0
89
0
42
42
139
139
9
5
2
2
1
1
2
2
10
10
4
3
41
41
9
5
7
7
89
89
10
10
11
11
2
2
46
46
11
11
15
15
2
2
4
4
31
31
12
12
54
53
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -60,25 +60,25 @@ |
60 | 60 |
// Set the group mandatory |
61 | 61 |
ap.mandatoryGroup("gr"); |
62 | 62 |
// Set the options of the group exclusive (only one option can be given) |
63 | 63 |
ap.onlyOneGroup("gr"); |
64 | 64 |
// Add non-parsed arguments (e.g. input files) |
65 | 65 |
ap.other("infile", "The input file.") |
66 | 66 |
.other("..."); |
67 | 67 |
|
68 | 68 |
// Throw an exception when problems occurs. The default behavior is to |
69 | 69 |
// exit(1) on these cases, but this makes Valgrind falsely warn |
70 | 70 |
// about memory leaks. |
71 | 71 |
ap.throwOnProblems(); |
72 |
|
|
72 |
|
|
73 | 73 |
// Perform the parsing process |
74 | 74 |
// (in case of any error it terminates the program) |
75 | 75 |
// The try {} construct is necessary only if the ap.trowOnProblems() |
76 | 76 |
// setting is in use. |
77 | 77 |
try { |
78 | 78 |
ap.parse(); |
79 | 79 |
} catch (ArgParserException &) { return 1; } |
80 | 80 |
|
81 | 81 |
// Check each option if it has been given and print its value |
82 | 82 |
std::cout << "Parameters of '" << ap.commandName() << "':\n"; |
83 | 83 |
|
84 | 84 |
std::cout << " Value of -n: " << i << std::endl; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/** |
20 | 20 |
\mainpage LEMON Documentation |
21 | 21 |
|
22 | 22 |
\section intro Introduction |
23 | 23 |
|
24 | 24 |
<b>LEMON</b> stands for <i><b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
25 | 25 |
and <b>O</b>ptimization in <b>N</b>etworks</i>. |
26 | 26 |
It is a C++ template library providing efficient implementations of common |
27 | 27 |
data structures and algorithms with focus on combinatorial optimization |
28 |
tasks connected mainly with graphs and networks. |
|
28 |
tasks connected mainly with graphs and networks. |
|
29 | 29 |
|
30 | 30 |
<b> |
31 | 31 |
LEMON is an <a class="el" href="http://opensource.org/">open source</a> |
32 | 32 |
project. |
33 | 33 |
You are free to use it in your commercial or |
34 | 34 |
non-commercial applications under very permissive |
35 | 35 |
\ref license "license terms". |
36 | 36 |
</b> |
37 | 37 |
|
38 |
The project is maintained by the |
|
38 |
The project is maintained by the |
|
39 | 39 |
<a href="http://www.cs.elte.hu/egres/">Egerváry Research Group on |
40 | 40 |
Combinatorial Optimization</a> \ref egres |
41 | 41 |
at the Operations Research Department of the |
42 | 42 |
<a href="http://www.elte.hu/en/">Eötvös Loránd University</a>, |
43 | 43 |
Budapest, Hungary. |
44 | 44 |
LEMON is also a member of the <a href="http://www.coin-or.org/">COIN-OR</a> |
45 | 45 |
initiative \ref coinor. |
46 | 46 |
|
47 | 47 |
\section howtoread How to Read the Documentation |
48 | 48 |
|
49 | 49 |
If you would like to get to know the library, see |
50 | 50 |
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -72,25 +72,25 @@ |
72 | 72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal |
73 | 73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials |
74 | 74 |
the following \e complementary \e slackness optimality conditions hold. |
75 | 75 |
|
76 | 76 |
- For all \f$uv\in A\f$ arcs: |
77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
80 | 80 |
- For all \f$u\in V\f$ nodes: |
81 | 81 |
- \f$\pi(u)\leq 0\f$; |
82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
83 | 83 |
then \f$\pi(u)=0\f$. |
84 |
|
|
84 |
|
|
85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
88 | 88 |
|
89 | 89 |
All algorithms provide dual solution (node potentials), as well, |
90 | 90 |
if an optimal flow is found. |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
\section mcf_eq Equality Form |
94 | 94 |
|
95 | 95 |
The above \ref mcf_def "definition" is actually more general than the |
96 | 96 |
usual formulation of the minimum cost flow problem, in which strict |
... | ... |
@@ -110,25 +110,25 @@ |
110 | 110 |
|
111 | 111 |
\section mcf_leq Opposite Inequalites (LEQ Form) |
112 | 112 |
|
113 | 113 |
Another possible definition of the minimum cost flow problem is |
114 | 114 |
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints, |
115 | 115 |
instead of the <em>"greater or equal"</em> (GEQ) constraints. |
116 | 116 |
|
117 | 117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
118 | 118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
119 | 119 |
sup(u) \quad \forall u\in V \f] |
120 | 120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
121 | 121 |
|
122 |
It means that the total demand must be less or equal to the |
|
122 |
It means that the total demand must be less or equal to the |
|
123 | 123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
124 | 124 |
positive) and all the demands have to be satisfied, but there |
125 | 125 |
could be supplies that are not carried out from the supply |
126 | 126 |
nodes. |
127 | 127 |
The equality form is also a special case of this form, of course. |
128 | 128 |
|
129 | 129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
130 | 130 |
of the problem by reversing the direction of the arcs and taking the |
131 | 131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
132 | 132 |
\ref NegMap adaptors). |
133 | 133 |
However \ref NetworkSimplex algorithm also supports this form directly |
134 | 134 |
for the sake of convenience. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -412,25 +412,25 @@ |
412 | 412 |
typedef AF ArcFilterMap; |
413 | 413 |
|
414 | 414 |
typedef SubDigraphBase Adaptor; |
415 | 415 |
protected: |
416 | 416 |
NF* _node_filter; |
417 | 417 |
AF* _arc_filter; |
418 | 418 |
SubDigraphBase() |
419 | 419 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
420 | 420 |
|
421 | 421 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
422 | 422 |
Parent::initialize(digraph); |
423 | 423 |
_node_filter = &node_filter; |
424 |
_arc_filter = &arc_filter; |
|
424 |
_arc_filter = &arc_filter; |
|
425 | 425 |
} |
426 | 426 |
|
427 | 427 |
public: |
428 | 428 |
|
429 | 429 |
typedef typename Parent::Node Node; |
430 | 430 |
typedef typename Parent::Arc Arc; |
431 | 431 |
|
432 | 432 |
void first(Node& i) const { |
433 | 433 |
Parent::first(i); |
434 | 434 |
while (i != INVALID && !(*_node_filter)[i]) Parent::next(i); |
435 | 435 |
} |
436 | 436 |
|
... | ... |
@@ -499,54 +499,54 @@ |
499 | 499 |
return INVALID; |
500 | 500 |
} |
501 | 501 |
Arc arc = Parent::findArc(source, target, prev); |
502 | 502 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
503 | 503 |
arc = Parent::findArc(source, target, arc); |
504 | 504 |
} |
505 | 505 |
return arc; |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
public: |
509 | 509 |
|
510 | 510 |
template <typename V> |
511 |
class NodeMap |
|
512 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
513 |
|
|
511 |
class NodeMap |
|
512 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
|
513 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
|
514 | 514 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
515 |
|
|
515 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
|
516 | 516 |
|
517 | 517 |
public: |
518 | 518 |
typedef V Value; |
519 | 519 |
|
520 | 520 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
521 | 521 |
: Parent(adaptor) {} |
522 | 522 |
NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
523 | 523 |
: Parent(adaptor, value) {} |
524 | 524 |
|
525 | 525 |
private: |
526 | 526 |
NodeMap& operator=(const NodeMap& cmap) { |
527 | 527 |
return operator=<NodeMap>(cmap); |
528 | 528 |
} |
529 | 529 |
|
530 | 530 |
template <typename CMap> |
531 | 531 |
NodeMap& operator=(const CMap& cmap) { |
532 | 532 |
Parent::operator=(cmap); |
533 | 533 |
return *this; |
534 | 534 |
} |
535 | 535 |
}; |
536 | 536 |
|
537 | 537 |
template <typename V> |
538 |
class ArcMap |
|
538 |
class ArcMap |
|
539 | 539 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
540 |
|
|
540 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
|
541 | 541 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, |
542 | 542 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
543 | 543 |
|
544 | 544 |
public: |
545 | 545 |
typedef V Value; |
546 | 546 |
|
547 | 547 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor) |
548 | 548 |
: Parent(adaptor) {} |
549 | 549 |
ArcMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor, const V& value) |
550 | 550 |
: Parent(adaptor, value) {} |
551 | 551 |
|
552 | 552 |
private: |
... | ... |
@@ -573,25 +573,25 @@ |
573 | 573 |
typedef AF ArcFilterMap; |
574 | 574 |
|
575 | 575 |
typedef SubDigraphBase Adaptor; |
576 | 576 |
protected: |
577 | 577 |
NF* _node_filter; |
578 | 578 |
AF* _arc_filter; |
579 | 579 |
SubDigraphBase() |
580 | 580 |
: Parent(), _node_filter(0), _arc_filter(0) { } |
581 | 581 |
|
582 | 582 |
void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) { |
583 | 583 |
Parent::initialize(digraph); |
584 | 584 |
_node_filter = &node_filter; |
585 |
_arc_filter = &arc_filter; |
|
585 |
_arc_filter = &arc_filter; |
|
586 | 586 |
} |
587 | 587 |
|
588 | 588 |
public: |
589 | 589 |
|
590 | 590 |
typedef typename Parent::Node Node; |
591 | 591 |
typedef typename Parent::Arc Arc; |
592 | 592 |
|
593 | 593 |
void first(Node& i) const { |
594 | 594 |
Parent::first(i); |
595 | 595 |
while (i!=INVALID && !(*_node_filter)[i]) Parent::next(i); |
596 | 596 |
} |
597 | 597 |
|
... | ... |
@@ -642,52 +642,52 @@ |
642 | 642 |
const Arc& prev = INVALID) const { |
643 | 643 |
if (!(*_node_filter)[source] || !(*_node_filter)[target]) { |
644 | 644 |
return INVALID; |
645 | 645 |
} |
646 | 646 |
Arc arc = Parent::findArc(source, target, prev); |
647 | 647 |
while (arc != INVALID && !(*_arc_filter)[arc]) { |
648 | 648 |
arc = Parent::findArc(source, target, arc); |
649 | 649 |
} |
650 | 650 |
return arc; |
651 | 651 |
} |
652 | 652 |
|
653 | 653 |
template <typename V> |
654 |
class NodeMap |
|
654 |
class NodeMap |
|
655 | 655 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
656 | 656 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> { |
657 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
657 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
|
658 | 658 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent; |
659 | 659 |
|
660 | 660 |
public: |
661 | 661 |
typedef V Value; |
662 | 662 |
|
663 | 663 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
664 | 664 |
: Parent(adaptor) {} |
665 | 665 |
NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
666 | 666 |
: Parent(adaptor, value) {} |
667 | 667 |
|
668 | 668 |
private: |
669 | 669 |
NodeMap& operator=(const NodeMap& cmap) { |
670 | 670 |
return operator=<NodeMap>(cmap); |
671 | 671 |
} |
672 | 672 |
|
673 | 673 |
template <typename CMap> |
674 | 674 |
NodeMap& operator=(const CMap& cmap) { |
675 | 675 |
Parent::operator=(cmap); |
676 | 676 |
return *this; |
677 | 677 |
} |
678 | 678 |
}; |
679 | 679 |
|
680 | 680 |
template <typename V> |
681 |
class ArcMap |
|
681 |
class ArcMap |
|
682 | 682 |
: public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
683 | 683 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> { |
684 | 684 |
typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, |
685 | 685 |
LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent; |
686 | 686 |
|
687 | 687 |
public: |
688 | 688 |
typedef V Value; |
689 | 689 |
|
690 | 690 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor) |
691 | 691 |
: Parent(adaptor) {} |
692 | 692 |
ArcMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor, const V& value) |
693 | 693 |
: Parent(adaptor, value) {} |
... | ... |
@@ -1012,82 +1012,82 @@ |
1012 | 1012 |
const Edge& prev = INVALID) const { |
1013 | 1013 |
if (!(*_node_filter)[u] || !(*_node_filter)[v]) { |
1014 | 1014 |
return INVALID; |
1015 | 1015 |
} |
1016 | 1016 |
Edge edge = Parent::findEdge(u, v, prev); |
1017 | 1017 |
while (edge != INVALID && !(*_edge_filter)[edge]) { |
1018 | 1018 |
edge = Parent::findEdge(u, v, edge); |
1019 | 1019 |
} |
1020 | 1020 |
return edge; |
1021 | 1021 |
} |
1022 | 1022 |
|
1023 | 1023 |
template <typename V> |
1024 |
class NodeMap |
|
1024 |
class NodeMap |
|
1025 | 1025 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1026 | 1026 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> { |
1027 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1027 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1028 | 1028 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
1029 | 1029 |
|
1030 | 1030 |
public: |
1031 | 1031 |
typedef V Value; |
1032 | 1032 |
|
1033 | 1033 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1034 | 1034 |
: Parent(adaptor) {} |
1035 | 1035 |
NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1036 | 1036 |
: Parent(adaptor, value) {} |
1037 | 1037 |
|
1038 | 1038 |
private: |
1039 | 1039 |
NodeMap& operator=(const NodeMap& cmap) { |
1040 | 1040 |
return operator=<NodeMap>(cmap); |
1041 | 1041 |
} |
1042 | 1042 |
|
1043 | 1043 |
template <typename CMap> |
1044 | 1044 |
NodeMap& operator=(const CMap& cmap) { |
1045 | 1045 |
Parent::operator=(cmap); |
1046 | 1046 |
return *this; |
1047 | 1047 |
} |
1048 | 1048 |
}; |
1049 | 1049 |
|
1050 | 1050 |
template <typename V> |
1051 |
class ArcMap |
|
1051 |
class ArcMap |
|
1052 | 1052 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1053 | 1053 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> { |
1054 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1054 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1055 | 1055 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
1056 | 1056 |
|
1057 | 1057 |
public: |
1058 | 1058 |
typedef V Value; |
1059 | 1059 |
|
1060 | 1060 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1061 | 1061 |
: Parent(adaptor) {} |
1062 | 1062 |
ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1063 | 1063 |
: Parent(adaptor, value) {} |
1064 | 1064 |
|
1065 | 1065 |
private: |
1066 | 1066 |
ArcMap& operator=(const ArcMap& cmap) { |
1067 | 1067 |
return operator=<ArcMap>(cmap); |
1068 | 1068 |
} |
1069 | 1069 |
|
1070 | 1070 |
template <typename CMap> |
1071 | 1071 |
ArcMap& operator=(const CMap& cmap) { |
1072 | 1072 |
Parent::operator=(cmap); |
1073 | 1073 |
return *this; |
1074 | 1074 |
} |
1075 | 1075 |
}; |
1076 | 1076 |
|
1077 | 1077 |
template <typename V> |
1078 |
class EdgeMap |
|
1078 |
class EdgeMap |
|
1079 | 1079 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
1080 | 1080 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> { |
1081 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1081 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, |
|
1082 | 1082 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
1083 | 1083 |
|
1084 | 1084 |
public: |
1085 | 1085 |
typedef V Value; |
1086 | 1086 |
|
1087 | 1087 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor) |
1088 | 1088 |
: Parent(adaptor) {} |
1089 | 1089 |
|
1090 | 1090 |
EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor, const V& value) |
1091 | 1091 |
: Parent(adaptor, value) {} |
1092 | 1092 |
|
1093 | 1093 |
private: |
... | ... |
@@ -1108,26 +1108,26 @@ |
1108 | 1108 |
class SubGraphBase<GR, NF, EF, false> |
1109 | 1109 |
: public GraphAdaptorBase<GR> { |
1110 | 1110 |
typedef GraphAdaptorBase<GR> Parent; |
1111 | 1111 |
public: |
1112 | 1112 |
typedef GR Graph; |
1113 | 1113 |
typedef NF NodeFilterMap; |
1114 | 1114 |
typedef EF EdgeFilterMap; |
1115 | 1115 |
|
1116 | 1116 |
typedef SubGraphBase Adaptor; |
1117 | 1117 |
protected: |
1118 | 1118 |
NF* _node_filter; |
1119 | 1119 |
EF* _edge_filter; |
1120 |
SubGraphBase() |
|
1121 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
|
1120 |
SubGraphBase() |
|
1121 |
: Parent(), _node_filter(0), _edge_filter(0) { } |
|
1122 | 1122 |
|
1123 | 1123 |
void initialize(GR& graph, NF& node_filter, EF& edge_filter) { |
1124 | 1124 |
Parent::initialize(graph); |
1125 | 1125 |
_node_filter = &node_filter; |
1126 | 1126 |
_edge_filter = &edge_filter; |
1127 | 1127 |
} |
1128 | 1128 |
|
1129 | 1129 |
public: |
1130 | 1130 |
|
1131 | 1131 |
typedef typename Parent::Node Node; |
1132 | 1132 |
typedef typename Parent::Arc Arc; |
1133 | 1133 |
typedef typename Parent::Edge Edge; |
... | ... |
@@ -1210,83 +1210,83 @@ |
1210 | 1210 |
|
1211 | 1211 |
typedef FindEdgeTagIndicator<Graph> FindEdgeTag; |
1212 | 1212 |
Edge findEdge(const Node& u, const Node& v, |
1213 | 1213 |
const Edge& prev = INVALID) const { |
1214 | 1214 |
Edge edge = Parent::findEdge(u, v, prev); |
1215 | 1215 |
while (edge != INVALID && !(*_edge_filter)[edge]) { |
1216 | 1216 |
edge = Parent::findEdge(u, v, edge); |
1217 | 1217 |
} |
1218 | 1218 |
return edge; |
1219 | 1219 |
} |
1220 | 1220 |
|
1221 | 1221 |
template <typename V> |
1222 |
class NodeMap |
|
1222 |
class NodeMap |
|
1223 | 1223 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1224 | 1224 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> { |
1225 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1225 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1226 | 1226 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent; |
1227 | 1227 |
|
1228 | 1228 |
public: |
1229 | 1229 |
typedef V Value; |
1230 | 1230 |
|
1231 | 1231 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1232 | 1232 |
: Parent(adaptor) {} |
1233 | 1233 |
NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1234 | 1234 |
: Parent(adaptor, value) {} |
1235 | 1235 |
|
1236 | 1236 |
private: |
1237 | 1237 |
NodeMap& operator=(const NodeMap& cmap) { |
1238 | 1238 |
return operator=<NodeMap>(cmap); |
1239 | 1239 |
} |
1240 | 1240 |
|
1241 | 1241 |
template <typename CMap> |
1242 | 1242 |
NodeMap& operator=(const CMap& cmap) { |
1243 | 1243 |
Parent::operator=(cmap); |
1244 | 1244 |
return *this; |
1245 | 1245 |
} |
1246 | 1246 |
}; |
1247 | 1247 |
|
1248 | 1248 |
template <typename V> |
1249 |
class ArcMap |
|
1249 |
class ArcMap |
|
1250 | 1250 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1251 | 1251 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> { |
1252 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1252 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1253 | 1253 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent; |
1254 | 1254 |
|
1255 | 1255 |
public: |
1256 | 1256 |
typedef V Value; |
1257 | 1257 |
|
1258 | 1258 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1259 | 1259 |
: Parent(adaptor) {} |
1260 | 1260 |
ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1261 | 1261 |
: Parent(adaptor, value) {} |
1262 | 1262 |
|
1263 | 1263 |
private: |
1264 | 1264 |
ArcMap& operator=(const ArcMap& cmap) { |
1265 | 1265 |
return operator=<ArcMap>(cmap); |
1266 | 1266 |
} |
1267 | 1267 |
|
1268 | 1268 |
template <typename CMap> |
1269 | 1269 |
ArcMap& operator=(const CMap& cmap) { |
1270 | 1270 |
Parent::operator=(cmap); |
1271 | 1271 |
return *this; |
1272 | 1272 |
} |
1273 | 1273 |
}; |
1274 | 1274 |
|
1275 | 1275 |
template <typename V> |
1276 |
class EdgeMap |
|
1276 |
class EdgeMap |
|
1277 | 1277 |
: public SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
1278 | 1278 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> { |
1279 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1280 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
1279 |
typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, |
|
1280 |
LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent; |
|
1281 | 1281 |
|
1282 | 1282 |
public: |
1283 | 1283 |
typedef V Value; |
1284 | 1284 |
|
1285 | 1285 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor) |
1286 | 1286 |
: Parent(adaptor) {} |
1287 | 1287 |
|
1288 | 1288 |
EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor, const V& value) |
1289 | 1289 |
: Parent(adaptor, value) {} |
1290 | 1290 |
|
1291 | 1291 |
private: |
1292 | 1292 |
EdgeMap& operator=(const EdgeMap& cmap) { |
... | ... |
@@ -1495,46 +1495,46 @@ |
1495 | 1495 |
template<typename GR, typename NF> |
1496 | 1496 |
class FilterNodes { |
1497 | 1497 |
#else |
1498 | 1498 |
template<typename GR, |
1499 | 1499 |
typename NF = typename GR::template NodeMap<bool>, |
1500 | 1500 |
typename Enable = void> |
1501 | 1501 |
class FilterNodes : |
1502 | 1502 |
public DigraphAdaptorExtender< |
1503 | 1503 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
1504 | 1504 |
true> > { |
1505 | 1505 |
#endif |
1506 | 1506 |
typedef DigraphAdaptorExtender< |
1507 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
|
1507 |
SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, |
|
1508 | 1508 |
true> > Parent; |
1509 | 1509 |
|
1510 | 1510 |
public: |
1511 | 1511 |
|
1512 | 1512 |
typedef GR Digraph; |
1513 | 1513 |
typedef NF NodeFilterMap; |
1514 | 1514 |
|
1515 | 1515 |
typedef typename Parent::Node Node; |
1516 | 1516 |
|
1517 | 1517 |
protected: |
1518 | 1518 |
ConstMap<typename Digraph::Arc, Const<bool, true> > const_true_map; |
1519 | 1519 |
|
1520 | 1520 |
FilterNodes() : const_true_map() {} |
1521 | 1521 |
|
1522 | 1522 |
public: |
1523 | 1523 |
|
1524 | 1524 |
/// \brief Constructor |
1525 | 1525 |
/// |
1526 | 1526 |
/// Creates a subgraph for the given digraph or graph with the |
1527 | 1527 |
/// given node filter map. |
1528 |
FilterNodes(GR& graph, NF& node_filter) |
|
1528 |
FilterNodes(GR& graph, NF& node_filter) |
|
1529 | 1529 |
: Parent(), const_true_map() |
1530 | 1530 |
{ |
1531 | 1531 |
Parent::initialize(graph, node_filter, const_true_map); |
1532 | 1532 |
} |
1533 | 1533 |
|
1534 | 1534 |
/// \brief Sets the status of the given node |
1535 | 1535 |
/// |
1536 | 1536 |
/// This function sets the status of the given node. |
1537 | 1537 |
/// It is done by simply setting the assigned value of \c n |
1538 | 1538 |
/// to \c v in the node filter map. |
1539 | 1539 |
void status(const Node& n, bool v) const { Parent::status(n, v); } |
1540 | 1540 |
|
... | ... |
@@ -1554,29 +1554,29 @@ |
1554 | 1554 |
/// \brief Enables the given node |
1555 | 1555 |
/// |
1556 | 1556 |
/// This function enables the given node. |
1557 | 1557 |
/// It is the same as \ref status() "status(n, true)". |
1558 | 1558 |
void enable(const Node& n) const { Parent::status(n, true); } |
1559 | 1559 |
|
1560 | 1560 |
}; |
1561 | 1561 |
|
1562 | 1562 |
template<typename GR, typename NF> |
1563 | 1563 |
class FilterNodes<GR, NF, |
1564 | 1564 |
typename enable_if<UndirectedTagIndicator<GR> >::type> : |
1565 | 1565 |
public GraphAdaptorExtender< |
1566 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
1566 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
1567 | 1567 |
true> > { |
1568 | 1568 |
|
1569 | 1569 |
typedef GraphAdaptorExtender< |
1570 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
1570 |
SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, |
|
1571 | 1571 |
true> > Parent; |
1572 | 1572 |
|
1573 | 1573 |
public: |
1574 | 1574 |
|
1575 | 1575 |
typedef GR Graph; |
1576 | 1576 |
typedef NF NodeFilterMap; |
1577 | 1577 |
|
1578 | 1578 |
typedef typename Parent::Node Node; |
1579 | 1579 |
|
1580 | 1580 |
protected: |
1581 | 1581 |
ConstMap<typename GR::Edge, Const<bool, true> > const_true_map; |
1582 | 1582 |
|
... | ... |
@@ -1644,25 +1644,25 @@ |
1644 | 1644 |
template<typename DGR, |
1645 | 1645 |
typename AF> |
1646 | 1646 |
class FilterArcs { |
1647 | 1647 |
#else |
1648 | 1648 |
template<typename DGR, |
1649 | 1649 |
typename AF = typename DGR::template ArcMap<bool> > |
1650 | 1650 |
class FilterArcs : |
1651 | 1651 |
public DigraphAdaptorExtender< |
1652 | 1652 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
1653 | 1653 |
AF, false> > { |
1654 | 1654 |
#endif |
1655 | 1655 |
typedef DigraphAdaptorExtender< |
1656 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
1656 |
SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, |
|
1657 | 1657 |
AF, false> > Parent; |
1658 | 1658 |
|
1659 | 1659 |
public: |
1660 | 1660 |
|
1661 | 1661 |
/// The type of the adapted digraph. |
1662 | 1662 |
typedef DGR Digraph; |
1663 | 1663 |
/// The type of the arc filter map. |
1664 | 1664 |
typedef AF ArcFilterMap; |
1665 | 1665 |
|
1666 | 1666 |
typedef typename Parent::Arc Arc; |
1667 | 1667 |
|
1668 | 1668 |
protected: |
... | ... |
@@ -1752,54 +1752,54 @@ |
1752 | 1752 |
/// |
1753 | 1753 |
/// \note The \c Node, \c Edge and \c Arc types of this adaptor and the |
1754 | 1754 |
/// adapted graph are convertible to each other. |
1755 | 1755 |
#ifdef DOXYGEN |
1756 | 1756 |
template<typename GR, |
1757 | 1757 |
typename EF> |
1758 | 1758 |
class FilterEdges { |
1759 | 1759 |
#else |
1760 | 1760 |
template<typename GR, |
1761 | 1761 |
typename EF = typename GR::template EdgeMap<bool> > |
1762 | 1762 |
class FilterEdges : |
1763 | 1763 |
public GraphAdaptorExtender< |
1764 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
|
1764 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, |
|
1765 | 1765 |
EF, false> > { |
1766 | 1766 |
#endif |
1767 | 1767 |
typedef GraphAdaptorExtender< |
1768 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
1768 |
SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, |
|
1769 | 1769 |
EF, false> > Parent; |
1770 | 1770 |
|
1771 | 1771 |
public: |
1772 | 1772 |
|
1773 | 1773 |
/// The type of the adapted graph. |
1774 | 1774 |
typedef GR Graph; |
1775 | 1775 |
/// The type of the edge filter map. |
1776 | 1776 |
typedef EF EdgeFilterMap; |
1777 | 1777 |
|
1778 | 1778 |
typedef typename Parent::Edge Edge; |
1779 | 1779 |
|
1780 | 1780 |
protected: |
1781 | 1781 |
ConstMap<typename GR::Node, Const<bool, true> > const_true_map; |
1782 | 1782 |
|
1783 | 1783 |
FilterEdges() : const_true_map(true) { |
1784 | 1784 |
Parent::setNodeFilterMap(const_true_map); |
1785 | 1785 |
} |
1786 | 1786 |
|
1787 | 1787 |
public: |
1788 | 1788 |
|
1789 | 1789 |
/// \brief Constructor |
1790 | 1790 |
/// |
1791 | 1791 |
/// Creates a subgraph for the given graph with the given edge |
1792 | 1792 |
/// filter map. |
1793 |
FilterEdges(GR& graph, EF& edge_filter) |
|
1793 |
FilterEdges(GR& graph, EF& edge_filter) |
|
1794 | 1794 |
: Parent(), const_true_map() { |
1795 | 1795 |
Parent::initialize(graph, const_true_map, edge_filter); |
1796 | 1796 |
} |
1797 | 1797 |
|
1798 | 1798 |
/// \brief Sets the status of the given edge |
1799 | 1799 |
/// |
1800 | 1800 |
/// This function sets the status of the given edge. |
1801 | 1801 |
/// It is done by simply setting the assigned value of \c e |
1802 | 1802 |
/// to \c v in the edge filter map. |
1803 | 1803 |
void status(const Edge& e, bool v) const { Parent::status(e, v); } |
1804 | 1804 |
|
1805 | 1805 |
/// \brief Returns the status of the given edge |
... | ... |
@@ -1849,25 +1849,25 @@ |
1849 | 1849 |
|
1850 | 1850 |
typedef True UndirectedTag; |
1851 | 1851 |
|
1852 | 1852 |
typedef typename Digraph::Arc Edge; |
1853 | 1853 |
typedef typename Digraph::Node Node; |
1854 | 1854 |
|
1855 | 1855 |
class Arc { |
1856 | 1856 |
friend class UndirectorBase; |
1857 | 1857 |
protected: |
1858 | 1858 |
Edge _edge; |
1859 | 1859 |
bool _forward; |
1860 | 1860 |
|
1861 |
Arc(const Edge& edge, bool forward) |
|
1861 |
Arc(const Edge& edge, bool forward) |
|
1862 | 1862 |
: _edge(edge), _forward(forward) {} |
1863 | 1863 |
|
1864 | 1864 |
public: |
1865 | 1865 |
Arc() {} |
1866 | 1866 |
|
1867 | 1867 |
Arc(Invalid) : _edge(INVALID), _forward(true) {} |
1868 | 1868 |
|
1869 | 1869 |
operator const Edge&() const { return _edge; } |
1870 | 1870 |
|
1871 | 1871 |
bool operator==(const Arc &other) const { |
1872 | 1872 |
return _forward == other._forward && _edge == other._edge; |
1873 | 1873 |
} |
... | ... |
@@ -2089,25 +2089,25 @@ |
2089 | 2089 |
|
2090 | 2090 |
typedef V Value; |
2091 | 2091 |
typedef Arc Key; |
2092 | 2092 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReturnValue; |
2093 | 2093 |
typedef typename MapTraits<MapImpl>::ReturnValue ReturnValue; |
2094 | 2094 |
typedef typename MapTraits<MapImpl>::ConstReturnValue ConstReference; |
2095 | 2095 |
typedef typename MapTraits<MapImpl>::ReturnValue Reference; |
2096 | 2096 |
|
2097 | 2097 |
ArcMapBase(const UndirectorBase<DGR>& adaptor) : |
2098 | 2098 |
_forward(*adaptor._digraph), _backward(*adaptor._digraph) {} |
2099 | 2099 |
|
2100 | 2100 |
ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value) |
2101 |
: _forward(*adaptor._digraph, value), |
|
2101 |
: _forward(*adaptor._digraph, value), |
|
2102 | 2102 |
_backward(*adaptor._digraph, value) {} |
2103 | 2103 |
|
2104 | 2104 |
void set(const Arc& a, const V& value) { |
2105 | 2105 |
if (direction(a)) { |
2106 | 2106 |
_forward.set(a, value); |
2107 | 2107 |
} else { |
2108 | 2108 |
_backward.set(a, value); |
2109 | 2109 |
} |
2110 | 2110 |
} |
2111 | 2111 |
|
2112 | 2112 |
ConstReturnValue operator[](const Arc& a) const { |
2113 | 2113 |
if (direction(a)) { |
... | ... |
@@ -2207,25 +2207,25 @@ |
2207 | 2207 |
EdgeMap& operator=(const CMap& cmap) { |
2208 | 2208 |
Parent::operator=(cmap); |
2209 | 2209 |
return *this; |
2210 | 2210 |
} |
2211 | 2211 |
|
2212 | 2212 |
}; |
2213 | 2213 |
|
2214 | 2214 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
2215 | 2215 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
2216 | 2216 |
|
2217 | 2217 |
typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier; |
2218 | 2218 |
EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); } |
2219 |
|
|
2219 |
|
|
2220 | 2220 |
typedef EdgeNotifier ArcNotifier; |
2221 | 2221 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); } |
2222 | 2222 |
|
2223 | 2223 |
protected: |
2224 | 2224 |
|
2225 | 2225 |
UndirectorBase() : _digraph(0) {} |
2226 | 2226 |
|
2227 | 2227 |
DGR* _digraph; |
2228 | 2228 |
|
2229 | 2229 |
void initialize(DGR& digraph) { |
2230 | 2230 |
_digraph = &digraph; |
2231 | 2231 |
} |
... | ... |
@@ -2719,25 +2719,25 @@ |
2719 | 2719 |
/// |
2720 | 2720 |
/// \note The \c Node type of this adaptor and the adapted digraph are |
2721 | 2721 |
/// convertible to each other, moreover the \c Arc type of the adaptor |
2722 | 2722 |
/// is convertible to the \c Arc type of the adapted digraph. |
2723 | 2723 |
#ifdef DOXYGEN |
2724 | 2724 |
template<typename DGR, typename CM, typename FM, typename TL> |
2725 | 2725 |
class ResidualDigraph |
2726 | 2726 |
#else |
2727 | 2727 |
template<typename DGR, |
2728 | 2728 |
typename CM = typename DGR::template ArcMap<int>, |
2729 | 2729 |
typename FM = CM, |
2730 | 2730 |
typename TL = Tolerance<typename CM::Value> > |
2731 |
class ResidualDigraph |
|
2731 |
class ResidualDigraph |
|
2732 | 2732 |
: public SubDigraph< |
2733 | 2733 |
Undirector<const DGR>, |
2734 | 2734 |
ConstMap<typename DGR::Node, Const<bool, true> >, |
2735 | 2735 |
typename Undirector<const DGR>::template CombinedArcMap< |
2736 | 2736 |
_adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>, |
2737 | 2737 |
_adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > > |
2738 | 2738 |
#endif |
2739 | 2739 |
{ |
2740 | 2740 |
public: |
2741 | 2741 |
|
2742 | 2742 |
/// The type of the underlying digraph. |
2743 | 2743 |
typedef DGR Digraph; |
... | ... |
@@ -2776,25 +2776,25 @@ |
2776 | 2776 |
ForwardFilter _forward_filter; |
2777 | 2777 |
BackwardFilter _backward_filter; |
2778 | 2778 |
ArcFilter _arc_filter; |
2779 | 2779 |
|
2780 | 2780 |
public: |
2781 | 2781 |
|
2782 | 2782 |
/// \brief Constructor |
2783 | 2783 |
/// |
2784 | 2784 |
/// Constructor of the residual digraph adaptor. The parameters are the |
2785 | 2785 |
/// digraph, the capacity map, the flow map, and a tolerance object. |
2786 | 2786 |
ResidualDigraph(const DGR& digraph, const CM& capacity, |
2787 | 2787 |
FM& flow, const TL& tolerance = Tolerance()) |
2788 |
: Parent(), _capacity(&capacity), _flow(&flow), |
|
2788 |
: Parent(), _capacity(&capacity), _flow(&flow), |
|
2789 | 2789 |
_graph(digraph), _node_filter(), |
2790 | 2790 |
_forward_filter(capacity, flow, tolerance), |
2791 | 2791 |
_backward_filter(capacity, flow, tolerance), |
2792 | 2792 |
_arc_filter(_forward_filter, _backward_filter) |
2793 | 2793 |
{ |
2794 | 2794 |
Parent::initialize(_graph, _node_filter, _arc_filter); |
2795 | 2795 |
} |
2796 | 2796 |
|
2797 | 2797 |
typedef typename Parent::Arc Arc; |
2798 | 2798 |
|
2799 | 2799 |
/// \brief Returns the residual capacity of the given arc. |
2800 | 2800 |
/// |
... | ... |
@@ -2858,25 +2858,25 @@ |
2858 | 2858 |
/// capacities as an arc map of the residual digraph. |
2859 | 2859 |
/// Its value type is inherited from the capacity map. |
2860 | 2860 |
class ResidualCapacity { |
2861 | 2861 |
protected: |
2862 | 2862 |
const Adaptor* _adaptor; |
2863 | 2863 |
public: |
2864 | 2864 |
/// The key type of the map |
2865 | 2865 |
typedef Arc Key; |
2866 | 2866 |
/// The value type of the map |
2867 | 2867 |
typedef typename CapacityMap::Value Value; |
2868 | 2868 |
|
2869 | 2869 |
/// Constructor |
2870 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
|
2870 |
ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) |
|
2871 | 2871 |
: _adaptor(&adaptor) {} |
2872 | 2872 |
|
2873 | 2873 |
/// Returns the value associated with the given residual arc |
2874 | 2874 |
Value operator[](const Arc& a) const { |
2875 | 2875 |
return _adaptor->residualCapacity(a); |
2876 | 2876 |
} |
2877 | 2877 |
|
2878 | 2878 |
}; |
2879 | 2879 |
|
2880 | 2880 |
/// \brief Returns a residual capacity map |
2881 | 2881 |
/// |
2882 | 2882 |
/// This function just returns a residual capacity map. |
... | ... |
@@ -3438,25 +3438,25 @@ |
3438 | 3438 |
/// |
3439 | 3439 |
/// Returns the arc in the adaptor that corresponds to the given |
3440 | 3440 |
/// original arc. |
3441 | 3441 |
static Arc arc(const DigraphArc& a) { |
3442 | 3442 |
return Parent::arc(a); |
3443 | 3443 |
} |
3444 | 3444 |
|
3445 | 3445 |
/// \brief Node map combined from two original node maps |
3446 | 3446 |
/// |
3447 | 3447 |
/// This map adaptor class adapts two node maps of the original digraph |
3448 | 3448 |
/// to get a node map of the split digraph. |
3449 | 3449 |
/// Its value type is inherited from the first node map type (\c IN). |
3450 |
/// \tparam IN The type of the node map for the in-nodes. |
|
3450 |
/// \tparam IN The type of the node map for the in-nodes. |
|
3451 | 3451 |
/// \tparam OUT The type of the node map for the out-nodes. |
3452 | 3452 |
template <typename IN, typename OUT> |
3453 | 3453 |
class CombinedNodeMap { |
3454 | 3454 |
public: |
3455 | 3455 |
|
3456 | 3456 |
/// The key type of the map |
3457 | 3457 |
typedef Node Key; |
3458 | 3458 |
/// The value type of the map |
3459 | 3459 |
typedef typename IN::Value Value; |
3460 | 3460 |
|
3461 | 3461 |
typedef typename MapTraits<IN>::ReferenceMapTag ReferenceMapTag; |
3462 | 3462 |
typedef typename MapTraits<IN>::ReturnValue ReturnValue; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/arg_parser.h> |
20 | 20 |
|
21 | 21 |
namespace lemon { |
22 | 22 |
|
23 | 23 |
void ArgParser::_terminate(ArgParserException::Reason reason) const |
24 | 24 |
{ |
25 | 25 |
if(_exit_on_problems) |
26 | 26 |
exit(1); |
27 | 27 |
else throw(ArgParserException(reason)); |
28 | 28 |
} |
29 |
|
|
30 |
|
|
29 |
|
|
30 |
|
|
31 | 31 |
void ArgParser::_showHelp(void *p) |
32 | 32 |
{ |
33 | 33 |
(static_cast<ArgParser*>(p))->showHelp(); |
34 | 34 |
(static_cast<ArgParser*>(p))->_terminate(ArgParserException::HELP); |
35 | 35 |
} |
36 | 36 |
|
37 | 37 |
ArgParser::ArgParser(int argc, const char * const *argv) |
38 | 38 |
:_argc(argc), _argv(argv), _command_name(argv[0]), |
39 | 39 |
_exit_on_problems(true) { |
40 | 40 |
funcOption("-help","Print a short help message",_showHelp,this); |
41 | 41 |
synonym("help","-help"); |
42 | 42 |
synonym("h","-help"); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -33,28 +33,28 @@ |
33 | 33 |
///\brief A tool to parse command line arguments. |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
///Exception used by ArgParser |
38 | 38 |
class ArgParserException : public Exception { |
39 | 39 |
public: |
40 | 40 |
enum Reason { |
41 | 41 |
HELP, /// <tt>--help</tt> option was given |
42 | 42 |
UNKNOWN_OPT, /// Unknown option was given |
43 | 43 |
INVALID_OPT /// Invalid combination of options |
44 | 44 |
}; |
45 |
|
|
45 |
|
|
46 | 46 |
private: |
47 | 47 |
Reason _reason; |
48 |
|
|
48 |
|
|
49 | 49 |
public: |
50 | 50 |
///Constructor |
51 | 51 |
ArgParserException(Reason r) throw() : _reason(r) {} |
52 | 52 |
///Virtual destructor |
53 | 53 |
virtual ~ArgParserException() throw() {} |
54 | 54 |
///A short description of the exception |
55 | 55 |
virtual const char* what() const throw() { |
56 | 56 |
switch(_reason) |
57 | 57 |
{ |
58 | 58 |
case HELP: |
59 | 59 |
return "lemon::ArgParseException: ask for help"; |
60 | 60 |
break; |
... | ... |
@@ -132,39 +132,39 @@ |
132 | 132 |
struct OtherArg |
133 | 133 |
{ |
134 | 134 |
std::string name; |
135 | 135 |
std::string help; |
136 | 136 |
OtherArg(std::string n, std::string h) :name(n), help(h) {} |
137 | 137 |
|
138 | 138 |
}; |
139 | 139 |
|
140 | 140 |
std::vector<OtherArg> _others_help; |
141 | 141 |
std::vector<std::string> _file_args; |
142 | 142 |
std::string _command_name; |
143 | 143 |
|
144 |
|
|
144 |
|
|
145 | 145 |
private: |
146 | 146 |
//Bind a function to an option. |
147 | 147 |
|
148 | 148 |
//\param name The name of the option. The leading '-' must be omitted. |
149 | 149 |
//\param help A help string. |
150 | 150 |
//\retval func The function to be called when the option is given. It |
151 | 151 |
// must be of type "void f(void *)" |
152 | 152 |
//\param data Data to be passed to \c func |
153 | 153 |
ArgParser &funcOption(const std::string &name, |
154 | 154 |
const std::string &help, |
155 | 155 |
void (*func)(void *),void *data); |
156 | 156 |
|
157 | 157 |
bool _exit_on_problems; |
158 |
|
|
158 |
|
|
159 | 159 |
void _terminate(ArgParserException::Reason reason) const; |
160 | 160 |
|
161 | 161 |
public: |
162 | 162 |
|
163 | 163 |
///Constructor |
164 | 164 |
ArgParser(int argc, const char * const *argv); |
165 | 165 |
|
166 | 166 |
~ArgParser(); |
167 | 167 |
|
168 | 168 |
///\name Options |
169 | 169 |
/// |
170 | 170 |
|
... | ... |
@@ -414,20 +414,20 @@ |
414 | 414 |
RefType operator[](const std::string &n) const |
415 | 415 |
{ |
416 | 416 |
return RefType(*this, n); |
417 | 417 |
} |
418 | 418 |
|
419 | 419 |
///Give back the non-option type arguments. |
420 | 420 |
|
421 | 421 |
///Give back a reference to a vector consisting of the program arguments |
422 | 422 |
///not starting with a '-' character. |
423 | 423 |
const std::vector<std::string> &files() const { return _file_args; } |
424 | 424 |
|
425 | 425 |
///Throw instead of exit in case of problems |
426 |
void throwOnProblems() |
|
426 |
void throwOnProblems() |
|
427 | 427 |
{ |
428 | 428 |
_exit_on_problems=false; |
429 | 429 |
} |
430 | 430 |
}; |
431 | 431 |
} |
432 | 432 |
|
433 | 433 |
#endif // LEMON_ARG_PARSER_H |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -27,34 +27,34 @@ |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/tolerance.h> |
32 | 32 |
#include <lemon/path.h> |
33 | 33 |
|
34 | 34 |
#include <limits> |
35 | 35 |
|
36 | 36 |
namespace lemon { |
37 | 37 |
|
38 | 38 |
/// \brief Default operation traits for the BellmanFord algorithm class. |
39 |
/// |
|
39 |
/// |
|
40 | 40 |
/// This operation traits class defines all computational operations |
41 | 41 |
/// and constants that are used in the Bellman-Ford algorithm. |
42 | 42 |
/// The default implementation is based on the \c numeric_limits class. |
43 | 43 |
/// If the numeric type does not have infinity value, then the maximum |
44 | 44 |
/// value is used as extremal infinity value. |
45 | 45 |
/// |
46 | 46 |
/// \see BellmanFordToleranceOperationTraits |
47 | 47 |
template < |
48 |
typename V, |
|
48 |
typename V, |
|
49 | 49 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
50 | 50 |
struct BellmanFordDefaultOperationTraits { |
51 | 51 |
/// \brief Value type for the algorithm. |
52 | 52 |
typedef V Value; |
53 | 53 |
/// \brief Gives back the zero value of the type. |
54 | 54 |
static Value zero() { |
55 | 55 |
return static_cast<Value>(0); |
56 | 56 |
} |
57 | 57 |
/// \brief Gives back the positive infinity value of the type. |
58 | 58 |
static Value infinity() { |
59 | 59 |
return std::numeric_limits<Value>::infinity(); |
60 | 60 |
} |
... | ... |
@@ -77,25 +77,25 @@ |
77 | 77 |
} |
78 | 78 |
static Value infinity() { |
79 | 79 |
return std::numeric_limits<Value>::max(); |
80 | 80 |
} |
81 | 81 |
static Value plus(const Value& left, const Value& right) { |
82 | 82 |
if (left == infinity() || right == infinity()) return infinity(); |
83 | 83 |
return left + right; |
84 | 84 |
} |
85 | 85 |
static bool less(const Value& left, const Value& right) { |
86 | 86 |
return left < right; |
87 | 87 |
} |
88 | 88 |
}; |
89 |
|
|
89 |
|
|
90 | 90 |
/// \brief Operation traits for the BellmanFord algorithm class |
91 | 91 |
/// using tolerance. |
92 | 92 |
/// |
93 | 93 |
/// This operation traits class defines all computational operations |
94 | 94 |
/// and constants that are used in the Bellman-Ford algorithm. |
95 | 95 |
/// The only difference between this implementation and |
96 | 96 |
/// \ref BellmanFordDefaultOperationTraits is that this class uses |
97 | 97 |
/// the \ref Tolerance "tolerance technique" in its \ref less() |
98 | 98 |
/// function. |
99 | 99 |
/// |
100 | 100 |
/// \tparam V The value type. |
101 | 101 |
/// \tparam eps The epsilon value for the \ref less() function. |
... | ... |
@@ -130,93 +130,93 @@ |
130 | 130 |
static bool less(const Value& left, const Value& right) { |
131 | 131 |
return left + eps < right; |
132 | 132 |
} |
133 | 133 |
}; |
134 | 134 |
|
135 | 135 |
/// \brief Default traits class of BellmanFord class. |
136 | 136 |
/// |
137 | 137 |
/// Default traits class of BellmanFord class. |
138 | 138 |
/// \param GR The type of the digraph. |
139 | 139 |
/// \param LEN The type of the length map. |
140 | 140 |
template<typename GR, typename LEN> |
141 | 141 |
struct BellmanFordDefaultTraits { |
142 |
/// The type of the digraph the algorithm runs on. |
|
142 |
/// The type of the digraph the algorithm runs on. |
|
143 | 143 |
typedef GR Digraph; |
144 | 144 |
|
145 | 145 |
/// \brief The type of the map that stores the arc lengths. |
146 | 146 |
/// |
147 | 147 |
/// The type of the map that stores the arc lengths. |
148 | 148 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
149 | 149 |
typedef LEN LengthMap; |
150 | 150 |
|
151 | 151 |
/// The type of the arc lengths. |
152 | 152 |
typedef typename LEN::Value Value; |
153 | 153 |
|
154 | 154 |
/// \brief Operation traits for Bellman-Ford algorithm. |
155 | 155 |
/// |
156 | 156 |
/// It defines the used operations and the infinity value for the |
157 | 157 |
/// given \c Value type. |
158 | 158 |
/// \see BellmanFordDefaultOperationTraits, |
159 | 159 |
/// BellmanFordToleranceOperationTraits |
160 | 160 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
161 |
|
|
162 |
/// \brief The type of the map that stores the last arcs of the |
|
161 |
|
|
162 |
/// \brief The type of the map that stores the last arcs of the |
|
163 | 163 |
/// shortest paths. |
164 |
/// |
|
164 |
/// |
|
165 | 165 |
/// The type of the map that stores the last |
166 | 166 |
/// arcs of the shortest paths. |
167 | 167 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
168 | 168 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
169 | 169 |
|
170 | 170 |
/// \brief Instantiates a \c PredMap. |
171 |
/// |
|
172 |
/// This function instantiates a \ref PredMap. |
|
171 |
/// |
|
172 |
/// This function instantiates a \ref PredMap. |
|
173 | 173 |
/// \param g is the digraph to which we would like to define the |
174 | 174 |
/// \ref PredMap. |
175 | 175 |
static PredMap *createPredMap(const GR& g) { |
176 | 176 |
return new PredMap(g); |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
/// \brief The type of the map that stores the distances of the nodes. |
180 | 180 |
/// |
181 | 181 |
/// The type of the map that stores the distances of the nodes. |
182 | 182 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
183 | 183 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
184 | 184 |
|
185 | 185 |
/// \brief Instantiates a \c DistMap. |
186 | 186 |
/// |
187 |
/// This function instantiates a \ref DistMap. |
|
188 |
/// \param g is the digraph to which we would like to define the |
|
187 |
/// This function instantiates a \ref DistMap. |
|
188 |
/// \param g is the digraph to which we would like to define the |
|
189 | 189 |
/// \ref DistMap. |
190 | 190 |
static DistMap *createDistMap(const GR& g) { |
191 | 191 |
return new DistMap(g); |
192 | 192 |
} |
193 | 193 |
|
194 | 194 |
}; |
195 |
|
|
195 |
|
|
196 | 196 |
/// \brief %BellmanFord algorithm class. |
197 | 197 |
/// |
198 | 198 |
/// \ingroup shortest_path |
199 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
199 |
/// This class provides an efficient implementation of the Bellman-Ford |
|
200 | 200 |
/// algorithm. The maximum time complexity of the algorithm is |
201 | 201 |
/// <tt>O(ne)</tt>. |
202 | 202 |
/// |
203 | 203 |
/// The Bellman-Ford algorithm solves the single-source shortest path |
204 | 204 |
/// problem when the arcs can have negative lengths, but the digraph |
205 | 205 |
/// should not contain directed cycles with negative total length. |
206 | 206 |
/// If all arc costs are non-negative, consider to use the Dijkstra |
207 | 207 |
/// algorithm instead, since it is more efficient. |
208 | 208 |
/// |
209 | 209 |
/// The arc lengths are passed to the algorithm using a |
210 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
210 |
/// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any |
|
211 | 211 |
/// kind of length. The type of the length values is determined by the |
212 | 212 |
/// \ref concepts::ReadMap::Value "Value" type of the length map. |
213 | 213 |
/// |
214 | 214 |
/// There is also a \ref bellmanFord() "function-type interface" for the |
215 | 215 |
/// Bellman-Ford algorithm, which is convenient in the simplier cases and |
216 | 216 |
/// it can be used easier. |
217 | 217 |
/// |
218 | 218 |
/// \tparam GR The type of the digraph the algorithm runs on. |
219 | 219 |
/// The default type is \ref ListDigraph. |
220 | 220 |
/// \tparam LEN A \ref concepts::ReadMap "readable" arc map that specifies |
221 | 221 |
/// the lengths of the arcs. The default map type is |
222 | 222 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
... | ... |
@@ -228,25 +228,25 @@ |
228 | 228 |
#ifdef DOXYGEN |
229 | 229 |
template <typename GR, typename LEN, typename TR> |
230 | 230 |
#else |
231 | 231 |
template <typename GR=ListDigraph, |
232 | 232 |
typename LEN=typename GR::template ArcMap<int>, |
233 | 233 |
typename TR=BellmanFordDefaultTraits<GR,LEN> > |
234 | 234 |
#endif |
235 | 235 |
class BellmanFord { |
236 | 236 |
public: |
237 | 237 |
|
238 | 238 |
///The type of the underlying digraph. |
239 | 239 |
typedef typename TR::Digraph Digraph; |
240 |
|
|
240 |
|
|
241 | 241 |
/// \brief The type of the arc lengths. |
242 | 242 |
typedef typename TR::LengthMap::Value Value; |
243 | 243 |
/// \brief The type of the map that stores the arc lengths. |
244 | 244 |
typedef typename TR::LengthMap LengthMap; |
245 | 245 |
/// \brief The type of the map that stores the last |
246 | 246 |
/// arcs of the shortest paths. |
247 | 247 |
typedef typename TR::PredMap PredMap; |
248 | 248 |
/// \brief The type of the map that stores the distances of the nodes. |
249 | 249 |
typedef typename TR::DistMap DistMap; |
250 | 250 |
/// The type of the paths. |
251 | 251 |
typedef PredMapPath<Digraph, PredMap> Path; |
252 | 252 |
///\brief The \ref BellmanFordDefaultOperationTraits |
... | ... |
@@ -275,122 +275,122 @@ |
275 | 275 |
DistMap *_dist; |
276 | 276 |
// Indicates if _dist is locally allocated (true) or not. |
277 | 277 |
bool _local_dist; |
278 | 278 |
|
279 | 279 |
typedef typename Digraph::template NodeMap<bool> MaskMap; |
280 | 280 |
MaskMap *_mask; |
281 | 281 |
|
282 | 282 |
std::vector<Node> _process; |
283 | 283 |
|
284 | 284 |
// Creates the maps if necessary. |
285 | 285 |
void create_maps() { |
286 | 286 |
if(!_pred) { |
287 |
_local_pred = true; |
|
288 |
_pred = Traits::createPredMap(*_gr); |
|
287 |
_local_pred = true; |
|
288 |
_pred = Traits::createPredMap(*_gr); |
|
289 | 289 |
} |
290 | 290 |
if(!_dist) { |
291 |
_local_dist = true; |
|
292 |
_dist = Traits::createDistMap(*_gr); |
|
291 |
_local_dist = true; |
|
292 |
_dist = Traits::createDistMap(*_gr); |
|
293 | 293 |
} |
294 | 294 |
if(!_mask) { |
295 | 295 |
_mask = new MaskMap(*_gr); |
296 | 296 |
} |
297 | 297 |
} |
298 |
|
|
298 |
|
|
299 | 299 |
public : |
300 |
|
|
300 |
|
|
301 | 301 |
typedef BellmanFord Create; |
302 | 302 |
|
303 | 303 |
/// \name Named Template Parameters |
304 | 304 |
|
305 | 305 |
///@{ |
306 | 306 |
|
307 | 307 |
template <class T> |
308 | 308 |
struct SetPredMapTraits : public Traits { |
309 | 309 |
typedef T PredMap; |
310 | 310 |
static PredMap *createPredMap(const Digraph&) { |
311 | 311 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
312 | 312 |
return 0; // ignore warnings |
313 | 313 |
} |
314 | 314 |
}; |
315 | 315 |
|
316 | 316 |
/// \brief \ref named-templ-param "Named parameter" for setting |
317 | 317 |
/// \c PredMap type. |
318 | 318 |
/// |
319 | 319 |
/// \ref named-templ-param "Named parameter" for setting |
320 | 320 |
/// \c PredMap type. |
321 | 321 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
322 | 322 |
template <class T> |
323 |
struct SetPredMap |
|
323 |
struct SetPredMap |
|
324 | 324 |
: public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > { |
325 | 325 |
typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create; |
326 | 326 |
}; |
327 |
|
|
327 |
|
|
328 | 328 |
template <class T> |
329 | 329 |
struct SetDistMapTraits : public Traits { |
330 | 330 |
typedef T DistMap; |
331 | 331 |
static DistMap *createDistMap(const Digraph&) { |
332 | 332 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
333 | 333 |
return 0; // ignore warnings |
334 | 334 |
} |
335 | 335 |
}; |
336 | 336 |
|
337 | 337 |
/// \brief \ref named-templ-param "Named parameter" for setting |
338 | 338 |
/// \c DistMap type. |
339 | 339 |
/// |
340 | 340 |
/// \ref named-templ-param "Named parameter" for setting |
341 | 341 |
/// \c DistMap type. |
342 | 342 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
343 | 343 |
template <class T> |
344 |
struct SetDistMap |
|
344 |
struct SetDistMap |
|
345 | 345 |
: public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > { |
346 | 346 |
typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create; |
347 | 347 |
}; |
348 | 348 |
|
349 | 349 |
template <class T> |
350 | 350 |
struct SetOperationTraitsTraits : public Traits { |
351 | 351 |
typedef T OperationTraits; |
352 | 352 |
}; |
353 |
|
|
354 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
353 |
|
|
354 |
/// \brief \ref named-templ-param "Named parameter" for setting |
|
355 | 355 |
/// \c OperationTraits type. |
356 | 356 |
