96
    ///The type of the map that stores the distances of the nodes.
97 97

	
98 98
    ///The type of the map that stores the distances of the nodes.
99 99
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
100 100
    typedef typename Digraph::template NodeMap<int> DistMap;
101
    ///Instantiates a \ref DistMap.
101
    ///Instantiates a DistMap.
102 102

	
103
    ///This function instantiates a \ref DistMap.
103
    ///This function instantiates a DistMap.
104 104
    ///\param g is the digraph, to which we would like to define the
105
    ///\ref DistMap.
105
    ///DistMap.
106 106
    static DistMap *createDistMap(const Digraph &g)
107 107
    {
108 108
      return new DistMap(g);
109 109
    }
110 110
  };
111 111

	
112 112
  ///%BFS algorithm class.
113 113

	
114 114
  ///\ingroup search
115 115
  ///This class provides an efficient implementation of the %BFS algorithm.
116 116
  ///
117 117
  ///There is also a \ref bfs() "function-type interface" for the BFS
118 118
  ///algorithm, which is convenient in the simplier cases and it can be
119 119
  ///used easier.
120 120
  ///
121 121
  ///\tparam GR The type of the digraph the algorithm runs on.
122 122
  ///The default value is \ref ListDigraph. The value of GR is not used
123 123
  ///directly by \ref Bfs, it is only passed to \ref BfsDefaultTraits.
124 124
  ///\tparam TR Traits class to set various data types used by the algorithm.
125 125
  ///The default traits class is
126 126
  ///\ref BfsDefaultTraits "BfsDefaultTraits<GR>".
127 127
  ///See \ref BfsDefaultTraits for the documentation of
128 128
  ///a Bfs traits class.
129 129
#ifdef DOXYGEN
130 130
  template <typename GR,
131 131
            typename TR>
132 132
#else
133 133
  template <typename GR=ListDigraph,
134 134
            typename TR=BfsDefaultTraits<GR> >
135 135
#endif
136 136
  class Bfs {
137 137
  public:
138 138

	
139 139
    ///The type of the digraph the algorithm runs on.
140 140
    typedef typename TR::Digraph Digraph;
141 141

	
142 142
    ///\brief The type of the map that stores the predecessor arcs of the
143 143
    ///shortest paths.
144 144
    typedef typename TR::PredMap PredMap;
145 145
    ///The type of the map that stores the distances of the nodes.
146 146
    typedef typename TR::DistMap DistMap;
147 147
    ///The type of the map that indicates which nodes are reached.
148 148
    typedef typename TR::ReachedMap ReachedMap;
149 149
    ///The type of the map that indicates which nodes are processed.
150 150
    typedef typename TR::ProcessedMap ProcessedMap;
151 151
    ///The type of the paths.
152 152
    typedef PredMapPath<Digraph, PredMap> Path;
153 153

	
154 154
    ///The traits class.
155 155
    typedef TR Traits;
156 156

	
157 157
  private:
158 158

	
159 159
    typedef typename Digraph::Node Node;
160 160
    typedef typename Digraph::NodeIt NodeIt;
161 161
    typedef typename Digraph::Arc Arc;
162 162
    typedef typename Digraph::OutArcIt OutArcIt;
163 163

	
164 164
    //Pointer to the underlying digraph.
165 165
    const Digraph *G;
166 166
    //Pointer to the map of predecessor arcs.
167 167
    PredMap *_pred;
168 168
    //Indicates if _pred is locally allocated (true) or not.
169 169
    bool local_pred;
170 170
    //Pointer to the map of distances.
171 171
    DistMap *_dist;
172 172
    //Indicates if _dist is locally allocated (true) or not.
173 173
    bool local_dist;
174 174
    //Pointer to the map of reached status of the nodes.
175 175
    ReachedMap *_reached;
176 176
    //Indicates if _reached is locally allocated (true) or not.
177 177
    bool local_reached;
178 178
    //Pointer to the map of processed status of the nodes.
179 179
    ProcessedMap *_processed;
180 180
    //Indicates if _processed is locally allocated (true) or not.
181 181
    bool local_processed;
182 182

	
183 183
    std::vector<typename Digraph::Node> _queue;
184 184
    int _queue_head,_queue_tail,_queue_next_dist;
185 185
    int _curr_dist;
186 186

	
187 187
    //Creates the maps if necessary.
188 188
    void create_maps()
189 189
    {
190 190
      if(!_pred) {
191 191
        local_pred = true;
192 192
        _pred = Traits::createPredMap(*G);
193 193
      }
194 194
      if(!_dist) {
195 195
        local_dist = true;
196 196
        _dist = Traits::createDistMap(*G);
197 197
      }
198 198
      if(!_reached) {
199 199
        local_reached = true;
200 200
        _reached = Traits::createReachedMap(*G);
201 201
      }
202 202
      if(!_processed) {
203 203
        local_processed = true;
204 204
        _processed = Traits::createProcessedMap(*G);
205 205
      }
206 206
    }
207 207

	
208 208
  protected:
209 209

	
210 210
    Bfs() {}
211 211

	
212 212
  public:
213 213

	
214 214
    typedef Bfs Create;
215 215

	
216 216
    ///\name Named template parameters
217 217

	
218 218
    ///@{
219 219

	
220 220
    template <class T>
221 221
    struct SetPredMapTraits : public Traits {
222 222
      typedef T PredMap;
223 223
      static PredMap *createPredMap(const Digraph &)
224 224
      {
225 225
        LEMON_ASSERT(false, "PredMap is not initialized");
226 226
        return 0; // ignore warnings
227 227
      }
228 228
    };
229 229
    ///\brief \ref named-templ-param "Named parameter" for setting
230
    ///\ref PredMap type.
230
    ///PredMap type.
231 231
    ///
232 232
    ///\ref named-templ-param "Named parameter" for setting
233
    ///\ref PredMap type.
233
    ///PredMap type.
234 234
    template <class T>
235 235
    struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > {
236 236
      typedef Bfs< Digraph, SetPredMapTraits<T> > Create;
237 237
    };
238 238

	
239 239
    template <class T>
240 240
    struct SetDistMapTraits : public Traits {
241 241
      typedef T DistMap;
242 242
      static DistMap *createDistMap(const Digraph &)
243 243
      {
244 244
        LEMON_ASSERT(false, "DistMap is not initialized");
245 245
        return 0; // ignore warnings
246 246
      }
247 247
    };
248 248
    ///\brief \ref named-templ-param "Named parameter" for setting
249
    ///\ref DistMap type.
249
    ///DistMap type.
250 250
    ///
251 251
    ///\ref named-templ-param "Named parameter" for setting
252
    ///\ref DistMap type.
252
    ///DistMap type.
253 253
    template <class T>
254 254
    struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > {
255 255
      typedef Bfs< Digraph, SetDistMapTraits<T> > Create;
256 256
    };
257 257

	
258 258
    template <class T>
259 259
    struct SetReachedMapTraits : public Traits {
260 260
      typedef T ReachedMap;
261 261
      static ReachedMap *createReachedMap(const Digraph &)
262 262
      {
263 263
        LEMON_ASSERT(false, "ReachedMap is not initialized");
264 264
        return 0; // ignore warnings
265 265
      }
266 266
    };
267 267
    ///\brief \ref named-templ-param "Named parameter" for setting
268
    ///\ref ReachedMap type.
268
    ///ReachedMap type.
269 269
    ///
270 270
    ///\ref named-templ-param "Named parameter" for setting
271
    ///\ref ReachedMap type.
271
    ///ReachedMap type.
272 272
    template <class T>
273 273
    struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
274 274
      typedef Bfs< Digraph, SetReachedMapTraits<T> > Create;
275 275
    };
276 276

	
277 277
    template <class T>
278 278
    struct SetProcessedMapTraits : public Traits {
279 279
      typedef T ProcessedMap;
280 280
      static ProcessedMap *createProcessedMap(const Digraph &)
281 281
      {
282 282
        LEMON_ASSERT(false, "ProcessedMap is not initialized");
283 283
        return 0; // ignore warnings
284 284
      }
285 285
    };
286 286
    ///\brief \ref named-templ-param "Named parameter" for setting
287
    ///\ref ProcessedMap type.
287
    ///ProcessedMap type.
288 288
    ///
289 289
    ///\ref named-templ-param "Named parameter" for setting
290
    ///\ref ProcessedMap type.
290
    ///ProcessedMap type.
291 291
    template <class T>
292 292
    struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > {
293 293
      typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create;
294 294
    };
295 295

	
296 296
    struct SetStandardProcessedMapTraits : public Traits {
297 297
      typedef typename Digraph::template NodeMap<bool> ProcessedMap;
298 298
      static ProcessedMap *createProcessedMap(const Digraph &g)
299 299
      {
300 300
        return new ProcessedMap(g);
301 301
        return 0; // ignore warnings
302 302
      }
303 303
    };
304 304
    ///\brief \ref named-templ-param "Named parameter" for setting
305
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
305
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
306 306
    ///
307 307
    ///\ref named-templ-param "Named parameter" for setting
308
    ///\ref ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
308
    ///ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>.
309 309
    ///If you don't set it explicitly, it will be automatically allocated.
310 310
    struct SetStandardProcessedMap :
311 311
      public Bfs< Digraph, SetStandardProcessedMapTraits > {
312 312
      typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create;
313 313
    };
314 314

	
315 315
    ///@}
316 316

	
317 317
  public:
318 318

	
319 319
    ///Constructor.
320 320

	
321 321
    ///Constructor.
322 322
    ///\param g The digraph the algorithm runs on.
323 323
    Bfs(const Digraph &g) :
324 324
      G(&g),
325 325
      _pred(NULL), local_pred(false),
326 326
      _dist(NULL), local_dist(false),
327 327
      _reached(NULL), local_reached(false),
328 328
      _processed(NULL), local_processed(false)
329 329
    { }
330 330

	
331 331
    ///Destructor.
332 332
    ~Bfs()
333 333
    {
334 334
      if(local_pred) delete _pred;
335 335
      if(local_dist) delete _dist;
336 336
      if(local_reached) delete _reached;
337 337
      if(local_processed) delete _processed;
338 338
    }
339 339

	
340 340
    ///Sets the map that stores the predecessor arcs.
341 341

	
342 342
    ///Sets the map that stores the predecessor arcs.
343 343
    ///If you don't use this function before calling \ref run(),
344 344
    ///it will allocate one. The destructor deallocates this
345 345
    ///automatically allocated map, of course.
346 346
    ///\return <tt> (*this) </tt>
347 347
    Bfs &predMap(PredMap &m)
348 348
    {
349 349
      if(local_pred) {
350 350
        delete _pred;
351 351
        local_pred=false;
352 352
      }
353 353
      _pred = &m;
354 354
      return *this;
355 355
    }
356 356

	
357 357
    ///Sets the map that indicates which nodes are reached.
358 358

	
359 359
    ///Sets the map that indicates which nodes are reached.
360 360
    ///If you don't use this function before calling \ref run(),
361 361
    ///it will allocate one. The destructor deallocates this
362 362
    ///automatically allocated map, of course.
363 363
    ///\return <tt> (*this) </tt>
364 364
    Bfs &reachedMap(ReachedMap &m)
365 365
    {
366 366
      if(local_reached) {
367 367
        delete _reached;
368 368
        local_reached=false;
369 369
      }
370 370
      _reached = &m;
371 371
      return *this;
372 372
    }
373 373

	
374 374
    ///Sets the map that indicates which nodes are processed.
375 375

	
376 376
    ///Sets the map that indicates which nodes are processed.
377 377
    ///If you don't use this function before calling \ref run(),
378 378
    ///it will allocate one. The destructor deallocates this
379 379
    ///automatically allocated map, of course.
380 380
    ///\return <tt> (*this) </tt>
381 381
    Bfs &processedMap(ProcessedMap &m)
382 382
    {
383 383
      if(local_processed) {
384 384
        delete _processed;
385 385
        local_processed=false;
386 386
      }
387 387
      _processed = &m;
388 388
      return *this;
389 389
    }
390 390

	
391 391
    ///Sets the map that stores the distances of the nodes.
392 392

	
393 393
    ///Sets the map that stores the distances of the nodes calculated by
394 394
    ///the algorithm.
395 395
    ///If you don't use this function before calling \ref run(),
396 396
    ///it will allocate one. The destructor deallocates this
397 397
    ///automatically allocated map, of course.
398 398
    ///\return <tt> (*this) </tt>
399 399
    Bfs &distMap(DistMap &m)
400 400
    {
401 401
      if(local_dist) {
402 402
        delete _dist;
403 403
        local_dist=false;
404 404
      }
405 405
      _dist = &m;
406 406
      return *this;
407 407
    }
408 408

	
409 409
  public:
410 410

	
411 411
    ///\name Execution control
412 412
    ///The simplest way to execute the algorithm is to use
413 413
    ///one of the member functions called \ref lemon::Bfs::run() "run()".
414 414
    ///\n
415 415
    ///If you need more control on the execution, first you must call
416 416
    ///\ref lemon::Bfs::init() "init()", then you can add several source
417 417
    ///nodes with \ref lemon::Bfs::addSource() "addSource()".
418 418
    ///Finally \ref lemon::Bfs::start() "start()" will perform the
419 419
    ///actual path computation.
420 420

	
421 421
    ///@{
422 422

	
423 423
    ///Initializes the internal data structures.
424 424

	
425 425
    ///Initializes the internal data structures.
426 426
    ///
427 427
    void init()
428 428
    {
429 429
      create_maps();
430 430
      _queue.resize(countNodes(*G));
431 431
      _queue_head=_queue_tail=0;
432 432
      _curr_dist=1;
433 433
      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
434 434
        _pred->set(u,INVALID);
435 435
        _reached->set(u,false);
436 436
        _processed->set(u,false);
... ...
@@ -710,693 +710,693 @@
710 710
    ///
711 711
    ///\note <tt>b.run(s)</tt> is just a shortcut of the following code.
712 712
    ///\code
713 713
    ///  b.init();
714 714
    ///  for (NodeIt n(gr); n != INVALID; ++n) {
715 715
    ///    if (!b.reached(n)) {
716 716
    ///      b.addSource(n);
717 717
    ///      b.start();
718 718
    ///    }
719 719
    ///  }
720 720
    ///\endcode
721 721
    void run() {
722 722
      init();
723 723
      for (NodeIt n(*G); n != INVALID; ++n) {
724 724
        if (!reached(n)) {
725 725
          addSource(n);
726 726
          start();
727 727
        }
728 728
      }
729 729
    }
730 730

	
731 731
    ///@}
732 732

	
733 733
    ///\name Query Functions
734 734
    ///The result of the %BFS algorithm can be obtained using these
735 735
    ///functions.\n
736 736
    ///Either \ref lemon::Bfs::run() "run()" or \ref lemon::Bfs::start()
737 737
    ///"start()" must be called before using them.
738 738

	
739 739
    ///@{
740 740

	
741 741
    ///The shortest path to a node.
742 742

	
743 743
    ///Returns the shortest path to a node.
744 744
    ///
745 745
    ///\warning \c t should be reachable from the root(s).
746 746
    ///
747 747
    ///\pre Either \ref run() or \ref start() must be called before
748 748
    ///using this function.
749 749
    Path path(Node t) const { return Path(*G, *_pred, t); }
750 750

	
751 751
    ///The distance of a node from the root(s).
752 752

	
753 753
    ///Returns the distance of a node from the root(s).
754 754
    ///
755 755
    ///\warning If node \c v is not reachable from the root(s), then
756 756
    ///the return value of this function is undefined.
757 757
    ///
758 758
    ///\pre Either \ref run() or \ref start() must be called before
759 759
    ///using this function.
760 760
    int dist(Node v) const { return (*_dist)[v]; }
761 761

	
762 762
    ///Returns the 'previous arc' of the shortest path tree for a node.
763 763

	
764 764
    ///This function returns the 'previous arc' of the shortest path
765 765
    ///tree for the node \c v, i.e. it returns the last arc of a
766 766
    ///shortest path from the root(s) to \c v. It is \c INVALID if \c v
767 767
    ///is not reachable from the root(s) or if \c v is a root.
768 768
    ///
769 769
    ///The shortest path tree used here is equal to the shortest path
770 770
    ///tree used in \ref predNode().
771 771
    ///
772 772
    ///\pre Either \ref run() or \ref start() must be called before
773 773
    ///using this function.
774 774
    Arc predArc(Node v) const { return (*_pred)[v];}
775 775

	
776 776
    ///Returns the 'previous node' of the shortest path tree for a node.
777 777

	
778 778
    ///This function returns the 'previous node' of the shortest path
779 779
    ///tree for the node \c v, i.e. it returns the last but one node
780 780
    ///from a shortest path from the root(s) to \c v. It is \c INVALID
781 781
    ///if \c v is not reachable from the root(s) or if \c v is a root.
782 782
    ///
783 783
    ///The shortest path tree used here is equal to the shortest path
784 784
    ///tree used in \ref predArc().
785 785
    ///
786 786
    ///\pre Either \ref run() or \ref start() must be called before
787 787
    ///using this function.
788 788
    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
789 789
                                  G->source((*_pred)[v]); }
790 790

	
791 791
    ///\brief Returns a const reference to the node map that stores the
792 792
    /// distances of the nodes.
793 793
    ///
794 794
    ///Returns a const reference to the node map that stores the distances
795 795
    ///of the nodes calculated by the algorithm.
796 796
    ///
797 797
    ///\pre Either \ref run() or \ref init()
798 798
    ///must be called before using this function.
799 799
    const DistMap &distMap() const { return *_dist;}
800 800

	
801 801
    ///\brief Returns a const reference to the node map that stores the
802 802
    ///predecessor arcs.
803 803
    ///
804 804
    ///Returns a const reference to the node map that stores the predecessor
805 805
    ///arcs, which form the shortest path tree.
806 806
    ///
807 807
    ///\pre Either \ref run() or \ref init()
808 808
    ///must be called before using this function.
809 809
    const PredMap &predMap() const { return *_pred;}
810 810

	
811 811
    ///Checks if a node is reachable from the root(s).
812 812

	
813 813
    ///Returns \c true if \c v is reachable from the root(s).
814 814
    ///\pre Either \ref run() or \ref start()
815 815
    ///must be called before using this function.
816 816
    bool reached(Node v) const { return (*_reached)[v]; }
817 817

	
818 818
    ///@}
819 819
  };
820 820

	
821 821
  ///Default traits class of bfs() function.
822 822

	
823 823
  ///Default traits class of bfs() function.
824 824
  ///\tparam GR Digraph type.
825 825
  template<class GR>
826 826
  struct BfsWizardDefaultTraits
827 827
  {
828 828
    ///The type of the digraph the algorithm runs on.
829 829
    typedef GR Digraph;
830 830

	
831 831
    ///\brief The type of the map that stores the predecessor
832 832
    ///arcs of the shortest paths.
833 833
    ///
834 834
    ///The type of the map that stores the predecessor
835 835
    ///arcs of the shortest paths.
836 836
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
837 837
    typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap;
838
    ///Instantiates a \ref PredMap.
838
    ///Instantiates a PredMap.
839 839

	
840
    ///This function instantiates a \ref PredMap.
840
    ///This function instantiates a PredMap.
841 841
    ///\param g is the digraph, to which we would like to define the
842
    ///\ref PredMap.
842
    ///PredMap.
843 843
    static PredMap *createPredMap(const Digraph &g)
844 844
    {
845 845
      return new PredMap(g);
846 846
    }
847 847

	
848 848
    ///The type of the map that indicates which nodes are processed.
849 849

	
850 850
    ///The type of the map that indicates which nodes are processed.
851 851
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
852 852
    ///By default it is a NullMap.
853 853
    typedef NullMap<typename Digraph::Node,bool> ProcessedMap;
854
    ///Instantiates a \ref ProcessedMap.
854
    ///Instantiates a ProcessedMap.
855 855

	
856
    ///This function instantiates a \ref ProcessedMap.
856
    ///This function instantiates a ProcessedMap.
857 857
    ///\param g is the digraph, to which
858
    ///we would like to define the \ref ProcessedMap.
858
    ///we would like to define the ProcessedMap.
859 859
#ifdef DOXYGEN
860 860
    static ProcessedMap *createProcessedMap(const Digraph &g)
861 861
#else
862 862
    static ProcessedMap *createProcessedMap(const Digraph &)
863 863
#endif
864 864
    {
865 865
      return new ProcessedMap();
866 866
    }
867 867

	
868 868
    ///The type of the map that indicates which nodes are reached.
869 869

	
870 870
    ///The type of the map that indicates which nodes are reached.
871 871
    ///It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
872 872
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
873
    ///Instantiates a \ref ReachedMap.
873
    ///Instantiates a ReachedMap.
874 874

	
875
    ///This function instantiates a \ref ReachedMap.
875
    ///This function instantiates a ReachedMap.
876 876
    ///\param g is the digraph, to which
877
    ///we would like to define the \ref ReachedMap.
877
    ///we would like to define the ReachedMap.
878 878
    static ReachedMap *createReachedMap(const Digraph &g)
879 879
    {
880 880
      return new ReachedMap(g);
881 881
    }
882 882

	
883 883
    ///The type of the map that stores the distances of the nodes.
884 884

	
885 885
    ///The type of the map that stores the distances of the nodes.
886 886
    ///It must meet the \ref concepts::WriteMap "WriteMap" concept.
887 887
    typedef typename Digraph::template NodeMap<int> DistMap;
888
    ///Instantiates a \ref DistMap.
888
    ///Instantiates a DistMap.
889 889

	
890
    ///This function instantiates a \ref DistMap.
890
    ///This function instantiates a DistMap.
891 891
    ///\param g is the digraph, to which we would like to define
892
    ///the \ref DistMap
892
    ///the DistMap
893 893
    static DistMap *createDistMap(const Digraph &g)
894 894
    {
895 895
      return new DistMap(g);
896 896
    }
897 897

	
898 898
    ///The type of the shortest paths.
899 899

	
900 900
    ///The type of the shortest paths.
901 901
    ///It must meet the \ref concepts::Path "Path" concept.
902 902
    typedef lemon::Path<Digraph> Path;
903 903
  };
904 904

	
905
  /// Default traits class used by \ref BfsWizard
905
  /// Default traits class used by BfsWizard
906 906

	
907 907
  /// To make it easier to use Bfs algorithm
908 908
  /// we have created a wizard class.
909 909
  /// This \ref BfsWizard class needs default traits,
910 910
  /// as well as the \ref Bfs class.
911 911
  /// The \ref BfsWizardBase is a class to be the default traits of the
912 912
  /// \ref BfsWizard class.
913 913
  template<class GR>
914 914
  class BfsWizardBase : public BfsWizardDefaultTraits<GR>
915 915
  {
916 916

	
917 917
    typedef BfsWizardDefaultTraits<GR> Base;
918 918
  protected:
919 919
    //The type of the nodes in the digraph.
920 920
    typedef typename Base::Digraph::Node Node;
921 921

	
922 922
    //Pointer to the digraph the algorithm runs on.
923 923
    void *_g;
924 924
    //Pointer to the map of reached nodes.
925 925
    void *_reached;
926 926
    //Pointer to the map of processed nodes.
927 927
    void *_processed;
928 928
    //Pointer to the map of predecessors arcs.
929 929
    void *_pred;
930 930
    //Pointer to the map of distances.
931 931
    void *_dist;
932 932
    //Pointer to the shortest path to the target node.
933 933
    void *_path;
934 934
    //Pointer to the distance of the target node.
935 935
    int *_di;
936 936

	
937 937
    public:
938 938
    /// Constructor.
939 939

	
940 940
    /// This constructor does not require parameters, therefore it initiates
941 941
    /// all of the attributes to \c 0.
942 942
    BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0),
943 943
                      _dist(0), _path(0), _di(0) {}
944 944

	
945 945
    /// Constructor.
946 946

	
947 947
    /// This constructor requires one parameter,
948 948
    /// others are initiated to \c 0.
949 949
    /// \param g The digraph the algorithm runs on.
950 950
    BfsWizardBase(const GR &g) :
951 951
      _g(reinterpret_cast<void*>(const_cast<GR*>(&g))),
952 952
      _reached(0), _processed(0), _pred(0), _dist(0),  _path(0), _di(0) {}
953 953

	
954 954
  };
955 955

	
956 956
  /// Auxiliary class for the function-type interface of BFS algorithm.
957 957

	
958 958
  /// This auxiliary class is created to implement the
959 959
  /// \ref bfs() "function-type interface" of \ref Bfs algorithm.
960 960
  /// It does not have own \ref run() method, it uses the functions
961 961
  /// and features of the plain \ref Bfs.
962 962
  ///
963 963
  /// This class should only be used through the \ref bfs() function,
964 964
  /// which makes it easier to use the algorithm.
965 965
  template<class TR>
966 966
  class BfsWizard : public TR
967 967
  {
968 968
    typedef TR Base;
969 969

	
970 970
    ///The type of the digraph the algorithm runs on.
971 971
    typedef typename TR::Digraph Digraph;
972 972

	
973 973
    typedef typename Digraph::Node Node;
974 974
    typedef typename Digraph::NodeIt NodeIt;
975 975
    typedef typename Digraph::Arc Arc;
976 976
    typedef typename Digraph::OutArcIt OutArcIt;
977 977

	
978 978
    ///\brief The type of the map that stores the predecessor
979 979
    ///arcs of the shortest paths.
980 980
    typedef typename TR::PredMap PredMap;
981 981
    ///\brief The type of the map that stores the distances of the nodes.
982 982
    typedef typename TR::DistMap DistMap;
983 983
    ///\brief The type of the map that indicates which nodes are reached.
984 984
    typedef typename TR::ReachedMap ReachedMap;
985 985
    ///\brief The type of the map that indicates which nodes are processed.
986 986
    typedef typename TR::ProcessedMap ProcessedMap;
987 987
    ///The type of the shortest paths
988 988
    typedef typename TR::Path Path;
989 989

	
990 990
  public:
991 991

	
992 992
    /// Constructor.
993 993
    BfsWizard() : TR() {}
994 994

	
995 995
    /// Constructor that requires parameters.
996 996

	
997 997
    /// Constructor that requires parameters.
998 998
    /// These parameters will be the default values for the traits class.
999 999
    /// \param g The digraph the algorithm runs on.
1000 1000
    BfsWizard(const Digraph &g) :
1001 1001
      TR(g) {}
1002 1002

	
1003 1003
    ///Copy constructor
1004 1004
    BfsWizard(const TR &b) : TR(b) {}
1005 1005

	
1006 1006
    ~BfsWizard() {}
1007 1007

	
1008 1008
    ///Runs BFS algorithm from the given source node.
1009 1009

	
1010 1010
    ///This method runs BFS algorithm from node \c s
1011 1011
    ///in order to compute the shortest path to each node.
1012 1012
    void run(Node s)
1013 1013
    {
1014 1014
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
1015 1015
      if (Base::_pred)
1016 1016
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1017 1017
      if (Base::_dist)
1018 1018
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1019 1019
      if (Base::_reached)
1020 1020
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
1021 1021
      if (Base::_processed)
1022 1022
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1023 1023
      if (s!=INVALID)
1024 1024
        alg.run(s);
1025 1025
      else
1026 1026
        alg.run();
1027 1027
    }
1028 1028

	
1029 1029
    ///Finds the shortest path between \c s and \c t.
1030 1030

	
1031 1031
    ///This method runs BFS algorithm from node \c s
1032 1032
    ///in order to compute the shortest path to node \c t
1033 1033
    ///(it stops searching when \c t is processed).
1034 1034
    ///
1035 1035
    ///\return \c true if \c t is reachable form \c s.
1036 1036
    bool run(Node s, Node t)
1037 1037
    {
1038 1038
      Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g));
1039 1039
      if (Base::_pred)
1040 1040
        alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1041 1041
      if (Base::_dist)
1042 1042
        alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1043 1043
      if (Base::_reached)
1044 1044
        alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached));
1045 1045
      if (Base::_processed)
1046 1046
        alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed));
1047 1047
      alg.run(s,t);
1048 1048
      if (Base::_path)
1049 1049
        *reinterpret_cast<Path*>(Base::_path) = alg.path(t);
1050 1050
      if (Base::_di)
1051 1051
        *Base::_di = alg.dist(t);
1052 1052
      return alg.reached(t);
1053 1053
    }
1054 1054

	
1055 1055
    ///Runs BFS algorithm to visit all nodes in the digraph.
1056 1056

	
1057 1057
    ///This method runs BFS algorithm in order to compute
1058 1058
    ///the shortest path to each node.
1059 1059
    void run()
1060 1060
    {
1061 1061
      run(INVALID);
1062 1062
    }
1063 1063

	
1064 1064
    template<class T>
1065 1065
    struct SetPredMapBase : public Base {
1066 1066
      typedef T PredMap;
1067 1067
      static PredMap *createPredMap(const Digraph &) { return 0; };
1068 1068
      SetPredMapBase(const TR &b) : TR(b) {}
1069 1069
    };
1070 1070
    ///\brief \ref named-func-param "Named parameter"
1071
    ///for setting \ref PredMap object.
1071
    ///for setting PredMap object.
1072 1072
    ///
1073 1073
    ///\ref named-func-param "Named parameter"
1074
    ///for setting \ref PredMap object.
1074
    ///for setting PredMap object.
1075 1075
    template<class T>
1076 1076
    BfsWizard<SetPredMapBase<T> > predMap(const T &t)
1077 1077
    {
1078 1078
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1079 1079
      return BfsWizard<SetPredMapBase<T> >(*this);
1080 1080
    }
1081 1081

	
1082 1082
    template<class T>
1083 1083
    struct SetReachedMapBase : public Base {
1084 1084
      typedef T ReachedMap;
1085 1085
      static ReachedMap *createReachedMap(const Digraph &) { return 0; };
1086 1086
      SetReachedMapBase(const TR &b) : TR(b) {}
1087 1087
    };
1088 1088
    ///\brief \ref named-func-param "Named parameter"
1089
    ///for setting \ref ReachedMap object.
1089
    ///for setting ReachedMap object.
1090 1090
    ///
1091 1091
    /// \ref named-func-param "Named parameter"
1092
    ///for setting \ref ReachedMap object.
1092
    ///for setting ReachedMap object.
1093 1093
    template<class T>
1094 1094
    BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t)
1095 1095
    {
1096 1096
      Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t));
1097 1097
      return BfsWizard<SetReachedMapBase<T> >(*this);
1098 1098
    }
1099 1099

	
1100 1100
    template<class T>
1101 1101
    struct SetDistMapBase : public Base {
1102 1102
      typedef T DistMap;
1103 1103
      static DistMap *createDistMap(const Digraph &) { return 0; };
1104 1104
      SetDistMapBase(const TR &b) : TR(b) {}
1105 1105
    };
1106 1106
    ///\brief \ref named-func-param "Named parameter"
1107
    ///for setting \ref DistMap object.
1107
    ///for setting DistMap object.
1108 1108
    ///
1109 1109
    /// \ref named-func-param "Named parameter"
1110
    ///for setting \ref DistMap object.
1110
    ///for setting DistMap object.
1111 1111
    template<class T>
1112 1112
    BfsWizard<SetDistMapBase<T> > distMap(const T &t)
1113 1113
    {
1114 1114
      Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t));
1115 1115
      return BfsWizard<SetDistMapBase<T> >(*this);
1116 1116
    }
1117 1117

	
1118 1118
    template<class T>
1119 1119
    struct SetProcessedMapBase : public Base {
1120 1120
      typedef T ProcessedMap;
1121 1121
      static ProcessedMap *createProcessedMap(const Digraph &) { return 0; };
1122 1122
      SetProcessedMapBase(const TR &b) : TR(b) {}
1123 1123
    };
1124 1124
    ///\brief \ref named-func-param "Named parameter"
1125
    ///for setting \ref ProcessedMap object.
1125
    ///for setting ProcessedMap object.
1126 1126
    ///
1127 1127
    /// \ref named-func-param "Named parameter"
1128
    ///for setting \ref ProcessedMap object.
1128
    ///for setting ProcessedMap object.
1129 1129
    template<class T>
1130 1130
    BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t)
1131 1131
    {
1132 1132
      Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t));
1133 1133
      return BfsWizard<SetProcessedMapBase<T> >(*this);
1134 1134
    }
1135 1135

	
1136 1136
    template<class T>
1137 1137
    struct SetPathBase : public Base {
1138 1138
      typedef T Path;
1139 1139
      SetPathBase(const TR &b) : TR(b) {}
1140 1140
    };
1141 1141
    ///\brief \ref named-func-param "Named parameter"
1142 1142
    ///for getting the shortest path to the target node.
1143 1143
    ///
1144 1144
    ///\ref named-func-param "Named parameter"
1145 1145
    ///for getting the shortest path to the target node.
1146 1146
    template<class T>
1147 1147
    BfsWizard<SetPathBase<T> > path(const T &t)
1148 1148
    {
1149 1149
      Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t));
1150 1150
      return BfsWizard<SetPathBase<T> >(*this);
1151 1151
    }
1152 1152

	
1153 1153
    ///\brief \ref named-func-param "Named parameter"
1154 1154
    ///for getting the distance of the target node.
1155 1155
    ///
1156 1156
    ///\ref named-func-param "Named parameter"
1157 1157
    ///for getting the distance of the target node.
1158 1158
    BfsWizard dist(const int &d)
1159 1159
    {
1160 1160
      Base::_di=const_cast<int*>(&d);
1161 1161
      return *this;
1162 1162
    }
1163 1163

	
1164 1164
  };
1165 1165

	
1166 1166
  ///Function-type interface for BFS algorithm.
1167 1167

	
1168 1168
  /// \ingroup search
1169 1169
  ///Function-type interface for BFS algorithm.
1170 1170
  ///
1171 1171
  ///This function also has several \ref named-func-param "named parameters",
1172 1172
  ///they are declared as the members of class \ref BfsWizard.
1173 1173
  ///The following examples show how to use these parameters.
1174 1174
  ///\code
1175 1175
  ///  // Compute shortest path from node s to each node
1176 1176
  ///  bfs(g).predMap(preds).distMap(dists).run(s);
1177 1177
  ///
1178 1178
  ///  // Compute shortest path from s to t
1179 1179
  ///  bool reached = bfs(g).path(p).dist(d).run(s,t);
1180 1180
  ///\endcode
1181 1181
  ///\warning Don't forget to put the \ref BfsWizard::run() "run()"
1182 1182
  ///to the end of the parameter list.
1183 1183
  ///\sa BfsWizard
1184 1184
  ///\sa Bfs
1185 1185
  template<class GR>
1186 1186
  BfsWizard<BfsWizardBase<GR> >
1187 1187
  bfs(const GR &digraph)
1188 1188
  {
1189 1189
    return BfsWizard<BfsWizardBase<GR> >(digraph);
1190 1190
  }
1191 1191

	
1192 1192
#ifdef DOXYGEN
1193 1193
  /// \brief Visitor class for BFS.
1194 1194
  ///
1195 1195
  /// This class defines the interface of the BfsVisit events, and
1196 1196
  /// it could be the base of a real visitor class.
1197 1197
  template <typename _Digraph>
1198 1198
  struct BfsVisitor {
1199 1199
    typedef _Digraph Digraph;
1200 1200
    typedef typename Digraph::Arc Arc;
1201 1201
    typedef typename Digraph::Node Node;
1202 1202
    /// \brief Called for the source node(s) of the BFS.
1203 1203
    ///
1204 1204
    /// This function is called for the source node(s) of the BFS.
1205 1205
    void start(const Node& node) {}
1206 1206
    /// \brief Called when a node is reached first time.
1207 1207
    ///
1208 1208
    /// This function is called when a node is reached first time.
1209 1209
    void reach(const Node& node) {}
1210 1210
    /// \brief Called when a node is processed.
1211 1211
    ///
1212 1212
    /// This function is called when a node is processed.
1213 1213
    void process(const Node& node) {}
1214 1214
    /// \brief Called when an arc reaches a new node.
1215 1215
    ///
1216 1216
    /// This function is called when the BFS finds an arc whose target node
1217 1217
    /// is not reached yet.
1218 1218
    void discover(const Arc& arc) {}
1219 1219
    /// \brief Called when an arc is examined but its target node is
1220 1220
    /// already discovered.
1221 1221
    ///
1222 1222
    /// This function is called when an arc is examined but its target node is
1223 1223
    /// already discovered.
1224 1224
    void examine(const Arc& arc) {}
1225 1225
  };
1226 1226
#else
1227 1227
  template <typename _Digraph>
1228 1228
  struct BfsVisitor {
1229 1229
    typedef _Digraph Digraph;
1230 1230
    typedef typename Digraph::Arc Arc;
1231 1231
    typedef typename Digraph::Node Node;
1232 1232
    void start(const Node&) {}
1233 1233
    void reach(const Node&) {}
1234 1234
    void process(const Node&) {}
1235 1235
    void discover(const Arc&) {}
1236 1236
    void examine(const Arc&) {}
1237 1237

	
1238 1238
    template <typename _Visitor>
1239 1239
    struct Constraints {
1240 1240
      void constraints() {
1241 1241
        Arc arc;
1242 1242
        Node node;
1243 1243
        visitor.start(node);
1244 1244
        visitor.reach(node);
1245 1245
        visitor.process(node);
1246 1246
        visitor.discover(arc);
1247 1247
        visitor.examine(arc);
1248 1248
      }
1249 1249
      _Visitor& visitor;
1250 1250
    };
1251 1251
  };
1252 1252
#endif
1253 1253

	
1254 1254
  /// \brief Default traits class of BfsVisit class.
1255 1255
  ///
1256 1256
  /// Default traits class of BfsVisit class.
1257 1257
  /// \tparam _Digraph The type of the digraph the algorithm runs on.
1258 1258
  template<class _Digraph>
1259 1259
  struct BfsVisitDefaultTraits {
1260 1260

	
1261 1261
    /// \brief The type of the digraph the algorithm runs on.
1262 1262
    typedef _Digraph Digraph;
1263 1263

	
1264 1264
    /// \brief The type of the map that indicates which nodes are reached.
1265 1265
    ///
1266 1266
    /// The type of the map that indicates which nodes are reached.
1267 1267
    /// It must meet the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1268 1268
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
1269 1269

	
1270
    /// \brief Instantiates a \ref ReachedMap.
1270
    /// \brief Instantiates a ReachedMap.
1271 1271
    ///
1272
    /// This function instantiates a \ref ReachedMap.
1272
    /// This function instantiates a ReachedMap.
1273 1273
    /// \param digraph is the digraph, to which
1274
    /// we would like to define the \ref ReachedMap.
1274
    /// we would like to define the ReachedMap.
1275 1275
    static ReachedMap *createReachedMap(const Digraph &digraph) {
1276 1276
      return new ReachedMap(digraph);
1277 1277
    }
1278 1278

	
1279 1279
  };
1280 1280

	
1281 1281
  /// \ingroup search
1282 1282
  ///
1283 1283
  /// \brief %BFS algorithm class with visitor interface.
1284 1284
  ///
1285 1285
  /// This class provides an efficient implementation of the %BFS algorithm
1286 1286
  /// with visitor interface.
1287 1287
  ///
1288 1288
  /// The %BfsVisit class provides an alternative interface to the Bfs
1289 1289
  /// class. It works with callback mechanism, the BfsVisit object calls
1290 1290
  /// the member functions of the \c Visitor class on every BFS event.
1291 1291
  ///
1292 1292
  /// This interface of the BFS algorithm should be used in special cases
1293 1293
  /// when extra actions have to be performed in connection with certain
1294 1294
  /// events of the BFS algorithm. Otherwise consider to use Bfs or bfs()
1295 1295
  /// instead.
1296 1296
  ///
1297 1297
  /// \tparam _Digraph The type of the digraph the algorithm runs on.
1298 1298
  /// The default value is
1299 1299
  /// \ref ListDigraph. The value of _Digraph is not used directly by
1300 1300
  /// \ref BfsVisit, it is only passed to \ref BfsVisitDefaultTraits.
1301 1301
  /// \tparam _Visitor The Visitor type that is used by the algorithm.
1302 1302
  /// \ref BfsVisitor "BfsVisitor<_Digraph>" is an empty visitor, which
1303 1303
  /// does not observe the BFS events. If you want to observe the BFS
1304 1304
  /// events, you should implement your own visitor class.
1305 1305
  /// \tparam _Traits Traits class to set various data types used by the
1306 1306
  /// algorithm. The default traits class is
1307 1307
  /// \ref BfsVisitDefaultTraits "BfsVisitDefaultTraits<_Digraph>".
1308 1308
  /// See \ref BfsVisitDefaultTraits for the documentation of
1309 1309
  /// a BFS visit traits class.
1310 1310
#ifdef DOXYGEN
1311 1311
  template <typename _Digraph, typename _Visitor, typename _Traits>
1312 1312
#else
1313 1313
  template <typename _Digraph = ListDigraph,
1314 1314
            typename _Visitor = BfsVisitor<_Digraph>,
1315 1315
            typename _Traits = BfsVisitDefaultTraits<_Digraph> >
1316 1316
#endif
1317 1317
  class BfsVisit {
1318 1318
  public:
1319 1319

	
1320 1320
    ///The traits class.
1321 1321
    typedef _Traits Traits;
1322 1322

	
1323 1323
    ///The type of the digraph the algorithm runs on.
1324 1324
    typedef typename Traits::Digraph Digraph;
1325 1325

	
1326 1326
    ///The visitor type used by the algorithm.
1327 1327
    typedef _Visitor Visitor;
1328 1328

	
1329 1329
    ///The type of the map that indicates which nodes are reached.
1330 1330
    typedef typename Traits::ReachedMap ReachedMap;
1331 1331

	
1332 1332
  private:
1333 1333

	
1334 1334
    typedef typename Digraph::Node Node;
1335 1335
    typedef typename Digraph::NodeIt NodeIt;
1336 1336
    typedef typename Digraph::Arc Arc;
1337 1337
    typedef typename Digraph::OutArcIt OutArcIt;
1338 1338

	
1339 1339
    //Pointer to the underlying digraph.
1340 1340
    const Digraph *_digraph;
1341 1341
    //Pointer to the visitor object.
1342 1342
    Visitor *_visitor;
1343 1343
    //Pointer to the map of reached status of the nodes.
1344 1344
    ReachedMap *_reached;
1345 1345
    //Indicates if _reached is locally allocated (true) or not.
1346 1346
    bool local_reached;
1347 1347

	
1348 1348
    std::vector<typename Digraph::Node> _list;
1349 1349
    int _list_front, _list_back;
1350 1350

	
1351 1351
    //Creates the maps if necessary.
1352 1352
    void create_maps() {
1353 1353
      if(!_reached) {
1354 1354
        local_reached = true;
1355 1355
        _reached = Traits::createReachedMap(*_digraph);
1356 1356
      }
1357 1357
    }
1358 1358

	
1359 1359
  protected:
1360 1360

	
1361 1361
    BfsVisit() {}
1362 1362

	
1363 1363
  public:
1364 1364

	
1365 1365
    typedef BfsVisit Create;
1366 1366

	
1367 1367
    /// \name Named template parameters
1368 1368

	
1369 1369
    ///@{
1370 1370
    template <class T>
1371 1371
    struct SetReachedMapTraits : public Traits {
1372 1372
      typedef T ReachedMap;
1373 1373
      static ReachedMap *createReachedMap(const Digraph &digraph) {
1374 1374
        LEMON_ASSERT(false, "ReachedMap is not initialized");
1375 1375
        return 0; // ignore warnings
1376 1376
      }
1377 1377
    };
1378 1378
    /// \brief \ref named-templ-param "Named parameter" for setting
1379 1379
    /// ReachedMap type.
1380 1380
    ///
1381 1381
    /// \ref named-templ-param "Named parameter" for setting ReachedMap type.
1382 1382
    template <class T>
1383 1383
    struct SetReachedMap : public BfsVisit< Digraph, Visitor,
1384 1384
                                            SetReachedMapTraits<T> > {
1385 1385
      typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create;
1386 1386
    };
1387 1387
    ///@}
1388 1388

	
1389 1389
  public:
1390 1390

	
1391 1391
    /// \brief Constructor.
1392 1392
    ///
1393 1393
    /// Constructor.
1394 1394
    ///
1395 1395
    /// \param digraph The digraph the algorithm runs on.
1396 1396
    /// \param visitor The visitor object of the algorithm.
1397 1397
    BfsVisit(const Digraph& digraph, Visitor& visitor)
1398 1398
      : _digraph(&digraph), _visitor(&visitor),
1399 1399
        _reached(0), local_reached(false) {}
1400 1400

	
1401 1401
    /// \brief Destructor.
1402 1402
    ~BfsVisit() {
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_ALTERATION_NOTIFIER_H
20 20
#define LEMON_BITS_ALTERATION_NOTIFIER_H
21 21

	
22 22
#include <vector>
23 23
#include <list>
24 24

	
25 25
#include <lemon/core.h>
26 26

	
27
///\ingroup graphbits
28
///\file
29
///\brief Observer notifier for graph alteration observers.
27
//\ingroup graphbits
28
//\file
29
//\brief Observer notifier for graph alteration observers.
30 30

	
31 31
namespace lemon {
32 32

	
33
  /// \ingroup graphbits
34
  ///
35
  /// \brief Notifier class to notify observes about alterations in
36
  /// a container.
37
  ///
38
  /// The simple graph's can be refered as two containers, one node container
39
  /// and one edge container. But they are not standard containers they
40
  /// does not store values directly they are just key continars for more
41
  /// value containers which are the node and edge maps.
42
  ///
43
  /// The graph's node and edge sets can be changed as we add or erase
44
  /// nodes and edges in the graph. LEMON would like to handle easily
45
  /// that the node and edge maps should contain values for all nodes or
46
  /// edges. If we want to check on every indicing if the map contains
47
  /// the current indicing key that cause a drawback in the performance
48
  /// in the library. We use another solution we notify all maps about
49
  /// an alteration in the graph, which cause only drawback on the
50
  /// alteration of the graph.
51
  ///
52
  /// This class provides an interface to the container. The \e first() and \e
53
  /// next() member functions make possible to iterate on the keys of the
54
  /// container. The \e id() function returns an integer id for each key.
55
  /// The \e maxId() function gives back an upper bound of the ids.
56
  ///
57
  /// For the proper functonality of this class, we should notify it
58
  /// about each alteration in the container. The alterations have four type
59
  /// as \e add(), \e erase(), \e build() and \e clear(). The \e add() and
60
  /// \e erase() signals that only one or few items added or erased to or
61
  /// from the graph. If all items are erased from the graph or from an empty
62
  /// graph a new graph is builded then it can be signaled with the
63
  /// clear() and build() members. Important rule that if we erase items
64
  /// from graph we should first signal the alteration and after that erase
65
  /// them from the container, on the other way on item addition we should
66
  /// first extend the container and just after that signal the alteration.
67
  ///
68
  /// The alteration can be observed with a class inherited from the
69
  /// \e ObserverBase nested class. The signals can be handled with
70
  /// overriding the virtual functions defined in the base class.  The
71
  /// observer base can be attached to the notifier with the
72
  /// \e attach() member and can be detached with detach() function. The
73
  /// alteration handlers should not call any function which signals
74
  /// an other alteration in the same notifier and should not
75
  /// detach any observer from the notifier.
76
  ///
77
  /// Alteration observers try to be exception safe. If an \e add() or
78
  /// a \e clear() function throws an exception then the remaining
79
  /// observeres will not be notified and the fulfilled additions will
80
  /// be rolled back by calling the \e erase() or \e clear()
81
  /// functions. Thence the \e erase() and \e clear() should not throw
82
  /// exception. Actullay, it can be throw only
83
  /// \ref AlterationObserver::ImmediateDetach ImmediateDetach
84
  /// exception which detach the observer from the notifier.
85
  ///
86
  /// There are some place when the alteration observing is not completly
87
  /// reliable. If we want to carry out the node degree in the graph
88
  /// as in the \ref InDegMap and we use the reverseEdge that cause
89
  /// unreliable functionality. Because the alteration observing signals
90
  /// only erasing and adding but not the reversing it will stores bad
91
  /// degrees. The sub graph adaptors cannot signal the alterations because
92
  /// just a setting in the filter map can modify the graph and this cannot
93
  /// be watched in any way.
94
  ///
95
  /// \param _Container The container which is observed.
96
  /// \param _Item The item type which is obserbved.
33
  // \ingroup graphbits
34
  //
35
  // \brief Notifier class to notify observes about alterations in
36
  // a container.
37
  //
38
  // The simple graph's can be refered as two containers, one node container
39
  // and one edge container. But they are not standard containers they
40
  // does not store values directly they are just key continars for more
41
  // value containers which are the node and edge maps.
42
  //
43
  // The graph's node and edge sets can be changed as we add or erase
44
  // nodes and edges in the graph. LEMON would like to handle easily
45
  // that the node and edge maps should contain values for all nodes or
46
  // edges. If we want to check on every indicing if the map contains
47
  // the current indicing key that cause a drawback in the performance
48
  // in the library. We use another solution we notify all maps about
49
  // an alteration in the graph, which cause only drawback on the
50
  // alteration of the graph.
51
  //
52
  // This class provides an interface to the container. The \e first() and \e
53
  // next() member functions make possible to iterate on the keys of the
54
  // container. The \e id() function returns an integer id for each key.
55
  // The \e maxId() function gives back an upper bound of the ids.
56
  //
57
  // For the proper functonality of this class, we should notify it
58
  // about each alteration in the container. The alterations have four type
59
  // as \e add(), \e erase(), \e build() and \e clear(). The \e add() and
60
  // \e erase() signals that only one or few items added or erased to or
61
  // from the graph. If all items are erased from the graph or from an empty
62
  // graph a new graph is builded then it can be signaled with the
63
  // clear() and build() members. Important rule that if we erase items
64
  // from graph we should first signal the alteration and after that erase
65
  // them from the container, on the other way on item addition we should
66
  // first extend the container and just after that signal the alteration.
67
  //
68
  // The alteration can be observed with a class inherited from the
69
  // \e ObserverBase nested class. The signals can be handled with
70
  // overriding the virtual functions defined in the base class.  The
71
  // observer base can be attached to the notifier with the
72
  // \e attach() member and can be detached with detach() function. The
73
  // alteration handlers should not call any function which signals
74
  // an other alteration in the same notifier and should not
75
  // detach any observer from the notifier.
76
  //
77
  // Alteration observers try to be exception safe. If an \e add() or
78
  // a \e clear() function throws an exception then the remaining
79
  // observeres will not be notified and the fulfilled additions will
80
  // be rolled back by calling the \e erase() or \e clear()
81
  // functions. Thence the \e erase() and \e clear() should not throw
82
  // exception. Actullay, it can be throw only \ref ImmediateDetach
83
  // exception which detach the observer from the notifier.
84
  //
85
  // There are some place when the alteration observing is not completly
86
  // reliable. If we want to carry out the node degree in the graph
87
  // as in the \ref InDegMap and we use the reverseEdge that cause
88
  // unreliable functionality. Because the alteration observing signals
89
  // only erasing and adding but not the reversing it will stores bad
90
  // degrees. The sub graph adaptors cannot signal the alterations because
91
  // just a setting in the filter map can modify the graph and this cannot
92
  // be watched in any way.
93
  //
94
  // \param _Container The container which is observed.
95
  // \param _Item The item type which is obserbved.
97 96

	
98 97
  template <typename _Container, typename _Item>
99 98
  class AlterationNotifier {
100 99
  public:
101 100

	
102 101
    typedef True Notifier;
103 102

	
104 103
    typedef _Container Container;
105 104
    typedef _Item Item;
106 105

	
107
    /// \brief Exception which can be called from \e clear() and
108
    /// \e erase().
109
    ///
110
    /// From the \e clear() and \e erase() function only this
111
    /// exception is allowed to throw. The exception immediatly
112
    /// detaches the current observer from the notifier. Because the
113
    /// \e clear() and \e erase() should not throw other exceptions
114
    /// it can be used to invalidate the observer.
106
    // \brief Exception which can be called from \e clear() and
107
    // \e erase().
108
    //
109
    // From the \e clear() and \e erase() function only this
110
    // exception is allowed to throw. The exception immediatly
111
    // detaches the current observer from the notifier. Because the
112
    // \e clear() and \e erase() should not throw other exceptions
113
    // it can be used to invalidate the observer.
115 114
    struct ImmediateDetach {};
116 115

	
117
    /// \brief ObserverBase is the base class for the observers.
118
    ///
119
    /// ObserverBase is the abstract base class for the observers.
120
    /// It will be notified about an item was inserted into or
121
    /// erased from the graph.
122
    ///
123
    /// The observer interface contains some pure virtual functions
124
    /// to override. The add() and erase() functions are
125
    /// to notify the oberver when one item is added or
126
    /// erased.
127
    ///
128
    /// The build() and clear() members are to notify the observer
129
    /// about the container is built from an empty container or
130
    /// is cleared to an empty container.
131