/// |
357 | 357 |
/// \ref named-templ-param "Named parameter" for setting |
358 | 358 |
/// \c OperationTraits type. |
359 | 359 |
/// For more information, see \ref BellmanFordDefaultOperationTraits. |
360 | 360 |
template <class T> |
361 | 361 |
struct SetOperationTraits |
362 | 362 |
: public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > { |
363 | 363 |
typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > |
364 | 364 |
Create; |
365 | 365 |
}; |
366 |
|
|
366 |
|
|
367 | 367 |
///@} |
368 | 368 |
|
369 | 369 |
protected: |
370 |
|
|
370 |
|
|
371 | 371 |
BellmanFord() {} |
372 | 372 |
|
373 |
public: |
|
374 |
|
|
373 |
public: |
|
374 |
|
|
375 | 375 |
/// \brief Constructor. |
376 | 376 |
/// |
377 | 377 |
/// Constructor. |
378 | 378 |
/// \param g The digraph the algorithm runs on. |
379 | 379 |
/// \param length The length map used by the algorithm. |
380 | 380 |
BellmanFord(const Digraph& g, const LengthMap& length) : |
381 | 381 |
_gr(&g), _length(&length), |
382 | 382 |
_pred(0), _local_pred(false), |
383 | 383 |
_dist(0), _local_dist(false), _mask(0) {} |
384 |
|
|
384 |
|
|
385 | 385 |
///Destructor. |
386 | 386 |
~BellmanFord() { |
387 | 387 |
if(_local_pred) delete _pred; |
388 | 388 |
if(_local_dist) delete _dist; |
389 | 389 |
if(_mask) delete _mask; |
390 | 390 |
} |
391 | 391 |
|
392 | 392 |
/// \brief Sets the length map. |
393 | 393 |
/// |
394 | 394 |
/// Sets the length map. |
395 | 395 |
/// \return <tt>(*this)</tt> |
396 | 396 |
BellmanFord &lengthMap(const LengthMap &map) { |
... | ... |
@@ -399,273 +399,273 @@ |
399 | 399 |
} |
400 | 400 |
|
401 | 401 |
/// \brief Sets the map that stores the predecessor arcs. |
402 | 402 |
/// |
403 | 403 |
/// Sets the map that stores the predecessor arcs. |
404 | 404 |
/// If you don't use this function before calling \ref run() |
405 | 405 |
/// or \ref init(), an instance will be allocated automatically. |
406 | 406 |
/// The destructor deallocates this automatically allocated map, |
407 | 407 |
/// of course. |
408 | 408 |
/// \return <tt>(*this)</tt> |
409 | 409 |
BellmanFord &predMap(PredMap &map) { |
410 | 410 |
if(_local_pred) { |
411 |
delete _pred; |
|
412 |
_local_pred=false; |
|
411 |
delete _pred; |
|
412 |
_local_pred=false; |
|
413 | 413 |
} |
414 | 414 |
_pred = ↦ |
415 | 415 |
return *this; |
416 | 416 |
} |
417 | 417 |
|
418 | 418 |
/// \brief Sets the map that stores the distances of the nodes. |
419 | 419 |
/// |
420 | 420 |
/// Sets the map that stores the distances of the nodes calculated |
421 | 421 |
/// by the algorithm. |
422 | 422 |
/// If you don't use this function before calling \ref run() |
423 | 423 |
/// or \ref init(), an instance will be allocated automatically. |
424 | 424 |
/// The destructor deallocates this automatically allocated map, |
425 | 425 |
/// of course. |
426 | 426 |
/// \return <tt>(*this)</tt> |
427 | 427 |
BellmanFord &distMap(DistMap &map) { |
428 | 428 |
if(_local_dist) { |
429 |
delete _dist; |
|
430 |
_local_dist=false; |
|
429 |
delete _dist; |
|
430 |
_local_dist=false; |
|
431 | 431 |
} |
432 | 432 |
_dist = ↦ |
433 | 433 |
return *this; |
434 | 434 |
} |
435 | 435 |
|
436 | 436 |
/// \name Execution Control |
437 | 437 |
/// The simplest way to execute the Bellman-Ford algorithm is to use |
438 | 438 |
/// one of the member functions called \ref run().\n |
439 | 439 |
/// If you need better control on the execution, you have to call |
440 | 440 |
/// \ref init() first, then you can add several source nodes |
441 | 441 |
/// with \ref addSource(). Finally the actual path computation can be |
442 | 442 |
/// performed with \ref start(), \ref checkedStart() or |
443 | 443 |
/// \ref limitedStart(). |
444 | 444 |
|
445 | 445 |
///@{ |
446 | 446 |
|
447 | 447 |
/// \brief Initializes the internal data structures. |
448 |
/// |
|
448 |
/// |
|
449 | 449 |
/// Initializes the internal data structures. The optional parameter |
450 | 450 |
/// is the initial distance of each node. |
451 | 451 |
void init(const Value value = OperationTraits::infinity()) { |
452 | 452 |
create_maps(); |
453 | 453 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
454 |
_pred->set(it, INVALID); |
|
455 |
_dist->set(it, value); |
|
454 |
_pred->set(it, INVALID); |
|
455 |
_dist->set(it, value); |
|
456 | 456 |
} |
457 | 457 |
_process.clear(); |
458 | 458 |
if (OperationTraits::less(value, OperationTraits::infinity())) { |
459 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
460 |
_process.push_back(it); |
|
461 |
_mask->set(it, true); |
|
462 |
} |
|
459 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
460 |
_process.push_back(it); |
|
461 |
_mask->set(it, true); |
|
462 |
} |
|
463 | 463 |
} else { |
464 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
465 |
_mask->set(it, false); |
|
466 |
|
|
464 |
for (NodeIt it(*_gr); it != INVALID; ++it) { |
|
465 |
_mask->set(it, false); |
|
466 |
} |
|
467 | 467 |
} |
468 | 468 |
} |
469 |
|
|
469 |
|
|
470 | 470 |
/// \brief Adds a new source node. |
471 | 471 |
/// |
472 | 472 |
/// This function adds a new source node. The optional second parameter |
473 | 473 |
/// is the initial distance of the node. |
474 | 474 |
void addSource(Node source, Value dst = OperationTraits::zero()) { |
475 | 475 |
_dist->set(source, dst); |
476 | 476 |
if (!(*_mask)[source]) { |
477 |
_process.push_back(source); |
|
478 |
_mask->set(source, true); |
|
477 |
_process.push_back(source); |
|
478 |
_mask->set(source, true); |
|
479 | 479 |
} |
480 | 480 |
} |
481 | 481 |
|
482 | 482 |
/// \brief Executes one round from the Bellman-Ford algorithm. |
483 | 483 |
/// |
484 | 484 |
/// If the algoritm calculated the distances in the previous round |
485 | 485 |
/// exactly for the paths of at most \c k arcs, then this function |
486 | 486 |
/// will calculate the distances exactly for the paths of at most |
487 | 487 |
/// <tt>k+1</tt> arcs. Performing \c k iterations using this function |
488 | 488 |
/// calculates the shortest path distances exactly for the paths |
489 | 489 |
/// consisting of at most \c k arcs. |
490 | 490 |
/// |
491 | 491 |
/// \warning The paths with limited arc number cannot be retrieved |
492 | 492 |
/// easily with \ref path() or \ref predArc() functions. If you also |
493 | 493 |
/// need the shortest paths and not only the distances, you should |
494 | 494 |
/// store the \ref predMap() "predecessor map" after each iteration |
495 | 495 |
/// and build the path manually. |
496 | 496 |
/// |
497 | 497 |
/// \return \c true when the algorithm have not found more shorter |
498 | 498 |
/// paths. |
499 | 499 |
/// |
500 | 500 |
/// \see ActiveIt |
501 | 501 |
bool processNextRound() { |
502 | 502 |
for (int i = 0; i < int(_process.size()); ++i) { |
503 |
|
|
503 |
_mask->set(_process[i], false); |
|
504 | 504 |
} |
505 | 505 |
std::vector<Node> nextProcess; |
506 | 506 |
std::vector<Value> values(_process.size()); |
507 | 507 |
for (int i = 0; i < int(_process.size()); ++i) { |
508 |
|
|
508 |
values[i] = (*_dist)[_process[i]]; |
|
509 | 509 |
} |
510 | 510 |
for (int i = 0; i < int(_process.size()); ++i) { |
511 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
512 |
Node target = _gr->target(it); |
|
513 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
514 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
515 |
_pred->set(target, it); |
|
516 |
_dist->set(target, relaxed); |
|
517 |
if (!(*_mask)[target]) { |
|
518 |
_mask->set(target, true); |
|
519 |
nextProcess.push_back(target); |
|
520 |
} |
|
521 |
} |
|
522 |
} |
|
511 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
512 |
Node target = _gr->target(it); |
|
513 |
Value relaxed = OperationTraits::plus(values[i], (*_length)[it]); |
|
514 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
515 |
_pred->set(target, it); |
|
516 |
_dist->set(target, relaxed); |
|
517 |
if (!(*_mask)[target]) { |
|
518 |
_mask->set(target, true); |
|
519 |
nextProcess.push_back(target); |
|
520 |
} |
|
521 |
} |
|
522 |
} |
|
523 | 523 |
} |
524 | 524 |
_process.swap(nextProcess); |
525 | 525 |
return _process.empty(); |
526 | 526 |
} |
527 | 527 |
|
528 | 528 |
/// \brief Executes one weak round from the Bellman-Ford algorithm. |
529 | 529 |
/// |
530 | 530 |
/// If the algorithm calculated the distances in the previous round |
531 | 531 |
/// at least for the paths of at most \c k arcs, then this function |
532 | 532 |
/// will calculate the distances at least for the paths of at most |
533 | 533 |
/// <tt>k+1</tt> arcs. |
534 | 534 |
/// This function does not make it possible to calculate the shortest |
535 | 535 |
/// path distances exactly for paths consisting of at most \c k arcs, |
536 | 536 |
/// this is why it is called weak round. |
537 | 537 |
/// |
538 | 538 |
/// \return \c true when the algorithm have not found more shorter |
539 | 539 |
/// paths. |
540 | 540 |
/// |
541 | 541 |
/// \see ActiveIt |
542 | 542 |
bool processNextWeakRound() { |
543 | 543 |
for (int i = 0; i < int(_process.size()); ++i) { |
544 |
|
|
544 |
_mask->set(_process[i], false); |
|
545 | 545 |
} |
546 | 546 |
std::vector<Node> nextProcess; |
547 | 547 |
for (int i = 0; i < int(_process.size()); ++i) { |
548 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
549 |
Node target = _gr->target(it); |
|
550 |
Value relaxed = |
|
551 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
552 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
553 |
_pred->set(target, it); |
|
554 |
_dist->set(target, relaxed); |
|
555 |
if (!(*_mask)[target]) { |
|
556 |
_mask->set(target, true); |
|
557 |
nextProcess.push_back(target); |
|
558 |
} |
|
559 |
} |
|
560 |
|
|
548 |
for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) { |
|
549 |
Node target = _gr->target(it); |
|
550 |
Value relaxed = |
|
551 |
OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]); |
|
552 |
if (OperationTraits::less(relaxed, (*_dist)[target])) { |
|
553 |
_pred->set(target, it); |
|
554 |
_dist->set(target, relaxed); |
|
555 |
if (!(*_mask)[target]) { |
|
556 |
_mask->set(target, true); |
|
557 |
nextProcess.push_back(target); |
|
558 |
} |
|
559 |
} |
|
560 |
} |
|
561 | 561 |
} |
562 | 562 |
_process.swap(nextProcess); |
563 | 563 |
return _process.empty(); |
564 | 564 |
} |
565 | 565 |
|
566 | 566 |
/// \brief Executes the algorithm. |
567 | 567 |
/// |
568 | 568 |
/// Executes the algorithm. |
569 | 569 |
/// |
570 | 570 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
571 | 571 |
/// in order to compute the shortest path to each node. |
572 | 572 |
/// |
573 | 573 |
/// The algorithm computes |
574 | 574 |
/// - the shortest path tree (forest), |
575 | 575 |
/// - the distance of each node from the root(s). |
576 | 576 |
/// |
577 | 577 |
/// \pre init() must be called and at least one root node should be |
578 | 578 |
/// added with addSource() before using this function. |
579 | 579 |
void start() { |
580 | 580 |
int num = countNodes(*_gr) - 1; |
581 | 581 |
for (int i = 0; i < num; ++i) { |
582 |
|
|
582 |
if (processNextWeakRound()) break; |
|
583 | 583 |
} |
584 | 584 |
} |
585 | 585 |
|
586 | 586 |
/// \brief Executes the algorithm and checks the negative cycles. |
587 | 587 |
/// |
588 | 588 |
/// Executes the algorithm and checks the negative cycles. |
589 | 589 |
/// |
590 | 590 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
591 | 591 |
/// in order to compute the shortest path to each node and also checks |
592 | 592 |
/// if the digraph contains cycles with negative total length. |
593 | 593 |
/// |
594 |
/// The algorithm computes |
|
594 |
/// The algorithm computes |
|
595 | 595 |
/// - the shortest path tree (forest), |
596 | 596 |
/// - the distance of each node from the root(s). |
597 |
/// |
|
597 |
/// |
|
598 | 598 |
/// \return \c false if there is a negative cycle in the digraph. |
599 | 599 |
/// |
600 | 600 |
/// \pre init() must be called and at least one root node should be |
601 |
/// added with addSource() before using this function. |
|
601 |
/// added with addSource() before using this function. |
|
602 | 602 |
bool checkedStart() { |
603 | 603 |
int num = countNodes(*_gr); |
604 | 604 |
for (int i = 0; i < num; ++i) { |
605 |
|
|
605 |
if (processNextWeakRound()) return true; |
|
606 | 606 |
} |
607 | 607 |
return _process.empty(); |
608 | 608 |
} |
609 | 609 |
|
610 | 610 |
/// \brief Executes the algorithm with arc number limit. |
611 | 611 |
/// |
612 | 612 |
/// Executes the algorithm with arc number limit. |
613 | 613 |
/// |
614 | 614 |
/// This method runs the Bellman-Ford algorithm from the root node(s) |
615 | 615 |
/// in order to compute the shortest path distance for each node |
616 | 616 |
/// using only the paths consisting of at most \c num arcs. |
617 | 617 |
/// |
618 | 618 |
/// The algorithm computes |
619 | 619 |
/// - the limited distance of each node from the root(s), |
620 | 620 |
/// - the predecessor arc for each node. |
621 | 621 |
/// |
622 | 622 |
/// \warning The paths with limited arc number cannot be retrieved |
623 | 623 |
/// easily with \ref path() or \ref predArc() functions. If you also |
624 | 624 |
/// need the shortest paths and not only the distances, you should |
625 | 625 |
/// store the \ref predMap() "predecessor map" after each iteration |
626 | 626 |
/// and build the path manually. |
627 | 627 |
/// |
628 | 628 |
/// \pre init() must be called and at least one root node should be |
629 |
/// added with addSource() before using this function. |
|
629 |
/// added with addSource() before using this function. |
|
630 | 630 |
void limitedStart(int num) { |
631 | 631 |
for (int i = 0; i < num; ++i) { |
632 |
|
|
632 |
if (processNextRound()) break; |
|
633 | 633 |
} |
634 | 634 |
} |
635 |
|
|
635 |
|
|
636 | 636 |
/// \brief Runs the algorithm from the given root node. |
637 |
/// |
|
637 |
/// |
|
638 | 638 |
/// This method runs the Bellman-Ford algorithm from the given root |
639 | 639 |
/// node \c s in order to compute the shortest path to each node. |
640 | 640 |
/// |
641 | 641 |
/// The algorithm computes |
642 | 642 |
/// - the shortest path tree (forest), |
643 | 643 |
/// - the distance of each node from the root(s). |
644 | 644 |
/// |
645 | 645 |
/// \note bf.run(s) is just a shortcut of the following code. |
646 | 646 |
/// \code |
647 | 647 |
/// bf.init(); |
648 | 648 |
/// bf.addSource(s); |
649 | 649 |
/// bf.start(); |
650 | 650 |
/// \endcode |
651 | 651 |
void run(Node s) { |
652 | 652 |
init(); |
653 | 653 |
addSource(s); |
654 | 654 |
start(); |
655 | 655 |
} |
656 |
|
|
656 |
|
|
657 | 657 |
/// \brief Runs the algorithm from the given root node with arc |
658 | 658 |
/// number limit. |
659 |
/// |
|
659 |
/// |
|
660 | 660 |
/// This method runs the Bellman-Ford algorithm from the given root |
661 | 661 |
/// node \c s in order to compute the shortest path distance for each |
662 | 662 |
/// node using only the paths consisting of at most \c num arcs. |
663 | 663 |
/// |
664 | 664 |
/// The algorithm computes |
665 | 665 |
/// - the limited distance of each node from the root(s), |
666 | 666 |
/// - the predecessor arc for each node. |
667 | 667 |
/// |
668 | 668 |
/// \warning The paths with limited arc number cannot be retrieved |
669 | 669 |
/// easily with \ref path() or \ref predArc() functions. If you also |
670 | 670 |
/// need the shortest paths and not only the distances, you should |
671 | 671 |
/// store the \ref predMap() "predecessor map" after each iteration |
... | ... |
@@ -673,100 +673,100 @@ |
673 | 673 |
/// |
674 | 674 |
/// \note bf.run(s, num) is just a shortcut of the following code. |
675 | 675 |
/// \code |
676 | 676 |
/// bf.init(); |
677 | 677 |
/// bf.addSource(s); |
678 | 678 |
/// bf.limitedStart(num); |
679 | 679 |
/// \endcode |
680 | 680 |
void run(Node s, int num) { |
681 | 681 |
init(); |
682 | 682 |
addSource(s); |
683 | 683 |
limitedStart(num); |
684 | 684 |
} |
685 |
|
|
685 |
|
|
686 | 686 |
///@} |
687 | 687 |
|
688 | 688 |
/// \brief LEMON iterator for getting the active nodes. |
689 | 689 |
/// |
690 | 690 |
/// This class provides a common style LEMON iterator that traverses |
691 | 691 |
/// the active nodes of the Bellman-Ford algorithm after the last |
692 | 692 |
/// phase. These nodes should be checked in the next phase to |
693 | 693 |
/// find augmenting arcs outgoing from them. |
694 | 694 |
class ActiveIt { |
695 | 695 |
public: |
696 | 696 |
|
697 | 697 |
/// \brief Constructor. |
698 | 698 |
/// |
699 | 699 |
/// Constructor for getting the active nodes of the given BellmanFord |
700 |
/// instance. |
|
700 |
/// instance. |
|
701 | 701 |
ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm) |
702 | 702 |
{ |
703 | 703 |
_index = _algorithm->_process.size() - 1; |
704 | 704 |
} |
705 | 705 |
|
706 | 706 |
/// \brief Invalid constructor. |
707 | 707 |
/// |
708 | 708 |
/// Invalid constructor. |
709 | 709 |
ActiveIt(Invalid) : _algorithm(0), _index(-1) {} |
710 | 710 |
|
711 | 711 |
/// \brief Conversion to \c Node. |
712 | 712 |
/// |
713 | 713 |
/// Conversion to \c Node. |
714 |
operator Node() const { |
|
714 |
operator Node() const { |
|
715 | 715 |
return _index >= 0 ? _algorithm->_process[_index] : INVALID; |
716 | 716 |
} |
717 | 717 |
|
718 | 718 |
/// \brief Increment operator. |
719 | 719 |
/// |
720 | 720 |
/// Increment operator. |
721 | 721 |
ActiveIt& operator++() { |
722 | 722 |
--_index; |
723 |
return *this; |
|
723 |
return *this; |
|
724 | 724 |
} |
725 | 725 |
|
726 |
bool operator==(const ActiveIt& it) const { |
|
727 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
726 |
bool operator==(const ActiveIt& it) const { |
|
727 |
return static_cast<Node>(*this) == static_cast<Node>(it); |
|
728 | 728 |
} |
729 |
bool operator!=(const ActiveIt& it) const { |
|
730 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
729 |
bool operator!=(const ActiveIt& it) const { |
|
730 |
return static_cast<Node>(*this) != static_cast<Node>(it); |
|
731 | 731 |
} |
732 |
bool operator<(const ActiveIt& it) const { |
|
733 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
732 |
bool operator<(const ActiveIt& it) const { |
|
733 |
return static_cast<Node>(*this) < static_cast<Node>(it); |
|
734 | 734 |
} |
735 |
|
|
735 |
|
|
736 | 736 |
private: |
737 | 737 |
const BellmanFord* _algorithm; |
738 | 738 |
int _index; |
739 | 739 |
}; |
740 |
|
|
740 |
|
|
741 | 741 |
/// \name Query Functions |
742 | 742 |
/// The result of the Bellman-Ford algorithm can be obtained using these |
743 | 743 |
/// functions.\n |
744 | 744 |
/// Either \ref run() or \ref init() should be called before using them. |
745 |
|
|
745 |
|
|
746 | 746 |
///@{ |
747 | 747 |
|
748 | 748 |
/// \brief The shortest path to the given node. |
749 |
/// |
|
749 |
/// |
|
750 | 750 |
/// Gives back the shortest path to the given node from the root(s). |
751 | 751 |
/// |
752 | 752 |
/// \warning \c t should be reached from the root(s). |
753 | 753 |
/// |
754 | 754 |
/// \pre Either \ref run() or \ref init() must be called before |
755 | 755 |
/// using this function. |
756 | 756 |
Path path(Node t) const |
757 | 757 |
{ |
758 | 758 |
return Path(*_gr, *_pred, t); |
759 | 759 |
} |
760 |
|
|
760 |
|
|
761 | 761 |
/// \brief The distance of the given node from the root(s). |
762 | 762 |
/// |
763 | 763 |
/// Returns the distance of the given node from the root(s). |
764 | 764 |
/// |
765 | 765 |
/// \warning If node \c v is not reached from the root(s), then |
766 | 766 |
/// the return value of this function is undefined. |
767 | 767 |
/// |
768 | 768 |
/// \pre Either \ref run() or \ref init() must be called before |
769 | 769 |
/// using this function. |
770 | 770 |
Value dist(Node v) const { return (*_dist)[v]; } |
771 | 771 |
|
772 | 772 |
/// \brief Returns the 'previous arc' of the shortest path tree for |
... | ... |
@@ -788,60 +788,60 @@ |
788 | 788 |
/// the given node. |
789 | 789 |
/// |
790 | 790 |
/// This function returns the 'previous node' of the shortest path |
791 | 791 |
/// tree for node \c v, i.e. it returns the last but one node of |
792 | 792 |
/// a shortest path from a root to \c v. It is \c INVALID if \c v |
793 | 793 |
/// is not reached from the root(s) or if \c v is a root. |
794 | 794 |
/// |
795 | 795 |
/// The shortest path tree used here is equal to the shortest path |
796 | 796 |
/// tree used in \ref predArc() and \ref predMap(). |
797 | 797 |
/// |
798 | 798 |
/// \pre Either \ref run() or \ref init() must be called before |
799 | 799 |
/// using this function. |
800 |
Node predNode(Node v) const { |
|
801 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
800 |
Node predNode(Node v) const { |
|
801 |
return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); |
|
802 | 802 |
} |
803 |
|
|
803 |
|
|
804 | 804 |
/// \brief Returns a const reference to the node map that stores the |
805 | 805 |
/// distances of the nodes. |
806 | 806 |
/// |
807 | 807 |
/// Returns a const reference to the node map that stores the distances |
808 | 808 |
/// of the nodes calculated by the algorithm. |
809 | 809 |
/// |
810 | 810 |
/// \pre Either \ref run() or \ref init() must be called before |
811 | 811 |
/// using this function. |
812 | 812 |
const DistMap &distMap() const { return *_dist;} |
813 |
|
|
813 |
|
|
814 | 814 |
/// \brief Returns a const reference to the node map that stores the |
815 | 815 |
/// predecessor arcs. |
816 | 816 |
/// |
817 | 817 |
/// Returns a const reference to the node map that stores the predecessor |
818 | 818 |
/// arcs, which form the shortest path tree (forest). |
819 | 819 |
/// |
820 | 820 |
/// \pre Either \ref run() or \ref init() must be called before |
821 | 821 |
/// using this function. |
822 | 822 |
const PredMap &predMap() const { return *_pred; } |
823 |
|
|
823 |
|
|
824 | 824 |
/// \brief Checks if a node is reached from the root(s). |
825 | 825 |
/// |
826 | 826 |
/// Returns \c true if \c v is reached from the root(s). |
827 | 827 |
/// |
828 | 828 |
/// \pre Either \ref run() or \ref init() must be called before |
829 | 829 |
/// using this function. |
830 | 830 |
bool reached(Node v) const { |
831 | 831 |
return (*_dist)[v] != OperationTraits::infinity(); |
832 | 832 |
} |
833 | 833 |
|
834 | 834 |
/// \brief Gives back a negative cycle. |
835 |
/// |
|
835 |
/// |
|
836 | 836 |
/// This function gives back a directed cycle with negative total |
837 | 837 |
/// length if the algorithm has already found one. |
838 | 838 |
/// Otherwise it gives back an empty path. |
839 | 839 |
lemon::Path<Digraph> negativeCycle() const { |
840 | 840 |
typename Digraph::template NodeMap<int> state(*_gr, -1); |
841 | 841 |
lemon::Path<Digraph> cycle; |
842 | 842 |
for (int i = 0; i < int(_process.size()); ++i) { |
843 | 843 |
if (state[_process[i]] != -1) continue; |
844 | 844 |
for (Node v = _process[i]; (*_pred)[v] != INVALID; |
845 | 845 |
v = _gr->source((*_pred)[v])) { |
846 | 846 |
if (state[v] == i) { |
847 | 847 |
cycle.addFront((*_pred)[v]); |
... | ... |
@@ -850,198 +850,198 @@ |
850 | 850 |
cycle.addFront((*_pred)[u]); |
851 | 851 |
} |
852 | 852 |
return cycle; |
853 | 853 |
} |
854 | 854 |
else if (state[v] >= 0) { |
855 | 855 |
break; |
856 | 856 |
} |
857 | 857 |
state[v] = i; |
858 | 858 |
} |
859 | 859 |
} |
860 | 860 |
return cycle; |
861 | 861 |
} |
862 |
|
|
862 |
|
|
863 | 863 |
///@} |
864 | 864 |
}; |
865 |
|
|
865 |
|
|
866 | 866 |
/// \brief Default traits class of bellmanFord() function. |
867 | 867 |
/// |
868 | 868 |
/// Default traits class of bellmanFord() function. |
869 | 869 |
/// \tparam GR The type of the digraph. |
870 | 870 |
/// \tparam LEN The type of the length map. |
871 | 871 |
template <typename GR, typename LEN> |
872 | 872 |
struct BellmanFordWizardDefaultTraits { |
873 |
/// The type of the digraph the algorithm runs on. |
|
873 |
/// The type of the digraph the algorithm runs on. |
|
874 | 874 |
typedef GR Digraph; |
875 | 875 |
|
876 | 876 |
/// \brief The type of the map that stores the arc lengths. |
877 | 877 |
/// |
878 | 878 |
/// The type of the map that stores the arc lengths. |
879 | 879 |
/// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
880 | 880 |
typedef LEN LengthMap; |
881 | 881 |
|
882 | 882 |
/// The type of the arc lengths. |
883 | 883 |
typedef typename LEN::Value Value; |
884 | 884 |
|
885 | 885 |
/// \brief Operation traits for Bellman-Ford algorithm. |
886 | 886 |
/// |
887 | 887 |
/// It defines the used operations and the infinity value for the |
888 | 888 |
/// given \c Value type. |
889 | 889 |
/// \see BellmanFordDefaultOperationTraits, |
890 | 890 |
/// BellmanFordToleranceOperationTraits |
891 | 891 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
892 | 892 |
|
893 | 893 |
/// \brief The type of the map that stores the last |
894 | 894 |
/// arcs of the shortest paths. |
895 |
/// |
|
895 |
/// |
|
896 | 896 |
/// The type of the map that stores the last arcs of the shortest paths. |
897 | 897 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
898 | 898 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
899 | 899 |
|
900 | 900 |
/// \brief Instantiates a \c PredMap. |
901 |
/// |
|
901 |
/// |
|
902 | 902 |
/// This function instantiates a \ref PredMap. |
903 | 903 |
/// \param g is the digraph to which we would like to define the |
904 | 904 |
/// \ref PredMap. |
905 | 905 |
static PredMap *createPredMap(const GR &g) { |
906 | 906 |
return new PredMap(g); |
907 | 907 |
} |
908 | 908 |
|
909 | 909 |
/// \brief The type of the map that stores the distances of the nodes. |
910 | 910 |
/// |
911 | 911 |
/// The type of the map that stores the distances of the nodes. |
912 | 912 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
913 | 913 |
typedef typename GR::template NodeMap<Value> DistMap; |
914 | 914 |
|
915 | 915 |
/// \brief Instantiates a \c DistMap. |
916 | 916 |
/// |
917 |
/// This function instantiates a \ref DistMap. |
|
917 |
/// This function instantiates a \ref DistMap. |
|
918 | 918 |
/// \param g is the digraph to which we would like to define the |
919 | 919 |
/// \ref DistMap. |
920 | 920 |
static DistMap *createDistMap(const GR &g) { |
921 | 921 |
return new DistMap(g); |
922 | 922 |
} |
923 | 923 |
|
924 | 924 |
///The type of the shortest paths. |
925 | 925 |
|
926 | 926 |
///The type of the shortest paths. |
927 | 927 |
///It must meet the \ref concepts::Path "Path" concept. |
928 | 928 |
typedef lemon::Path<Digraph> Path; |
929 | 929 |
}; |
930 |
|
|
930 |
|
|
931 | 931 |
/// \brief Default traits class used by BellmanFordWizard. |
932 | 932 |
/// |
933 | 933 |
/// Default traits class used by BellmanFordWizard. |
934 | 934 |
/// \tparam GR The type of the digraph. |
935 | 935 |
/// \tparam LEN The type of the length map. |
936 | 936 |
template <typename GR, typename LEN> |
937 |
class BellmanFordWizardBase |
|
937 |
class BellmanFordWizardBase |
|
938 | 938 |
: public BellmanFordWizardDefaultTraits<GR, LEN> { |
939 | 939 |
|
940 | 940 |
typedef BellmanFordWizardDefaultTraits<GR, LEN> Base; |
941 | 941 |
protected: |
942 | 942 |
// Type of the nodes in the digraph. |
943 | 943 |
typedef typename Base::Digraph::Node Node; |
944 | 944 |
|
945 | 945 |
// Pointer to the underlying digraph. |
946 | 946 |
void *_graph; |
947 | 947 |
// Pointer to the length map |
948 | 948 |
void *_length; |
949 | 949 |
// Pointer to the map of predecessors arcs. |
950 | 950 |
void *_pred; |
951 | 951 |
// Pointer to the map of distances. |
952 | 952 |
void *_dist; |
953 | 953 |
//Pointer to the shortest path to the target node. |
954 | 954 |
void *_path; |
955 | 955 |
//Pointer to the distance of the target node. |
956 | 956 |
void *_di; |
957 | 957 |
|
958 | 958 |
public: |
959 | 959 |
/// Constructor. |
960 |
|
|
960 |
|
|
961 | 961 |
/// This constructor does not require parameters, it initiates |
962 | 962 |
/// all of the attributes to default values \c 0. |
963 | 963 |
BellmanFordWizardBase() : |
964 | 964 |
_graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {} |
965 | 965 |
|
966 | 966 |
/// Constructor. |
967 |
|
|
967 |
|
|
968 | 968 |
/// This constructor requires two parameters, |
969 | 969 |
/// others are initiated to \c 0. |
970 | 970 |
/// \param gr The digraph the algorithm runs on. |
971 | 971 |
/// \param len The length map. |
972 |
BellmanFordWizardBase(const GR& gr, |
|
973 |
const LEN& len) : |
|
974 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
975 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
972 |
BellmanFordWizardBase(const GR& gr, |
|
973 |
const LEN& len) : |
|
974 |
_graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), |
|
975 |
_length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), |
|
976 | 976 |
_pred(0), _dist(0), _path(0), _di(0) {} |
977 | 977 |
|
978 | 978 |
}; |
979 |
|
|
979 |
|
|
980 | 980 |
/// \brief Auxiliary class for the function-type interface of the |
981 | 981 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
982 | 982 |
/// |
983 | 983 |
/// This auxiliary class is created to implement the |
984 | 984 |
/// \ref bellmanFord() "function-type interface" of the |
985 | 985 |
/// \ref BellmanFord "Bellman-Ford" algorithm. |
986 | 986 |
/// It does not have own \ref run() method, it uses the |
987 | 987 |
/// functions and features of the plain \ref BellmanFord. |
988 | 988 |
/// |
989 | 989 |
/// This class should only be used through the \ref bellmanFord() |
990 | 990 |
/// function, which makes it easier to use the algorithm. |
991 | 991 |
/// |
992 | 992 |
/// \tparam TR The traits class that defines various types used by the |
993 | 993 |
/// algorithm. |
994 | 994 |
template<class TR> |
995 | 995 |
class BellmanFordWizard : public TR { |
996 | 996 |
typedef TR Base; |
997 | 997 |
|
998 | 998 |
typedef typename TR::Digraph Digraph; |
999 | 999 |
|
1000 | 1000 |
typedef typename Digraph::Node Node; |
1001 | 1001 |
typedef typename Digraph::NodeIt NodeIt; |
1002 | 1002 |
typedef typename Digraph::Arc Arc; |
1003 | 1003 |
typedef typename Digraph::OutArcIt ArcIt; |
1004 |
|
|
1004 |
|
|
1005 | 1005 |
typedef typename TR::LengthMap LengthMap; |
1006 | 1006 |
typedef typename LengthMap::Value Value; |
1007 | 1007 |
typedef typename TR::PredMap PredMap; |
1008 | 1008 |
typedef typename TR::DistMap DistMap; |
1009 | 1009 |
typedef typename TR::Path Path; |
1010 | 1010 |
|
1011 | 1011 |
public: |
1012 | 1012 |
/// Constructor. |
1013 | 1013 |
BellmanFordWizard() : TR() {} |
1014 | 1014 |
|
1015 | 1015 |
/// \brief Constructor that requires parameters. |
1016 | 1016 |
/// |
1017 | 1017 |
/// Constructor that requires parameters. |
1018 | 1018 |
/// These parameters will be the default values for the traits class. |
1019 | 1019 |
/// \param gr The digraph the algorithm runs on. |
1020 | 1020 |
/// \param len The length map. |
1021 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
1021 |
BellmanFordWizard(const Digraph& gr, const LengthMap& len) |
|
1022 | 1022 |
: TR(gr, len) {} |
1023 | 1023 |
|
1024 | 1024 |
/// \brief Copy constructor |
1025 | 1025 |
BellmanFordWizard(const TR &b) : TR(b) {} |
1026 | 1026 |
|
1027 | 1027 |
~BellmanFordWizard() {} |
1028 | 1028 |
|
1029 | 1029 |
/// \brief Runs the Bellman-Ford algorithm from the given source node. |
1030 |
/// |
|
1030 |
/// |
|
1031 | 1031 |
/// This method runs the Bellman-Ford algorithm from the given source |
1032 | 1032 |
/// node in order to compute the shortest path to each node. |
1033 | 1033 |
void run(Node s) { |
1034 |
BellmanFord<Digraph,LengthMap,TR> |
|
1035 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
1034 |
BellmanFord<Digraph,LengthMap,TR> |
|
1035 |
bf(*reinterpret_cast<const Digraph*>(Base::_graph), |
|
1036 | 1036 |
*reinterpret_cast<const LengthMap*>(Base::_length)); |
1037 | 1037 |
if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1038 | 1038 |
if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1039 | 1039 |
bf.run(s); |
1040 | 1040 |
} |
1041 | 1041 |
|
1042 | 1042 |
/// \brief Runs the Bellman-Ford algorithm to find the shortest path |
1043 | 1043 |
/// between \c s and \c t. |
1044 | 1044 |
/// |
1045 | 1045 |
/// This method runs the Bellman-Ford algorithm from node \c s |
1046 | 1046 |
/// in order to compute the shortest path to node \c t. |
1047 | 1047 |
/// Actually, it computes the shortest path to each node, but using |
... | ... |
@@ -1058,43 +1058,43 @@ |
1058 | 1058 |
bf.run(s); |
1059 | 1059 |
if (Base::_path) *reinterpret_cast<Path*>(Base::_path) = bf.path(t); |
1060 | 1060 |
if (Base::_di) *reinterpret_cast<Value*>(Base::_di) = bf.dist(t); |
1061 | 1061 |
return bf.reached(t); |
1062 | 1062 |
} |
1063 | 1063 |
|
1064 | 1064 |
template<class T> |
1065 | 1065 |
struct SetPredMapBase : public Base { |
1066 | 1066 |
typedef T PredMap; |
1067 | 1067 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1068 | 1068 |
SetPredMapBase(const TR &b) : TR(b) {} |
1069 | 1069 |
}; |
1070 |
|
|
1070 |
|
|
1071 | 1071 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1072 | 1072 |
/// the predecessor map. |
1073 | 1073 |
/// |
1074 | 1074 |
/// \ref named-templ-param "Named parameter" for setting |
1075 | 1075 |
/// the map that stores the predecessor arcs of the nodes. |
1076 | 1076 |
template<class T> |
1077 | 1077 |
BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) { |
1078 | 1078 |
Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1079 | 1079 |
return BellmanFordWizard<SetPredMapBase<T> >(*this); |
1080 | 1080 |
} |
1081 |
|
|
1081 |
|
|
1082 | 1082 |
template<class T> |
1083 | 1083 |
struct SetDistMapBase : public Base { |
1084 | 1084 |
typedef T DistMap; |
1085 | 1085 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1086 | 1086 |
SetDistMapBase(const TR &b) : TR(b) {} |
1087 | 1087 |
}; |
1088 |
|
|
1088 |
|
|
1089 | 1089 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1090 | 1090 |
/// the distance map. |
1091 | 1091 |
/// |
1092 | 1092 |
/// \ref named-templ-param "Named parameter" for setting |
1093 | 1093 |
/// the map that stores the distances of the nodes calculated |
1094 | 1094 |
/// by the algorithm. |
1095 | 1095 |
template<class T> |
1096 | 1096 |
BellmanFordWizard<SetDistMapBase<T> > distMap(const T &t) { |
1097 | 1097 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1098 | 1098 |
return BellmanFordWizard<SetDistMapBase<T> >(*this); |
1099 | 1099 |
} |
1100 | 1100 |
|
... | ... |
@@ -1117,49 +1117,49 @@ |
1117 | 1117 |
} |
1118 | 1118 |
|
1119 | 1119 |
/// \brief \ref named-func-param "Named parameter" for getting |
1120 | 1120 |
/// the distance of the target node. |
1121 | 1121 |
/// |
1122 | 1122 |
/// \ref named-func-param "Named parameter" for getting |
1123 | 1123 |
/// the distance of the target node. |
1124 | 1124 |
BellmanFordWizard dist(const Value &d) |
1125 | 1125 |
{ |
1126 | 1126 |
Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d)); |
1127 | 1127 |
return *this; |
1128 | 1128 |
} |
1129 |
|
|
1129 |
|
|
1130 | 1130 |
}; |
1131 |
|
|
1131 |
|
|
1132 | 1132 |
/// \brief Function type interface for the \ref BellmanFord "Bellman-Ford" |
1133 | 1133 |
/// algorithm. |
1134 | 1134 |
/// |
1135 | 1135 |
/// \ingroup shortest_path |
1136 | 1136 |
/// Function type interface for the \ref BellmanFord "Bellman-Ford" |
1137 | 1137 |
/// algorithm. |
1138 | 1138 |
/// |
1139 |
/// This function also has several \ref named-templ-func-param |
|
1140 |
/// "named parameters", they are declared as the members of class |
|
1139 |
/// This function also has several \ref named-templ-func-param |
|
1140 |
/// "named parameters", they are declared as the members of class |
|
1141 | 1141 |
/// \ref BellmanFordWizard. |
1142 | 1142 |
/// The following examples show how to use these parameters. |
1143 | 1143 |
/// \code |
1144 | 1144 |
/// // Compute shortest path from node s to each node |
1145 | 1145 |
/// bellmanFord(g,length).predMap(preds).distMap(dists).run(s); |
1146 | 1146 |
/// |
1147 | 1147 |
/// // Compute shortest path from s to t |
1148 | 1148 |
/// bool reached = bellmanFord(g,length).path(p).dist(d).run(s,t); |
1149 | 1149 |
/// \endcode |
1150 | 1150 |
/// \warning Don't forget to put the \ref BellmanFordWizard::run() "run()" |
1151 | 1151 |
/// to the end of the parameter list. |
1152 | 1152 |
/// \sa BellmanFordWizard |
1153 | 1153 |
/// \sa BellmanFord |
1154 | 1154 |
template<typename GR, typename LEN> |
1155 | 1155 |
BellmanFordWizard<BellmanFordWizardBase<GR,LEN> > |
1156 | 1156 |
bellmanFord(const GR& digraph, |
1157 |
|
|
1157 |
const LEN& length) |
|
1158 | 1158 |
{ |
1159 | 1159 |
return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length); |
1160 | 1160 |
} |
1161 | 1161 |
|
1162 | 1162 |
} //END OF NAMESPACE LEMON |
1163 | 1163 |
|
1164 | 1164 |
#endif |
1165 | 1165 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -73,25 +73,26 @@ |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
79 | 79 |
return new ProcessedMap(); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 |
///It must conform to |
|
85 |
///It must conform to |
|
86 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
86 | 87 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
87 | 88 |
///Instantiates a \c ReachedMap. |
88 | 89 |
|
89 | 90 |
///This function instantiates a \ref ReachedMap. |
90 | 91 |
///\param g is the digraph, to which |
91 | 92 |
///we would like to define the \ref ReachedMap. |
92 | 93 |
static ReachedMap *createReachedMap(const Digraph &g) |
93 | 94 |
{ |
94 | 95 |
return new ReachedMap(g); |
95 | 96 |
} |
96 | 97 |
|
97 | 98 |
///The type of the map that stores the distances of the nodes. |
... | ... |
@@ -262,25 +263,26 @@ |
262 | 263 |
typedef T ReachedMap; |
263 | 264 |
static ReachedMap *createReachedMap(const Digraph &) |
264 | 265 |
{ |
265 | 266 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
266 | 267 |
return 0; // ignore warnings |
267 | 268 |
} |
268 | 269 |
}; |
269 | 270 |
///\brief \ref named-templ-param "Named parameter" for setting |
270 | 271 |
///\c ReachedMap type. |
271 | 272 |
/// |
272 | 273 |
///\ref named-templ-param "Named parameter" for setting |
273 | 274 |
///\c ReachedMap type. |
274 |
///It must conform to |
|
275 |
///It must conform to |
|
276 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
275 | 277 |
template <class T> |
276 | 278 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
277 | 279 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
278 | 280 |
}; |
279 | 281 |
|
280 | 282 |
template <class T> |
281 | 283 |
struct SetProcessedMapTraits : public Traits { |
282 | 284 |
typedef T ProcessedMap; |
283 | 285 |
static ProcessedMap *createProcessedMap(const Digraph &) |
284 | 286 |
{ |
285 | 287 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
286 | 288 |
return 0; // ignore warnings |
... | ... |
@@ -863,25 +865,26 @@ |
863 | 865 |
#ifdef DOXYGEN |
864 | 866 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
865 | 867 |
#else |
866 | 868 |
static ProcessedMap *createProcessedMap(const Digraph &) |
867 | 869 |
#endif |
868 | 870 |
{ |
869 | 871 |
return new ProcessedMap(); |
870 | 872 |
} |
871 | 873 |
|
872 | 874 |
///The type of the map that indicates which nodes are reached. |
873 | 875 |
|
874 | 876 |
///The type of the map that indicates which nodes are reached. |
875 |
///It must conform to |
|
877 |
///It must conform to |
|
878 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
876 | 879 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
877 | 880 |
///Instantiates a ReachedMap. |
878 | 881 |
|
879 | 882 |
///This function instantiates a ReachedMap. |
880 | 883 |
///\param g is the digraph, to which |
881 | 884 |
///we would like to define the ReachedMap. |
882 | 885 |
static ReachedMap *createReachedMap(const Digraph &g) |
883 | 886 |
{ |
884 | 887 |
return new ReachedMap(g); |
885 | 888 |
} |
886 | 889 |
|
887 | 890 |
///The type of the map that stores the distances of the nodes. |
... | ... |
@@ -1256,25 +1259,26 @@ |
1256 | 1259 |
/// |
1257 | 1260 |
/// Default traits class of BfsVisit class. |
1258 | 1261 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1259 | 1262 |
template<class GR> |
1260 | 1263 |
struct BfsVisitDefaultTraits { |
1261 | 1264 |
|
1262 | 1265 |
/// \brief The type of the digraph the algorithm runs on. |
1263 | 1266 |
typedef GR Digraph; |
1264 | 1267 |
|
1265 | 1268 |
/// \brief The type of the map that indicates which nodes are reached. |
1266 | 1269 |
/// |
1267 | 1270 |
/// The type of the map that indicates which nodes are reached. |
1268 |
/// It must conform to |
|
1271 |
/// It must conform to |
|
1272 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
1269 | 1273 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1270 | 1274 |
|
1271 | 1275 |
/// \brief Instantiates a ReachedMap. |
1272 | 1276 |
/// |
1273 | 1277 |
/// This function instantiates a ReachedMap. |
1274 | 1278 |
/// \param digraph is the digraph, to which |
1275 | 1279 |
/// we would like to define the ReachedMap. |
1276 | 1280 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1277 | 1281 |
return new ReachedMap(digraph); |
1278 | 1282 |
} |
1279 | 1283 |
|
1280 | 1284 |
}; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -249,25 +249,25 @@ |
249 | 249 |
} |
250 | 250 |
|
251 | 251 |
/// \brief Decrease the priority of an item to the given value. |
252 | 252 |
/// |
253 | 253 |
/// This function decreases the priority of an item to the given value. |
254 | 254 |
/// \param item The item. |
255 | 255 |
/// \param value The priority. |
256 | 256 |
/// \pre \e item must be stored in the heap with priority at least \e value. |
257 | 257 |
void decrease (Item item, const Prio& value) { |
258 | 258 |
int i=_iim[item]; |
259 | 259 |
int p=_data[i].parent; |
260 | 260 |
_data[i].prio=value; |
261 |
|
|
261 |
|
|
262 | 262 |
while( p!=-1 && _comp(value, _data[p].prio) ) { |
263 | 263 |
_data[i].name=_data[p].name; |
264 | 264 |
_data[i].prio=_data[p].prio; |
265 | 265 |
_data[p].name=item; |
266 | 266 |
_data[p].prio=value; |
267 | 267 |
_iim[_data[i].name]=i; |
268 | 268 |
i=p; |
269 | 269 |
p=_data[p].parent; |
270 | 270 |
} |
271 | 271 |
_iim[item]=i; |
272 | 272 |
if ( _comp(value, _data[_min].prio) ) _min=i; |
273 | 273 |
} |
... | ... |
@@ -313,25 +313,25 @@ |
313 | 313 |
case PRE_HEAP: |
314 | 314 |
if (state(i) == IN_HEAP) { |
315 | 315 |
erase(i); |
316 | 316 |
} |
317 | 317 |
_iim[i] = st; |
318 | 318 |
break; |
319 | 319 |
case IN_HEAP: |
320 | 320 |
break; |
321 | 321 |
} |
322 | 322 |
} |
323 | 323 |
|
324 | 324 |
private: |
325 |
|
|
325 |
|
|
326 | 326 |
// Find the minimum of the roots |
327 | 327 |
int findMin() { |
328 | 328 |
if( _head!=-1 ) { |
329 | 329 |
int min_loc=_head, min_val=_data[_head].prio; |
330 | 330 |
for( int x=_data[_head].right_neighbor; x!=-1; |
331 | 331 |
x=_data[x].right_neighbor ) { |
332 | 332 |
if( _comp( _data[x].prio,min_val ) ) { |
333 | 333 |
min_val=_data[x].prio; |
334 | 334 |
min_loc=x; |
335 | 335 |
} |
336 | 336 |
} |
337 | 337 |
return min_loc; |
... | ... |
@@ -341,25 +341,25 @@ |
341 | 341 |
|
342 | 342 |
// Merge the heap with another heap starting at the given position |
343 | 343 |
void merge(int a) { |
344 | 344 |
if( _head==-1 || a==-1 ) return; |
345 | 345 |
if( _data[a].right_neighbor==-1 && |
346 | 346 |
_data[a].degree<=_data[_head].degree ) { |
347 | 347 |
_data[a].right_neighbor=_head; |
348 | 348 |
_head=a; |
349 | 349 |
} else { |
350 | 350 |
interleave(a); |
351 | 351 |
} |
352 | 352 |
if( _data[_head].right_neighbor==-1 ) return; |
353 |
|
|
353 |
|
|
354 | 354 |
int x=_head; |
355 | 355 |
int x_prev=-1, x_next=_data[x].right_neighbor; |
356 | 356 |
while( x_next!=-1 ) { |
357 | 357 |
if( _data[x].degree!=_data[x_next].degree || |
358 | 358 |
( _data[x_next].right_neighbor!=-1 && |
359 | 359 |
_data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) { |
360 | 360 |
x_prev=x; |
361 | 361 |
x=x_next; |
362 | 362 |
} |
363 | 363 |
else { |
364 | 364 |
if( _comp(_data[x_next].prio,_data[x].prio) ) { |
365 | 365 |
if( x_prev==-1 ) { |
... | ... |
@@ -375,38 +375,38 @@ |
375 | 375 |
fuse(x_next,x); |
376 | 376 |
} |
377 | 377 |
} |
378 | 378 |
x_next=_data[x].right_neighbor; |
379 | 379 |
} |
380 | 380 |
} |
381 | 381 |
|
382 | 382 |
// Interleave the elements of the given list into the list of the roots |
383 | 383 |
void interleave(int a) { |
384 | 384 |
int p=_head, q=a; |
385 | 385 |
int curr=_data.size(); |
386 | 386 |
_data.push_back(Store()); |
387 |
|
|
387 |
|
|
388 | 388 |
while( p!=-1 || q!=-1 ) { |
389 | 389 |
if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) { |
390 | 390 |
_data[curr].right_neighbor=p; |
391 | 391 |
curr=p; |
392 | 392 |
p=_data[p].right_neighbor; |
393 | 393 |
} |
394 | 394 |
else { |
395 | 395 |
_data[curr].right_neighbor=q; |
396 | 396 |
curr=q; |
397 | 397 |
q=_data[q].right_neighbor; |
398 | 398 |
} |
399 | 399 |
} |
400 |
|
|
400 |
|
|
401 | 401 |
_head=_data.back().right_neighbor; |
402 | 402 |
_data.pop_back(); |
403 | 403 |
} |
404 | 404 |
|
405 | 405 |
// Lace node a under node b |
406 | 406 |
void fuse(int a, int b) { |
407 | 407 |
_data[a].parent=b; |
408 | 408 |
_data[a].right_neighbor=_data[b].child; |
409 | 409 |
_data[b].child=a; |
410 | 410 |
|
411 | 411 |
++_data[b].degree; |
412 | 412 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -61,25 +61,25 @@ |
61 | 61 |
// The const reference type of the map. |
62 | 62 |
typedef const _Value& ConstReference; |
63 | 63 |
// The reference type of the map. |
64 | 64 |
typedef _Value& Reference; |
65 | 65 |
|
66 | 66 |
// The map type. |
67 | 67 |
typedef ArrayMap Map; |
68 | 68 |
|
69 | 69 |
// The notifier type. |
70 | 70 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
71 | 71 |
|
72 | 72 |
private: |
73 |
|
|
73 |
|
|
74 | 74 |
// The MapBase of the Map which imlements the core regisitry function. |
75 | 75 |
typedef typename Notifier::ObserverBase Parent; |
76 | 76 |
|
77 | 77 |
typedef std::allocator<Value> Allocator; |
78 | 78 |
|
79 | 79 |
public: |
80 | 80 |
|
81 | 81 |
// \brief Graph initialized map constructor. |
82 | 82 |
// |
83 | 83 |
// Graph initialized map constructor. |
84 | 84 |
explicit ArrayMap(const GraphType& graph) { |
85 | 85 |
Parent::attach(graph.notifier(Item())); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -148,25 +148,25 @@ |
148 | 148 |
// }; |
149 | 149 |
|
150 | 150 |
// #endif |
151 | 151 |
|
152 | 152 |
// DefaultMap class |
153 | 153 |
template <typename _Graph, typename _Item, typename _Value> |
154 | 154 |
class DefaultMap |
155 | 155 |
: public DefaultMapSelector<_Graph, _Item, _Value>::Map { |
156 | 156 |
typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent; |
157 | 157 |
|
158 | 158 |
public: |
159 | 159 |
typedef DefaultMap<_Graph, _Item, _Value> Map; |
160 |
|
|
160 |
|
|
161 | 161 |
typedef typename Parent::GraphType GraphType; |
162 | 162 |
typedef typename Parent::Value Value; |
163 | 163 |
|
164 | 164 |
explicit DefaultMap(const GraphType& graph) : Parent(graph) {} |
165 | 165 |
DefaultMap(const GraphType& graph, const Value& value) |
166 | 166 |
: Parent(graph, value) {} |
167 | 167 |
|
168 | 168 |
DefaultMap& operator=(const DefaultMap& cmap) { |
169 | 169 |
return operator=<DefaultMap>(cmap); |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
template <typename CMap> |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -54,141 +54,141 @@ |
54 | 54 |
} |
55 | 55 |
|
56 | 56 |
Node fromId(int id, Node) const { |
57 | 57 |
return Parent::nodeFromId(id); |
58 | 58 |
} |
59 | 59 |
|
60 | 60 |
Arc fromId(int id, Arc) const { |
61 | 61 |
return Parent::arcFromId(id); |
62 | 62 |
} |
63 | 63 |
|
64 | 64 |
Node oppositeNode(const Node &n, const Arc &e) const { |
65 | 65 |
if (n == Parent::source(e)) |
66 |
|
|
66 |
return Parent::target(e); |
|
67 | 67 |
else if(n==Parent::target(e)) |
68 |
|
|
68 |
return Parent::source(e); |
|
69 | 69 |
else |
70 |
|
|
70 |
return INVALID; |
|
71 | 71 |
} |
72 | 72 |
|
73 | 73 |
|
74 | 74 |
// Alteration notifier extensions |
75 | 75 |
|
76 | 76 |
// The arc observer registry. |
77 | 77 |
typedef AlterationNotifier<ArcSetExtender, Arc> ArcNotifier; |
78 | 78 |
|
79 | 79 |
protected: |
80 | 80 |
|
81 | 81 |
mutable ArcNotifier arc_notifier; |
82 | 82 |
|
83 | 83 |
public: |
84 | 84 |
|
85 | 85 |
using Parent::notifier; |
86 | 86 |
|
87 | 87 |
// Gives back the arc alteration notifier. |
88 | 88 |
ArcNotifier& notifier(Arc) const { |
89 | 89 |
return arc_notifier; |
90 | 90 |
} |
91 | 91 |
|
92 | 92 |
// Iterable extensions |
93 | 93 |
|
94 |
class NodeIt : public Node { |
|
94 |
class NodeIt : public Node { |
|
95 | 95 |
const Digraph* digraph; |
96 | 96 |
public: |
97 | 97 |
|
98 | 98 |
NodeIt() {} |
99 | 99 |
|
100 | 100 |
NodeIt(Invalid i) : Node(i) { } |
101 | 101 |
|
102 | 102 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) { |
103 |
|
|
103 |
_graph.first(static_cast<Node&>(*this)); |
|
104 | 104 |
} |
105 | 105 |
|
106 |
NodeIt(const Digraph& _graph, const Node& node) |
|
107 |
: Node(node), digraph(&_graph) {} |
|
106 |
NodeIt(const Digraph& _graph, const Node& node) |
|
107 |
: Node(node), digraph(&_graph) {} |
|
108 | 108 |
|
109 |
NodeIt& operator++() { |
|
110 |
digraph->next(*this); |
|
111 |
|
|
109 |
NodeIt& operator++() { |
|
110 |
digraph->next(*this); |
|
111 |
return *this; |
|
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
}; |
115 | 115 |
|
116 | 116 |
|
117 |
class ArcIt : public Arc { |
|
117 |
class ArcIt : public Arc { |
|
118 | 118 |
const Digraph* digraph; |
119 | 119 |
public: |
120 | 120 |
|
121 | 121 |
ArcIt() { } |
122 | 122 |
|
123 | 123 |
ArcIt(Invalid i) : Arc(i) { } |
124 | 124 |
|
125 | 125 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) { |
126 |
|
|
126 |
_graph.first(static_cast<Arc&>(*this)); |
|
127 | 127 |
} |
128 | 128 |
|
129 |
ArcIt(const Digraph& _graph, const Arc& e) : |
|
130 |
Arc(e), digraph(&_graph) { } |
|
129 |
ArcIt(const Digraph& _graph, const Arc& e) : |
|
130 |
Arc(e), digraph(&_graph) { } |
|
131 | 131 |
|
132 |
ArcIt& operator++() { |
|
133 |
digraph->next(*this); |
|
134 |
|
|
132 |
ArcIt& operator++() { |
|
133 |
digraph->next(*this); |
|
134 |
return *this; |
|
135 | 135 |
} |
136 | 136 |
|
137 | 137 |
}; |
138 | 138 |
|
139 | 139 |
|
140 |
class OutArcIt : public Arc { |
|
140 |
class OutArcIt : public Arc { |
|
141 | 141 |
const Digraph* digraph; |
142 | 142 |
public: |
143 | 143 |
|
144 | 144 |
OutArcIt() { } |
145 | 145 |
|
146 | 146 |
OutArcIt(Invalid i) : Arc(i) { } |
147 | 147 |
|
148 |
OutArcIt(const Digraph& _graph, const Node& node) |
|
149 |
: digraph(&_graph) { |
|
150 |
|
|
148 |
OutArcIt(const Digraph& _graph, const Node& node) |
|
149 |
: digraph(&_graph) { |
|
150 |
_graph.firstOut(*this, node); |
|
151 | 151 |
} |
152 | 152 |
|
153 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
|
154 |
: Arc(arc), digraph(&_graph) {} |
|
153 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
|
154 |
: Arc(arc), digraph(&_graph) {} |
|
155 | 155 |
|
156 |
OutArcIt& operator++() { |
|
157 |
digraph->nextOut(*this); |
|
158 |
|
|
156 |
OutArcIt& operator++() { |
|
157 |
digraph->nextOut(*this); |
|
158 |
return *this; |
|
159 | 159 |