	
116
    // \brief ObserverBase is the base class for the observers.
117
    //
118
    // ObserverBase is the abstract base class for the observers.
119
    // It will be notified about an item was inserted into or
120
    // erased from the graph.
121
    //
122
    // The observer interface contains some pure virtual functions
123
    // to override. The add() and erase() functions are
124
    // to notify the oberver when one item is added or
125
    // erased.
126
    //
127
    // The build() and clear() members are to notify the observer
128
    // about the container is built from an empty container or
129
    // is cleared to an empty container.
132 130
    class ObserverBase {
133 131
    protected:
134 132
      typedef AlterationNotifier Notifier;
135 133

	
136 134
      friend class AlterationNotifier;
137 135

	
138
      /// \brief Default constructor.
139
      ///
140
      /// Default constructor for ObserverBase.
141
      ///
136
      // \brief Default constructor.
137
      //
138
      // Default constructor for ObserverBase.
142 139
      ObserverBase() : _notifier(0) {}
143 140

	
144
      /// \brief Constructor which attach the observer into notifier.
145
      ///
146
      /// Constructor which attach the observer into notifier.
141
      // \brief Constructor which attach the observer into notifier.
142
      //
143
      // Constructor which attach the observer into notifier.
147 144
      ObserverBase(AlterationNotifier& nf) {
148 145
        attach(nf);
149 146
      }
150 147

	
151
      /// \brief Constructor which attach the obserever to the same notifier.
152
      ///
153
      /// Constructor which attach the obserever to the same notifier as
154
      /// the other observer is attached to.
148
      // \brief Constructor which attach the obserever to the same notifier.
149
      //
150
      // Constructor which attach the obserever to the same notifier as
151
      // the other observer is attached to.
155 152
      ObserverBase(const ObserverBase& copy) {
156 153
        if (copy.attached()) {
157 154
          attach(*copy.notifier());
158 155
        }
159 156
      }
160 157

	
161
      /// \brief Destructor
158
      // \brief Destructor
162 159
      virtual ~ObserverBase() {
163 160
        if (attached()) {
164 161
          detach();
165 162
        }
166 163
      }
167 164

	
168
      /// \brief Attaches the observer into an AlterationNotifier.
169
      ///
170
      /// This member attaches the observer into an AlterationNotifier.
171
      ///
165
      // \brief Attaches the observer into an AlterationNotifier.
166
      //
167
      // This member attaches the observer into an AlterationNotifier.
172 168
      void attach(AlterationNotifier& nf) {
173 169
        nf.attach(*this);
174 170
      }
175 171

	
176
      /// \brief Detaches the observer into an AlterationNotifier.
177
      ///
178
      /// This member detaches the observer from an AlterationNotifier.
179
      ///
172
      // \brief Detaches the observer into an AlterationNotifier.
173
      //
174
      // This member detaches the observer from an AlterationNotifier.
180 175
      void detach() {
181 176
        _notifier->detach(*this);
182 177
      }
183 178

	
184
      /// \brief Gives back a pointer to the notifier which the map
185
      /// attached into.
186
      ///
187
      /// This function gives back a pointer to the notifier which the map
188
      /// attached into.
189
      ///
179
      // \brief Gives back a pointer to the notifier which the map
180
      // attached into.
181
      //
182
      // This function gives back a pointer to the notifier which the map
183
      // attached into.
190 184
      Notifier* notifier() const { return const_cast<Notifier*>(_notifier); }
191 185

	
192
      /// Gives back true when the observer is attached into a notifier.
186
      // Gives back true when the observer is attached into a notifier.
193 187
      bool attached() const { return _notifier != 0; }
194 188

	
195 189
    private:
196 190

	
197 191
      ObserverBase& operator=(const ObserverBase& copy);
198 192

	
199 193
    protected:
200 194

	
201 195
      Notifier* _notifier;
202 196
      typename std::list<ObserverBase*>::iterator _index;
203 197

	
204
      /// \brief The member function to notificate the observer about an
205
      /// item is added to the container.
206
      ///
207
      /// The add() member function notificates the observer about an item
208
      /// is added to the container. It have to be overrided in the
209
      /// subclasses.
198
      // \brief The member function to notificate the observer about an
199
      // item is added to the container.
200
      //
201
      // The add() member function notificates the observer about an item
202
      // is added to the container. It have to be overrided in the
203
      // subclasses.
210 204
      virtual void add(const Item&) = 0;
211 205

	
212
      /// \brief The member function to notificate the observer about
213
      /// more item is added to the container.
214
      ///
215
      /// The add() member function notificates the observer about more item
216
      /// is added to the container. It have to be overrided in the
217
      /// subclasses.
206
      // \brief The member function to notificate the observer about
207
      // more item is added to the container.
208
      //
209
      // The add() member function notificates the observer about more item
210
      // is added to the container. It have to be overrided in the
211
      // subclasses.
218 212
      virtual void add(const std::vector<Item>& items) = 0;
219 213

	
220
      /// \brief The member function to notificate the observer about an
221
      /// item is erased from the container.
222
      ///
223
      /// The erase() member function notificates the observer about an
224
      /// item is erased from the container. It have to be overrided in
225
      /// the subclasses.
214
      // \brief The member function to notificate the observer about an
215
      // item is erased from the container.
216
      //
217
      // The erase() member function notificates the observer about an
218
      // item is erased from the container. It have to be overrided in
219
      // the subclasses.
226 220
      virtual void erase(const Item&) = 0;
227 221

	
228
      /// \brief The member function to notificate the observer about
229
      /// more item is erased from the container.
230
      ///
231
      /// The erase() member function notificates the observer about more item
232
      /// is erased from the container. It have to be overrided in the
233
      /// subclasses.
222
      // \brief The member function to notificate the observer about
223
      // more item is erased from the container.
224
      //
225
      // The erase() member function notificates the observer about more item
226
      // is erased from the container. It have to be overrided in the
227
      // subclasses.
234 228
      virtual void erase(const std::vector<Item>& items) = 0;
235 229

	
236
      /// \brief The member function to notificate the observer about the
237
      /// container is built.
238
      ///
239
      /// The build() member function notificates the observer about the
240
      /// container is built from an empty container. It have to be
241
      /// overrided in the subclasses.
242

	
230
      // \brief The member function to notificate the observer about the
231
      // container is built.
232
      //
233
      // The build() member function notificates the observer about the
234
      // container is built from an empty container. It have to be
235
      // overrided in the subclasses.
243 236
      virtual void build() = 0;
244 237

	
245
      /// \brief The member function to notificate the observer about all
246
      /// items are erased from the container.
247
      ///
248
      /// The clear() member function notificates the observer about all
249
      /// items are erased from the container. It have to be overrided in
250
      /// the subclasses.
238
      // \brief The member function to notificate the observer about all
239
      // items are erased from the container.
240
      //
241
      // The clear() member function notificates the observer about all
242
      // items are erased from the container. It have to be overrided in
243
      // the subclasses.
251 244
      virtual void clear() = 0;
252 245

	
253 246
    };
254 247

	
255 248
  protected:
256 249

	
257 250
    const Container* container;
258 251

	
259 252
    typedef std::list<ObserverBase*> Observers;
260 253
    Observers _observers;
261 254

	
262 255

	
263 256
  public:
264 257

	
265
    /// \brief Default constructor.
266
    ///
267
    /// The default constructor of the AlterationNotifier.
268
    /// It creates an empty notifier.
258
    // \brief Default constructor.
259
    //
260
    // The default constructor of the AlterationNotifier.
261
    // It creates an empty notifier.
269 262
    AlterationNotifier()
270 263
      : container(0) {}
271 264

	
272
    /// \brief Constructor.
273
    ///
274
    /// Constructor with the observed container parameter.
265
    // \brief Constructor.
266
    //
267
    // Constructor with the observed container parameter.
275 268
    AlterationNotifier(const Container& _container)
276 269
      : container(&_container) {}
277 270

	
278
    /// \brief Copy Constructor of the AlterationNotifier.
279
    ///
280
    /// Copy constructor of the AlterationNotifier.
281
    /// It creates only an empty notifier because the copiable
282
    /// notifier's observers have to be registered still into that notifier.
271
    // \brief Copy Constructor of the AlterationNotifier.
272
    //
273
    // Copy constructor of the AlterationNotifier.
274
    // It creates only an empty notifier because the copiable
275
    // notifier's observers have to be registered still into that notifier.
283 276
    AlterationNotifier(const AlterationNotifier& _notifier)
284 277
      : container(_notifier.container) {}
285 278

	
286
    /// \brief Destructor.
287
    ///
288
    /// Destructor of the AlterationNotifier.
289
    ///
279
    // \brief Destructor.
280
    //
281
    // Destructor of the AlterationNotifier.
290 282
    ~AlterationNotifier() {
291 283
      typename Observers::iterator it;
292 284
      for (it = _observers.begin(); it != _observers.end(); ++it) {
293 285
        (*it)->_notifier = 0;
294 286
      }
295 287
    }
296 288

	
297
    /// \brief Sets the container.
298
    ///
299
    /// Sets the container.
289
    // \brief Sets the container.
290
    //
291
    // Sets the container.
300 292
    void setContainer(const Container& _container) {
301 293
      container = &_container;
302 294
    }
303 295

	
304 296
  protected:
305 297

	
306 298
    AlterationNotifier& operator=(const AlterationNotifier&);
307 299

	
308 300
  public:
309 301

	
310

	
311

	
312
    /// \brief First item in the container.
313
    ///
314
    /// Returns the first item in the container. It is
315
    /// for start the iteration on the container.
302
    // \brief First item in the container.
303
    //
304
    // Returns the first item in the container. It is
305
    // for start the iteration on the container.
316 306
    void first(Item& item) const {
317 307
      container->first(item);
318 308
    }
319 309

	
320
    /// \brief Next item in the container.
321
    ///
322
    /// Returns the next item in the container. It is
323
    /// for iterate on the container.
310
    // \brief Next item in the container.
311
    //
312
    // Returns the next item in the container. It is
313
    // for iterate on the container.
324 314
    void next(Item& item) const {
325 315
      container->next(item);
326 316
    }
327 317

	
328
    /// \brief Returns the id of the item.
329
    ///
330
    /// Returns the id of the item provided by the container.
318
    // \brief Returns the id of the item.
319
    //
320
    // Returns the id of the item provided by the container.
331 321
    int id(const Item& item) const {
332 322
      return container->id(item);
333 323
    }
334 324

	
335
    /// \brief Returns the maximum id of the container.
336
    ///
337
    /// Returns the maximum id of the container.
325
    // \brief Returns the maximum id of the container.
326
    //
327
    // Returns the maximum id of the container.
338 328
    int maxId() const {
339 329
      return container->maxId(Item());
340 330
    }
341 331

	
342 332
  protected:
343 333

	
344 334
    void attach(ObserverBase& observer) {
345 335
      observer._index = _observers.insert(_observers.begin(), &observer);
346 336
      observer._notifier = this;
347 337
    }
348 338

	
349 339
    void detach(ObserverBase& observer) {
350 340
      _observers.erase(observer._index);
351 341
      observer._index = _observers.end();
352 342
      observer._notifier = 0;
353 343
    }
354 344

	
355 345
  public:
356 346

	
357
    /// \brief Notifies all the registed observers about an item added to
358
    /// the container.
359
    ///
360
    /// It notifies all the registed observers about an item added to
361
    /// the container.
362
    ///
347
    // \brief Notifies all the registed observers about an item added to
348
    // the container.
349
    //
350
    // It notifies all the registed observers about an item added to
351
    // the container.
363 352
    void add(const Item& item) {
364 353
      typename Observers::reverse_iterator it;
365 354
      try {
366 355
        for (it = _observers.rbegin(); it != _observers.rend(); ++it) {
367 356
          (*it)->add(item);
368 357
        }
369 358
      } catch (...) {
370 359
        typename Observers::iterator jt;
371 360
        for (jt = it.base(); jt != _observers.end(); ++jt) {
372 361
          (*jt)->erase(item);
373 362
        }
374 363
        throw;
375 364
      }
376 365
    }
377 366

	
378
    /// \brief Notifies all the registed observers about more item added to
379
    /// the container.
380
    ///
381
    /// It notifies all the registed observers about more item added to
382
    /// the container.
383
    ///
367
    // \brief Notifies all the registed observers about more item added to
368
    // the container.
369
    //
370
    // It notifies all the registed observers about more item added to
371
    // the container.
384 372
    void add(const std::vector<Item>& items) {
385 373
      typename Observers::reverse_iterator it;
386 374
      try {
387 375
        for (it = _observers.rbegin(); it != _observers.rend(); ++it) {
388 376
          (*it)->add(items);
389 377
        }
390 378
      } catch (...) {
391 379
        typename Observers::iterator jt;
392 380
        for (jt = it.base(); jt != _observers.end(); ++jt) {
393 381
          (*jt)->erase(items);
394 382
        }
395 383
        throw;
396 384
      }
397 385
    }
398 386

	
399
    /// \brief Notifies all the registed observers about an item erased from
400
    /// the container.
401
    ///
402
    /// It notifies all the registed observers about an item erased from
403
    /// the container.
404
    ///
387
    // \brief Notifies all the registed observers about an item erased from
388
    // the container.
389
    //
390
    // It notifies all the registed observers about an item erased from
391
    // the container.
405 392
    void erase(const Item& item) throw() {
406 393
      typename Observers::iterator it = _observers.begin();
407 394
      while (it != _observers.end()) {
408 395
        try {
409 396
          (*it)->erase(item);
410 397
          ++it;
411 398
        } catch (const ImmediateDetach&) {
412 399
          (*it)->_index = _observers.end();
413 400
          (*it)->_notifier = 0;
414 401
          it = _observers.erase(it);
415 402
        }
416 403
      }
417 404
    }
418 405

	
419
    /// \brief Notifies all the registed observers about more item erased
420
    /// from the container.
421
    ///
422
    /// It notifies all the registed observers about more item erased from
423
    /// the container.
424
    ///
406
    // \brief Notifies all the registed observers about more item erased
407
    // from the container.
408
    //
409
    // It notifies all the registed observers about more item erased from
410
    // the container.
425 411
    void erase(const std::vector<Item>& items) {
426 412
      typename Observers::iterator it = _observers.begin();
427 413
      while (it != _observers.end()) {
428 414
        try {
429 415
          (*it)->erase(items);
430 416
          ++it;
431 417
        } catch (const ImmediateDetach&) {
432 418
          (*it)->_index = _observers.end();
433 419
          (*it)->_notifier = 0;
434 420
          it = _observers.erase(it);
435 421
        }
436 422
      }
437 423
    }
438 424

	
439
    /// \brief Notifies all the registed observers about the container is
440
    /// built.
441
    ///
442
    /// Notifies all the registed observers about the container is built
443
    /// from an empty container.
425
    // \brief Notifies all the registed observers about the container is
426
    // built.
427
    //
428
    // Notifies all the registed observers about the container is built
429
    // from an empty container.
444 430
    void build() {
445 431
      typename Observers::reverse_iterator it;
446 432
      try {
447 433
        for (it = _observers.rbegin(); it != _observers.rend(); ++it) {
448 434
          (*it)->build();
449 435
        }
450 436
      } catch (...) {
451 437
        typename Observers::iterator jt;
452 438
        for (jt = it.base(); jt != _observers.end(); ++jt) {
453 439
          (*jt)->clear();
454 440
        }
455 441
        throw;
456 442
      }
457 443
    }
458 444

	
459
    /// \brief Notifies all the registed observers about all items are
460
    /// erased.
461
    ///
462
    /// Notifies all the registed observers about all items are erased
463
    /// from the container.
445
    // \brief Notifies all the registed observers about all items are
446
    // erased.
447
    //
448
    // Notifies all the registed observers about all items are erased
449
    // from the container.
464 450
    void clear() {
465 451
      typename Observers::iterator it = _observers.begin();
466 452
      while (it != _observers.end()) {
467 453
        try {
468 454
          (*it)->clear();
469 455
          ++it;
470 456
        } catch (const ImmediateDetach&) {
471 457
          (*it)->_index = _observers.end();
472 458
          (*it)->_notifier = 0;
473 459
          it = _observers.erase(it);
474 460
        }
475 461
      }
476 462
    }
477 463
  };
478 464

	
479 465
}
480 466

	
481 467
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_ARRAY_MAP_H
20 20
#define LEMON_BITS_ARRAY_MAP_H
21 21

	
22 22
#include <memory>
23 23

	
24 24
#include <lemon/bits/traits.h>
25 25
#include <lemon/bits/alteration_notifier.h>
26 26
#include <lemon/concept_check.h>
27 27
#include <lemon/concepts/maps.h>
28 28

	
29
/// \ingroup graphbits
30
/// \file
31
/// \brief Graph map based on the array storage.
29
// \ingroup graphbits
30
// \file
31
// \brief Graph map based on the array storage.
32 32

	
33 33
namespace lemon {
34 34

	
35
  /// \ingroup graphbits
36
  ///
37
  /// \brief Graph map based on the array storage.
38
  ///
39
  /// The ArrayMap template class is graph map structure what
40
  /// automatically updates the map when a key is added to or erased from
41
  /// the map. This map uses the allocators to implement
42
  /// the container functionality.
43
  ///
44
  /// The template parameters are the Graph the current Item type and
45
  /// the Value type of the map.
35
  // \ingroup graphbits
36
  //
37
  // \brief Graph map based on the array storage.
38
  //
39
  // The ArrayMap template class is graph map structure what
40
  // automatically updates the map when a key is added to or erased from
41
  // the map. This map uses the allocators to implement
42
  // the container functionality.
43
  //
44
  // The template parameters are the Graph the current Item type and
45
  // the Value type of the map.
46 46
  template <typename _Graph, typename _Item, typename _Value>
47 47
  class ArrayMap
48 48
    : public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
49 49
  public:
50
    /// The graph type of the maps.
50
    // The graph type of the maps.
51 51
    typedef _Graph Graph;
52
    /// The item type of the map.
52
    // The item type of the map.
53 53
    typedef _Item Item;
54
    /// The reference map tag.
54
    // The reference map tag.
55 55
    typedef True ReferenceMapTag;
56 56

	
57
    /// The key type of the maps.
57
    // The key type of the maps.
58 58
    typedef _Item Key;
59
    /// The value type of the map.
59
    // The value type of the map.
60 60
    typedef _Value Value;
61 61

	
62
    /// The const reference type of the map.
62
    // The const reference type of the map.
63 63
    typedef const _Value& ConstReference;
64
    /// The reference type of the map.
64
    // The reference type of the map.
65 65
    typedef _Value& Reference;
66 66

	
67
    /// The notifier type.
67
    // The notifier type.
68 68
    typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier;
69 69

	
70
    /// The MapBase of the Map which imlements the core regisitry function.
70
    // The MapBase of the Map which imlements the core regisitry function.
71 71
    typedef typename Notifier::ObserverBase Parent;
72 72

	
73 73
  private:
74 74
    typedef std::allocator<Value> Allocator;
75 75

	
76 76
  public:
77 77

	
78
    /// \brief Graph initialized map constructor.
79
    ///
80
    /// Graph initialized map constructor.
78
    // \brief Graph initialized map constructor.
79
    //
80
    // Graph initialized map constructor.
81 81
    explicit ArrayMap(const Graph& graph) {
82 82
      Parent::attach(graph.notifier(Item()));
83 83
      allocate_memory();
84 84
      Notifier* nf = Parent::notifier();
85 85
      Item it;
86 86
      for (nf->first(it); it != INVALID; nf->next(it)) {
87 87
        int id = nf->id(it);;
88 88
        allocator.construct(&(values[id]), Value());
89 89
      }
90 90
    }
91 91

	
92
    /// \brief Constructor to use default value to initialize the map.
93
    ///
94
    /// It constructs a map and initialize all of the the map.
92
    // \brief Constructor to use default value to initialize the map.
93
    //
94
    // It constructs a map and initialize all of the the map.
95 95
    ArrayMap(const Graph& graph, const Value& value) {
96 96
      Parent::attach(graph.notifier(Item()));
97 97
      allocate_memory();
98 98
      Notifier* nf = Parent::notifier();
99 99
      Item it;
100 100
      for (nf->first(it); it != INVALID; nf->next(it)) {
101 101
        int id = nf->id(it);;
102 102
        allocator.construct(&(values[id]), value);
103 103
      }
104 104
    }
105 105

	
106 106
  private:
107
    /// \brief Constructor to copy a map of the same map type.
108
    ///
109
    /// Constructor to copy a map of the same map type.
107
    // \brief Constructor to copy a map of the same map type.
108
    //
109
    // Constructor to copy a map of the same map type.
110 110
    ArrayMap(const ArrayMap& copy) : Parent() {
111 111
      if (copy.attached()) {
112 112
        attach(*copy.notifier());
113 113
      }
114 114
      capacity = copy.capacity;
115 115
      if (capacity == 0) return;
116 116
      values = allocator.allocate(capacity);
117 117
      Notifier* nf = Parent::notifier();
118 118
      Item it;
119 119
      for (nf->first(it); it != INVALID; nf->next(it)) {
120 120
        int id = nf->id(it);;
121 121
        allocator.construct(&(values[id]), copy.values[id]);
122 122
      }
123 123
    }
124 124

	
125
    /// \brief Assign operator.
126
    ///
127
    /// This operator assigns for each item in the map the
128
    /// value mapped to the same item in the copied map.
129
    /// The parameter map should be indiced with the same
130
    /// itemset because this assign operator does not change
131
    /// the container of the map.
125
    // \brief Assign operator.
126
    //
127
    // This operator assigns for each item in the map the
128
    // value mapped to the same item in the copied map.
129
    // The parameter map should be indiced with the same
130
    // itemset because this assign operator does not change
131
    // the container of the map.
132 132
    ArrayMap& operator=(const ArrayMap& cmap) {
133 133
      return operator=<ArrayMap>(cmap);
134 134
    }
135 135

	
136 136

	
137
    /// \brief Template assign operator.
138
    ///
139
    /// The given parameter should be conform to the ReadMap
140
    /// concecpt and could be indiced by the current item set of
141
    /// the NodeMap. In this case the value for each item
142
    /// is assigned by the value of the given ReadMap.
137
    // \brief Template assign operator.
138
    //
139
    // The given parameter should be conform to the ReadMap
140
    // concecpt and could be indiced by the current item set of
141
    // the NodeMap. In this case the value for each item
142
    // is assigned by the value of the given ReadMap.
143 143
    template <typename CMap>
144 144
    ArrayMap& operator=(const CMap& cmap) {
145 145
      checkConcept<concepts::ReadMap<Key, _Value>, CMap>();
146 146
      const typename Parent::Notifier* nf = Parent::notifier();
147 147
      Item it;
148 148
      for (nf->first(it); it != INVALID; nf->next(it)) {
149 149
        set(it, cmap[it]);
150 150
      }
151 151
      return *this;
152 152
    }
153 153

	
154 154
  public:
155
    /// \brief The destructor of the map.
156
    ///
157
    /// The destructor of the map.
155
    // \brief The destructor of the map.
156
    //
157
    // The destructor of the map.
158 158
    virtual ~ArrayMap() {
159 159
      if (attached()) {
160 160
        clear();
161 161
        detach();
162 162
      }
163 163
    }
164 164

	
165 165
  protected:
166 166

	
167 167
    using Parent::attach;
168 168
    using Parent::detach;
169 169
    using Parent::attached;
170 170

	
171 171
  public:
172 172

	
173
    /// \brief The subscript operator.
174
    ///
175
    /// The subscript operator. The map can be subscripted by the
176
    /// actual keys of the graph.
173
    // \brief The subscript operator.
174
    //
175
    // The subscript operator. The map can be subscripted by the
176
    // actual keys of the graph.
177 177
    Value& operator[](const Key& key) {
178 178
      int id = Parent::notifier()->id(key);
179 179
      return values[id];
180 180
    }
181 181

	
182
    /// \brief The const subscript operator.
183
    ///
184
    /// The const subscript operator. The map can be subscripted by the
185
    /// actual keys of the graph.
182
    // \brief The const subscript operator.
183
    //
184
    // The const subscript operator. The map can be subscripted by the
185
    // actual keys of the graph.
186 186
    const Value& operator[](const Key& key) const {
187 187
      int id = Parent::notifier()->id(key);
188 188
      return values[id];
189 189
    }
190 190

	
191
    /// \brief Setter function of the map.
192
    ///
193
    /// Setter function of the map. Equivalent with map[key] = val.
194
    /// This is a compatibility feature with the not dereferable maps.
191
    // \brief Setter function of the map.
192
    //
193
    // Setter function of the map. Equivalent with map[key] = val.
194
    // This is a compatibility feature with the not dereferable maps.
195 195
    void set(const Key& key, const Value& val) {
196 196
      (*this)[key] = val;
197 197
    }
198 198

	
199 199
  protected:
200 200

	
201
    /// \brief Adds a new key to the map.
202
    ///
203
    /// It adds a new key to the map. It called by the observer notifier
204
    /// and it overrides the add() member function of the observer base.
201
    // \brief Adds a new key to the map.
202
    //
203
    // It adds a new key to the map. It called by the observer notifier
204
    // and it overrides the add() member function of the observer base.
205 205
    virtual void add(const Key& key) {
206 206
      Notifier* nf = Parent::notifier();
207 207
      int id = nf->id(key);
208 208
      if (id >= capacity) {
209 209
        int new_capacity = (capacity == 0 ? 1 : capacity);
210 210
        while (new_capacity <= id) {
211 211
          new_capacity <<= 1;
212 212
        }
213 213
        Value* new_values = allocator.allocate(new_capacity);
214 214
        Item it;
215 215
        for (nf->first(it); it != INVALID; nf->next(it)) {
216 216
          int jd = nf->id(it);;
217 217
          if (id != jd) {
218 218
            allocator.construct(&(new_values[jd]), values[jd]);
219 219
            allocator.destroy(&(values[jd]));
220 220
          }
221 221
        }
222 222
        if (capacity != 0) allocator.deallocate(values, capacity);
223 223
        values = new_values;
224 224
        capacity = new_capacity;
225 225
      }
226 226
      allocator.construct(&(values[id]), Value());
227 227
    }
228 228

	
229
    /// \brief Adds more new keys to the map.
230
    ///
231
    /// It adds more new keys to the map. It called by the observer notifier
232
    /// and it overrides the add() member function of the observer base.
229
    // \brief Adds more new keys to the map.
230
    //
231
    // It adds more new keys to the map. It called by the observer notifier
232
    // and it overrides the add() member function of the observer base.
233 233
    virtual void add(const std::vector<Key>& keys) {
234 234
      Notifier* nf = Parent::notifier();
235 235
      int max_id = -1;
236 236
      for (int i = 0; i < int(keys.size()); ++i) {
237 237
        int id = nf->id(keys[i]);
238 238
        if (id > max_id) {
239 239
          max_id = id;
240 240
        }
241 241
      }
242 242
      if (max_id >= capacity) {
243 243
        int new_capacity = (capacity == 0 ? 1 : capacity);
244 244
        while (new_capacity <= max_id) {
245 245
          new_capacity <<= 1;
246 246
        }
247 247
        Value* new_values = allocator.allocate(new_capacity);
248 248
        Item it;
249 249
        for (nf->first(it); it != INVALID; nf->next(it)) {
250 250
          int id = nf->id(it);
251 251
          bool found = false;
252 252
          for (int i = 0; i < int(keys.size()); ++i) {
253 253
            int jd = nf->id(keys[i]);
254 254
            if (id == jd) {
255 255
              found = true;
256 256
              break;
257 257
            }
258 258
          }
259 259
          if (found) continue;
260 260
          allocator.construct(&(new_values[id]), values[id]);
261 261
          allocator.destroy(&(values[id]));
262 262
        }
263 263
        if (capacity != 0) allocator.deallocate(values, capacity);
264 264
        values = new_values;
265 265
        capacity = new_capacity;
266 266
      }
267 267
      for (int i = 0; i < int(keys.size()); ++i) {
268 268
        int id = nf->id(keys[i]);
269 269
        allocator.construct(&(values[id]), Value());
270 270
      }
271 271
    }
272 272

	
273
    /// \brief Erase a key from the map.
274
    ///
275
    /// Erase a key from the map. It called by the observer notifier
276
    /// and it overrides the erase() member function of the observer base.
273
    // \brief Erase a key from the map.
274
    //
275
    // Erase a key from the map. It called by the observer notifier
276
    // and it overrides the erase() member function of the observer base.
277 277
    virtual void erase(const Key& key) {
278 278
      int id = Parent::notifier()->id(key);
279 279
      allocator.destroy(&(values[id]));
280 280
    }
281 281

	
282
    /// \brief Erase more keys from the map.
283
    ///
284
    /// Erase more keys from the map. It called by the observer notifier
285
    /// and it overrides the erase() member function of the observer base.
282
    // \brief Erase more keys from the map.
283
    //
284
    // Erase more keys from the map. It called by the observer notifier
285
    // and it overrides the erase() member function of the observer base.
286 286
    virtual void erase(const std::vector<Key>& keys) {
287 287
      for (int i = 0; i < int(keys.size()); ++i) {
288 288
        int id = Parent::notifier()->id(keys[i]);
289 289
        allocator.destroy(&(values[id]));
290 290
      }
291 291
    }
292 292

	
293
    /// \brief Buildes the map.
294
    ///
295
    /// It buildes the map. It called by the observer notifier
296
    /// and it overrides the build() member function of the observer base.
293
    // \brief Buildes the map.
294
    //
295
    // It buildes the map. It called by the observer notifier
296
    // and it overrides the build() member function of the observer base.
297 297
    virtual void build() {
298 298
      Notifier* nf = Parent::notifier();
299 299
      allocate_memory();
300 300
      Item it;
301 301
      for (nf->first(it); it != INVALID; nf->next(it)) {
302 302
        int id = nf->id(it);;
303 303
        allocator.construct(&(values[id]), Value());
304 304
      }
305 305
    }
306 306

	
307
    /// \brief Clear the map.
308
    ///
309
    /// It erase all items from the map. It called by the observer notifier
310
    /// and it overrides the clear() member function of the observer base.
307
    // \brief Clear the map.
308
    //
309
    // It erase all items from the map. It called by the observer notifier
310
    // and it overrides the clear() member function of the observer base.
311 311
    virtual void clear() {
312 312
      Notifier* nf = Parent::notifier();
313 313
      if (capacity != 0) {
314 314
        Item it;
315 315
        for (nf->first(it); it != INVALID; nf->next(it)) {
316 316
          int id = nf->id(it);
317 317
          allocator.destroy(&(values[id]));
318 318
        }
319 319
        allocator.deallocate(values, capacity);
320 320
        capacity = 0;
321 321
      }
322 322
    }
323 323

	
324 324
  private:
325 325

	
326 326
    void allocate_memory() {
327 327
      int max_id = Parent::notifier()->maxId();
328 328
      if (max_id == -1) {
329 329
        capacity = 0;
330 330
        values = 0;
331 331
        return;
332 332
      }
333 333
      capacity = 1;
334 334
      while (capacity <= max_id) {
335 335
        capacity <<= 1;
336 336
      }
337 337
      values = allocator.allocate(capacity);
338 338
    }
339 339

	
340 340
    int capacity;
341 341
    Value* values;
342 342
    Allocator allocator;
343 343

	
344 344
  };
345 345

	
346 346
}
347 347

	
348 348
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_BASE_EXTENDER_H
20 20
#define LEMON_BITS_BASE_EXTENDER_H
21 21

	
22 22
#include <lemon/core.h>
23 23
#include <lemon/error.h>
24 24

	
25 25
#include <lemon/bits/map_extender.h>
26 26
#include <lemon/bits/default_map.h>
27 27

	
28 28
#include <lemon/concept_check.h>
29 29
#include <lemon/concepts/maps.h>
30 30

	
31
///\ingroup digraphbits
32
///\file
33
///\brief Extenders for the digraph types
31
//\ingroup digraphbits
32
//\file
33
//\brief Extenders for the digraph types
34 34
namespace lemon {
35 35

	
36
  /// \ingroup digraphbits
37
  ///
38
  /// \brief BaseDigraph to BaseGraph extender
36
  // \ingroup digraphbits
37
  //
38
  // \brief BaseDigraph to BaseGraph extender
39 39
  template <typename Base>
40 40
  class UndirDigraphExtender : public Base {
41 41

	
42 42
  public:
43 43

	
44 44
    typedef Base Parent;
45 45
    typedef typename Parent::Arc Edge;
46 46
    typedef typename Parent::Node Node;
47 47

	
48 48
    typedef True UndirectedTag;
49 49

	
50 50
    class Arc : public Edge {
51 51
      friend class UndirDigraphExtender;
52 52

	
53 53
    protected:
54 54
      bool forward;
55 55

	
56 56
      Arc(const Edge &ue, bool _forward) :
57 57
        Edge(ue), forward(_forward) {}
58 58

	
59 59
    public:
60 60
      Arc() {}
61 61

	
62 62
      // Invalid arc constructor
63 63
      Arc(Invalid i) : Edge(i), forward(true) {}
64 64

	
65 65
      bool operator==(const Arc &that) const {
66 66
        return forward==that.forward && Edge(*this)==Edge(that);
67 67
      }
68 68
      bool operator!=(const Arc &that) const {
69 69
        return forward!=that.forward || Edge(*this)!=Edge(that);
70 70
      }
71 71
      bool operator<(const Arc &that) const {
72 72
        return forward<that.forward ||
73 73
          (!(that.forward<forward) && Edge(*this)<Edge(that));
74 74
      }
75 75
    };
76 76

	
77
    /// First node of the edge
77
    // First node of the edge
78 78
    Node u(const Edge &e) const {
79 79
      return Parent::source(e);
80 80
    }
81 81

	
82
    /// Source of the given arc
82
    // Source of the given arc
83 83
    Node source(const Arc &e) const {
84 84
      return e.forward ? Parent::source(e) : Parent::target(e);
85 85
    }
86 86

	
87
    /// Second node of the edge
87
    // Second node of the edge
88 88
    Node v(const Edge &e) const {
89 89
      return Parent::target(e);
90 90
    }
91 91

	
92
    /// Target of the given arc
92
    // Target of the given arc
93 93
    Node target(const Arc &e) const {
94 94
      return e.forward ? Parent::target(e) : Parent::source(e);
95 95
    }
96 96

	
97
    /// \brief Directed arc from an edge.
98
    ///
99
    /// Returns a directed arc corresponding to the specified edge.
100
    /// If the given bool is true, the first node of the given edge and
101
    /// the source node of the returned arc are the same.
97
    // \brief Directed arc from an edge.
98
    //
99
    // Returns a directed arc corresponding to the specified edge.
100
    // If the given bool is true, the first node of the given edge and
101
    // the source node of the returned arc are the same.
102 102
    static Arc direct(const Edge &e, bool d) {
103 103
      return Arc(e, d);
104 104
    }
105 105

	
106
    /// Returns whether the given directed arc has the same orientation
107
    /// as the corresponding edge.
106
    // Returns whether the given directed arc has the same orientation
107
    // as the corresponding edge.
108 108
    static bool direction(const Arc &a) { return a.forward; }
109 109

	
110 110
    using Parent::first;
111 111
    using Parent::next;
112 112

	
113 113
    void first(Arc &e) const {
114 114
      Parent::first(e);
115 115
      e.forward=true;
116 116
    }
117 117

	
118 118
    void next(Arc &e) const {
119 119
      if( e.forward ) {
120 120
        e.forward = false;
121 121
      }
122 122
      else {
123 123
        Parent::next(e);
124 124
        e.forward = true;
125 125
      }
126 126
    }
127 127

	
128 128
    void firstOut(Arc &e, const Node &n) const {
129 129
      Parent::firstIn(e,n);
130 130
      if( Edge(e) != INVALID ) {
131 131
        e.forward = false;
132 132
      }
133 133
      else {
134 134
        Parent::firstOut(e,n);
135 135
        e.forward = true;
136 136
      }
137 137
    }
138 138
    void nextOut(Arc &e) const {
139 139
      if( ! e.forward ) {
140 140
        Node n = Parent::target(e);
141 141
        Parent::nextIn(e);
142 142
        if( Edge(e) == INVALID ) {
143 143
          Parent::firstOut(e, n);
144 144
          e.forward = true;
145 145
        }
146 146
      }
147 147
      else {
148 148
        Parent::nextOut(e);
149 149
      }
150 150
    }
151 151

	
152 152
    void firstIn(Arc &e, const Node &n) const {
153 153
      Parent::firstOut(e,n);
154 154
      if( Edge(e) != INVALID ) {
155 155
        e.forward = false;
156 156
      }
157 157
      else {
158 158
        Parent::firstIn(e,n);
159 159
        e.forward = true;
160 160
      }
161 161
    }
162 162
    void nextIn(Arc &e) const {
163 163
      if( ! e.forward ) {
164 164
        Node n = Parent::source(e);
165 165
        Parent::nextOut(e);
166 166
        if( Edge(e) == INVALID ) {
167 167
          Parent::firstIn(e, n);
168 168
          e.forward = true;
169 169
        }
170 170
      }
171 171
      else {
172 172
        Parent::nextIn(e);
173 173
      }
174 174
    }
175 175

	
176 176
    void firstInc(Edge &e, bool &d, const Node &n) const {
177 177
      d = true;
178 178
      Parent::firstOut(e, n);
179 179
      if (e != INVALID) return;
180 180
      d = false;
181 181
      Parent::firstIn(e, n);
182 182
    }
183 183

	
184 184
    void nextInc(Edge &e, bool &d) const {
185 185
      if (d) {
186 186
        Node s = Parent::source(e);
187 187
        Parent::nextOut(e);
188 188
        if (e != INVALID) return;
189 189
        d = false;
190 190
        Parent::firstIn(e, s);
191 191
      } else {
192 192
        Parent::nextIn(e);
193 193
      }
194 194
    }
195 195

	
196 196
    Node nodeFromId(int ix) const {
197 197
      return Parent::nodeFromId(ix);
198 198
    }
199 199

	
200 200
    Arc arcFromId(int ix) const {
201 201
      return direct(Parent::arcFromId(ix >> 1), bool(ix & 1));
202 202
    }
203 203

	
204 204
    Edge edgeFromId(int ix) const {
205 205
      return Parent::arcFromId(ix);
206 206
    }
207 207

	
208 208
    int id(const Node &n) const {
209 209
      return Parent::id(n);
210 210
    }
211 211

	
212 212
    int id(const Edge &e) const {
213 213
      return Parent::id(e);
214 214
    }
215 215

	
216 216
    int id(const Arc &e) const {
217 217
      return 2 * Parent::id(e) + int(e.forward);
218 218
    }
219 219

	
220 220
    int maxNodeId() const {
221 221
      return Parent::maxNodeId();
222 222
    }
223 223

	
224 224
    int maxArcId() const {
225 225
      return 2 * Parent::maxArcId() + 1;
226 226
    }
227 227

	
228 228
    int maxEdgeId() const {
229 229
      return Parent::maxArcId();
230 230
    }
231 231

	
232 232
    int arcNum() const {
233 233
      return 2 * Parent::arcNum();
234 234
    }
235 235

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BEZIER_H
20 20
#define LEMON_BEZIER_H
21 21

	
22
///\ingroup misc
23
///\file
24
///\brief Classes to compute with Bezier curves.
25
///
26
///Up to now this file is used internally by \ref graph_to_eps.h
22
//\ingroup misc
23
//\file
24
//\brief Classes to compute with Bezier curves.
25
//
26
//Up to now this file is used internally by \ref graph_to_eps.h
27 27

	
28 28
#include<lemon/dim2.h>
29 29

	
30 30
namespace lemon {
31 31
  namespace dim2 {
32 32

	
33 33
class BezierBase {
34 34
public:
35 35
  typedef lemon::dim2::Point<double> Point;
36 36
protected:
37 37
  static Point conv(Point x,Point y,double t) {return (1-t)*x+t*y;}
38 38
};
39 39

	
40 40
class Bezier1 : public BezierBase
41 41
{
42 42
public:
43 43
  Point p1,p2;
44 44

	
45 45
  Bezier1() {}
46 46
  Bezier1(Point _p1, Point _p2) :p1(_p1), p2(_p2) {}
47 47

	
48 48
  Point operator()(double t) const
49 49
  {
50 50
    //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
51 51
    return conv(p1,p2,t);
52 52
  }
53 53
  Bezier1 before(double t) const
54 54
  {
55 55
    return Bezier1(p1,conv(p1,p2,t));
56 56
  }
57 57

	
58 58
  Bezier1 after(double t) const
59 59
  {
60 60
    return Bezier1(conv(p1,p2,t),p2);
61 61
  }
62 62

	
63 63
  Bezier1 revert() const { return Bezier1(p2,p1);}
64 64
  Bezier1 operator()(double a,double b) const { return before(b).after(a/b); }
65 65
  Point grad() const { return p2-p1; }
66 66
  Point norm() const { return rot90(p2-p1); }
67 67
  Point grad(double) const { return grad(); }
68 68
  Point norm(double t) const { return rot90(grad(t)); }
69 69
};
70 70

	
71 71
class Bezier2 : public BezierBase
72 72
{
73 73
public:
74 74
  Point p1,p2,p3;
75 75

	
76 76
  Bezier2() {}
77 77
  Bezier2(Point _p1, Point _p2, Point _p3) :p1(_p1), p2(_p2), p3(_p3) {}
78 78
  Bezier2(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,.5)), p3(b.p2) {}
79 79
  Point operator()(double t) const
80 80
  {
81 81
    //    return conv(conv(p1,p2,t),conv(p2,p3,t),t);
82 82
    return ((1-t)*(1-t))*p1+(2*(1-t)*t)*p2+(t*t)*p3;
83 83
  }
84 84
  Bezier2 before(double t) const
85 85
  {
86 86
    Point q(conv(p1,p2,t));
87 87
    Point r(conv(p2,p3,t));
88 88
    return Bezier2(p1,q,conv(q,r,t));
89 89
  }
90 90

	
91 91
  Bezier2 after(double t) const
92 92
  {
93 93
    Point q(conv(p1,p2,t));
94 94
    Point r(conv(p2,p3,t));
95 95
    return Bezier2(conv(q,r,t),r,p3);
96 96
  }
97 97
  Bezier2 revert() const { return Bezier2(p3,p2,p1);}
98 98
  Bezier2 operator()(double a,double b) const { return before(b).after(a/b); }
99 99
  Bezier1 grad() const { return Bezier1(2.0*(p2-p1),2.0*(p3-p2)); }
100 100
  Bezier1 norm() const { return Bezier1(2.0*rot90(p2-p1),2.0*rot90(p3-p2)); }
101 101
  Point grad(double t) const { return grad()(t); }
102 102
  Point norm(double t) const { return rot90(grad(t)); }
103 103
};
104 104

	
105 105
class Bezier3 : public BezierBase
106 106
{
107 107
public:
108 108
  Point p1,p2,p3,p4;
109 109

	
110 110
  Bezier3() {}
111 111
  Bezier3(Point _p1, Point _p2, Point _p3, Point _p4)
112 112
    : p1(_p1), p2(_p2), p3(_p3), p4(_p4) {}
113 113
  Bezier3(const Bezier1 &b) : p1(b.p1), p2(conv(b.p1,b.p2,1.0/3.0)),
114 114
                              p3(conv(b.p1,b.p2,2.0/3.0)), p4(b.p2) {}
115 115
  Bezier3(const Bezier2 &b) : p1(b.p1), p2(conv(b.p1,b.p2,2.0/3.0)),
116 116
                              p3(conv(b.p2,b.p3,1.0/3.0)), p4(b.p3) {}
117 117

	
118 118
  Point operator()(double t) const
119 119
    {
120 120
      //    return Bezier2(conv(p1,p2,t),conv(p2,p3,t),conv(p3,p4,t))(t);
121 121
      return ((1-t)*(1-t)*(1-t))*p1+(3*t*(1-t)*(1-t))*p2+
122 122
        (3*t*t*(1-t))*p3+(t*t*t)*p4;
123 123
    }
124 124
  Bezier3 before(double t) const
125 125
    {
126 126
      Point p(conv(p1,p2,t));
127 127
      Point q(conv(p2,p3,t));
128 128
      Point r(conv(p3,p4,t));
129 129
      Point a(conv(p,q,t));
130 130
      Point b(conv(q,r,t));
131 131
      Point c(conv(a,b,t));
132 132
      return Bezier3(p1,p,a,c);
133 133
    }
134 134

	
135 135
  Bezier3 after(double t) const
136 136
    {
137 137
      Point p(conv(p1,p2,t));
138 138
      Point q(conv(p2,p3,t));
139 139
      Point r(conv(p3,p4,t));
140 140
      Point a(conv(p,q,t));
141 141
      Point b(conv(q,r,t));
142 142
      Point c(conv(a,b,t));
143 143
      return Bezier3(c,b,r,p4);
144 144
    }
145 145
  Bezier3 revert() const { return Bezier3(p4,p3,p2,p1);}
146 146
  Bezier3 operator()(double a,double b) const { return before(b).after(a/b); }
147 147
  Bezier2 grad() const { return Bezier2(3.0*(p2-p1),3.0*(p3-p2),3.0*(p4-p3)); }
148 148
  Bezier2 norm() const { return Bezier2(3.0*rot90(p2-p1),
149 149
                                  3.0*rot90(p3-p2),
150 150
                                  3.0*rot90(p4-p3)); }
151 151
  Point grad(double t) const { return grad()(t); }
152 152
  Point norm(double t) const { return rot90(grad(t)); }
153 153

	
154 154
  template<class R,class F,class S,class D>
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_DEFAULT_MAP_H
20 20
#define LEMON_BITS_DEFAULT_MAP_H
21 21

	
22

	
23 22
#include <lemon/bits/array_map.h>
24 23
#include <lemon/bits/vector_map.h>
25 24
//#include <lemon/bits/debug_map.h>
26 25

	
27
///\ingroup graphbits
28
///\file
29
///\brief Graph maps that construct and destruct their elements dynamically.
26
//\ingroup graphbits
27
//\file
28
//\brief Graph maps that construct and destruct their elements dynamically.
30 29

	
31 30
namespace lemon {
32 31

	
33 32

	
34 33
  //#ifndef LEMON_USE_DEBUG_MAP
35 34

	
36 35
  template <typename _Graph, typename _Item, typename _Value>
37 36
  struct DefaultMapSelector {
38 37
    typedef ArrayMap<_Graph, _Item, _Value> Map;
39 38
  };
40 39

	
41 40
  // bool
42 41
  template <typename _Graph, typename _Item>
43 42
  struct DefaultMapSelector<_Graph, _Item, bool> {
44 43
    typedef VectorMap<_Graph, _Item, bool> Map;
45 44
  };
46 45

	
47 46
  // char
48 47
  template <typename _Graph, typename _Item>
49 48
  struct DefaultMapSelector<_Graph, _Item, char> {
50 49
    typedef VectorMap<_Graph, _Item, char> Map;
51 50
  };
52 51

	
53 52
  template <typename _Graph, typename _Item>
54 53
  struct DefaultMapSelector<_Graph, _Item, signed char> {
55 54
    typedef VectorMap<_Graph, _Item, signed char> Map;
56 55
  };
57 56

	
58 57
  template <typename _Graph, typename _Item>
59 58
  struct DefaultMapSelector<_Graph, _Item, unsigned char> {
60 59
    typedef VectorMap<_Graph, _Item, unsigned char> Map;
61 60
  };
62 61

	
63 62

	
64 63
  // int
65 64
  template <typename _Graph, typename _Item>
66 65
  struct DefaultMapSelector<_Graph, _Item, signed int> {
67 66
    typedef VectorMap<_Graph, _Item, signed int> Map;
68 67
  };
69 68

	
70 69
  template <typename _Graph, typename _Item>
71 70
  struct DefaultMapSelector<_Graph, _Item, unsigned int> {
72 71
    typedef VectorMap<_Graph, _Item, unsigned int> Map;
73 72
  };
74 73

	
75 74

	
76 75
  // short
77 76
  template <typename _Graph, typename _Item>
78 77
  struct DefaultMapSelector<_Graph, _Item, signed short> {
79 78
    typedef VectorMap<_Graph, _Item, signed short> Map;
80 79
  };
81 80

	
82 81
  template <typename _Graph, typename _Item>
83 82
  struct DefaultMapSelector<_Graph, _Item, unsigned short> {
84 83
    typedef VectorMap<_Graph, _Item, unsigned short> Map;
85 84
  };
86 85

	
87 86

	
88 87
  // long
89 88
  template <typename _Graph, typename _Item>
90 89
  struct DefaultMapSelector<_Graph, _Item, signed long> {
91 90
    typedef VectorMap<_Graph, _Item, signed long> Map;
92 91
  };
93 92

	
94 93
  template <typename _Graph, typename _Item>
95 94
  struct DefaultMapSelector<_Graph, _Item, unsigned long> {
96 95
    typedef VectorMap<_Graph, _Item, unsigned long> Map;
97 96
  };
98 97

	
99 98

	
100 99
#if defined __GNUC__ && !defined __STRICT_ANSI__
101 100

	
102 101
  // long long
103 102
  template <typename _Graph, typename _Item>
104 103
  struct DefaultMapSelector<_Graph, _Item, signed long long> {
105 104
    typedef VectorMap<_Graph, _Item, signed long long> Map;
106 105
  };
107 106

	
108 107
  template <typename _Graph, typename _Item>
109 108
  struct DefaultMapSelector<_Graph, _Item, unsigned long long> {
110 109
    typedef VectorMap<_Graph, _Item, unsigned long long> Map;
111 110
  };
112 111

	
113 112
#endif
114 113

	
115 114

	
116 115
  // float
117 116
  template <typename _Graph, typename _Item>
118 117
  struct DefaultMapSelector<_Graph, _Item, float> {
119 118
    typedef VectorMap<_Graph, _Item, float> Map;
120 119
  };
121 120

	
122 121

	
123 122
  // double
124 123
  template <typename _Graph, typename _Item>
125 124
  struct DefaultMapSelector<_Graph, _Item, double> {
126 125
    typedef VectorMap<_Graph, _Item,  double> Map;
127 126
  };
128 127

	
129 128

	
130 129
  // long double
131 130
  template <typename _Graph, typename _Item>
132 131
  struct DefaultMapSelector<_Graph, _Item, long double> {
133 132
    typedef VectorMap<_Graph, _Item, long double> Map;
134 133
  };
135 134

	
136 135

	
137 136
  // pointer
138 137
  template <typename _Graph, typename _Item, typename _Ptr>
139 138
  struct DefaultMapSelector<_Graph, _Item, _Ptr*> {
140 139
    typedef VectorMap<_Graph, _Item, _Ptr*> Map;
141 140
  };
142 141

	
143 142
// #else
144 143

	
145 144
//   template <typename _Graph, typename _Item, typename _Value>
146 145
//   struct DefaultMapSelector {
147 146
//     typedef DebugMap<_Graph, _Item, _Value> Map;
148 147
//   };
149 148

	
150 149
// #endif
151 150

	
152
  /// \e
151
  // DefaultMap class
153 152
  template <typename _Graph, typename _Item, typename _Value>
154 153
  class DefaultMap
155 154
    : public DefaultMapSelector<_Graph, _Item, _Value>::Map {
156 155
  public:
157 156
    typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent;
158 157
    typedef DefaultMap<_Graph, _Item, _Value> Map;
159 158

	
160 159
    typedef typename Parent::Graph Graph;
161 160
    typedef typename Parent::Value Value;
162 161

	
163 162
    explicit DefaultMap(const Graph& graph) : Parent(graph) {}
164 163
    DefaultMap(const Graph& graph, const Value& value)
165 164
      : Parent(graph, value) {}
166 165

	
167 166
    DefaultMap& operator=(const DefaultMap& cmap) {
168 167
      return operator=<DefaultMap>(cmap);
169 168
    }
170 169

	
171 170
    template <typename CMap>
172 171
    DefaultMap& operator=(const CMap& cmap) {
173 172
      Parent::operator=(cmap);
174 173
      return *this;
175 174
    }
176 175

	
177 176
  };
178 177

	
179 178
}
180 179

	
181 180
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
// This file contains a modified version of the enable_if library from BOOST.
20 20
// See the appropriate copyright notice below.
21 21

	
22 22
// Boost enable_if library
23 23

	
24 24
// Copyright 2003 (c) The Trustees of Indiana University.
25 25

	
26 26
// Use, modification, and distribution is subject to the Boost Software
27 27
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
28 28
// http://www.boost.org/LICENSE_1_0.txt)
29 29

	
30 30
//    Authors: Jaakko Jarvi (jajarvi at osl.iu.edu)
31 31
//             Jeremiah Willcock (jewillco at osl.iu.edu)
32 32
//             Andrew Lumsdaine (lums at osl.iu.edu)
33 33

	
34 34

	
35 35
#ifndef LEMON_BITS_ENABLE_IF_H
36 36
#define LEMON_BITS_ENABLE_IF_H
37 37

	
38
///\file
39
///\brief Miscellaneous basic utilities
38
//\file
39
//\brief Miscellaneous basic utilities
40 40

	
41 41
namespace lemon
42 42
{
43 43

	
44
  /// Basic type for defining "tags". A "YES" condition for \c enable_if.
44
  // Basic type for defining "tags". A "YES" condition for \c enable_if.
45 45