} |
160 | 160 |
|
161 | 161 |
}; |
162 | 162 |
|
163 | 163 |
|
164 |
class InArcIt : public Arc { |
|
164 |
class InArcIt : public Arc { |
|
165 | 165 |
const Digraph* digraph; |
166 | 166 |
public: |
167 | 167 |
|
168 | 168 |
InArcIt() { } |
169 | 169 |
|
170 | 170 |
InArcIt(Invalid i) : Arc(i) { } |
171 | 171 |
|
172 |
InArcIt(const Digraph& _graph, const Node& node) |
|
173 |
: digraph(&_graph) { |
|
174 |
|
|
172 |
InArcIt(const Digraph& _graph, const Node& node) |
|
173 |
: digraph(&_graph) { |
|
174 |
_graph.firstIn(*this, node); |
|
175 | 175 |
} |
176 | 176 |
|
177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
|
178 |
Arc(arc), digraph(&_graph) {} |
|
177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
|
178 |
Arc(arc), digraph(&_graph) {} |
|
179 | 179 |
|
180 |
InArcIt& operator++() { |
|
181 |
digraph->nextIn(*this); |
|
182 |
|
|
180 |
InArcIt& operator++() { |
|
181 |
digraph->nextIn(*this); |
|
182 |
return *this; |
|
183 | 183 |
} |
184 | 184 |
|
185 | 185 |
}; |
186 | 186 |
|
187 | 187 |
// \brief Base node of the iterator |
188 | 188 |
// |
189 | 189 |
// Returns the base node (ie. the source in this case) of the iterator |
190 | 190 |
Node baseNode(const OutArcIt &e) const { |
191 | 191 |
return Parent::source(static_cast<const Arc&>(e)); |
192 | 192 |
} |
193 | 193 |
// \brief Running node of the iterator |
194 | 194 |
// |
... | ... |
@@ -206,57 +206,57 @@ |
206 | 206 |
} |
207 | 207 |
// \brief Running node of the iterator |
208 | 208 |
// |
209 | 209 |
// Returns the running node (ie. the source in this case) of the |
210 | 210 |
// iterator |
211 | 211 |
Node runningNode(const InArcIt &e) const { |
212 | 212 |
return Parent::source(static_cast<const Arc&>(e)); |
213 | 213 |
} |
214 | 214 |
|
215 | 215 |
using Parent::first; |
216 | 216 |
|
217 | 217 |
// Mappable extension |
218 |
|
|
218 |
|
|
219 | 219 |
template <typename _Value> |
220 |
class ArcMap |
|
220 |
class ArcMap |
|
221 | 221 |
: public MapExtender<DefaultMap<Digraph, Arc, _Value> > { |
222 | 222 |
typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent; |
223 | 223 |
|
224 | 224 |
public: |
225 |
explicit ArcMap(const Digraph& _g) |
|
226 |
: Parent(_g) {} |
|
227 |
ArcMap(const Digraph& _g, const _Value& _v) |
|
228 |
: Parent(_g, _v) {} |
|
225 |
explicit ArcMap(const Digraph& _g) |
|
226 |
: Parent(_g) {} |
|
227 |
ArcMap(const Digraph& _g, const _Value& _v) |
|
228 |
: Parent(_g, _v) {} |
|
229 | 229 |
|
230 | 230 |
ArcMap& operator=(const ArcMap& cmap) { |
231 |
|
|
231 |
return operator=<ArcMap>(cmap); |
|
232 | 232 |
} |
233 | 233 |
|
234 | 234 |
template <typename CMap> |
235 | 235 |
ArcMap& operator=(const CMap& cmap) { |
236 | 236 |
Parent::operator=(cmap); |
237 |
|
|
237 |
return *this; |
|
238 | 238 |
} |
239 | 239 |
|
240 | 240 |
}; |
241 | 241 |
|
242 | 242 |
|
243 | 243 |
// Alteration extension |
244 | 244 |
|
245 | 245 |
Arc addArc(const Node& from, const Node& to) { |
246 | 246 |
Arc arc = Parent::addArc(from, to); |
247 | 247 |
notifier(Arc()).add(arc); |
248 | 248 |
return arc; |
249 | 249 |
} |
250 |
|
|
250 |
|
|
251 | 251 |
void clear() { |
252 | 252 |
notifier(Arc()).clear(); |
253 | 253 |
Parent::clear(); |
254 | 254 |
} |
255 | 255 |
|
256 | 256 |
void erase(const Arc& arc) { |
257 | 257 |
notifier(Arc()).erase(arc); |
258 | 258 |
Parent::erase(arc); |
259 | 259 |
} |
260 | 260 |
|
261 | 261 |
ArcSetExtender() { |
262 | 262 |
arc_notifier.setContainer(*this); |
... | ... |
@@ -301,200 +301,200 @@ |
301 | 301 |
} |
302 | 302 |
|
303 | 303 |
Arc fromId(int id, Arc) const { |
304 | 304 |
return Parent::arcFromId(id); |
305 | 305 |
} |
306 | 306 |
|
307 | 307 |
Edge fromId(int id, Edge) const { |
308 | 308 |
return Parent::edgeFromId(id); |
309 | 309 |
} |
310 | 310 |
|
311 | 311 |
Node oppositeNode(const Node &n, const Edge &e) const { |
312 | 312 |
if( n == Parent::u(e)) |
313 |
|
|
313 |
return Parent::v(e); |
|
314 | 314 |
else if( n == Parent::v(e)) |
315 |
|
|
315 |
return Parent::u(e); |
|
316 | 316 |
else |
317 |
|
|
317 |
return INVALID; |
|
318 | 318 |
} |
319 | 319 |
|
320 | 320 |
Arc oppositeArc(const Arc &e) const { |
321 | 321 |
return Parent::direct(e, !Parent::direction(e)); |
322 | 322 |
} |
323 | 323 |
|
324 | 324 |
using Parent::direct; |
325 | 325 |
Arc direct(const Edge &e, const Node &s) const { |
326 | 326 |
return Parent::direct(e, Parent::u(e) == s); |
327 | 327 |
} |
328 | 328 |
|
329 | 329 |
typedef AlterationNotifier<EdgeSetExtender, Arc> ArcNotifier; |
330 | 330 |
typedef AlterationNotifier<EdgeSetExtender, Edge> EdgeNotifier; |
331 | 331 |
|
332 | 332 |
|
333 | 333 |
protected: |
334 | 334 |
|
335 | 335 |
mutable ArcNotifier arc_notifier; |
336 | 336 |
mutable EdgeNotifier edge_notifier; |
337 | 337 |
|
338 | 338 |
public: |
339 | 339 |
|
340 | 340 |
using Parent::notifier; |
341 |
|
|
341 |
|
|
342 | 342 |
ArcNotifier& notifier(Arc) const { |
343 | 343 |
return arc_notifier; |
344 | 344 |
} |
345 | 345 |
|
346 | 346 |
EdgeNotifier& notifier(Edge) const { |
347 | 347 |
return edge_notifier; |
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
|
351 |
class NodeIt : public Node { |
|
351 |
class NodeIt : public Node { |
|
352 | 352 |
const Graph* graph; |
353 | 353 |
public: |
354 | 354 |
|
355 | 355 |
NodeIt() {} |
356 | 356 |
|
357 | 357 |
NodeIt(Invalid i) : Node(i) { } |
358 | 358 |
|
359 | 359 |
explicit NodeIt(const Graph& _graph) : graph(&_graph) { |
360 |
|
|
360 |
_graph.first(static_cast<Node&>(*this)); |
|
361 | 361 |
} |
362 | 362 |
|
363 |
NodeIt(const Graph& _graph, const Node& node) |
|
364 |
: Node(node), graph(&_graph) {} |
|
363 |
NodeIt(const Graph& _graph, const Node& node) |
|
364 |
: Node(node), graph(&_graph) {} |
|
365 | 365 |
|
366 |
NodeIt& operator++() { |
|
367 |
graph->next(*this); |
|
368 |
|
|
366 |
NodeIt& operator++() { |
|
367 |
graph->next(*this); |
|
368 |
return *this; |
|
369 | 369 |
} |
370 | 370 |
|
371 | 371 |
}; |
372 | 372 |
|
373 | 373 |
|
374 |
class ArcIt : public Arc { |
|
374 |
class ArcIt : public Arc { |
|
375 | 375 |
const Graph* graph; |
376 | 376 |
public: |
377 | 377 |
|
378 | 378 |
ArcIt() { } |
379 | 379 |
|
380 | 380 |
ArcIt(Invalid i) : Arc(i) { } |
381 | 381 |
|
382 | 382 |
explicit ArcIt(const Graph& _graph) : graph(&_graph) { |
383 |
|
|
383 |
_graph.first(static_cast<Arc&>(*this)); |
|
384 | 384 |
} |
385 | 385 |
|
386 |
ArcIt(const Graph& _graph, const Arc& e) : |
|
387 |
Arc(e), graph(&_graph) { } |
|
386 |
ArcIt(const Graph& _graph, const Arc& e) : |
|
387 |
Arc(e), graph(&_graph) { } |
|
388 | 388 |
|
389 |
ArcIt& operator++() { |
|
390 |
graph->next(*this); |
|
391 |
|
|
389 |
ArcIt& operator++() { |
|
390 |
graph->next(*this); |
|
391 |
return *this; |
|
392 | 392 |
} |
393 | 393 |
|
394 | 394 |
}; |
395 | 395 |
|
396 | 396 |
|
397 |
class OutArcIt : public Arc { |
|
397 |
class OutArcIt : public Arc { |
|
398 | 398 |
const Graph* graph; |
399 | 399 |
public: |
400 | 400 |
|
401 | 401 |
OutArcIt() { } |
402 | 402 |
|
403 | 403 |
OutArcIt(Invalid i) : Arc(i) { } |
404 | 404 |
|
405 |
OutArcIt(const Graph& _graph, const Node& node) |
|
406 |
: graph(&_graph) { |
|
407 |
|
|
405 |
OutArcIt(const Graph& _graph, const Node& node) |
|
406 |
: graph(&_graph) { |
|
407 |
_graph.firstOut(*this, node); |
|
408 | 408 |
} |
409 | 409 |
|
410 |
OutArcIt(const Graph& _graph, const Arc& arc) |
|
411 |
: Arc(arc), graph(&_graph) {} |
|
410 |
OutArcIt(const Graph& _graph, const Arc& arc) |
|
411 |
: Arc(arc), graph(&_graph) {} |
|
412 | 412 |
|
413 |
OutArcIt& operator++() { |
|
414 |
graph->nextOut(*this); |
|
415 |
|
|
413 |
OutArcIt& operator++() { |
|
414 |
graph->nextOut(*this); |
|
415 |
return *this; |
|
416 | 416 |
} |
417 | 417 |
|
418 | 418 |
}; |
419 | 419 |
|
420 | 420 |
|
421 |
class InArcIt : public Arc { |
|
421 |
class InArcIt : public Arc { |
|
422 | 422 |
const Graph* graph; |
423 | 423 |
public: |
424 | 424 |
|
425 | 425 |
InArcIt() { } |
426 | 426 |
|
427 | 427 |
InArcIt(Invalid i) : Arc(i) { } |
428 | 428 |
|
429 |
InArcIt(const Graph& _graph, const Node& node) |
|
430 |
: graph(&_graph) { |
|
431 |
|
|
429 |
InArcIt(const Graph& _graph, const Node& node) |
|
430 |
: graph(&_graph) { |
|
431 |
_graph.firstIn(*this, node); |
|
432 | 432 |
} |
433 | 433 |
|
434 |
InArcIt(const Graph& _graph, const Arc& arc) : |
|
435 |
Arc(arc), graph(&_graph) {} |
|
434 |
InArcIt(const Graph& _graph, const Arc& arc) : |
|
435 |
Arc(arc), graph(&_graph) {} |
|
436 | 436 |
|
437 |
InArcIt& operator++() { |
|
438 |
graph->nextIn(*this); |
|
439 |
|
|
437 |
InArcIt& operator++() { |
|
438 |
graph->nextIn(*this); |
|
439 |
return *this; |
|
440 | 440 |
} |
441 | 441 |
|
442 | 442 |
}; |
443 | 443 |
|
444 | 444 |
|
445 |
class EdgeIt : public Parent::Edge { |
|
445 |
class EdgeIt : public Parent::Edge { |
|
446 | 446 |
const Graph* graph; |
447 | 447 |
public: |
448 | 448 |
|
449 | 449 |
EdgeIt() { } |
450 | 450 |
|
451 | 451 |
EdgeIt(Invalid i) : Edge(i) { } |
452 | 452 |
|
453 | 453 |
explicit EdgeIt(const Graph& _graph) : graph(&_graph) { |
454 |
|
|
454 |
_graph.first(static_cast<Edge&>(*this)); |
|
455 | 455 |
} |
456 | 456 |
|
457 |
EdgeIt(const Graph& _graph, const Edge& e) : |
|
458 |
Edge(e), graph(&_graph) { } |
|
457 |
EdgeIt(const Graph& _graph, const Edge& e) : |
|
458 |
Edge(e), graph(&_graph) { } |
|
459 | 459 |
|
460 |
EdgeIt& operator++() { |
|
461 |
graph->next(*this); |
|
462 |
|
|
460 |
EdgeIt& operator++() { |
|
461 |
graph->next(*this); |
|
462 |
return *this; |
|
463 | 463 |
} |
464 | 464 |
|
465 | 465 |
}; |
466 | 466 |
|
467 | 467 |
class IncEdgeIt : public Parent::Edge { |
468 | 468 |
friend class EdgeSetExtender; |
469 | 469 |
const Graph* graph; |
470 | 470 |
bool direction; |
471 | 471 |
public: |
472 | 472 |
|
473 | 473 |
IncEdgeIt() { } |
474 | 474 |
|
475 | 475 |
IncEdgeIt(Invalid i) : Edge(i), direction(false) { } |
476 | 476 |
|
477 | 477 |
IncEdgeIt(const Graph& _graph, const Node &n) : graph(&_graph) { |
478 |
|
|
478 |
_graph.firstInc(*this, direction, n); |
|
479 | 479 |
} |
480 | 480 |
|
481 | 481 |
IncEdgeIt(const Graph& _graph, const Edge &ue, const Node &n) |
482 |
: graph(&_graph), Edge(ue) { |
|
483 |
direction = (_graph.source(ue) == n); |
|
482 |
: graph(&_graph), Edge(ue) { |
|
483 |
direction = (_graph.source(ue) == n); |
|
484 | 484 |
} |
485 | 485 |
|
486 | 486 |
IncEdgeIt& operator++() { |
487 |
graph->nextInc(*this, direction); |
|
488 |
return *this; |
|
487 |
graph->nextInc(*this, direction); |
|
488 |
return *this; |
|
489 | 489 |
} |
490 | 490 |
}; |
491 | 491 |
|
492 | 492 |
// \brief Base node of the iterator |
493 | 493 |
// |
494 | 494 |
// Returns the base node (ie. the source in this case) of the iterator |
495 | 495 |
Node baseNode(const OutArcIt &e) const { |
496 | 496 |
return Parent::source(static_cast<const Arc&>(e)); |
497 | 497 |
} |
498 | 498 |
// \brief Running node of the iterator |
499 | 499 |
// |
500 | 500 |
// Returns the running node (ie. the target in this case) of the |
... | ... |
@@ -523,84 +523,84 @@ |
523 | 523 |
Node baseNode(const IncEdgeIt &e) const { |
524 | 524 |
return e.direction ? u(e) : v(e); |
525 | 525 |
} |
526 | 526 |
// Running node of the iterator |
527 | 527 |
// |
528 | 528 |
// Returns the running node of the iterator |
529 | 529 |
Node runningNode(const IncEdgeIt &e) const { |
530 | 530 |
return e.direction ? v(e) : u(e); |
531 | 531 |
} |
532 | 532 |
|
533 | 533 |
|
534 | 534 |
template <typename _Value> |
535 |
class ArcMap |
|
535 |
class ArcMap |
|
536 | 536 |
: public MapExtender<DefaultMap<Graph, Arc, _Value> > { |
537 | 537 |
typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent; |
538 | 538 |
|
539 | 539 |
public: |
540 |
explicit ArcMap(const Graph& _g) |
|
541 |
: Parent(_g) {} |
|
542 |
ArcMap(const Graph& _g, const _Value& _v) |
|
543 |
: Parent(_g, _v) {} |
|
540 |
explicit ArcMap(const Graph& _g) |
|
541 |
: Parent(_g) {} |
|
542 |
ArcMap(const Graph& _g, const _Value& _v) |
|
543 |
: Parent(_g, _v) {} |
|
544 | 544 |
|
545 | 545 |
ArcMap& operator=(const ArcMap& cmap) { |
546 |
|
|
546 |
return operator=<ArcMap>(cmap); |
|
547 | 547 |
} |
548 | 548 |
|
549 | 549 |
template <typename CMap> |
550 | 550 |
ArcMap& operator=(const CMap& cmap) { |
551 | 551 |
Parent::operator=(cmap); |
552 |
|
|
552 |
return *this; |
|
553 | 553 |
} |
554 | 554 |
|
555 | 555 |
}; |
556 | 556 |
|
557 | 557 |
|
558 | 558 |
template <typename _Value> |
559 |
class EdgeMap |
|
559 |
class EdgeMap |
|
560 | 560 |
: public MapExtender<DefaultMap<Graph, Edge, _Value> > { |
561 | 561 |
typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent; |
562 | 562 |
|
563 | 563 |
public: |
564 |
explicit EdgeMap(const Graph& _g) |
|
565 |
: Parent(_g) {} |
|
564 |
explicit EdgeMap(const Graph& _g) |
|
565 |
: Parent(_g) {} |
|
566 | 566 |
|
567 |
EdgeMap(const Graph& _g, const _Value& _v) |
|
568 |
: Parent(_g, _v) {} |
|
567 |
EdgeMap(const Graph& _g, const _Value& _v) |
|
568 |
: Parent(_g, _v) {} |
|
569 | 569 |
|
570 | 570 |
EdgeMap& operator=(const EdgeMap& cmap) { |
571 |
|
|
571 |
return operator=<EdgeMap>(cmap); |
|
572 | 572 |
} |
573 | 573 |
|
574 | 574 |
template <typename CMap> |
575 | 575 |
EdgeMap& operator=(const CMap& cmap) { |
576 | 576 |
Parent::operator=(cmap); |
577 |
|
|
577 |
return *this; |
|
578 | 578 |
} |
579 | 579 |
|
580 | 580 |
}; |
581 | 581 |
|
582 | 582 |
|
583 | 583 |
// Alteration extension |
584 | 584 |
|
585 | 585 |
Edge addEdge(const Node& from, const Node& to) { |
586 | 586 |
Edge edge = Parent::addEdge(from, to); |
587 | 587 |
notifier(Edge()).add(edge); |
588 | 588 |
std::vector<Arc> arcs; |
589 | 589 |
arcs.push_back(Parent::direct(edge, true)); |
590 | 590 |
arcs.push_back(Parent::direct(edge, false)); |
591 | 591 |
notifier(Arc()).add(arcs); |
592 | 592 |
return edge; |
593 | 593 |
} |
594 |
|
|
594 |
|
|
595 | 595 |
void clear() { |
596 | 596 |
notifier(Arc()).clear(); |
597 | 597 |
notifier(Edge()).clear(); |
598 | 598 |
Parent::clear(); |
599 | 599 |
} |
600 | 600 |
|
601 | 601 |
void erase(const Edge& edge) { |
602 | 602 |
std::vector<Arc> arcs; |
603 | 603 |
arcs.push_back(Parent::direct(edge, true)); |
604 | 604 |
arcs.push_back(Parent::direct(edge, false)); |
605 | 605 |
notifier(Arc()).erase(arcs); |
606 | 606 |
notifier(Edge()).erase(edge); |
... | ... |
@@ -608,18 +608,18 @@ |
608 | 608 |
} |
609 | 609 |
|
610 | 610 |
|
611 | 611 |
EdgeSetExtender() { |
612 | 612 |
arc_notifier.setContainer(*this); |
613 | 613 |
edge_notifier.setContainer(*this); |
614 | 614 |
} |
615 | 615 |
|
616 | 616 |
~EdgeSetExtender() { |
617 | 617 |
edge_notifier.clear(); |
618 | 618 |
arc_notifier.clear(); |
619 | 619 |
} |
620 |
|
|
620 |
|
|
621 | 621 |
}; |
622 | 622 |
|
623 | 623 |
} |
624 | 624 |
|
625 | 625 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -87,25 +87,25 @@ |
87 | 87 |
cutime=ts.tms_cutime/tck; |
88 | 88 |
cstime=ts.tms_cstime/tck; |
89 | 89 |
#endif |
90 | 90 |
} |
91 | 91 |
|
92 | 92 |
std::string getWinFormattedDate() |
93 | 93 |
{ |
94 | 94 |
std::ostringstream os; |
95 | 95 |
#ifdef WIN32 |
96 | 96 |
SYSTEMTIME time; |
97 | 97 |
GetSystemTime(&time); |
98 | 98 |
char buf1[11], buf2[9], buf3[5]; |
99 |
|
|
99 |
if (GetDateFormat(MY_LOCALE, 0, &time, |
|
100 | 100 |
("ddd MMM dd"), buf1, 11) && |
101 | 101 |
GetTimeFormat(MY_LOCALE, 0, &time, |
102 | 102 |
("HH':'mm':'ss"), buf2, 9) && |
103 | 103 |
GetDateFormat(MY_LOCALE, 0, &time, |
104 | 104 |
("yyyy"), buf3, 5)) { |
105 | 105 |
os << buf1 << ' ' << buf2 << ' ' << buf3; |
106 | 106 |
} |
107 | 107 |
else os << "unknown"; |
108 | 108 |
#else |
109 | 109 |
timeval tv; |
110 | 110 |
gettimeofday(&tv, 0); |
111 | 111 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -375,25 +375,25 @@ |
375 | 375 |
/// |
376 | 376 |
/// \brief Simplified bucket heap data structure. |
377 | 377 |
/// |
378 | 378 |
/// This class implements a simplified \e bucket \e heap data |
379 | 379 |
/// structure. It does not provide some functionality, but it is |
380 | 380 |
/// faster and simpler than BucketHeap. The main difference is |
381 | 381 |
/// that BucketHeap stores a doubly-linked list for each key while |
382 | 382 |
/// this class stores only simply-linked lists. It supports erasing |
383 | 383 |
/// only for the item having minimum priority and it does not support |
384 | 384 |
/// key increasing and decreasing. |
385 | 385 |
/// |
386 | 386 |
/// Note that this implementation does not conform to the |
387 |
/// \ref concepts::Heap "heap concept" due to the lack of some |
|
387 |
/// \ref concepts::Heap "heap concept" due to the lack of some |
|
388 | 388 |
/// functionality. |
389 | 389 |
/// |
390 | 390 |
/// \tparam IM A read-writable item map with \c int values, used |
391 | 391 |
/// internally to handle the cross references. |
392 | 392 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
393 | 393 |
/// The default is \e min-heap. If this parameter is set to \c false, |
394 | 394 |
/// then the comparison is reversed, so the top(), prio() and pop() |
395 | 395 |
/// functions deal with the item having maximum priority instead of the |
396 | 396 |
/// minimum. |
397 | 397 |
/// |
398 | 398 |
/// \sa BucketHeap |
399 | 399 |
template <typename IM, bool MIN = true > |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -124,25 +124,25 @@ |
124 | 124 |
INFEASIBLE, |
125 | 125 |
/// The problem has optimal solution (i.e. it is feasible and |
126 | 126 |
/// bounded), and the algorithm has found optimal flow and node |
127 | 127 |
/// potentials (primal and dual solutions). |
128 | 128 |
OPTIMAL, |
129 | 129 |
/// The digraph contains an arc of negative cost and infinite |
130 | 130 |
/// upper bound. It means that the objective function is unbounded |
131 | 131 |
/// on that arc, however, note that it could actually be bounded |
132 | 132 |
/// over the feasible flows, but this algroithm cannot handle |
133 | 133 |
/// these cases. |
134 | 134 |
UNBOUNDED |
135 | 135 |
}; |
136 |
|
|
136 |
|
|
137 | 137 |
private: |
138 | 138 |
|
139 | 139 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
140 | 140 |
|
141 | 141 |
typedef std::vector<int> IntVector; |
142 | 142 |
typedef std::vector<Value> ValueVector; |
143 | 143 |
typedef std::vector<Cost> CostVector; |
144 | 144 |
typedef std::vector<char> BoolVector; |
145 | 145 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
146 | 146 |
|
147 | 147 |
private: |
148 | 148 |
|
... | ... |
@@ -175,25 +175,25 @@ |
175 | 175 |
|
176 | 176 |
ValueVector _res_cap; |
177 | 177 |
CostVector _pi; |
178 | 178 |
ValueVector _excess; |
179 | 179 |
IntVector _excess_nodes; |
180 | 180 |
IntVector _deficit_nodes; |
181 | 181 |
|
182 | 182 |
Value _delta; |
183 | 183 |
int _factor; |
184 | 184 |
IntVector _pred; |
185 | 185 |
|
186 | 186 |
public: |
187 |
|
|
187 |
|
|
188 | 188 |
/// \brief Constant for infinite upper bounds (capacities). |
189 | 189 |
/// |
190 | 190 |
/// Constant for infinite upper bounds (capacities). |
191 | 191 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
192 | 192 |
/// \c std::numeric_limits<Value>::max() otherwise. |
193 | 193 |
const Value INF; |
194 | 194 |
|
195 | 195 |
private: |
196 | 196 |
|
197 | 197 |
// Special implementation of the Dijkstra algorithm for finding |
198 | 198 |
// shortest paths in the residual network of the digraph with |
199 | 199 |
// respect to the reduced arc costs and modifying the node |
... | ... |
@@ -202,28 +202,28 @@ |
202 | 202 |
{ |
203 | 203 |
private: |
204 | 204 |
|
205 | 205 |
int _node_num; |
206 | 206 |
bool _geq; |
207 | 207 |
const IntVector &_first_out; |
208 | 208 |
const IntVector &_target; |
209 | 209 |
const CostVector &_cost; |
210 | 210 |
const ValueVector &_res_cap; |
211 | 211 |
const ValueVector &_excess; |
212 | 212 |
CostVector &_pi; |
213 | 213 |
IntVector &_pred; |
214 |
|
|
214 |
|
|
215 | 215 |
IntVector _proc_nodes; |
216 | 216 |
CostVector _dist; |
217 |
|
|
217 |
|
|
218 | 218 |
public: |
219 | 219 |
|
220 | 220 |
ResidualDijkstra(CapacityScaling& cs) : |
221 | 221 |
_node_num(cs._node_num), _geq(cs._sum_supply < 0), |
222 | 222 |
_first_out(cs._first_out), _target(cs._target), _cost(cs._cost), |
223 | 223 |
_res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi), |
224 | 224 |
_pred(cs._pred), _dist(cs._node_num) |
225 | 225 |
{} |
226 | 226 |
|
227 | 227 |
int run(int s, Value delta = 1) { |
228 | 228 |
RangeMap<int> heap_cross_ref(_node_num, Heap::PRE_HEAP); |
229 | 229 |
Heap heap(heap_cross_ref); |
... | ... |
@@ -430,25 +430,25 @@ |
430 | 430 |
/// \param k The required amount of flow from node \c s to node \c t |
431 | 431 |
/// (i.e. the supply of \c s and the demand of \c t). |
432 | 432 |
/// |
433 | 433 |
/// \return <tt>(*this)</tt> |
434 | 434 |
CapacityScaling& stSupply(const Node& s, const Node& t, Value k) { |
435 | 435 |
for (int i = 0; i != _node_num; ++i) { |
436 | 436 |
_supply[i] = 0; |
437 | 437 |
} |
438 | 438 |
_supply[_node_id[s]] = k; |
439 | 439 |
_supply[_node_id[t]] = -k; |
440 | 440 |
return *this; |
441 | 441 |
} |
442 |
|
|
442 |
|
|
443 | 443 |
/// @} |
444 | 444 |
|
445 | 445 |
/// \name Execution control |
446 | 446 |
/// The algorithm can be executed using \ref run(). |
447 | 447 |
|
448 | 448 |
/// @{ |
449 | 449 |
|
450 | 450 |
/// \brief Run the algorithm. |
451 | 451 |
/// |
452 | 452 |
/// This function runs the algorithm. |
453 | 453 |
/// The paramters can be specified using functions \ref lowerMap(), |
454 | 454 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
... | ... |
@@ -566,25 +566,25 @@ |
566 | 566 |
++_node_num; |
567 | 567 |
|
568 | 568 |
_first_out.resize(_node_num + 1); |
569 | 569 |
_forward.resize(_res_arc_num); |
570 | 570 |
_source.resize(_res_arc_num); |
571 | 571 |
_target.resize(_res_arc_num); |
572 | 572 |
_reverse.resize(_res_arc_num); |
573 | 573 |
|
574 | 574 |
_lower.resize(_res_arc_num); |
575 | 575 |
_upper.resize(_res_arc_num); |
576 | 576 |
_cost.resize(_res_arc_num); |
577 | 577 |
_supply.resize(_node_num); |
578 |
|
|
578 |
|
|
579 | 579 |
_res_cap.resize(_res_arc_num); |
580 | 580 |
_pi.resize(_node_num); |
581 | 581 |
_excess.resize(_node_num); |
582 | 582 |
_pred.resize(_node_num); |
583 | 583 |
|
584 | 584 |
// Copy the graph |
585 | 585 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num - 1; |
586 | 586 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
587 | 587 |
_node_id[n] = i; |
588 | 588 |
} |
589 | 589 |
i = 0; |
590 | 590 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
... | ... |
@@ -610,25 +610,25 @@ |
610 | 610 |
_target[k] = i; |
611 | 611 |
_reverse[k] = j; |
612 | 612 |
++j; ++k; |
613 | 613 |
} |
614 | 614 |
_first_out[i] = j; |
615 | 615 |
_first_out[_node_num] = k; |
616 | 616 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
617 | 617 |
int fi = _arc_idf[a]; |
618 | 618 |
int bi = _arc_idb[a]; |
619 | 619 |
_reverse[fi] = bi; |
620 | 620 |
_reverse[bi] = fi; |
621 | 621 |
} |
622 |
|
|
622 |
|
|
623 | 623 |
// Reset parameters |
624 | 624 |
resetParams(); |
625 | 625 |
return *this; |
626 | 626 |
} |
627 | 627 |
|
628 | 628 |
/// @} |
629 | 629 |
|
630 | 630 |
/// \name Query Functions |
631 | 631 |
/// The results of the algorithm can be obtained using these |
632 | 632 |
/// functions.\n |
633 | 633 |
/// The \ref run() function must be called before using them. |
634 | 634 |
|
... | ... |
@@ -719,25 +719,25 @@ |
719 | 719 |
private: |
720 | 720 |
|
721 | 721 |
// Initialize the algorithm |
722 | 722 |
ProblemType init() { |
723 | 723 |
if (_node_num <= 1) return INFEASIBLE; |
724 | 724 |
|
725 | 725 |
// Check the sum of supply values |
726 | 726 |
_sum_supply = 0; |
727 | 727 |
for (int i = 0; i != _root; ++i) { |
728 | 728 |
_sum_supply += _supply[i]; |
729 | 729 |
} |
730 | 730 |
if (_sum_supply > 0) return INFEASIBLE; |
731 |
|
|
731 |
|
|
732 | 732 |
// Initialize vectors |
733 | 733 |
for (int i = 0; i != _root; ++i) { |
734 | 734 |
_pi[i] = 0; |
735 | 735 |
_excess[i] = _supply[i]; |
736 | 736 |
} |
737 | 737 |
|
738 | 738 |
// Remove non-zero lower bounds |
739 | 739 |
const Value MAX = std::numeric_limits<Value>::max(); |
740 | 740 |
int last_out; |
741 | 741 |
if (_have_lower) { |
742 | 742 |
for (int i = 0; i != _root; ++i) { |
743 | 743 |
last_out = _first_out[i+1]; |
... | ... |
@@ -767,25 +767,25 @@ |
767 | 767 |
last_out = _first_out[i+1] - 1; |
768 | 768 |
for (int j = _first_out[i]; j != last_out; ++j) { |
769 | 769 |
Value rc = _res_cap[j]; |
770 | 770 |
if (_cost[j] < 0 && rc > 0) { |
771 | 771 |
if (rc >= MAX) return UNBOUNDED; |
772 | 772 |
_excess[i] -= rc; |
773 | 773 |
_excess[_target[j]] += rc; |
774 | 774 |
_res_cap[j] = 0; |
775 | 775 |
_res_cap[_reverse[j]] += rc; |
776 | 776 |
} |
777 | 777 |
} |
778 | 778 |
} |
779 |
|
|
779 |
|
|
780 | 780 |
// Handle GEQ supply type |
781 | 781 |
if (_sum_supply < 0) { |
782 | 782 |
_pi[_root] = 0; |
783 | 783 |
_excess[_root] = -_sum_supply; |
784 | 784 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
785 | 785 |
int ra = _reverse[a]; |
786 | 786 |
_res_cap[a] = -_sum_supply + 1; |
787 | 787 |
_res_cap[ra] = 0; |
788 | 788 |
_cost[a] = 0; |
789 | 789 |
_cost[ra] = 0; |
790 | 790 |
} |
791 | 791 |
} else { |
... | ... |
@@ -835,27 +835,27 @@ |
835 | 835 |
if (_have_lower) { |
836 | 836 |
int limit = _first_out[_root]; |
837 | 837 |
for (int j = 0; j != limit; ++j) { |
838 | 838 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
839 | 839 |
} |
840 | 840 |
} |
841 | 841 |
|
842 | 842 |
// Shift potentials if necessary |
843 | 843 |
Cost pr = _pi[_root]; |
844 | 844 |
if (_sum_supply < 0 || pr > 0) { |
845 | 845 |
for (int i = 0; i != _node_num; ++i) { |
846 | 846 |
_pi[i] -= pr; |
847 |
} |
|
847 |
} |
|
848 | 848 |
} |
849 |
|
|
849 |
|
|
850 | 850 |
return pt; |
851 | 851 |
} |
852 | 852 |
|
853 | 853 |
// Execute the capacity scaling algorithm |
854 | 854 |
ProblemType startWithScaling() { |
855 | 855 |
// Perform capacity scaling phases |
856 | 856 |
int s, t; |
857 | 857 |
ResidualDijkstra _dijkstra(*this); |
858 | 858 |
while (true) { |
859 | 859 |
// Saturate all arcs not satisfying the optimality condition |
860 | 860 |
int last_out; |
861 | 861 |
for (int u = 0; u != _node_num; ++u) { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -112,19 +112,19 @@ |
112 | 112 |
virtual SolveExitStatus _solve(); |
113 | 113 |
virtual ProblemType _getType() const; |
114 | 114 |
virtual Value _getSol(int i) const; |
115 | 115 |
virtual Value _getSolValue() const; |
116 | 116 |
|
117 | 117 |
virtual void _clear(); |
118 | 118 |
|
119 | 119 |
virtual void _messageLevel(MessageLevel level); |
120 | 120 |
void _applyMessageLevel(); |
121 | 121 |
|
122 | 122 |
int _message_level; |
123 | 123 |
|
124 |
|
|
124 |
|
|
125 | 125 |
|
126 | 126 |
}; |
127 | 127 |
|
128 | 128 |
} |
129 | 129 |
|
130 | 130 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -50,26 +50,26 @@ |
50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
51 | 51 |
typedef LM LowerMap; |
52 | 52 |
|
53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
54 | 54 |
/// |
55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
56 | 56 |
/// on the arcs. |
57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
58 | 58 |
typedef UM UpperMap; |
59 | 59 |
|
60 | 60 |
/// \brief The type of supply map. |
61 | 61 |
/// |
62 |
/// The type of the map that stores the signed supply values of the |
|
63 |
/// nodes. |
|
62 |
/// The type of the map that stores the signed supply values of the |
|
63 |
/// nodes. |
|
64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
65 | 65 |
typedef SM SupplyMap; |
66 | 66 |
|
67 | 67 |
/// \brief The type of the flow and supply values. |
68 | 68 |
typedef typename SupplyMap::Value Value; |
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 | 75 |
#ifdef DOXYGEN |
... | ... |
@@ -132,35 +132,35 @@ |
132 | 132 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
133 | 133 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
134 | 134 |
denotes the signed supply values of the nodes. |
135 | 135 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
136 | 136 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
137 | 137 |
\f$-sup(u)\f$ demand. |
138 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$ |
139 | 139 |
solution of the following problem. |
140 | 140 |
|
141 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
142 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
143 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
144 |
|
|
144 |
|
|
145 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
146 | 146 |
zero or negative in order to have a feasible solution (since the sum |
147 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
148 | 148 |
It means that the total demand must be greater or equal to the total |
149 | 149 |
supply and all the supplies have to be carried out from the supply nodes, |
150 | 150 |
but there could be demands that are not satisfied. |
151 | 151 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
152 | 152 |
constraints have to be satisfied with equality, i.e. all demands |
153 | 153 |
have to be satisfied and all supplies have to be used. |
154 |
|
|
154 |
|
|
155 | 155 |
If you need the opposite inequalities in the supply/demand constraints |
156 | 156 |
(i.e. the total demand is less than the total supply and all the demands |
157 | 157 |
have to be satisfied while there could be supplies that are not used), |
158 | 158 |
then you could easily transform the problem to the above form by reversing |
159 | 159 |
the direction of the arcs and taking the negative of the supply values |
160 | 160 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
161 | 161 |
|
162 | 162 |
This algorithm either calculates a feasible circulation, or provides |
163 | 163 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
164 | 164 |
cannot exist. |
165 | 165 |
|
166 | 166 |
Note that this algorithm also provides a feasible solution for the |
... | ... |
@@ -328,25 +328,25 @@ |
328 | 328 |
protected: |
329 | 329 |
|
330 | 330 |
Circulation() {} |
331 | 331 |
|
332 | 332 |
public: |
333 | 333 |
|
334 | 334 |
/// Constructor. |
335 | 335 |
|
336 | 336 |
/// The constructor of the class. |
337 | 337 |
/// |
338 | 338 |
/// \param graph The digraph the algorithm runs on. |
339 | 339 |
/// \param lower The lower bounds for the flow values on the arcs. |
340 |
/// \param upper The upper bounds (capacities) for the flow values |
|
340 |
/// \param upper The upper bounds (capacities) for the flow values |
|
341 | 341 |
/// on the arcs. |
342 | 342 |
/// \param supply The signed supply values of the nodes. |
343 | 343 |
Circulation(const Digraph &graph, const LowerMap &lower, |
344 | 344 |
const UpperMap &upper, const SupplyMap &supply) |
345 | 345 |
: _g(graph), _lo(&lower), _up(&upper), _supply(&supply), |
346 | 346 |
_flow(NULL), _local_flow(false), _level(NULL), _local_level(false), |
347 | 347 |
_excess(NULL) {} |
348 | 348 |
|
349 | 349 |
/// Destructor. |
350 | 350 |
~Circulation() { |
351 | 351 |
destroyStructures(); |
352 | 352 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -129,25 +129,25 @@ |
129 | 129 |
virtual Value _getPrimalRay(int i) const; |
130 | 130 |
virtual Value _getDualRay(int i) const; |
131 | 131 |
|
132 | 132 |
virtual VarStatus _getColStatus(int i) const; |
133 | 133 |
virtual VarStatus _getRowStatus(int i) const; |
134 | 134 |
|
135 | 135 |
virtual ProblemType _getPrimalType() const; |
136 | 136 |
virtual ProblemType _getDualType() const; |
137 | 137 |
|
138 | 138 |
virtual void _clear(); |
139 | 139 |
|
140 | 140 |
virtual void _messageLevel(MessageLevel); |
141 |
|
|
141 |
|
|
142 | 142 |
public: |
143 | 143 |
|
144 | 144 |
///Solves LP with primal simplex method. |
145 | 145 |
SolveExitStatus solvePrimal(); |
146 | 146 |
|
147 | 147 |
///Solves LP with dual simplex method. |
148 | 148 |
SolveExitStatus solveDual(); |
149 | 149 |
|
150 | 150 |
///Solves LP with barrier method. |
151 | 151 |
SolveExitStatus solveBarrier(); |
152 | 152 |
|
153 | 153 |
///Returns the constraint identifier understood by CLP. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -425,25 +425,25 @@ |
425 | 425 |
/// It conforms to the ReferenceMap concept. |
426 | 426 |
template<class T> |
427 | 427 |
class NodeMap : public ReferenceMap<Node, T, T&, const T&> { |
428 | 428 |
public: |
429 | 429 |
|
430 | 430 |
/// Constructor |
431 | 431 |
explicit NodeMap(const Digraph&) { } |
432 | 432 |
/// Constructor with given initial value |
433 | 433 |
NodeMap(const Digraph&, T) { } |
434 | 434 |
|
435 | 435 |
private: |
436 | 436 |
///Copy constructor |
437 |
NodeMap(const NodeMap& nm) : |
|
437 |
NodeMap(const NodeMap& nm) : |
|
438 | 438 |
ReferenceMap<Node, T, T&, const T&>(nm) { } |
439 | 439 |
///Assignment operator |
440 | 440 |
template <typename CMap> |
441 | 441 |
NodeMap& operator=(const CMap&) { |
442 | 442 |
checkConcept<ReadMap<Node, T>, CMap>(); |
443 | 443 |
return *this; |
444 | 444 |
} |
445 | 445 |
}; |
446 | 446 |
|
447 | 447 |
/// \brief Standard graph map type for the arcs. |
448 | 448 |
/// |
449 | 449 |
/// Standard graph map type for the arcs. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -34,25 +34,25 @@ |
34 | 34 |
/// \ingroup graph_concepts |
35 | 35 |
/// |
36 | 36 |
/// \brief Class describing the concept of undirected graphs. |
37 | 37 |
/// |
38 | 38 |
/// This class describes the common interface of all undirected |
39 | 39 |
/// graphs. |
40 | 40 |
/// |
41 | 41 |
/// Like all concept classes, it only provides an interface |
42 | 42 |
/// without any sensible implementation. So any general algorithm for |
43 | 43 |
/// undirected graphs should compile with this class, but it will not |
44 | 44 |
/// run properly, of course. |
45 | 45 |
/// An actual graph implementation like \ref ListGraph or |
46 |
/// \ref SmartGraph may have additional functionality. |
|
46 |
/// \ref SmartGraph may have additional functionality. |
|
47 | 47 |
/// |
48 | 48 |
/// The undirected graphs also fulfill the concept of \ref Digraph |
49 | 49 |
/// "directed graphs", since each edge can also be regarded as two |
50 | 50 |
/// oppositely directed arcs. |
51 | 51 |
/// Undirected graphs provide an Edge type for the undirected edges and |
52 | 52 |
/// an Arc type for the directed arcs. The Arc type is convertible to |
53 | 53 |
/// Edge or inherited from it, i.e. the corresponding edge can be |
54 | 54 |
/// obtained from an arc. |
55 | 55 |
/// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt |
56 | 56 |
/// and ArcMap classes can be used for the arcs (just like in digraphs). |
57 | 57 |
/// Both InArcIt and OutArcIt iterates on the same edges but with |
58 | 58 |
/// opposite direction. IncEdgeIt also iterates on the same edges |
... | ... |
@@ -76,25 +76,25 @@ |
76 | 76 |
Graph(const Graph&) {} |
77 | 77 |
/// \brief Assignment of a graph to another one is \e not allowed. |
78 | 78 |
/// Use DigraphCopy instead. |
79 | 79 |
void operator=(const Graph&) {} |
80 | 80 |
|
81 | 81 |
public: |
82 | 82 |
/// Default constructor. |
83 | 83 |
Graph() {} |
84 | 84 |
|
85 | 85 |
/// \brief Undirected graphs should be tagged with \c UndirectedTag. |
86 | 86 |
/// |
87 | 87 |
/// Undirected graphs should be tagged with \c UndirectedTag. |
88 |
/// |
|
88 |
/// |
|
89 | 89 |
/// This tag helps the \c enable_if technics to make compile time |
90 | 90 |
/// specializations for undirected graphs. |
91 | 91 |
typedef True UndirectedTag; |
92 | 92 |
|
93 | 93 |
/// The node type of the graph |
94 | 94 |
|
95 | 95 |
/// This class identifies a node of the graph. It also serves |
96 | 96 |
/// as a base class of the node iterators, |
97 | 97 |
/// thus they convert to this type. |
98 | 98 |
class Node { |
99 | 99 |
public: |
100 | 100 |
/// Default constructor |
... | ... |
@@ -351,25 +351,25 @@ |
351 | 351 |
bool operator!=(Arc) const { return true; } |
352 | 352 |
|
353 | 353 |
/// Artificial ordering operator. |
354 | 354 |
|
355 | 355 |
/// Artificial ordering operator. |
356 | 356 |
/// |
357 | 357 |
/// \note This operator only has to define some strict ordering of |
358 | 358 |
/// the arcs; this order has nothing to do with the iteration |
359 | 359 |
/// ordering of the arcs. |
360 | 360 |
bool operator<(Arc) const { return false; } |
361 | 361 |
|
362 | 362 |
/// Converison to \c Edge |
363 |
|
|
363 |
|
|
364 | 364 |
/// Converison to \c Edge. |
365 | 365 |
/// |
366 | 366 |
operator Edge() const { return Edge(); } |
367 | 367 |
}; |
368 | 368 |
|
369 | 369 |
/// Iterator class for the arcs. |
370 | 370 |
|
371 | 371 |
/// This iterator goes through each directed arc of the graph. |
372 | 372 |
/// Its usage is quite simple, for example, you can count the number |
373 | 373 |
/// of arcs in a graph \c g of type \c %Graph as follows: |
374 | 374 |
///\code |
375 | 375 |
/// int count=0; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -29,25 +29,25 @@ |
29 | 29 |
#include <lemon/bits/alteration_notifier.h> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
namespace concepts { |
33 | 33 |
|
34 | 34 |
/// \brief Concept class for \c Node, \c Arc and \c Edge types. |
35 | 35 |
/// |
36 | 36 |
/// This class describes the concept of \c Node, \c Arc and \c Edge |
37 | 37 |
/// subtypes of digraph and graph types. |
38 | 38 |
/// |
39 | 39 |
/// \note This class is a template class so that we can use it to |
40 | 40 |
/// create graph skeleton classes. The reason for this is that \c Node |
41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
|
41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
|
42 | 42 |
/// base class. For \c Node you should instantiate it with character |
43 | 43 |
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'. |
44 | 44 |
#ifndef DOXYGEN |
45 | 45 |
template <char sel = '0'> |
46 | 46 |
#endif |
47 | 47 |
class GraphItem { |
48 | 48 |
public: |
49 | 49 |
/// \brief Default constructor. |
50 | 50 |
/// |
51 | 51 |
/// Default constructor. |
52 | 52 |
/// \warning The default constructor is not required to set |
53 | 53 |
/// the item to some well-defined value. So you should consider it |
... | ... |
@@ -80,25 +80,25 @@ |
80 | 80 |
/// |
81 | 81 |
/// Equality operator. |
82 | 82 |
bool operator==(const GraphItem&) const { return false; } |
83 | 83 |
|
84 | 84 |
/// \brief Inequality operator. |
85 | 85 |
/// |
86 | 86 |
/// Inequality operator. |
87 | 87 |
bool operator!=(const GraphItem&) const { return false; } |
88 | 88 |
|
89 | 89 |
/// \brief Ordering operator. |
90 | 90 |
/// |
91 | 91 |
/// This operator defines an ordering of the items. |
92 |
/// It makes possible to use graph item types as key types in |
|
92 |
/// It makes possible to use graph item types as key types in |
|
93 | 93 |
/// associative containers (e.g. \c std::map). |
94 | 94 |
/// |
95 | 95 |
/// \note This operator only has to define some strict ordering of |
96 | 96 |
/// the items; this order has nothing to do with the iteration |
97 | 97 |
/// ordering of the items. |
98 | 98 |
bool operator<(const GraphItem&) const { return false; } |
99 | 99 |
|
100 | 100 |
template<typename _GraphItem> |
101 | 101 |
struct Constraints { |
102 | 102 |
void constraints() { |
103 | 103 |
_GraphItem i1; |
104 | 104 |
i1=INVALID; |
... | ... |
@@ -113,25 +113,25 @@ |
113 | 113 |
b = (ia < ib); |
114 | 114 |
} |
115 | 115 |
|
116 | 116 |
const _GraphItem &ia; |
117 | 117 |
const _GraphItem &ib; |
118 | 118 |
}; |
119 | 119 |
}; |
120 | 120 |
|
121 | 121 |
/// \brief Base skeleton class for directed graphs. |
122 | 122 |
/// |
123 | 123 |
/// This class describes the base interface of directed graph types. |
124 | 124 |
/// All digraph %concepts have to conform to this class. |
125 |
/// It just provides types for nodes and arcs and functions |
|
125 |
/// It just provides types for nodes and arcs and functions |
|
126 | 126 |
/// to get the source and the target nodes of arcs. |
127 | 127 |
class BaseDigraphComponent { |
128 | 128 |
public: |
129 | 129 |
|
130 | 130 |
typedef BaseDigraphComponent Digraph; |
131 | 131 |
|
132 | 132 |
/// \brief Node class of the digraph. |
133 | 133 |
/// |
134 | 134 |
/// This class represents the nodes of the digraph. |
135 | 135 |
typedef GraphItem<'n'> Node; |
136 | 136 |
|
137 | 137 |
/// \brief Arc class of the digraph. |
... | ... |
@@ -417,25 +417,25 @@ |
417 | 417 |
ueid = graph.id(edge); |
418 | 418 |
edge = graph.edgeFromId(ueid); |
419 | 419 |
ueid = graph.maxEdgeId(); |
420 | 420 |
ignore_unused_variable_warning(ueid); |
421 | 421 |
} |
422 | 422 |
|
423 | 423 |
const _Graph& graph; |
424 | 424 |
}; |
425 | 425 |
}; |
426 | 426 |
|
427 | 427 |
/// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types. |
428 | 428 |
/// |
429 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
|
429 |
/// This class describes the concept of \c NodeIt, \c ArcIt and |
|
430 | 430 |
/// \c EdgeIt subtypes of digraph and graph types. |
431 | 431 |
template <typename GR, typename Item> |
432 | 432 |
class GraphItemIt : public Item { |
433 | 433 |
public: |
434 | 434 |
/// \brief Default constructor. |
435 | 435 |
/// |
436 | 436 |
/// Default constructor. |
437 | 437 |
/// \warning The default constructor is not required to set |
438 | 438 |
/// the iterator to some well-defined value. So you should consider it |
439 | 439 |
/// as uninitialized. |
440 | 440 |
GraphItemIt() {} |
441 | 441 |
|
... | ... |
@@ -457,25 +457,25 @@ |
457 | 457 |
GraphItemIt(Invalid) {} |
458 | 458 |
|
459 | 459 |
/// \brief Assignment operator. |
460 | 460 |
/// |
461 | 461 |
/// Assignment operator for the iterator. |
462 | 462 |
GraphItemIt& operator=(const GraphItemIt&) { return *this; } |
463 | 463 |
|
464 | 464 |
/// \brief Increment the iterator. |
465 | 465 |
/// |
466 | 466 |
/// This operator increments the iterator, i.e. assigns it to the |
467 | 467 |
/// next item. |
468 | 468 |
GraphItemIt& operator++() { return *this; } |
469 |
|
|
469 |
|
|
470 | 470 |
/// \brief Equality operator |
471 | 471 |
/// |
472 | 472 |
/// Equality operator. |
473 | 473 |
/// Two iterators are equal if and only if they point to the |
474 | 474 |
/// same object or both are invalid. |
475 | 475 |
bool operator==(const GraphItemIt&) const { return true;} |
476 | 476 |
|
477 | 477 |
/// \brief Inequality operator |
478 | 478 |
/// |
479 | 479 |
/// Inequality operator. |
480 | 480 |
/// Two iterators are equal if and only if they point to the |
481 | 481 |
/// same object or both are invalid. |
... | ... |
@@ -492,57 +492,57 @@ |
492 | 492 |
|
493 | 493 |
it2 = ++it1; |
494 | 494 |
++it2 = it1; |
495 | 495 |
++(++it1); |
496 | 496 |
|
497 | 497 |
Item bi = it1; |
498 | 498 |
bi = it2; |
499 | 499 |
} |
500 | 500 |
const GR& g; |
501 | 501 |
}; |
502 | 502 |
}; |
503 | 503 |
|
504 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
|
504 |
/// \brief Concept class for \c InArcIt, \c OutArcIt and |
|
505 | 505 |
/// \c IncEdgeIt types. |
506 | 506 |
/// |
507 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
|
507 |
/// This class describes the concept of \c InArcIt, \c OutArcIt |
|
508 | 508 |
/// and \c IncEdgeIt subtypes of digraph and graph types. |
509 | 509 |
/// |
510 | 510 |
/// \note Since these iterator classes do not inherit from the same |
511 | 511 |
/// base class, there is an additional template parameter (selector) |
512 |
/// \c sel. For \c InArcIt you should instantiate it with character |
|
512 |
/// \c sel. For \c InArcIt you should instantiate it with character |
|
513 | 513 |
/// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'. |
514 | 514 |
template <typename GR, |
515 | 515 |
typename Item = typename GR::Arc, |
516 | 516 |
typename Base = typename GR::Node, |
517 | 517 |
char sel = '0'> |
518 | 518 |
class GraphIncIt : public Item { |
519 | 519 |
public: |
520 | 520 |
/// \brief Default constructor. |
521 | 521 |
/// |
522 | 522 |
/// Default constructor. |
523 | 523 |
/// \warning The default constructor is not required to set |
524 | 524 |
/// the iterator to some well-defined value. So you should consider it |
525 | 525 |
/// as uninitialized. |
526 | 526 |
GraphIncIt() {} |
527 | 527 |
|
528 | 528 |
/// \brief Copy constructor. |
529 | 529 |
/// |
530 | 530 |
/// Copy constructor. |
531 | 531 |
GraphIncIt(const GraphIncIt& it) : Item(it) {} |
532 | 532 |
|
533 |
/// \brief Constructor that sets the iterator to the first |
|
533 |
/// \brief Constructor that sets the iterator to the first |
|
534 | 534 |
/// incoming or outgoing arc. |
535 | 535 |
/// |
536 |
/// Constructor that sets the iterator to the first arc |
|
536 |
/// Constructor that sets the iterator to the first arc |
|
537 | 537 |
/// incoming to or outgoing from the given node. |
538 | 538 |
explicit GraphIncIt(const GR&, const Base&) {} |
539 | 539 |
|
540 | 540 |
/// \brief Constructor for conversion from \c INVALID. |
541 | 541 |
/// |
542 | 542 |
/// Constructor for conversion from \c INVALID. |
543 | 543 |
/// It initializes the iterator to be invalid. |
544 | 544 |
/// \sa Invalid for more details. |
545 | 545 |
GraphIncIt(Invalid) {} |
546 | 546 |
|
547 | 547 |
/// \brief Assignment operator. |
548 | 548 |
/// |
... | ... |
@@ -795,34 +795,34 @@ |
795 | 795 |
/// \brief Return the first edge. |
796 | 796 |
/// |
797 | 797 |
/// This function gives back the first edge in the iteration order. |
798 | 798 |
void first(Edge&) const {} |
799 | 799 |
|
800 | 800 |
/// \brief Return the next edge. |
801 | 801 |
/// |
802 | 802 |
/// This function gives back the next edge in the iteration order. |
803 | 803 |
void next(Edge&) const {} |
804 | 804 |
|
805 | 805 |
/// \brief Return the first edge incident to the given node. |
806 | 806 |
/// |
807 |
/// This function gives back the first edge incident to the given |
|
807 |
/// This function gives back the first edge incident to the given |
|
808 | 808 |
/// node. The bool parameter gives back the direction for which the |
809 |
/// source node of the directed arc representing the edge is the |
|
809 |
/// source node of the directed arc representing the edge is the |
|
810 | 810 |
/// given node. |
811 | 811 |
void firstInc(Edge&, bool&, const Node&) const {} |
812 | 812 |
|
813 | 813 |
/// \brief Gives back the next of the edges from the |
814 | 814 |
/// given node. |
815 | 815 |
/// |
816 |
/// This function gives back the next edge incident to the given |
|
816 |
/// This function gives back the next edge incident to the given |
|
817 | 817 |
/// node. The bool parameter should be used as \c firstInc() use it. |
818 | 818 |
void nextInc(Edge&, bool&) const {} |
819 | 819 |
|
820 | 820 |
using IterableDigraphComponent<Base>::baseNode; |
821 | 821 |
using IterableDigraphComponent<Base>::runningNode; |
822 | 822 |
|
823 | 823 |
/// @} |
824 | 824 |
|
825 | 825 |
/// \name Class Based Iteration |
826 | 826 |
/// |
827 | 827 |
/// This interface provides iterator classes for edges. |
828 | 828 |
/// |
... | ... |
@@ -981,25 +981,25 @@ |
981 | 981 |
typename _Graph::EdgeNotifier& uen |
982 | 982 |
= graph.notifier(typename _Graph::Edge()); |
983 | 983 |
ignore_unused_variable_warning(uen); |
984 | 984 |
} |
985 | 985 |
|
986 | 986 |
const _Graph& graph; |
987 | 987 |
}; |
988 | 988 |
}; |
989 | 989 |
|
990 | 990 |
/// \brief Concept class for standard graph maps. |
991 | 991 |
/// |
992 | 992 |
/// This class describes the concept of standard graph maps, i.e. |
993 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
|
993 |
/// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and |
|
994 | 994 |
/// graph types, which can be used for associating data to graph items. |
995 | 995 |
/// The standard graph maps must conform to the ReferenceMap concept. |
996 | 996 |
template <typename GR, typename K, typename V> |
997 | 997 |
class GraphMap : public ReferenceMap<K, V, V&, const V&> { |
998 | 998 |
typedef ReferenceMap<K, V, V&, const V&> Parent; |
999 | 999 |
|
1000 | 1000 |
public: |
1001 | 1001 |
|
1002 | 1002 |
/// The key type of the map. |
1003 | 1003 |
typedef K Key; |
1004 | 1004 |
/// The value type of the map. |
1005 | 1005 |
typedef V Value; |
... | ... |
@@ -1036,48 +1036,48 @@ |
1036 | 1036 |
checkConcept<ReadMap<Key, Value>, CMap>(); |
1037 | 1037 |
return *this; |
1038 | 1038 |
} |
1039 | 1039 |
|
1040 | 1040 |
public: |
1041 | 1041 |
template<typename _Map> |
1042 | 1042 |
struct Constraints { |
1043 | 1043 |
void constraints() { |
1044 | 1044 |
checkConcept |
1045 | 1045 |
<ReferenceMap<Key, Value, Value&, const Value&>, _Map>(); |
1046 | 1046 |
_Map m1(g); |
1047 | 1047 |
_Map m2(g,t); |
1048 |
|
|
1048 |
|
|
1049 | 1049 |
// Copy constructor |
1050 | 1050 |
// _Map m3(m); |
1051 | 1051 |
|
1052 | 1052 |
// Assignment operator |
1053 | 1053 |
// ReadMap<Key, Value> cmap; |
1054 | 1054 |
// m3 = cmap; |
1055 | 1055 |
|
1056 | 1056 |
ignore_unused_variable_warning(m1); |
1057 | 1057 |
ignore_unused_variable_warning(m2); |
1058 | 1058 |
// ignore_unused_variable_warning(m3); |
1059 | 1059 |
} |
1060 | 1060 |
|
1061 | 1061 |
const _Map &m; |
1062 | 1062 |
const GR &g; |
1063 | 1063 |
const typename GraphMap::Value &t; |
1064 | 1064 |
}; |
1065 | 1065 |
|
1066 | 1066 |
}; |
1067 | 1067 |
|
1068 | 1068 |
/// \brief Skeleton class for mappable directed graphs. |
1069 | 1069 |
/// |
1070 | 1070 |
/// This class describes the interface of mappable directed graphs. |
1071 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
|
1071 |
/// It extends \ref BaseDigraphComponent with the standard digraph |
|
1072 | 1072 |
/// map classes, namely \c NodeMap and \c ArcMap. |
1073 | 1073 |
/// This concept is part of the Digraph concept. |
1074 | 1074 |
template <typename BAS = BaseDigraphComponent> |
1075 | 1075 |
class MappableDigraphComponent : public BAS { |
1076 | 1076 |
public: |
1077 | 1077 |
|
1078 | 1078 |
typedef BAS Base; |
1079 | 1079 |
typedef typename Base::Node Node; |
1080 | 1080 |
typedef typename Base::Arc Arc; |
1081 | 1081 |
|
1082 | 1082 |
typedef MappableDigraphComponent Digraph; |
1083 | 1083 |
|
... | ... |
@@ -1196,25 +1196,25 @@ |
1196 | 1196 |
checkConcept<GraphMap<_Digraph, typename _Digraph::Arc, Dummy>, |
1197 | 1197 |
DummyArcMap >(); |
1198 | 1198 |
} |
1199 | 1199 |
} |
1200 | 1200 |
|
1201 | 1201 |
const _Digraph& digraph; |
1202 | 1202 |
}; |
1203 | 1203 |
}; |
1204 | 1204 |
|
1205 | 1205 |
/// \brief Skeleton class for mappable undirected graphs. |
1206 | 1206 |
/// |
1207 | 1207 |
/// This class describes the interface of mappable undirected graphs. |
1208 |
/// It extends \ref MappableDigraphComponent with the standard graph |
|
1208 |
/// It extends \ref MappableDigraphComponent with the standard graph |
|
1209 | 1209 |
/// map class for edges (\c EdgeMap). |
1210 | 1210 |
/// This concept is part of the Graph concept. |
1211 | 1211 |
template <typename BAS = BaseGraphComponent> |
1212 | 1212 |
class MappableGraphComponent : public MappableDigraphComponent<BAS> { |
1213 | 1213 |
public: |
1214 | 1214 |
|
1215 | 1215 |
typedef BAS Base; |
1216 | 1216 |
typedef typename Base::Edge Edge; |
1217 | 1217 |
|
1218 | 1218 |
typedef MappableGraphComponent Graph; |
1219 | 1219 |
|
1220 | 1220 |
/// \brief Standard graph map for the edges. |
... | ... |
@@ -1281,25 +1281,25 @@ |
1281 | 1281 |
checkConcept<GraphMap<_Graph, typename _Graph::Edge, Dummy>, |
1282 | 1282 |
DummyEdgeMap >(); |
1283 | 1283 |
} |
1284 | 1284 |
} |
1285 | 1285 |
|
1286 | 1286 |
const _Graph& graph; |
1287 | 1287 |
}; |
1288 | 1288 |
}; |
1289 | 1289 |
|
1290 | 1290 |
/// \brief Skeleton class for extendable directed graphs. |
1291 | 1291 |
/// |
1292 | 1292 |
/// This class describes the interface of extendable directed graphs. |
1293 |
/// It extends \ref BaseDigraphComponent with functions for adding |
|
1293 |
/// It extends \ref BaseDigraphComponent with functions for adding |
|
1294 | 1294 |
/// nodes and arcs to the digraph. |
1295 | 1295 |
/// This concept requires \ref AlterableDigraphComponent. |
1296 | 1296 |
template <typename BAS = BaseDigraphComponent> |
1297 | 1297 |
class ExtendableDigraphComponent : public BAS { |
1298 | 1298 |
public: |
1299 | 1299 |
typedef BAS Base; |
1300 | 1300 |
|
1301 | 1301 |
typedef typename Base::Node Node; |
1302 | 1302 |
typedef typename Base::Arc Arc; |
1303 | 1303 |
|
1304 | 1304 |
/// \brief Add a new node to the digraph. |
1305 | 1305 |
/// |
... | ... |
@@ -1325,25 +1325,25 @@ |
1325 | 1325 |
node_b = digraph.addNode(); |
1326 | 1326 |
typename _Digraph::Arc arc; |
1327 | 1327 |
arc = digraph.addArc(node_a, node_b); |
1328 | 1328 |
} |
1329 | 1329 |
|
1330 | 1330 |
_Digraph& digraph; |
1331 | 1331 |
}; |
1332 | 1332 |
}; |
1333 | 1333 |
|
1334 | 1334 |
/// \brief Skeleton class for extendable undirected graphs. |
1335 | 1335 |
/// |
1336 | 1336 |
/// This class describes the interface of extendable undirected graphs. |
1337 |
/// It extends \ref BaseGraphComponent with functions for adding |
|
1337 |
/// It extends \ref BaseGraphComponent with functions for adding |
|
1338 | 1338 |
/// nodes and edges to the graph. |
1339 | 1339 |
/// This concept requires \ref AlterableGraphComponent. |
1340 | 1340 |
template <typename BAS = BaseGraphComponent> |
1341 | 1341 |
class ExtendableGraphComponent : public BAS { |
1342 | 1342 |
public: |
1343 | 1343 |
|
1344 | 1344 |
typedef BAS Base; |
1345 | 1345 |
typedef typename Base::Node Node; |
1346 | 1346 |
typedef typename Base::Edge Edge; |
1347 | 1347 |
|
1348 | 1348 |
/// \brief Add a new node to the digraph. |
1349 | 1349 |
/// |
... | ... |
@@ -1369,38 +1369,38 @@ |
1369 | 1369 |
node_b = graph.addNode(); |
1370 | 1370 |
typename _Graph::Edge edge; |
1371 | 1371 |
edge = graph.addEdge(node_a, node_b); |
1372 | 1372 |
} |
1373 | 1373 |
|
1374 | 1374 |
_Graph& graph; |
1375 | 1375 |
}; |
1376 | 1376 |
}; |
1377 | 1377 |
|
1378 | 1378 |
/// \brief Skeleton class for erasable directed graphs. |
1379 | 1379 |
/// |
1380 | 1380 |
/// This class describes the interface of erasable directed graphs. |
1381 |
/// It extends \ref BaseDigraphComponent with functions for removing |
|
1381 |
/// It extends \ref BaseDigraphComponent with functions for removing |
|
1382 | 1382 |
/// nodes and arcs from the digraph. |
1383 | 1383 |
/// This concept requires \ref AlterableDigraphComponent. |
1384 | 1384 |
template <typename BAS = BaseDigraphComponent> |
1385 | 1385 |
class ErasableDigraphComponent : public BAS { |
1386 | 1386 |
public: |
1387 | 1387 |
|
1388 | 1388 |
typedef BAS Base; |
1389 | 1389 |
typedef typename Base::Node Node; |
1390 | 1390 |
typedef typename Base::Arc Arc; |
1391 | 1391 |
|
1392 | 1392 |
/// \brief Erase a node from the digraph. |
1393 | 1393 |
/// |
1394 |
/// This function erases the given node from the digraph and all arcs |
|
1394 |
/// This function erases the given node from the digraph and all arcs |
|
1395 | 1395 |
/// connected to the node. |
1396 | 1396 |
void erase(const Node&) {} |
1397 | 1397 |
|
1398 | 1398 |
/// \brief Erase an arc from the digraph. |
1399 | 1399 |
/// |
1400 | 1400 |
/// This function erases the given arc from the digraph. |
1401 | 1401 |
void erase(const Arc&) {} |
1402 | 1402 |
|
1403 | 1403 |
template <typename _Digraph> |
1404 | 1404 |
struct Constraints { |
1405 | 1405 |
void constraints() { |
1406 | 1406 |
checkConcept<Base, _Digraph>(); |
... | ... |
@@ -1408,25 +1408,25 @@ |
1408 | 1408 |
digraph.erase(node); |
1409 | 1409 |
const typename _Digraph::Arc arc(INVALID); |
1410 | 1410 |
digraph.erase(arc); |
1411 | 1411 |
} |
1412 | 1412 |
|
1413 | 1413 |
_Digraph& digraph; |
1414 | 1414 |
}; |
1415 | 1415 |
}; |
1416 | 1416 |
|
1417 | 1417 |
/// \brief Skeleton class for erasable undirected graphs. |
1418 | 1418 |
/// |
1419 | 1419 |
/// This class describes the interface of erasable undirected graphs. |
1420 |
/// It extends \ref BaseGraphComponent with functions for removing |
|
1420 |
/// It extends \ref BaseGraphComponent with functions for removing |
|
1421 | 1421 |
/// nodes and edges from the graph. |
1422 | 1422 |
/// This concept requires \ref AlterableGraphComponent. |
1423 | 1423 |
template <typename BAS = BaseGraphComponent> |
1424 | 1424 |
class ErasableGraphComponent : public BAS { |
1425 | 1425 |
public: |
1426 | 1426 |
|
1427 | 1427 |
typedef BAS Base; |
1428 | 1428 |
typedef typename Base::Node Node; |
1429 | 1429 |
typedef typename Base::Edge Edge; |
1430 | 1430 |
|
1431 | 1431 |
/// \brief Erase a node from the graph. |
1432 | 1432 |
/// |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -83,39 +83,39 @@ |
83 | 83 |
|
84 | 84 |
/// \brief Constructor. |
85 | 85 |
/// |
86 | 86 |
/// Constructor. |
87 | 87 |
/// \param map A map that assigns \c int values to keys of type |
88 | 88 |
/// \c Item. It is used internally by the heap implementations to |
89 | 89 |
/// handle the cross references. The assigned value must be |
90 | 90 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
91 | 91 |
#ifdef DOXYGEN |
92 | 92 |
explicit Heap(ItemIntMap &map) {} |
93 | 93 |
#else |
94 | 94 |
explicit Heap(ItemIntMap&) {} |
95 |
#endif |
|
95 |
#endif |
|
96 | 96 |
|
97 | 97 |
/// \brief Constructor. |
98 | 98 |
/// |
99 | 99 |
/// Constructor. |
100 | 100 |
/// \param map A map that assigns \c int values to keys of type |
101 | 101 |
/// \c Item. It is used internally by the heap implementations to |
102 | 102 |
/// handle the cross references. The assigned value must be |
103 | 103 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
104 | 104 |
/// \param comp The function object used for comparing the priorities. |
105 | 105 |
#ifdef DOXYGEN |
106 | 106 |
explicit Heap(ItemIntMap &map, const CMP &comp) {} |
107 | 107 |
#else |
108 | 108 |
explicit Heap(ItemIntMap&, const CMP&) {} |
109 |
#endif |
|
109 |
#endif |
|
110 | 110 |
|
111 | 111 |
/// \brief The number of items stored in the heap. |
112 | 112 |
/// |
113 | 113 |
/// This function returns the number of items stored in the heap. |
114 | 114 |
int size() const { return 0; } |
115 | 115 |
|
116 | 116 |
/// \brief Check if the heap is empty. |
117 | 117 |
/// |
118 | 118 |
/// This function returns \c true if the heap is empty. |
119 | 119 |
bool empty() const { return false; } |
120 | 120 |
|
121 | 121 |
/// \brief Make the heap empty. |
... | ... |
@@ -129,25 +129,25 @@ |
129 | 129 |
|
130 | 130 |
/// \brief Insert an item into the heap with the given priority. |
131 | 131 |
/// |
132 | 132 |
/// This function inserts the given item into the heap with the |
133 | 133 |
/// given priority. |
134 | 134 |
/// \param i The item to insert. |
135 | 135 |
/// \param p The priority of the item. |
136 | 136 |
/// \pre \e i must not be stored in the heap. |
137 | 137 |
#ifdef DOXYGEN |
138 | 138 |
void push(const Item &i, const Prio &p) {} |
139 | 139 |
#else |
140 | 140 |
void push(const Item&, const Prio&) {} |
141 |
#endif |
|
141 |
#endif |
|
142 | 142 |
|
143 | 143 |
/// \brief Return the item having minimum priority. |
144 | 144 |
/// |
145 | 145 |
/// This function returns the item having minimum priority. |
146 | 146 |
/// \pre The heap must be non-empty. |
147 | 147 |
Item top() const { return Item(); } |
148 | 148 |
|
149 | 149 |
/// \brief The minimum priority. |
150 | 150 |
/// |
151 | 151 |
/// This function returns the minimum priority. |
152 | 152 |
/// \pre The heap must be non-empty. |
153 | 153 |
Prio prio() const { return Prio(); } |
... | ... |
@@ -159,102 +159,102 @@ |
159 | 159 |
void pop() {} |
160 | 160 |
|
161 | 161 |
/// \brief Remove the given item from the heap. |
162 | 162 |
/// |
163 | 163 |
/// This function removes the given item from the heap if it is |
164 | 164 |
/// already stored. |
165 | 165 |
/// \param i The item to delete. |
166 | 166 |
/// \pre \e i must be in the heap. |
167 | 167 |
#ifdef DOXYGEN |
168 | 168 |
void erase(const Item &i) {} |
169 | 169 |
#else |
170 | 170 |
void erase(const Item&) {} |
171 |
#endif |
|
171 |
#endif |
|
172 | 172 |
|
173 | 173 |
/// \brief The priority of the given item. |
174 | 174 |
/// |
175 | 175 |
/// This function returns the priority of the given item. |
176 | 176 |
/// \param i The item. |
177 | 177 |
/// \pre \e i must be in the heap. |
178 | 178 |
#ifdef DOXYGEN |
179 | 179 |
Prio operator[](const Item &i) const {} |
180 | 180 |
#else |
181 | 181 |
Prio operator[](const Item&) const { return Prio(); } |
182 |
#endif |
|
182 |
#endif |
|
183 | 183 |
|
184 | 184 |
/// \brief Set the priority of an item or insert it, if it is |
185 | 185 |
/// not stored in the heap. |
186 | 186 |
/// |
187 | 187 |
/// This method sets the priority of the given item if it is |
188 | 188 |
/// already stored in the heap. Otherwise it inserts the given |
189 | 189 |
/// item into the heap with the given priority. |
190 | 190 |
/// |
191 | 191 |
/// \param i The item. |
192 | 192 |
/// \param p The priority. |
193 | 193 |
#ifdef DOXYGEN |
194 | 194 |
void set(const Item &i, const Prio &p) {} |
195 | 195 |
#else |
196 | 196 |
void set(const Item&, const Prio&) {} |
197 |
#endif |
|
197 |
#endif |
|
198 | 198 |
|
199 | 199 |
/// \brief Decrease the priority of an item to the given value. |
200 | 200 |
/// |
201 | 201 |
/// This function decreases the priority of an item to the given value. |
202 | 202 |
/// \param i The item. |
203 | 203 |
/// \param p The priority. |
204 | 204 |
/// \pre \e i must be stored in the heap with priority at least \e p. |
205 | 205 |
#ifdef DOXYGEN |
206 | 206 |
void decrease(const Item &i, const Prio &p) {} |
207 | 207 |
#else |
208 | 208 |
void decrease(const Item&, const Prio&) {} |
209 |
#endif |
|
209 |
#endif |
|
210 | 210 |
|
211 | 211 |
/// \brief Increase the priority of an item to the given value. |
212 | 212 |
/// |
213 | 213 |
/// This function increases the priority of an item to the given value. |
214 | 214 |
/// \param i The item. |
215 | 215 |
/// \param p The priority. |
216 | 216 |
/// \pre \e i must be stored in the heap with priority at most \e p. |
217 | 217 |
#ifdef DOXYGEN |
218 | 218 |
void increase(const Item &i, const Prio &p) {} |
219 | 219 |
#else |
220 | 220 |
void increase(const Item&, const Prio&) {} |
221 |
#endif |
|
221 |
#endif |
|
222 | 222 |
|
223 | 223 |
/// \brief Return the state of an item. |
224 | 224 |
/// |
225 | 225 |
/// This method returns \c PRE_HEAP if the given item has never |
226 | 226 |
/// been in the heap, \c IN_HEAP if it is in the heap at the moment, |
227 | 227 |
/// and \c POST_HEAP otherwise. |
228 | 228 |
/// In the latter case it is possible that the item will get back |
229 | 229 |
/// to the heap again. |
230 | 230 |
/// \param i The item. |
231 | 231 |
#ifdef DOXYGEN |
232 | 232 |
State state(const Item &i) const {} |
233 | 233 |
#else |
234 | 234 |
State state(const Item&) const { return PRE_HEAP; } |
235 |
#endif |
|
235 |
#endif |
|
236 | 236 |
|
237 | 237 |
/// \brief Set the state of an item in the heap. |
238 | 238 |
/// |
239 | 239 |
/// This function sets the state of the given item in the heap. |
240 | 240 |
/// It can be used to manually clear the heap when it is important |
241 | 241 |
/// to achive better time complexity. |
242 | 242 |
/// \param i The item. |
243 | 243 |
/// \param st The state. It should not be \c IN_HEAP. |
244 | 244 |
#ifdef DOXYGEN |
245 | 245 |
void state(const Item& i, State st) {} |
246 | 246 |
#else |
247 | 247 |
void state(const Item&, State) {} |
248 |
#endif |
|
248 |
#endif |
|
249 | 249 |
|
250 | 250 |
|
251 | 251 |
template <typename _Heap> |
252 | 252 |
struct Constraints { |
253 | 253 |
public: |
254 | 254 |
void constraints() { |
255 | 255 |
typedef typename _Heap::Item OwnItem; |
256 | 256 |
typedef typename _Heap::Prio OwnPrio; |
257 | 257 |
typedef typename _Heap::State OwnState; |
258 | 258 |
|
259 | 259 |
Item item; |
260 | 260 |
Prio prio; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -249,25 +249,25 @@ |
249 | 249 |
|
250 | 250 |
|
251 | 251 |
/// \ingroup graph_properties |
252 | 252 |
/// |
253 | 253 |
/// \brief Check whether a directed graph is strongly connected. |
254 | 254 |
/// |
255 | 255 |
/// This function checks whether the given directed graph is strongly |
256 | 256 |
/// connected, i.e. any two nodes of the digraph are |
257 | 257 |
/// connected with directed paths in both direction. |
258 | 258 |
/// |
259 | 259 |
/// \return \c true if the digraph is strongly connected. |
260 | 260 |
/// \note By definition, the empty digraph is strongly connected. |
261 |
/// |
|
261 |
/// |
|
262 | 262 |
/// \see countStronglyConnectedComponents(), stronglyConnectedComponents() |
263 | 263 |
/// \see connected() |
264 | 264 |
template <typename Digraph> |
265 | 265 |
bool stronglyConnected(const Digraph& digraph) { |
266 | 266 |
checkConcept<concepts::Digraph, Digraph>(); |
267 | 267 |
|
268 | 268 |
typedef typename Digraph::Node Node; |
269 | 269 |
typedef typename Digraph::NodeIt NodeIt; |
270 | 270 |
|
271 | 271 |
typename Digraph::Node source = NodeIt(digraph); |
272 | 272 |
if (source == INVALID) return true; |
273 | 273 |
|
... | ... |
@@ -301,25 +301,25 @@ |
301 | 301 |
|
302 | 302 |
for (RNodeIt it(rdigraph); it != INVALID; ++it) { |
303 | 303 |
if (!rdfs.reached(it)) { |
304 | 304 |
return false; |
305 | 305 |
} |
306 | 306 |
} |
307 | 307 |
|
308 | 308 |
return true; |
309 | 309 |
} |
310 | 310 |
|
311 | 311 |
/// \ingroup graph_properties |
312 | 312 |
/// |
313 |
/// \brief Count the number of strongly connected components of a |
|
313 |
/// \brief Count the number of strongly connected components of a |
|
314 | 314 |
/// directed graph |
315 | 315 |
/// |
316 | 316 |
/// This function counts the number of strongly connected components of |
317 | 317 |
/// the given directed graph. |
318 | 318 |
/// |
319 | 319 |
/// The strongly connected components are the classes of an |
320 | 320 |
/// equivalence relation on the nodes of a digraph. Two nodes are in |
321 | 321 |
/// the same class if they are connected with directed paths in both |
322 | 322 |
/// direction. |
323 | 323 |
/// |
324 | 324 |
/// \return The number of strongly connected components. |
325 | 325 |
/// \note By definition, the empty digraph has zero |
... | ... |
@@ -735,39 +735,39 @@ |
735 | 735 |
bool rootCut; |
736 | 736 |
}; |
737 | 737 |
|
738 | 738 |
} |
739 | 739 |
|
740 | 740 |
template <typename Graph> |
741 | 741 |
int countBiNodeConnectedComponents(const Graph& graph); |
742 | 742 |
|
743 | 743 |
/// \ingroup graph_properties |
744 | 744 |
/// |
745 | 745 |
/// \brief Check whether an undirected graph is bi-node-connected. |
746 | 746 |
/// |
747 |
/// This function checks whether the given undirected graph is |
|
747 |
/// This function checks whether the given undirected graph is |
|
748 | 748 |
/// bi-node-connected, i.e. any two edges are on same circle. |
749 | 749 |
/// |
750 | 750 |
/// \return \c true if the graph bi-node-connected. |
751 | 751 |
/// \note By definition, the empty graph is bi-node-connected. |
752 | 752 |
/// |
753 | 753 |
/// \see countBiNodeConnectedComponents(), biNodeConnectedComponents() |
754 | 754 |
template <typename Graph> |
755 | 755 |
bool biNodeConnected(const Graph& graph) { |
756 | 756 |
return countBiNodeConnectedComponents(graph) <= 1; |
757 | 757 |
} |
758 | 758 |
|
759 | 759 |
/// \ingroup graph_properties |
760 | 760 |
/// |
761 |
/// \brief Count the number of bi-node-connected components of an |
|
761 |
/// \brief Count the number of bi-node-connected components of an |
|
762 | 762 |
/// undirected graph. |
763 | 763 |
/// |
764 | 764 |
/// This function counts the number of bi-node-connected components of |
765 | 765 |
/// the given undirected graph. |
766 | 766 |
/// |
767 | 767 |
/// The bi-node-connected components are the classes of an equivalence |
768 | 768 |
/// relation on the edges of a undirected graph. Two edges are in the |
769 | 769 |
/// same class if they are on same circle. |
770 | 770 |
/// |
771 | 771 |
/// \return The number of bi-node-connected components. |
772 | 772 |
/// |
773 | 773 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
... | ... |
@@ -803,25 +803,25 @@ |
803 | 803 |
/// undirected graph. |
804 | 804 |
/// |
805 | 805 |
/// The bi-node-connected components are the classes of an equivalence |
806 | 806 |
/// relation on the edges of a undirected graph. Two edges are in the |
807 | 807 |
/// same class if they are on same circle. |
808 | 808 |
/// |
809 | 809 |
/// \image html node_biconnected_components.png |
810 | 810 |
/// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth |
811 | 811 |
/// |
812 | 812 |
/// \param graph The undirected graph. |
813 | 813 |
/// \retval compMap A writable edge map. The values will be set from 0 |
814 | 814 |
/// to the number of the bi-node-connected components minus one. Each |
815 |
/// value of the map will be set exactly once, and the values of a |
|
815 |
/// value of the map will be set exactly once, and the values of a |
|
816 | 816 |
/// certain component will be set continuously. |
817 | 817 |
/// \return The number of bi-node-connected components. |
818 | 818 |
/// |
819 | 819 |
/// \see biNodeConnected(), countBiNodeConnectedComponents() |
820 | 820 |
template <typename Graph, typename EdgeMap> |
821 | 821 |
int biNodeConnectedComponents(const Graph& graph, |
822 | 822 |
EdgeMap& compMap) { |
823 | 823 |
checkConcept<concepts::Graph, Graph>(); |
824 | 824 |
typedef typename Graph::NodeIt NodeIt; |
825 | 825 |
typedef typename Graph::Edge Edge; |
826 | 826 |
checkConcept<concepts::WriteMap<Edge, int>, EdgeMap>(); |
827 | 827 |
|
... | ... |
@@ -849,25 +849,25 @@ |
849 | 849 |
/// \brief Find the bi-node-connected cut nodes in an undirected graph. |
850 | 850 |
/// |
851 | 851 |
/// This function finds the bi-node-connected cut nodes in the given |
852 | 852 |
/// undirected graph. |
853 | 853 |
/// |
854 | 854 |
/// The bi-node-connected components are the classes of an equivalence |
855 | 855 |
/// relation on the edges of a undirected graph. Two edges are in the |
856 | 856 |
/// same class if they are on same circle. |
857 | 857 |
/// The bi-node-connected components are separted by the cut nodes of |
858 | 858 |
/// the components. |
859 | 859 |
/// |
860 | 860 |
/// \param graph The undirected graph. |
861 |
/// \retval cutMap A writable node map. The values will be set to |
|
861 |
/// \retval cutMap A writable node map. The values will be set to |
|
862 | 862 |
/// \c true for the nodes that separate two or more components |
863 | 863 |
/// (exactly once for each cut node), and will not be changed for |
864 | 864 |
/// other nodes. |
865 | 865 |
/// \return The number of the cut nodes. |
866 | 866 |
/// |
867 | 867 |
/// \see biNodeConnected(), biNodeConnectedComponents() |
868 | 868 |
template <typename Graph, typename NodeMap> |
869 | 869 |
int biNodeConnectedCutNodes(const Graph& graph, NodeMap& cutMap) { |
870 | 870 |
checkConcept<concepts::Graph, Graph>(); |
871 | 871 |
typedef typename Graph::Node Node; |
872 | 872 |
typedef typename Graph::NodeIt NodeIt; |
873 | 873 |
checkConcept<concepts::WriteMap<Node, bool>, NodeMap>(); |
... | ... |
@@ -1076,25 +1076,25 @@ |
1076 | 1076 |
typename Digraph::template NodeMap<Arc> _predMap; |
1077 | 1077 |
int _num; |
1078 | 1078 |
}; |
1079 | 1079 |
} |
1080 | 1080 |
|
1081 | 1081 |
template <typename Graph> |
1082 | 1082 |
int countBiEdgeConnectedComponents(const Graph& graph); |
1083 | 1083 |
|
1084 | 1084 |
/// \ingroup graph_properties |
1085 | 1085 |
/// |
1086 | 1086 |
/// \brief Check whether an undirected graph is bi-edge-connected. |
1087 | 1087 |
/// |
1088 |
/// This function checks whether the given undirected graph is |
|
1088 |
/// This function checks whether the given undirected graph is |
|
1089 | 1089 |
/// bi-edge-connected, i.e. any two nodes are connected with at least |
1090 | 1090 |
/// two edge-disjoint paths. |
1091 | 1091 |
/// |
1092 | 1092 |
/// \return \c true if the graph is bi-edge-connected. |
1093 | 1093 |
/// \note By definition, the empty graph is bi-edge-connected. |
1094 | 1094 |
/// |
1095 | 1095 |
/// \see countBiEdgeConnectedComponents(), biEdgeConnectedComponents() |
1096 | 1096 |
template <typename Graph> |
1097 | 1097 |
bool biEdgeConnected(const Graph& graph) { |
1098 | 1098 |
return countBiEdgeConnectedComponents(graph) <= 1; |
1099 | 1099 |
} |
1100 | 1100 |
|
... | ... |
@@ -1183,25 +1183,25 @@ |
1183 | 1183 |
dfs.addSource(it); |
1184 | 1184 |
dfs.start(); |
1185 | 1185 |
} |
1186 | 1186 |
} |
1187 | 1187 |
return compNum; |
1188 | 1188 |
} |
1189 | 1189 |
|
1190 | 1190 |
/// \ingroup graph_properties |
1191 | 1191 |
/// |
1192 | 1192 |
/// \brief Find the bi-edge-connected cut edges in an undirected graph. |
1193 | 1193 |
/// |
1194 | 1194 |
/// This function finds the bi-edge-connected cut edges in the given |
1195 |
/// undirected graph. |
|
1195 |
/// undirected graph. |
|
1196 | 1196 |
/// |
1197 | 1197 |
/// The bi-edge-connected components are the classes of an equivalence |
1198 | 1198 |
/// relation on the nodes of an undirected graph. Two nodes are in the |
1199 | 1199 |
/// same class if they are connected with at least two edge-disjoint |
1200 | 1200 |
/// paths. |
1201 | 1201 |
/// The bi-edge-connected components are separted by the cut edges of |
1202 | 1202 |
/// the components. |
1203 | 1203 |
/// |
1204 | 1204 |
/// \param graph The undirected graph. |
1205 | 1205 |
/// \retval cutMap A writable edge map. The values will be set to \c true |
1206 | 1206 |
/// for the cut edges (exactly once for each cut edge), and will not be |
1207 | 1207 |
/// changed for other edges. |
... | ... |
@@ -1340,25 +1340,25 @@ |
1340 | 1340 |
} |
1341 | 1341 |
|
1342 | 1342 |
/// \ingroup graph_properties |
1343 | 1343 |
/// |
1344 | 1344 |
/// \brief Sort the nodes of a DAG into topolgical order. |
1345 | 1345 |
/// |
1346 | 1346 |
/// This function sorts the nodes of the given acyclic digraph (DAG) |
1347 | 1347 |
/// into topolgical order and also checks whether the given digraph |
1348 | 1348 |
/// is DAG. |
1349 | 1349 |
/// |
1350 | 1350 |
/// \param digraph The digraph. |
1351 | 1351 |
/// \retval order A readable and writable node map. The values will be |
1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
1352 |
/// set from 0 to the number of the nodes in the digraph minus one. |
|
1353 | 1353 |
/// Each value of the map will be set exactly once, and the values will |
1354 | 1354 |
/// be set descending order. |
1355 | 1355 |
/// \return \c false if the digraph is not DAG. |
1356 | 1356 |
/// |
1357 | 1357 |
/// \see dag(), topologicalSort() |
1358 | 1358 |
template <typename Digraph, typename NodeMap> |
1359 | 1359 |
bool checkedTopologicalSort(const Digraph& digraph, NodeMap& order) { |
1360 | 1360 |
using namespace _connectivity_bits; |
1361 | 1361 |
|
1362 | 1362 |
checkConcept<concepts::Digraph, Digraph>(); |
1363 | 1363 |
checkConcept<concepts::ReadWriteMap<typename Digraph::Node, int>, |
1364 | 1364 |
NodeMap>(); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -1230,25 +1230,26 @@ |
1230 | 1230 |
typedef typename ItemSetTraits<GR, typename GR::Arc> |
1231 | 1231 |
::ItemNotifier::ObserverBase Parent; |
1232 | 1232 |
|
1233 | 1233 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
1234 | 1234 |
|
1235 | 1235 |
public: |
1236 | 1236 |
|
1237 | 1237 |
/// The Digraph type |
1238 | 1238 |
typedef GR Digraph; |
1239 | 1239 |
|
1240 | 1240 |
protected: |
1241 | 1241 |
|
1242 |
class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type |
|
1242 |
class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type |
|
1243 |
{ |
|
1243 | 1244 |
typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent; |
1244 | 1245 |
|
1245 | 1246 |
public: |
1246 | 1247 |
|
1247 | 1248 |
AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {} |
1248 | 1249 |
|
1249 | 1250 |
virtual void add(const Node& node) { |
1250 | 1251 |
Parent::add(node); |
1251 | 1252 |
Parent::set(node, INVALID); |
1252 | 1253 |
} |
1253 | 1254 |
|
1254 | 1255 |
virtual void add(const std::vector<Node>& nodes) { |
... | ... |
@@ -1269,25 +1270,25 @@ |
1269 | 1270 |
}; |
1270 | 1271 |
|
1271 | 1272 |
class ArcLess { |
1272 | 1273 |
const Digraph &g; |
1273 | 1274 |
public: |
1274 | 1275 |
ArcLess(const Digraph &_g) : g(_g) {} |
1275 | 1276 |
bool operator()(Arc a,Arc b) const |
1276 | 1277 |
{ |
1277 | 1278 |
return g.target(a)<g.target(b); |
1278 | 1279 |
} |
1279 | 1280 |
}; |
1280 | 1281 |
|
1281 |
protected: |
|
1282 |
protected: |
|
1282 | 1283 |
|
1283 | 1284 |
const Digraph &_g; |
1284 | 1285 |
AutoNodeMap _head; |
1285 | 1286 |
typename Digraph::template ArcMap<Arc> _parent; |
1286 | 1287 |
typename Digraph::template ArcMap<Arc> _left; |
1287 | 1288 |
typename Digraph::template ArcMap<Arc> _right; |
1288 | 1289 |
|
1289 | 1290 |
public: |
1290 | 1291 |
|
1291 | 1292 |
///Constructor |
1292 | 1293 |
|
1293 | 1294 |
///Constructor. |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -83,25 +83,25 @@ |
83 | 83 |
}; |
84 | 84 |
|
85 | 85 |
|
86 | 86 |
/// \addtogroup min_cost_flow_algs |
87 | 87 |
/// @{ |
88 | 88 |
|
89 | 89 |
/// \brief Implementation of the Cost Scaling algorithm for |
90 | 90 |
/// finding a \ref min_cost_flow "minimum cost flow". |
91 | 91 |
/// |
92 | 92 |
/// \ref CostScaling implements a cost scaling algorithm that performs |
93 | 93 |
/// push/augment and relabel operations for finding a \ref min_cost_flow |
94 | 94 |
/// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation, |
95 |
/// \ref goldberg97efficient, \ref bunnagel98efficient. |
|
95 |
/// \ref goldberg97efficient, \ref bunnagel98efficient. |
|
96 | 96 |
/// It is a highly efficient primal-dual solution method, which |
97 | 97 |
/// can be viewed as the generalization of the \ref Preflow |
98 | 98 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
99 | 99 |
/// |
100 | 100 |
/// Most of the parameters of the problem (except for the digraph) |
101 | 101 |
/// can be given using separate functions, and the algorithm can be |
102 | 102 |
/// executed using the \ref run() function. If some parameters are not |
103 | 103 |
/// specified, then default values will be used. |
104 | 104 |
/// |
105 | 105 |
/// \tparam GR The digraph type the algorithm runs on. |
106 | 106 |
/// \tparam V The number type used for flow amounts, capacity bounds |
107 | 107 |
/// and supply values in the algorithm. By default, it is \c int. |
... | ... |
@@ -180,60 +180,60 @@ |
180 | 180 |
/// By default, the so called \ref PARTIAL_AUGMENT |
181 | 181 |
/// "Partial Augment-Relabel" method is used, which proved to be |
182 | 182 |
/// the most efficient and the most robust on various test inputs. |
183 | 183 |
/// However, the other methods can be selected using the \ref run() |
184 | 184 |
/// function with the proper parameter. |
185 | 185 |
enum Method { |
186 | 186 |
/// Local push operations are used, i.e. flow is moved only on one |
187 | 187 |
/// admissible arc at once. |
188 | 188 |
PUSH, |
189 | 189 |
/// Augment operations are used, i.e. flow is moved on admissible |
190 | 190 |
/// paths from a node with excess to a node with deficit. |
191 | 191 |
AUGMENT, |
192 |
/// Partial augment operations are used, i.e. flow is moved on |
|
192 |
/// Partial augment operations are used, i.e. flow is moved on |
|
193 | 193 |
/// admissible paths started from a node with excess, but the |
194 | 194 |
/// lengths of these paths are limited. This method can be viewed |
195 | 195 |
/// as a combined version of the previous two operations. |
196 | 196 |
PARTIAL_AUGMENT |
197 | 197 |
}; |
198 | 198 |
|
199 | 199 |
private: |
200 | 200 |
|
201 | 201 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
202 | 202 |
|
203 | 203 |
typedef std::vector<int> IntVector; |
204 | 204 |
typedef std::vector<Value> ValueVector; |
205 | 205 |
typedef std::vector<Cost> CostVector; |
206 | 206 |
typedef std::vector<LargeCost> LargeCostVector; |
207 | 207 |
typedef std::vector<char> BoolVector; |
208 | 208 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
209 | 209 |
|
210 | 210 |
private: |
211 |
|
|
211 |
|
|
212 | 212 |
template <typename KT, typename VT> |
213 | 213 |
class StaticVectorMap { |
214 | 214 |
public: |
215 | 215 |
typedef KT Key; |
216 | 216 |
typedef VT Value; |
217 |
|
|
217 |
|
|
218 | 218 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {} |
219 |
|
|
219 |
|
|
220 | 220 |
const Value& operator[](const Key& key) const { |
221 | 221 |
return _v[StaticDigraph::id(key)]; |
222 | 222 |
} |
223 | 223 |
|
224 | 224 |
Value& operator[](const Key& key) { |
225 | 225 |
return _v[StaticDigraph::id(key)]; |
226 | 226 |
} |
227 |
|
|
227 |
|
|
228 | 228 |
void set(const Key& key, const Value& val) { |
229 | 229 |
_v[StaticDigraph::id(key)] = val; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
private: |
233 | 233 |
std::vector<Value>& _v; |
234 | 234 |
}; |
235 | 235 |
|
236 | 236 |
typedef StaticVectorMap<StaticDigraph::Node, LargeCost> LargeCostNodeMap; |
237 | 237 |
typedef StaticVectorMap<StaticDigraph::Arc, LargeCost> LargeCostArcMap; |
238 | 238 |
|
239 | 239 |
private: |
... | ... |
@@ -274,35 +274,35 @@ |
274 | 274 |
IntVector _next_out; |
275 | 275 |
std::deque<int> _active_nodes; |
276 | 276 |
|
277 | 277 |
// Data for scaling |
278 | 278 |
LargeCost _epsilon; |
279 | 279 |
int _alpha; |
280 | 280 |
|
281 | 281 |
IntVector _buckets; |
282 | 282 |
IntVector _bucket_next; |
283 | 283 |
IntVector _bucket_prev; |
284 | 284 |
IntVector _rank; |
285 | 285 |
int _max_rank; |
286 |
|
|
286 |
|
|
287 | 287 |
// Data for a StaticDigraph structure |
288 | 288 |
typedef std::pair<int, int> IntPair; |
289 | 289 |
StaticDigraph _sgr; |
290 | 290 |
std::vector<IntPair> _arc_vec; |
291 | 291 |
std::vector<LargeCost> _cost_vec; |
292 | 292 |
LargeCostArcMap _cost_map; |
293 | 293 |
LargeCostNodeMap _pi_map; |
294 |
|
|
294 |
|
|
295 | 295 |
public: |
296 |
|
|
296 |
|
|
297 | 297 |
/// \brief Constant for infinite upper bounds (capacities). |
298 | 298 |
/// |
299 | 299 |
/// Constant for infinite upper bounds (capacities). |
300 | 300 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
301 | 301 |
/// \c std::numeric_limits<Value>::max() otherwise. |
302 | 302 |
const Value INF; |
303 | 303 |
|
304 | 304 |
public: |
305 | 305 |
|
306 | 306 |
/// \name Named Template Parameters |
307 | 307 |
/// @{ |
308 | 308 |
|
... | ... |
@@ -339,25 +339,25 @@ |
339 | 339 |
CostScaling(const GR& graph) : |
340 | 340 |
_graph(graph), _node_id(graph), _arc_idf(graph), _arc_idb(graph), |
341 | 341 |
_cost_map(_cost_vec), _pi_map(_pi), |
342 | 342 |
INF(std::numeric_limits<Value>::has_infinity ? |
343 | 343 |
std::numeric_limits<Value>::infinity() : |
344 | 344 |
std::numeric_limits<Value>::max()) |
345 | 345 |
{ |
346 | 346 |
// Check the number types |
347 | 347 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
348 | 348 |
"The flow type of CostScaling must be signed"); |
349 | 349 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
350 | 350 |
"The cost type of CostScaling must be signed"); |
351 |
|
|
351 |
|
|
352 | 352 |
// Reset data structures |
353 | 353 |
reset(); |
354 | 354 |
} |
355 | 355 |
|
356 | 356 |
/// \name Parameters |
357 | 357 |
/// The parameters of the algorithm can be specified using these |
358 | 358 |
/// functions. |
359 | 359 |
|
360 | 360 |
/// @{ |
361 | 361 |
|
362 | 362 |
/// \brief Set the lower bounds on the arcs. |
363 | 363 |
/// |
... | ... |
@@ -455,25 +455,25 @@ |
455 | 455 |
/// \param k The required amount of flow from node \c s to node \c t |
456 | 456 |
/// (i.e. the supply of \c s and the demand of \c t). |
457 | 457 |
/// |
458 | 458 |
/// \return <tt>(*this)</tt> |
459 | 459 |
CostScaling& stSupply(const Node& s, const Node& t, Value k) { |
460 | 460 |
for (int i = 0; i != _res_node_num; ++i) { |
461 | 461 |
_supply[i] = 0; |
462 | 462 |
} |
463 | 463 |
_supply[_node_id[s]] = k; |
464 | 464 |
_supply[_node_id[t]] = -k; |
465 | 465 |
return *this; |
466 | 466 |
} |
467 |
|
|
467 |
|
|
468 | 468 |
/// @} |
469 | 469 |
|
470 | 470 |
/// \name Execution control |
471 | 471 |
/// The algorithm can be executed using \ref run(). |
472 | 472 |
|
473 | 473 |
/// @{ |
474 | 474 |
|
475 | 475 |
/// \brief Run the algorithm. |
476 | 476 |
/// |
477 | 477 |
/// This function runs the algorithm. |
478 | 478 |
/// The paramters can be specified using functions \ref lowerMap(), |
479 | 479 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
... | ... |
@@ -557,25 +557,25 @@ |
557 | 557 |
} |
558 | 558 |
int limit = _first_out[_root]; |
559 | 559 |
for (int j = 0; j != limit; ++j) { |
560 | 560 |
_lower[j] = 0; |
561 | 561 |
_upper[j] = INF; |
562 | 562 |
_scost[j] = _forward[j] ? 1 : -1; |
563 | 563 |
} |
564 | 564 |
for (int j = limit; j != _res_arc_num; ++j) { |
565 | 565 |
_lower[j] = 0; |
566 | 566 |
_upper[j] = INF; |
567 | 567 |
_scost[j] = 0; |
568 | 568 |
_scost[_reverse[j]] = 0; |
569 |
} |
|
569 |
} |
|
570 | 570 |
_have_lower = false; |
571 | 571 |
return *this; |
572 | 572 |
} |
573 | 573 |
|
574 | 574 |
/// \brief Reset all the parameters that have been given before. |
575 | 575 |
/// |
576 | 576 |
/// This function resets all the paramaters that have been given |
577 | 577 |
/// before using functions \ref lowerMap(), \ref upperMap(), |
578 | 578 |
/// \ref costMap(), \ref supplyMap(), \ref stSupply(). |
579 | 579 |
/// |
580 | 580 |
/// It is useful for multiple run() calls. If this function is not |
581 | 581 |
/// used, all the parameters given before are kept for the next |
... | ... |
@@ -592,25 +592,25 @@ |
592 | 592 |
_root = _node_num; |
593 | 593 |
|
594 | 594 |
_first_out.resize(_res_node_num + 1); |
595 | 595 |
_forward.resize(_res_arc_num); |
596 | 596 |
_source.resize(_res_arc_num); |
597 | 597 |
_target.resize(_res_arc_num); |
598 | 598 |
_reverse.resize(_res_arc_num); |
599 | 599 |
|
600 | 600 |
_lower.resize(_res_arc_num); |
601 | 601 |
_upper.resize(_res_arc_num); |
602 | 602 |
_scost.resize(_res_arc_num); |
603 | 603 |
_supply.resize(_res_node_num); |
604 |
|
|
604 |
|
|
605 | 605 |
_res_cap.resize(_res_arc_num); |
606 | 606 |
_cost.resize(_res_arc_num); |
607 | 607 |
_pi.resize(_res_node_num); |
608 | 608 |
_excess.resize(_res_node_num); |
609 | 609 |
_next_out.resize(_res_node_num); |
610 | 610 |
|
611 | 611 |
_arc_vec.reserve(_res_arc_num); |
612 | 612 |
_cost_vec.reserve(_res_arc_num); |
613 | 613 |
|
614 | 614 |
// Copy the graph |
615 | 615 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
616 | 616 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
... | ... |
@@ -640,25 +640,25 @@ |
640 | 640 |
_target[k] = i; |
641 | 641 |
_reverse[k] = j; |
642 | 642 |
++j; ++k; |
643 | 643 |
} |
644 | 644 |
_first_out[i] = j; |
645 | 645 |
_first_out[_res_node_num] = k; |
646 | 646 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
647 | 647 |
int fi = _arc_idf[a]; |
648 | 648 |
int bi = _arc_idb[a]; |
649 | 649 |
_reverse[fi] = bi; |
650 | 650 |
_reverse[bi] = fi; |
651 | 651 |
} |
652 |
|
|
652 |
|
|
653 | 653 |
// Reset parameters |
654 | 654 |
resetParams(); |
655 | 655 |
return *this; |
656 | 656 |
} |
657 | 657 |
|
658 | 658 |
/// @} |
659 | 659 |
|
660 | 660 |
/// \name Query Functions |
661 | 661 |
/// The results of the algorithm can be obtained using these |
662 | 662 |
/// functions.\n |
663 | 663 |
/// The \ref run() function must be called before using them. |
664 | 664 |
|
... | ... |
@@ -749,32 +749,32 @@ |
749 | 749 |
private: |
750 | 750 |
|
751 | 751 |
// Initialize the algorithm |
752 | 752 |
ProblemType init() { |
753 | 753 |
if (_res_node_num <= 1) return INFEASIBLE; |
754 | 754 |
|
755 | 755 |
// Check the sum of supply values |
756 | 756 |
_sum_supply = 0; |
757 | 757 |
for (int i = 0; i != _root; ++i) { |
758 | 758 |
_sum_supply += _supply[i]; |
759 | 759 |
} |
760 | 760 |
if (_sum_supply > 0) return INFEASIBLE; |
761 |
|
|
761 |
|
|
762 | 762 |
|
763 | 763 |
// Initialize vectors |
764 | 764 |
for (int i = 0; i != _res_node_num; ++i) { |
765 | 765 |
_pi[i] = 0; |
766 | 766 |
_excess[i] = _supply[i]; |
767 | 767 |
} |
768 |
|
|
768 |
|
|
769 | 769 |
// Remove infinite upper bounds and check negative arcs |
770 | 770 |
const Value MAX = std::numeric_limits<Value>::max(); |
771 | 771 |
int last_out; |
772 | 772 |
if (_have_lower) { |
773 | 773 |
for (int i = 0; i != _root; ++i) { |
774 | 774 |
last_out = _first_out[i+1]; |
775 | 775 |
for (int j = _first_out[i]; j != last_out; ++j) { |
776 | 776 |
if (_forward[j]) { |
777 | 777 |
Value c = _scost[j] < 0 ? _upper[j] : _lower[j]; |
778 | 778 |
if (c >= MAX) return UNBOUNDED; |
779 | 779 |
_excess[i] -= c; |
780 | 780 |
_excess[_target[j]] += c; |
... | ... |
@@ -876,40 +876,40 @@ |
876 | 876 |
Value fa = flow[a]; |
877 | 877 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
878 | 878 |
_res_cap[_arc_idb[a]] = fa; |
879 | 879 |
} |
880 | 880 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
881 | 881 |
int ra = _reverse[a]; |
882 | 882 |
_res_cap[a] = 0; |
883 | 883 |
_res_cap[ra] = 0; |
884 | 884 |
_cost[a] = 0; |
885 | 885 |
_cost[ra] = 0; |
886 | 886 |
} |
887 | 887 |
} |
888 |
|
|
888 |
|
|
889 | 889 |
return OPTIMAL; |
890 | 890 |
} |
891 | 891 |
|
892 | 892 |
// Execute the algorithm and transform the results |
893 | 893 |
void start(Method method) { |
894 | 894 |
// Maximum path length for partial augment |
895 | 895 |
const int MAX_PATH_LENGTH = 4; |
896 | 896 |
|
897 |
// Initialize data structures for buckets |
|
897 |
// Initialize data structures for buckets |
|
898 | 898 |
_max_rank = _alpha * _res_node_num; |
899 | 899 |
_buckets.resize(_max_rank); |
900 | 900 |
_bucket_next.resize(_res_node_num + 1); |
901 | 901 |
_bucket_prev.resize(_res_node_num + 1); |
902 | 902 |
_rank.resize(_res_node_num + 1); |
903 |
|
|
903 |
|
|
904 | 904 |
// Execute the algorithm |
905 | 905 |
switch (method) { |
906 | 906 |
case PUSH: |
907 | 907 |
startPush(); |
908 | 908 |
break; |
909 | 909 |
case AUGMENT: |
910 | 910 |
startAugment(); |
911 | 911 |
break; |
912 | 912 |
case PARTIAL_AUGMENT: |
913 | 913 |
startAugment(MAX_PATH_LENGTH); |
914 | 914 |
break; |
915 | 915 |
} |
... | ... |
@@ -930,54 +930,54 @@ |
930 | 930 |
bf.distMap(_pi_map); |
931 | 931 |
bf.init(0); |
932 | 932 |
bf.start(); |
933 | 933 |
|
934 | 934 |
// Handle non-zero lower bounds |
935 | 935 |
if (_have_lower) { |
936 | 936 |
int limit = _first_out[_root]; |
937 | 937 |
for (int j = 0; j != limit; ++j) { |
938 | 938 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
939 | 939 |
} |
940 | 940 |
} |
941 | 941 |
} |
942 |
|
|
942 |
|
|
943 | 943 |
// Initialize a cost scaling phase |
944 | 944 |
void initPhase() { |
945 | 945 |
// Saturate arcs not satisfying the optimality condition |
946 | 946 |
for (int u = 0; u != _res_node_num; ++u) { |
947 | 947 |
int last_out = _first_out[u+1]; |
948 | 948 |
LargeCost pi_u = _pi[u]; |
949 | 949 |
for (int a = _first_out[u]; a != last_out; ++a) { |
950 | 950 |
int v = _target[a]; |
951 | 951 |
if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) { |
952 | 952 |
Value delta = _res_cap[a]; |
953 | 953 |
_excess[u] -= delta; |
954 | 954 |
_excess[v] += delta; |
955 | 955 |
_res_cap[a] = 0; |
956 | 956 |
_res_cap[_reverse[a]] += delta; |
957 | 957 |
} |
958 | 958 |
} |
959 | 959 |
} |
960 |
|
|
960 |
|
|
961 | 961 |
// Find active nodes (i.e. nodes with positive excess) |
962 | 962 |
for (int u = 0; u != _res_node_num; ++u) { |
963 | 963 |
if (_excess[u] > 0) _active_nodes.push_back(u); |
964 | 964 |
} |
965 | 965 |
|
966 | 966 |
// Initialize the next arcs |
967 | 967 |
for (int u = 0; u != _res_node_num; ++u) { |
968 | 968 |
_next_out[u] = _first_out[u]; |
969 | 969 |
} |
970 | 970 |
} |
971 |
|
|
971 |
|
|
972 | 972 |
// Early termination heuristic |
973 | 973 |
bool earlyTermination() { |
974 | 974 |
const double EARLY_TERM_FACTOR = 3.0; |
975 | 975 |
|
976 | 976 |
// Build a static residual graph |
977 | 977 |
_arc_vec.clear(); |
978 | 978 |
_cost_vec.clear(); |
979 | 979 |
for (int j = 0; j != _res_arc_num; ++j) { |
980 | 980 |
if (_res_cap[j] > 0) { |
981 | 981 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
982 | 982 |
_cost_vec.push_back(_cost[j] + 1); |
983 | 983 |
} |
... | ... |
@@ -989,25 +989,25 @@ |
989 | 989 |
bf.init(0); |
990 | 990 |
bool done = false; |
991 | 991 |
int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num))); |
992 | 992 |
for (int i = 0; i < K && !done; ++i) { |
993 | 993 |
done = bf.processNextWeakRound(); |
994 | 994 |
} |
995 | 995 |
return done; |
996 | 996 |
} |
997 | 997 |
|
998 | 998 |
// Global potential update heuristic |
999 | 999 |
void globalUpdate() { |
1000 | 1000 |
int bucket_end = _root + 1; |
1001 |
|
|
1001 |
|
|
1002 | 1002 |
// Initialize buckets |
1003 | 1003 |
for (int r = 0; r != _max_rank; ++r) { |
1004 | 1004 |
_buckets[r] = bucket_end; |
1005 | 1005 |
} |
1006 | 1006 |
Value total_excess = 0; |
1007 | 1007 |
for (int i = 0; i != _res_node_num; ++i) { |
1008 | 1008 |
if (_excess[i] < 0) { |
1009 | 1009 |
_rank[i] = 0; |
1010 | 1010 |
_bucket_next[i] = _buckets[0]; |
1011 | 1011 |
_bucket_prev[_buckets[0]] = i; |
1012 | 1012 |
_buckets[0] = i; |
1013 | 1013 |
} else { |
... | ... |
@@ -1015,108 +1015,108 @@ |
1015 | 1015 |
_rank[i] = _max_rank; |
1016 | 1016 |
} |
1017 | 1017 |
} |
1018 | 1018 |
if (total_excess == 0) return; |
1019 | 1019 |
|
1020 | 1020 |
// Search the buckets |
1021 | 1021 |
int r = 0; |
1022 | 1022 |
for ( ; r != _max_rank; ++r) { |
1023 | 1023 |
while (_buckets[r] != bucket_end) { |
1024 | 1024 |
// Remove the first node from the current bucket |
1025 | 1025 |
int u = _buckets[r]; |
1026 | 1026 |
_buckets[r] = _bucket_next[u]; |
1027 |
|
|
1027 |
|
|
1028 | 1028 |
// Search the incomming arcs of u |
1029 | 1029 |
LargeCost pi_u = _pi[u]; |
1030 | 1030 |
int last_out = _first_out[u+1]; |
1031 | 1031 |
for (int a = _first_out[u]; a != last_out; ++a) { |
1032 | 1032 |
int ra = _reverse[a]; |
1033 | 1033 |
if (_res_cap[ra] > 0) { |
1034 | 1034 |
int v = _source[ra]; |
1035 | 1035 |
int old_rank_v = _rank[v]; |
1036 | 1036 |
if (r < old_rank_v) { |
1037 | 1037 |
// Compute the new rank of v |
1038 | 1038 |
LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon; |
1039 | 1039 |
int new_rank_v = old_rank_v; |
1040 | 1040 |
if (nrc < LargeCost(_max_rank)) |
1041 | 1041 |
new_rank_v = r + 1 + int(nrc); |
1042 |
|
|
1042 |
|
|
1043 | 1043 |
// Change the rank of v |
1044 | 1044 |
if (new_rank_v < old_rank_v) { |
1045 | 1045 |
_rank[v] = new_rank_v; |
1046 | 1046 |
_next_out[v] = _first_out[v]; |
1047 |
|
|
1047 |
|
|
1048 | 1048 |
// Remove v from its old bucket |
1049 | 1049 |
if (old_rank_v < _max_rank) { |
1050 | 1050 |
if (_buckets[old_rank_v] == v) { |
1051 | 1051 |
_buckets[old_rank_v] = _bucket_next[v]; |
1052 | 1052 |
} else { |
1053 | 1053 |
_bucket_next[_bucket_prev[v]] = _bucket_next[v]; |
1054 | 1054 |
_bucket_prev[_bucket_next[v]] = _bucket_prev[v]; |
1055 | 1055 |
} |
1056 | 1056 |
} |
1057 |
|
|
1057 |
|
|
1058 | 1058 |
// Insert v to its new bucket |
1059 | 1059 |
_bucket_next[v] = _buckets[new_rank_v]; |
1060 | 1060 |
_bucket_prev[_buckets[new_rank_v]] = v; |
1061 | 1061 |
_buckets[new_rank_v] = v; |
1062 | 1062 |
} |
1063 | 1063 |
} |
1064 | 1064 |
} |
1065 | 1065 |
} |
1066 | 1066 |
|
1067 | 1067 |
// Finish search if there are no more active nodes |
1068 | 1068 |
if (_excess[u] > 0) { |
1069 | 1069 |
total_excess -= _excess[u]; |
1070 | 1070 |
if (total_excess <= 0) break; |
1071 | 1071 |
} |
1072 | 1072 |
} |
1073 | 1073 |
if (total_excess <= 0) break; |
1074 | 1074 |
} |
1075 |
|
|
1075 |
|
|
1076 | 1076 |
// Relabel nodes |
1077 | 1077 |
for (int u = 0; u != _res_node_num; ++u) { |
1078 | 1078 |
int k = std::min(_rank[u], r); |
1079 | 1079 |
if (k > 0) { |
1080 | 1080 |
_pi[u] -= _epsilon * k; |
1081 | 1081 |
_next_out[u] = _first_out[u]; |
1082 | 1082 |
} |
1083 | 1083 |
} |
1084 | 1084 |
} |
1085 | 1085 |
|
1086 | 1086 |
/// Execute the algorithm performing augment and relabel operations |
1087 | 1087 |
void startAugment(int max_length = std::numeric_limits<int>::max()) { |
1088 | 1088 |
// Paramters for heuristics |
1089 | 1089 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
1090 | 1090 |
const double GLOBAL_UPDATE_FACTOR = 3.0; |
1091 | 1091 |
|
1092 | 1092 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
1093 | 1093 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
1094 | 1094 |
int next_update_limit = global_update_freq; |
1095 |
|
|
1095 |
|
|
1096 | 1096 |
int relabel_cnt = 0; |
1097 |
|
|
1097 |
|
|
1098 | 1098 |
// Perform cost scaling phases |
1099 | 1099 |
std::vector<int> path; |
1100 | 1100 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1101 | 1101 |
1 : _epsilon / _alpha ) |
1102 | 1102 |
{ |
1103 | 1103 |
// Early termination heuristic |
1104 | 1104 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { |
1105 | 1105 |
if (earlyTermination()) break; |
1106 | 1106 |
} |
1107 |
|
|
1107 |
|
|
1108 | 1108 |
// Initialize current phase |
1109 | 1109 |
initPhase(); |
1110 |
|
|
1110 |
|
|
1111 | 1111 |
// Perform partial augment and relabel operations |
1112 | 1112 |
while (true) { |
1113 | 1113 |
// Select an active node (FIFO selection) |
1114 | 1114 |
while (_active_nodes.size() > 0 && |
1115 | 1115 |
_excess[_active_nodes.front()] <= 0) { |
1116 | 1116 |
_active_nodes.pop_front(); |
1117 | 1117 |
} |
1118 | 1118 |
if (_active_nodes.size() == 0) break; |
1119 | 1119 |
int start = _active_nodes.front(); |
1120 | 1120 |
|
1121 | 1121 |
// Find an augmenting path from the start node |
1122 | 1122 |
path.clear(); |
... | ... |
@@ -1187,65 +1187,65 @@ |
1187 | 1187 |
|
1188 | 1188 |
/// Execute the algorithm performing push and relabel operations |
1189 | 1189 |
void startPush() { |
1190 | 1190 |
// Paramters for heuristics |
1191 | 1191 |
const int EARLY_TERM_EPSILON_LIMIT = 1000; |
1192 | 1192 |
const double GLOBAL_UPDATE_FACTOR = 2.0; |
1193 | 1193 |
|
1194 | 1194 |
const int global_update_freq = int(GLOBAL_UPDATE_FACTOR * |
1195 | 1195 |
(_res_node_num + _sup_node_num * _sup_node_num)); |
1196 | 1196 |
int next_update_limit = global_update_freq; |
1197 | 1197 |
|
1198 | 1198 |
int relabel_cnt = 0; |
1199 |
|
|
1199 |
|
|
1200 | 1200 |
// Perform cost scaling phases |
1201 | 1201 |
BoolVector hyper(_res_node_num, false); |
1202 | 1202 |
LargeCostVector hyper_cost(_res_node_num); |
1203 | 1203 |
for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ? |
1204 | 1204 |
1 : _epsilon / _alpha ) |
1205 | 1205 |
{ |
1206 | 1206 |
// Early termination heuristic |
1207 | 1207 |
if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) { |
1208 | 1208 |
if (earlyTermination()) break; |
1209 | 1209 |
} |
1210 |
|
|
1210 |
|
|
1211 | 1211 |
// Initialize current phase |
1212 | 1212 |
initPhase(); |
1213 | 1213 |
|
1214 | 1214 |
// Perform push and relabel operations |
1215 | 1215 |
while (_active_nodes.size() > 0) { |
1216 | 1216 |
LargeCost min_red_cost, rc, pi_n; |
1217 | 1217 |
Value delta; |
1218 | 1218 |
int n, t, a, last_out = _res_arc_num; |
1219 | 1219 |
|
1220 | 1220 |
next_node: |
1221 | 1221 |
// Select an active node (FIFO selection) |
1222 | 1222 |
n = _active_nodes.front(); |
1223 | 1223 |
last_out = _first_out[n+1]; |
1224 | 1224 |
pi_n = _pi[n]; |
1225 |
|
|
1225 |
|
|
1226 | 1226 |
// Perform push operations if there are admissible arcs |
1227 | 1227 |
if (_excess[n] > 0) { |
1228 | 1228 |
for (a = _next_out[n]; a != last_out; ++a) { |
1229 | 1229 |
if (_res_cap[a] > 0 && |
1230 | 1230 |
_cost[a] + pi_n - _pi[_target[a]] < 0) { |
1231 | 1231 |
delta = std::min(_res_cap[a], _excess[n]); |
1232 | 1232 |
t = _target[a]; |
1233 | 1233 |
|
1234 | 1234 |
// Push-look-ahead heuristic |
1235 | 1235 |
Value ahead = -_excess[t]; |
1236 | 1236 |
int last_out_t = _first_out[t+1]; |
1237 | 1237 |
LargeCost pi_t = _pi[t]; |
1238 | 1238 |
for (int ta = _next_out[t]; ta != last_out_t; ++ta) { |
1239 |
if (_res_cap[ta] > 0 && |
|
1239 |
if (_res_cap[ta] > 0 && |
|
1240 | 1240 |
_cost[ta] + pi_t - _pi[_target[ta]] < 0) |
1241 | 1241 |
ahead += _res_cap[ta]; |
1242 | 1242 |
if (ahead >= delta) break; |
1243 | 1243 |
} |
1244 | 1244 |
if (ahead < 0) ahead = 0; |
1245 | 1245 |
|
1246 | 1246 |
// Push flow along the arc |
1247 | 1247 |
if (ahead < delta && !hyper[t]) { |
1248 | 1248 |
_res_cap[a] -= ahead; |
1249 | 1249 |
_res_cap[_reverse[a]] += ahead; |
1250 | 1250 |
_excess[n] -= ahead; |
1251 | 1251 |
_excess[t] += ahead; |
... | ... |
@@ -1278,33 +1278,33 @@ |
1278 | 1278 |
std::numeric_limits<LargeCost>::max(); |
1279 | 1279 |
for (int a = _first_out[n]; a != last_out; ++a) { |
1280 | 1280 |
rc = _cost[a] + pi_n - _pi[_target[a]]; |
1281 | 1281 |
if (_res_cap[a] > 0 && rc < min_red_cost) { |
1282 | 1282 |
min_red_cost = rc; |
1283 | 1283 |
} |
1284 | 1284 |
} |
1285 | 1285 |
_pi[n] -= min_red_cost + _epsilon; |
1286 | 1286 |
_next_out[n] = _first_out[n]; |
1287 | 1287 |
hyper[n] = false; |
1288 | 1288 |
++relabel_cnt; |
1289 | 1289 |
} |
1290 |
|
|
1290 |
|
|
1291 | 1291 |
// Remove nodes that are not active nor hyper |
1292 | 1292 |
remove_nodes: |
1293 | 1293 |
while ( _active_nodes.size() > 0 && |
1294 | 1294 |
_excess[_active_nodes.front()] <= 0 && |
1295 | 1295 |
!hyper[_active_nodes.front()] ) { |
1296 | 1296 |
_active_nodes.pop_front(); |
1297 | 1297 |
} |
1298 |
|
|
1298 |
|
|
1299 | 1299 |
// Global update heuristic |
1300 | 1300 |
if (relabel_cnt >= next_update_limit) { |
1301 | 1301 |
globalUpdate(); |
1302 | 1302 |
for (int u = 0; u != _res_node_num; ++u) |
1303 | 1303 |
hyper[u] = false; |
1304 | 1304 |
next_update_limit += global_update_freq; |
1305 | 1305 |
} |
1306 | 1306 |
} |
1307 | 1307 |
} |
1308 | 1308 |
} |
1309 | 1309 |
|
1310 | 1310 |
}; //class CostScaling |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -102,25 +102,25 @@ |
102 | 102 |
return i; |
103 | 103 |
} |
104 | 104 |
|
105 | 105 |
|
106 | 106 |
int CplexBase::_addRow() { |
107 | 107 |
int i = CPXgetnumrows(cplexEnv(), _prob); |
108 | 108 |
const double ub = INF; |
109 | 109 |
const char s = 'L'; |
110 | 110 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
111 | 111 |
return i; |
112 | 112 |
} |
113 | 113 |
|
114 |
int CplexBase::_addRow(Value lb, ExprIterator b, |
|
114 |
int CplexBase::_addRow(Value lb, ExprIterator b, |
|
115 | 115 |
ExprIterator e, Value ub) { |
116 | 116 |
int i = CPXgetnumrows(cplexEnv(), _prob); |
117 | 117 |
if (lb == -INF) { |
118 | 118 |
const char s = 'L'; |
119 | 119 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