	
46
  /// Basic type for defining "tags". A "YES" condition for \c enable_if.
47
  ///
48
  ///\sa False
46
  // Basic type for defining "tags". A "YES" condition for \c enable_if.
47
  //
48
  //\sa False
49 49
  struct True {
50
    ///\e
50
    //\e
51 51
    static const bool value = true;
52 52
  };
53 53

	
54
  /// Basic type for defining "tags". A "NO" condition for \c enable_if.
54
  // Basic type for defining "tags". A "NO" condition for \c enable_if.
55 55

	
56
  /// Basic type for defining "tags". A "NO" condition for \c enable_if.
57
  ///
58
  ///\sa True
56
  // Basic type for defining "tags". A "NO" condition for \c enable_if.
57
  //
58
  //\sa True
59 59
  struct False {
60
    ///\e
60
    //\e
61 61
    static const bool value = false;
62 62
  };
63 63

	
64 64

	
65 65

	
66 66
  template <typename T>
67 67
  struct Wrap {
68 68
    const T &value;
69 69
    Wrap(const T &t) : value(t) {}
70 70
  };
71 71

	
72 72
  /**************** dummy class to avoid ambiguity ****************/
73 73

	
74 74
  template<int T> struct dummy { dummy(int) {} };
75 75

	
76 76
  /**************** enable_if from BOOST ****************/
77 77

	
78 78
  template <typename Type, typename T = void>
79 79
  struct exists {
80 80
    typedef T type;
81 81
  };
82 82

	
83 83

	
84 84
  template <bool B, class T = void>
85 85
  struct enable_if_c {
86 86
    typedef T type;
87 87
  };
88 88

	
89 89
  template <class T>
90 90
  struct enable_if_c<false, T> {};
91 91

	
92 92
  template <class Cond, class T = void>
93 93
  struct enable_if : public enable_if_c<Cond::value, T> {};
94 94

	
95 95
  template <bool B, class T>
96 96
  struct lazy_enable_if_c {
97 97
    typedef typename T::type type;
98 98
  };
99 99

	
100 100
  template <class T>
101 101
  struct lazy_enable_if_c<false, T> {};
102 102

	
103 103
  template <class Cond, class T>
104 104
  struct lazy_enable_if : public lazy_enable_if_c<Cond::value, T> {};
105 105

	
106 106

	
107 107
  template <bool B, class T = void>
108 108
  struct disable_if_c {
109 109
    typedef T type;
110 110
  };
111 111

	
112 112
  template <class T>
113 113
  struct disable_if_c<true, T> {};
114 114

	
115 115
  template <class Cond, class T = void>
116 116
  struct disable_if : public disable_if_c<Cond::value, T> {};
117 117

	
118 118
  template <bool B, class T>
119 119
  struct lazy_disable_if_c {
120 120
    typedef typename T::type type;
121 121
  };
122 122

	
123 123
  template <class T>
124 124
  struct lazy_disable_if_c<true, T> {};
125 125

	
126 126
  template <class Cond, class T>
127 127
  struct lazy_disable_if : public lazy_disable_if_c<Cond::value, T> {};
128 128

	
129 129
} // namespace lemon
130 130

	
131 131
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_GRAPH_EXTENDER_H
20 20
#define LEMON_BITS_GRAPH_EXTENDER_H
21 21

	
22 22
#include <lemon/core.h>
23 23

	
24 24
#include <lemon/bits/map_extender.h>
25 25
#include <lemon/bits/default_map.h>
26 26

	
27 27
#include <lemon/concept_check.h>
28 28
#include <lemon/concepts/maps.h>
29 29

	
30
///\ingroup graphbits
31
///\file
32
///\brief Extenders for the digraph types
30
//\ingroup graphbits
31
//\file
32
//\brief Extenders for the digraph types
33 33
namespace lemon {
34 34

	
35
  /// \ingroup graphbits
36
  ///
37
  /// \brief Extender for the Digraphs
35
  // \ingroup graphbits
36
  //
37
  // \brief Extender for the Digraphs
38 38
  template <typename Base>
39 39
  class DigraphExtender : public Base {
40 40
  public:
41 41

	
42 42
    typedef Base Parent;
43 43
    typedef DigraphExtender Digraph;
44 44

	
45 45
    // Base extensions
46 46

	
47 47
    typedef typename Parent::Node Node;
48 48
    typedef typename Parent::Arc Arc;
49 49

	
50 50
    int maxId(Node) const {
51 51
      return Parent::maxNodeId();
52 52
    }
53 53

	
54 54
    int maxId(Arc) const {
55 55
      return Parent::maxArcId();
56 56
    }
57 57

	
58 58
    Node fromId(int id, Node) const {
59 59
      return Parent::nodeFromId(id);
60 60
    }
61 61

	
62 62
    Arc fromId(int id, Arc) const {
63 63
      return Parent::arcFromId(id);
64 64
    }
65 65

	
66 66
    Node oppositeNode(const Node &node, const Arc &arc) const {
67 67
      if (node == Parent::source(arc))
68 68
        return Parent::target(arc);
69 69
      else if(node == Parent::target(arc))
70 70
        return Parent::source(arc);
71 71
      else
72 72
        return INVALID;
73 73
    }
74 74

	
75 75
    // Alterable extension
76 76

	
77 77
    typedef AlterationNotifier<DigraphExtender, Node> NodeNotifier;
78 78
    typedef AlterationNotifier<DigraphExtender, Arc> ArcNotifier;
79 79

	
80 80

	
81 81
  protected:
82 82

	
83 83
    mutable NodeNotifier node_notifier;
84 84
    mutable ArcNotifier arc_notifier;
85 85

	
86 86
  public:
87 87

	
88 88
    NodeNotifier& notifier(Node) const {
89 89
      return node_notifier;
90 90
    }
91 91

	
92 92
    ArcNotifier& notifier(Arc) const {
93 93
      return arc_notifier;
94 94
    }
95 95

	
96 96
    class NodeIt : public Node {
97 97
      const Digraph* _digraph;
98 98
    public:
99 99

	
100 100
      NodeIt() {}
101 101

	
102 102
      NodeIt(Invalid i) : Node(i) { }
103 103

	
104 104
      explicit NodeIt(const Digraph& digraph) : _digraph(&digraph) {
105 105
        _digraph->first(static_cast<Node&>(*this));
106 106
      }
107 107

	
108 108
      NodeIt(const Digraph& digraph, const Node& node)
109 109
        : Node(node), _digraph(&digraph) {}
110 110

	
111 111
      NodeIt& operator++() {
112 112
        _digraph->next(*this);
113 113
        return *this;
114 114
      }
115 115

	
116 116
    };
117 117

	
118 118

	
119 119
    class ArcIt : public Arc {
120 120
      const Digraph* _digraph;
121 121
    public:
122 122

	
123 123
      ArcIt() { }
124 124

	
125 125
      ArcIt(Invalid i) : Arc(i) { }
126 126

	
127 127
      explicit ArcIt(const Digraph& digraph) : _digraph(&digraph) {
128 128
        _digraph->first(static_cast<Arc&>(*this));
129 129
      }
130 130

	
131 131
      ArcIt(const Digraph& digraph, const Arc& arc) :
132 132
        Arc(arc), _digraph(&digraph) { }
133 133

	
134 134
      ArcIt& operator++() {
135 135
        _digraph->next(*this);
136 136
        return *this;
137 137
      }
138 138

	
139 139
    };
140 140

	
141 141

	
142 142
    class OutArcIt : public Arc {
143 143
      const Digraph* _digraph;
144 144
    public:
145 145

	
146 146
      OutArcIt() { }
147 147

	
148 148
      OutArcIt(Invalid i) : Arc(i) { }
149 149

	
150 150
      OutArcIt(const Digraph& digraph, const Node& node)
151 151
        : _digraph(&digraph) {
152 152
        _digraph->firstOut(*this, node);
153 153
      }
154 154

	
155 155
      OutArcIt(const Digraph& digraph, const Arc& arc)
156 156
        : Arc(arc), _digraph(&digraph) {}
157 157

	
158 158
      OutArcIt& operator++() {
159 159
        _digraph->nextOut(*this);
160 160
        return *this;
161 161
      }
162 162

	
163 163
    };
164 164

	
165 165

	
166 166
    class InArcIt : public Arc {
167 167
      const Digraph* _digraph;
168 168
    public:
169 169

	
170 170
      InArcIt() { }
171 171

	
172 172
      InArcIt(Invalid i) : Arc(i) { }
173 173

	
174 174
      InArcIt(const Digraph& digraph, const Node& node)
175 175
        : _digraph(&digraph) {
176 176
        _digraph->firstIn(*this, node);
177 177
      }
178 178

	
179 179
      InArcIt(const Digraph& digraph, const Arc& arc) :
180 180
        Arc(arc), _digraph(&digraph) {}
181 181

	
182 182
      InArcIt& operator++() {
183 183
        _digraph->nextIn(*this);
184 184
        return *this;
185 185
      }
186 186

	
187 187
    };
188 188

	
189
    /// \brief Base node of the iterator
190
    ///
191
    /// Returns the base node (i.e. the source in this case) of the iterator
189
    // \brief Base node of the iterator
190
    //
191
    // Returns the base node (i.e. the source in this case) of the iterator
192 192
    Node baseNode(const OutArcIt &arc) const {
193 193
      return Parent::source(arc);
194 194
    }
195
    /// \brief Running node of the iterator
196
    ///
197
    /// Returns the running node (i.e. the target in this case) of the
198
    /// iterator
195
    // \brief Running node of the iterator
196
    //
197
    // Returns the running node (i.e. the target in this case) of the
198
    // iterator
199 199
    Node runningNode(const OutArcIt &arc) const {
200 200
      return Parent::target(arc);
201 201
    }
202 202

	
203
    /// \brief Base node of the iterator
204
    ///
205
    /// Returns the base node (i.e. the target in this case) of the iterator
203
    // \brief Base node of the iterator
204
    //
205
    // Returns the base node (i.e. the target in this case) of the iterator
206 206
    Node baseNode(const InArcIt &arc) const {
207 207
      return Parent::target(arc);
208 208
    }
209
    /// \brief Running node of the iterator
210
    ///
211
    /// Returns the running node (i.e. the source in this case) of the
212
    /// iterator
209
    // \brief Running node of the iterator
210
    //
211
    // Returns the running node (i.e. the source in this case) of the
212
    // iterator
213 213
    Node runningNode(const InArcIt &arc) const {
214 214
      return Parent::source(arc);
215 215
    }
216 216

	
217 217

	
218 218
    template <typename _Value>
219 219
    class NodeMap
220 220
      : public MapExtender<DefaultMap<Digraph, Node, _Value> > {
221 221
    public:
222 222
      typedef DigraphExtender Digraph;
223 223
      typedef MapExtender<DefaultMap<Digraph, Node, _Value> > Parent;
224 224

	
225 225
      explicit NodeMap(const Digraph& digraph)
226 226
        : Parent(digraph) {}
227 227
      NodeMap(const Digraph& digraph, const _Value& value)
228 228
        : Parent(digraph, value) {}
229 229

	
230 230
    private:
231 231
      NodeMap& operator=(const NodeMap& cmap) {
232 232
        return operator=<NodeMap>(cmap);
233 233
      }
234 234

	
235 235
      template <typename CMap>
236 236
      NodeMap& operator=(const CMap& cmap) {
237 237
        Parent::operator=(cmap);
238 238
        return *this;
239 239
      }
240 240

	
241 241
    };
242 242

	
243 243
    template <typename _Value>
244 244
    class ArcMap
245 245
      : public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
246 246
    public:
247 247
      typedef DigraphExtender Digraph;
248 248
      typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent;
249 249

	
250 250
      explicit ArcMap(const Digraph& digraph)
251 251
        : Parent(digraph) {}
252 252
      ArcMap(const Digraph& digraph, const _Value& value)
253 253
        : Parent(digraph, value) {}
254 254

	
255 255
    private:
256 256
      ArcMap& operator=(const ArcMap& cmap) {
257 257
        return operator=<ArcMap>(cmap);
258 258
      }
259 259

	
260 260
      template <typename CMap>
261 261
      ArcMap& operator=(const CMap& cmap) {
262 262
        Parent::operator=(cmap);
263 263
        return *this;
264 264
      }
265 265
    };
266 266

	
267 267

	
268 268
    Node addNode() {
269 269
      Node node = Parent::addNode();
270 270
      notifier(Node()).add(node);
271 271
      return node;
272 272
    }
273 273

	
274 274
    Arc addArc(const Node& from, const Node& to) {
275 275
      Arc arc = Parent::addArc(from, to);
276 276
      notifier(Arc()).add(arc);
277 277
      return arc;
278 278
    }
279 279

	
280 280
    void clear() {
281 281
      notifier(Arc()).clear();
282 282
      notifier(Node()).clear();
283 283
      Parent::clear();
284 284
    }
285 285

	
286 286
    template <typename Digraph, typename NodeRefMap, typename ArcRefMap>
287 287
    void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) {
288 288
      Parent::build(digraph, nodeRef, arcRef);
289 289
      notifier(Node()).build();
290 290
      notifier(Arc()).build();
291 291
    }
292 292

	
293 293
    void erase(const Node& node) {
294 294
      Arc arc;
295 295
      Parent::firstOut(arc, node);
296 296
      while (arc != INVALID ) {
297 297
        erase(arc);
298 298
        Parent::firstOut(arc, node);
299 299
      }
300 300

	
301 301
      Parent::firstIn(arc, node);
302 302
      while (arc != INVALID ) {
303 303
        erase(arc);
304 304
        Parent::firstIn(arc, node);
305 305
      }
306 306

	
307 307
      notifier(Node()).erase(node);
308 308
      Parent::erase(node);
309 309
    }
310 310

	
311 311
    void erase(const Arc& arc) {
312 312
      notifier(Arc()).erase(arc);
313 313
      Parent::erase(arc);
314 314
    }
315 315

	
316 316
    DigraphExtender() {
317 317
      node_notifier.setContainer(*this);
318 318
      arc_notifier.setContainer(*this);
319 319
    }
320 320

	
321 321

	
322 322
    ~DigraphExtender() {
323 323
      arc_notifier.clear();
324 324
      node_notifier.clear();
325 325
    }
326 326
  };
327 327

	
328
  /// \ingroup _graphbits
329
  ///
330
  /// \brief Extender for the Graphs
328
  // \ingroup _graphbits
329
  //
330
  // \brief Extender for the Graphs
331 331
  template <typename Base>
332 332
  class GraphExtender : public Base {
333 333
  public:
334 334

	
335 335
    typedef Base Parent;
336 336
    typedef GraphExtender Graph;
337 337

	
338 338
    typedef True UndirectedTag;
339 339

	
340 340
    typedef typename Parent::Node Node;
341 341
    typedef typename Parent::Arc Arc;
342 342
    typedef typename Parent::Edge Edge;
343 343

	
344 344
    // Graph extension
345 345

	
346 346
    int maxId(Node) const {
347 347
      return Parent::maxNodeId();
348 348
    }
349 349

	
350 350
    int maxId(Arc) const {
351 351
      return Parent::maxArcId();
352 352
    }
353 353

	
354 354
    int maxId(Edge) const {
355 355
      return Parent::maxEdgeId();
356 356
    }
357 357

	
358 358
    Node fromId(int id, Node) const {
359 359
      return Parent::nodeFromId(id);
360 360
    }
361 361

	
362 362
    Arc fromId(int id, Arc) const {
363 363
      return Parent::arcFromId(id);
364 364
    }
365 365

	
366 366
    Edge fromId(int id, Edge) const {
367 367
      return Parent::edgeFromId(id);
368 368
    }
369 369

	
370 370
    Node oppositeNode(const Node &n, const Edge &e) const {
371 371
      if( n == Parent::u(e))
372 372
        return Parent::v(e);
373 373
      else if( n == Parent::v(e))
374 374
        return Parent::u(e);
375 375
      else
376 376
        return INVALID;
377 377
    }
378 378

	
379 379
    Arc oppositeArc(const Arc &arc) const {
380 380
      return Parent::direct(arc, !Parent::direction(arc));
381 381
    }
382 382

	
383 383
    using Parent::direct;
384 384
    Arc direct(const Edge &edge, const Node &node) const {
385 385
      return Parent::direct(edge, Parent::u(edge) == node);
386 386
    }
387 387

	
388 388
    // Alterable extension
389 389

	
390 390
    typedef AlterationNotifier<GraphExtender, Node> NodeNotifier;
391 391
    typedef AlterationNotifier<GraphExtender, Arc> ArcNotifier;
392 392
    typedef AlterationNotifier<GraphExtender, Edge> EdgeNotifier;
393 393

	
394 394

	
395 395
  protected:
396 396

	
397 397
    mutable NodeNotifier node_notifier;
398 398
    mutable ArcNotifier arc_notifier;
399 399
    mutable EdgeNotifier edge_notifier;
400 400

	
401 401
  public:
402 402

	
403 403
    NodeNotifier& notifier(Node) const {
404 404
      return node_notifier;
405 405
    }
406 406

	
407 407
    ArcNotifier& notifier(Arc) const {
408 408
      return arc_notifier;
409 409
    }
410 410

	
411 411
    EdgeNotifier& notifier(Edge) const {
412 412
      return edge_notifier;
413 413
    }
414 414

	
415 415

	
416 416

	
417 417
    class NodeIt : public Node {
418 418
      const Graph* _graph;
419 419
    public:
420 420

	
421 421
      NodeIt() {}
422 422

	
423 423
      NodeIt(Invalid i) : Node(i) { }
424 424

	
425 425
      explicit NodeIt(const Graph& graph) : _graph(&graph) {
426 426
        _graph->first(static_cast<Node&>(*this));
427 427
      }
428 428

	
429 429
      NodeIt(const Graph& graph, const Node& node)
430 430
        : Node(node), _graph(&graph) {}
431 431

	
432 432
      NodeIt& operator++() {
433 433
        _graph->next(*this);
434 434
        return *this;
435 435
      }
436 436

	
437 437
    };
438 438

	
439 439

	
440 440
    class ArcIt : public Arc {
441 441
      const Graph* _graph;
442 442
    public:
443 443

	
444 444
      ArcIt() { }
445 445

	
446 446
      ArcIt(Invalid i) : Arc(i) { }
447 447

	
448 448
      explicit ArcIt(const Graph& graph) : _graph(&graph) {
449 449
        _graph->first(static_cast<Arc&>(*this));
450 450
      }
451 451

	
452 452
      ArcIt(const Graph& graph, const Arc& arc) :
453 453
        Arc(arc), _graph(&graph) { }
454 454

	
455 455
      ArcIt& operator++() {
456 456
        _graph->next(*this);
457 457
        return *this;
458 458
      }
459 459

	
460 460
    };
461 461

	
462 462

	
463 463
    class OutArcIt : public Arc {
464 464
      const Graph* _graph;
465 465
    public:
466 466

	
467 467
      OutArcIt() { }
468 468

	
469 469
      OutArcIt(Invalid i) : Arc(i) { }
470 470

	
471 471
      OutArcIt(const Graph& graph, const Node& node)
472 472
        : _graph(&graph) {
473 473
        _graph->firstOut(*this, node);
474 474
      }
475 475

	
476 476
      OutArcIt(const Graph& graph, const Arc& arc)
477 477
        : Arc(arc), _graph(&graph) {}
478 478

	
479 479
      OutArcIt& operator++() {
480 480
        _graph->nextOut(*this);
481 481
        return *this;
482 482
      }
483 483

	
484 484
    };
485 485

	
486 486

	
487 487
    class InArcIt : public Arc {
488 488
      const Graph* _graph;
489 489
    public:
490 490

	
491 491
      InArcIt() { }
492 492

	
493 493
      InArcIt(Invalid i) : Arc(i) { }
494 494

	
495 495
      InArcIt(const Graph& graph, const Node& node)
496 496
        : _graph(&graph) {
497 497
        _graph->firstIn(*this, node);
498 498
      }
499 499

	
500 500
      InArcIt(const Graph& graph, const Arc& arc) :
501 501
        Arc(arc), _graph(&graph) {}
502 502

	
503 503
      InArcIt& operator++() {
504 504
        _graph->nextIn(*this);
505 505
        return *this;
506 506
      }
507 507

	
508 508
    };
509 509

	
510 510

	
511 511
    class EdgeIt : public Parent::Edge {
512 512
      const Graph* _graph;
513 513
    public:
514 514

	
515 515
      EdgeIt() { }
516 516

	
517 517
      EdgeIt(Invalid i) : Edge(i) { }
518 518

	
519 519
      explicit EdgeIt(const Graph& graph) : _graph(&graph) {
520 520
        _graph->first(static_cast<Edge&>(*this));
521 521
      }
522 522

	
523 523
      EdgeIt(const Graph& graph, const Edge& edge) :
524 524
        Edge(edge), _graph(&graph) { }
525 525

	
526 526
      EdgeIt& operator++() {
527 527
        _graph->next(*this);
528 528
        return *this;
529 529
      }
530 530

	
531 531
    };
532 532

	
533 533
    class IncEdgeIt : public Parent::Edge {
534 534
      friend class GraphExtender;
535 535
      const Graph* _graph;
536 536
      bool _direction;
537 537
    public:
538 538

	
539 539
      IncEdgeIt() { }
540 540

	
541 541
      IncEdgeIt(Invalid i) : Edge(i), _direction(false) { }
542 542

	
543 543
      IncEdgeIt(const Graph& graph, const Node &node) : _graph(&graph) {
544 544
        _graph->firstInc(*this, _direction, node);
545 545
      }
546 546

	
547 547
      IncEdgeIt(const Graph& graph, const Edge &edge, const Node &node)
548 548
        : _graph(&graph), Edge(edge) {
549 549
        _direction = (_graph->source(edge) == node);
550 550
      }
551 551

	
552 552
      IncEdgeIt& operator++() {
553 553
        _graph->nextInc(*this, _direction);
554 554
        return *this;
555 555
      }
556 556
    };
557 557

	
558
    /// \brief Base node of the iterator
559
    ///
560
    /// Returns the base node (ie. the source in this case) of the iterator
558
    // \brief Base node of the iterator
559
    //
560
    // Returns the base node (ie. the source in this case) of the iterator
561 561
    Node baseNode(const OutArcIt &arc) const {
562 562
      return Parent::source(static_cast<const Arc&>(arc));
563 563
    }
564
    /// \brief Running node of the iterator
565
    ///
566
    /// Returns the running node (ie. the target in this case) of the
567
    /// iterator
564
    // \brief Running node of the iterator
565
    //
566
    // Returns the running node (ie. the target in this case) of the
567
    // iterator
568 568
    Node runningNode(const OutArcIt &arc) const {
569 569
      return Parent::target(static_cast<const Arc&>(arc));
570 570
    }
571 571

	
572
    /// \brief Base node of the iterator
573
    ///
574
    /// Returns the base node (ie. the target in this case) of the iterator
572
    // \brief Base node of the iterator
573
    //
574
    // Returns the base node (ie. the target in this case) of the iterator
575 575
    Node baseNode(const InArcIt &arc) const {
576 576
      return Parent::target(static_cast<const Arc&>(arc));
577 577
    }
578
    /// \brief Running node of the iterator
579
    ///
580
    /// Returns the running node (ie. the source in this case) of the
581
    /// iterator
578
    // \brief Running node of the iterator
579
    //
580
    // Returns the running node (ie. the source in this case) of the
581
    // iterator
582 582
    Node runningNode(const InArcIt &arc) const {
583 583
      return Parent::source(static_cast<const Arc&>(arc));
584 584
    }
585 585

	
586
    /// Base node of the iterator
587
    ///
588
    /// Returns the base node of the iterator
586
    // Base node of the iterator
587
    //
588
    // Returns the base node of the iterator
589 589
    Node baseNode(const IncEdgeIt &edge) const {
590 590
      return edge._direction ? u(edge) : v(edge);
591 591
    }
592
    /// Running node of the iterator
593
    ///
594
    /// Returns the running node of the iterator
592
    // Running node of the iterator
593
    //
594
    // Returns the running node of the iterator
595 595
    Node runningNode(const IncEdgeIt &edge) const {
596 596
      return edge._direction ? v(edge) : u(edge);
597 597
    }
598 598

	
599 599
    // Mappable extension
600 600

	
601 601
    template <typename _Value>
602 602
    class NodeMap
603 603
      : public MapExtender<DefaultMap<Graph, Node, _Value> > {
604 604
    public:
605 605
      typedef GraphExtender Graph;
606 606
      typedef MapExtender<DefaultMap<Graph, Node, _Value> > Parent;
607 607

	
608 608
      NodeMap(const Graph& graph)
609 609
        : Parent(graph) {}
610 610
      NodeMap(const Graph& graph, const _Value& value)
611 611
        : Parent(graph, value) {}
612 612

	
613 613
    private:
614 614
      NodeMap& operator=(const NodeMap& cmap) {
615 615
        return operator=<NodeMap>(cmap);
616 616
      }
617 617

	
618 618
      template <typename CMap>
619 619
      NodeMap& operator=(const CMap& cmap) {
620 620
        Parent::operator=(cmap);
621 621
        return *this;
622 622
      }
623 623

	
624 624
    };
625 625

	
626 626
    template <typename _Value>
627 627
    class ArcMap
628 628
      : public MapExtender<DefaultMap<Graph, Arc, _Value> > {
629 629
    public:
630 630
      typedef GraphExtender Graph;
631 631
      typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent;
632 632

	
633 633
      ArcMap(const Graph& graph)
634 634
        : Parent(graph) {}
635 635
      ArcMap(const Graph& graph, const _Value& value)
636 636
        : Parent(graph, value) {}
637 637

	
638 638
    private:
639 639
      ArcMap& operator=(const ArcMap& cmap) {
640 640
        return operator=<ArcMap>(cmap);
641 641
      }
642 642

	
643 643
      template <typename CMap>
644 644
      ArcMap& operator=(const CMap& cmap) {
645 645
        Parent::operator=(cmap);
646 646
        return *this;
647 647
      }
648 648
    };
649 649

	
650 650

	
651 651
    template <typename _Value>
652 652
    class EdgeMap
653 653
      : public MapExtender<DefaultMap<Graph, Edge, _Value> > {
654 654
    public:
655 655
      typedef GraphExtender Graph;
656 656
      typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent;
657 657

	
658 658
      EdgeMap(const Graph& graph)
659 659
        : Parent(graph) {}
660 660

	
661 661
      EdgeMap(const Graph& graph, const _Value& value)
662 662
        : Parent(graph, value) {}
663 663

	
664 664
    private:
665 665
      EdgeMap& operator=(const EdgeMap& cmap) {
666 666
        return operator=<EdgeMap>(cmap);
667 667
      }
668 668

	
669 669
      template <typename CMap>
670 670
      EdgeMap& operator=(const CMap& cmap) {
671 671
        Parent::operator=(cmap);
672 672
        return *this;
673 673
      }
674 674