120 | 120 |
} else if (ub == INF) { |
121 | 121 |
const char s = 'G'; |
122 | 122 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
123 | 123 |
} else if (lb == ub){ |
124 | 124 |
const char s = 'E'; |
125 | 125 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
126 | 126 |
} else { |
... | ... |
@@ -480,25 +480,25 @@ |
480 | 480 |
_message_enabled = false; |
481 | 481 |
break; |
482 | 482 |
case MESSAGE_ERROR: |
483 | 483 |
case MESSAGE_WARNING: |
484 | 484 |
case MESSAGE_NORMAL: |
485 | 485 |
case MESSAGE_VERBOSE: |
486 | 486 |
_message_enabled = true; |
487 | 487 |
break; |
488 | 488 |
} |
489 | 489 |
} |
490 | 490 |
|
491 | 491 |
void CplexBase::_applyMessageLevel() { |
492 |
CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND, |
|
492 |
CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND, |
|
493 | 493 |
_message_enabled ? CPX_ON : CPX_OFF); |
494 | 494 |
} |
495 | 495 |
|
496 | 496 |
// CplexLp members |
497 | 497 |
|
498 | 498 |
CplexLp::CplexLp() |
499 | 499 |
: LpBase(), LpSolver(), CplexBase() {} |
500 | 500 |
|
501 | 501 |
CplexLp::CplexLp(const CplexEnv& env) |
502 | 502 |
: LpBase(), LpSolver(), CplexBase(env) {} |
503 | 503 |
|
504 | 504 |
CplexLp::CplexLp(const CplexLp& other) |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -133,50 +133,50 @@ |
133 | 133 |
MINIMUM_MEAN_CYCLE_CANCELING, |
134 | 134 |
/// The "Cancel And Tighten" algorithm, which can be viewed as an |
135 | 135 |
/// improved version of the previous method |
136 | 136 |
/// \ref goldberg89cyclecanceling. |
137 | 137 |
/// It is faster both in theory and in practice, its running time |
138 | 138 |
/// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)). |
139 | 139 |
CANCEL_AND_TIGHTEN |
140 | 140 |
}; |
141 | 141 |
|
142 | 142 |
private: |
143 | 143 |
|
144 | 144 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
145 |
|
|
145 |
|
|
146 | 146 |
typedef std::vector<int> IntVector; |
147 | 147 |
typedef std::vector<double> DoubleVector; |
148 | 148 |
typedef std::vector<Value> ValueVector; |
149 | 149 |
typedef std::vector<Cost> CostVector; |
150 | 150 |
typedef std::vector<char> BoolVector; |
151 | 151 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
152 | 152 |
|
153 | 153 |
private: |
154 |
|
|
154 |
|
|
155 | 155 |
template <typename KT, typename VT> |
156 | 156 |
class StaticVectorMap { |
157 | 157 |
public: |
158 | 158 |
typedef KT Key; |
159 | 159 |
typedef VT Value; |
160 |
|
|
160 |
|
|
161 | 161 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {} |
162 |
|
|
162 |
|
|
163 | 163 |
const Value& operator[](const Key& key) const { |
164 | 164 |
return _v[StaticDigraph::id(key)]; |
165 | 165 |
} |
166 | 166 |
|
167 | 167 |
Value& operator[](const Key& key) { |
168 | 168 |
return _v[StaticDigraph::id(key)]; |
169 | 169 |
} |
170 |
|
|
170 |
|
|
171 | 171 |
void set(const Key& key, const Value& val) { |
172 | 172 |
_v[StaticDigraph::id(key)] = val; |
173 | 173 |
} |
174 | 174 |
|
175 | 175 |
private: |
176 | 176 |
std::vector<Value>& _v; |
177 | 177 |
}; |
178 | 178 |
|
179 | 179 |
typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap; |
180 | 180 |
typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap; |
181 | 181 |
|
182 | 182 |
private: |
... | ... |
@@ -212,27 +212,27 @@ |
212 | 212 |
|
213 | 213 |
ValueVector _res_cap; |
214 | 214 |
CostVector _pi; |
215 | 215 |
|
216 | 216 |
// Data for a StaticDigraph structure |
217 | 217 |
typedef std::pair<int, int> IntPair; |
218 | 218 |
StaticDigraph _sgr; |
219 | 219 |
std::vector<IntPair> _arc_vec; |
220 | 220 |
std::vector<Cost> _cost_vec; |
221 | 221 |
IntVector _id_vec; |
222 | 222 |
CostArcMap _cost_map; |
223 | 223 |
CostNodeMap _pi_map; |
224 |
|
|
224 |
|
|
225 | 225 |
public: |
226 |
|
|
226 |
|
|
227 | 227 |
/// \brief Constant for infinite upper bounds (capacities). |
228 | 228 |
/// |
229 | 229 |
/// Constant for infinite upper bounds (capacities). |
230 | 230 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
231 | 231 |
/// \c std::numeric_limits<Value>::max() otherwise. |
232 | 232 |
const Value INF; |
233 | 233 |
|
234 | 234 |
public: |
235 | 235 |
|
236 | 236 |
/// \brief Constructor. |
237 | 237 |
/// |
238 | 238 |
/// The constructor of the class. |
... | ... |
@@ -357,25 +357,25 @@ |
357 | 357 |
/// \param k The required amount of flow from node \c s to node \c t |
358 | 358 |
/// (i.e. the supply of \c s and the demand of \c t). |
359 | 359 |
/// |
360 | 360 |
/// \return <tt>(*this)</tt> |
361 | 361 |
CycleCanceling& stSupply(const Node& s, const Node& t, Value k) { |
362 | 362 |
for (int i = 0; i != _res_node_num; ++i) { |
363 | 363 |
_supply[i] = 0; |
364 | 364 |
} |
365 | 365 |
_supply[_node_id[s]] = k; |
366 | 366 |
_supply[_node_id[t]] = -k; |
367 | 367 |
return *this; |
368 | 368 |
} |
369 |
|
|
369 |
|
|
370 | 370 |
/// @} |
371 | 371 |
|
372 | 372 |
/// \name Execution control |
373 | 373 |
/// The algorithm can be executed using \ref run(). |
374 | 374 |
|
375 | 375 |
/// @{ |
376 | 376 |
|
377 | 377 |
/// \brief Run the algorithm. |
378 | 378 |
/// |
379 | 379 |
/// This function runs the algorithm. |
380 | 380 |
/// The paramters can be specified using functions \ref lowerMap(), |
381 | 381 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
... | ... |
@@ -457,25 +457,25 @@ |
457 | 457 |
} |
458 | 458 |
int limit = _first_out[_root]; |
459 | 459 |
for (int j = 0; j != limit; ++j) { |
460 | 460 |
_lower[j] = 0; |
461 | 461 |
_upper[j] = INF; |
462 | 462 |
_cost[j] = _forward[j] ? 1 : -1; |
463 | 463 |
} |
464 | 464 |
for (int j = limit; j != _res_arc_num; ++j) { |
465 | 465 |
_lower[j] = 0; |
466 | 466 |
_upper[j] = INF; |
467 | 467 |
_cost[j] = 0; |
468 | 468 |
_cost[_reverse[j]] = 0; |
469 |
} |
|
469 |
} |
|
470 | 470 |
_have_lower = false; |
471 | 471 |
return *this; |
472 | 472 |
} |
473 | 473 |
|
474 | 474 |
/// \brief Reset the internal data structures and all the parameters |
475 | 475 |
/// that have been given before. |
476 | 476 |
/// |
477 | 477 |
/// This function resets the internal data structures and all the |
478 | 478 |
/// paramaters that have been given before using functions \ref lowerMap(), |
479 | 479 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(). |
480 | 480 |
/// |
481 | 481 |
/// It is useful for multiple \ref run() calls. Basically, all the given |
... | ... |
@@ -499,25 +499,25 @@ |
499 | 499 |
_root = _node_num; |
500 | 500 |
|
501 | 501 |
_first_out.resize(_res_node_num + 1); |
502 | 502 |
_forward.resize(_res_arc_num); |
503 | 503 |
_source.resize(_res_arc_num); |
504 | 504 |
_target.resize(_res_arc_num); |
505 | 505 |
_reverse.resize(_res_arc_num); |
506 | 506 |
|
507 | 507 |
_lower.resize(_res_arc_num); |
508 | 508 |
_upper.resize(_res_arc_num); |
509 | 509 |
_cost.resize(_res_arc_num); |
510 | 510 |
_supply.resize(_res_node_num); |
511 |
|
|
511 |
|
|
512 | 512 |
_res_cap.resize(_res_arc_num); |
513 | 513 |
_pi.resize(_res_node_num); |
514 | 514 |
|
515 | 515 |
_arc_vec.reserve(_res_arc_num); |
516 | 516 |
_cost_vec.reserve(_res_arc_num); |
517 | 517 |
_id_vec.reserve(_res_arc_num); |
518 | 518 |
|
519 | 519 |
// Copy the graph |
520 | 520 |
int i = 0, j = 0, k = 2 * _arc_num + _node_num; |
521 | 521 |
for (NodeIt n(_graph); n != INVALID; ++n, ++i) { |
522 | 522 |
_node_id[n] = i; |
523 | 523 |
} |
... | ... |
@@ -545,25 +545,25 @@ |
545 | 545 |
_target[k] = i; |
546 | 546 |
_reverse[k] = j; |
547 | 547 |
++j; ++k; |
548 | 548 |
} |
549 | 549 |
_first_out[i] = j; |
550 | 550 |
_first_out[_res_node_num] = k; |
551 | 551 |
for (ArcIt a(_graph); a != INVALID; ++a) { |
552 | 552 |
int fi = _arc_idf[a]; |
553 | 553 |
int bi = _arc_idb[a]; |
554 | 554 |
_reverse[fi] = bi; |
555 | 555 |
_reverse[bi] = fi; |
556 | 556 |
} |
557 |
|
|
557 |
|
|
558 | 558 |
// Reset parameters |
559 | 559 |
resetParams(); |
560 | 560 |
return *this; |
561 | 561 |
} |
562 | 562 |
|
563 | 563 |
/// @} |
564 | 564 |
|
565 | 565 |
/// \name Query Functions |
566 | 566 |
/// The results of the algorithm can be obtained using these |
567 | 567 |
/// functions.\n |
568 | 568 |
/// The \ref run() function must be called before using them. |
569 | 569 |
|
... | ... |
@@ -654,32 +654,32 @@ |
654 | 654 |
private: |
655 | 655 |
|
656 | 656 |
// Initialize the algorithm |
657 | 657 |
ProblemType init() { |
658 | 658 |
if (_res_node_num <= 1) return INFEASIBLE; |
659 | 659 |
|
660 | 660 |
// Check the sum of supply values |
661 | 661 |
_sum_supply = 0; |
662 | 662 |
for (int i = 0; i != _root; ++i) { |
663 | 663 |
_sum_supply += _supply[i]; |
664 | 664 |
} |
665 | 665 |
if (_sum_supply > 0) return INFEASIBLE; |
666 |
|
|
666 |
|
|
667 | 667 |
|
668 | 668 |
// Initialize vectors |
669 | 669 |
for (int i = 0; i != _res_node_num; ++i) { |
670 | 670 |
_pi[i] = 0; |
671 | 671 |
} |
672 | 672 |
ValueVector excess(_supply); |
673 |
|
|
673 |
|
|
674 | 674 |
// Remove infinite upper bounds and check negative arcs |
675 | 675 |
const Value MAX = std::numeric_limits<Value>::max(); |
676 | 676 |
int last_out; |
677 | 677 |
if (_have_lower) { |
678 | 678 |
for (int i = 0; i != _root; ++i) { |
679 | 679 |
last_out = _first_out[i+1]; |
680 | 680 |
for (int j = _first_out[i]; j != last_out; ++j) { |
681 | 681 |
if (_forward[j]) { |
682 | 682 |
Value c = _cost[j] < 0 ? _upper[j] : _lower[j]; |
683 | 683 |
if (c >= MAX) return UNBOUNDED; |
684 | 684 |
excess[i] -= c; |
685 | 685 |
excess[_target[j]] += c; |
... | ... |
@@ -761,28 +761,28 @@ |
761 | 761 |
Value fa = flow[a]; |
762 | 762 |
_res_cap[_arc_idf[a]] = cap[a] - fa; |
763 | 763 |
_res_cap[_arc_idb[a]] = fa; |
764 | 764 |
} |
765 | 765 |
for (int a = _first_out[_root]; a != _res_arc_num; ++a) { |
766 | 766 |
int ra = _reverse[a]; |
767 | 767 |
_res_cap[a] = 1; |
768 | 768 |
_res_cap[ra] = 0; |
769 | 769 |
_cost[a] = 0; |
770 | 770 |
_cost[ra] = 0; |
771 | 771 |
} |
772 | 772 |
} |
773 |
|
|
773 |
|
|
774 | 774 |
return OPTIMAL; |
775 | 775 |
} |
776 |
|
|
776 |
|
|
777 | 777 |
// Build a StaticDigraph structure containing the current |
778 | 778 |
// residual network |
779 | 779 |
void buildResidualNetwork() { |
780 | 780 |
_arc_vec.clear(); |
781 | 781 |
_cost_vec.clear(); |
782 | 782 |
_id_vec.clear(); |
783 | 783 |
for (int j = 0; j != _res_arc_num; ++j) { |
784 | 784 |
if (_res_cap[j] > 0) { |
785 | 785 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
786 | 786 |
_cost_vec.push_back(_cost[j]); |
787 | 787 |
_id_vec.push_back(j); |
788 | 788 |
} |
... | ... |
@@ -820,32 +820,32 @@ |
820 | 820 |
int limit = _first_out[_root]; |
821 | 821 |
for (int j = 0; j != limit; ++j) { |
822 | 822 |
if (!_forward[j]) _res_cap[j] += _lower[j]; |
823 | 823 |
} |
824 | 824 |
} |
825 | 825 |
} |
826 | 826 |
|
827 | 827 |
// Execute the "Simple Cycle Canceling" method |
828 | 828 |
void startSimpleCycleCanceling() { |
829 | 829 |
// Constants for computing the iteration limits |
830 | 830 |
const int BF_FIRST_LIMIT = 2; |
831 | 831 |
const double BF_LIMIT_FACTOR = 1.5; |
832 |
|
|
832 |
|
|
833 | 833 |
typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap; |
834 | 834 |
typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph; |
835 | 835 |
typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap; |
836 | 836 |
typedef typename BellmanFord<ResDigraph, CostArcMap> |
837 | 837 |
::template SetDistMap<CostNodeMap> |
838 | 838 |
::template SetPredMap<PredMap>::Create BF; |
839 |
|
|
839 |
|
|
840 | 840 |
// Build the residual network |
841 | 841 |
_arc_vec.clear(); |
842 | 842 |
_cost_vec.clear(); |
843 | 843 |
for (int j = 0; j != _res_arc_num; ++j) { |
844 | 844 |
_arc_vec.push_back(IntPair(_source[j], _target[j])); |
845 | 845 |
_cost_vec.push_back(_cost[j]); |
846 | 846 |
} |
847 | 847 |
_sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end()); |
848 | 848 |
|
849 | 849 |
FilterMap filter_map(_res_cap); |
850 | 850 |
ResDigraph rgr(_sgr, filter_map); |
851 | 851 |
std::vector<int> cycle; |
... | ... |
@@ -917,48 +917,48 @@ |
917 | 917 |
length_bound = static_cast<int>(length_bound * BF_LIMIT_FACTOR); |
918 | 918 |
} |
919 | 919 |
} |
920 | 920 |
} |
921 | 921 |
} |
922 | 922 |
|
923 | 923 |
// Execute the "Minimum Mean Cycle Canceling" method |
924 | 924 |
void startMinMeanCycleCanceling() { |
925 | 925 |
typedef SimplePath<StaticDigraph> SPath; |
926 | 926 |
typedef typename SPath::ArcIt SPathArcIt; |
927 | 927 |
typedef typename HowardMmc<StaticDigraph, CostArcMap> |
928 | 928 |
::template SetPath<SPath>::Create MMC; |
929 |
|
|
929 |
|
|
930 | 930 |
SPath cycle; |
931 | 931 |
MMC mmc(_sgr, _cost_map); |
932 | 932 |
mmc.cycle(cycle); |
933 | 933 |
buildResidualNetwork(); |
934 | 934 |
while (mmc.findCycleMean() && mmc.cycleCost() < 0) { |
935 | 935 |
// Find the cycle |
936 | 936 |
mmc.findCycle(); |
937 | 937 |
|
938 | 938 |
// Compute delta value |
939 | 939 |
Value delta = INF; |
940 | 940 |
for (SPathArcIt a(cycle); a != INVALID; ++a) { |
941 | 941 |
Value d = _res_cap[_id_vec[_sgr.id(a)]]; |
942 | 942 |
if (d < delta) delta = d; |
943 | 943 |
} |
944 | 944 |
|
945 | 945 |
// Augment along the cycle |
946 | 946 |
for (SPathArcIt a(cycle); a != INVALID; ++a) { |
947 | 947 |
int j = _id_vec[_sgr.id(a)]; |
948 | 948 |
_res_cap[j] -= delta; |
949 | 949 |
_res_cap[_reverse[j]] += delta; |
950 | 950 |
} |
951 | 951 |
|
952 |
// Rebuild the residual network |
|
952 |
// Rebuild the residual network |
|
953 | 953 |
buildResidualNetwork(); |
954 | 954 |
} |
955 | 955 |
} |
956 | 956 |
|
957 | 957 |
// Execute the "Cancel And Tighten" method |
958 | 958 |
void startCancelAndTighten() { |
959 | 959 |
// Constants for the min mean cycle computations |
960 | 960 |
const double LIMIT_FACTOR = 1.0; |
961 | 961 |
const int MIN_LIMIT = 5; |
962 | 962 |
|
963 | 963 |
// Contruct auxiliary data vectors |
964 | 964 |
DoubleVector pi(_res_node_num, 0.0); |
... | ... |
@@ -1134,37 +1134,37 @@ |
1134 | 1134 |
} else { |
1135 | 1135 |
typedef HowardMmc<StaticDigraph, CostArcMap> MMC; |
1136 | 1136 |
typedef typename BellmanFord<StaticDigraph, CostArcMap> |
1137 | 1137 |
::template SetDistMap<CostNodeMap>::Create BF; |
1138 | 1138 |
|
1139 | 1139 |
// Set epsilon to the minimum cycle mean |
1140 | 1140 |
buildResidualNetwork(); |
1141 | 1141 |
MMC mmc(_sgr, _cost_map); |
1142 | 1142 |
mmc.findCycleMean(); |
1143 | 1143 |
epsilon = -mmc.cycleMean(); |
1144 | 1144 |
Cost cycle_cost = mmc.cycleCost(); |
1145 | 1145 |
int cycle_size = mmc.cycleSize(); |
1146 |
|
|
1146 |
|
|
1147 | 1147 |
// Compute feasible potentials for the current epsilon |
1148 | 1148 |
for (int i = 0; i != int(_cost_vec.size()); ++i) { |
1149 | 1149 |
_cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost; |
1150 | 1150 |
} |
1151 | 1151 |
BF bf(_sgr, _cost_map); |
1152 | 1152 |
bf.distMap(_pi_map); |
1153 | 1153 |
bf.init(0); |
1154 | 1154 |
bf.start(); |
1155 | 1155 |
for (int u = 0; u != _res_node_num; ++u) { |
1156 | 1156 |
pi[u] = static_cast<double>(_pi[u]) / cycle_size; |
1157 | 1157 |
} |
1158 |
|
|
1158 |
|
|
1159 | 1159 |
iter = limit; |
1160 | 1160 |
} |
1161 | 1161 |
} |
1162 | 1162 |
} |
1163 | 1163 |
|
1164 | 1164 |
}; //class CycleCanceling |
1165 | 1165 |
|
1166 | 1166 |
///@} |
1167 | 1167 |
|
1168 | 1168 |
} //namespace lemon |
1169 | 1169 |
|
1170 | 1170 |
#endif //LEMON_CYCLE_CANCELING_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -73,25 +73,26 @@ |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
79 | 79 |
return new ProcessedMap(); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 |
///It must conform to |
|
85 |
///It must conform to |
|
86 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
86 | 87 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
87 | 88 |
///Instantiates a \c ReachedMap. |
88 | 89 |
|
89 | 90 |
///This function instantiates a \ref ReachedMap. |
90 | 91 |
///\param g is the digraph, to which |
91 | 92 |
///we would like to define the \ref ReachedMap. |
92 | 93 |
static ReachedMap *createReachedMap(const Digraph &g) |
93 | 94 |
{ |
94 | 95 |
return new ReachedMap(g); |
95 | 96 |
} |
96 | 97 |
|
97 | 98 |
///The type of the map that stores the distances of the nodes. |
... | ... |
@@ -261,25 +262,26 @@ |
261 | 262 |
typedef T ReachedMap; |
262 | 263 |
static ReachedMap *createReachedMap(const Digraph &) |
263 | 264 |
{ |
264 | 265 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
265 | 266 |
return 0; // ignore warnings |
266 | 267 |
} |
267 | 268 |
}; |
268 | 269 |
///\brief \ref named-templ-param "Named parameter" for setting |
269 | 270 |
///\c ReachedMap type. |
270 | 271 |
/// |
271 | 272 |
///\ref named-templ-param "Named parameter" for setting |
272 | 273 |
///\c ReachedMap type. |
273 |
///It must conform to |
|
274 |
///It must conform to |
|
275 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
274 | 276 |
template <class T> |
275 | 277 |
struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > { |
276 | 278 |
typedef Dfs< Digraph, SetReachedMapTraits<T> > Create; |
277 | 279 |
}; |
278 | 280 |
|
279 | 281 |
template <class T> |
280 | 282 |
struct SetProcessedMapTraits : public Traits { |
281 | 283 |
typedef T ProcessedMap; |
282 | 284 |
static ProcessedMap *createProcessedMap(const Digraph &) |
283 | 285 |
{ |
284 | 286 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
285 | 287 |
return 0; // ignore warnings |
... | ... |
@@ -793,25 +795,26 @@ |
793 | 795 |
#ifdef DOXYGEN |
794 | 796 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
795 | 797 |
#else |
796 | 798 |
static ProcessedMap *createProcessedMap(const Digraph &) |
797 | 799 |
#endif |
798 | 800 |
{ |
799 | 801 |
return new ProcessedMap(); |
800 | 802 |
} |
801 | 803 |
|
802 | 804 |
///The type of the map that indicates which nodes are reached. |
803 | 805 |
|
804 | 806 |
///The type of the map that indicates which nodes are reached. |
805 |
///It must conform to |
|
807 |
///It must conform to |
|
808 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
806 | 809 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
807 | 810 |
///Instantiates a ReachedMap. |
808 | 811 |
|
809 | 812 |
///This function instantiates a ReachedMap. |
810 | 813 |
///\param g is the digraph, to which |
811 | 814 |
///we would like to define the ReachedMap. |
812 | 815 |
static ReachedMap *createReachedMap(const Digraph &g) |
813 | 816 |
{ |
814 | 817 |
return new ReachedMap(g); |
815 | 818 |
} |
816 | 819 |
|
817 | 820 |
///The type of the map that stores the distances of the nodes. |
... | ... |
@@ -1198,25 +1201,26 @@ |
1198 | 1201 |
/// |
1199 | 1202 |
/// Default traits class of DfsVisit class. |
1200 | 1203 |
/// \tparam _Digraph The type of the digraph the algorithm runs on. |
1201 | 1204 |
template<class GR> |
1202 | 1205 |
struct DfsVisitDefaultTraits { |
1203 | 1206 |
|
1204 | 1207 |
/// \brief The type of the digraph the algorithm runs on. |
1205 | 1208 |
typedef GR Digraph; |
1206 | 1209 |
|
1207 | 1210 |
/// \brief The type of the map that indicates which nodes are reached. |
1208 | 1211 |
/// |
1209 | 1212 |
/// The type of the map that indicates which nodes are reached. |
1210 |
/// It must conform to the |
|
1213 |
/// It must conform to the |
|
1214 |
/// \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
1211 | 1215 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1212 | 1216 |
|
1213 | 1217 |
/// \brief Instantiates a ReachedMap. |
1214 | 1218 |
/// |
1215 | 1219 |
/// This function instantiates a ReachedMap. |
1216 | 1220 |
/// \param digraph is the digraph, to which |
1217 | 1221 |
/// we would like to define the ReachedMap. |
1218 | 1222 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1219 | 1223 |
return new ReachedMap(digraph); |
1220 | 1224 |
} |
1221 | 1225 |
|
1222 | 1226 |
}; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -52,25 +52,25 @@ |
52 | 52 |
///The number of nodes in the graph |
53 | 53 |
int nodeNum; |
54 | 54 |
///The number of edges in the graph |
55 | 55 |
int edgeNum; |
56 | 56 |
int lineShift; |
57 | 57 |
///Constructor. It sets the type to \c NONE. |
58 | 58 |
DimacsDescriptor() : type(NONE) {} |
59 | 59 |
}; |
60 | 60 |
|
61 | 61 |
///Discover the type of a DIMACS file |
62 | 62 |
|
63 | 63 |
///This function starts seeking the beginning of the given file for the |
64 |
///problem type and size info. |
|
64 |
///problem type and size info. |
|
65 | 65 |
///The found data is returned in a special struct that can be evaluated |
66 | 66 |
///and passed to the appropriate reader function. |
67 | 67 |
DimacsDescriptor dimacsType(std::istream& is) |
68 | 68 |
{ |
69 | 69 |
DimacsDescriptor r; |
70 | 70 |
std::string problem,str; |
71 | 71 |
char c; |
72 | 72 |
r.lineShift=0; |
73 | 73 |
while (is >> c) |
74 | 74 |
switch(c) |
75 | 75 |
{ |
76 | 76 |
case 'p': |
... | ... |
@@ -203,50 +203,50 @@ |
203 | 203 |
typename CapacityMap::Value _cap; |
204 | 204 |
std::string str; |
205 | 205 |
nodes.resize(desc.nodeNum + 1); |
206 | 206 |
for (int k = 1; k <= desc.nodeNum; ++k) { |
207 | 207 |
nodes[k] = g.addNode(); |
208 | 208 |
} |
209 | 209 |
typedef typename CapacityMap::Value Capacity; |
210 | 210 |
|
211 | 211 |
if(infty==0) |
212 | 212 |
infty = std::numeric_limits<Capacity>::has_infinity ? |
213 | 213 |
std::numeric_limits<Capacity>::infinity() : |
214 | 214 |
std::numeric_limits<Capacity>::max(); |
215 |
|
|
215 |
|
|
216 | 216 |
while (is >> c) { |
217 | 217 |
switch (c) { |
218 | 218 |
case 'c': // comment line |
219 | 219 |
getline(is, str); |
220 | 220 |
break; |
221 | 221 |
case 'n': // node definition line |
222 | 222 |
if (desc.type==DimacsDescriptor::SP) { // shortest path problem |
223 | 223 |
is >> i; |
224 | 224 |
getline(is, str); |
225 | 225 |
s = nodes[i]; |
226 | 226 |
} |
227 | 227 |
if (desc.type==DimacsDescriptor::MAX) { // max flow problem |
228 | 228 |
is >> i >> d; |
229 | 229 |
getline(is, str); |
230 | 230 |
if (d == 's') s = nodes[i]; |
231 | 231 |
if (d == 't') t = nodes[i]; |
232 | 232 |
} |
233 | 233 |
break; |
234 | 234 |
case 'a': // arc definition line |
235 | 235 |
if (desc.type==DimacsDescriptor::SP) { |
236 | 236 |
is >> i >> j >> _cap; |
237 | 237 |
getline(is, str); |
238 | 238 |
e = g.addArc(nodes[i], nodes[j]); |
239 | 239 |
capacity.set(e, _cap); |
240 |
} |
|
240 |
} |
|
241 | 241 |
else if (desc.type==DimacsDescriptor::MAX) { |
242 | 242 |
is >> i >> j >> _cap; |
243 | 243 |
getline(is, str); |
244 | 244 |
e = g.addArc(nodes[i], nodes[j]); |
245 | 245 |
if (_cap >= 0) |
246 | 246 |
capacity.set(e, _cap); |
247 | 247 |
else |
248 | 248 |
capacity.set(e, infty); |
249 | 249 |
} |
250 | 250 |
else { |
251 | 251 |
is >> i >> j; |
252 | 252 |
getline(is, str); |
... | ... |
@@ -353,29 +353,29 @@ |
353 | 353 |
_addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t, |
354 | 354 |
dummy<0> = 0) |
355 | 355 |
{ |
356 | 356 |
g.addEdge(s,t); |
357 | 357 |
} |
358 | 358 |
template<typename Graph> |
359 | 359 |
typename disable_if<lemon::UndirectedTagIndicator<Graph>,void>::type |
360 | 360 |
_addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t, |
361 | 361 |
dummy<1> = 1) |
362 | 362 |
{ |
363 | 363 |
g.addArc(s,t); |
364 | 364 |
} |
365 |
|
|
365 |
|
|
366 | 366 |
/// \brief DIMACS plain (di)graph reader function. |
367 | 367 |
/// |
368 | 368 |
/// This function reads a plain (di)graph without any designated nodes |
369 |
/// and maps (e.g. a matching instance) from DIMACS format, i.e. from |
|
369 |
/// and maps (e.g. a matching instance) from DIMACS format, i.e. from |
|
370 | 370 |
/// DIMACS files having a line starting with |
371 | 371 |
/// \code |
372 | 372 |
/// p mat |
373 | 373 |
/// \endcode |
374 | 374 |
/// At the beginning, \c g is cleared by \c g.clear(). |
375 | 375 |
/// |
376 | 376 |
/// If the file type was previously evaluated by dimacsType(), then |
377 | 377 |
/// the descriptor struct should be given by the \c dest parameter. |
378 | 378 |
template<typename Graph> |
379 | 379 |
void readDimacsMat(std::istream& is, Graph &g, |
380 | 380 |
DimacsDescriptor desc=DimacsDescriptor()) |
381 | 381 |
{ |
... | ... |
@@ -383,25 +383,25 @@ |
383 | 383 |
if(desc.type!=DimacsDescriptor::MAT) |
384 | 384 |
throw FormatError("Problem type mismatch"); |
385 | 385 |
|
386 | 386 |
g.clear(); |
387 | 387 |
std::vector<typename Graph::Node> nodes; |
388 | 388 |
char c; |
389 | 389 |
int i, j; |
390 | 390 |
std::string str; |
391 | 391 |
nodes.resize(desc.nodeNum + 1); |
392 | 392 |
for (int k = 1; k <= desc.nodeNum; ++k) { |
393 | 393 |
nodes[k] = g.addNode(); |
394 | 394 |
} |
395 |
|
|
395 |
|
|
396 | 396 |
while (is >> c) { |
397 | 397 |
switch (c) { |
398 | 398 |
case 'c': // comment line |
399 | 399 |
getline(is, str); |
400 | 400 |
break; |
401 | 401 |
case 'n': // node definition line |
402 | 402 |
break; |
403 | 403 |
case 'a': // arc definition line |
404 | 404 |
is >> i >> j; |
405 | 405 |
getline(is, str); |
406 | 406 |
_addArcEdge(g,nodes[i], nodes[j]); |
407 | 407 |
break; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_EULER_H |
20 | 20 |
#define LEMON_EULER_H |
21 | 21 |
|
22 | 22 |
#include<lemon/core.h> |
23 | 23 |
#include<lemon/adaptors.h> |
24 | 24 |
#include<lemon/connectivity.h> |
25 | 25 |
#include <list> |
26 | 26 |
|
27 | 27 |
/// \ingroup graph_properties |
28 | 28 |
/// \file |
29 |
/// \brief Euler tour iterators and a function for checking the \e Eulerian |
|
29 |
/// \brief Euler tour iterators and a function for checking the \e Eulerian |
|
30 | 30 |
/// property. |
31 | 31 |
/// |
32 | 32 |
///This file provides Euler tour iterators and a function to check |
33 | 33 |
///if a (di)graph is \e Eulerian. |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
///Euler tour iterator for digraphs. |
38 | 38 |
|
39 | 39 |
/// \ingroup graph_prop |
40 | 40 |
///This iterator provides an Euler tour (Eulerian circuit) of a \e directed |
41 | 41 |
///graph (if there exists) and it converts to the \c Arc type of the digraph. |
42 | 42 |
/// |
43 | 43 |
///For example, if the given digraph has an Euler tour (i.e it has only one |
44 |
///non-trivial component and the in-degree is equal to the out-degree |
|
44 |
///non-trivial component and the in-degree is equal to the out-degree |
|
45 | 45 |
///for all nodes), then the following code will put the arcs of \c g |
46 | 46 |
///to the vector \c et according to an Euler tour of \c g. |
47 | 47 |
///\code |
48 | 48 |
/// std::vector<ListDigraph::Arc> et; |
49 | 49 |
/// for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e) |
50 | 50 |
/// et.push_back(e); |
51 | 51 |
///\endcode |
52 | 52 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
53 | 53 |
///or not contain all arcs. |
54 | 54 |
///\sa EulerIt |
55 | 55 |
template<typename GR> |
56 | 56 |
class DiEulerIt |
... | ... |
@@ -129,34 +129,34 @@ |
129 | 129 |
++(*this); |
130 | 130 |
return e; |
131 | 131 |
} |
132 | 132 |
}; |
133 | 133 |
|
134 | 134 |
///Euler tour iterator for graphs. |
135 | 135 |
|
136 | 136 |
/// \ingroup graph_properties |
137 | 137 |
///This iterator provides an Euler tour (Eulerian circuit) of an |
138 | 138 |
///\e undirected graph (if there exists) and it converts to the \c Arc |
139 | 139 |
///and \c Edge types of the graph. |
140 | 140 |
/// |
141 |
///For example, if the given graph has an Euler tour (i.e it has only one |
|
141 |
///For example, if the given graph has an Euler tour (i.e it has only one |
|
142 | 142 |
///non-trivial component and the degree of each node is even), |
143 | 143 |
///the following code will print the arc IDs according to an |
144 | 144 |
///Euler tour of \c g. |
145 | 145 |
///\code |
146 | 146 |
/// for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) { |
147 | 147 |
/// std::cout << g.id(Edge(e)) << std::eol; |
148 | 148 |
/// } |
149 | 149 |
///\endcode |
150 |
///Although this iterator is for undirected graphs, it still returns |
|
150 |
///Although this iterator is for undirected graphs, it still returns |
|
151 | 151 |
///arcs in order to indicate the direction of the tour. |
152 | 152 |
///(But arcs convert to edges, of course.) |
153 | 153 |
/// |
154 | 154 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
155 | 155 |
///or not contain all edges. |
156 | 156 |
template<typename GR> |
157 | 157 |
class EulerIt |
158 | 158 |
{ |
159 | 159 |
typedef typename GR::Node Node; |
160 | 160 |
typedef typename GR::NodeIt NodeIt; |
161 | 161 |
typedef typename GR::Arc Arc; |
162 | 162 |
typedef typename GR::Edge Edge; |
... | ... |
@@ -224,25 +224,25 @@ |
224 | 224 |
Node n=g.target(narc[s]); |
225 | 225 |
++narc[s]; |
226 | 226 |
s=n; |
227 | 227 |
} |
228 | 228 |
} |
229 | 229 |
return *this; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
///Postfix incrementation |
233 | 233 |
|
234 | 234 |
/// Postfix incrementation. |
235 | 235 |
/// |
236 |
///\warning This incrementation returns an \c Arc (which converts to |
|
236 |
///\warning This incrementation returns an \c Arc (which converts to |
|
237 | 237 |
///an \c Edge), not an \ref EulerIt, as one may expect. |
238 | 238 |
Arc operator++(int) |
239 | 239 |
{ |
240 | 240 |
Arc e=*this; |
241 | 241 |
++(*this); |
242 | 242 |
return e; |
243 | 243 |
} |
244 | 244 |
}; |
245 | 245 |
|
246 | 246 |
|
247 | 247 |
///Check if the given graph is Eulerian |
248 | 248 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -2000,25 +2000,25 @@ |
2000 | 2000 |
} else { |
2001 | 2001 |
augmentOnEdge(e); |
2002 | 2002 |
unmatched -= 2; |
2003 | 2003 |
} |
2004 | 2004 |
} break; |
2005 | 2005 |
} |
2006 | 2006 |
} |
2007 | 2007 |
return true; |
2008 | 2008 |
} |
2009 | 2009 |
|
2010 | 2010 |
/// \brief Run the algorithm. |
2011 | 2011 |
/// |
2012 |
/// This method runs the \c %MaxWeightedPerfectFractionalMatching |
|
2012 |
/// This method runs the \c %MaxWeightedPerfectFractionalMatching |
|
2013 | 2013 |
/// algorithm. |
2014 | 2014 |
/// |
2015 | 2015 |
/// \note mwfm.run() is just a shortcut of the following code. |
2016 | 2016 |
/// \code |
2017 | 2017 |
/// mwpfm.init(); |
2018 | 2018 |
/// mwpfm.start(); |
2019 | 2019 |
/// \endcode |
2020 | 2020 |
bool run() { |
2021 | 2021 |
init(); |
2022 | 2022 |
return start(); |
2023 | 2023 |
} |
2024 | 2024 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -194,34 +194,34 @@ |
194 | 194 |
/// rebuilds the structure, therefore the maps of the digraph will be |
195 | 195 |
/// reallocated automatically and the previous values will be lost. |
196 | 196 |
void resize(int n) { |
197 | 197 |
Parent::notifier(Arc()).clear(); |
198 | 198 |
Parent::notifier(Node()).clear(); |
199 | 199 |
construct(n); |
200 | 200 |
Parent::notifier(Node()).build(); |
201 | 201 |
Parent::notifier(Arc()).build(); |
202 | 202 |
} |
203 | 203 |
|
204 | 204 |
/// \brief Returns the node with the given index. |
205 | 205 |
/// |
206 |
/// Returns the node with the given index. Since this structure is |
|
206 |
/// Returns the node with the given index. Since this structure is |
|
207 | 207 |
/// completely static, the nodes can be indexed with integers from |
208 | 208 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
209 | 209 |
/// The index of a node is the same as its ID. |
210 | 210 |
/// \sa index() |
211 | 211 |
Node operator()(int ix) const { return Parent::operator()(ix); } |
212 | 212 |
|
213 | 213 |
/// \brief Returns the index of the given node. |
214 | 214 |
/// |
215 |
/// Returns the index of the given node. Since this structure is |
|
215 |
/// Returns the index of the given node. Since this structure is |
|
216 | 216 |
/// completely static, the nodes can be indexed with integers from |
217 | 217 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
218 | 218 |
/// The index of a node is the same as its ID. |
219 | 219 |
/// \sa operator()() |
220 | 220 |
static int index(const Node& node) { return Parent::index(node); } |
221 | 221 |
|
222 | 222 |
/// \brief Returns the arc connecting the given nodes. |
223 | 223 |
/// |
224 | 224 |
/// Returns the arc connecting the given nodes. |
225 | 225 |
Arc arc(Node u, Node v) const { |
226 | 226 |
return Parent::arc(u, v); |
227 | 227 |
} |
... | ... |
@@ -573,34 +573,34 @@ |
573 | 573 |
void resize(int n) { |
574 | 574 |
Parent::notifier(Arc()).clear(); |
575 | 575 |
Parent::notifier(Edge()).clear(); |
576 | 576 |
Parent::notifier(Node()).clear(); |
577 | 577 |
construct(n); |
578 | 578 |
Parent::notifier(Node()).build(); |
579 | 579 |
Parent::notifier(Edge()).build(); |
580 | 580 |
Parent::notifier(Arc()).build(); |
581 | 581 |
} |
582 | 582 |
|
583 | 583 |
/// \brief Returns the node with the given index. |
584 | 584 |
/// |
585 |
/// Returns the node with the given index. Since this structure is |
|
585 |
/// Returns the node with the given index. Since this structure is |
|
586 | 586 |
/// completely static, the nodes can be indexed with integers from |
587 | 587 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
588 | 588 |
/// The index of a node is the same as its ID. |
589 | 589 |
/// \sa index() |
590 | 590 |
Node operator()(int ix) const { return Parent::operator()(ix); } |
591 | 591 |
|
592 | 592 |
/// \brief Returns the index of the given node. |
593 | 593 |
/// |
594 |
/// Returns the index of the given node. Since this structure is |
|
594 |
/// Returns the index of the given node. Since this structure is |
|
595 | 595 |
/// completely static, the nodes can be indexed with integers from |
596 | 596 |
/// the range <tt>[0..nodeNum()-1]</tt>. |
597 | 597 |
/// The index of a node is the same as its ID. |
598 | 598 |
/// \sa operator()() |
599 | 599 |
static int index(const Node& node) { return Parent::index(node); } |
600 | 600 |
|
601 | 601 |
/// \brief Returns the arc connecting the given nodes. |
602 | 602 |
/// |
603 | 603 |
/// Returns the arc connecting the given nodes. |
604 | 604 |
Arc arc(Node s, Node t) const { |
605 | 605 |
return Parent::arc(s, t); |
606 | 606 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -50,38 +50,38 @@ |
50 | 50 |
int GlpkBase::_addCol() { |
51 | 51 |
int i = glp_add_cols(lp, 1); |
52 | 52 |
glp_set_col_bnds(lp, i, GLP_FR, 0.0, 0.0); |
53 | 53 |
return i; |
54 | 54 |
} |
55 | 55 |
|
56 | 56 |
int GlpkBase::_addRow() { |
57 | 57 |
int i = glp_add_rows(lp, 1); |
58 | 58 |
glp_set_row_bnds(lp, i, GLP_FR, 0.0, 0.0); |
59 | 59 |
return i; |
60 | 60 |
} |
61 | 61 |
|
62 |
int GlpkBase::_addRow(Value lo, ExprIterator b, |
|
62 |
int GlpkBase::_addRow(Value lo, ExprIterator b, |
|
63 | 63 |
ExprIterator e, Value up) { |
64 | 64 |
int i = glp_add_rows(lp, 1); |
65 | 65 |
|
66 | 66 |
if (lo == -INF) { |
67 | 67 |
if (up == INF) { |
68 | 68 |
glp_set_row_bnds(lp, i, GLP_FR, lo, up); |
69 | 69 |
} else { |
70 | 70 |
glp_set_row_bnds(lp, i, GLP_UP, lo, up); |
71 |
} |
|
71 |
} |
|
72 | 72 |
} else { |
73 | 73 |
if (up == INF) { |
74 | 74 |
glp_set_row_bnds(lp, i, GLP_LO, lo, up); |
75 |
} else if (lo != up) { |
|
75 |
} else if (lo != up) { |
|
76 | 76 |
glp_set_row_bnds(lp, i, GLP_DB, lo, up); |
77 | 77 |
} else { |
78 | 78 |
glp_set_row_bnds(lp, i, GLP_FX, lo, up); |
79 | 79 |
} |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
std::vector<int> indexes; |
83 | 83 |
std::vector<Value> values; |
84 | 84 |
|
85 | 85 |
indexes.push_back(0); |
86 | 86 |
values.push_back(0); |
87 | 87 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -21,34 +21,34 @@ |
21 | 21 |
|
22 | 22 |
///\file |
23 | 23 |
///\brief Header of the LEMON-GLPK lp solver interface. |
24 | 24 |
///\ingroup lp_group |
25 | 25 |
|
26 | 26 |
#include <lemon/lp_base.h> |
27 | 27 |
|
28 | 28 |
namespace lemon { |
29 | 29 |
|
30 | 30 |
namespace _solver_bits { |
31 | 31 |
class VoidPtr { |
32 | 32 |
private: |
33 |
void *_ptr; |
|
33 |
void *_ptr; |
|
34 | 34 |
public: |
35 | 35 |
VoidPtr() : _ptr(0) {} |
36 | 36 |
|
37 | 37 |
template <typename T> |
38 | 38 |
VoidPtr(T* ptr) : _ptr(reinterpret_cast<void*>(ptr)) {} |
39 | 39 |
|
40 | 40 |
template <typename T> |
41 |
VoidPtr& operator=(T* ptr) { |
|
42 |
_ptr = reinterpret_cast<void*>(ptr); |
|
41 |
VoidPtr& operator=(T* ptr) { |
|
42 |
_ptr = reinterpret_cast<void*>(ptr); |
|
43 | 43 |
return *this; |
44 | 44 |
} |
45 | 45 |
|
46 | 46 |
template <typename T> |
47 | 47 |
operator T*() const { return reinterpret_cast<T*>(_ptr); } |
48 | 48 |
}; |
49 | 49 |
} |
50 | 50 |
|
51 | 51 |
/// \brief Base interface for the GLPK LP and MIP solver |
52 | 52 |
/// |
53 | 53 |
/// This class implements the common interface of the GLPK LP and MIP solver. |
54 | 54 |
/// \ingroup lp_group |
... | ... |
@@ -115,31 +115,31 @@ |
115 | 115 |
|
116 | 116 |
virtual void _messageLevel(MessageLevel level); |
117 | 117 |
|
118 | 118 |
private: |
119 | 119 |
|
120 | 120 |
static void freeEnv(); |
121 | 121 |
|
122 | 122 |
struct FreeEnvHelper { |
123 | 123 |
~FreeEnvHelper() { |
124 | 124 |
freeEnv(); |
125 | 125 |
} |
126 | 126 |
}; |
127 |
|
|
127 |
|
|
128 | 128 |
static FreeEnvHelper freeEnvHelper; |
129 | 129 |
|
130 | 130 |
protected: |
131 |
|
|
131 |
|
|
132 | 132 |
int _message_level; |
133 |
|
|
133 |
|
|
134 | 134 |
public: |
135 | 135 |
|
136 | 136 |
///Pointer to the underlying GLPK data structure. |
137 | 137 |
_solver_bits::VoidPtr lpx() {return lp;} |
138 | 138 |
///Const pointer to the underlying GLPK data structure. |
139 | 139 |
_solver_bits::VoidPtr lpx() const {return lp;} |
140 | 140 |
|
141 | 141 |
///Returns the constraint identifier understood by GLPK. |
142 | 142 |
int lpxRow(Row r) const { return rows(id(r)); } |
143 | 143 |
|
144 | 144 |
///Returns the variable identifier understood by GLPK. |
145 | 145 |
int lpxCol(Col c) const { return cols(id(c)); } |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GOMORY_HU_TREE_H |
20 | 20 |
#define LEMON_GOMORY_HU_TREE_H |
21 | 21 |
|
22 | 22 |
#include <limits> |
23 | 23 |
|
24 | 24 |
#include <lemon/core.h> |
25 | 25 |
#include <lemon/preflow.h> |
26 | 26 |
#include <lemon/concept_check.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
/// \ingroup min_cut |
30 |
/// \file |
|
30 |
/// \file |
|
31 | 31 |
/// \brief Gomory-Hu cut tree in graphs. |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
/// \ingroup min_cut |
36 | 36 |
/// |
37 | 37 |
/// \brief Gomory-Hu cut tree algorithm |
38 | 38 |
/// |
39 | 39 |
/// The Gomory-Hu tree is a tree on the node set of a given graph, but it |
40 | 40 |
/// may contain edges which are not in the original graph. It has the |
41 |
/// property that the minimum capacity edge of the path between two nodes |
|
41 |
/// property that the minimum capacity edge of the path between two nodes |
|
42 | 42 |
/// in this tree has the same weight as the minimum cut in the graph |
43 | 43 |
/// between these nodes. Moreover the components obtained by removing |
44 | 44 |
/// this edge from the tree determine the corresponding minimum cut. |
45 | 45 |
/// Therefore once this tree is computed, the minimum cut between any pair |
46 | 46 |
/// of nodes can easily be obtained. |
47 |
/// |
|
47 |
/// |
|
48 | 48 |
/// The algorithm calculates \e n-1 distinct minimum cuts (currently with |
49 | 49 |
/// the \ref Preflow algorithm), thus it has \f$O(n^3\sqrt{e})\f$ overall |
50 | 50 |
/// time complexity. It calculates a rooted Gomory-Hu tree. |
51 | 51 |
/// The structure of the tree and the edge weights can be |
52 | 52 |
/// obtained using \c predNode(), \c predValue() and \c rootDist(). |
53 | 53 |
/// The functions \c minCutMap() and \c minCutValue() calculate |
54 | 54 |
/// the minimum cut and the minimum cut value between any two nodes |
55 | 55 |
/// in the graph. You can also list (iterate on) the nodes and the |
56 | 56 |
/// edges of the cuts using \c MinCutNodeIt and \c MinCutEdgeIt. |
57 | 57 |
/// |
58 | 58 |
/// \tparam GR The type of the undirected graph the algorithm runs on. |
59 | 59 |
/// \tparam CAP The type of the edge map containing the capacities. |
60 | 60 |
/// The default map type is \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>". |
61 | 61 |
#ifdef DOXYGEN |
62 | 62 |
template <typename GR, |
63 |
|
|
63 |
typename CAP> |
|
64 | 64 |
#else |
65 | 65 |
template <typename GR, |
66 |
|
|
66 |
typename CAP = typename GR::template EdgeMap<int> > |
|
67 | 67 |
#endif |
68 | 68 |
class GomoryHu { |
69 | 69 |
public: |
70 | 70 |
|
71 | 71 |
/// The graph type of the algorithm |
72 | 72 |
typedef GR Graph; |
73 | 73 |
/// The capacity map type of the algorithm |
74 | 74 |
typedef CAP Capacity; |
75 | 75 |
/// The value type of capacities |
76 | 76 |
typedef typename Capacity::Value Value; |
77 |
|
|
77 |
|
|
78 | 78 |
private: |
79 | 79 |
|
80 | 80 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
81 | 81 |
|
82 | 82 |
const Graph& _graph; |
83 | 83 |
const Capacity& _capacity; |
84 | 84 |
|
85 | 85 |
Node _root; |
86 | 86 |
typename Graph::template NodeMap<Node>* _pred; |
87 | 87 |
typename Graph::template NodeMap<Value>* _weight; |
88 | 88 |
typename Graph::template NodeMap<int>* _order; |
89 | 89 |
|
90 | 90 |
void createStructures() { |
91 | 91 |
if (!_pred) { |
92 |
|
|
92 |
_pred = new typename Graph::template NodeMap<Node>(_graph); |
|
93 | 93 |
} |
94 | 94 |
if (!_weight) { |
95 |
|
|
95 |
_weight = new typename Graph::template NodeMap<Value>(_graph); |
|
96 | 96 |
} |
97 | 97 |
if (!_order) { |
98 |
|
|
98 |
_order = new typename Graph::template NodeMap<int>(_graph); |
|
99 | 99 |
} |
100 | 100 |
} |
101 | 101 |
|
102 | 102 |
void destroyStructures() { |
103 | 103 |
if (_pred) { |
104 |
|
|
104 |
delete _pred; |
|
105 | 105 |
} |
106 | 106 |
if (_weight) { |
107 |
|
|
107 |
delete _weight; |
|
108 | 108 |
} |
109 | 109 |
if (_order) { |
110 |
|
|
110 |
delete _order; |
|
111 | 111 |
} |
112 | 112 |
} |
113 |
|
|
113 |
|
|
114 | 114 |
public: |
115 | 115 |
|
116 | 116 |
/// \brief Constructor |
117 | 117 |
/// |
118 | 118 |
/// Constructor. |
119 | 119 |
/// \param graph The undirected graph the algorithm runs on. |
120 | 120 |
/// \param capacity The edge capacity map. |
121 |
GomoryHu(const Graph& graph, const Capacity& capacity) |
|
121 |
GomoryHu(const Graph& graph, const Capacity& capacity) |
|
122 | 122 |
: _graph(graph), _capacity(capacity), |
123 |
|
|
123 |
_pred(0), _weight(0), _order(0) |
|
124 | 124 |
{ |
125 | 125 |
checkConcept<concepts::ReadMap<Edge, Value>, Capacity>(); |
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
|
129 | 129 |
/// \brief Destructor |
130 | 130 |
/// |
131 | 131 |
/// Destructor. |
132 | 132 |
~GomoryHu() { |
133 | 133 |
destroyStructures(); |
134 | 134 |
} |
135 | 135 |
|
136 | 136 |
private: |
137 |
|
|
137 |
|
|
138 | 138 |
// Initialize the internal data structures |
139 | 139 |
void init() { |
140 | 140 |
createStructures(); |
141 | 141 |
|
142 | 142 |
_root = NodeIt(_graph); |
143 | 143 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
144 | 144 |
(*_pred)[n] = _root; |
145 | 145 |
(*_order)[n] = -1; |
146 | 146 |
} |
147 | 147 |
(*_pred)[_root] = INVALID; |
148 |
(*_weight)[_root] = std::numeric_limits<Value>::max(); |
|
148 |
(*_weight)[_root] = std::numeric_limits<Value>::max(); |
|
149 | 149 |
} |
150 | 150 |
|
151 | 151 |
|
152 | 152 |
// Start the algorithm |
153 | 153 |
void start() { |
154 | 154 |
Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID); |
155 | 155 |
|
156 | 156 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
157 |
|
|
157 |
if (n == _root) continue; |
|
158 | 158 |
|
159 |
Node pn = (*_pred)[n]; |
|
160 |
fa.source(n); |
|
161 |
|
|
159 |
Node pn = (*_pred)[n]; |
|
160 |
fa.source(n); |
|
161 |
fa.target(pn); |
|
162 | 162 |
|
163 |
|
|
163 |
fa.runMinCut(); |
|
164 | 164 |
|
165 |
|
|
165 |
(*_weight)[n] = fa.flowValue(); |
|
166 | 166 |
|
167 |
for (NodeIt nn(_graph); nn != INVALID; ++nn) { |
|
168 |
if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) { |
|
169 |
(*_pred)[nn] = n; |
|
170 |
} |
|
171 |
} |
|
172 |
if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) { |
|
173 |
(*_pred)[n] = (*_pred)[pn]; |
|
174 |
(*_pred)[pn] = n; |
|
175 |
(*_weight)[n] = (*_weight)[pn]; |
|
176 |
(*_weight)[pn] = fa.flowValue(); |
|
177 |
|
|
167 |
for (NodeIt nn(_graph); nn != INVALID; ++nn) { |
|
168 |
if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) { |
|
169 |
(*_pred)[nn] = n; |
|
170 |
} |
|
171 |
} |
|
172 |
if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) { |
|
173 |
(*_pred)[n] = (*_pred)[pn]; |
|
174 |
(*_pred)[pn] = n; |
|
175 |
(*_weight)[n] = (*_weight)[pn]; |
|
176 |
(*_weight)[pn] = fa.flowValue(); |
|
177 |
} |
|
178 | 178 |
} |
179 | 179 |
|
180 | 180 |
(*_order)[_root] = 0; |
181 | 181 |
int index = 1; |
182 | 182 |
|
183 | 183 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
184 |
std::vector<Node> st; |
|
185 |
Node nn = n; |
|
186 |
while ((*_order)[nn] == -1) { |
|
187 |
st.push_back(nn); |
|
188 |
nn = (*_pred)[nn]; |
|
189 |
} |
|
190 |
while (!st.empty()) { |
|
191 |
(*_order)[st.back()] = index++; |
|
192 |
st.pop_back(); |
|
193 |
} |
|
184 |
std::vector<Node> st; |
|
185 |
Node nn = n; |
|
186 |
while ((*_order)[nn] == -1) { |
|
187 |
st.push_back(nn); |
|
188 |
nn = (*_pred)[nn]; |
|
189 |
} |
|
190 |
while (!st.empty()) { |
|
191 |
(*_order)[st.back()] = index++; |
|
192 |
st.pop_back(); |
|
193 |
} |
|
194 | 194 |
} |
195 | 195 |
} |
196 | 196 |
|
197 | 197 |
public: |
198 | 198 |
|
199 | 199 |
///\name Execution Control |
200 |
|
|
200 |
|
|
201 | 201 |
///@{ |
202 | 202 |
|
203 | 203 |
/// \brief Run the Gomory-Hu algorithm. |
204 | 204 |
/// |
205 | 205 |
/// This function runs the Gomory-Hu algorithm. |
206 | 206 |
void run() { |
207 | 207 |
init(); |
208 | 208 |
start(); |
209 | 209 |
} |
210 |
|
|
210 |
|
|
211 | 211 |
/// @} |
212 | 212 |
|
213 | 213 |
///\name Query Functions |
214 | 214 |
///The results of the algorithm can be obtained using these |
215 | 215 |
///functions.\n |
216 | 216 |
///\ref run() should be called before using them.\n |
217 | 217 |
///See also \ref MinCutNodeIt and \ref MinCutEdgeIt. |
218 | 218 |
|
219 | 219 |
///@{ |
220 | 220 |
|
221 | 221 |
/// \brief Return the predecessor node in the Gomory-Hu tree. |
222 | 222 |
/// |
223 | 223 |
/// This function returns the predecessor node of the given node |
224 | 224 |
/// in the Gomory-Hu tree. |
225 | 225 |
/// If \c node is the root of the tree, then it returns \c INVALID. |
226 | 226 |
/// |
227 | 227 |
/// \pre \ref run() must be called before using this function. |
228 | 228 |
Node predNode(const Node& node) const { |
229 | 229 |
return (*_pred)[node]; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
/// \brief Return the weight of the predecessor edge in the |
233 | 233 |
/// Gomory-Hu tree. |
234 | 234 |
/// |
235 |
/// This function returns the weight of the predecessor edge of the |
|
235 |
/// This function returns the weight of the predecessor edge of the |
|
236 | 236 |
/// given node in the Gomory-Hu tree. |
237 | 237 |
/// If \c node is the root of the tree, the result is undefined. |
238 | 238 |
/// |
239 | 239 |
/// \pre \ref run() must be called before using this function. |
240 | 240 |
Value predValue(const Node& node) const { |
241 | 241 |
return (*_weight)[node]; |
242 | 242 |
} |
243 | 243 |
|
244 | 244 |
/// \brief Return the distance from the root node in the Gomory-Hu tree. |
245 | 245 |
/// |
246 | 246 |
/// This function returns the distance of the given node from the root |
247 | 247 |
/// node in the Gomory-Hu tree. |
248 | 248 |
/// |
249 | 249 |
/// \pre \ref run() must be called before using this function. |
250 | 250 |
int rootDist(const Node& node) const { |
251 | 251 |
return (*_order)[node]; |
252 | 252 |
} |
253 | 253 |
|
254 | 254 |
/// \brief Return the minimum cut value between two nodes |
255 | 255 |
/// |
256 | 256 |
/// This function returns the minimum cut value between the nodes |
257 |
/// \c s and \c t. |
|
257 |
/// \c s and \c t. |
|
258 | 258 |
/// It finds the nearest common ancestor of the given nodes in the |
259 | 259 |
/// Gomory-Hu tree and calculates the minimum weight edge on the |
260 | 260 |
/// paths to the ancestor. |
261 | 261 |
/// |
262 | 262 |
/// \pre \ref run() must be called before using this function. |
263 | 263 |
Value minCutValue(const Node& s, const Node& t) const { |
264 | 264 |
Node sn = s, tn = t; |
265 | 265 |
Value value = std::numeric_limits<Value>::max(); |
266 |
|
|
266 |
|
|
267 | 267 |
while (sn != tn) { |
268 |
if ((*_order)[sn] < (*_order)[tn]) { |
|
269 |
if ((*_weight)[tn] <= value) value = (*_weight)[tn]; |
|
270 |
tn = (*_pred)[tn]; |
|
271 |
} else { |
|
272 |
if ((*_weight)[sn] <= value) value = (*_weight)[sn]; |
|
273 |
sn = (*_pred)[sn]; |
|
274 |
|
|
268 |
if ((*_order)[sn] < (*_order)[tn]) { |
|
269 |
if ((*_weight)[tn] <= value) value = (*_weight)[tn]; |
|
270 |
tn = (*_pred)[tn]; |
|
271 |
} else { |
|
272 |
if ((*_weight)[sn] <= value) value = (*_weight)[sn]; |
|
273 |
sn = (*_pred)[sn]; |
|
274 |
} |
|
275 | 275 |
} |
276 | 276 |
return value; |
277 | 277 |
} |
278 | 278 |
|
279 | 279 |
/// \brief Return the minimum cut between two nodes |
280 | 280 |
/// |
281 | 281 |
/// This function returns the minimum cut between the nodes \c s and \c t |
282 | 282 |
/// in the \c cutMap parameter by setting the nodes in the component of |
283 | 283 |
/// \c s to \c true and the other nodes to \c false. |
284 | 284 |
/// |
285 | 285 |
/// For higher level interfaces see MinCutNodeIt and MinCutEdgeIt. |
286 | 286 |
/// |
... | ... |
@@ -293,72 +293,72 @@ |
293 | 293 |
/// \return The value of the minimum cut between \c s and \c t. |
294 | 294 |
/// |
295 | 295 |
/// \pre \ref run() must be called before using this function. |
296 | 296 |
template <typename CutMap> |
297 | 297 |
Value minCutMap(const Node& s, |
298 | 298 |
const Node& t, |
299 | 299 |
CutMap& cutMap |
300 | 300 |
) const { |
301 | 301 |
Node sn = s, tn = t; |
302 | 302 |
bool s_root=false; |
303 | 303 |
Node rn = INVALID; |
304 | 304 |
Value value = std::numeric_limits<Value>::max(); |
305 |
|
|
305 |
|
|
306 | 306 |
while (sn != tn) { |
307 |
if ((*_order)[sn] < (*_order)[tn]) { |
|
308 |
if ((*_weight)[tn] <= value) { |
|
309 |
|
|
307 |
if ((*_order)[sn] < (*_order)[tn]) { |
|
308 |
if ((*_weight)[tn] <= value) { |
|
309 |
rn = tn; |
|
310 | 310 |
s_root = false; |
311 |
value = (*_weight)[tn]; |
|
312 |
} |
|
313 |
tn = (*_pred)[tn]; |
|
314 |
} else { |
|
315 |
if ((*_weight)[sn] <= value) { |
|
316 |
rn = sn; |
|
311 |
value = (*_weight)[tn]; |
|
312 |
} |
|
313 |
tn = (*_pred)[tn]; |
|
314 |
} else { |
|
315 |
if ((*_weight)[sn] <= value) { |
|
316 |
rn = sn; |
|
317 | 317 |
s_root = true; |
318 |
value = (*_weight)[sn]; |
|
319 |
} |
|
320 |
sn = (*_pred)[sn]; |
|
321 |
} |
|
318 |
value = (*_weight)[sn]; |
|
319 |
} |
|
320 |
sn = (*_pred)[sn]; |
|
321 |
} |
|
322 | 322 |
} |
323 | 323 |
|
324 | 324 |
typename Graph::template NodeMap<bool> reached(_graph, false); |
325 | 325 |
reached[_root] = true; |
326 | 326 |
cutMap.set(_root, !s_root); |
327 | 327 |
reached[rn] = true; |
328 | 328 |
cutMap.set(rn, s_root); |
329 | 329 |
|
330 | 330 |
std::vector<Node> st; |
331 | 331 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
332 |
|
|
332 |
st.clear(); |
|
333 | 333 |
Node nn = n; |
334 |
while (!reached[nn]) { |
|
335 |
st.push_back(nn); |
|
336 |
nn = (*_pred)[nn]; |
|
337 |
} |
|
338 |
while (!st.empty()) { |
|
339 |
cutMap.set(st.back(), cutMap[nn]); |
|
340 |
st.pop_back(); |
|
341 |
} |
|
334 |
while (!reached[nn]) { |
|
335 |
st.push_back(nn); |
|
336 |
nn = (*_pred)[nn]; |
|
337 |
} |
|
338 |
while (!st.empty()) { |
|
339 |
cutMap.set(st.back(), cutMap[nn]); |
|
340 |
st.pop_back(); |
|
341 |
} |
|
342 | 342 |
} |
343 |
|
|
343 |
|
|
344 | 344 |
return value; |
345 | 345 |
} |
346 | 346 |
|
347 | 347 |
///@} |
348 | 348 |
|
349 | 349 |
friend class MinCutNodeIt; |
350 | 350 |
|
351 | 351 |
/// Iterate on the nodes of a minimum cut |
352 |
|
|
352 |
|
|
353 | 353 |
/// This iterator class lists the nodes of a minimum cut found by |
354 | 354 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
355 | 355 |
/// and call its \ref GomoryHu::run() "run()" method. |
356 | 356 |
/// |
357 | 357 |
/// This example counts the nodes in the minimum cut separating \c s from |
358 | 358 |
/// \c t. |
359 | 359 |
/// \code |
360 | 360 |
/// GomoryHu<Graph> gom(g, capacities); |
361 | 361 |
/// gom.run(); |
362 | 362 |
/// int cnt=0; |
363 | 363 |
/// for(GomoryHu<Graph>::MinCutNodeIt n(gom,s,t); n!=INVALID; ++n) ++cnt; |
364 | 364 |
/// \endcode |
... | ... |
@@ -433,29 +433,29 @@ |
433 | 433 |
/// Postfix incrementation. |
434 | 434 |
/// |
435 | 435 |
/// \warning This incrementation |
436 | 436 |
/// returns a \c Node, not a \c MinCutNodeIt, as one may |
437 | 437 |
/// expect. |
438 | 438 |
typename Graph::Node operator++(int) |
439 | 439 |
{ |
440 | 440 |
typename Graph::Node n=*this; |
441 | 441 |
++(*this); |
442 | 442 |
return n; |
443 | 443 |
} |
444 | 444 |
}; |
445 |
|
|
445 |
|
|
446 | 446 |
friend class MinCutEdgeIt; |
447 |
|
|
447 |
|
|
448 | 448 |
/// Iterate on the edges of a minimum cut |
449 |
|
|
449 |
|
|
450 | 450 |
/// This iterator class lists the edges of a minimum cut found by |
451 | 451 |
/// GomoryHu. Before using it, you must allocate a GomoryHu class |
452 | 452 |
/// and call its \ref GomoryHu::run() "run()" method. |
453 | 453 |
/// |
454 | 454 |
/// This example computes the value of the minimum cut separating \c s from |
455 | 455 |
/// \c t. |
456 | 456 |
/// \code |
457 | 457 |
/// GomoryHu<Graph> gom(g, capacities); |
458 | 458 |
/// gom.run(); |
459 | 459 |
/// int value=0; |
460 | 460 |
/// for(GomoryHu<Graph>::MinCutEdgeIt e(gom,s,t); e!=INVALID; ++e) |
461 | 461 |
/// value+=capacities[e]; |
... | ... |
@@ -470,25 +470,25 @@ |
470 | 470 |
typename Graph::OutArcIt _arc_it; |
471 | 471 |
typename Graph::template NodeMap<bool> _cut; |
472 | 472 |
void step() |
473 | 473 |
{ |
474 | 474 |
++_arc_it; |
475 | 475 |
while(_node_it!=INVALID && _arc_it==INVALID) |
476 | 476 |
{ |
477 | 477 |
for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {} |
478 | 478 |
if(_node_it!=INVALID) |
479 | 479 |
_arc_it=typename Graph::OutArcIt(_graph,_node_it); |
480 | 480 |
} |
481 | 481 |
} |
482 |
|
|
482 |
|
|
483 | 483 |
public: |
484 | 484 |
/// Constructor |
485 | 485 |
|
486 | 486 |
/// Constructor. |
487 | 487 |
/// |
488 | 488 |
MinCutEdgeIt(GomoryHu const &gomory, |
489 | 489 |
///< The GomoryHu class. You must call its |
490 | 490 |
/// run() method |
491 | 491 |
/// before initializing this iterator. |
492 | 492 |
const Node& s, ///< The base node. |
493 | 493 |
const Node& t, |
494 | 494 |
///< The node you want to separate from node \c s. |
... | ... |
@@ -539,25 +539,25 @@ |
539 | 539 |
bool operator!=(Invalid) { return _node_it!=INVALID; } |
540 | 540 |
/// Next edge |
541 | 541 |
|
542 | 542 |
/// Next edge. |
543 | 543 |
/// |
544 | 544 |
MinCutEdgeIt &operator++() |
545 | 545 |
{ |
546 | 546 |
step(); |
547 | 547 |
while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step(); |
548 | 548 |
return *this; |
549 | 549 |
} |
550 | 550 |
/// Postfix incrementation |
551 |
|
|
551 |
|
|
552 | 552 |
/// Postfix incrementation. |
553 | 553 |
/// |
554 | 554 |
/// \warning This incrementation |
555 | 555 |
/// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect. |
556 | 556 |
typename Graph::Arc operator++(int) |
557 | 557 |
{ |
558 | 558 |
typename Graph::Arc e=*this; |
559 | 559 |
++(*this); |
560 | 560 |
return e; |
561 | 561 |
} |
562 | 562 |
}; |
563 | 563 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -22,70 +22,70 @@ |
22 | 22 |
#include <vector> |
23 | 23 |
#include <list> |
24 | 24 |
#include <limits> |
25 | 25 |
|
26 | 26 |
#include <lemon/maps.h> |
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/tolerance.h> |
29 | 29 |
|
30 | 30 |
/// \file |
31 | 31 |
/// \ingroup min_cut |
32 | 32 |
/// \brief Implementation of the Hao-Orlin algorithm. |
33 | 33 |
/// |
34 |
/// Implementation of the Hao-Orlin algorithm for finding a minimum cut |
|
34 |
/// Implementation of the Hao-Orlin algorithm for finding a minimum cut |
|
35 | 35 |
/// in a digraph. |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
/// \ingroup min_cut |
40 | 40 |
/// |
41 | 41 |
/// \brief Hao-Orlin algorithm for finding a minimum cut in a digraph. |
42 | 42 |
/// |
43 | 43 |
/// This class implements the Hao-Orlin algorithm for finding a minimum |
44 |
/// value cut in a directed graph \f$D=(V,A)\f$. |
|
44 |
/// value cut in a directed graph \f$D=(V,A)\f$. |
|
45 | 45 |
/// It takes a fixed node \f$ source \in V \f$ and |
46 | 46 |
/// consists of two phases: in the first phase it determines a |
47 | 47 |
/// minimum cut with \f$ source \f$ on the source-side (i.e. a set |
48 | 48 |
/// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal outgoing |
49 | 49 |
/// capacity) and in the second phase it determines a minimum cut |
50 | 50 |
/// with \f$ source \f$ on the sink-side (i.e. a set |
51 | 51 |
/// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal outgoing |
52 | 52 |
/// capacity). Obviously, the smaller of these two cuts will be a |
53 | 53 |
/// minimum cut of \f$ D \f$. The algorithm is a modified |
54 | 54 |
/// preflow push-relabel algorithm. Our implementation calculates |
55 | 55 |
/// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the |
56 | 56 |
/// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The |
57 | 57 |
/// purpose of such algorithm is e.g. testing network reliability. |
58 | 58 |
/// |
59 | 59 |
/// For an undirected graph you can run just the first phase of the |
60 | 60 |
/// algorithm or you can use the algorithm of Nagamochi and Ibaraki, |
61 |
/// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ |
|
61 |
/// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ |
|
62 | 62 |
/// time. It is implemented in the NagamochiIbaraki algorithm class. |
63 | 63 |
/// |
64 | 64 |
/// \tparam GR The type of the digraph the algorithm runs on. |
65 | 65 |
/// \tparam CAP The type of the arc map containing the capacities, |
66 | 66 |
/// which can be any numreric type. The default map type is |
67 | 67 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
68 | 68 |
/// \tparam TOL Tolerance class for handling inexact computations. The |
69 | 69 |
/// default tolerance type is \ref Tolerance "Tolerance<CAP::Value>". |
70 | 70 |
#ifdef DOXYGEN |
71 | 71 |
template <typename GR, typename CAP, typename TOL> |
72 | 72 |
#else |
73 | 73 |
template <typename GR, |
74 | 74 |
typename CAP = typename GR::template ArcMap<int>, |
75 | 75 |
typename TOL = Tolerance<typename CAP::Value> > |
76 | 76 |
#endif |
77 | 77 |
class HaoOrlin { |
78 | 78 |
public: |
79 |
|
|
79 |
|
|
80 | 80 |
/// The digraph type of the algorithm |
81 | 81 |
typedef GR Digraph; |
82 | 82 |
/// The capacity map type of the algorithm |
83 | 83 |
typedef CAP CapacityMap; |
84 | 84 |
/// The tolerance type of the algorithm |
85 | 85 |
typedef TOL Tolerance; |
86 | 86 |
|
87 | 87 |
private: |
88 | 88 |
|
89 | 89 |
typedef typename CapacityMap::Value Value; |
90 | 90 |
|
91 | 91 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
... | ... |
@@ -855,25 +855,25 @@ |
855 | 855 |
/// |
856 | 856 |
/// This function initializes the internal data structures. It creates |
857 | 857 |
/// the maps and some bucket structures for the algorithm. |
858 | 858 |
/// The first node is used as the source node for the push-relabel |
859 | 859 |
/// algorithm. |
860 | 860 |
void init() { |
861 | 861 |
init(NodeIt(_graph)); |
862 | 862 |
} |
863 | 863 |
|
864 | 864 |
/// \brief Initialize the internal data structures. |
865 | 865 |
/// |
866 | 866 |
/// This function initializes the internal data structures. It creates |
867 |
/// the maps and some bucket structures for the algorithm. |
|
867 |
/// the maps and some bucket structures for the algorithm. |
|
868 | 868 |
/// The given node is used as the source node for the push-relabel |
869 | 869 |
/// algorithm. |
870 | 870 |
void init(const Node& source) { |
871 | 871 |
_source = source; |
872 | 872 |
|
873 | 873 |
_node_num = countNodes(_graph); |
874 | 874 |
|
875 | 875 |
_first.resize(_node_num); |
876 | 876 |
_last.resize(_node_num); |
877 | 877 |
|
878 | 878 |
_dormant.resize(_node_num); |
879 | 879 |
|
... | ... |
@@ -935,67 +935,67 @@ |
935 | 935 |
/// |
936 | 936 |
/// This function runs the algorithm. It finds nodes \c source and |
937 | 937 |
/// \c target arbitrarily and then calls \ref init(), \ref calculateOut() |
938 | 938 |
/// and \ref calculateIn(). |
939 | 939 |
void run() { |
940 | 940 |
init(); |
941 | 941 |
calculateOut(); |
942 | 942 |
calculateIn(); |
943 | 943 |
} |
944 | 944 |
|
945 | 945 |
/// \brief Run the algorithm. |
946 | 946 |
/// |
947 |
/// This function runs the algorithm. It uses the given \c source node, |
|
947 |
/// This function runs the algorithm. It uses the given \c source node, |
|
948 | 948 |
/// finds a proper \c target node and then calls the \ref init(), |
949 | 949 |
/// \ref calculateOut() and \ref calculateIn(). |
950 | 950 |
void run(const Node& s) { |
951 | 951 |
init(s); |
952 | 952 |
calculateOut(); |
953 | 953 |
calculateIn(); |
954 | 954 |
} |
955 | 955 |
|
956 | 956 |
/// @} |
957 | 957 |
|
958 | 958 |
/// \name Query Functions |
959 | 959 |
/// The result of the %HaoOrlin algorithm |
960 | 960 |
/// can be obtained using these functions.\n |
961 |
/// \ref run(), \ref calculateOut() or \ref calculateIn() |
|
961 |
/// \ref run(), \ref calculateOut() or \ref calculateIn() |
|
962 | 962 |
/// should be called before using them. |
963 | 963 |
|
964 | 964 |
/// @{ |
965 | 965 |
|
966 | 966 |
/// \brief Return the value of the minimum cut. |
967 | 967 |
/// |
968 | 968 |
/// This function returns the value of the minimum cut. |
969 | 969 |
/// |
970 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
|
970 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
|
971 | 971 |
/// must be called before using this function. |
972 | 972 |
Value minCutValue() const { |
973 | 973 |
return _min_cut; |
974 | 974 |
} |
975 | 975 |
|
976 | 976 |
|
977 | 977 |
/// \brief Return a minimum cut. |
978 | 978 |
/// |
979 | 979 |
/// This function sets \c cutMap to the characteristic vector of a |
980 | 980 |
/// minimum value cut: it will give a non-empty set \f$ X\subsetneq V \f$ |
981 | 981 |
/// with minimal outgoing capacity (i.e. \c cutMap will be \c true exactly |
982 | 982 |
/// for the nodes of \f$ X \f$). |
983 | 983 |
/// |
984 | 984 |
/// \param cutMap A \ref concepts::WriteMap "writable" node map with |
985 | 985 |
/// \c bool (or convertible) value type. |
986 | 986 |
/// |
987 | 987 |
/// \return The value of the minimum cut. |
988 | 988 |
/// |
989 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
|
989 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
|
990 | 990 |
/// must be called before using this function. |
991 | 991 |
template <typename CutMap> |
992 | 992 |
Value minCutMap(CutMap& cutMap) const { |
993 | 993 |
for (NodeIt it(_graph); it != INVALID; ++it) { |
994 | 994 |
cutMap.set(it, (*_min_cut_map)[it]); |
995 | 995 |
} |
996 | 996 |
return _min_cut; |
997 | 997 |
} |
998 | 998 |
|
999 | 999 |
/// @} |
1000 | 1000 |
|
1001 | 1001 |
}; //class HaoOrlin |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -334,32 +334,32 @@ |
334 | 334 |
} |
335 | 335 |
|
336 | 336 |
/// \brief Find the minimum cycle mean. |
337 | 337 |
/// |
338 | 338 |
/// This function finds the minimum mean cost of the directed |
339 | 339 |
/// cycles in the digraph. |
340 | 340 |
/// |
341 | 341 |
/// \return \c true if a directed cycle exists in the digraph. |
342 | 342 |
bool findCycleMean() { |
343 | 343 |
// Initialization and find strongly connected components |
344 | 344 |
init(); |
345 | 345 |
findComponents(); |
346 |
|
|
346 |
|
|
347 | 347 |
// Find the minimum cycle mean in the components |
348 | 348 |
for (int comp = 0; comp < _comp_num; ++comp) { |
349 | 349 |
if (!initComponent(comp)) continue; |
350 | 350 |
processRounds(); |
351 |
|
|
351 |
|
|
352 | 352 |
// Update the best cycle (global minimum mean cycle) |
353 |
if ( _curr_found && (!_best_found || |
|
353 |
if ( _curr_found && (!_best_found || |
|
354 | 354 |
_curr_cost * _best_size < _best_cost * _curr_size) ) { |
355 | 355 |
_best_found = true; |
356 | 356 |
_best_cost = _curr_cost; |
357 | 357 |
_best_size = _curr_size; |
358 | 358 |
_best_node = _curr_node; |
359 | 359 |
_best_level = _curr_level; |
360 | 360 |
} |
361 | 361 |
} |
362 | 362 |
return _best_found; |
363 | 363 |
} |
364 | 364 |
|
365 | 365 |
/// \brief Find a minimum mean directed cycle. |
... | ... |
@@ -494,25 +494,25 @@ |
494 | 494 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
495 | 495 |
} |
496 | 496 |
} |
497 | 497 |
} |
498 | 498 |
} |
499 | 499 |
|
500 | 500 |
// Initialize path data for the current component |
501 | 501 |
bool initComponent(int comp) { |
502 | 502 |
_nodes = &(_comp_nodes[comp]); |
503 | 503 |
int n = _nodes->size(); |
504 | 504 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) { |
505 | 505 |
return false; |
506 |
} |
|
506 |
} |
|
507 | 507 |
for (int i = 0; i < n; ++i) { |
508 | 508 |
_data[(*_nodes)[i]].resize(n + 1, PathData(INF)); |
509 | 509 |
} |
510 | 510 |
return true; |
511 | 511 |
} |
512 | 512 |
|
513 | 513 |
// Process all rounds of computing path data for the current component. |
514 | 514 |
// _data[v][k] is the cost of a shortest directed walk from the root |
515 | 515 |
// node to node v containing exactly k arcs. |
516 | 516 |
void processRounds() { |
517 | 517 |
Node start = (*_nodes)[0]; |
518 | 518 |
_data[start][0] = PathData(0); |
... | ... |
@@ -567,57 +567,57 @@ |
567 | 567 |
for (int i = 0; i < int(_nodes->size()); ++i) { |
568 | 568 |
u = (*_nodes)[i]; |
569 | 569 |
for (int j = 0; j < int(_out_arcs[u].size()); ++j) { |
570 | 570 |
e = _out_arcs[u][j]; |
571 | 571 |
v = _gr.target(e); |
572 | 572 |
d = _data[u][k-1].dist + _cost[e]; |
573 | 573 |
if (_tolerance.less(d, _data[v][k].dist)) { |
574 | 574 |
_data[v][k] = PathData(d, e); |
575 | 575 |
} |
576 | 576 |
} |
577 | 577 |
} |
578 | 578 |
} |
579 |
|
|
579 |
|
|
580 | 580 |
// Check early termination |
581 | 581 |
bool checkTermination(int k) { |
582 | 582 |
typedef std::pair<int, int> Pair; |
583 | 583 |
typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0)); |
584 | 584 |
typename GR::template NodeMap<LargeCost> pi(_gr); |
585 | 585 |
int n = _nodes->size(); |
586 | 586 |
LargeCost cost; |
587 | 587 |
int size; |
588 | 588 |
Node u; |
589 |
|
|
589 |
|
|
590 | 590 |
// Search for cycles that are already found |
591 | 591 |
_curr_found = false; |
592 | 592 |
for (int i = 0; i < n; ++i) { |
593 | 593 |
u = (*_nodes)[i]; |
594 | 594 |
if (_data[u][k].dist == INF) continue; |
595 | 595 |
for (int j = k; j >= 0; --j) { |
596 | 596 |
if (level[u].first == i && level[u].second > 0) { |
597 | 597 |
// A cycle is found |
598 | 598 |
cost = _data[u][level[u].second].dist - _data[u][j].dist; |
599 | 599 |
size = level[u].second - j; |
600 | 600 |
if (!_curr_found || cost * _curr_size < _curr_cost * size) { |
601 | 601 |
_curr_cost = cost; |
602 | 602 |
_curr_size = size; |
603 | 603 |
_curr_node = u; |
604 | 604 |
_curr_level = level[u].second; |
605 | 605 |
_curr_found = true; |
606 | 606 |
} |
607 | 607 |
} |
608 | 608 |
level[u] = Pair(i, j); |
609 | 609 |
if (j != 0) { |
610 |
u = _gr.source(_data[u][j].pred); |
|
611 |
} |
|
610 |
u = _gr.source(_data[u][j].pred); |
|
611 |
} |
|
612 | 612 |
} |
613 | 613 |
} |
614 | 614 |
|
615 | 615 |
// If at least one cycle is found, check the optimality condition |
616 | 616 |
LargeCost d; |
617 | 617 |
if (_curr_found && k < n) { |
618 | 618 |
// Find node potentials |
619 | 619 |
for (int i = 0; i < n; ++i) { |
620 | 620 |
u = (*_nodes)[i]; |
621 | 621 |
pi[u] = INF; |
622 | 622 |
for (int j = 0; j <= k; ++j) { |
623 | 623 |
if (_data[u][j].dist < INF) { |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -112,25 +112,25 @@ |
112 | 112 |
/// In most cases, this parameter should not be set directly, |
113 | 113 |
/// consider to use the named template parameters instead. |
114 | 114 |
#ifdef DOXYGEN |
115 | 115 |
template <typename GR, typename CM, typename TR> |
116 | 116 |
#else |
117 | 117 |
template < typename GR, |
118 | 118 |
typename CM = typename GR::template ArcMap<int>, |
119 | 119 |
typename TR = HowardMmcDefaultTraits<GR, CM> > |
120 | 120 |
#endif |
121 | 121 |
class HowardMmc |
122 | 122 |
{ |
123 | 123 |
public: |
124 |
|
|
124 |
|
|
125 | 125 |
/// The type of the digraph |
126 | 126 |
typedef typename TR::Digraph Digraph; |
127 | 127 |
/// The type of the cost map |
128 | 128 |
typedef typename TR::CostMap CostMap; |
129 | 129 |
/// The type of the arc costs |
130 | 130 |
typedef typename TR::Cost Cost; |
131 | 131 |
|
132 | 132 |
/// \brief The large cost type |
133 | 133 |
/// |
134 | 134 |
/// The large cost type used for internal computations. |
135 | 135 |
/// By default, it is \c long \c long if the \c Cost type is integer, |
136 | 136 |
/// otherwise it is \c double. |
... | ... |
@@ -143,25 +143,25 @@ |
143 | 143 |
/// |
144 | 144 |
/// The path type of the found cycles. |
145 | 145 |
/// Using the \ref HowardMmcDefaultTraits "default traits class", |
146 | 146 |
/// it is \ref lemon::Path "Path<Digraph>". |
147 | 147 |
typedef typename TR::Path Path; |
148 | 148 |
|
149 | 149 |
/// The \ref HowardMmcDefaultTraits "traits class" of the algorithm |
150 | 150 |
typedef TR Traits; |
151 | 151 |
|
152 | 152 |
private: |
153 | 153 |
|
154 | 154 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
155 |
|
|
155 |
|
|
156 | 156 |
// The digraph the algorithm runs on |
157 | 157 |
const Digraph &_gr; |
158 | 158 |
// The cost of the arcs |
159 | 159 |
const CostMap &_cost; |
160 | 160 |
|
161 | 161 |
// Data for the found cycles |
162 | 162 |
bool _curr_found, _best_found; |
163 | 163 |
LargeCost _curr_cost, _best_cost; |
164 | 164 |
int _curr_size, _best_size; |
165 | 165 |
Node _curr_node, _best_node; |
166 | 166 |
|
167 | 167 |
Path *_cycle_path; |
... | ... |
@@ -170,36 +170,36 @@ |
170 | 170 |
// Internal data used by the algorithm |
171 | 171 |
typename Digraph::template NodeMap<Arc> _policy; |
172 | 172 |
typename Digraph::template NodeMap<bool> _reached; |
173 | 173 |
typename Digraph::template NodeMap<int> _level; |
174 | 174 |
typename Digraph::template NodeMap<LargeCost> _dist; |
175 | 175 |
|
176 | 176 |
// Data for storing the strongly connected components |
177 | 177 |
int _comp_num; |
178 | 178 |
typename Digraph::template NodeMap<int> _comp; |
179 | 179 |
std::vector<std::vector<Node> > _comp_nodes; |
180 | 180 |
std::vector<Node>* _nodes; |
181 | 181 |
typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs; |
182 |
|
|
182 |
|
|
183 | 183 |
// Queue used for BFS search |
184 | 184 |
std::vector<Node> _queue; |
185 | 185 |
int _qfront, _qback; |
186 | 186 |
|
187 | 187 |
Tolerance _tolerance; |
188 |
|
|
188 |
|
|
189 | 189 |
// Infinite constant |
190 | 190 |
const LargeCost INF; |
191 | 191 |
|
192 | 192 |
public: |
193 |
|
|
193 |
|
|
194 | 194 |
/// \name Named Template Parameters |
195 | 195 |
/// @{ |
196 | 196 |
|
197 | 197 |
template <typename T> |
198 | 198 |
struct SetLargeCostTraits : public Traits { |
199 | 199 |
typedef T LargeCost; |
200 | 200 |
typedef lemon::Tolerance<T> Tolerance; |
201 | 201 |
}; |
202 | 202 |
|
203 | 203 |
/// \brief \ref named-templ-param "Named parameter" for setting |
204 | 204 |
/// \c LargeCost type. |
205 | 205 |
/// |
... | ... |
@@ -219,25 +219,25 @@ |
219 | 219 |
/// \brief \ref named-templ-param "Named parameter" for setting |
220 | 220 |
/// \c %Path type. |
221 | 221 |
/// |
222 | 222 |
/// \ref named-templ-param "Named parameter" for setting the \c %Path |
223 | 223 |
/// type of the found cycles. |
224 | 224 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
225 | 225 |
/// and it must have an \c addBack() function. |
226 | 226 |
template <typename T> |
227 | 227 |
struct SetPath |
228 | 228 |
: public HowardMmc<GR, CM, SetPathTraits<T> > { |
229 | 229 |
typedef HowardMmc<GR, CM, SetPathTraits<T> > Create; |
230 | 230 |
}; |
231 |
|
|
231 |
|
|
232 | 232 |
/// @} |
233 | 233 |
|
234 | 234 |
protected: |
235 | 235 |
|
236 | 236 |
HowardMmc() {} |
237 | 237 |
|
238 | 238 |
public: |
239 | 239 |
|
240 | 240 |
/// \brief Constructor. |
241 | 241 |
/// |
242 | 242 |
/// The constructor of the class. |
243 | 243 |
/// |
... | ... |
@@ -325,25 +325,25 @@ |
325 | 325 |
} |
326 | 326 |
|
327 | 327 |
/// \brief Find the minimum cycle mean. |
328 | 328 |
/// |
329 | 329 |
/// This function finds the minimum mean cost of the directed |
330 | 330 |
/// cycles in the digraph. |
331 | 331 |
/// |
332 | 332 |
/// \return \c true if a directed cycle exists in the digraph. |
333 | 333 |
bool findCycleMean() { |
334 | 334 |
// Initialize and find strongly connected components |
335 | 335 |
init(); |
336 | 336 |
findComponents(); |
337 |
|
|
337 |
|
|
338 | 338 |
// Find the minimum cycle mean in the components |
339 | 339 |
for (int comp = 0; comp < _comp_num; ++comp) { |
340 | 340 |
// Find the minimum mean cycle in the current component |
341 | 341 |
if (!buildPolicyGraph(comp)) continue; |
342 | 342 |
while (true) { |
343 | 343 |
findPolicyCycle(); |
344 | 344 |
if (!computeNodeDistances()) break; |
345 | 345 |
} |
346 | 346 |
// Update the best cycle (global minimum mean cycle) |
347 | 347 |
if ( _curr_found && (!_best_found || |
348 | 348 |
_curr_cost * _best_size < _best_cost * _curr_size) ) { |
349 | 349 |
_best_found = true; |
... | ... |
@@ -436,25 +436,25 @@ |
436 | 436 |
// Initialize |
437 | 437 |
void init() { |
438 | 438 |
if (!_cycle_path) { |
439 | 439 |
_local_path = true; |
440 | 440 |
_cycle_path = new Path; |
441 | 441 |
} |
442 | 442 |
_queue.resize(countNodes(_gr)); |
443 | 443 |
_best_found = false; |
444 | 444 |
_best_cost = 0; |
445 | 445 |
_best_size = 1; |
446 | 446 |
_cycle_path->clear(); |
447 | 447 |
} |
448 |
|
|
448 |
|
|
449 | 449 |
// Find strongly connected components and initialize _comp_nodes |
450 | 450 |
// and _in_arcs |
451 | 451 |
void findComponents() { |
452 | 452 |
_comp_num = stronglyConnectedComponents(_gr, _comp); |
453 | 453 |
_comp_nodes.resize(_comp_num); |
454 | 454 |
if (_comp_num == 1) { |
455 | 455 |
_comp_nodes[0].clear(); |
456 | 456 |
for (NodeIt n(_gr); n != INVALID; ++n) { |
457 | 457 |
_comp_nodes[0].push_back(n); |
458 | 458 |
_in_arcs[n].clear(); |
459 | 459 |
for (InArcIt a(_gr, n); a != INVALID; ++a) { |
460 | 460 |
_in_arcs[n].push_back(a); |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -182,25 +182,25 @@ |
182 | 182 |
int _cycle_size; |
183 | 183 |
Node _cycle_node; |
184 | 184 |
|
185 | 185 |
Path *_cycle_path; |
186 | 186 |
bool _local_path; |
187 | 187 |
|
188 | 188 |
// Node map for storing path data |
189 | 189 |
PathDataNodeMap _data; |
190 | 190 |
// The processed nodes in the last round |
191 | 191 |
std::vector<Node> _process; |
192 | 192 |
|
193 | 193 |
Tolerance _tolerance; |
194 |
|
|
194 |
|
|
195 | 195 |
// Infinite constant |
196 | 196 |
const LargeCost INF; |
197 | 197 |
|
198 | 198 |
public: |
199 | 199 |
|
200 | 200 |
/// \name Named Template Parameters |
201 | 201 |
/// @{ |
202 | 202 |
|
203 | 203 |
template <typename T> |
204 | 204 |
struct SetLargeCostTraits : public Traits { |
205 | 205 |
typedef T LargeCost; |
206 | 206 |
typedef lemon::Tolerance<T> Tolerance; |
... | ... |
@@ -330,25 +330,25 @@ |
330 | 330 |
} |
331 | 331 |
|
332 | 332 |
/// \brief Find the minimum cycle mean. |
333 | 333 |
/// |
334 | 334 |
/// This function finds the minimum mean cost of the directed |
335 | 335 |
/// cycles in the digraph. |
336 | 336 |
/// |
337 | 337 |
/// \return \c true if a directed cycle exists in the digraph. |
338 | 338 |
bool findCycleMean() { |
339 | 339 |
// Initialization and find strongly connected components |
340 | 340 |
init(); |
341 | 341 |
findComponents(); |
342 |
|
|
342 |
|
|
343 | 343 |
// Find the minimum cycle mean in the components |
344 | 344 |
for (int comp = 0; comp < _comp_num; ++comp) { |
345 | 345 |
if (!initComponent(comp)) continue; |
346 | 346 |
processRounds(); |
347 | 347 |
updateMinMean(); |
348 | 348 |
} |
349 | 349 |
return (_cycle_node != INVALID); |
350 | 350 |
} |
351 | 351 |
|
352 | 352 |
/// \brief Find a minimum mean directed cycle. |
353 | 353 |
/// |
354 | 354 |
/// This function finds a directed cycle of minimum mean cost |
... | ... |
@@ -480,25 +480,25 @@ |
480 | 480 |
if (_comp[_gr.target(a)] == k) _out_arcs[n].push_back(a); |
481 | 481 |
} |
482 | 482 |
} |
483 | 483 |
} |
484 | 484 |
} |
485 | 485 |
|
486 | 486 |
// Initialize path data for the current component |
487 | 487 |
bool initComponent(int comp) { |
488 | 488 |
_nodes = &(_comp_nodes[comp]); |
489 | 489 |
int n = _nodes->size(); |
490 | 490 |
if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) { |
491 | 491 |
return false; |
492 |
} |
|
492 |
} |
|
493 | 493 |
for (int i = 0; i < n; ++i) { |
494 | 494 |
_data[(*_nodes)[i]].resize(n + 1, PathData(INF)); |
495 | 495 |
} |
496 | 496 |
return true; |
497 | 497 |
} |
498 | 498 |
|
499 | 499 |
// Process all rounds of computing path data for the current component. |
500 | 500 |
// _data[v][k] is the cost of a shortest directed walk from the root |
501 | 501 |
// node to node v containing exactly k arcs. |
502 | 502 |
void processRounds() { |
503 | 503 |
Node start = (*_nodes)[0]; |
504 | 504 |
_data[start][0] = PathData(0); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -553,25 +553,25 @@ |
553 | 553 |
|
554 | 554 |
if (local_is) { |
555 | 555 |
delete _is; |
556 | 556 |
} |
557 | 557 |
|
558 | 558 |
} |
559 | 559 |
|
560 | 560 |
private: |
561 | 561 |
|
562 | 562 |
template <typename TDGR> |
563 | 563 |
friend DigraphReader<TDGR> digraphReader(TDGR& digraph, std::istream& is); |
564 | 564 |
template <typename TDGR> |
565 |
friend DigraphReader<TDGR> digraphReader(TDGR& digraph, |
|
565 |
friend DigraphReader<TDGR> digraphReader(TDGR& digraph, |
|
566 | 566 |
const std::string& fn); |
567 | 567 |
template <typename TDGR> |
568 | 568 |
friend DigraphReader<TDGR> digraphReader(TDGR& digraph, const char *fn); |
569 | 569 |
|
570 | 570 |
DigraphReader(DigraphReader& other) |
571 | 571 |
: _is(other._is), local_is(other.local_is), _digraph(other._digraph), |
572 | 572 |
_use_nodes(other._use_nodes), _use_arcs(other._use_arcs), |
573 | 573 |
_skip_nodes(other._skip_nodes), _skip_arcs(other._skip_arcs) { |
574 | 574 |
|
575 | 575 |
other._is = 0; |
576 | 576 |
other.local_is = false; |
577 | 577 |
|
... | ... |
@@ -1178,32 +1178,32 @@ |
1178 | 1178 |
throw FormatError("Section @arcs not found"); |
1179 | 1179 |
} |
1180 | 1180 |
|
1181 | 1181 |
if (!attributes_done && !_attributes.empty()) { |
1182 | 1182 |
throw FormatError("Section @attributes not found"); |
1183 | 1183 |
} |
1184 | 1184 |
|
1185 | 1185 |
} |
1186 | 1186 |
|
1187 | 1187 |
/// @} |
1188 | 1188 |
|
1189 | 1189 |
}; |
1190 |
|
|
1190 |
|
|
1191 | 1191 |
/// \ingroup lemon_io |
1192 | 1192 |
/// |
1193 | 1193 |
/// \brief Return a \ref DigraphReader class |
1194 | 1194 |
/// |
1195 | 1195 |
/// This function just returns a \ref DigraphReader class. |
1196 | 1196 |
/// |
1197 |
/// With this function a digraph can be read from an |
|
1197 |
/// With this function a digraph can be read from an |
|
1198 | 1198 |
/// \ref lgf-format "LGF" file or input stream with several maps and |
1199 | 1199 |
/// attributes. For example, there is network flow problem on a |
1200 | 1200 |
/// digraph, i.e. a digraph with a \e capacity map on the arcs and |
1201 | 1201 |
/// \e source and \e target nodes. This digraph can be read with the |
1202 | 1202 |
/// following code: |
1203 | 1203 |
/// |
1204 | 1204 |
///\code |
1205 | 1205 |
///ListDigraph digraph; |
1206 | 1206 |
///ListDigraph::ArcMap<int> cm(digraph); |
1207 | 1207 |
///ListDigraph::Node src, trg; |
1208 | 1208 |
///digraphReader(digraph, std::cin). |
1209 | 1209 |
/// arcMap("capacity", cap). |
... | ... |
@@ -1240,25 +1240,25 @@ |
1240 | 1240 |
/// |
1241 | 1241 |
/// This function just returns a \ref DigraphReader class. |
1242 | 1242 |
/// \relates DigraphReader |
1243 | 1243 |
/// \sa digraphReader(TDGR& digraph, std::istream& is) |
1244 | 1244 |
template <typename TDGR> |
1245 | 1245 |
DigraphReader<TDGR> digraphReader(TDGR& digraph, const char* fn) { |
1246 | 1246 |
DigraphReader<TDGR> tmp(digraph, fn); |
1247 | 1247 |
return tmp; |
1248 | 1248 |
} |
1249 | 1249 |
|
1250 | 1250 |
template <typename GR> |
1251 | 1251 |
class GraphReader; |
1252 |
|
|
1252 |
|
|
1253 | 1253 |
template <typename TGR> |
1254 | 1254 |
GraphReader<TGR> graphReader(TGR& graph, std::istream& is = std::cin); |
1255 | 1255 |
template <typename TGR> |
1256 | 1256 |
GraphReader<TGR> graphReader(TGR& graph, const std::string& fn); |
1257 | 1257 |
template <typename TGR> |
1258 | 1258 |
GraphReader<TGR> graphReader(TGR& graph, const char *fn); |
1259 | 1259 |
|
1260 | 1260 |
/// \ingroup lemon_io |
1261 | 1261 |
/// |
1262 | 1262 |
/// \brief \ref lgf-format "LGF" reader for undirected graphs |
1263 | 1263 |
/// |
1264 | 1264 |
/// This utility reads an \ref lgf-format "LGF" file. |
... | ... |
@@ -1377,25 +1377,25 @@ |
1377 | 1377 |
} |
1378 | 1378 |
|
1379 | 1379 |
if (local_is) { |
1380 | 1380 |
delete _is; |
1381 | 1381 |
} |
1382 | 1382 |
|
1383 | 1383 |
} |
1384 | 1384 |
|
1385 | 1385 |
private: |
1386 | 1386 |
template <typename TGR> |
1387 | 1387 |
friend GraphReader<TGR> graphReader(TGR& graph, std::istream& is); |
1388 | 1388 |
template <typename TGR> |
1389 |
friend GraphReader<TGR> graphReader(TGR& graph, const std::string& fn); |
|
1389 |
friend GraphReader<TGR> graphReader(TGR& graph, const std::string& fn); |
|
1390 | 1390 |
template <typename TGR> |
1391 | 1391 |
friend GraphReader<TGR> graphReader(TGR& graph, const char *fn); |
1392 | 1392 |
|
1393 | 1393 |
GraphReader(GraphReader& other) |
1394 | 1394 |
: _is(other._is), local_is(other.local_is), _graph(other._graph), |
1395 | 1395 |
_use_nodes(other._use_nodes), _use_edges(other._use_edges), |
1396 | 1396 |
_skip_nodes(other._skip_nodes), _skip_edges(other._skip_edges) { |
1397 | 1397 |
|
1398 | 1398 |
other._is = 0; |
1399 | 1399 |
other.local_is = false; |
1400 | 1400 |
|
1401 | 1401 |
_node_index.swap(other._node_index); |
... | ... |
@@ -2054,27 +2054,27 @@ |
2054 | 2054 |
} |
2055 | 2055 |
|
2056 | 2056 |
} |
2057 | 2057 |
|
2058 | 2058 |
/// @} |
2059 | 2059 |
|
2060 | 2060 |
}; |
2061 | 2061 |
|
2062 | 2062 |
/// \ingroup lemon_io |
2063 | 2063 |
/// |
2064 | 2064 |
/// \brief Return a \ref GraphReader class |
2065 | 2065 |
/// |
2066 |
/// This function just returns a \ref GraphReader class. |
|
2066 |
/// This function just returns a \ref GraphReader class. |
|
2067 | 2067 |
/// |
2068 |
/// With this function a graph can be read from an |
|
2068 |
/// With this function a graph can be read from an |
|
2069 | 2069 |
/// \ref lgf-format "LGF" file or input stream with several maps and |
2070 | 2070 |
/// attributes. For example, there is weighted matching problem on a |
2071 | 2071 |
/// graph, i.e. a graph with a \e weight map on the edges. This |
2072 | 2072 |
/// graph can be read with the following code: |
2073 | 2073 |
/// |
2074 | 2074 |
///\code |
2075 | 2075 |
///ListGraph graph; |
2076 | 2076 |
///ListGraph::EdgeMap<int> weight(graph); |
2077 | 2077 |
///graphReader(graph, std::cin). |
2078 | 2078 |
/// edgeMap("weight", weight). |
2079 | 2079 |
/// run(); |
2080 | 2080 |
///\endcode |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -342,25 +342,25 @@ |
342 | 342 |
|
343 | 343 |
virtual void process(std::ostream& os) { |
344 | 344 |
_functor(os); |
345 | 345 |
} |
346 | 346 |
}; |
347 | 347 |
|
348 | 348 |
} |
349 | 349 |
|
350 | 350 |
template <typename DGR> |
351 | 351 |
class DigraphWriter; |
352 | 352 |
|
353 | 353 |
template <typename TDGR> |
354 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
354 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
355 | 355 |
std::ostream& os = std::cout); |
356 | 356 |
template <typename TDGR> |
357 | 357 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, const std::string& fn); |
358 | 358 |
|
359 | 359 |
template <typename TDGR> |
360 | 360 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, const char* fn); |
361 | 361 |
|
362 | 362 |
|
363 | 363 |
/// \ingroup lemon_io |
364 | 364 |
/// |
365 | 365 |
/// \brief \ref lgf-format "LGF" writer for directed graphs |
366 | 366 |
/// |
... | ... |
@@ -495,25 +495,25 @@ |
495 | 495 |
it != _attributes.end(); ++it) { |
496 | 496 |
delete it->second; |
497 | 497 |
} |
498 | 498 |
|
499 | 499 |
if (local_os) { |
500 | 500 |
delete _os; |
501 | 501 |
} |
502 | 502 |
} |
503 | 503 |
|
504 | 504 |
private: |
505 | 505 |
|
506 | 506 |
template <typename TDGR> |
507 |
friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
507 |
friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
508 | 508 |
std::ostream& os); |
509 | 509 |
template <typename TDGR> |
510 | 510 |
friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
511 | 511 |
const std::string& fn); |
512 | 512 |
template <typename TDGR> |
513 | 513 |
friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
514 | 514 |
const char *fn); |
515 | 515 |
|
516 | 516 |
DigraphWriter(DigraphWriter& other) |
517 | 517 |
: _os(other._os), local_os(other.local_os), _digraph(other._digraph), |
518 | 518 |
_skip_nodes(other._skip_nodes), _skip_arcs(other._skip_arcs) { |
519 | 519 |
|
... | ... |
@@ -908,25 +908,25 @@ |
908 | 908 |
/// Give back the stream of the writer. |
909 | 909 |
std::ostream& ostream() { |
910 | 910 |
return *_os; |
911 | 911 |
} |
912 | 912 |
|
913 | 913 |
/// @} |
914 | 914 |
}; |
915 | 915 |
|
916 | 916 |
/// \ingroup lemon_io |
917 | 917 |
/// |
918 | 918 |
/// \brief Return a \ref DigraphWriter class |
919 | 919 |
/// |
920 |
/// This function just returns a \ref DigraphWriter class. |
|
920 |
/// This function just returns a \ref DigraphWriter class. |
|
921 | 921 |
/// |
922 | 922 |
/// With this function a digraph can be write to a file or output |
923 | 923 |
/// stream in \ref lgf-format "LGF" format with several maps and |
924 | 924 |
/// attributes. For example, with the following code a network flow |
925 | 925 |
/// problem can be written to the standard output, i.e. a digraph |
926 | 926 |
/// with a \e capacity map on the arcs and \e source and \e target |
927 | 927 |
/// nodes: |
928 | 928 |
/// |
929 | 929 |
///\code |
930 | 930 |
///ListDigraph digraph; |
931 | 931 |
///ListDigraph::ArcMap<int> cap(digraph); |
932 | 932 |
///ListDigraph::Node src, trg; |
... | ... |
@@ -948,25 +948,25 @@ |
948 | 948 |
template <typename TDGR> |
949 | 949 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, std::ostream& os) { |
950 | 950 |
DigraphWriter<TDGR> tmp(digraph, os); |
951 | 951 |
return tmp; |
952 | 952 |
} |
953 | 953 |
|
954 | 954 |
/// \brief Return a \ref DigraphWriter class |
955 | 955 |
/// |
956 | 956 |
/// This function just returns a \ref DigraphWriter class. |
957 | 957 |
/// \relates DigraphWriter |
958 | 958 |
/// \sa digraphWriter(const TDGR& digraph, std::ostream& os) |
959 | 959 |
template <typename TDGR> |
960 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
960 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, |
|
961 | 961 |
const std::string& fn) { |
962 | 962 |
DigraphWriter<TDGR> tmp(digraph, fn); |
963 | 963 |
return tmp; |
964 | 964 |
} |
965 | 965 |
|
966 | 966 |
/// \brief Return a \ref DigraphWriter class |
967 | 967 |
/// |
968 | 968 |
/// This function just returns a \ref DigraphWriter class. |
969 | 969 |
/// \relates DigraphWriter |
970 | 970 |
/// \sa digraphWriter(const TDGR& digraph, std::ostream& os) |
971 | 971 |
template <typename TDGR> |
972 | 972 |
DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, const char* fn) { |
... | ... |
@@ -1092,29 +1092,29 @@ |
1092 | 1092 |
} |
1093 | 1093 |
|
1094 | 1094 |
if (local_os) { |
1095 | 1095 |
delete _os; |
1096 | 1096 |
} |
1097 | 1097 |
} |
1098 | 1098 |
|
1099 | 1099 |
private: |
1100 | 1100 |
|
1101 | 1101 |
template <typename TGR> |
1102 | 1102 |
friend GraphWriter<TGR> graphWriter(const TGR& graph, std::ostream& os); |
1103 | 1103 |
template <typename TGR> |
1104 |
friend GraphWriter<TGR> graphWriter(const TGR& graph, |
|
1104 |
friend GraphWriter<TGR> graphWriter(const TGR& graph, |
|
1105 | 1105 |
const std::string& fn); |
1106 | 1106 |
template <typename TGR> |
1107 | 1107 |
friend GraphWriter<TGR> graphWriter(const TGR& graph, const char *fn); |
1108 |
|
|
1108 |
|
|
1109 | 1109 |
GraphWriter(GraphWriter& other) |
1110 | 1110 |
: _os(other._os), local_os(other.local_os), _graph(other._graph), |
1111 | 1111 |
_skip_nodes(other._skip_nodes), _skip_edges(other._skip_edges) { |
1112 | 1112 |
|
1113 | 1113 |
other._os = 0; |
1114 | 1114 |
other.local_os = false; |
1115 | 1115 |
|
1116 | 1116 |
_node_index.swap(other._node_index); |
1117 | 1117 |
_edge_index.swap(other._edge_index); |
1118 | 1118 |
|
1119 | 1119 |
_node_maps.swap(other._node_maps); |
1120 | 1120 |
_edge_maps.swap(other._edge_maps); |
... | ... |
@@ -1547,25 +1547,25 @@ |
1547 | 1547 |
/// Give back the stream of the writer |
1548 | 1548 |
std::ostream& ostream() { |
1549 | 1549 |
return *_os; |
1550 | 1550 |
} |
1551 | 1551 |
|
1552 | 1552 |
/// @} |
1553 | 1553 |
}; |
1554 | 1554 |
|
1555 | 1555 |
/// \ingroup lemon_io |
1556 | 1556 |
/// |
1557 | 1557 |
/// \brief Return a \ref GraphWriter class |
1558 | 1558 |
/// |
1559 |
/// This function just returns a \ref GraphWriter class. |
|
1559 |
/// This function just returns a \ref GraphWriter class. |
|
1560 | 1560 |
/// |
1561 | 1561 |
/// With this function a graph can be write to a file or output |
1562 | 1562 |
/// stream in \ref lgf-format "LGF" format with several maps and |
1563 | 1563 |
/// attributes. For example, with the following code a weighted |
1564 | 1564 |
/// matching problem can be written to the standard output, i.e. a |
1565 | 1565 |
/// graph with a \e weight map on the edges: |
1566 | 1566 |
/// |
1567 | 1567 |
///\code |
1568 | 1568 |
///ListGraph graph; |
1569 | 1569 |
///ListGraph::EdgeMap<int> weight(graph); |
1570 | 1570 |
/// // Setting the weight map |
1571 | 1571 |
///graphWriter(graph, std::cout). |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -437,25 +437,25 @@ |
437 | 437 |
///Contract two nodes. |
438 | 438 |
|
439 | 439 |
///This function contracts the given two nodes. |
440 | 440 |
///Node \c v is removed, but instead of deleting its |
441 | 441 |
///incident arcs, they are joined to node \c u. |
442 | 442 |
///If the last parameter \c r is \c true (this is the default value), |
443 | 443 |
///then the newly created loops are removed. |
444 | 444 |
/// |
445 | 445 |
///\note The moved arcs are joined to node \c u using changeSource() |
446 | 446 |
///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are |
447 | 447 |
///invalidated for the outgoing arcs of node \c v and \c InArcIt |
448 | 448 |
///iterators are invalidated for the incomming arcs of \c v. |
449 |
///Moreover all iterators referencing node \c v or the removed |
|
449 |
///Moreover all iterators referencing node \c v or the removed |
|
450 | 450 |
///loops are also invalidated. Other iterators remain valid. |
451 | 451 |
/// |
452 | 452 |
///\warning This functionality cannot be used together with the Snapshot |
453 | 453 |
///feature. |
454 | 454 |
void contract(Node u, Node v, bool r = true) |
455 | 455 |
{ |
456 | 456 |
for(OutArcIt e(*this,v);e!=INVALID;) { |
457 | 457 |
OutArcIt f=e; |
458 | 458 |
++f; |
459 | 459 |
if(r && target(e)==u) erase(e); |
460 | 460 |
else changeSource(e,u); |
461 | 461 |
e=f; |
... | ... |
@@ -543,25 +543,25 @@ |
543 | 543 |
/// to build the digraph. |
544 | 544 |
/// \sa reserveNode() |
545 | 545 |
void reserveArc(int m) { arcs.reserve(m); }; |
546 | 546 |
|
547 | 547 |
/// \brief Class to make a snapshot of the digraph and restore |
548 | 548 |
/// it later. |
549 | 549 |
/// |
550 | 550 |
/// Class to make a snapshot of the digraph and restore it later. |
551 | 551 |
/// |
552 | 552 |
/// The newly added nodes and arcs can be removed using the |
553 | 553 |
/// restore() function. |
554 | 554 |
/// |
555 |
/// \note After a state is restored, you cannot restore a later state, |
|
555 |
/// \note After a state is restored, you cannot restore a later state, |
|
556 | 556 |
/// i.e. you cannot add the removed nodes and arcs again using |
557 | 557 |
/// another Snapshot instance. |
558 | 558 |
/// |
559 | 559 |
/// \warning Node and arc deletions and other modifications (e.g. |
560 | 560 |
/// reversing, contracting, splitting arcs or nodes) cannot be |
561 | 561 |
/// restored. These events invalidate the snapshot. |
562 | 562 |
/// However, the arcs and nodes that were added to the digraph after |
563 | 563 |
/// making the current snapshot can be removed without invalidating it. |
564 | 564 |
class Snapshot { |
565 | 565 |
protected: |
566 | 566 |
|
567 | 567 |
typedef Parent::NodeNotifier NodeNotifier; |
... | ... |
@@ -1298,25 +1298,25 @@ |
1298 | 1298 |
|
1299 | 1299 |
/// \brief Contract two nodes. |
1300 | 1300 |
/// |
1301 | 1301 |
/// This function contracts the given two nodes. |
1302 | 1302 |
/// Node \c b is removed, but instead of deleting |
1303 | 1303 |
/// its incident edges, they are joined to node \c a. |
1304 | 1304 |
/// If the last parameter \c r is \c true (this is the default value), |
1305 | 1305 |
/// then the newly created loops are removed. |
1306 | 1306 |
/// |
1307 | 1307 |
/// \note The moved edges are joined to node \c a using changeU() |
1308 | 1308 |
/// or changeV(), thus all edge and arc iterators whose base node is |
1309 | 1309 |
/// \c b are invalidated. |
1310 |
/// Moreover all iterators referencing node \c b or the removed |
|
1310 |
/// Moreover all iterators referencing node \c b or the removed |
|
1311 | 1311 |
/// loops are also invalidated. Other iterators remain valid. |
1312 | 1312 |
/// |
1313 | 1313 |
///\warning This functionality cannot be used together with the |
1314 | 1314 |
///Snapshot feature. |
1315 | 1315 |
void contract(Node a, Node b, bool r = true) { |
1316 | 1316 |
for(IncEdgeIt e(*this, b); e!=INVALID;) { |
1317 | 1317 |
IncEdgeIt f = e; ++f; |
1318 | 1318 |
if (r && runningNode(e) == a) { |
1319 | 1319 |
erase(e); |
1320 | 1320 |
} else if (u(e) == b) { |
1321 | 1321 |
changeU(e, a); |
1322 | 1322 |
} else { |
... | ... |
@@ -1355,25 +1355,25 @@ |
1355 | 1355 |
/// to build the graph. |
1356 | 1356 |
/// \sa reserveNode() |
1357 | 1357 |
void reserveEdge(int m) { arcs.reserve(2 * m); }; |
1358 | 1358 |
|
1359 | 1359 |
/// \brief Class to make a snapshot of the graph and restore |
1360 | 1360 |
/// it later. |
1361 | 1361 |
/// |
1362 | 1362 |
/// Class to make a snapshot of the graph and restore it later. |
1363 | 1363 |
/// |
1364 | 1364 |
/// The newly added nodes and edges can be removed |
1365 | 1365 |
/// using the restore() function. |
1366 | 1366 |
/// |
1367 |
/// \note After a state is restored, you cannot restore a later state, |
|
1367 |
/// \note After a state is restored, you cannot restore a later state, |
|
1368 | 1368 |
/// i.e. you cannot add the removed nodes and edges again using |
1369 | 1369 |
/// another Snapshot instance. |
1370 | 1370 |
/// |
1371 | 1371 |
/// \warning Node and edge deletions and other modifications |
1372 | 1372 |
/// (e.g. changing the end-nodes of edges or contracting nodes) |
1373 | 1373 |
/// cannot be restored. These events invalidate the snapshot. |
1374 | 1374 |
/// However, the edges and nodes that were added to the graph after |
1375 | 1375 |
/// making the current snapshot can be removed without invalidating it. |
1376 | 1376 |
class Snapshot { |
1377 | 1377 |
protected: |
1378 | 1378 |
|
1379 | 1379 |
typedef Parent::NodeNotifier NodeNotifier; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -75,19 +75,19 @@ |
75 | 75 |
# define LEMON_DEFAULT_MIP GLPK |
76 | 76 |
typedef GlpkMip Mip; |
77 | 77 |
#elif LEMON_HAVE_CPLEX |
78 | 78 |
# define LEMON_DEFAULT_LP CPLEX |
79 | 79 |
typedef CplexLp Lp; |
80 | 80 |
# define LEMON_DEFAULT_MIP CPLEX |
81 | 81 |
typedef CplexMip Mip; |
82 | 82 |
#elif LEMON_HAVE_SOPLEX |
83 | 83 |
# define DEFAULT_LP SOPLEX |
84 | 84 |
typedef SoplexLp Lp; |
85 | 85 |
#elif LEMON_HAVE_CLP |
86 | 86 |
# define DEFAULT_LP CLP |
87 |
typedef ClpLp Lp; |
|
87 |
typedef ClpLp Lp; |
|
88 | 88 |
#endif |
89 | 89 |
#endif |
90 | 90 |
|
91 | 91 |
} //namespace lemon |
92 | 92 |
|
93 | 93 |
#endif //LEMON_LP_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -73,25 +73,25 @@ |
73 | 73 |
enum MessageLevel { |
74 | 74 |
/// No output (default value). |
75 | 75 |
MESSAGE_NOTHING, |
76 | 76 |
/// Error messages only. |
77 | 77 |
MESSAGE_ERROR, |
78 | 78 |
/// Warnings. |
79 | 79 |
MESSAGE_WARNING, |
80 | 80 |
/// Normal output. |
81 | 81 |
MESSAGE_NORMAL, |
82 | 82 |
/// Verbose output. |
83 | 83 |
MESSAGE_VERBOSE |
84 | 84 |
}; |
85 |
|
|
85 |
|
|
86 | 86 |
|
87 | 87 |
///The floating point type used by the solver |
88 | 88 |
typedef double Value; |
89 | 89 |
///The infinity constant |
90 | 90 |
static const Value INF; |
91 | 91 |
///The not a number constant |
92 | 92 |
static const Value NaN; |
93 | 93 |
|
94 | 94 |
friend class Col; |
95 | 95 |
friend class ColIt; |
96 | 96 |
friend class Row; |
97 | 97 |
friend class RowIt; |
... | ... |
@@ -105,32 +105,32 @@ |
105 | 105 |
/// |
106 | 106 |
///\note This class is similar to other Item types in LEMON, like |
107 | 107 |
///Node and Arc types in digraph. |
108 | 108 |
class Col { |
109 | 109 |
friend class LpBase; |
110 | 110 |
protected: |
111 | 111 |
int _id; |
112 | 112 |
explicit Col(int id) : _id(id) {} |
113 | 113 |
public: |
114 | 114 |
typedef Value ExprValue; |
115 | 115 |
typedef True LpCol; |
116 | 116 |
/// Default constructor |
117 |
|
|
117 |
|
|
118 | 118 |
/// \warning The default constructor sets the Col to an |
119 | 119 |
/// undefined value. |
120 | 120 |
Col() {} |
121 | 121 |
/// Invalid constructor \& conversion. |
122 |
|
|
122 |
|
|
123 | 123 |
/// This constructor initializes the Col to be invalid. |
124 |
/// \sa Invalid for more details. |
|
124 |
/// \sa Invalid for more details. |
|
125 | 125 |
Col(const Invalid&) : _id(-1) {} |
126 | 126 |
/// Equality operator |
127 | 127 |
|
128 | 128 |
/// Two \ref Col "Col"s are equal if and only if they point to |
129 | 129 |
/// the same LP column or both are invalid. |
130 | 130 |
bool operator==(Col c) const {return _id == c._id;} |
131 | 131 |
/// Inequality operator |
132 | 132 |
|
133 | 133 |
/// \sa operator==(Col c) |
134 | 134 |
/// |
135 | 135 |
bool operator!=(Col c) const {return _id != c._id;} |
136 | 136 |
/// Artificial ordering operator. |
... | ... |
@@ -147,43 +147,43 @@ |
147 | 147 |
///Iterator for iterate over the columns of an LP problem |
148 | 148 |
|
149 | 149 |
/// Its usage is quite simple, for example, you can count the number |
150 | 150 |
/// of columns in an LP \c lp: |
151 | 151 |
///\code |
152 | 152 |
/// int count=0; |
153 | 153 |
/// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count; |
154 | 154 |
///\endcode |
155 | 155 |
class ColIt : public Col { |
156 | 156 |
const LpBase *_solver; |
157 | 157 |
public: |
158 | 158 |
/// Default constructor |
159 |
|
|
159 |
|
|
160 | 160 |
/// \warning The default constructor sets the iterator |
161 | 161 |
/// to an undefined value. |
162 | 162 |
ColIt() {} |
163 | 163 |
/// Sets the iterator to the first Col |
164 |
|
|
164 |
|
|
165 | 165 |
/// Sets the iterator to the first Col. |
166 | 166 |
/// |
167 | 167 |
ColIt(const LpBase &solver) : _solver(&solver) |
168 | 168 |
{ |
169 | 169 |
_solver->cols.firstItem(_id); |
170 | 170 |
} |
171 | 171 |
/// Invalid constructor \& conversion |
172 |
|
|
172 |
|
|
173 | 173 |
/// Initialize the iterator to be invalid. |
174 | 174 |
/// \sa Invalid for more details. |
175 | 175 |
ColIt(const Invalid&) : Col(INVALID) {} |
176 | 176 |
/// Next column |
177 |
|
|
177 |
|
|
178 | 178 |
/// Assign the iterator to the next column. |
179 | 179 |
/// |
180 | 180 |
ColIt &operator++() |
181 | 181 |
{ |
182 | 182 |
_solver->cols.nextItem(_id); |
183 | 183 |
return *this; |
184 | 184 |
} |
185 | 185 |
}; |
186 | 186 |
|
187 | 187 |
/// \brief Returns the ID of the column. |
188 | 188 |
static int id(const Col& col) { return col._id; } |
189 | 189 |
/// \brief Returns the column with the given ID. |
... | ... |
@@ -200,40 +200,40 @@ |
200 | 200 |
/// |
201 | 201 |
///\note This class is similar to other Item types in LEMON, like |
202 | 202 |
///Node and Arc types in digraph. |
203 | 203 |
class Row { |
204 | 204 |
friend class LpBase; |
205 | 205 |
protected: |
206 | 206 |
int _id; |
207 | 207 |
explicit Row(int id) : _id(id) {} |
208 | 208 |
public: |
209 | 209 |
typedef Value ExprValue; |
210 | 210 |
typedef True LpRow; |
211 | 211 |
/// Default constructor |
212 |
|
|
212 |
|
|
213 | 213 |
/// \warning The default constructor sets the Row to an |
214 | 214 |
/// undefined value. |
215 | 215 |
Row() {} |
216 | 216 |
/// Invalid constructor \& conversion. |
217 |
|
|
217 |
|
|
218 | 218 |
/// This constructor initializes the Row to be invalid. |
219 |
/// \sa Invalid for more details. |
|
219 |
/// \sa Invalid for more details. |
|
220 | 220 |
Row(const Invalid&) : _id(-1) {} |
221 | 221 |
/// Equality operator |
222 | 222 |
|
223 | 223 |
/// Two \ref Row "Row"s are equal if and only if they point to |
224 | 224 |
/// the same LP row or both are invalid. |
225 | 225 |
bool operator==(Row r) const {return _id == r._id;} |
226 | 226 |
/// Inequality operator |
227 |
|
|
227 |
|
|
228 | 228 |
/// \sa operator==(Row r) |
229 | 229 |
/// |
230 | 230 |
bool operator!=(Row r) const {return _id != r._id;} |
231 | 231 |
/// Artificial ordering operator. |
232 | 232 |
|
233 | 233 |
/// To allow the use of this object in std::map or similar |
234 | 234 |
/// associative container we require this. |
235 | 235 |
/// |
236 | 236 |
/// \note This operator only have to define some strict ordering of |
237 | 237 |
/// the items; this order has nothing to do with the iteration |
238 | 238 |
/// ordering of the items. |
239 | 239 |
bool operator<(Row r) const {return _id < r._id;} |
... | ... |
@@ -242,43 +242,43 @@ |
242 | 242 |
///Iterator for iterate over the rows of an LP problem |
243 | 243 |
|
244 | 244 |
/// Its usage is quite simple, for example, you can count the number |