	
675 675
    };
676 676

	
677 677
    // Alteration extension
678 678

	
679 679
    Node addNode() {
680 680
      Node node = Parent::addNode();
681 681
      notifier(Node()).add(node);
682 682
      return node;
683 683
    }
684 684

	
685 685
    Edge addEdge(const Node& from, const Node& to) {
686 686
      Edge edge = Parent::addEdge(from, to);
687 687
      notifier(Edge()).add(edge);
688 688
      std::vector<Arc> ev;
689 689
      ev.push_back(Parent::direct(edge, true));
690 690
      ev.push_back(Parent::direct(edge, false));
691 691
      notifier(Arc()).add(ev);
692 692
      return edge;
693 693
    }
694 694

	
695 695
    void clear() {
696 696
      notifier(Arc()).clear();
697 697
      notifier(Edge()).clear();
698 698
      notifier(Node()).clear();
699 699
      Parent::clear();
700 700
    }
701 701

	
702 702
    template <typename Graph, typename NodeRefMap, typename EdgeRefMap>
703 703
    void build(const Graph& graph, NodeRefMap& nodeRef,
704 704
               EdgeRefMap& edgeRef) {
705 705
      Parent::build(graph, nodeRef, edgeRef);
706 706
      notifier(Node()).build();
707 707
      notifier(Edge()).build();
708 708
      notifier(Arc()).build();
709 709
    }
710 710

	
711 711
    void erase(const Node& node) {
712 712
      Arc arc;
713 713
      Parent::firstOut(arc, node);
714 714
      while (arc != INVALID ) {
715 715
        erase(arc);
716 716
        Parent::firstOut(arc, node);
717 717
      }
718 718

	
719 719
      Parent::firstIn(arc, node);
720 720
      while (arc != INVALID ) {
721 721
        erase(arc);
722 722
        Parent::firstIn(arc, node);
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_MAP_EXTENDER_H
20 20
#define LEMON_BITS_MAP_EXTENDER_H
21 21

	
22 22
#include <iterator>
23 23

	
24 24
#include <lemon/bits/traits.h>
25 25

	
26 26
#include <lemon/concept_check.h>
27 27
#include <lemon/concepts/maps.h>
28 28

	
29
///\file
30
///\brief Extenders for iterable maps.
29
//\file
30
//\brief Extenders for iterable maps.
31 31

	
32 32
namespace lemon {
33 33

	
34
  /// \ingroup graphbits
35
  ///
36
  /// \brief Extender for maps
34
  // \ingroup graphbits
35
  //
36
  // \brief Extender for maps
37 37
  template <typename _Map>
38 38
  class MapExtender : public _Map {
39 39
  public:
40 40

	
41 41
    typedef _Map Parent;
42 42
    typedef MapExtender Map;
43 43

	
44 44

	
45 45
    typedef typename Parent::Graph Graph;
46 46
    typedef typename Parent::Key Item;
47 47

	
48 48
    typedef typename Parent::Key Key;
49 49
    typedef typename Parent::Value Value;
50 50

	
51 51
    class MapIt;
52 52
    class ConstMapIt;
53 53

	
54 54
    friend class MapIt;
55 55
    friend class ConstMapIt;
56 56

	
57 57
  public:
58 58

	
59 59
    MapExtender(const Graph& graph)
60 60
      : Parent(graph) {}
61 61

	
62 62
    MapExtender(const Graph& graph, const Value& value)
63 63
      : Parent(graph, value) {}
64 64

	
65 65
  private:
66 66
    MapExtender& operator=(const MapExtender& cmap) {
67 67
      return operator=<MapExtender>(cmap);
68 68
    }
69 69

	
70 70
    template <typename CMap>
71 71
    MapExtender& operator=(const CMap& cmap) {
72 72
      Parent::operator=(cmap);
73 73
      return *this;
74 74
    }
75 75

	
76 76
  public:
77 77
    class MapIt : public Item {
78 78
    public:
79 79

	
80 80
      typedef Item Parent;
81 81
      typedef typename Map::Value Value;
82 82

	
83 83
      MapIt() {}
84 84

	
85 85
      MapIt(Invalid i) : Parent(i) { }
86 86

	
87 87
      explicit MapIt(Map& _map) : map(_map) {
88 88
        map.notifier()->first(*this);
89 89
      }
90 90

	
91 91
      MapIt(const Map& _map, const Item& item)
92 92
        : Parent(item), map(_map) {}
93 93

	
94 94
      MapIt& operator++() {
95 95
        map.notifier()->next(*this);
96 96
        return *this;
97 97
      }
98 98

	
99 99
      typename MapTraits<Map>::ConstReturnValue operator*() const {
100 100
        return map[*this];
101 101
      }
102 102

	
103 103
      typename MapTraits<Map>::ReturnValue operator*() {
104 104
        return map[*this];
105 105
      }
106 106

	
107 107
      void set(const Value& value) {
108 108
        map.set(*this, value);
109 109
      }
110 110

	
111 111
    protected:
112 112
      Map& map;
113 113

	
114 114
    };
115 115

	
116 116
    class ConstMapIt : public Item {
117 117
    public:
118 118

	
119 119
      typedef Item Parent;
120 120

	
121 121
      typedef typename Map::Value Value;
122 122

	
123 123
      ConstMapIt() {}
124 124

	
125 125
      ConstMapIt(Invalid i) : Parent(i) { }
126 126

	
127 127
      explicit ConstMapIt(Map& _map) : map(_map) {
128 128
        map.notifier()->first(*this);
129 129
      }
130 130

	
131 131
      ConstMapIt(const Map& _map, const Item& item)
132 132
        : Parent(item), map(_map) {}
133 133

	
134 134
      ConstMapIt& operator++() {
135 135
        map.notifier()->next(*this);
136 136
        return *this;
137 137
      }
138 138

	
139 139
      typename MapTraits<Map>::ConstReturnValue operator*() const {
140 140
        return map[*this];
141 141
      }
142 142

	
143 143
    protected:
144 144
      const Map& map;
145 145
    };
146 146

	
147 147
    class ItemIt : public Item {
148 148
    public:
149 149

	
150 150
      typedef Item Parent;
151 151

	
152 152
      ItemIt() {}
153 153

	
154 154
      ItemIt(Invalid i) : Parent(i) { }
155 155

	
156 156
      explicit ItemIt(Map& _map) : map(_map) {
157 157
        map.notifier()->first(*this);
158 158
      }
159 159

	
160 160
      ItemIt(const Map& _map, const Item& item)
161 161
        : Parent(item), map(_map) {}
162 162

	
163 163
      ItemIt& operator++() {
164 164
        map.notifier()->next(*this);
165 165
        return *this;
166 166
      }
167 167

	
168 168
    protected:
169 169
      const Map& map;
170 170

	
171 171
    };
172 172
  };
173 173

	
174
  /// \ingroup graphbits
175
  ///
176
  /// \brief Extender for maps which use a subset of the items.
174
  // \ingroup graphbits
175
  //
176
  // \brief Extender for maps which use a subset of the items.
177 177
  template <typename _Graph, typename _Map>
178 178
  class SubMapExtender : public _Map {
179 179
  public:
180 180

	
181 181
    typedef _Map Parent;
182 182
    typedef SubMapExtender Map;
183 183

	
184 184
    typedef _Graph Graph;
185 185

	
186 186
    typedef typename Parent::Key Item;
187 187

	
188 188
    typedef typename Parent::Key Key;
189 189
    typedef typename Parent::Value Value;
190 190

	
191 191
    class MapIt;
192 192
    class ConstMapIt;
193 193

	
194 194
    friend class MapIt;
195 195
    friend class ConstMapIt;
196 196

	
197 197
  public:
198 198

	
199 199
    SubMapExtender(const Graph& _graph)
200 200
      : Parent(_graph), graph(_graph) {}
201 201

	
202 202
    SubMapExtender(const Graph& _graph, const Value& _value)
203 203
      : Parent(_graph, _value), graph(_graph) {}
204 204

	
205 205
  private:
206 206
    SubMapExtender& operator=(const SubMapExtender& cmap) {
207 207
      return operator=<MapExtender>(cmap);
208 208
    }
209 209

	
210 210
    template <typename CMap>
211 211
    SubMapExtender& operator=(const CMap& cmap) {
212 212
      checkConcept<concepts::ReadMap<Key, Value>, CMap>();
213 213
      Item it;
214 214
      for (graph.first(it); it != INVALID; graph.next(it)) {
215 215
        Parent::set(it, cmap[it]);
216 216
      }
217 217
      return *this;
218 218
    }
219 219

	
220 220
  public:
221 221
    class MapIt : public Item {
222 222
    public:
223 223

	
224 224
      typedef Item Parent;
225 225
      typedef typename Map::Value Value;
226 226

	
227 227
      MapIt() {}
228 228

	
229 229
      MapIt(Invalid i) : Parent(i) { }
230 230

	
231 231
      explicit MapIt(Map& _map) : map(_map) {
232 232
        map.graph.first(*this);
233 233
      }
234 234

	
235 235
      MapIt(const Map& _map, const Item& item)
236 236
        : Parent(item), map(_map) {}
237 237

	
238 238
      MapIt& operator++() {
239 239
        map.graph.next(*this);
240 240
        return *this;
241 241
      }
242 242

	
243 243
      typename MapTraits<Map>::ConstReturnValue operator*() const {
244 244
        return map[*this];
245 245
      }
246 246

	
247 247
      typename MapTraits<Map>::ReturnValue operator*() {
248 248
        return map[*this];
249 249
      }
250 250

	
251 251
      void set(const Value& value) {
252 252
        map.set(*this, value);
253 253
      }
254 254

	
255 255
    protected:
256 256
      Map& map;
257 257

	
258 258
    };
259 259

	
260 260
    class ConstMapIt : public Item {
261 261
    public:
262 262

	
263 263
      typedef Item Parent;
264 264

	
265 265
      typedef typename Map::Value Value;
266 266

	
267 267
      ConstMapIt() {}
268 268

	
269 269
      ConstMapIt(Invalid i) : Parent(i) { }
270 270

	
271 271
      explicit ConstMapIt(Map& _map) : map(_map) {
272 272
        map.graph.first(*this);
273 273
      }
274 274

	
275 275
      ConstMapIt(const Map& _map, const Item& item)
276 276
        : Parent(item), map(_map) {}
277 277

	
278 278
      ConstMapIt& operator++() {
279 279
        map.graph.next(*this);
280 280
        return *this;
281 281
      }
282 282

	
283 283
      typename MapTraits<Map>::ConstReturnValue operator*() const {
284 284
        return map[*this];
285 285
      }
286 286

	
287 287
    protected:
288 288
      const Map& map;
289 289
    };
290 290

	
291 291
    class ItemIt : public Item {
292 292
    public:
293 293

	
294 294
      typedef Item Parent;
295 295

	
296 296
      ItemIt() {}
297 297

	
298 298
      ItemIt(Invalid i) : Parent(i) { }
299 299

	
300 300
      explicit ItemIt(Map& _map) : map(_map) {
301 301
        map.graph.first(*this);
302 302
      }
303 303

	
304 304
      ItemIt(const Map& _map, const Item& item)
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_TRAITS_H
20 20
#define LEMON_BITS_TRAITS_H
21 21

	
22
///\file
23
///\brief Traits for graphs and maps
24
///
22
//\file
23
//\brief Traits for graphs and maps
24
//
25 25

	
26 26
#include <lemon/bits/enable_if.h>
27 27

	
28 28
namespace lemon {
29 29

	
30 30
  struct InvalidType {};
31 31

	
32 32
  template <typename _Graph, typename _Item>
33 33
  class ItemSetTraits {};
34 34

	
35 35

	
36 36
  template <typename Graph, typename Enable = void>
37 37
  struct NodeNotifierIndicator {
38 38
    typedef InvalidType Type;
39 39
  };
40 40
  template <typename Graph>
41 41
  struct NodeNotifierIndicator<
42 42
    Graph,
43 43
    typename enable_if<typename Graph::NodeNotifier::Notifier, void>::type
44 44
  > {
45 45
    typedef typename Graph::NodeNotifier Type;
46 46
  };
47 47

	
48 48
  template <typename _Graph>
49 49
  class ItemSetTraits<_Graph, typename _Graph::Node> {
50 50
  public:
51 51

	
52 52
    typedef _Graph Graph;
53 53

	
54 54
    typedef typename Graph::Node Item;
55 55
    typedef typename Graph::NodeIt ItemIt;
56 56

	
57 57
    typedef typename NodeNotifierIndicator<Graph>::Type ItemNotifier;
58 58

	
59 59
    template <typename _Value>
60 60
    class Map : public Graph::template NodeMap<_Value> {
61 61
    public:
62 62
      typedef typename Graph::template NodeMap<_Value> Parent;
63 63
      typedef typename Graph::template NodeMap<_Value> Type;
64 64
      typedef typename Parent::Value Value;
65 65

	
66 66
      Map(const Graph& _digraph) : Parent(_digraph) {}
67 67
      Map(const Graph& _digraph, const Value& _value)
68 68
        : Parent(_digraph, _value) {}
69 69

	
70 70
     };
71 71

	
72 72
  };
73 73

	
74 74
  template <typename Graph, typename Enable = void>
75 75
  struct ArcNotifierIndicator {
76 76
    typedef InvalidType Type;
77 77
  };
78 78
  template <typename Graph>
79 79
  struct ArcNotifierIndicator<
80 80
    Graph,
81 81
    typename enable_if<typename Graph::ArcNotifier::Notifier, void>::type
82 82
  > {
83 83
    typedef typename Graph::ArcNotifier Type;
84 84
  };
85 85

	
86 86
  template <typename _Graph>
87 87
  class ItemSetTraits<_Graph, typename _Graph::Arc> {
88 88
  public:
89 89

	
90 90
    typedef _Graph Graph;
91 91

	
92 92
    typedef typename Graph::Arc Item;
93 93
    typedef typename Graph::ArcIt ItemIt;
94 94

	
95 95
    typedef typename ArcNotifierIndicator<Graph>::Type ItemNotifier;
96 96

	
97 97
    template <typename _Value>
98 98
    class Map : public Graph::template ArcMap<_Value> {
99 99
    public:
100 100
      typedef typename Graph::template ArcMap<_Value> Parent;
101 101
      typedef typename Graph::template ArcMap<_Value> Type;
102 102
      typedef typename Parent::Value Value;
103 103

	
104 104
      Map(const Graph& _digraph) : Parent(_digraph) {}
105 105
      Map(const Graph& _digraph, const Value& _value)
106 106
        : Parent(_digraph, _value) {}
107 107
    };
108 108

	
109 109
  };
110 110

	
111 111
  template <typename Graph, typename Enable = void>
112 112
  struct EdgeNotifierIndicator {
113 113
    typedef InvalidType Type;
114 114
  };
115 115
  template <typename Graph>
116 116
  struct EdgeNotifierIndicator<
117 117
    Graph,
118 118
    typename enable_if<typename Graph::EdgeNotifier::Notifier, void>::type
119 119
  > {
120 120
    typedef typename Graph::EdgeNotifier Type;
121 121
  };
122 122

	
123 123
  template <typename _Graph>
124 124
  class ItemSetTraits<_Graph, typename _Graph::Edge> {
125 125
  public:
126 126

	
127 127
    typedef _Graph Graph;
128 128

	
129 129
    typedef typename Graph::Edge Item;
130 130
    typedef typename Graph::EdgeIt ItemIt;
131 131

	
132 132
    typedef typename EdgeNotifierIndicator<Graph>::Type ItemNotifier;
133 133

	
134 134
    template <typename _Value>
135 135
    class Map : public Graph::template EdgeMap<_Value> {
136 136
    public:
137 137
      typedef typename Graph::template EdgeMap<_Value> Parent;
138 138
      typedef typename Graph::template EdgeMap<_Value> Type;
139 139
      typedef typename Parent::Value Value;
140 140

	
141 141
      Map(const Graph& _digraph) : Parent(_digraph) {}
142 142
      Map(const Graph& _digraph, const Value& _value)
143 143
        : Parent(_digraph, _value) {}
144 144
    };
145 145

	
146 146
  };
147 147

	
148 148
  template <typename Map, typename Enable = void>
149 149
  struct MapTraits {
150 150
    typedef False ReferenceMapTag;
151 151

	
152 152
    typedef typename Map::Key Key;
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_BITS_VECTOR_MAP_H
20 20
#define LEMON_BITS_VECTOR_MAP_H
21 21

	
22 22
#include <vector>
23 23
#include <algorithm>
24 24

	
25 25
#include <lemon/core.h>
26 26
#include <lemon/bits/alteration_notifier.h>
27 27

	
28 28
#include <lemon/concept_check.h>
29 29
#include <lemon/concepts/maps.h>
30 30

	
31
///\ingroup graphbits
32
///
33
///\file
34
///\brief Vector based graph maps.
31
//\ingroup graphbits
32
//
33
//\file
34
//\brief Vector based graph maps.
35 35
namespace lemon {
36 36

	
37
  /// \ingroup graphbits
38
  ///
39
  /// \brief Graph map based on the std::vector storage.
40
  ///
41
  /// The VectorMap template class is graph map structure what
42
  /// automatically updates the map when a key is added to or erased from
43
  /// the map. This map type uses the std::vector to store the values.
44
  ///
45
  /// \tparam _Graph The graph this map is attached to.
46
  /// \tparam _Item The item type of the graph items.
47
  /// \tparam _Value The value type of the map.
37
  // \ingroup graphbits
38
  //
39
  // \brief Graph map based on the std::vector storage.
40
  //
41
  // The VectorMap template class is graph map structure what
42
  // automatically updates the map when a key is added to or erased from
43
  // the map. This map type uses the std::vector to store the values.
44
  //
45
  // \tparam _Graph The graph this map is attached to.
46
  // \tparam _Item The item type of the graph items.
47
  // \tparam _Value The value type of the map.
48 48
  template <typename _Graph, typename _Item, typename _Value>
49 49
  class VectorMap
50 50
    : public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase {
51 51
  private:
52 52

	
53
    /// The container type of the map.
53
    // The container type of the map.
54 54
    typedef std::vector<_Value> Container;
55 55

	
56 56
  public:
57 57

	
58
    /// The graph type of the map.
58
    // The graph type of the map.
59 59
    typedef _Graph Graph;
60
    /// The item type of the map.
60
    // The item type of the map.
61 61
    typedef _Item Item;
62
    /// The reference map tag.
62
    // The reference map tag.
63 63
    typedef True ReferenceMapTag;
64 64

	
65
    /// The key type of the map.
65
    // The key type of the map.
66 66
    typedef _Item Key;
67
    /// The value type of the map.
67
    // The value type of the map.
68 68
    typedef _Value Value;
69 69

	
70
    /// The notifier type.
70
    // The notifier type.
71 71
    typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier;
72 72

	
73
    /// The map type.
73
    // The map type.
74 74
    typedef VectorMap Map;
75
    /// The base class of the map.
75
    // The base class of the map.
76 76
    typedef typename Notifier::ObserverBase Parent;
77 77

	
78
    /// The reference type of the map;
78
    // The reference type of the map;
79 79
    typedef typename Container::reference Reference;
80
    /// The const reference type of the map;
80
    // The const reference type of the map;
81 81
    typedef typename Container::const_reference ConstReference;
82 82

	
83 83

	
84
    /// \brief Constructor to attach the new map into the notifier.
85
    ///
86
    /// It constructs a map and attachs it into the notifier.
87
    /// It adds all the items of the graph to the map.
84
    // \brief Constructor to attach the new map into the notifier.
85
    //
86
    // It constructs a map and attachs it into the notifier.
87
    // It adds all the items of the graph to the map.
88 88
    VectorMap(const Graph& graph) {
89 89
      Parent::attach(graph.notifier(Item()));
90 90
      container.resize(Parent::notifier()->maxId() + 1);
91 91
    }
92 92

	
93
    /// \brief Constructor uses given value to initialize the map.
94
    ///
95
    /// It constructs a map uses a given value to initialize the map.
96
    /// It adds all the items of the graph to the map.
93
    // \brief Constructor uses given value to initialize the map.
94
    //
95
    // It constructs a map uses a given value to initialize the map.
96
    // It adds all the items of the graph to the map.
97 97
    VectorMap(const Graph& graph, const Value& value) {
98 98
      Parent::attach(graph.notifier(Item()));
99 99
      container.resize(Parent::notifier()->maxId() + 1, value);
100 100
    }
101 101

	
102 102
  private:
103
    /// \brief Copy constructor
104
    ///
105
    /// Copy constructor.
103
    // \brief Copy constructor
104
    //
105
    // Copy constructor.
106 106
    VectorMap(const VectorMap& _copy) : Parent() {
107 107
      if (_copy.attached()) {
108 108
        Parent::attach(*_copy.notifier());
109 109
        container = _copy.container;
110 110
      }
111 111
    }
112 112

	
113
    /// \brief Assign operator.
114
    ///
115
    /// This operator assigns for each item in the map the
116
    /// value mapped to the same item in the copied map.
117
    /// The parameter map should be indiced with the same
118
    /// itemset because this assign operator does not change
119
    /// the container of the map.
113
    // \brief Assign operator.
114
    //
115
    // This operator assigns for each item in the map the
116
    // value mapped to the same item in the copied map.
117
    // The parameter map should be indiced with the same
118
    // itemset because this assign operator does not change
119
    // the container of the map.
120 120
    VectorMap& operator=(const VectorMap& cmap) {
121 121
      return operator=<VectorMap>(cmap);
122 122
    }
123 123

	
124 124

	
125
    /// \brief Template assign operator.
126
    ///
127
    /// The given parameter should be conform to the ReadMap
128
    /// concecpt and could be indiced by the current item set of
129
    /// the NodeMap. In this case the value for each item
130
    /// is assigned by the value of the given ReadMap.
125
    // \brief Template assign operator.
126
    //
127
    // The given parameter should be conform to the ReadMap
128
    // concecpt and could be indiced by the current item set of
129
    // the NodeMap. In this case the value for each item
130
    // is assigned by the value of the given ReadMap.
131 131
    template <typename CMap>
132 132
    VectorMap& operator=(const CMap& cmap) {
133 133
      checkConcept<concepts::ReadMap<Key, _Value>, CMap>();
134 134
      const typename Parent::Notifier* nf = Parent::notifier();
135 135
      Item it;
136 136
      for (nf->first(it); it != INVALID; nf->next(it)) {
137 137
        set(it, cmap[it]);
138 138
      }
139 139
      return *this;
140 140
    }
141 141

	
142 142
  public:
143 143

	
144
    /// \brief The subcript operator.
145
    ///
146
    /// The subscript operator. The map can be subscripted by the
147
    /// actual items of the graph.
144
    // \brief The subcript operator.
145
    //
146
    // The subscript operator. The map can be subscripted by the
147
    // actual items of the graph.
148 148
    Reference operator[](const Key& key) {
149 149
      return container[Parent::notifier()->id(key)];
150 150
    }
151 151

	
152
    /// \brief The const subcript operator.
153
    ///
154
    /// The const subscript operator. The map can be subscripted by the
155
    /// actual items of the graph.
152
    // \brief The const subcript operator.
153
    //
154
    // The const subscript operator. The map can be subscripted by the
155
    // actual items of the graph.
156 156
    ConstReference operator[](const Key& key) const {
157 157
      return container[Parent::notifier()->id(key)];
158 158
    }
159 159

	
160 160

	
161
    /// \brief The setter function of the map.
162
    ///
163
    /// It the same as operator[](key) = value expression.
161
    // \brief The setter function of the map.
162
    //
163
    // It the same as operator[](key) = value expression.
164 164
    void set(const Key& key, const Value& value) {
165 165
      (*this)[key] = value;
166 166
    }
167 167

	
168 168
  protected:
169 169

	
170
    /// \brief Adds a new key to the map.
171
    ///
172
    /// It adds a new key to the map. It called by the observer notifier
173
    /// and it overrides the add() member function of the observer base.
170
    // \brief Adds a new key to the map.
171
    //
172
    // It adds a new key to the map. It called by the observer notifier
173
    // and it overrides the add() member function of the observer base.
174 174
    virtual void add(const Key& key) {
175 175
      int id = Parent::notifier()->id(key);
176 176
      if (id >= int(container.size())) {
177 177
        container.resize(id + 1);
178 178
      }
179 179
    }
180 180

	
181
    /// \brief Adds more new keys to the map.
182
    ///
183
    /// It adds more new keys to the map. It called by the observer notifier
184
    /// and it overrides the add() member function of the observer base.
181
    // \brief Adds more new keys to the map.
182
    //
183
    // It adds more new keys to the map. It called by the observer notifier
184
    // and it overrides the add() member function of the observer base.
185 185
    virtual void add(const std::vector<Key>& keys) {
186 186
      int max = container.size() - 1;
187 187
      for (int i = 0; i < int(keys.size()); ++i) {
188 188
        int id = Parent::notifier()->id(keys[i]);
189 189
        if (id >= max) {
190 190
          max = id;
191 191
        }
192 192
      }
193 193
      container.resize(max + 1);
194 194
    }
195 195

	
196
    /// \brief Erase a key from the map.
197
    ///
198
    /// Erase a key from the map. It called by the observer notifier
199
    /// and it overrides the erase() member function of the observer base.
196
    // \brief Erase a key from the map.
197
    //
198
    // Erase a key from the map. It called by the observer notifier
199
    // and it overrides the erase() member function of the observer base.
200 200
    virtual void erase(const Key& key) {
201 201
      container[Parent::notifier()->id(key)] = Value();
202 202
    }
203 203

	
204
    /// \brief Erase more keys from the map.
205
    ///
206
    /// Erase more keys from the map. It called by the observer notifier
207
    /// and it overrides the erase() member function of the observer base.
204
    // \brief Erase more keys from the map.
205
    //
206
    // Erase more keys from the map. It called by the observer notifier
207
    // and it overrides the erase() member function of the observer base.
208 208
    virtual void erase(const std::vector<Key>& keys) {
209 209
      for (int i = 0; i < int(keys.size()); ++i) {
210 210
        container[Parent::notifier()->id(keys[i])] = Value();
211 211
      }
212 212
    }
213 213

	
214
    /// \brief Buildes the map.
215
    ///
216
    /// It buildes the map. It called by the observer notifier
217
    /// and it overrides the build() member function of the observer base.
214
    // \brief Buildes the map.
215
    //
216
    // It buildes the map. It called by the observer notifier
217
    // and it overrides the build() member function of the observer base.
218 218
    virtual void build() {
219 219
      int size = Parent::notifier()->maxId() + 1;
220 220
      container.reserve(size);
221 221
      container.resize(size);
222 222
    }
223 223