245 | 245 |
/// of rows in an LP \c lp: |
246 | 246 |
///\code |
247 | 247 |
/// int count=0; |
248 | 248 |
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; |
249 | 249 |
///\endcode |
250 | 250 |
class RowIt : public Row { |
251 | 251 |
const LpBase *_solver; |
252 | 252 |
public: |
253 | 253 |
/// Default constructor |
254 |
|
|
254 |
|
|
255 | 255 |
/// \warning The default constructor sets the iterator |
256 | 256 |
/// to an undefined value. |
257 | 257 |
RowIt() {} |
258 | 258 |
/// Sets the iterator to the first Row |
259 |
|
|
259 |
|
|
260 | 260 |
/// Sets the iterator to the first Row. |
261 | 261 |
/// |
262 | 262 |
RowIt(const LpBase &solver) : _solver(&solver) |
263 | 263 |
{ |
264 | 264 |
_solver->rows.firstItem(_id); |
265 | 265 |
} |
266 | 266 |
/// Invalid constructor \& conversion |
267 |
|
|
267 |
|
|
268 | 268 |
/// Initialize the iterator to be invalid. |
269 | 269 |
/// \sa Invalid for more details. |
270 | 270 |
RowIt(const Invalid&) : Row(INVALID) {} |
271 | 271 |
/// Next row |
272 |
|
|
272 |
|
|
273 | 273 |
/// Assign the iterator to the next row. |
274 | 274 |
/// |
275 | 275 |
RowIt &operator++() |
276 | 276 |
{ |
277 | 277 |
_solver->rows.nextItem(_id); |
278 | 278 |
return *this; |
279 | 279 |
} |
280 | 280 |
}; |
281 | 281 |
|
282 | 282 |
/// \brief Returns the ID of the row. |
283 | 283 |
static int id(const Row& row) { return row._id; } |
284 | 284 |
/// \brief Returns the row with the given ID. |
... | ... |
@@ -338,25 +338,25 @@ |
338 | 338 |
/// The key type of the expression |
339 | 339 |
typedef LpBase::Col Key; |
340 | 340 |
/// The value type of the expression |
341 | 341 |
typedef LpBase::Value Value; |
342 | 342 |
|
343 | 343 |
protected: |
344 | 344 |
Value const_comp; |
345 | 345 |
std::map<int, Value> comps; |
346 | 346 |
|
347 | 347 |
public: |
348 | 348 |
typedef True SolverExpr; |
349 | 349 |
/// Default constructor |
350 |
|
|
350 |
|
|
351 | 351 |
/// Construct an empty expression, the coefficients and |
352 | 352 |
/// the constant component are initialized to zero. |
353 | 353 |
Expr() : const_comp(0) {} |
354 | 354 |
/// Construct an expression from a column |
355 | 355 |
|
356 | 356 |
/// Construct an expression, which has a term with \c c variable |
357 | 357 |
/// and 1.0 coefficient. |
358 | 358 |
Expr(const Col &c) : const_comp(0) { |
359 | 359 |
typedef std::map<int, Value>::value_type pair_type; |
360 | 360 |
comps.insert(pair_type(id(c), 1)); |
361 | 361 |
} |
362 | 362 |
/// Construct an expression from a constant |
... | ... |
@@ -439,101 +439,101 @@ |
439 | 439 |
return *this; |
440 | 440 |
} |
441 | 441 |
///Division with a constant |
442 | 442 |
Expr &operator/=(const Value &c) { |
443 | 443 |
for (std::map<int, Value>::iterator it=comps.begin(); |
444 | 444 |
it!=comps.end(); ++it) |
445 | 445 |
it->second/=c; |
446 | 446 |
const_comp/=c; |
447 | 447 |
return *this; |
448 | 448 |
} |
449 | 449 |
|
450 | 450 |
///Iterator over the expression |
451 |
|
|
452 |
///The iterator iterates over the terms of the expression. |
|
453 |
|
|
451 |
|
|
452 |
///The iterator iterates over the terms of the expression. |
|
453 |
/// |
|
454 | 454 |
///\code |
455 | 455 |
///double s=0; |
456 | 456 |
///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i) |
457 | 457 |
/// s+= *i * primal(i); |
458 | 458 |
///\endcode |
459 | 459 |
class CoeffIt { |
460 | 460 |
private: |
461 | 461 |
|
462 | 462 |
std::map<int, Value>::iterator _it, _end; |
463 | 463 |
|
464 | 464 |
public: |
465 | 465 |
|
466 | 466 |
/// Sets the iterator to the first term |
467 |
|
|
467 |
|
|
468 | 468 |
/// Sets the iterator to the first term of the expression. |
469 | 469 |
/// |
470 | 470 |
CoeffIt(Expr& e) |
471 | 471 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
472 | 472 |
|
473 | 473 |
/// Convert the iterator to the column of the term |
474 | 474 |
operator Col() const { |
475 | 475 |
return colFromId(_it->first); |
476 | 476 |
} |
477 | 477 |
|
478 | 478 |
/// Returns the coefficient of the term |
479 | 479 |
Value& operator*() { return _it->second; } |
480 | 480 |
|
481 | 481 |
/// Returns the coefficient of the term |
482 | 482 |
const Value& operator*() const { return _it->second; } |
483 | 483 |
/// Next term |
484 |
|
|
484 |
|
|
485 | 485 |
/// Assign the iterator to the next term. |
486 | 486 |
/// |
487 | 487 |
CoeffIt& operator++() { ++_it; return *this; } |
488 | 488 |
|
489 | 489 |
/// Equality operator |
490 | 490 |
bool operator==(Invalid) const { return _it == _end; } |
491 | 491 |
/// Inequality operator |
492 | 492 |
bool operator!=(Invalid) const { return _it != _end; } |
493 | 493 |
}; |
494 | 494 |
|
495 | 495 |
/// Const iterator over the expression |
496 |
|
|
497 |
///The iterator iterates over the terms of the expression. |
|
498 |
|
|
496 |
|
|
497 |
///The iterator iterates over the terms of the expression. |
|
498 |
/// |
|
499 | 499 |
///\code |
500 | 500 |
///double s=0; |
501 | 501 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
502 | 502 |
/// s+=*i * primal(i); |
503 | 503 |
///\endcode |
504 | 504 |
class ConstCoeffIt { |
505 | 505 |
private: |
506 | 506 |
|
507 | 507 |
std::map<int, Value>::const_iterator _it, _end; |
508 | 508 |
|
509 | 509 |
public: |
510 | 510 |
|
511 | 511 |
/// Sets the iterator to the first term |
512 |
|
|
512 |
|
|
513 | 513 |
/// Sets the iterator to the first term of the expression. |
514 | 514 |
/// |
515 | 515 |
ConstCoeffIt(const Expr& e) |
516 | 516 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
517 | 517 |
|
518 | 518 |
/// Convert the iterator to the column of the term |
519 | 519 |
operator Col() const { |
520 | 520 |
return colFromId(_it->first); |
521 | 521 |
} |
522 | 522 |
|
523 | 523 |
/// Returns the coefficient of the term |
524 | 524 |
const Value& operator*() const { return _it->second; } |
525 | 525 |
|
526 | 526 |
/// Next term |
527 |
|
|
527 |
|
|
528 | 528 |
/// Assign the iterator to the next term. |
529 | 529 |
/// |
530 | 530 |
ConstCoeffIt& operator++() { ++_it; return *this; } |
531 | 531 |
|
532 | 532 |
/// Equality operator |
533 | 533 |
bool operator==(Invalid) const { return _it == _end; } |
534 | 534 |
/// Inequality operator |
535 | 535 |
bool operator!=(Invalid) const { return _it != _end; } |
536 | 536 |
}; |
537 | 537 |
|
538 | 538 |
}; |
539 | 539 |
|
... | ... |
@@ -664,25 +664,25 @@ |
664 | 664 |
public: |
665 | 665 |
/// The key type of the expression |
666 | 666 |
typedef LpBase::Row Key; |
667 | 667 |
/// The value type of the expression |
668 | 668 |
typedef LpBase::Value Value; |
669 | 669 |
|
670 | 670 |
protected: |
671 | 671 |
std::map<int, Value> comps; |
672 | 672 |
|
673 | 673 |
public: |
674 | 674 |
typedef True SolverExpr; |
675 | 675 |
/// Default constructor |
676 |
|
|
676 |
|
|
677 | 677 |
/// Construct an empty expression, the coefficients are |
678 | 678 |
/// initialized to zero. |
679 | 679 |
DualExpr() {} |
680 | 680 |
/// Construct an expression from a row |
681 | 681 |
|
682 | 682 |
/// Construct an expression, which has a term with \c r dual |
683 | 683 |
/// variable and 1.0 coefficient. |
684 | 684 |
DualExpr(const Row &r) { |
685 | 685 |
typedef std::map<int, Value>::value_type pair_type; |
686 | 686 |
comps.insert(pair_type(id(r), 1)); |
687 | 687 |
} |
688 | 688 |
/// Returns the coefficient of the row |
... | ... |
@@ -699,25 +699,25 @@ |
699 | 699 |
return comps[id(r)]; |
700 | 700 |
} |
701 | 701 |
/// Sets the coefficient of the row |
702 | 702 |
void set(const Row &r, const Value &v) { |
703 | 703 |
if (v != 0.0) { |
704 | 704 |
typedef std::map<int, Value>::value_type pair_type; |
705 | 705 |
comps.insert(pair_type(id(r), v)); |
706 | 706 |
} else { |
707 | 707 |
comps.erase(id(r)); |
708 | 708 |
} |
709 | 709 |
} |
710 | 710 |
/// \brief Removes the coefficients which's absolute value does |
711 |
/// not exceed \c epsilon. |
|
711 |
/// not exceed \c epsilon. |
|
712 | 712 |
void simplify(Value epsilon = 0.0) { |
713 | 713 |
std::map<int, Value>::iterator it=comps.begin(); |
714 | 714 |
while (it != comps.end()) { |
715 | 715 |
std::map<int, Value>::iterator jt=it; |
716 | 716 |
++jt; |
717 | 717 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
718 | 718 |
it=jt; |
719 | 719 |
} |
720 | 720 |
} |
721 | 721 |
|
722 | 722 |
void simplify(Value epsilon = 0.0) const { |
723 | 723 |
const_cast<DualExpr*>(this)->simplify(epsilon); |
... | ... |
@@ -748,102 +748,102 @@ |
748 | 748 |
it->second*=v; |
749 | 749 |
return *this; |
750 | 750 |
} |
751 | 751 |
///Division with a constant |
752 | 752 |
DualExpr &operator/=(const Value &v) { |
753 | 753 |
for (std::map<int, Value>::iterator it=comps.begin(); |
754 | 754 |
it!=comps.end(); ++it) |
755 | 755 |
it->second/=v; |
756 | 756 |
return *this; |
757 | 757 |
} |
758 | 758 |
|
759 | 759 |
///Iterator over the expression |
760 |
|
|
761 |
///The iterator iterates over the terms of the expression. |
|
762 |
|
|
760 |
|
|
761 |
///The iterator iterates over the terms of the expression. |
|
762 |
/// |
|
763 | 763 |
///\code |
764 | 764 |
///double s=0; |
765 | 765 |
///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i) |
766 | 766 |
/// s+= *i * dual(i); |
767 | 767 |
///\endcode |
768 | 768 |
class CoeffIt { |
769 | 769 |
private: |
770 | 770 |
|
771 | 771 |
std::map<int, Value>::iterator _it, _end; |
772 | 772 |
|
773 | 773 |
public: |
774 | 774 |
|
775 | 775 |
/// Sets the iterator to the first term |
776 |
|
|
776 |
|
|
777 | 777 |
/// Sets the iterator to the first term of the expression. |
778 | 778 |
/// |
779 | 779 |
CoeffIt(DualExpr& e) |
780 | 780 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
781 | 781 |
|
782 | 782 |
/// Convert the iterator to the row of the term |
783 | 783 |
operator Row() const { |
784 | 784 |
return rowFromId(_it->first); |
785 | 785 |
} |
786 | 786 |
|
787 | 787 |
/// Returns the coefficient of the term |
788 | 788 |
Value& operator*() { return _it->second; } |
789 | 789 |
|
790 | 790 |
/// Returns the coefficient of the term |
791 | 791 |
const Value& operator*() const { return _it->second; } |
792 | 792 |
|
793 | 793 |
/// Next term |
794 |
|
|
794 |
|
|
795 | 795 |
/// Assign the iterator to the next term. |
796 | 796 |
/// |
797 | 797 |
CoeffIt& operator++() { ++_it; return *this; } |
798 | 798 |
|
799 | 799 |
/// Equality operator |
800 | 800 |
bool operator==(Invalid) const { return _it == _end; } |
801 | 801 |
/// Inequality operator |
802 | 802 |
bool operator!=(Invalid) const { return _it != _end; } |
803 | 803 |
}; |
804 | 804 |
|
805 | 805 |
///Iterator over the expression |
806 |
|
|
807 |
///The iterator iterates over the terms of the expression. |
|
808 |
|
|
806 |
|
|
807 |
///The iterator iterates over the terms of the expression. |
|
808 |
/// |
|
809 | 809 |
///\code |
810 | 810 |
///double s=0; |
811 | 811 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
812 | 812 |
/// s+= *i * dual(i); |
813 | 813 |
///\endcode |
814 | 814 |
class ConstCoeffIt { |
815 | 815 |
private: |
816 | 816 |
|
817 | 817 |
std::map<int, Value>::const_iterator _it, _end; |
818 | 818 |
|
819 | 819 |
public: |
820 | 820 |
|
821 | 821 |
/// Sets the iterator to the first term |
822 |
|
|
822 |
|
|
823 | 823 |
/// Sets the iterator to the first term of the expression. |
824 | 824 |
/// |
825 | 825 |
ConstCoeffIt(const DualExpr& e) |
826 | 826 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
827 | 827 |
|
828 | 828 |
/// Convert the iterator to the row of the term |
829 | 829 |
operator Row() const { |
830 | 830 |
return rowFromId(_it->first); |
831 | 831 |
} |
832 | 832 |
|
833 | 833 |
/// Returns the coefficient of the term |
834 | 834 |
const Value& operator*() const { return _it->second; } |
835 | 835 |
|
836 | 836 |
/// Next term |
837 |
|
|
837 |
|
|
838 | 838 |
/// Assign the iterator to the next term. |
839 | 839 |
/// |
840 | 840 |
ConstCoeffIt& operator++() { ++_it; return *this; } |
841 | 841 |
|
842 | 842 |
/// Equality operator |
843 | 843 |
bool operator==(Invalid) const { return _it == _end; } |
844 | 844 |
/// Inequality operator |
845 | 845 |
bool operator!=(Invalid) const { return _it != _end; } |
846 | 846 |
}; |
847 | 847 |
}; |
848 | 848 |
|
849 | 849 |
|
... | ... |
@@ -1220,25 +1220,25 @@ |
1220 | 1220 |
r._id = _addRowId(_addRow(l - *e, ExprIterator(e.comps.begin(), cols), |
1221 | 1221 |
ExprIterator(e.comps.end(), cols), u - *e)); |
1222 | 1222 |
return r; |
1223 | 1223 |
} |
1224 | 1224 |
|
1225 | 1225 |
///Add a new row (i.e a new constraint) to the LP |
1226 | 1226 |
|
1227 | 1227 |
///\param c is a linear expression (see \ref Constr) |
1228 | 1228 |
///\return The created row. |
1229 | 1229 |
Row addRow(const Constr &c) { |
1230 | 1230 |
Row r; |
1231 | 1231 |
c.expr().simplify(); |
1232 |
r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound()-*c.expr():-INF, |
|
1232 |
r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound()-*c.expr():-INF, |
|
1233 | 1233 |
ExprIterator(c.expr().comps.begin(), cols), |
1234 | 1234 |
ExprIterator(c.expr().comps.end(), cols), |
1235 | 1235 |
c.upperBounded()?c.upperBound()-*c.expr():INF)); |
1236 | 1236 |
return r; |
1237 | 1237 |
} |
1238 | 1238 |
///Erase a column (i.e a variable) from the LP |
1239 | 1239 |
|
1240 | 1240 |
///\param c is the column to be deleted |
1241 | 1241 |
void erase(Col c) { |
1242 | 1242 |
_eraseCol(cols(id(c))); |
1243 | 1243 |
_eraseColId(cols(id(c))); |
1244 | 1244 |
} |
... | ... |
@@ -1808,28 +1808,28 @@ |
1808 | 1808 |
INFEASIBLE = 1, |
1809 | 1809 |
/// = 2. Feasible solution found. |
1810 | 1810 |
FEASIBLE = 2, |
1811 | 1811 |
/// = 3. Optimal solution exists and found. |
1812 | 1812 |
OPTIMAL = 3, |
1813 | 1813 |
/// = 4. The cost function is unbounded. |
1814 | 1814 |
UNBOUNDED = 4 |
1815 | 1815 |
}; |
1816 | 1816 |
|
1817 | 1817 |
///The basis status of variables |
1818 | 1818 |
enum VarStatus { |
1819 | 1819 |
/// The variable is in the basis |
1820 |
BASIC, |
|
1820 |
BASIC, |
|
1821 | 1821 |
/// The variable is free, but not basic |
1822 | 1822 |
FREE, |
1823 |
/// The variable has active lower bound |
|
1823 |
/// The variable has active lower bound |
|
1824 | 1824 |
LOWER, |
1825 | 1825 |
/// The variable has active upper bound |
1826 | 1826 |
UPPER, |
1827 | 1827 |
/// The variable is non-basic and fixed |
1828 | 1828 |
FIXED |
1829 | 1829 |
}; |
1830 | 1830 |
|
1831 | 1831 |
protected: |
1832 | 1832 |
|
1833 | 1833 |
virtual SolveExitStatus _solve() = 0; |
1834 | 1834 |
|
1835 | 1835 |
virtual Value _getPrimal(int i) const = 0; |
... | ... |
@@ -1890,25 +1890,25 @@ |
1890 | 1890 |
|
1891 | 1891 |
/// Return the primal value of the expression, i.e. the dot |
1892 | 1892 |
/// product of the primal solution and the expression. |
1893 | 1893 |
/// \pre The problem is solved. |
1894 | 1894 |
Value primal(const Expr& e) const { |
1895 | 1895 |
double res = *e; |
1896 | 1896 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { |
1897 | 1897 |
res += *c * primal(c); |
1898 | 1898 |
} |
1899 | 1899 |
return res; |
1900 | 1900 |
} |
1901 | 1901 |
/// Returns a component of the primal ray |
1902 |
|
|
1902 |
|
|
1903 | 1903 |
/// The primal ray is solution of the modified primal problem, |
1904 | 1904 |
/// where we change each finite bound to 0, and we looking for a |
1905 | 1905 |
/// negative objective value in case of minimization, and positive |
1906 | 1906 |
/// objective value for maximization. If there is such solution, |
1907 | 1907 |
/// that proofs the unsolvability of the dual problem, and if a |
1908 | 1908 |
/// feasible primal solution exists, then the unboundness of |
1909 | 1909 |
/// primal problem. |
1910 | 1910 |
/// |
1911 | 1911 |
/// \pre The problem is solved and the dual problem is infeasible. |
1912 | 1912 |
/// \note Some solvers does not provide primal ray calculation |
1913 | 1913 |
/// functions. |
1914 | 1914 |
Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); } |
... | ... |
@@ -1924,25 +1924,25 @@ |
1924 | 1924 |
/// Return the dual value of the dual expression, i.e. the dot |
1925 | 1925 |
/// product of the dual solution and the dual expression. |
1926 | 1926 |
/// \pre The problem is solved. |
1927 | 1927 |
Value dual(const DualExpr& e) const { |
1928 | 1928 |
double res = 0.0; |
1929 | 1929 |
for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) { |
1930 | 1930 |
res += *r * dual(r); |
1931 | 1931 |
} |
1932 | 1932 |
return res; |
1933 | 1933 |
} |
1934 | 1934 |
|
1935 | 1935 |
/// Returns a component of the dual ray |
1936 |
|
|
1936 |
|
|
1937 | 1937 |
/// The dual ray is solution of the modified primal problem, where |
1938 | 1938 |
/// we change each finite bound to 0 (i.e. the objective function |
1939 | 1939 |
/// coefficients in the primal problem), and we looking for a |
1940 | 1940 |
/// ositive objective value. If there is such solution, that |
1941 | 1941 |
/// proofs the unsolvability of the primal problem, and if a |
1942 | 1942 |
/// feasible dual solution exists, then the unboundness of |
1943 | 1943 |
/// dual problem. |
1944 | 1944 |
/// |
1945 | 1945 |
/// \pre The problem is solved and the primal problem is infeasible. |
1946 | 1946 |
/// \note Some solvers does not provide dual ray calculation |
1947 | 1947 |
/// functions. |
1948 | 1948 |
Value dualRay(Row r) const { return _getDualRay(rows(id(r))); } |
... | ... |
@@ -2066,25 +2066,25 @@ |
2066 | 2066 |
|
2067 | 2067 |
/// Return the value of the expression in the solution, i.e. the |
2068 | 2068 |
/// dot product of the solution and the expression. |
2069 | 2069 |
/// \pre The problem is solved. |
2070 | 2070 |
Value sol(const Expr& e) const { |
2071 | 2071 |
double res = *e; |
2072 | 2072 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { |
2073 | 2073 |
res += *c * sol(c); |
2074 | 2074 |
} |
2075 | 2075 |
return res; |
2076 | 2076 |
} |
2077 | 2077 |
///The value of the objective function |
2078 |
|
|
2078 |
|
|
2079 | 2079 |
///\return |
2080 | 2080 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
2081 | 2081 |
/// of the problem, depending on whether we minimize or maximize. |
2082 | 2082 |
///- \ref NaN if no primal solution is found. |
2083 | 2083 |
///- The (finite) objective value if an optimal solution is found. |
2084 | 2084 |
Value solValue() const { return _getSolValue()+obj_const_comp;} |
2085 | 2085 |
///@} |
2086 | 2086 |
|
2087 | 2087 |
protected: |
2088 | 2088 |
|
2089 | 2089 |
virtual SolveExitStatus _solve() = 0; |
2090 | 2090 |
virtual ColTypes _getColType(int col) const = 0; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LP_SKELETON_H |
20 | 20 |
#define LEMON_LP_SKELETON_H |
21 | 21 |
|
22 | 22 |
#include <lemon/lp_base.h> |
23 | 23 |
|
24 | 24 |
///\file |
25 | 25 |
///\brief Skeleton file to implement LP/MIP solver interfaces |
26 |
/// |
|
26 |
/// |
|
27 | 27 |
///The classes in this file do nothing, but they can serve as skeletons when |
28 | 28 |
///implementing an interface to new solvers. |
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
///A skeleton class to implement LP/MIP solver base interface |
32 |
|
|
32 |
|
|
33 | 33 |
///This class does nothing, but it can serve as a skeleton when |
34 | 34 |
///implementing an interface to new solvers. |
35 | 35 |
class SkeletonSolverBase : public virtual LpBase { |
36 | 36 |
int col_num,row_num; |
37 | 37 |
|
38 | 38 |
protected: |
39 | 39 |
|
40 | 40 |
SkeletonSolverBase() |
41 | 41 |
: col_num(-1), row_num(-1) {} |
42 | 42 |
|
43 | 43 |
/// \e |
44 | 44 |
virtual int _addCol(); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -224,25 +224,25 @@ |
224 | 224 |
return IdentityMap<T>(); |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
|
228 | 228 |
/// \brief Map for storing values for integer keys from the range |
229 | 229 |
/// <tt>[0..size-1]</tt>. |
230 | 230 |
/// |
231 | 231 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
232 | 232 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
233 | 233 |
/// It can be used together with some data structures, e.g. |
234 | 234 |
/// heap types and \c UnionFind, when the used items are small |
235 | 235 |
/// integers. This map conforms to the \ref concepts::ReferenceMap |
236 |
/// "ReferenceMap" concept. |
|
236 |
/// "ReferenceMap" concept. |
|
237 | 237 |
/// |
238 | 238 |
/// The simplest way of using this map is through the rangeMap() |
239 | 239 |
/// function. |
240 | 240 |
template <typename V> |
241 | 241 |
class RangeMap : public MapBase<int, V> { |
242 | 242 |
template <typename V1> |
243 | 243 |
friend class RangeMap; |
244 | 244 |
private: |
245 | 245 |
|
246 | 246 |
typedef std::vector<V> Vector; |
247 | 247 |
Vector _vector; |
248 | 248 |
|
... | ... |
@@ -1907,29 +1907,29 @@ |
1907 | 1907 |
inline IdMap<GR, K> idMap(const GR& graph) { |
1908 | 1908 |
return IdMap<GR, K>(graph); |
1909 | 1909 |
} |
1910 | 1910 |
|
1911 | 1911 |
/// \brief General cross reference graph map type. |
1912 | 1912 |
|
1913 | 1913 |
/// This class provides simple invertable graph maps. |
1914 | 1914 |
/// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap) |
1915 | 1915 |
/// and if a key is set to a new value, then stores it in the inverse map. |
1916 | 1916 |
/// The graph items can be accessed by their values either using |
1917 | 1917 |
/// \c InverseMap or \c operator()(), and the values of the map can be |
1918 | 1918 |
/// accessed with an STL compatible forward iterator (\c ValueIt). |
1919 |
/// |
|
1919 |
/// |
|
1920 | 1920 |
/// This map is intended to be used when all associated values are |
1921 | 1921 |
/// different (the map is actually invertable) or there are only a few |
1922 | 1922 |
/// items with the same value. |
1923 |
/// Otherwise consider to use \c IterableValueMap, which is more |
|
1923 |
/// Otherwise consider to use \c IterableValueMap, which is more |
|
1924 | 1924 |
/// suitable and more efficient for such cases. It provides iterators |
1925 | 1925 |
/// to traverse the items with the same associated value, but |
1926 | 1926 |
/// it does not have \c InverseMap. |
1927 | 1927 |
/// |
1928 | 1928 |
/// This type is not reference map, so it cannot be modified with |
1929 | 1929 |
/// the subscript operator. |
1930 | 1930 |
/// |
1931 | 1931 |
/// \tparam GR The graph type. |
1932 | 1932 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
1933 | 1933 |
/// \c GR::Edge). |
1934 | 1934 |
/// \tparam V The value type of the map. |
1935 | 1935 |
/// |
... | ... |
@@ -1993,25 +1993,25 @@ |
1993 | 1993 |
const Value& operator*() const { return it->first; } |
1994 | 1994 |
/// \e |
1995 | 1995 |
const Value* operator->() const { return &(it->first); } |
1996 | 1996 |
|
1997 | 1997 |
/// \e |
1998 | 1998 |
bool operator==(ValueIt jt) const { return it == jt.it; } |
1999 | 1999 |
/// \e |
2000 | 2000 |
bool operator!=(ValueIt jt) const { return it != jt.it; } |
2001 | 2001 |
|
2002 | 2002 |
private: |
2003 | 2003 |
typename Container::const_iterator it; |
2004 | 2004 |
}; |
2005 |
|
|
2005 |
|
|
2006 | 2006 |
/// Alias for \c ValueIt |
2007 | 2007 |
typedef ValueIt ValueIterator; |
2008 | 2008 |
|
2009 | 2009 |
/// \brief Returns an iterator to the first value. |
2010 | 2010 |
/// |
2011 | 2011 |
/// Returns an STL compatible iterator to the |
2012 | 2012 |
/// first value of the map. The values of the |
2013 | 2013 |
/// map can be accessed in the <tt>[beginValue, endValue)</tt> |
2014 | 2014 |
/// range. |
2015 | 2015 |
ValueIt beginValue() const { |
2016 | 2016 |
return ValueIt(_inv_map.begin()); |
2017 | 2017 |
} |
... | ... |
@@ -2052,25 +2052,25 @@ |
2052 | 2052 |
} |
2053 | 2053 |
|
2054 | 2054 |
/// \brief Gives back an item by its value. |
2055 | 2055 |
/// |
2056 | 2056 |
/// This function gives back an item that is assigned to |
2057 | 2057 |
/// the given value or \c INVALID if no such item exists. |
2058 | 2058 |
/// If there are more items with the same associated value, |
2059 | 2059 |
/// only one of them is returned. |
2060 | 2060 |
Key operator()(const Value& val) const { |
2061 | 2061 |
typename Container::const_iterator it = _inv_map.find(val); |
2062 | 2062 |
return it != _inv_map.end() ? it->second : INVALID; |
2063 | 2063 |
} |
2064 |
|
|
2064 |
|
|
2065 | 2065 |
/// \brief Returns the number of items with the given value. |
2066 | 2066 |
/// |
2067 | 2067 |
/// This function returns the number of items with the given value |
2068 | 2068 |
/// associated with it. |
2069 | 2069 |
int count(const Value &val) const { |
2070 | 2070 |
return _inv_map.count(val); |
2071 | 2071 |
} |
2072 | 2072 |
|
2073 | 2073 |
protected: |
2074 | 2074 |
|
2075 | 2075 |
/// \brief Erase the key from the map and the inverse map. |
2076 | 2076 |
/// |
... | ... |
@@ -2369,25 +2369,25 @@ |
2369 | 2369 |
return InverseMap(*this); |
2370 | 2370 |
} |
2371 | 2371 |
}; |
2372 | 2372 |
|
2373 | 2373 |
/// \brief Returns a \c RangeIdMap class. |
2374 | 2374 |
/// |
2375 | 2375 |
/// This function just returns an \c RangeIdMap class. |
2376 | 2376 |
/// \relates RangeIdMap |
2377 | 2377 |
template <typename K, typename GR> |
2378 | 2378 |
inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) { |
2379 | 2379 |
return RangeIdMap<GR, K>(graph); |
2380 | 2380 |
} |
2381 |
|
|
2381 |
|
|
2382 | 2382 |
/// \brief Dynamic iterable \c bool map. |
2383 | 2383 |
/// |
2384 | 2384 |
/// This class provides a special graph map type which can store a |
2385 | 2385 |
/// \c bool value for graph items (\c Node, \c Arc or \c Edge). |
2386 | 2386 |
/// For both \c true and \c false values it is possible to iterate on |
2387 | 2387 |
/// the keys mapped to the value. |
2388 | 2388 |
/// |
2389 | 2389 |
/// This type is a reference map, so it can be modified with the |
2390 | 2390 |
/// subscript operator. |
2391 | 2391 |
/// |
2392 | 2392 |
/// \tparam GR The graph type. |
2393 | 2393 |
/// \tparam K The key type of the map (\c GR::Node, \c GR::Arc or |
... | ... |
@@ -2629,25 +2629,25 @@ |
2629 | 2629 |
/// \c INVALID. |
2630 | 2630 |
class ItemIt : public Key { |
2631 | 2631 |
public: |
2632 | 2632 |
typedef Key Parent; |
2633 | 2633 |
|
2634 | 2634 |
/// \brief Creates an iterator with a value. |
2635 | 2635 |
/// |
2636 | 2636 |
/// Creates an iterator with a value. It iterates on the |
2637 | 2637 |
/// keys mapped to the given value. |
2638 | 2638 |
/// \param map The IterableBoolMap. |
2639 | 2639 |
/// \param value The value. |
2640 | 2640 |
ItemIt(const IterableBoolMap& map, bool value) |
2641 |
: Parent(value ? |
|
2641 |
: Parent(value ? |
|
2642 | 2642 |
(map._sep > 0 ? |
2643 | 2643 |
map._array[map._sep - 1] : INVALID) : |
2644 | 2644 |
(map._sep < int(map._array.size()) ? |
2645 | 2645 |
map._array.back() : INVALID)), _map(&map) {} |
2646 | 2646 |
|
2647 | 2647 |
/// \brief Invalid constructor \& conversion. |
2648 | 2648 |
/// |
2649 | 2649 |
/// This constructor initializes the iterator to be invalid. |
2650 | 2650 |
/// \sa Invalid for more details. |
2651 | 2651 |
ItemIt(Invalid) : Parent(INVALID), _map(0) {} |
2652 | 2652 |
|
2653 | 2653 |
/// \brief Increment operator. |
... | ... |
@@ -3777,45 +3777,45 @@ |
3777 | 3777 |
/// Note that even a \ref ConstMap can be copied to a standard graph map, |
3778 | 3778 |
/// but \ref mapFill() can also be used for this purpose. |
3779 | 3779 |
/// |
3780 | 3780 |
/// \param gr The graph for which the maps are defined. |
3781 | 3781 |
/// \param from The map from which the values have to be copied. |
3782 | 3782 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
3783 | 3783 |
/// \param to The map to which the values have to be copied. |
3784 | 3784 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
3785 | 3785 |
template <typename GR, typename From, typename To> |
3786 | 3786 |
void mapCopy(const GR& gr, const From& from, To& to) { |
3787 | 3787 |
typedef typename To::Key Item; |
3788 | 3788 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
3789 |
|
|
3789 |
|
|
3790 | 3790 |
for (ItemIt it(gr); it != INVALID; ++it) { |
3791 | 3791 |
to.set(it, from[it]); |
3792 | 3792 |
} |
3793 | 3793 |
} |
3794 | 3794 |
|
3795 | 3795 |
/// \brief Compare two graph maps. |
3796 | 3796 |
/// |
3797 |
/// This function compares the values of two graph maps. It returns |
|
3797 |
/// This function compares the values of two graph maps. It returns |
|
3798 | 3798 |
/// \c true if the maps assign the same value for all items in the graph. |
3799 | 3799 |
/// The \c Key type of the maps (\c Node, \c Arc or \c Edge) must be equal |
3800 | 3800 |
/// and their \c Value types must be comparable using \c %operator==(). |
3801 | 3801 |
/// |
3802 | 3802 |
/// \param gr The graph for which the maps are defined. |
3803 | 3803 |
/// \param map1 The first map. |
3804 | 3804 |
/// \param map2 The second map. |
3805 | 3805 |
template <typename GR, typename Map1, typename Map2> |
3806 | 3806 |
bool mapCompare(const GR& gr, const Map1& map1, const Map2& map2) { |
3807 | 3807 |
typedef typename Map2::Key Item; |
3808 | 3808 |
typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt; |
3809 |
|
|
3809 |
|
|
3810 | 3810 |
for (ItemIt it(gr); it != INVALID; ++it) { |
3811 | 3811 |
if (!(map1[it] == map2[it])) return false; |
3812 | 3812 |
} |
3813 | 3813 |
return true; |
3814 | 3814 |
} |
3815 | 3815 |
|
3816 | 3816 |
/// \brief Return an item having minimum value of a graph map. |
3817 | 3817 |
/// |
3818 | 3818 |
/// This function returns an item (\c Node, \c Arc or \c Edge) having |
3819 | 3819 |
/// minimum value of the given graph map. |
3820 | 3820 |
/// If the item set is empty, it returns \c INVALID. |
3821 | 3821 |
/// |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -1614,25 +1614,25 @@ |
1614 | 1614 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
1615 | 1615 |
} |
1616 | 1616 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1617 | 1617 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
1618 | 1618 |
} |
1619 | 1619 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1620 | 1620 |
(*_delta3_index)[e] = _delta3->PRE_HEAP; |
1621 | 1621 |
} |
1622 | 1622 |
for (int i = 0; i < _blossom_num; ++i) { |
1623 | 1623 |
(*_delta2_index)[i] = _delta2->PRE_HEAP; |
1624 | 1624 |
(*_delta4_index)[i] = _delta4->PRE_HEAP; |
1625 | 1625 |
} |
1626 |
|
|
1626 |
|
|
1627 | 1627 |
_unmatched = _node_num; |
1628 | 1628 |
|
1629 | 1629 |
_delta1->clear(); |
1630 | 1630 |
_delta2->clear(); |
1631 | 1631 |
_delta3->clear(); |
1632 | 1632 |
_delta4->clear(); |
1633 | 1633 |
_blossom_set->clear(); |
1634 | 1634 |
_tree_set->clear(); |
1635 | 1635 |
|
1636 | 1636 |
int index = 0; |
1637 | 1637 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1638 | 1638 |
Value max = 0; |
... | ... |
@@ -1669,25 +1669,25 @@ |
1669 | 1669 |
} |
1670 | 1670 |
} |
1671 | 1671 |
|
1672 | 1672 |
/// \brief Initialize the algorithm with fractional matching |
1673 | 1673 |
/// |
1674 | 1674 |
/// This function initializes the algorithm with a fractional |
1675 | 1675 |
/// matching. This initialization is also called jumpstart heuristic. |
1676 | 1676 |
void fractionalInit() { |
1677 | 1677 |
createStructures(); |
1678 | 1678 |
|
1679 | 1679 |
_blossom_node_list.clear(); |
1680 | 1680 |
_blossom_potential.clear(); |
1681 |
|
|
1681 |
|
|
1682 | 1682 |
if (_fractional == 0) { |
1683 | 1683 |
_fractional = new FractionalMatching(_graph, _weight, false); |
1684 | 1684 |
} |
1685 | 1685 |
_fractional->run(); |
1686 | 1686 |
|
1687 | 1687 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
1688 | 1688 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
1689 | 1689 |
} |
1690 | 1690 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
1691 | 1691 |
(*_delta1_index)[n] = _delta1->PRE_HEAP; |
1692 | 1692 |
} |
1693 | 1693 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
... | ... |
@@ -1741,35 +1741,35 @@ |
1741 | 1741 |
++num; |
1742 | 1742 |
} |
1743 | 1743 |
|
1744 | 1744 |
if (num % 2 == 1) { |
1745 | 1745 |
std::vector<int> subblossoms(num); |
1746 | 1746 |
|
1747 | 1747 |
subblossoms[--num] = _blossom_set->find(n); |
1748 | 1748 |
_delta1->push(n, _fractional->nodeValue(n)); |
1749 | 1749 |
v = _graph.target(_fractional->matching(n)); |
1750 | 1750 |
while (n != v) { |
1751 | 1751 |
subblossoms[--num] = _blossom_set->find(v); |
1752 | 1752 |
_delta1->push(v, _fractional->nodeValue(v)); |
1753 |
v = _graph.target(_fractional->matching(v)); |
|
1753 |
v = _graph.target(_fractional->matching(v)); |
|
1754 | 1754 |
} |
1755 |
|
|
1756 |
int surface = |
|
1755 |
|
|
1756 |
int surface = |
|
1757 | 1757 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
1758 | 1758 |
(*_blossom_data)[surface].status = EVEN; |
1759 | 1759 |
(*_blossom_data)[surface].pred = INVALID; |
1760 | 1760 |
(*_blossom_data)[surface].next = INVALID; |
1761 | 1761 |
(*_blossom_data)[surface].pot = 0; |
1762 | 1762 |
(*_blossom_data)[surface].offset = 0; |
1763 |
|
|
1763 |
|
|
1764 | 1764 |
_tree_set->insert(surface); |
1765 | 1765 |
++_unmatched; |
1766 | 1766 |
} |
1767 | 1767 |
} |
1768 | 1768 |
|
1769 | 1769 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
1770 | 1770 |
int si = (*_node_index)[_graph.u(e)]; |
1771 | 1771 |
int sb = _blossom_set->find(_graph.u(e)); |
1772 | 1772 |
int ti = (*_node_index)[_graph.v(e)]; |
1773 | 1773 |
int tb = _blossom_set->find(_graph.v(e)); |
1774 | 1774 |
if ((*_blossom_data)[sb].status == EVEN && |
1775 | 1775 |
(*_blossom_data)[tb].status == EVEN && sb != tb) { |
... | ... |
@@ -1801,25 +1801,25 @@ |
1801 | 1801 |
if (it != (*_node_data)[ni].heap_index.end()) { |
1802 | 1802 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
1803 | 1803 |
(*_node_data)[ni].heap.replace(it->second, e); |
1804 | 1804 |
(*_node_data)[ni].heap.decrease(e, rw); |
1805 | 1805 |
it->second = e; |
1806 | 1806 |
} |
1807 | 1807 |
} else { |
1808 | 1808 |
(*_node_data)[ni].heap.push(e, rw); |
1809 | 1809 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
1810 | 1810 |
} |
1811 | 1811 |
} |
1812 | 1812 |
} |
1813 |
|
|
1813 |
|
|
1814 | 1814 |
if (!(*_node_data)[ni].heap.empty()) { |
1815 | 1815 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
1816 | 1816 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
1817 | 1817 |
} |
1818 | 1818 |
} |
1819 | 1819 |
} |
1820 | 1820 |
|
1821 | 1821 |
/// \brief Start the algorithm |
1822 | 1822 |
/// |
1823 | 1823 |
/// This function starts the algorithm. |
1824 | 1824 |
/// |
1825 | 1825 |
/// \pre \ref init() or \ref fractionalInit() must be called |
... | ... |
@@ -2260,25 +2260,25 @@ |
2260 | 2260 |
IntIntMap *_delta2_index; |
2261 | 2261 |
BinHeap<Value, IntIntMap> *_delta2; |
2262 | 2262 |
|
2263 | 2263 |
IntEdgeMap *_delta3_index; |
2264 | 2264 |
BinHeap<Value, IntEdgeMap> *_delta3; |
2265 | 2265 |
|
2266 | 2266 |
IntIntMap *_delta4_index; |
2267 | 2267 |
BinHeap<Value, IntIntMap> *_delta4; |
2268 | 2268 |
|
2269 | 2269 |
Value _delta_sum; |
2270 | 2270 |
int _unmatched; |
2271 | 2271 |
|
2272 |
typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap> |
|
2272 |
typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap> |
|
2273 | 2273 |
FractionalMatching; |
2274 | 2274 |
FractionalMatching *_fractional; |
2275 | 2275 |
|
2276 | 2276 |
void createStructures() { |
2277 | 2277 |
_node_num = countNodes(_graph); |
2278 | 2278 |
_blossom_num = _node_num * 3 / 2; |
2279 | 2279 |
|
2280 | 2280 |
if (!_matching) { |
2281 | 2281 |
_matching = new MatchingMap(_graph); |
2282 | 2282 |
} |
2283 | 2283 |
|
2284 | 2284 |
if (!_node_potential) { |
... | ... |
@@ -3086,25 +3086,25 @@ |
3086 | 3086 |
} |
3087 | 3087 |
} |
3088 | 3088 |
|
3089 | 3089 |
/// \brief Initialize the algorithm with fractional matching |
3090 | 3090 |
/// |
3091 | 3091 |
/// This function initializes the algorithm with a fractional |
3092 | 3092 |
/// matching. This initialization is also called jumpstart heuristic. |
3093 | 3093 |
void fractionalInit() { |
3094 | 3094 |
createStructures(); |
3095 | 3095 |
|
3096 | 3096 |
_blossom_node_list.clear(); |
3097 | 3097 |
_blossom_potential.clear(); |
3098 |
|
|
3098 |
|
|
3099 | 3099 |
if (_fractional == 0) { |
3100 | 3100 |
_fractional = new FractionalMatching(_graph, _weight, false); |
3101 | 3101 |
} |
3102 | 3102 |
if (!_fractional->run()) { |
3103 | 3103 |
_unmatched = -1; |
3104 | 3104 |
return; |
3105 | 3105 |
} |
3106 | 3106 |
|
3107 | 3107 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
3108 | 3108 |
(*_node_heap_index)[e] = BinHeap<Value, IntArcMap>::PRE_HEAP; |
3109 | 3109 |
} |
3110 | 3110 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
... | ... |
@@ -3152,35 +3152,35 @@ |
3152 | 3152 |
processed[v] = true; |
3153 | 3153 |
v = _graph.target(_fractional->matching(v)); |
3154 | 3154 |
++num; |
3155 | 3155 |
} |
3156 | 3156 |
|
3157 | 3157 |
if (num % 2 == 1) { |
3158 | 3158 |
std::vector<int> subblossoms(num); |
3159 | 3159 |
|
3160 | 3160 |
subblossoms[--num] = _blossom_set->find(n); |
3161 | 3161 |
v = _graph.target(_fractional->matching(n)); |
3162 | 3162 |
while (n != v) { |
3163 | 3163 |
subblossoms[--num] = _blossom_set->find(v); |
3164 |
v = _graph.target(_fractional->matching(v)); |
|
3164 |
v = _graph.target(_fractional->matching(v)); |
|
3165 | 3165 |
} |
3166 |
|
|
3167 |
int surface = |
|
3166 |
|
|
3167 |
int surface = |
|
3168 | 3168 |
_blossom_set->join(subblossoms.begin(), subblossoms.end()); |
3169 | 3169 |
(*_blossom_data)[surface].status = EVEN; |
3170 | 3170 |
(*_blossom_data)[surface].pred = INVALID; |
3171 | 3171 |
(*_blossom_data)[surface].next = INVALID; |
3172 | 3172 |
(*_blossom_data)[surface].pot = 0; |
3173 | 3173 |
(*_blossom_data)[surface].offset = 0; |
3174 |
|
|
3174 |
|
|
3175 | 3175 |
_tree_set->insert(surface); |
3176 | 3176 |
++_unmatched; |
3177 | 3177 |
} |
3178 | 3178 |
} |
3179 | 3179 |
|
3180 | 3180 |
for (EdgeIt e(_graph); e != INVALID; ++e) { |
3181 | 3181 |
int si = (*_node_index)[_graph.u(e)]; |
3182 | 3182 |
int sb = _blossom_set->find(_graph.u(e)); |
3183 | 3183 |
int ti = (*_node_index)[_graph.v(e)]; |
3184 | 3184 |
int tb = _blossom_set->find(_graph.v(e)); |
3185 | 3185 |
if ((*_blossom_data)[sb].status == EVEN && |
3186 | 3186 |
(*_blossom_data)[tb].status == EVEN && sb != tb) { |
... | ... |
@@ -3212,25 +3212,25 @@ |
3212 | 3212 |
if (it != (*_node_data)[ni].heap_index.end()) { |
3213 | 3213 |
if ((*_node_data)[ni].heap[it->second] > rw) { |
3214 | 3214 |
(*_node_data)[ni].heap.replace(it->second, e); |
3215 | 3215 |
(*_node_data)[ni].heap.decrease(e, rw); |
3216 | 3216 |
it->second = e; |
3217 | 3217 |
} |
3218 | 3218 |
} else { |
3219 | 3219 |
(*_node_data)[ni].heap.push(e, rw); |
3220 | 3220 |
(*_node_data)[ni].heap_index.insert(std::make_pair(vt, e)); |
3221 | 3221 |
} |
3222 | 3222 |
} |
3223 | 3223 |
} |
3224 |
|
|
3224 |
|
|
3225 | 3225 |
if (!(*_node_data)[ni].heap.empty()) { |
3226 | 3226 |
_blossom_set->decrease(n, (*_node_data)[ni].heap.prio()); |
3227 | 3227 |
_delta2->push(nb, _blossom_set->classPrio(nb)); |
3228 | 3228 |
} |
3229 | 3229 |
} |
3230 | 3230 |
} |
3231 | 3231 |
|
3232 | 3232 |
/// \brief Start the algorithm |
3233 | 3233 |
/// |
3234 | 3234 |
/// This function starts the algorithm. |
3235 | 3235 |
/// |
3236 | 3236 |
/// \pre \ref init() or \ref fractionalInit() must be called before |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -47,25 +47,25 @@ |
47 | 47 |
/// pi |
48 | 48 |
const long double PI = 3.1415926535897932384626433832795029L; |
49 | 49 |
/// pi/2 |
50 | 50 |
const long double PI_2 = 1.5707963267948966192313216916397514L; |
51 | 51 |
/// pi/4 |
52 | 52 |
const long double PI_4 = 0.7853981633974483096156608458198757L; |
53 | 53 |
/// sqrt(2) |
54 | 54 |
const long double SQRT2 = 1.4142135623730950488016887242096981L; |
55 | 55 |
/// 1/sqrt(2) |
56 | 56 |
const long double SQRT1_2 = 0.7071067811865475244008443621048490L; |
57 | 57 |
|
58 | 58 |
///Check whether the parameter is NaN or not |
59 |
|
|
59 |
|
|
60 | 60 |
///This function checks whether the parameter is NaN or not. |
61 | 61 |
///Is should be equivalent with std::isnan(), but it is not |
62 | 62 |
///provided by all compilers. |
63 | 63 |
inline bool isNaN(double v) |
64 | 64 |
{ |
65 | 65 |
return v!=v; |
66 | 66 |
} |
67 | 67 |
|
68 | 68 |
/// @} |
69 | 69 |
|
70 | 70 |
} //namespace lemon |
71 | 71 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -119,26 +119,26 @@ |
119 | 119 |
/// consider to use the named template parameters instead. |
120 | 120 |
#ifndef DOXYGEN |
121 | 121 |
template <typename GR, |
122 | 122 |
typename CM = typename GR::template ArcMap<int>, |
123 | 123 |
typename TR = |
124 | 124 |
MinCostArborescenceDefaultTraits<GR, CM> > |
125 | 125 |
#else |
126 | 126 |
template <typename GR, typename CM, typename TR> |
127 | 127 |
#endif |
128 | 128 |
class MinCostArborescence { |
129 | 129 |
public: |
130 | 130 |
|
131 |
/// \brief The \ref MinCostArborescenceDefaultTraits "traits class" |
|
132 |
/// of the algorithm. |
|
131 |
/// \brief The \ref MinCostArborescenceDefaultTraits "traits class" |
|
132 |
/// of the algorithm. |
|
133 | 133 |
typedef TR Traits; |
134 | 134 |
/// The type of the underlying digraph. |
135 | 135 |
typedef typename Traits::Digraph Digraph; |
136 | 136 |
/// The type of the map that stores the arc costs. |
137 | 137 |
typedef typename Traits::CostMap CostMap; |
138 | 138 |
///The type of the costs of the arcs. |
139 | 139 |
typedef typename Traits::Value Value; |
140 | 140 |
///The type of the predecessor map. |
141 | 141 |
typedef typename Traits::PredMap PredMap; |
142 | 142 |
///The type of the map that stores which arcs are in the arborescence. |
143 | 143 |
typedef typename Traits::ArborescenceMap ArborescenceMap; |
144 | 144 |
|
... | ... |
@@ -427,25 +427,25 @@ |
427 | 427 |
static PredMap *createPredMap(const Digraph &) |
428 | 428 |
{ |
429 | 429 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
430 | 430 |
return 0; // ignore warnings |
431 | 431 |
} |
432 | 432 |
}; |
433 | 433 |
|
434 | 434 |
/// \brief \ref named-templ-param "Named parameter" for |
435 | 435 |
/// setting \c PredMap type |
436 | 436 |
/// |
437 | 437 |
/// \ref named-templ-param "Named parameter" for setting |
438 | 438 |
/// \c PredMap type. |
439 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept, |
|
439 |
/// It must meet the \ref concepts::WriteMap "WriteMap" concept, |
|
440 | 440 |
/// and its value type must be the \c Arc type of the digraph. |
441 | 441 |
template <class T> |
442 | 442 |
struct SetPredMap |
443 | 443 |
: public MinCostArborescence<Digraph, CostMap, SetPredMapTraits<T> > { |
444 | 444 |
}; |
445 | 445 |
|
446 | 446 |
/// @} |
447 | 447 |
|
448 | 448 |
/// \brief Constructor. |
449 | 449 |
/// |
450 | 450 |
/// \param digraph The digraph the algorithm will run on. |
451 | 451 |
/// \param cost The cost map used by the algorithm. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -88,43 +88,43 @@ |
88 | 88 |
enum ProblemType { |
89 | 89 |
/// The problem has no feasible solution (flow). |
90 | 90 |
INFEASIBLE, |
91 | 91 |
/// The problem has optimal solution (i.e. it is feasible and |
92 | 92 |
/// bounded), and the algorithm has found optimal flow and node |
93 | 93 |
/// potentials (primal and dual solutions). |
94 | 94 |
OPTIMAL, |
95 | 95 |
/// The objective function of the problem is unbounded, i.e. |
96 | 96 |
/// there is a directed cycle having negative total cost and |
97 | 97 |
/// infinite upper bound. |
98 | 98 |
UNBOUNDED |
99 | 99 |
}; |
100 |
|
|
100 |
|
|
101 | 101 |
/// \brief Constants for selecting the type of the supply constraints. |
102 | 102 |
/// |
103 | 103 |
/// Enum type containing constants for selecting the supply type, |
104 | 104 |
/// i.e. the direction of the inequalities in the supply/demand |
105 | 105 |
/// constraints of the \ref min_cost_flow "minimum cost flow problem". |
106 | 106 |
/// |
107 | 107 |
/// The default supply type is \c GEQ, the \c LEQ type can be |
108 | 108 |
/// selected using \ref supplyType(). |
109 | 109 |
/// The equality form is a special case of both supply types. |
110 | 110 |
enum SupplyType { |
111 | 111 |
/// This option means that there are <em>"greater or equal"</em> |
112 | 112 |
/// supply/demand constraints in the definition of the problem. |
113 | 113 |
GEQ, |
114 | 114 |
/// This option means that there are <em>"less or equal"</em> |
115 | 115 |
/// supply/demand constraints in the definition of the problem. |
116 | 116 |
LEQ |
117 | 117 |
}; |
118 |
|
|
118 |
|
|
119 | 119 |
/// \brief Constants for selecting the pivot rule. |
120 | 120 |
/// |
121 | 121 |
/// Enum type containing constants for selecting the pivot rule for |
122 | 122 |
/// the \ref run() function. |
123 | 123 |
/// |
124 | 124 |
/// \ref NetworkSimplex provides five different pivot rule |
125 | 125 |
/// implementations that significantly affect the running time |
126 | 126 |
/// of the algorithm. |
127 | 127 |
/// By default, \ref BLOCK_SEARCH "Block Search" is used, which |
128 | 128 |
/// proved to be the most efficient and the most robust on various |
129 | 129 |
/// test inputs. |
130 | 130 |
/// However, another pivot rule can be selected using the \ref run() |
... | ... |
@@ -149,25 +149,25 @@ |
149 | 149 |
/// The \e Candidate \e List pivot rule. |
150 | 150 |
/// In a major iteration a candidate list is built from eligible arcs |
151 | 151 |
/// in a wraparound fashion and in the following minor iterations |
152 | 152 |
/// the best eligible arc is selected from this list. |
153 | 153 |
CANDIDATE_LIST, |
154 | 154 |
|
155 | 155 |
/// The \e Altering \e Candidate \e List pivot rule. |
156 | 156 |
/// It is a modified version of the Candidate List method. |
157 | 157 |
/// It keeps only the several best eligible arcs from the former |
158 | 158 |
/// candidate list and extends this list in every iteration. |
159 | 159 |
ALTERING_LIST |
160 | 160 |
}; |
161 |
|
|
161 |
|
|
162 | 162 |
private: |
163 | 163 |
|
164 | 164 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
165 | 165 |
|
166 | 166 |
typedef std::vector<int> IntVector; |
167 | 167 |
typedef std::vector<Value> ValueVector; |
168 | 168 |
typedef std::vector<Cost> CostVector; |
169 | 169 |
typedef std::vector<char> BoolVector; |
170 | 170 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
171 | 171 |
|
172 | 172 |
// State constants for arcs |
173 | 173 |
enum ArcState { |
... | ... |
@@ -218,29 +218,29 @@ |
218 | 218 |
IntVector _succ_num; |
219 | 219 |
IntVector _last_succ; |
220 | 220 |
IntVector _dirty_revs; |
221 | 221 |
BoolVector _forward; |
222 | 222 |
StateVector _state; |
223 | 223 |
int _root; |
224 | 224 |
|
225 | 225 |
// Temporary data used in the current pivot iteration |
226 | 226 |
int in_arc, join, u_in, v_in, u_out, v_out; |
227 | 227 |
int first, second, right, last; |
228 | 228 |
int stem, par_stem, new_stem; |
229 | 229 |
Value delta; |
230 |
|
|
230 |
|
|
231 | 231 |
const Value MAX; |
232 | 232 |
|
233 | 233 |
public: |
234 |
|
|
234 |
|
|
235 | 235 |
/// \brief Constant for infinite upper bounds (capacities). |
236 | 236 |
/// |
237 | 237 |
/// Constant for infinite upper bounds (capacities). |
238 | 238 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
239 | 239 |
/// \c std::numeric_limits<Value>::max() otherwise. |
240 | 240 |
const Value INF; |
241 | 241 |
|
242 | 242 |
private: |
243 | 243 |
|
244 | 244 |
// Implementation of the First Eligible pivot rule |
245 | 245 |
class FirstEligiblePivotRule |
246 | 246 |
{ |
... | ... |
@@ -489,26 +489,26 @@ |
489 | 489 |
for (e = 0; e != _next_arc; ++e) { |
490 | 490 |
c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
491 | 491 |
if (c < 0) { |
492 | 492 |
_candidates[_curr_length++] = e; |
493 | 493 |
if (c < min) { |
494 | 494 |
min = c; |
495 | 495 |
_in_arc = e; |
496 | 496 |
} |
497 | 497 |
if (_curr_length == _list_length) goto search_end; |
498 | 498 |
} |
499 | 499 |
} |
500 | 500 |
if (_curr_length == 0) return false; |
501 |
|
|
502 |
search_end: |
|
501 |
|
|
502 |
search_end: |
|
503 | 503 |
_minor_count = 1; |
504 | 504 |
_next_arc = e; |
505 | 505 |
return true; |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
}; //class CandidateListPivotRule |
509 | 509 |
|
510 | 510 |
|
511 | 511 |
// Implementation of the Altering Candidate List pivot rule |
512 | 512 |
class AlteringListPivotRule |
513 | 513 |
{ |
514 | 514 |
private: |
... | ... |
@@ -599,25 +599,25 @@ |
599 | 599 |
_cand_cost[e] = _state[e] * |
600 | 600 |
(_cost[e] + _pi[_source[e]] - _pi[_target[e]]); |
601 | 601 |
if (_cand_cost[e] < 0) { |
602 | 602 |
_candidates[_curr_length++] = e; |
603 | 603 |
} |
604 | 604 |
if (--cnt == 0) { |
605 | 605 |
if (_curr_length > limit) goto search_end; |
606 | 606 |
limit = 0; |
607 | 607 |
cnt = _block_size; |
608 | 608 |
} |
609 | 609 |
} |
610 | 610 |
if (_curr_length == 0) return false; |
611 |
|
|
611 |
|
|
612 | 612 |
search_end: |
613 | 613 |
|
614 | 614 |
// Make heap of the candidate list (approximating a partial sort) |
615 | 615 |
make_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
616 | 616 |
_sort_func ); |
617 | 617 |
|
618 | 618 |
// Pop the first element of the heap |
619 | 619 |
_in_arc = _candidates[0]; |
620 | 620 |
_next_arc = e; |
621 | 621 |
pop_heap( _candidates.begin(), _candidates.begin() + _curr_length, |
622 | 622 |
_sort_func ); |
623 | 623 |
_curr_length = std::min(_head_length, _curr_length - 1); |
... | ... |
@@ -625,40 +625,40 @@ |
625 | 625 |
} |
626 | 626 |
|
627 | 627 |
}; //class AlteringListPivotRule |
628 | 628 |
|
629 | 629 |
public: |
630 | 630 |
|
631 | 631 |
/// \brief Constructor. |
632 | 632 |
/// |
633 | 633 |
/// The constructor of the class. |
634 | 634 |
/// |
635 | 635 |
/// \param graph The digraph the algorithm runs on. |
636 | 636 |
/// \param arc_mixing Indicate if the arcs have to be stored in a |
637 |
/// mixed order in the internal data structure. |
|
637 |
/// mixed order in the internal data structure. |
|
638 | 638 |
/// In special cases, it could lead to better overall performance, |
639 | 639 |
/// but it is usually slower. Therefore it is disabled by default. |
640 | 640 |
NetworkSimplex(const GR& graph, bool arc_mixing = false) : |
641 | 641 |
_graph(graph), _node_id(graph), _arc_id(graph), |
642 | 642 |
_arc_mixing(arc_mixing), |
643 | 643 |
MAX(std::numeric_limits<Value>::max()), |
644 | 644 |
INF(std::numeric_limits<Value>::has_infinity ? |
645 | 645 |
std::numeric_limits<Value>::infinity() : MAX) |
646 | 646 |
{ |
647 | 647 |
// Check the number types |
648 | 648 |
LEMON_ASSERT(std::numeric_limits<Value>::is_signed, |
649 | 649 |
"The flow type of NetworkSimplex must be signed"); |
650 | 650 |
LEMON_ASSERT(std::numeric_limits<Cost>::is_signed, |
651 | 651 |
"The cost type of NetworkSimplex must be signed"); |
652 |
|
|
652 |
|
|
653 | 653 |
// Reset data structures |
654 | 654 |
reset(); |
655 | 655 |
} |
656 | 656 |
|
657 | 657 |
/// \name Parameters |
658 | 658 |
/// The parameters of the algorithm can be specified using these |
659 | 659 |
/// functions. |
660 | 660 |
|
661 | 661 |
/// @{ |
662 | 662 |
|
663 | 663 |
/// \brief Set the lower bounds on the arcs. |
664 | 664 |
/// |
... | ... |
@@ -754,25 +754,25 @@ |
754 | 754 |
/// \param k The required amount of flow from node \c s to node \c t |