	
224
    /// \brief Clear the map.
225
    ///
226
    /// It erase all items from the map. It called by the observer notifier
227
    /// and it overrides the clear() member function of the observer base.
224
    // \brief Clear the map.
225
    //
226
    // It erase all items from the map. It called by the observer notifier
227
    // and it overrides the clear() member function of the observer base.
228 228
    virtual void clear() {
229 229
      container.clear();
230 230
    }
231 231

	
232 232
  private:
233 233

	
234 234
    Container container;
235 235

	
236 236
  };
237 237

	
238 238
}
239 239

	
240 240
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_COLOR_H
20 20
#define LEMON_COLOR_H
21 21

	
22 22
#include<vector>
23 23
#include<lemon/math.h>
24 24
#include<lemon/maps.h>
25 25

	
26 26

	
27 27
///\ingroup misc
28 28
///\file
29 29
///\brief Tools to manage RGB colors.
30 30

	
31 31
namespace lemon {
32 32

	
33 33

	
34 34
  /// \addtogroup misc
35 35
  /// @{
36 36

	
37 37
  ///Data structure representing RGB colors.
38 38

	
39 39
  ///Data structure representing RGB colors.
40 40
  class Color
41 41
  {
42 42
    double _r,_g,_b;
43 43
  public:
44 44
    ///Default constructor
45 45
    Color() {}
46 46
    ///Constructor
47 47
    Color(double r,double g,double b) :_r(r),_g(g),_b(b) {};
48 48
    ///Set the red component
49 49
    double & red() {return _r;}
50 50
    ///Return the red component
51 51
    const double & red() const {return _r;}
52 52
    ///Set the green component
53 53
    double & green() {return _g;}
54 54
    ///Return the green component
55 55
    const double & green() const {return _g;}
56 56
    ///Set the blue component
57 57
    double & blue() {return _b;}
58 58
    ///Return the blue component
59 59
    const double & blue() const {return _b;}
60 60
    ///Set the color components
61 61
    void set(double r,double g,double b) { _r=r;_g=g;_b=b; };
62 62
  };
63 63

	
64 64
  /// White color constant
65 65
  extern const Color WHITE;
66 66
  /// Black color constant
67 67
  extern const Color BLACK;
68 68
  /// Red color constant
69 69
  extern const Color RED;
70 70
  /// Green color constant
71 71
  extern const Color GREEN;
72 72
  /// Blue color constant
73 73
  extern const Color BLUE;
74 74
  /// Yellow color constant
75 75
  extern const Color YELLOW;
76 76
  /// Magenta color constant
77 77
  extern const Color MAGENTA;
78 78
  /// Cyan color constant
79 79
  extern const Color CYAN;
80 80
  /// Grey color constant
81 81
  extern const Color GREY;
82 82
  /// Dark red color constant
83 83
  extern const Color DARK_RED;
84 84
  /// Dark green color constant
85 85
  extern const Color DARK_GREEN;
86 86
  /// Drak blue color constant
87 87
  extern const Color DARK_BLUE;
88 88
  /// Dark yellow color constant
89 89
  extern const Color DARK_YELLOW;
90 90
  /// Dark magenta color constant
91 91
  extern const Color DARK_MAGENTA;
92 92
  /// Dark cyan color constant
93 93
  extern const Color DARK_CYAN;
94 94

	
95
  ///Map <tt>int</tt>s to different \ref Color "Color"s
95
  ///Map <tt>int</tt>s to different <tt>Color</tt>s
96 96

	
97 97
  ///This map assigns one of the predefined \ref Color "Color"s to
98 98
  ///each <tt>int</tt>. It is possible to change the colors as well as
99 99
  ///their number. The integer range is cyclically mapped to the
100 100
  ///provided set of colors.
101 101
  ///
102 102
  ///This is a true \ref concepts::ReferenceMap "reference map", so
103 103
  ///you can also change the actual colors.
104 104

	
105 105
  class Palette : public MapBase<int,Color>
106 106
  {
107 107
    std::vector<Color> colors;
108 108
  public:
109 109
    ///Constructor
110 110

	
111 111
    ///Constructor.
112 112
    ///\param have_white Indicates whether white is among the
113 113
    ///provided initial colors (\c true) or not (\c false). If it is true,
114 114
    ///white will be assigned to \c 0.
115 115
    ///\param num The number of the allocated colors. If it is \c -1,
116 116
    ///the default color configuration is set up (26 color plus optionaly the
117 117
    ///white).  If \c num is less then 26/27 then the default color
118 118
    ///list is cut. Otherwise the color list is filled repeatedly with
119 119
    ///the default color list.  (The colors can be changed later on.)
120 120
    Palette(bool have_white=false,int num=-1)
121 121
    {
122 122
      if (num==0) return;
123 123
      do {
124 124
        if(have_white) colors.push_back(Color(1,1,1));
125 125

	
126 126
        colors.push_back(Color(0,0,0));
127 127
        colors.push_back(Color(1,0,0));
128 128
        colors.push_back(Color(0,1,0));
129 129
        colors.push_back(Color(0,0,1));
130 130
        colors.push_back(Color(1,1,0));
131 131
        colors.push_back(Color(1,0,1));
132 132
        colors.push_back(Color(0,1,1));
133 133

	
134 134
        colors.push_back(Color(.5,0,0));
135 135
        colors.push_back(Color(0,.5,0));
136 136
        colors.push_back(Color(0,0,.5));
137 137
        colors.push_back(Color(.5,.5,0));
138 138
        colors.push_back(Color(.5,0,.5));
139 139
        colors.push_back(Color(0,.5,.5));
140 140

	
141 141
        colors.push_back(Color(.5,.5,.5));
142 142
        colors.push_back(Color(1,.5,.5));
143 143
        colors.push_back(Color(.5,1,.5));
144 144
        colors.push_back(Color(.5,.5,1));
145 145
        colors.push_back(Color(1,1,.5));
146 146
        colors.push_back(Color(1,.5,1));
147 147
        colors.push_back(Color(.5,1,1));
148 148

	
149 149
        colors.push_back(Color(1,.5,0));
150 150
        colors.push_back(Color(.5,1,0));
151 151
        colors.push_back(Color(1,0,.5));
152 152
        colors.push_back(Color(0,1,.5));
153 153
        colors.push_back(Color(0,.5,1));
154 154
        colors.push_back(Color(.5,0,1));
155 155
      } while(int(colors.size())<num);
156 156
      if(num>=0) colors.resize(num);
157 157
    }
158 158
    ///\e
159 159
    Color &operator[](int i)
160 160
    {
161 161
      return colors[i%colors.size()];
162 162
    }
163 163
    ///\e
164 164
    const Color &operator[](int i) const
165 165
    {
166 166
      return colors[i%colors.size()];
167 167
    }
168 168
    ///\e
169 169
    void set(int i,const Color &c)
170 170
    {
171 171
      colors[i%colors.size()]=c;
172 172
    }
173 173
    ///Adds a new color to the end of the color list.
174 174
    void add(const Color &c)
175 175
    {
176 176
      colors.push_back(c);
177 177
    }
178 178

	
179 179
    ///Sets the number of the existing colors.
180 180
    void resize(int s) { colors.resize(s);}
181 181
    ///Returns the number of the existing colors.
182 182
    int size() const { return int(colors.size());}
183 183
  };
184 184

	
185 185
  ///Returns a visibly distinct \ref Color
186 186

	
187 187
  ///Returns a \ref Color which is as different from the given parameter
188 188
  ///as it is possible.
189 189
  inline Color distantColor(const Color &c)
190 190
  {
191 191
    return Color(c.red()<.5?1:0,c.green()<.5?1:0,c.blue()<.5?1:0);
192 192
  }
193 193
  ///Returns black for light colors and white for the dark ones.
194 194

	
195 195
  ///Returns black for light colors and white for the dark ones.
196 196
  inline Color distantBW(const Color &c){
197 197
    return (.2125*c.red()+.7154*c.green()+.0721*c.blue())<.5 ? WHITE : BLACK;
198 198
  }
199 199

	
200 200
  /// @}
201 201

	
202 202
} //END OF NAMESPACE LEMON
203 203

	
204 204
#endif // LEMON_COLOR_H
Ignore white space 6 line context
... ...
@@ -857,257 +857,257 @@
857 857
            {
858 858
              graph.firstInc(edge, dir, node);
859 859
              graph.nextInc(edge, dir);
860 860
            }
861 861

	
862 862
          }
863 863

	
864 864
          {
865 865
            checkConcept<GraphItemIt<_Graph, typename _Graph::Edge>,
866 866
              typename _Graph::EdgeIt >();
867 867
            checkConcept<GraphIncIt<_Graph, typename _Graph::Edge,
868 868
              typename _Graph::Node, 'u'>, typename _Graph::IncEdgeIt>();
869 869

	
870 870
            typename _Graph::Node n;
871 871
            typename _Graph::IncEdgeIt ueit(INVALID);
872 872
            n = graph.baseNode(ueit);
873 873
            n = graph.runningNode(ueit);
874 874
          }
875 875
        }
876 876

	
877 877
        const _Graph& graph;
878 878

	
879 879
      };
880 880
    };
881 881

	
882 882
    /// \brief An empty alteration notifier digraph class.
883 883
    ///
884 884
    /// This class provides beside the core digraph features alteration
885 885
    /// notifier interface for the digraph structure.  This implements
886 886
    /// an observer-notifier pattern for each digraph item. More
887 887
    /// obsevers can be registered into the notifier and whenever an
888 888
    /// alteration occured in the digraph all the observers will
889 889
    /// notified about it.
890 890
    template <typename _Base = BaseDigraphComponent>
891 891
    class AlterableDigraphComponent : public _Base {
892 892
    public:
893 893

	
894 894
      typedef _Base Base;
895 895
      typedef typename Base::Node Node;
896 896
      typedef typename Base::Arc Arc;
897 897

	
898 898

	
899 899
      /// The node observer registry.
900 900
      typedef AlterationNotifier<AlterableDigraphComponent, Node>
901 901
      NodeNotifier;
902 902
      /// The arc observer registry.
903 903
      typedef AlterationNotifier<AlterableDigraphComponent, Arc>
904 904
      ArcNotifier;
905 905

	
906 906
      /// \brief Gives back the node alteration notifier.
907 907
      ///
908 908
      /// Gives back the node alteration notifier.
909 909
      NodeNotifier& notifier(Node) const {
910 910
        return NodeNotifier();
911 911
      }
912 912

	
913 913
      /// \brief Gives back the arc alteration notifier.
914 914
      ///
915 915
      /// Gives back the arc alteration notifier.
916 916
      ArcNotifier& notifier(Arc) const {
917 917
        return ArcNotifier();
918 918
      }
919 919

	
920 920
      template <typename _Digraph>
921 921
      struct Constraints {
922 922
        void constraints() {
923 923
          checkConcept<Base, _Digraph>();
924 924
          typename _Digraph::NodeNotifier& nn
925 925
            = digraph.notifier(typename _Digraph::Node());
926 926

	
927 927
          typename _Digraph::ArcNotifier& en
928 928
            = digraph.notifier(typename _Digraph::Arc());
929 929

	
930 930
          ignore_unused_variable_warning(nn);
931 931
          ignore_unused_variable_warning(en);
932 932
        }
933 933

	
934 934
        const _Digraph& digraph;
935 935

	
936 936
      };
937 937

	
938 938
    };
939 939

	
940 940
    /// \brief An empty alteration notifier undirected graph class.
941 941
    ///
942 942
    /// This class provides beside the core graph features alteration
943 943
    /// notifier interface for the graph structure.  This implements
944 944
    /// an observer-notifier pattern for each graph item. More
945 945
    /// obsevers can be registered into the notifier and whenever an
946 946
    /// alteration occured in the graph all the observers will
947 947
    /// notified about it.
948 948
    template <typename _Base = BaseGraphComponent>
949 949
    class AlterableGraphComponent : public AlterableDigraphComponent<_Base> {
950 950
    public:
951 951

	
952 952
      typedef _Base Base;
953 953
      typedef typename Base::Edge Edge;
954 954

	
955 955

	
956 956
      /// The arc observer registry.
957 957
      typedef AlterationNotifier<AlterableGraphComponent, Edge>
958 958
      EdgeNotifier;
959 959

	
960 960
      /// \brief Gives back the arc alteration notifier.
961 961
      ///
962 962
      /// Gives back the arc alteration notifier.
963 963
      EdgeNotifier& notifier(Edge) const {
964 964
        return EdgeNotifier();
965 965
      }
966 966

	
967 967
      template <typename _Graph>
968 968
      struct Constraints {
969 969
        void constraints() {
970 970
          checkConcept<AlterableGraphComponent<Base>, _Graph>();
971 971
          typename _Graph::EdgeNotifier& uen
972 972
            = graph.notifier(typename _Graph::Edge());
973 973
          ignore_unused_variable_warning(uen);
974 974
        }
975 975

	
976 976
        const _Graph& graph;
977 977

	
978 978
      };
979 979

	
980 980
    };
981 981

	
982 982
    /// \brief Class describing the concept of graph maps
983 983
    ///
984 984
    /// This class describes the common interface of the graph maps
985
    /// (NodeMap, ArcMap), that is \ref maps-page "maps" which can be used to
985
    /// (NodeMap, ArcMap), that is maps that can be used to
986 986
    /// associate data to graph descriptors (nodes or arcs).
987 987
    template <typename _Graph, typename _Item, typename _Value>
988 988
    class GraphMap : public ReadWriteMap<_Item, _Value> {
989 989
    public:
990 990

	
991 991
      typedef ReadWriteMap<_Item, _Value> Parent;
992 992

	
993 993
      /// The graph type of the map.
994 994
      typedef _Graph Graph;
995 995
      /// The key type of the map.
996 996
      typedef _Item Key;
997 997
      /// The value type of the map.
998 998
      typedef _Value Value;
999 999

	
1000 1000
      /// \brief Construct a new map.
1001 1001
      ///
1002 1002
      /// Construct a new map for the graph.
1003 1003
      explicit GraphMap(const Graph&) {}
1004 1004
      /// \brief Construct a new map with default value.
1005 1005
      ///
1006 1006
      /// Construct a new map for the graph and initalise the values.
1007 1007
      GraphMap(const Graph&, const Value&) {}
1008 1008

	
1009 1009
    private:
1010 1010
      /// \brief Copy constructor.
1011 1011
      ///
1012 1012
      /// Copy Constructor.
1013 1013
      GraphMap(const GraphMap&) : Parent() {}
1014 1014

	
1015 1015
      /// \brief Assign operator.
1016 1016
      ///
1017 1017
      /// Assign operator. It does not mofify the underlying graph,
1018 1018
      /// it just iterates on the current item set and set the  map
1019 1019
      /// with the value returned by the assigned map.
1020 1020
      template <typename CMap>
1021 1021
      GraphMap& operator=(const CMap&) {
1022 1022
        checkConcept<ReadMap<Key, Value>, CMap>();
1023 1023
        return *this;
1024 1024
      }
1025 1025

	
1026 1026
    public:
1027 1027
      template<typename _Map>
1028 1028
      struct Constraints {
1029 1029
        void constraints() {
1030 1030
          checkConcept<ReadWriteMap<Key, Value>, _Map >();
1031 1031
          // Construction with a graph parameter
1032 1032
          _Map a(g);
1033 1033
          // Constructor with a graph and a default value parameter
1034 1034
          _Map a2(g,t);
1035 1035
          // Copy constructor.
1036 1036
          // _Map b(c);
1037 1037

	
1038 1038
          // ReadMap<Key, Value> cmap;
1039 1039
          // b = cmap;
1040 1040

	
1041 1041
          ignore_unused_variable_warning(a);
1042 1042
          ignore_unused_variable_warning(a2);
1043 1043
          // ignore_unused_variable_warning(b);
1044 1044
        }
1045 1045

	
1046 1046
        const _Map &c;
1047 1047
        const Graph &g;
1048 1048
        const typename GraphMap::Value &t;
1049 1049
      };
1050 1050

	
1051 1051
    };
1052 1052

	
1053 1053
    /// \brief An empty mappable digraph class.
1054 1054
    ///
1055 1055
    /// This class provides beside the core digraph features
1056 1056
    /// map interface for the digraph structure.
1057 1057
    /// This concept is part of the Digraph concept.
1058 1058
    template <typename _Base = BaseDigraphComponent>
1059 1059
    class MappableDigraphComponent : public _Base  {
1060 1060
    public:
1061 1061

	
1062 1062
      typedef _Base Base;
1063 1063
      typedef typename Base::Node Node;
1064 1064
      typedef typename Base::Arc Arc;
1065 1065

	
1066 1066
      typedef MappableDigraphComponent Digraph;
1067 1067

	
1068 1068
      /// \brief ReadWrite map of the nodes.
1069 1069
      ///
1070 1070
      /// ReadWrite map of the nodes.
1071 1071
      ///
1072 1072
      template <typename _Value>
1073 1073
      class NodeMap : public GraphMap<Digraph, Node, _Value> {
1074 1074
      public:
1075 1075
        typedef GraphMap<MappableDigraphComponent, Node, _Value> Parent;
1076 1076

	
1077 1077
        /// \brief Construct a new map.
1078 1078
        ///
1079 1079
        /// Construct a new map for the digraph.
1080 1080
        explicit NodeMap(const MappableDigraphComponent& digraph)
1081 1081
          : Parent(digraph) {}
1082 1082

	
1083 1083
        /// \brief Construct a new map with default value.
1084 1084
        ///
1085 1085
        /// Construct a new map for the digraph and initalise the values.
1086 1086
        NodeMap(const MappableDigraphComponent& digraph, const _Value& value)
1087 1087
          : Parent(digraph, value) {}
1088 1088

	
1089 1089
      private:
1090 1090
        /// \brief Copy constructor.
1091 1091
        ///
1092 1092
        /// Copy Constructor.
1093 1093
        NodeMap(const NodeMap& nm) : Parent(nm) {}
1094 1094

	
1095 1095
        /// \brief Assign operator.
1096 1096
        ///
1097 1097
        /// Assign operator.
1098 1098
        template <typename CMap>
1099 1099
        NodeMap& operator=(const CMap&) {
1100 1100
          checkConcept<ReadMap<Node, _Value>, CMap>();
1101 1101
          return *this;
1102 1102
        }
1103 1103

	
1104 1104
      };
1105 1105

	
1106 1106
      /// \brief ReadWrite map of the arcs.
1107 1107
      ///
1108 1108
      /// ReadWrite map of the arcs.
1109 1109
      ///
1110 1110
      template <typename _Value>
1111 1111
      class ArcMap : public GraphMap<Digraph, Arc, _Value> {
1112 1112
      public:
1113 1113
        typedef GraphMap<MappableDigraphComponent, Arc, _Value> Parent;
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CONCEPT_MAPS_H
20 20
#define LEMON_CONCEPT_MAPS_H
21 21

	
22 22
#include <lemon/core.h>
23 23
#include <lemon/concept_check.h>
24 24

	
25
///\ingroup concept
25
///\ingroup map_concepts
26 26
///\file
27 27
///\brief The concept of maps.
28 28

	
29 29
namespace lemon {
30 30

	
31 31
  namespace concepts {
32 32

	
33
    /// \addtogroup concept
33
    /// \addtogroup map_concepts
34 34
    /// @{
35 35

	
36 36
    /// Readable map concept
37 37

	
38 38
    /// Readable map concept.
39 39
    ///
40 40
    template<typename K, typename T>
41 41
    class ReadMap
42 42
    {
43 43
    public:
44 44
      /// The key type of the map.
45 45
      typedef K Key;
46 46
      /// \brief The value type of the map.
47 47
      /// (The type of objects associated with the keys).
48 48
      typedef T Value;
49 49

	
50 50
      /// Returns the value associated with the given key.
51 51
      Value operator[](const Key &) const {
52 52
        return *static_cast<Value *>(0);
53 53
      }
54 54

	
55 55
      template<typename _ReadMap>
56 56
      struct Constraints {
57 57
        void constraints() {
58 58
          Value val = m[key];
59 59
          val = m[key];
60 60
          typename _ReadMap::Value own_val = m[own_key];
61 61
          own_val = m[own_key];
62 62

	
63 63
          ignore_unused_variable_warning(key);
64 64
          ignore_unused_variable_warning(val);
65 65
          ignore_unused_variable_warning(own_key);
66 66
          ignore_unused_variable_warning(own_val);
67 67
        }
68 68
        const Key& key;
69 69
        const typename _ReadMap::Key& own_key;
70 70
        const _ReadMap& m;
71 71
      };
72 72

	
73 73
    };
74 74

	
75 75

	
76 76
    /// Writable map concept
77 77

	
78 78
    /// Writable map concept.
79 79
    ///
80 80
    template<typename K, typename T>
81 81
    class WriteMap
82 82
    {
83 83
    public:
84 84
      /// The key type of the map.
85 85
      typedef K Key;
86 86
      /// \brief The value type of the map.
87 87
      /// (The type of objects associated with the keys).
88 88
      typedef T Value;
89 89

	
90 90
      /// Sets the value associated with the given key.
91 91
      void set(const Key &, const Value &) {}
92 92

	
93 93
      /// Default constructor.
94 94
      WriteMap() {}
95 95

	
96 96
      template <typename _WriteMap>
97 97
      struct Constraints {
98 98
        void constraints() {
99 99
          m.set(key, val);
100 100
          m.set(own_key, own_val);
101 101

	
102 102
          ignore_unused_variable_warning(key);
103 103
          ignore_unused_variable_warning(val);
104 104
          ignore_unused_variable_warning(own_key);
105 105
          ignore_unused_variable_warning(own_val);
106 106
        }
107 107
        const Key& key;
108 108
        const Value& val;
109 109
        const typename _WriteMap::Key& own_key;
110 110
        const typename _WriteMap::Value& own_val;
111 111
        _WriteMap& m;
112 112
      };
113 113
    };
114 114

	
115 115
    /// Read/writable map concept
116 116

	
117 117
    /// Read/writable map concept.
118 118
    ///
119 119
    template<typename K, typename T>
120 120
    class ReadWriteMap : public ReadMap<K,T>,
121 121
                         public WriteMap<K,T>
122 122
    {
123 123
    public:
124 124
      /// The key type of the map.
125 125
      typedef K Key;
126 126
      /// \brief The value type of the map.
127 127
      /// (The type of objects associated with the keys).
128 128
      typedef T Value;
129 129

	
130 130
      /// Returns the value associated with the given key.
131 131
      Value operator[](const Key &) const {
132 132
        return *static_cast<Value *>(0);
133 133
      }
134 134

	
135 135
      /// Sets the value associated with the given key.
136 136
      void set(const Key &, const Value &) {}
137 137

	
138 138
      template<typename _ReadWriteMap>
139 139
      struct Constraints {
140 140
        void constraints() {
141 141
          checkConcept<ReadMap<K, T>, _ReadWriteMap >();
142 142
          checkConcept<WriteMap<K, T>, _ReadWriteMap >();
143 143
        }
144 144
      };
145 145
    };
146 146

	
147 147

	
148 148
    /// Dereferable map concept
149 149

	
150 150
    /// Dereferable map concept.
151 151
    ///
152 152
    template<typename K, typename T, typename R, typename CR>
153 153
    class ReferenceMap : public ReadWriteMap<K,T>
154 154
    {
155 155
    public:
156 156
      /// Tag for reference maps.
157 157
      typedef True ReferenceMapTag;
158 158
      /// The key type of the map.
159 159
      typedef K Key;
160 160
      /// \brief The value type of the map.
161 161
      /// (The type of objects associated with the keys).
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CORE_H
20 20
#define LEMON_CORE_H
21 21

	
22 22
#include <vector>
23 23
#include <algorithm>
24 24

	
25 25
#include <lemon/bits/enable_if.h>
26 26
#include <lemon/bits/traits.h>
27 27

	
28 28
///\file
29 29
///\brief LEMON core utilities.
30 30
///
31 31
///This header file contains core utilities for LEMON.
32 32
///It is automatically included by all graph types, therefore it usually
33 33
///do not have to be included directly.
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \brief Dummy type to make it easier to create invalid iterators.
38 38
  ///
39 39
  /// Dummy type to make it easier to create invalid iterators.
40 40
  /// See \ref INVALID for the usage.
41 41
  struct Invalid {
42 42
  public:
43 43
    bool operator==(Invalid) { return true;  }
44 44
    bool operator!=(Invalid) { return false; }
45 45
    bool operator< (Invalid) { return false; }
46 46
  };
47 47

	
48 48
  /// \brief Invalid iterators.
49 49
  ///
50 50
  /// \ref Invalid is a global type that converts to each iterator
51 51
  /// in such a way that the value of the target iterator will be invalid.
52 52
#ifdef LEMON_ONLY_TEMPLATES
53 53
  const Invalid INVALID = Invalid();
54 54
#else
55 55
  extern const Invalid INVALID;
56 56
#endif
57 57

	
58 58
  /// \addtogroup gutils
59 59
  /// @{
60 60

	
61
  ///Create convenient typedefs for the digraph types and iterators
61
  ///Create convenience typedefs for the digraph types and iterators
62 62

	
63 63
  ///This \c \#define creates convenient type definitions for the following
64 64
  ///types of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
65 65
  ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
66 66
  ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
67 67
  ///
68 68
  ///\note If the graph type is a dependent type, ie. the graph type depend
69 69
  ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
70 70
  ///macro.
71 71
#define DIGRAPH_TYPEDEFS(Digraph)                                       \
72 72
  typedef Digraph::Node Node;                                           \
73 73
  typedef Digraph::NodeIt NodeIt;                                       \
74 74
  typedef Digraph::Arc Arc;                                             \
75 75
  typedef Digraph::ArcIt ArcIt;                                         \
76 76
  typedef Digraph::InArcIt InArcIt;                                     \
77 77
  typedef Digraph::OutArcIt OutArcIt;                                   \
78 78
  typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
79 79
  typedef Digraph::NodeMap<int> IntNodeMap;                             \
80 80
  typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
81 81
  typedef Digraph::ArcMap<bool> BoolArcMap;                             \
82 82
  typedef Digraph::ArcMap<int> IntArcMap;                               \
83
  typedef Digraph::ArcMap<double> DoubleArcMap;
83
  typedef Digraph::ArcMap<double> DoubleArcMap
84 84

	
85
  ///Create convenient typedefs for the digraph types and iterators
85
  ///Create convenience typedefs for the digraph types and iterators
86 86

	
87 87
  ///\see DIGRAPH_TYPEDEFS
88 88
  ///
89 89
  ///\note Use this macro, if the graph type is a dependent type,
90 90
  ///ie. the graph type depend on a template parameter.
91 91
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph)                              \
92 92
  typedef typename Digraph::Node Node;                                  \
93 93
  typedef typename Digraph::NodeIt NodeIt;                              \
94 94
  typedef typename Digraph::Arc Arc;                                    \
95 95
  typedef typename Digraph::ArcIt ArcIt;                                \
96 96
  typedef typename Digraph::InArcIt InArcIt;                            \
97 97
  typedef typename Digraph::OutArcIt OutArcIt;                          \
98 98
  typedef typename Digraph::template NodeMap<bool> BoolNodeMap;         \
99 99
  typedef typename Digraph::template NodeMap<int> IntNodeMap;           \
100 100
  typedef typename Digraph::template NodeMap<double> DoubleNodeMap;     \
101 101
  typedef typename Digraph::template ArcMap<bool> BoolArcMap;           \
102 102
  typedef typename Digraph::template ArcMap<int> IntArcMap;             \
103
  typedef typename Digraph::template ArcMap<double> DoubleArcMap;
103
  typedef typename Digraph::template ArcMap<double> DoubleArcMap
104 104

	
105
  ///Create convenient typedefs for the graph types and iterators
105
  ///Create convenience typedefs for the graph types and iterators
106 106

	
107 107
  ///This \c \#define creates the same convenient type definitions as defined
108 108
  ///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates
109 109
  ///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap,
110 110
  ///\c DoubleEdgeMap.
111 111
  ///
112 112
  ///\note If the graph type is a dependent type, ie. the graph type depend
113 113
  ///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS()
114 114
  ///macro.
115 115
#define GRAPH_TYPEDEFS(Graph)                                           \
116 116
  DIGRAPH_TYPEDEFS(Graph);                                              \
117 117
  typedef Graph::Edge Edge;                                             \
118 118
  typedef Graph::EdgeIt EdgeIt;                                         \
119 119
  typedef Graph::IncEdgeIt IncEdgeIt;                                   \
120 120
  typedef Graph::EdgeMap<bool> BoolEdgeMap;                             \
121 121
  typedef Graph::EdgeMap<int> IntEdgeMap;                               \
122
  typedef Graph::EdgeMap<double> DoubleEdgeMap;
122
  typedef Graph::EdgeMap<double> DoubleEdgeMap
123 123

	
124
  ///Create convenient typedefs for the graph types and iterators
124
  ///Create convenience typedefs for the graph types and iterators
125 125

	
126 126
  ///\see GRAPH_TYPEDEFS
127 127
  ///
128 128
  ///\note Use this macro, if the graph type is a dependent type,
129 129
  ///ie. the graph type depend on a template parameter.
130 130
#define TEMPLATE_GRAPH_TYPEDEFS(Graph)                                  \
131 131
  TEMPLATE_DIGRAPH_TYPEDEFS(Graph);                                     \
132 132
  typedef typename Graph::Edge Edge;                                    \
133 133
  typedef typename Graph::EdgeIt EdgeIt;                                \
134 134
  typedef typename Graph::IncEdgeIt IncEdgeIt;                          \
135 135
  typedef typename Graph::template EdgeMap<bool> BoolEdgeMap;           \
136 136
  typedef typename Graph::template EdgeMap<int> IntEdgeMap;             \
137
  typedef typename Graph::template EdgeMap<double> DoubleEdgeMap;
137
  typedef typename Graph::template EdgeMap<double> DoubleEdgeMap
138 138

	
139 139
  /// \brief Function to count the items in a graph.
140 140
  ///
141 141
  /// This function counts the items (nodes, arcs etc.) in a graph.
142 142
  /// The complexity of the function is linear because
143 143
  /// it iterates on all of the items.
144 144
  template <typename Graph, typename Item>
145 145
  inline int countItems(const Graph& g) {
146 146
    typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt;
147 147
    int num = 0;
148 148
    for (ItemIt it(g); it != INVALID; ++it) {
149 149
      ++num;
150 150
    }
151 151
    return num;
152 152
  }
153 153

	
154 154
  // Node counting:
155 155

	
156 156
  namespace _core_bits {
157 157

	
158 158
    template <typename Graph, typename Enable = void>
159 159
    struct CountNodesSelector {
160 160
      static int count(const Graph &g) {
161 161
        return countItems<Graph, typename Graph::Node>(g);
162 162
      }
163 163
    };
164 164

	
165 165
    template <typename Graph>
166 166
    struct CountNodesSelector<
167 167
      Graph, typename
168 168
      enable_if<typename Graph::NodeNumTag, void>::type>
169 169
    {
170 170
      static int count(const Graph &g) {
171 171
        return g.nodeNum();
172 172
      }
173 173
    };
174 174
  }
175 175

	
176 176
  /// \brief Function to count the nodes in the graph.
177 177
  ///
178 178
  /// This function counts the nodes in the graph.
179 179
  /// The complexity of the function is <em>O</em>(<em>n</em>), but for some
180 180
  /// graph structures it is specialized to run in <em>O</em>(1).
181 181
  ///
182 182
  /// \note If the graph contains a \c nodeNum() member function and a
183 183
  /// \c NodeNumTag tag then this function calls directly the member
184 184
  /// function to query the cardinality of the node set.
185 185
  template <typename Graph>
186 186
  inline int countNodes(const Graph& g) {
187 187
    return _core_bits::CountNodesSelector<Graph>::count(g);
188 188
  }
189 189

	
190 190
  // Arc counting:
191 191

	
192 192
  namespace _core_bits {
193 193

	
194 194
    template <typename Graph, typename Enable = void>
195 195
    struct CountArcsSelector {
196 196
      static int count(const Graph &g) {
197 197
        return countItems<Graph, typename Graph::Arc>(g);
198 198
      }
199 199
    };
200 200

	
201 201
    template <typename Graph>
202 202
    struct CountArcsSelector<
203 203
      Graph,
204 204
      typename enable_if<typename Graph::ArcNumTag, void>::type>
205 205
    {
206 206
      static int count(const Graph &g) {
207 207
        return g.arcNum();
208 208
      }
209 209
    };
210 210
  }
211 211

	
212 212
  /// \brief Function to count the arcs in the graph.
213 213
  ///
214 214
  /// This function counts the arcs in the graph.
215 215
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
216 216
  /// graph structures it is specialized to run in <em>O</em>(1).
217 217
  ///
218 218
  /// \note If the graph contains a \c arcNum() member function and a
219 219
  /// \c ArcNumTag tag then this function calls directly the member
220 220
  /// function to query the cardinality of the arc set.
221 221
  template <typename Graph>
222 222
  inline int countArcs(const Graph& g) {
223 223
    return _core_bits::CountArcsSelector<Graph>::count(g);
224 224
  }
225 225

	
226 226
  // Edge counting:
227 227

	
228 228
  namespace _core_bits {
229 229

	
230 230
    template <typename Graph, typename Enable = void>
231 231
    struct CountEdgesSelector {
232 232
      static int count(const Graph &g) {
233 233
        return countItems<Graph, typename Graph::Edge>(g);
234 234
      }
235 235
    };
236 236

	
237 237
    template <typename Graph>
238 238
    struct CountEdgesSelector<
239 239
      Graph,
240 240
      typename enable_if<typename Graph::EdgeNumTag, void>::type>
241 241
    {
242 242
      static int count(const Graph &g) {
243 243
        return g.edgeNum();
244 244
      }
245 245
    };
246 246
  }
247 247

	
248 248
  /// \brief Function to count the edges in the graph.
249 249
  ///
250 250
  /// This function counts the edges in the graph.
251 251
  /// The complexity of the function is <em>O</em>(<em>m</em>), but for some
252 252
  /// graph structures it is specialized to run in <em>O</em>(1).
253 253
  ///
254 254
  /// \note If the graph contains a \c edgeNum() member function and a
255 255
  /// \c EdgeNumTag tag then this function calls directly the member
256 256
  /// function to query the cardinality of the edge set.
257 257
  template <typename Graph>
258 258
  inline int countEdges(const Graph& g) {
259 259
    return _core_bits::CountEdgesSelector<Graph>::count(g);
260 260

	
261 261
  }
262 262

	
263 263

	
264 264
  template <typename Graph, typename DegIt>
265 265
  inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) {
... ...
@@ -1429,416 +1429,416 @@
1429 1429
      if (a < m) {
1430 1430
        Arc left = refreshRec(v,a,m-1);
1431 1431
        _left.set(me, left);
1432 1432
        _parent.set(left, me);
1433 1433
      } else {
1434 1434
        _left.set(me, INVALID);
1435 1435
      }
1436 1436
      if (m < b) {
1437 1437
        Arc right = refreshRec(v,m+1,b);
1438 1438
        _right.set(me, right);
1439 1439
        _parent.set(right, me);
1440 1440
      } else {
1441 1441
        _right.set(me, INVALID);
1442 1442
      }
1443 1443
      return me;
1444 1444
    }
1445 1445

	
1446 1446
    void refresh() {
1447 1447
      for(NodeIt n(_g);n!=INVALID;++n) {
1448 1448
        std::vector<Arc> v;
1449 1449
        for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
1450 1450
        if (!v.empty()) {
1451 1451
          std::sort(v.begin(),v.end(),ArcLess(_g));
1452 1452
          Arc head = refreshRec(v,0,v.size()-1);
1453 1453
          _head.set(n, head);
1454 1454
          _parent.set(head, INVALID);
1455 1455
        }
1456 1456
        else _head.set(n, INVALID);
1457 1457
      }
1458 1458
    }
1459 1459

	
1460 1460
    void zig(Arc v) {
1461 1461
      Arc w = _parent[v];
1462 1462
      _parent.set(v, _parent[w]);
1463 1463
      _parent.set(w, v);
1464 1464
      _left.set(w, _right[v]);
1465 1465
      _right.set(v, w);
1466 1466
      if (_parent[v] != INVALID) {
1467 1467
        if (_right[_parent[v]] == w) {
1468 1468
          _right.set(_parent[v], v);
1469 1469
        } else {
1470 1470
          _left.set(_parent[v], v);
1471 1471
        }
1472 1472
      }
1473 1473
      if (_left[w] != INVALID){
1474 1474
        _parent.set(_left[w], w);
1475 1475
      }
1476 1476
    }
1477 1477

	
1478 1478
    void zag(Arc v) {
1479 1479
      Arc w = _parent[v];
1480 1480
      _parent.set(v, _parent[w]);
1481 1481
      _parent.set(w, v);
1482 1482
      _right.set(w, _left[v]);
1483 1483
      _left.set(v, w);
1484 1484
      if (_parent[v] != INVALID){
1485 1485
        if (_left[_parent[v]] == w) {
1486 1486
          _left.set(_parent[v], v);
1487 1487
        } else {
1488 1488
          _right.set(_parent[v], v);
1489 1489
        }
1490 1490
      }
1491 1491
      if (_right[w] != INVALID){
1492 1492
        _parent.set(_right[w], w);
1493 1493
      }
1494 1494
    }
1495 1495

	
1496 1496
    void splay(Arc v) {
1497 1497
      while (_parent[v] != INVALID) {
1498 1498
        if (v == _left[_parent[v]]) {
1499 1499
          if (_parent[_parent[v]] == INVALID) {
1500 1500
            zig(v);
1501 1501
          } else {
1502 1502
            if (_parent[v] == _left[_parent[_parent[v]]]) {
1503 1503
              zig(_parent[v]);
1504 1504
              zig(v);
1505 1505
            } else {
1506 1506
              zig(v);
1507 1507
              zag(v);
1508 1508
            }
1509 1509
          }
1510 1510
        } else {
1511 1511
          if (_parent[_parent[v]] == INVALID) {
1512 1512
            zag(v);
1513 1513
          } else {
1514 1514
            if (_parent[v] == _left[_parent[_parent[v]]]) {
1515 1515
              zag(v);
1516 1516
              zig(v);
1517 1517
            } else {
1518 1518
              zag(_parent[v]);
1519 1519
              zag(v);
1520 1520
            }
1521 1521
          }
1522 1522
        }
1523 1523
      }
1524 1524
      _head[_g.source(v)] = v;
1525 1525
    }
1526 1526

	
1527 1527

	
1528 1528
  public:
1529 1529

	
1530 1530
    ///Find an arc between two nodes.
1531 1531

	
1532 1532
    ///Find an arc between two nodes.
1533 1533
    ///\param s The source node.
1534 1534
    ///\param t The target node.
1535 1535
    ///\param p The previous arc between \c s and \c t. It it is INVALID or
1536 1536
    ///not given, the operator finds the first appropriate arc.
1537 1537
    ///\return An arc from \c s to \c t after \c p or
1538 1538
    ///\ref INVALID if there is no more.
1539 1539
    ///
1540 1540
    ///For example, you can count the number of arcs from \c u to \c v in the
1541 1541
    ///following way.
1542 1542
    ///\code
1543 1543
    ///DynArcLookUp<ListDigraph> ae(g);
1544 1544
    ///...
1545 1545
    ///int n = 0;
1546 1546
    ///for(Arc a = ae(u,v); a != INVALID; a = ae(u,v,a)) n++;
1547 1547
    ///\endcode
1548 1548
    ///
1549 1549
    ///Finding the arcs take at most <em>O</em>(log<em>d</em>)
1550 1550
    ///amortized time, specifically, the time complexity of the lookups
1551 1551
    ///is equal to the optimal search tree implementation for the
1552 1552
    ///current query distribution in a constant factor.
1553 1553
    ///
1554 1554
    ///\note This is a dynamic data structure, therefore the data
1555 1555
    ///structure is updated after each graph alteration. Thus although
1556 1556
    ///this data structure is theoretically faster than \ref ArcLookUp
1557
    ///and \ref AllArcLookup, it often provides worse performance than
1557
    ///and \ref AllArcLookUp, it often provides worse performance than
1558 1558
    ///them.
1559 1559
    Arc operator()(Node s, Node t, Arc p = INVALID) const  {
1560 1560
      if (p == INVALID) {
1561 1561
        Arc a = _head[s];
1562 1562
        if (a == INVALID) return INVALID;
1563 1563
        Arc r = INVALID;
1564 1564
        while (true) {
1565 1565
          if (_g.target(a) < t) {
1566 1566
            if (_right[a] == INVALID) {
1567 1567
              const_cast<DynArcLookUp&>(*this).splay(a);
1568 1568
              return r;
1569 1569
            } else {
1570 1570
              a = _right[a];
1571 1571
            }
1572 1572
          } else {
1573 1573
            if (_g.target(a) == t) {
1574 1574
              r = a;
1575 1575
            }
1576 1576
            if (_left[a] == INVALID) {
1577 1577
              const_cast<DynArcLookUp&>(*this).splay(a);
1578 1578
              return r;
1579 1579
            } else {
1580 1580
              a = _left[a];
1581 1581
            }
1582 1582
          }
1583 1583
        }
1584 1584
      } else {
1585 1585
        Arc a = p;
1586 1586
        if (_right[a] != INVALID) {
1587 1587
          a = _right[a];
1588 1588
          while (_left[a] != INVALID) {
1589 1589
            a = _left[a];
1590 1590
          }
1591 1591
          const_cast<DynArcLookUp&>(*this).splay(a);
1592 1592
        } else {
1593 1593
          while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
1594 1594
            a = _parent[a];
1595 1595
          }
1596 1596
          if (_parent[a] == INVALID) {
1597 1597
            return INVALID;
1598 1598
          } else {
1599 1599
            a = _parent[a];
1600 1600
            const_cast<DynArcLookUp&>(*this).splay(a);
1601 1601
          }
1602 1602
        }
1603 1603
        if (_g.target(a) == t) return a;
1604 1604
        else return INVALID;
1605 1605
      }
1606 1606
    }
1607 1607

	
1608 1608
  };
1609 1609

	
1610 1610
  ///Fast arc look-up between given endpoints.
1611 1611

	
1612 1612
  ///Using this class, you can find an arc in a digraph from a given
1613 1613
  ///source to a given target in time <em>O</em>(log<em>d</em>),
1614 1614
  ///where <em>d</em> is the out-degree of the source node.
1615 1615
  ///
1616 1616
  ///It is not possible to find \e all parallel arcs between two nodes.
1617 1617
  ///Use \ref AllArcLookUp for this purpose.
1618 1618
  ///
1619 1619
  ///\warning This class is static, so you should call refresh() (or at
1620 1620
  ///least refresh(Node)) to refresh this data structure whenever the
1621 1621
  ///digraph changes. This is a time consuming (superlinearly proportional
1622 1622
  ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1623 1623
  ///
1624 1624
  ///\tparam G The type of the underlying digraph.
1625 1625
  ///
1626 1626
  ///\sa DynArcLookUp
1627 1627
  ///\sa AllArcLookUp
1628 1628
  template<class G>
1629 1629
  class ArcLookUp
1630 1630
  {
1631 1631
  public:
1632 1632
    TEMPLATE_DIGRAPH_TYPEDEFS(G);
1633 1633
    typedef G Digraph;
1634 1634

	
1635 1635
  protected:
1636 1636
    const Digraph &_g;
1637 1637
    typename Digraph::template NodeMap<Arc> _head;
1638 1638
    typename Digraph::template ArcMap<Arc> _left;
1639 1639
    typename Digraph::template ArcMap<Arc> _right;
1640 1640

	
1641 1641
    class ArcLess {
1642 1642
      const Digraph &g;
1643 1643
    public:
1644 1644
      ArcLess(const Digraph &_g) : g(_g) {}
1645 1645
      bool operator()(Arc a,Arc b) const
1646 1646
      {
1647 1647
        return g.target(a)<g.target(b);
1648 1648
      }
1649 1649
    };
1650 1650

	
1651 1651
  public:
1652 1652

	
1653 1653
    ///Constructor
1654 1654

	
1655 1655
    ///Constructor.
1656 1656
    ///
1657 1657
    ///It builds up the search database, which remains valid until the digraph
1658 1658
    ///changes.
1659 1659
    ArcLookUp(const Digraph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();}
1660 1660

	
1661 1661
  private:
1662 1662
    Arc refreshRec(std::vector<Arc> &v,int a,int b)
1663 1663
    {
1664 1664
      int m=(a+b)/2;
1665 1665
      Arc me=v[m];
1666 1666
      _left[me] = a<m?refreshRec(v,a,m-1):INVALID;
1667 1667
      _right[me] = m<b?refreshRec(v,m+1,b):INVALID;
1668 1668
      return me;
1669 1669
    }
1670 1670
  public:
1671 1671
    ///Refresh the search data structure at a node.
1672 1672

	
1673 1673
    ///Build up the search database of node \c n.
1674 1674
    ///
1675 1675
    ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em>
1676 1676
    ///is the number of the outgoing arcs of \c n.
1677 1677
    void refresh(Node n)
1678 1678
    {
1679 1679
      std::vector<Arc> v;
1680 1680
      for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
1681 1681
      if(v.size()) {
1682 1682
        std::sort(v.begin(),v.end(),ArcLess(_g));
1683 1683
        _head[n]=refreshRec(v,0,v.size()-1);
1684 1684
      }
1685 1685
      else _head[n]=INVALID;
1686 1686
    }
1687 1687
    ///Refresh the full data structure.
1688 1688

	
1689 1689
    ///Build up the full search database. In fact, it simply calls
1690 1690
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
1691 1691
    ///
1692 1692
    ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1693 1693
    ///the number of the arcs in the digraph and <em>D</em> is the maximum
1694 1694
    ///out-degree of the digraph.
1695 1695
    void refresh()
1696 1696
    {
1697 1697
      for(NodeIt n(_g);n!=INVALID;++n) refresh(n);
1698 1698
    }
1699 1699

	
1700 1700
    ///Find an arc between two nodes.
1701 1701

	
1702
    ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>), where
1703
    ///<em>d</em> is the number of outgoing arcs of \c s.
1702
    ///Find an arc between two nodes in time <em>O</em>(log<em>d</em>),
1703
    ///where <em>d</em> is the number of outgoing arcs of \c s.
1704 1704
    ///\param s The source node.
1705 1705
    ///\param t The target node.
1706 1706
    ///\return An arc from \c s to \c t if there exists,
1707 1707
    ///\ref INVALID otherwise.
1708 1708
    ///
1709 1709
    ///\warning If you change the digraph, refresh() must be called before using
1710 1710
    ///this operator. If you change the outgoing arcs of
1711 1711
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1712 1712
    Arc operator()(Node s, Node t) const
1713 1713
    {
1714 1714
      Arc e;
1715 1715
      for(e=_head[s];
1716 1716
          e!=INVALID&&_g.target(e)!=t;
1717 1717
          e = t < _g.target(e)?_left[e]:_right[e]) ;
1718 1718
      return e;
1719 1719
    }
1720 1720

	
1721 1721
  };
1722 1722

	
1723 1723
  ///Fast look-up of all arcs between given endpoints.
1724 1724

	
1725 1725
  ///This class is the same as \ref ArcLookUp, with the addition
1726 1726
  ///that it makes it possible to find all parallel arcs between given
1727 1727
  ///endpoints.
1728 1728
  ///
1729 1729
  ///\warning This class is static, so you should call refresh() (or at
1730 1730
  ///least refresh(Node)) to refresh this data structure whenever the
1731 1731
  ///digraph changes. This is a time consuming (superlinearly proportional
1732 1732
  ///(<em>O</em>(<em>m</em> log<em>m</em>)) to the number of arcs).
1733 1733
  ///
1734 1734
  ///\tparam G The type of the underlying digraph.
1735 1735
  ///
1736 1736
  ///\sa DynArcLookUp
1737 1737
  ///\sa ArcLookUp
1738 1738
  template<class G>
1739 1739
  class AllArcLookUp : public ArcLookUp<G>
1740 1740
  {
1741 1741
    using ArcLookUp<G>::_g;
1742 1742
    using ArcLookUp<G>::_right;
1743 1743
    using ArcLookUp<G>::_left;
1744 1744
    using ArcLookUp<G>::_head;
1745 1745

	
1746 1746
    TEMPLATE_DIGRAPH_TYPEDEFS(G);
1747 1747
    typedef G Digraph;
1748 1748

	
1749 1749
    typename Digraph::template ArcMap<Arc> _next;
1750 1750

	
1751 1751
    Arc refreshNext(Arc head,Arc next=INVALID)
1752 1752
    {
1753 1753
      if(head==INVALID) return next;
1754 1754
      else {
1755 1755
        next=refreshNext(_right[head],next);
1756 1756
        _next[head]=( next!=INVALID && _g.target(next)==_g.target(head))
1757 1757
          ? next : INVALID;
1758 1758
        return refreshNext(_left[head],head);
1759 1759
      }
1760 1760
    }
1761 1761

	
1762 1762
    void refreshNext()
1763 1763
    {
1764 1764
      for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]);
1765 1765
    }
1766 1766

	
1767 1767
  public:
1768 1768
    ///Constructor
1769 1769

	
1770 1770
    ///Constructor.
1771 1771
    ///
1772 1772
    ///It builds up the search database, which remains valid until the digraph
1773 1773
    ///changes.
1774 1774
    AllArcLookUp(const Digraph &g) : ArcLookUp<G>(g), _next(g) {refreshNext();}
1775 1775

	
1776 1776
    ///Refresh the data structure at a node.
1777 1777

	
1778 1778
    ///Build up the search database of node \c n.
1779 1779
    ///
1780 1780
    ///It runs in time <em>O</em>(<em>d</em> log<em>d</em>), where <em>d</em> is
1781 1781
    ///the number of the outgoing arcs of \c n.
1782 1782
    void refresh(Node n)
1783 1783
    {
1784 1784
      ArcLookUp<G>::refresh(n);
1785 1785
      refreshNext(_head[n]);
1786 1786
    }
1787 1787

	
1788 1788
    ///Refresh the full data structure.
1789 1789

	
1790 1790
    ///Build up the full search database. In fact, it simply calls
1791 1791
    ///\ref refresh(Node) "refresh(n)" for each node \c n.
1792 1792
    ///
1793 1793
    ///It runs in time <em>O</em>(<em>m</em> log<em>D</em>), where <em>m</em> is
1794 1794
    ///the number of the arcs in the digraph and <em>D</em> is the maximum
1795 1795
    ///out-degree of the digraph.
1796 1796
    void refresh()
1797 1797
    {
1798 1798
      for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]);
1799 1799
    }
1800 1800

	
1801 1801
    ///Find an arc between two nodes.
1802 1802

	
1803 1803
    ///Find an arc between two nodes.
1804 1804
    ///\param s The source node.
1805 1805
    ///\param t The target node.
1806 1806
    ///\param prev The previous arc between \c s and \c t. It it is INVALID or
1807 1807
    ///not given, the operator finds the first appropriate arc.
1808 1808
    ///\return An arc from \c s to \c t after \c prev or
1809 1809
    ///\ref INVALID if there is no more.
1810 1810
    ///
1811 1811
    ///For example, you can count the number of arcs from \c u to \c v in the
1812 1812
    ///following way.
1813 1813
    ///\code
1814 1814
    ///AllArcLookUp<ListDigraph> ae(g);
1815 1815
    ///...
1816 1816
    ///int n = 0;
1817 1817
    ///for(Arc a = ae(u,v); a != INVALID; a=ae(u,v,a)) n++;
1818 1818
    ///\endcode
1819 1819
    ///
1820
    ///Finding the first arc take <em>O</em>(log<em>d</em>) time, where
1821
    ///<em>d</em> is the number of outgoing arcs of \c s. Then, the
1820
    ///Finding the first arc take <em>O</em>(log<em>d</em>) time,
1821
    ///where <em>d</em> is the number of outgoing arcs of \c s. Then the
1822 1822
    ///consecutive arcs are found in constant time.
1823 1823
    ///
1824 1824
    ///\warning If you change the digraph, refresh() must be called before using
1825 1825
    ///this operator. If you change the outgoing arcs of
1826 1826
    ///a single node \c n, then \ref refresh(Node) "refresh(n)" is enough.
1827 1827
    ///
1828 1828
#ifdef DOXYGEN
1829 1829
    Arc operator()(Node s, Node t, Arc prev=INVALID) const {}
1830 1830
#else
1831 1831
    using ArcLookUp<G>::operator() ;
1832 1832
    Arc operator()(Node s, Node t, Arc prev) const
1833 1833
    {
1834 1834
      return prev==INVALID?(*this)(s,t):_next[prev];
1835 1835
    }
1836 1836
#endif
1837 1837

	
1838 1838
  };
1839 1839

	
1840 1840
  /// @}
1841 1841

	
1842 1842
} //namespace lemon
1843 1843

	
1844 1844
#endif
Ignore white space 6 line context
1
if WANT_BENCHMARK
2

	
3
noinst_HEADERS +=
4

	
5
noinst_PROGRAMS +=
6

	
7
endif WANT_BENCHMARK

Changeset was too big and was cut off... Show full diff

0 comments (0 inline)