755 | 755 |
/// (i.e. the supply of \c s and the demand of \c t). |
756 | 756 |
/// |
757 | 757 |
/// \return <tt>(*this)</tt> |
758 | 758 |
NetworkSimplex& stSupply(const Node& s, const Node& t, Value k) { |
759 | 759 |
for (int i = 0; i != _node_num; ++i) { |
760 | 760 |
_supply[i] = 0; |
761 | 761 |
} |
762 | 762 |
_supply[_node_id[s]] = k; |
763 | 763 |
_supply[_node_id[t]] = -k; |
764 | 764 |
return *this; |
765 | 765 |
} |
766 |
|
|
766 |
|
|
767 | 767 |
/// \brief Set the type of the supply constraints. |
768 | 768 |
/// |
769 | 769 |
/// This function sets the type of the supply/demand constraints. |
770 | 770 |
/// If it is not used before calling \ref run(), the \ref GEQ supply |
771 | 771 |
/// type will be used. |
772 | 772 |
/// |
773 | 773 |
/// For more information, see \ref SupplyType. |
774 | 774 |
/// |
775 | 775 |
/// \return <tt>(*this)</tt> |
776 | 776 |
NetworkSimplex& supplyType(SupplyType supply_type) { |
777 | 777 |
_stype = supply_type; |
778 | 778 |
return *this; |
... | ... |
@@ -780,25 +780,25 @@ |
780 | 780 |
|
781 | 781 |
/// @} |
782 | 782 |
|
783 | 783 |
/// \name Execution Control |
784 | 784 |
/// The algorithm can be executed using \ref run(). |
785 | 785 |
|
786 | 786 |
/// @{ |
787 | 787 |
|
788 | 788 |
/// \brief Run the algorithm. |
789 | 789 |
/// |
790 | 790 |
/// This function runs the algorithm. |
791 | 791 |
/// The paramters can be specified using functions \ref lowerMap(), |
792 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
792 |
/// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), |
|
793 | 793 |
/// \ref supplyType(). |
794 | 794 |
/// For example, |
795 | 795 |
/// \code |
796 | 796 |
/// NetworkSimplex<ListDigraph> ns(graph); |
797 | 797 |
/// ns.lowerMap(lower).upperMap(upper).costMap(cost) |
798 | 798 |
/// .supplyMap(sup).run(); |
799 | 799 |
/// \endcode |
800 | 800 |
/// |
801 | 801 |
/// This function can be called more than once. All the given parameters |
802 | 802 |
/// are kept for the next call, unless \ref resetParams() or \ref reset() |
803 | 803 |
/// is used, thus only the modified parameters have to be set again. |
804 | 804 |
/// If the underlying digraph was also modified after the construction |
... | ... |
@@ -935,30 +935,30 @@ |
935 | 935 |
_target[i] = _node_id[_graph.target(a)]; |
936 | 936 |
if ((i += k) >= _arc_num) i = ++j; |
937 | 937 |
} |
938 | 938 |
} else { |
939 | 939 |
// Store the arcs in the original order |
940 | 940 |
int i = 0; |
941 | 941 |
for (ArcIt a(_graph); a != INVALID; ++a, ++i) { |
942 | 942 |
_arc_id[a] = i; |
943 | 943 |
_source[i] = _node_id[_graph.source(a)]; |
944 | 944 |
_target[i] = _node_id[_graph.target(a)]; |
945 | 945 |
} |
946 | 946 |
} |
947 |
|
|
947 |
|
|
948 | 948 |
// Reset parameters |
949 | 949 |
resetParams(); |
950 | 950 |
return *this; |
951 | 951 |
} |
952 |
|
|
952 |
|
|
953 | 953 |
/// @} |
954 | 954 |
|
955 | 955 |
/// \name Query Functions |
956 | 956 |
/// The results of the algorithm can be obtained using these |
957 | 957 |
/// functions.\n |
958 | 958 |
/// The \ref run() function must be called before using them. |
959 | 959 |
|
960 | 960 |
/// @{ |
961 | 961 |
|
962 | 962 |
/// \brief Return the total cost of the found flow. |
963 | 963 |
/// |
964 | 964 |
/// This function returns the total cost of the found flow. |
... | ... |
@@ -1080,25 +1080,25 @@ |
1080 | 1080 |
ART_COST = std::numeric_limits<Cost>::min(); |
1081 | 1081 |
for (int i = 0; i != _arc_num; ++i) { |
1082 | 1082 |
if (_cost[i] > ART_COST) ART_COST = _cost[i]; |
1083 | 1083 |
} |
1084 | 1084 |
ART_COST = (ART_COST + 1) * _node_num; |
1085 | 1085 |
} |
1086 | 1086 |
|
1087 | 1087 |
// Initialize arc maps |
1088 | 1088 |
for (int i = 0; i != _arc_num; ++i) { |
1089 | 1089 |
_flow[i] = 0; |
1090 | 1090 |
_state[i] = STATE_LOWER; |
1091 | 1091 |
} |
1092 |
|
|
1092 |
|
|
1093 | 1093 |
// Set data for the artificial root node |
1094 | 1094 |
_root = _node_num; |
1095 | 1095 |
_parent[_root] = -1; |
1096 | 1096 |
_pred[_root] = -1; |
1097 | 1097 |
_thread[_root] = 0; |
1098 | 1098 |
_rev_thread[0] = _root; |
1099 | 1099 |
_succ_num[_root] = _node_num + 1; |
1100 | 1100 |
_last_succ[_root] = _root - 1; |
1101 | 1101 |
_supply[_root] = -_sum_supply; |
1102 | 1102 |
_pi[_root] = 0; |
1103 | 1103 |
|
1104 | 1104 |
// Add artificial arcs and initialize the spanning tree data structure |
... | ... |
@@ -1254,25 +1254,25 @@ |
1254 | 1254 |
e = _pred[u]; |
1255 | 1255 |
d = _forward[u] ? |
1256 | 1256 |
_flow[e] : (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]); |
1257 | 1257 |
if (d < delta) { |
1258 | 1258 |
delta = d; |
1259 | 1259 |
u_out = u; |
1260 | 1260 |
result = 1; |
1261 | 1261 |
} |
1262 | 1262 |
} |
1263 | 1263 |
// Search the cycle along the path form the second node to the root |
1264 | 1264 |
for (int u = second; u != join; u = _parent[u]) { |
1265 | 1265 |
e = _pred[u]; |
1266 |
d = _forward[u] ? |
|
1266 |
d = _forward[u] ? |
|
1267 | 1267 |
(_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e]; |
1268 | 1268 |
if (d <= delta) { |
1269 | 1269 |
delta = d; |
1270 | 1270 |
u_out = u; |
1271 | 1271 |
result = 2; |
1272 | 1272 |
} |
1273 | 1273 |
} |
1274 | 1274 |
|
1275 | 1275 |
if (result == 1) { |
1276 | 1276 |
u_in = first; |
1277 | 1277 |
v_in = second; |
1278 | 1278 |
} else { |
... | ... |
@@ -1558,42 +1558,42 @@ |
1558 | 1558 |
|
1559 | 1559 |
// Execute the Network Simplex algorithm |
1560 | 1560 |
while (pivot.findEnteringArc()) { |
1561 | 1561 |
findJoinNode(); |
1562 | 1562 |
bool change = findLeavingArc(); |
1563 | 1563 |
if (delta >= MAX) return UNBOUNDED; |
1564 | 1564 |
changeFlow(change); |
1565 | 1565 |
if (change) { |
1566 | 1566 |
updateTreeStructure(); |
1567 | 1567 |
updatePotential(); |
1568 | 1568 |
} |
1569 | 1569 |
} |
1570 |
|
|
1570 |
|
|
1571 | 1571 |
// Check feasibility |
1572 | 1572 |
for (int e = _search_arc_num; e != _all_arc_num; ++e) { |
1573 | 1573 |
if (_flow[e] != 0) return INFEASIBLE; |
1574 | 1574 |
} |
1575 | 1575 |
|
1576 | 1576 |
// Transform the solution and the supply map to the original form |
1577 | 1577 |
if (_have_lower) { |
1578 | 1578 |
for (int i = 0; i != _arc_num; ++i) { |
1579 | 1579 |
Value c = _lower[i]; |
1580 | 1580 |
if (c != 0) { |
1581 | 1581 |
_flow[i] += c; |
1582 | 1582 |
_supply[_source[i]] += c; |
1583 | 1583 |
_supply[_target[i]] -= c; |
1584 | 1584 |
} |
1585 | 1585 |
} |
1586 | 1586 |
} |
1587 |
|
|
1587 |
|
|
1588 | 1588 |
// Shift potentials to meet the requirements of the GEQ/LEQ type |
1589 | 1589 |
// optimality conditions |
1590 | 1590 |
if (_sum_supply == 0) { |
1591 | 1591 |
if (_stype == GEQ) { |
1592 | 1592 |
Cost max_pot = std::numeric_limits<Cost>::min(); |
1593 | 1593 |
for (int i = 0; i != _node_num; ++i) { |
1594 | 1594 |
if (_pi[i] > max_pot) max_pot = _pi[i]; |
1595 | 1595 |
} |
1596 | 1596 |
if (max_pot > 0) { |
1597 | 1597 |
for (int i = 0; i != _node_num; ++i) |
1598 | 1598 |
_pi[i] -= max_pot; |
1599 | 1599 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -957,38 +957,38 @@ |
957 | 957 |
} |
958 | 958 |
} |
959 | 959 |
}; |
960 | 960 |
|
961 | 961 |
template <typename From, typename To> |
962 | 962 |
struct PathCopySelectorBackward<From, To, true> { |
963 | 963 |
static void copy(const From& from, To& to) { |
964 | 964 |
to.clear(); |
965 | 965 |
to.buildRev(from); |
966 | 966 |
} |
967 | 967 |
}; |
968 | 968 |
|
969 |
|
|
969 |
|
|
970 | 970 |
template <typename From, typename To, |
971 | 971 |
bool revEnable = RevPathTagIndicator<From>::value> |
972 | 972 |
struct PathCopySelector { |
973 | 973 |
static void copy(const From& from, To& to) { |
974 | 974 |
PathCopySelectorForward<From, To>::copy(from, to); |
975 |
} |
|
975 |
} |
|
976 | 976 |
}; |
977 | 977 |
|
978 | 978 |
template <typename From, typename To> |
979 | 979 |
struct PathCopySelector<From, To, true> { |
980 | 980 |
static void copy(const From& from, To& to) { |
981 | 981 |
PathCopySelectorBackward<From, To>::copy(from, to); |
982 |
} |
|
982 |
} |
|
983 | 983 |
}; |
984 | 984 |
|
985 | 985 |
} |
986 | 986 |
|
987 | 987 |
|
988 | 988 |
/// \brief Make a copy of a path. |
989 | 989 |
/// |
990 | 990 |
/// This function makes a copy of a path. |
991 | 991 |
template <typename From, typename To> |
992 | 992 |
void pathCopy(const From& from, To& to) { |
993 | 993 |
checkConcept<concepts::PathDumper<typename From::Digraph>, From>(); |
994 | 994 |
_path_bits::PathCopySelector<From, To>::copy(from, to); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -131,35 +131,35 @@ |
131 | 131 |
Node first; |
132 | 132 |
Node prev, next; |
133 | 133 |
}; |
134 | 134 |
|
135 | 135 |
template <typename Graph> |
136 | 136 |
struct ArcListNode { |
137 | 137 |
typename Graph::Arc prev, next; |
138 | 138 |
}; |
139 | 139 |
|
140 | 140 |
template <typename Graph> |
141 | 141 |
class PlanarityChecking { |
142 | 142 |
private: |
143 |
|
|
143 |
|
|
144 | 144 |
TEMPLATE_GRAPH_TYPEDEFS(Graph); |
145 | 145 |
|
146 | 146 |
const Graph& _graph; |
147 | 147 |
|
148 | 148 |
private: |
149 |
|
|
149 |
|
|
150 | 150 |
typedef typename Graph::template NodeMap<Arc> PredMap; |
151 |
|
|
151 |
|
|
152 | 152 |
typedef typename Graph::template EdgeMap<bool> TreeMap; |
153 |
|
|
153 |
|
|
154 | 154 |
typedef typename Graph::template NodeMap<int> OrderMap; |
155 | 155 |
typedef std::vector<Node> OrderList; |
156 | 156 |
|
157 | 157 |
typedef typename Graph::template NodeMap<int> LowMap; |
158 | 158 |
typedef typename Graph::template NodeMap<int> AncestorMap; |
159 | 159 |
|
160 | 160 |
typedef _planarity_bits::NodeDataNode<Graph> NodeDataNode; |
161 | 161 |
typedef std::vector<NodeDataNode> NodeData; |
162 | 162 |
|
163 | 163 |
typedef _planarity_bits::ChildListNode<Graph> ChildListNode; |
164 | 164 |
typedef typename Graph::template NodeMap<ChildListNode> ChildLists; |
165 | 165 |
|
... | ... |
@@ -212,25 +212,25 @@ |
212 | 212 |
|
213 | 213 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
214 | 214 |
Node target = _graph.target(e); |
215 | 215 |
|
216 | 216 |
if (order_map[source] < order_map[target] && !tree_map[e]) { |
217 | 217 |
embed_arc[target] = true; |
218 | 218 |
walkUp(target, source, i, pred_map, low_map, |
219 | 219 |
order_map, order_list, node_data, merge_roots); |
220 | 220 |
} |
221 | 221 |
} |
222 | 222 |
|
223 | 223 |
for (typename MergeRoots::Value::iterator it = |
224 |
merge_roots[node].begin(); |
|
224 |
merge_roots[node].begin(); |
|
225 | 225 |
it != merge_roots[node].end(); ++it) { |
226 | 226 |
int rn = *it; |
227 | 227 |
walkDown(rn, i, node_data, order_list, child_lists, |
228 | 228 |
ancestor_map, low_map, embed_arc, merge_roots); |
229 | 229 |
} |
230 | 230 |
merge_roots[node].clear(); |
231 | 231 |
|
232 | 232 |
for (OutArcIt e(_graph, node); e != INVALID; ++e) { |
233 | 233 |
Node target = _graph.target(e); |
234 | 234 |
|
235 | 235 |
if (order_map[source] < order_map[target] && !tree_map[e]) { |
236 | 236 |
if (embed_arc[target]) { |
... | ... |
@@ -423,25 +423,25 @@ |
423 | 423 |
|
424 | 424 |
merge_stack.push_back(std::make_pair(n, d)); |
425 | 425 |
|
426 | 426 |
int rn = merge_roots[node].front(); |
427 | 427 |
|
428 | 428 |
int xn = node_data[rn].next; |
429 | 429 |
Node xnode = order_list[xn]; |
430 | 430 |
|
431 | 431 |
int yn = node_data[rn].prev; |
432 | 432 |
Node ynode = order_list[yn]; |
433 | 433 |
|
434 | 434 |
bool rd; |
435 |
if (!external(xnode, rorder, child_lists, |
|
435 |
if (!external(xnode, rorder, child_lists, |
|
436 | 436 |
ancestor_map, low_map)) { |
437 | 437 |
rd = true; |
438 | 438 |
} else if (!external(ynode, rorder, child_lists, |
439 | 439 |
ancestor_map, low_map)) { |
440 | 440 |
rd = false; |
441 | 441 |
} else if (pertinent(xnode, embed_arc, merge_roots)) { |
442 | 442 |
rd = true; |
443 | 443 |
} else { |
444 | 444 |
rd = false; |
445 | 445 |
} |
446 | 446 |
|
447 | 447 |
merge_stack.push_back(std::make_pair(rn, rd)); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -177,25 +177,25 @@ |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
}; |
180 | 180 |
|
181 | 181 |
typedef DigraphExtender<SmartDigraphBase> ExtendedSmartDigraphBase; |
182 | 182 |
|
183 | 183 |
///\ingroup graphs |
184 | 184 |
/// |
185 | 185 |
///\brief A smart directed graph class. |
186 | 186 |
/// |
187 | 187 |
///\ref SmartDigraph is a simple and fast digraph implementation. |
188 | 188 |
///It is also quite memory efficient but at the price |
189 |
///that it does not support node and arc deletion |
|
189 |
///that it does not support node and arc deletion |
|
190 | 190 |
///(except for the Snapshot feature). |
191 | 191 |
/// |
192 | 192 |
///This type fully conforms to the \ref concepts::Digraph "Digraph concept" |
193 | 193 |
///and it also provides some additional functionalities. |
194 | 194 |
///Most of its member functions and nested classes are documented |
195 | 195 |
///only in the concept class. |
196 | 196 |
/// |
197 | 197 |
///This class provides constant time counting for nodes and arcs. |
198 | 198 |
/// |
199 | 199 |
///\sa concepts::Digraph |
200 | 200 |
///\sa SmartGraph |
201 | 201 |
class SmartDigraph : public ExtendedSmartDigraphBase { |
... | ... |
@@ -326,25 +326,25 @@ |
326 | 326 |
} |
327 | 327 |
|
328 | 328 |
public: |
329 | 329 |
|
330 | 330 |
///Class to make a snapshot of the digraph and to restore it later. |
331 | 331 |
|
332 | 332 |
///Class to make a snapshot of the digraph and to restore it later. |
333 | 333 |
/// |
334 | 334 |
///The newly added nodes and arcs can be removed using the |
335 | 335 |
///restore() function. This is the only way for deleting nodes and/or |
336 | 336 |
///arcs from a SmartDigraph structure. |
337 | 337 |
/// |
338 |
///\note After a state is restored, you cannot restore a later state, |
|
338 |
///\note After a state is restored, you cannot restore a later state, |
|
339 | 339 |
///i.e. you cannot add the removed nodes and arcs again using |
340 | 340 |
///another Snapshot instance. |
341 | 341 |
/// |
342 | 342 |
///\warning Node splitting cannot be restored. |
343 | 343 |
///\warning The validity of the snapshot is not stored due to |
344 | 344 |
///performance reasons. If you do not use the snapshot correctly, |
345 | 345 |
///it can cause broken program, invalid or not restored state of |
346 | 346 |
///the digraph or no change. |
347 | 347 |
class Snapshot |
348 | 348 |
{ |
349 | 349 |
SmartDigraph *_graph; |
350 | 350 |
protected: |
... | ... |
@@ -605,25 +605,25 @@ |
605 | 605 |
} |
606 | 606 |
|
607 | 607 |
}; |
608 | 608 |
|
609 | 609 |
typedef GraphExtender<SmartGraphBase> ExtendedSmartGraphBase; |
610 | 610 |
|
611 | 611 |
/// \ingroup graphs |
612 | 612 |
/// |
613 | 613 |
/// \brief A smart undirected graph class. |
614 | 614 |
/// |
615 | 615 |
/// \ref SmartGraph is a simple and fast graph implementation. |
616 | 616 |
/// It is also quite memory efficient but at the price |
617 |
/// that it does not support node and edge deletion |
|
617 |
/// that it does not support node and edge deletion |
|
618 | 618 |
/// (except for the Snapshot feature). |
619 | 619 |
/// |
620 | 620 |
/// This type fully conforms to the \ref concepts::Graph "Graph concept" |
621 | 621 |
/// and it also provides some additional functionalities. |
622 | 622 |
/// Most of its member functions and nested classes are documented |
623 | 623 |
/// only in the concept class. |
624 | 624 |
/// |
625 | 625 |
/// This class provides constant time counting for nodes, edges and arcs. |
626 | 626 |
/// |
627 | 627 |
/// \sa concepts::Graph |
628 | 628 |
/// \sa SmartDigraph |
629 | 629 |
class SmartGraph : public ExtendedSmartGraphBase { |
... | ... |
@@ -752,25 +752,25 @@ |
752 | 752 |
} |
753 | 753 |
|
754 | 754 |
public: |
755 | 755 |
|
756 | 756 |
///Class to make a snapshot of the graph and to restore it later. |
757 | 757 |
|
758 | 758 |
///Class to make a snapshot of the graph and to restore it later. |
759 | 759 |
/// |
760 | 760 |
///The newly added nodes and edges can be removed using the |
761 | 761 |
///restore() function. This is the only way for deleting nodes and/or |
762 | 762 |
///edges from a SmartGraph structure. |
763 | 763 |
/// |
764 |
///\note After a state is restored, you cannot restore a later state, |
|
764 |
///\note After a state is restored, you cannot restore a later state, |
|
765 | 765 |
///i.e. you cannot add the removed nodes and edges again using |
766 | 766 |
///another Snapshot instance. |
767 | 767 |
/// |
768 | 768 |
///\warning The validity of the snapshot is not stored due to |
769 | 769 |
///performance reasons. If you do not use the snapshot correctly, |
770 | 770 |
///it can cause broken program, invalid or not restored state of |
771 | 771 |
///the graph or no change. |
772 | 772 |
class Snapshot |
773 | 773 |
{ |
774 | 774 |
SmartGraph *_graph; |
775 | 775 |
protected: |
776 | 776 |
friend class SmartGraph; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -278,25 +278,25 @@ |
278 | 278 |
|
279 | 279 |
void SoplexLp::_setObjCoeff(int i, Value obj_coef) { |
280 | 280 |
soplex->changeObj(i, obj_coef); |
281 | 281 |
} |
282 | 282 |
|
283 | 283 |
SoplexLp::Value SoplexLp::_getObjCoeff(int i) const { |
284 | 284 |
return soplex->obj(i); |
285 | 285 |
} |
286 | 286 |
|
287 | 287 |
SoplexLp::SolveExitStatus SoplexLp::_solve() { |
288 | 288 |
|
289 | 289 |
_clear_temporals(); |
290 |
|
|
290 |
|
|
291 | 291 |
_applyMessageLevel(); |
292 | 292 |
|
293 | 293 |
soplex::SPxSolver::Status status = soplex->solve(); |
294 | 294 |
|
295 | 295 |
switch (status) { |
296 | 296 |
case soplex::SPxSolver::OPTIMAL: |
297 | 297 |
case soplex::SPxSolver::INFEASIBLE: |
298 | 298 |
case soplex::SPxSolver::UNBOUNDED: |
299 | 299 |
return SOLVED; |
300 | 300 |
default: |
301 | 301 |
return UNSOLVED; |
302 | 302 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -22,30 +22,30 @@ |
22 | 22 |
///\ingroup graphs |
23 | 23 |
///\file |
24 | 24 |
///\brief StaticDigraph class. |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/bits/graph_extender.h> |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
class StaticDigraphBase { |
32 | 32 |
public: |
33 | 33 |
|
34 |
StaticDigraphBase() |
|
35 |
: built(false), node_num(0), arc_num(0), |
|
34 |
StaticDigraphBase() |
|
35 |
: built(false), node_num(0), arc_num(0), |
|
36 | 36 |
node_first_out(NULL), node_first_in(NULL), |
37 |
arc_source(NULL), arc_target(NULL), |
|
37 |
arc_source(NULL), arc_target(NULL), |
|
38 | 38 |
arc_next_in(NULL), arc_next_out(NULL) {} |
39 |
|
|
39 |
|
|
40 | 40 |
~StaticDigraphBase() { |
41 | 41 |
if (built) { |
42 | 42 |
delete[] node_first_out; |
43 | 43 |
delete[] node_first_in; |
44 | 44 |
delete[] arc_source; |
45 | 45 |
delete[] arc_target; |
46 | 46 |
delete[] arc_next_out; |
47 | 47 |
delete[] arc_next_in; |
48 | 48 |
} |
49 | 49 |
} |
50 | 50 |
|
51 | 51 |
class Node { |
... | ... |
@@ -53,47 +53,47 @@ |
53 | 53 |
protected: |
54 | 54 |
int id; |
55 | 55 |
Node(int _id) : id(_id) {} |
56 | 56 |
public: |
57 | 57 |
Node() {} |
58 | 58 |
Node (Invalid) : id(-1) {} |
59 | 59 |
bool operator==(const Node& node) const { return id == node.id; } |
60 | 60 |
bool operator!=(const Node& node) const { return id != node.id; } |
61 | 61 |
bool operator<(const Node& node) const { return id < node.id; } |
62 | 62 |
}; |
63 | 63 |
|
64 | 64 |
class Arc { |
65 |
friend class StaticDigraphBase; |
|
65 |
friend class StaticDigraphBase; |
|
66 | 66 |
protected: |
67 | 67 |
int id; |
68 | 68 |
Arc(int _id) : id(_id) {} |
69 | 69 |
public: |
70 | 70 |
Arc() { } |
71 | 71 |
Arc (Invalid) : id(-1) {} |
72 | 72 |
bool operator==(const Arc& arc) const { return id == arc.id; } |
73 | 73 |
bool operator!=(const Arc& arc) const { return id != arc.id; } |
74 | 74 |
bool operator<(const Arc& arc) const { return id < arc.id; } |
75 | 75 |
}; |
76 | 76 |
|
77 | 77 |
Node source(const Arc& e) const { return Node(arc_source[e.id]); } |
78 | 78 |
Node target(const Arc& e) const { return Node(arc_target[e.id]); } |
79 | 79 |
|
80 | 80 |
void first(Node& n) const { n.id = node_num - 1; } |
81 | 81 |
static void next(Node& n) { --n.id; } |
82 | 82 |
|
83 | 83 |
void first(Arc& e) const { e.id = arc_num - 1; } |
84 | 84 |
static void next(Arc& e) { --e.id; } |
85 | 85 |
|
86 |
void firstOut(Arc& e, const Node& n) const { |
|
87 |
e.id = node_first_out[n.id] != node_first_out[n.id + 1] ? |
|
86 |
void firstOut(Arc& e, const Node& n) const { |
|
87 |
e.id = node_first_out[n.id] != node_first_out[n.id + 1] ? |
|
88 | 88 |
node_first_out[n.id] : -1; |
89 | 89 |
} |
90 | 90 |
void nextOut(Arc& e) const { e.id = arc_next_out[e.id]; } |
91 | 91 |
|
92 | 92 |
void firstIn(Arc& e, const Node& n) const { e.id = node_first_in[n.id]; } |
93 | 93 |
void nextIn(Arc& e) const { e.id = arc_next_in[e.id]; } |
94 | 94 |
|
95 | 95 |
static int id(const Node& n) { return n.id; } |
96 | 96 |
static Node nodeFromId(int id) { return Node(id); } |
97 | 97 |
int maxNodeId() const { return node_num - 1; } |
98 | 98 |
|
99 | 99 |
static int id(const Arc& e) { return e.id; } |
... | ... |
@@ -104,53 +104,53 @@ |
104 | 104 |
typedef True ArcNumTag; |
105 | 105 |
|
106 | 106 |
int nodeNum() const { return node_num; } |
107 | 107 |
int arcNum() const { return arc_num; } |
108 | 108 |
|
109 | 109 |
private: |
110 | 110 |
|
111 | 111 |
template <typename Digraph, typename NodeRefMap> |
112 | 112 |
class ArcLess { |
113 | 113 |
public: |
114 | 114 |
typedef typename Digraph::Arc Arc; |
115 | 115 |
|
116 |
ArcLess(const Digraph &_graph, const NodeRefMap& _nodeRef) |
|
116 |
ArcLess(const Digraph &_graph, const NodeRefMap& _nodeRef) |
|
117 | 117 |
: digraph(_graph), nodeRef(_nodeRef) {} |
118 |
|
|
118 |
|
|
119 | 119 |
bool operator()(const Arc& left, const Arc& right) const { |
120 |
|
|
120 |
return nodeRef[digraph.target(left)] < nodeRef[digraph.target(right)]; |
|
121 | 121 |
} |
122 | 122 |
private: |
123 | 123 |
const Digraph& digraph; |
124 | 124 |
const NodeRefMap& nodeRef; |
125 | 125 |
}; |
126 |
|
|
126 |
|
|
127 | 127 |
public: |
128 | 128 |
|
129 | 129 |
typedef True BuildTag; |
130 |
|
|
130 |
|
|
131 | 131 |
void clear() { |
132 | 132 |
if (built) { |
133 | 133 |
delete[] node_first_out; |
134 | 134 |
delete[] node_first_in; |
135 | 135 |
delete[] arc_source; |
136 | 136 |
delete[] arc_target; |
137 | 137 |
delete[] arc_next_out; |
138 | 138 |
delete[] arc_next_in; |
139 | 139 |
} |
140 | 140 |
built = false; |
141 | 141 |
node_num = 0; |
142 | 142 |
arc_num = 0; |
143 | 143 |
} |
144 |
|
|
144 |
|
|
145 | 145 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
146 | 146 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) { |
147 | 147 |
typedef typename Digraph::Node GNode; |
148 | 148 |
typedef typename Digraph::Arc GArc; |
149 | 149 |
|
150 | 150 |
built = true; |
151 | 151 |
|
152 | 152 |
node_num = countNodes(digraph); |
153 | 153 |
arc_num = countArcs(digraph); |
154 | 154 |
|
155 | 155 |
node_first_out = new int[node_num + 1]; |
156 | 156 |
node_first_in = new int[node_num]; |
... | ... |
@@ -174,58 +174,58 @@ |
174 | 174 |
int source = nodeRef[n].id; |
175 | 175 |
std::vector<GArc> arcs; |
176 | 176 |
for (typename Digraph::OutArcIt e(digraph, n); e != INVALID; ++e) { |
177 | 177 |
arcs.push_back(e); |
178 | 178 |
} |
179 | 179 |
if (!arcs.empty()) { |
180 | 180 |
node_first_out[source] = arc_index; |
181 | 181 |
std::sort(arcs.begin(), arcs.end(), arcLess); |
182 | 182 |
for (typename std::vector<GArc>::iterator it = arcs.begin(); |
183 | 183 |
it != arcs.end(); ++it) { |
184 | 184 |
int target = nodeRef[digraph.target(*it)].id; |
185 | 185 |
arcRef[*it] = Arc(arc_index); |
186 |
arc_source[arc_index] = source; |
|
186 |
arc_source[arc_index] = source; |
|
187 | 187 |
arc_target[arc_index] = target; |
188 | 188 |
arc_next_in[arc_index] = node_first_in[target]; |
189 | 189 |
node_first_in[target] = arc_index; |
190 | 190 |
arc_next_out[arc_index] = arc_index + 1; |
191 | 191 |
++arc_index; |
192 | 192 |
} |
193 | 193 |
arc_next_out[arc_index - 1] = -1; |
194 | 194 |
} else { |
195 | 195 |
node_first_out[source] = arc_index; |
196 | 196 |
} |
197 | 197 |
} |
198 | 198 |
node_first_out[node_num] = arc_num; |
199 | 199 |
} |
200 |
|
|
200 |
|
|
201 | 201 |
template <typename ArcListIterator> |
202 | 202 |
void build(int n, ArcListIterator first, ArcListIterator last) { |
203 | 203 |
built = true; |
204 | 204 |
|
205 | 205 |
node_num = n; |
206 | 206 |
arc_num = std::distance(first, last); |
207 | 207 |
|
208 | 208 |
node_first_out = new int[node_num + 1]; |
209 | 209 |
node_first_in = new int[node_num]; |
210 | 210 |
|
211 | 211 |
arc_source = new int[arc_num]; |
212 | 212 |
arc_target = new int[arc_num]; |
213 | 213 |
arc_next_out = new int[arc_num]; |
214 | 214 |
arc_next_in = new int[arc_num]; |
215 |
|
|
215 |
|
|
216 | 216 |
for (int i = 0; i != node_num; ++i) { |
217 | 217 |
node_first_in[i] = -1; |
218 |
} |
|
219 |
|
|
218 |
} |
|
219 |
|
|
220 | 220 |
int arc_index = 0; |
221 | 221 |
for (int i = 0; i != node_num; ++i) { |
222 | 222 |
node_first_out[i] = arc_index; |
223 | 223 |
for ( ; first != last && (*first).first == i; ++first) { |
224 | 224 |
int j = (*first).second; |
225 | 225 |
LEMON_ASSERT(j >= 0 && j < node_num, |
226 | 226 |
"Wrong arc list for StaticDigraph::build()"); |
227 | 227 |
arc_source[arc_index] = i; |
228 | 228 |
arc_target[arc_index] = j; |
229 | 229 |
arc_next_in[arc_index] = node_first_in[j]; |
230 | 230 |
node_first_in[j] = arc_index; |
231 | 231 |
arc_next_out[arc_index] = arc_index + 1; |
... | ... |
@@ -273,44 +273,44 @@ |
273 | 273 |
/// |
274 | 274 |
/// \ref StaticDigraph is a highly efficient digraph implementation, |
275 | 275 |
/// but it is fully static. |
276 | 276 |
/// It stores only two \c int values for each node and only four \c int |
277 | 277 |
/// values for each arc. Moreover it provides faster item iteration than |
278 | 278 |
/// \ref ListDigraph and \ref SmartDigraph, especially using \c OutArcIt |
279 | 279 |
/// iterators, since its arcs are stored in an appropriate order. |
280 | 280 |
/// However it only provides build() and clear() functions and does not |
281 | 281 |
/// support any other modification of the digraph. |
282 | 282 |
/// |
283 | 283 |
/// Since this digraph structure is completely static, its nodes and arcs |
284 | 284 |
/// can be indexed with integers from the ranges <tt>[0..nodeNum()-1]</tt> |
285 |
/// and <tt>[0..arcNum()-1]</tt>, respectively. |
|
285 |
/// and <tt>[0..arcNum()-1]</tt>, respectively. |
|
286 | 286 |
/// The index of an item is the same as its ID, it can be obtained |
287 | 287 |
/// using the corresponding \ref index() or \ref concepts::Digraph::id() |
288 | 288 |
/// "id()" function. A node or arc with a certain index can be obtained |
289 | 289 |
/// using node() or arc(). |
290 | 290 |
/// |
291 | 291 |
/// This type fully conforms to the \ref concepts::Digraph "Digraph concept". |
292 | 292 |
/// Most of its member functions and nested classes are documented |
293 | 293 |
/// only in the concept class. |
294 | 294 |
/// |
295 | 295 |
/// This class provides constant time counting for nodes and arcs. |
296 | 296 |
/// |
297 | 297 |
/// \sa concepts::Digraph |
298 | 298 |
class StaticDigraph : public ExtendedStaticDigraphBase { |
299 | 299 |
public: |
300 | 300 |
|
301 | 301 |
typedef ExtendedStaticDigraphBase Parent; |
302 |
|
|
302 |
|
|
303 | 303 |
public: |
304 |
|
|
304 |
|
|
305 | 305 |
/// \brief Constructor |
306 | 306 |
/// |
307 | 307 |
/// Default constructor. |
308 | 308 |
StaticDigraph() : Parent() {} |
309 | 309 |
|
310 | 310 |
/// \brief The node with the given index. |
311 | 311 |
/// |
312 | 312 |
/// This function returns the node with the given index. |
313 | 313 |
/// \sa index() |
314 | 314 |
static Node node(int ix) { return Parent::nodeFromId(ix); } |
315 | 315 |
|
316 | 316 |
/// \brief The arc with the given index. |
... | ... |
@@ -340,46 +340,46 @@ |
340 | 340 |
/// |
341 | 341 |
/// This function returns the number of arcs. |
342 | 342 |
int arcNum() const { return arc_num; } |
343 | 343 |
|
344 | 344 |
/// \brief Build the digraph copying another digraph. |
345 | 345 |
/// |
346 | 346 |
/// This function builds the digraph copying another digraph of any |
347 | 347 |
/// kind. It can be called more than once, but in such case, the whole |
348 | 348 |
/// structure and all maps will be cleared and rebuilt. |
349 | 349 |
/// |
350 | 350 |
/// This method also makes possible to copy a digraph to a StaticDigraph |
351 | 351 |
/// structure using \ref DigraphCopy. |
352 |
/// |
|
352 |
/// |
|
353 | 353 |
/// \param digraph An existing digraph to be copied. |
354 | 354 |
/// \param nodeRef The node references will be copied into this map. |
355 | 355 |
/// Its key type must be \c Digraph::Node and its value type must be |
356 | 356 |
/// \c StaticDigraph::Node. |
357 | 357 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
358 | 358 |
/// concept. |
359 | 359 |
/// \param arcRef The arc references will be copied into this map. |
360 | 360 |
/// Its key type must be \c Digraph::Arc and its value type must be |
361 | 361 |
/// \c StaticDigraph::Arc. |
362 | 362 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
363 | 363 |
/// |
364 | 364 |
/// \note If you do not need the arc references, then you could use |
365 | 365 |
/// \ref NullMap for the last parameter. However the node references |
366 | 366 |
/// are required by the function itself, thus they must be readable |
367 | 367 |
/// from the map. |
368 | 368 |
template <typename Digraph, typename NodeRefMap, typename ArcRefMap> |
369 | 369 |
void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) { |
370 | 370 |
if (built) Parent::clear(); |
371 | 371 |
Parent::build(digraph, nodeRef, arcRef); |
372 | 372 |
} |
373 |
|
|
373 |
|
|
374 | 374 |
/// \brief Build the digraph from an arc list. |
375 | 375 |
/// |
376 | 376 |
/// This function builds the digraph from the given arc list. |
377 | 377 |
/// It can be called more than once, but in such case, the whole |
378 | 378 |
/// structure and all maps will be cleared and rebuilt. |
379 | 379 |
/// |
380 | 380 |
/// The list of the arcs must be given in the range <tt>[begin, end)</tt> |
381 | 381 |
/// specified by STL compatible itartors whose \c value_type must be |
382 | 382 |
/// <tt>std::pair<int,int></tt>. |
383 | 383 |
/// Each arc must be specified by a pair of integer indices |
384 | 384 |
/// from the range <tt>[0..n-1]</tt>. <i>The pairs must be in a |
385 | 385 |
/// non-decreasing order with respect to their first values.</i> |
... | ... |
@@ -412,50 +412,50 @@ |
412 | 412 |
/// \brief Clear the digraph. |
413 | 413 |
/// |
414 | 414 |
/// This function erases all nodes and arcs from the digraph. |
415 | 415 |
void clear() { |
416 | 416 |
Parent::clear(); |
417 | 417 |
} |
418 | 418 |
|
419 | 419 |
protected: |
420 | 420 |
|
421 | 421 |
using Parent::fastFirstOut; |
422 | 422 |
using Parent::fastNextOut; |
423 | 423 |
using Parent::fastLastOut; |
424 |
|
|
424 |
|
|
425 | 425 |
public: |
426 | 426 |
|
427 | 427 |
class OutArcIt : public Arc { |
428 | 428 |
public: |
429 | 429 |
|
430 | 430 |
OutArcIt() { } |
431 | 431 |
|
432 | 432 |
OutArcIt(Invalid i) : Arc(i) { } |
433 | 433 |
|
434 | 434 |
OutArcIt(const StaticDigraph& digraph, const Node& node) { |
435 |
digraph.fastFirstOut(*this, node); |
|
436 |
digraph.fastLastOut(last, node); |
|
435 |
digraph.fastFirstOut(*this, node); |
|
436 |
digraph.fastLastOut(last, node); |
|
437 | 437 |
if (last == *this) *this = INVALID; |
438 | 438 |
} |
439 | 439 |
|
440 | 440 |
OutArcIt(const StaticDigraph& digraph, const Arc& arc) : Arc(arc) { |
441 | 441 |
if (arc != INVALID) { |
442 | 442 |
digraph.fastLastOut(last, digraph.source(arc)); |
443 | 443 |
} |
444 | 444 |
} |
445 | 445 |
|
446 |
OutArcIt& operator++() { |
|
446 |
OutArcIt& operator++() { |
|
447 | 447 |
StaticDigraph::fastNextOut(*this); |
448 | 448 |
if (last == *this) *this = INVALID; |
449 |
return *this; |
|
449 |
return *this; |
|
450 | 450 |
} |
451 | 451 |
|
452 | 452 |
private: |
453 | 453 |
Arc last; |
454 | 454 |
}; |
455 | 455 |
|
456 | 456 |
Node baseNode(const OutArcIt &arc) const { |
457 | 457 |
return Parent::source(static_cast<const Arc&>(arc)); |
458 | 458 |
} |
459 | 459 |
|
460 | 460 |
Node runningNode(const OutArcIt &arc) const { |
461 | 461 |
return Parent::target(static_cast<const Arc&>(arc)); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -56,25 +56,25 @@ |
56 | 56 |
typedef typename LEN::Value Length; |
57 | 57 |
/// The type of the flow map. |
58 | 58 |
typedef typename GR::template ArcMap<int> FlowMap; |
59 | 59 |
/// The type of the potential map. |
60 | 60 |
typedef typename GR::template NodeMap<Length> PotentialMap; |
61 | 61 |
|
62 | 62 |
/// \brief The path type |
63 | 63 |
/// |
64 | 64 |
/// The type used for storing the found arc-disjoint paths. |
65 | 65 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
66 | 66 |
/// and it must have an \c addBack() function. |
67 | 67 |
typedef lemon::Path<Digraph> Path; |
68 |
|
|
68 |
|
|
69 | 69 |
/// The cross reference type used for the heap. |
70 | 70 |
typedef typename GR::template NodeMap<int> HeapCrossRef; |
71 | 71 |
|
72 | 72 |
/// \brief The heap type used for internal Dijkstra computations. |
73 | 73 |
/// |
74 | 74 |
/// The type of the heap used for internal Dijkstra computations. |
75 | 75 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept |
76 | 76 |
/// and its priority type must be \c Length. |
77 | 77 |
typedef BinHeap<Length, HeapCrossRef> Heap; |
78 | 78 |
}; |
79 | 79 |
|
80 | 80 |
/// \addtogroup shortest_path |
... | ... |
@@ -149,44 +149,44 @@ |
149 | 149 |
// distance of the nodes. |
150 | 150 |
class ResidualDijkstra |
151 | 151 |
{ |
152 | 152 |
private: |
153 | 153 |
|
154 | 154 |
const Digraph &_graph; |
155 | 155 |
const LengthMap &_length; |
156 | 156 |
const FlowMap &_flow; |
157 | 157 |
PotentialMap &_pi; |
158 | 158 |
PredMap &_pred; |
159 | 159 |
Node _s; |
160 | 160 |
Node _t; |
161 |
|
|
161 |
|
|
162 | 162 |
PotentialMap _dist; |
163 | 163 |
std::vector<Node> _proc_nodes; |
164 | 164 |
|
165 | 165 |
public: |
166 | 166 |
|
167 | 167 |
// Constructor |
168 | 168 |
ResidualDijkstra(Suurballe &srb) : |
169 | 169 |
_graph(srb._graph), _length(srb._length), |
170 |
_flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred), |
|
170 |
_flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred), |
|
171 | 171 |
_s(srb._s), _t(srb._t), _dist(_graph) {} |
172 |
|
|
172 |
|
|
173 | 173 |
// Run the algorithm and return true if a path is found |
174 | 174 |
// from the source node to the target node. |
175 | 175 |
bool run(int cnt) { |
176 | 176 |
return cnt == 0 ? startFirst() : start(); |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
private: |
180 |
|
|
180 |
|
|
181 | 181 |
// Execute the algorithm for the first time (the flow and potential |
182 | 182 |
// functions have to be identically zero). |
183 | 183 |
bool startFirst() { |
184 | 184 |
HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP); |
185 | 185 |
Heap heap(heap_cross_ref); |
186 | 186 |
heap.push(_s, 0); |
187 | 187 |
_pred[_s] = INVALID; |
188 | 188 |
_proc_nodes.clear(); |
189 | 189 |
|
190 | 190 |
// Process nodes |
191 | 191 |
while (!heap.empty() && heap.top() != _t) { |
192 | 192 |
Node u = heap.top(), v; |
... | ... |
@@ -339,36 +339,36 @@ |
339 | 339 |
|
340 | 340 |
/// \brief \ref named-templ-param "Named parameter" for setting |
341 | 341 |
/// \c %Path type. |
342 | 342 |
/// |
343 | 343 |
/// \ref named-templ-param "Named parameter" for setting \c %Path type. |
344 | 344 |
/// It must conform to the \ref lemon::concepts::Path "Path" concept |
345 | 345 |
/// and it must have an \c addBack() function. |
346 | 346 |
template <typename T> |
347 | 347 |
struct SetPath |
348 | 348 |
: public Suurballe<GR, LEN, SetPathTraits<T> > { |
349 | 349 |
typedef Suurballe<GR, LEN, SetPathTraits<T> > Create; |
350 | 350 |
}; |
351 |
|
|
351 |
|
|
352 | 352 |
template <typename H, typename CR> |
353 | 353 |
struct SetHeapTraits : public Traits { |
354 | 354 |
typedef H Heap; |
355 | 355 |
typedef CR HeapCrossRef; |
356 | 356 |
}; |
357 | 357 |
|
358 | 358 |
/// \brief \ref named-templ-param "Named parameter" for setting |
359 | 359 |
/// \c Heap and \c HeapCrossRef types. |
360 | 360 |
/// |
361 | 361 |
/// \ref named-templ-param "Named parameter" for setting \c Heap |
362 |
/// and \c HeapCrossRef types with automatic allocation. |
|
362 |
/// and \c HeapCrossRef types with automatic allocation. |
|
363 | 363 |
/// They will be used for internal Dijkstra computations. |
364 | 364 |
/// The heap type must conform to the \ref lemon::concepts::Heap "Heap" |
365 | 365 |
/// concept and its priority type must be \c Length. |
366 | 366 |
template <typename H, |
367 | 367 |
typename CR = typename Digraph::template NodeMap<int> > |
368 | 368 |
struct SetHeap |
369 | 369 |
: public Suurballe<GR, LEN, SetHeapTraits<H, CR> > { |
370 | 370 |
typedef Suurballe<GR, LEN, SetHeapTraits<H, CR> > Create; |
371 | 371 |
}; |
372 | 372 |
|
373 | 373 |
/// @} |
374 | 374 |
|
... | ... |
@@ -388,25 +388,25 @@ |
388 | 388 |
|
389 | 389 |
// The source node |
390 | 390 |
Node _s; |
391 | 391 |
// The target node |
392 | 392 |
Node _t; |
393 | 393 |
|
394 | 394 |
// Container to store the found paths |
395 | 395 |
std::vector<Path> _paths; |
396 | 396 |
int _path_num; |
397 | 397 |
|
398 | 398 |
// The pred arc map |
399 | 399 |
PredMap _pred; |
400 |
|
|
400 |
|
|
401 | 401 |
// Data for full init |
402 | 402 |
PotentialMap *_init_dist; |
403 | 403 |
PredMap *_init_pred; |
404 | 404 |
bool _full_init; |
405 | 405 |
|
406 | 406 |
protected: |
407 | 407 |
|
408 | 408 |
Suurballe() {} |
409 | 409 |
|
410 | 410 |
public: |
411 | 411 |
|
412 | 412 |
/// \brief Constructor. |
... | ... |
@@ -546,25 +546,25 @@ |
546 | 546 |
if (!_init_pred) { |
547 | 547 |
_init_pred = new PredMap(_graph); |
548 | 548 |
} |
549 | 549 |
|
550 | 550 |
// Run a full Dijkstra |
551 | 551 |
typename Dijkstra<Digraph, LengthMap> |
552 | 552 |
::template SetStandardHeap<Heap> |
553 | 553 |
::template SetDistMap<PotentialMap> |
554 | 554 |
::template SetPredMap<PredMap> |
555 | 555 |
::Create dijk(_graph, _length); |
556 | 556 |
dijk.distMap(*_init_dist).predMap(*_init_pred); |
557 | 557 |
dijk.run(s); |
558 |
|
|
558 |
|
|
559 | 559 |
_full_init = true; |
560 | 560 |
} |
561 | 561 |
|
562 | 562 |
/// \brief Execute the algorithm. |
563 | 563 |
/// |
564 | 564 |
/// This function executes the algorithm. |
565 | 565 |
/// |
566 | 566 |
/// \param t The target node. |
567 | 567 |
/// \param k The number of paths to be found. |
568 | 568 |
/// |
569 | 569 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
570 | 570 |
/// \c s to \c t in the digraph. Otherwise it returns the number of |
... | ... |
@@ -590,39 +590,39 @@ |
590 | 590 |
/// |
591 | 591 |
/// \param t The target node. |
592 | 592 |
/// \param k The number of paths to be found. |
593 | 593 |
/// |
594 | 594 |
/// \return \c k if there are at least \c k arc-disjoint paths from |
595 | 595 |
/// the source node to the given node \c t in the digraph. |
596 | 596 |
/// Otherwise it returns the number of arc-disjoint paths found. |
597 | 597 |
/// |
598 | 598 |
/// \pre \ref init() must be called before using this function. |
599 | 599 |
int findFlow(const Node& t, int k = 2) { |
600 | 600 |
_t = t; |
601 | 601 |
ResidualDijkstra dijkstra(*this); |
602 |
|
|
602 |
|
|
603 | 603 |
// Initialization |
604 | 604 |
for (ArcIt e(_graph); e != INVALID; ++e) { |
605 | 605 |
(*_flow)[e] = 0; |
606 | 606 |
} |
607 | 607 |
if (_full_init) { |
608 | 608 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
609 | 609 |
(*_potential)[n] = (*_init_dist)[n]; |
610 | 610 |
} |
611 | 611 |
Node u = _t; |
612 | 612 |
Arc e; |
613 | 613 |
while ((e = (*_init_pred)[u]) != INVALID) { |
614 | 614 |
(*_flow)[e] = 1; |
615 | 615 |
u = _graph.source(e); |
616 |
} |
|
616 |
} |
|
617 | 617 |
_path_num = 1; |
618 | 618 |
} else { |
619 | 619 |
for (NodeIt n(_graph); n != INVALID; ++n) { |
620 | 620 |
(*_potential)[n] = 0; |
621 | 621 |
} |
622 | 622 |
_path_num = 0; |
623 | 623 |
} |
624 | 624 |
|
625 | 625 |
// Find shortest paths |
626 | 626 |
while (_path_num < k) { |
627 | 627 |
// Run Dijkstra |
628 | 628 |
if (!dijkstra.run(_path_num)) break; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -88,38 +88,38 @@ |
88 | 88 |
bf_test.start(); |
89 | 89 |
bf_test.checkedStart(); |
90 | 90 |
bf_test.limitedStart(k); |
91 | 91 |
|
92 | 92 |
l = const_bf_test.dist(t); |
93 | 93 |
e = const_bf_test.predArc(t); |
94 | 94 |
s = const_bf_test.predNode(t); |
95 | 95 |
b = const_bf_test.reached(t); |
96 | 96 |
d = const_bf_test.distMap(); |
97 | 97 |
p = const_bf_test.predMap(); |
98 | 98 |
pp = const_bf_test.path(t); |
99 | 99 |
pp = const_bf_test.negativeCycle(); |
100 |
|
|
100 |
|
|
101 | 101 |
for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {} |
102 | 102 |
} |
103 | 103 |
{ |
104 | 104 |
BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
105 | 105 |
::SetDistMap<concepts::ReadWriteMap<Node,Value> > |
106 | 106 |
::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> > |
107 | 107 |
::SetOperationTraits<BellmanFordToleranceOperationTraits<Value, 0> > |
108 | 108 |
::Create bf_test(gr,length); |
109 | 109 |
|
110 | 110 |
LengthMap length_map; |
111 | 111 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
112 | 112 |
concepts::ReadWriteMap<Node,Value> dist_map; |
113 |
|
|
113 |
|
|
114 | 114 |
bf_test |
115 | 115 |
.lengthMap(length_map) |
116 | 116 |
.predMap(pred_map) |
117 | 117 |
.distMap(dist_map); |
118 | 118 |
|
119 | 119 |
bf_test.run(s); |
120 | 120 |
bf_test.run(s,k); |
121 | 121 |
|
122 | 122 |
bf_test.init(); |
123 | 123 |
bf_test.addSource(s); |
124 | 124 |
bf_test.addSource(s, 1); |
125 | 125 |
b = bf_test.processNextRound(); |
... | ... |
@@ -180,25 +180,25 @@ |
180 | 180 |
run(); |
181 | 181 |
|
182 | 182 |
BellmanFord<Digraph, LengthMap> |
183 | 183 |
bf(gr, length); |
184 | 184 |
bf.run(s); |
185 | 185 |
Path<Digraph> p = bf.path(t); |
186 | 186 |
|
187 | 187 |
check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path."); |
188 | 188 |
check(p.length() == 3, "path() found a wrong path."); |
189 | 189 |
check(checkPath(gr, p), "path() found a wrong path."); |
190 | 190 |
check(pathSource(gr, p) == s, "path() found a wrong path."); |
191 | 191 |
check(pathTarget(gr, p) == t, "path() found a wrong path."); |
192 |
|
|
192 |
|
|
193 | 193 |
ListPath<Digraph> path; |
194 | 194 |
Value dist; |
195 | 195 |
bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t); |
196 | 196 |
|
197 | 197 |
check(reached && dist == -1, "Bellman-Ford found a wrong path."); |
198 | 198 |
check(path.length() == 3, "path() found a wrong path."); |
199 | 199 |
check(checkPath(gr, path), "path() found a wrong path."); |
200 | 200 |
check(pathSource(gr, path) == s, "path() found a wrong path."); |
201 | 201 |
check(pathTarget(gr, path) == t, "path() found a wrong path."); |
202 | 202 |
|
203 | 203 |
for(ArcIt e(gr); e!=INVALID; ++e) { |
204 | 204 |
Node u=gr.source(e); |
... | ... |
@@ -219,58 +219,58 @@ |
219 | 219 |
"Wrong distance! Difference: " << |
220 | 220 |
bf.dist(v) - bf.dist(u) - length[e]); |
221 | 221 |
} |
222 | 222 |
} |
223 | 223 |
} |
224 | 224 |
} |
225 | 225 |
|
226 | 226 |
void checkBellmanFordNegativeCycle() { |
227 | 227 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
228 | 228 |
|
229 | 229 |
SmartDigraph gr; |
230 | 230 |
IntArcMap length(gr); |
231 |
|
|
231 |
|
|
232 | 232 |
Node n1 = gr.addNode(); |
233 | 233 |
Node n2 = gr.addNode(); |
234 | 234 |
Node n3 = gr.addNode(); |
235 | 235 |
Node n4 = gr.addNode(); |
236 |
|
|
236 |
|
|
237 | 237 |
Arc a1 = gr.addArc(n1, n2); |
238 | 238 |
Arc a2 = gr.addArc(n2, n2); |
239 |
|
|
239 |
|
|
240 | 240 |
length[a1] = 2; |
241 | 241 |
length[a2] = -1; |
242 |
|
|
242 |
|
|
243 | 243 |
{ |
244 | 244 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
245 | 245 |
bf.run(n1); |
246 | 246 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
247 | 247 |
check(p.length() == 1 && p.front() == p.back() && p.front() == a2, |
248 | 248 |
"Wrong negative cycle."); |
249 | 249 |
} |
250 |
|
|
250 |
|
|
251 | 251 |
length[a2] = 0; |
252 |
|
|
252 |
|
|
253 | 253 |
{ |
254 | 254 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
255 | 255 |
bf.run(n1); |
256 | 256 |
check(bf.negativeCycle().empty(), |
257 | 257 |
"Negative cycle should not be found."); |
258 | 258 |
} |
259 |
|
|
259 |
|
|
260 | 260 |
length[gr.addArc(n1, n3)] = 5; |
261 | 261 |
length[gr.addArc(n4, n3)] = 1; |
262 | 262 |
length[gr.addArc(n2, n4)] = 2; |
263 | 263 |
length[gr.addArc(n3, n2)] = -4; |
264 |
|
|
264 |
|
|
265 | 265 |
{ |
266 | 266 |
BellmanFord<SmartDigraph, IntArcMap> bf(gr, length); |
267 | 267 |
bf.init(); |
268 | 268 |
bf.addSource(n1); |
269 | 269 |
for (int i = 0; i < 4; ++i) { |
270 | 270 |
check(bf.negativeCycle().empty(), |
271 | 271 |
"Negative cycle should not be found."); |
272 | 272 |
bf.processNextRound(); |
273 | 273 |
} |
274 | 274 |
StaticPath<SmartDigraph> p = bf.negativeCycle(); |
275 | 275 |
check(p.length() == 3, "Wrong negative cycle."); |
276 | 276 |
check(length[p.nth(0)] + length[p.nth(1)] + length[p.nth(2)] == -1, |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -74,70 +74,70 @@ |
74 | 74 |
bfs_test.run(s); |
75 | 75 |
bfs_test.run(s,t); |
76 | 76 |
bfs_test.run(); |
77 | 77 |
|
78 | 78 |
bfs_test.init(); |
79 | 79 |
bfs_test.addSource(s); |
80 | 80 |
n = bfs_test.processNextNode(); |
81 | 81 |
n = bfs_test.processNextNode(t, b); |
82 | 82 |
n = bfs_test.processNextNode(nm, n); |
83 | 83 |
n = const_bfs_test.nextNode(); |
84 | 84 |
b = const_bfs_test.emptyQueue(); |
85 | 85 |
i = const_bfs_test.queueSize(); |
86 |
|
|
86 |
|
|
87 | 87 |
bfs_test.start(); |
88 | 88 |
bfs_test.start(t); |
89 | 89 |
bfs_test.start(nm); |
90 | 90 |
|
91 | 91 |
l = const_bfs_test.dist(t); |
92 | 92 |
e = const_bfs_test.predArc(t); |
93 | 93 |
s = const_bfs_test.predNode(t); |
94 | 94 |
b = const_bfs_test.reached(t); |
95 | 95 |
d = const_bfs_test.distMap(); |
96 | 96 |
p = const_bfs_test.predMap(); |
97 | 97 |
pp = const_bfs_test.path(t); |
98 | 98 |
} |
99 | 99 |
{ |
100 | 100 |
BType |
101 | 101 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
102 | 102 |
::SetDistMap<concepts::ReadWriteMap<Node,int> > |
103 | 103 |
::SetReachedMap<concepts::ReadWriteMap<Node,bool> > |
104 | 104 |
::SetStandardProcessedMap |
105 | 105 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
106 | 106 |
::Create bfs_test(G); |
107 |
|
|
107 |
|
|
108 | 108 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
109 | 109 |
concepts::ReadWriteMap<Node,int> dist_map; |
110 | 110 |
concepts::ReadWriteMap<Node,bool> reached_map; |
111 | 111 |
concepts::WriteMap<Node,bool> processed_map; |
112 |
|
|
112 |
|
|
113 | 113 |
bfs_test |
114 | 114 |
.predMap(pred_map) |
115 | 115 |
.distMap(dist_map) |
116 | 116 |
.reachedMap(reached_map) |
117 | 117 |
.processedMap(processed_map); |
118 | 118 |
|
119 | 119 |
bfs_test.run(s); |
120 | 120 |
bfs_test.run(s,t); |
121 | 121 |
bfs_test.run(); |
122 |
|
|
122 |
|
|
123 | 123 |
bfs_test.init(); |
124 | 124 |
bfs_test.addSource(s); |
125 | 125 |
n = bfs_test.processNextNode(); |
126 | 126 |
n = bfs_test.processNextNode(t, b); |
127 | 127 |
n = bfs_test.processNextNode(nm, n); |
128 | 128 |
n = bfs_test.nextNode(); |
129 | 129 |
b = bfs_test.emptyQueue(); |
130 | 130 |
i = bfs_test.queueSize(); |
131 |
|
|
131 |
|
|
132 | 132 |
bfs_test.start(); |
133 | 133 |
bfs_test.start(t); |
134 | 134 |
bfs_test.start(nm); |
135 | 135 |
|
136 | 136 |
l = bfs_test.dist(t); |
137 | 137 |
e = bfs_test.predArc(t); |
138 | 138 |
s = bfs_test.predNode(t); |
139 | 139 |
b = bfs_test.reached(t); |
140 | 140 |
pp = bfs_test.path(t); |
141 | 141 |
} |
142 | 142 |
} |
143 | 143 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -72,46 +72,46 @@ |
72 | 72 |
FlowMap flow; |
73 | 73 |
BarrierMap bar; |
74 | 74 |
VType v; |
75 | 75 |
bool b; |
76 | 76 |
|
77 | 77 |
typedef Circulation<Digraph, CapMap, CapMap, SupplyMap> |
78 | 78 |
::SetFlowMap<FlowMap> |
79 | 79 |
::SetElevator<Elev> |
80 | 80 |
::SetStandardElevator<LinkedElev> |
81 | 81 |
::Create CirculationType; |
82 | 82 |
CirculationType circ_test(g, lcap, ucap, supply); |
83 | 83 |
const CirculationType& const_circ_test = circ_test; |
84 |
|
|
84 |
|
|
85 | 85 |
circ_test |
86 | 86 |
.lowerMap(lcap) |
87 | 87 |
.upperMap(ucap) |
88 | 88 |
.supplyMap(supply) |
89 | 89 |
.flowMap(flow); |
90 |
|
|
90 |
|
|
91 | 91 |
const CirculationType::Elevator& elev = const_circ_test.elevator(); |
92 | 92 |
circ_test.elevator(const_cast<CirculationType::Elevator&>(elev)); |
93 | 93 |
CirculationType::Tolerance tol = const_circ_test.tolerance(); |
94 | 94 |
circ_test.tolerance(tol); |
95 | 95 |
|
96 | 96 |
circ_test.init(); |
97 | 97 |
circ_test.greedyInit(); |
98 | 98 |
circ_test.start(); |
99 | 99 |
circ_test.run(); |
100 | 100 |
|
101 | 101 |
v = const_circ_test.flow(a); |
102 | 102 |
const FlowMap& fm = const_circ_test.flowMap(); |
103 | 103 |
b = const_circ_test.barrier(n); |
104 | 104 |
const_circ_test.barrierMap(bar); |
105 |
|
|
105 |
|
|
106 | 106 |
ignore_unused_variable_warning(fm); |
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
template <class G, class LM, class UM, class DM> |
110 | 110 |
void checkCirculation(const G& g, const LM& lm, const UM& um, |
111 | 111 |
const DM& dm, bool find) |
112 | 112 |
{ |
113 | 113 |
Circulation<G, LM, UM, DM> circ(g, lm, um, dm); |
114 | 114 |
bool ret = circ.run(); |
115 | 115 |
if (find) { |
116 | 116 |
check(ret, "A feasible solution should have been found."); |
117 | 117 |
check(circ.checkFlow(), "The found flow is corrupt."); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -20,44 +20,44 @@ |
20 | 20 |
#include <lemon/list_graph.h> |
21 | 21 |
#include <lemon/adaptors.h> |
22 | 22 |
|
23 | 23 |
#include "test_tools.h" |
24 | 24 |
|
25 | 25 |
using namespace lemon; |
26 | 26 |
|
27 | 27 |
|
28 | 28 |
int main() |
29 | 29 |
{ |
30 | 30 |
typedef ListDigraph Digraph; |
31 | 31 |
typedef Undirector<Digraph> Graph; |
32 |
|
|
32 |
|
|
33 | 33 |
{ |
34 | 34 |
Digraph d; |
35 | 35 |
Digraph::NodeMap<int> order(d); |
36 | 36 |
Graph g(d); |
37 |
|
|
37 |
|
|
38 | 38 |
check(stronglyConnected(d), "The empty digraph is strongly connected"); |
39 | 39 |
check(countStronglyConnectedComponents(d) == 0, |
40 | 40 |
"The empty digraph has 0 strongly connected component"); |
41 | 41 |
check(connected(g), "The empty graph is connected"); |
42 | 42 |
check(countConnectedComponents(g) == 0, |
43 | 43 |
"The empty graph has 0 connected component"); |
44 | 44 |
|
45 | 45 |
check(biNodeConnected(g), "The empty graph is bi-node-connected"); |
46 | 46 |
check(countBiNodeConnectedComponents(g) == 0, |
47 | 47 |
"The empty graph has 0 bi-node-connected component"); |
48 | 48 |
check(biEdgeConnected(g), "The empty graph is bi-edge-connected"); |
49 | 49 |
check(countBiEdgeConnectedComponents(g) == 0, |
50 | 50 |
"The empty graph has 0 bi-edge-connected component"); |
51 |
|
|
51 |
|
|
52 | 52 |
check(dag(d), "The empty digraph is DAG."); |
53 | 53 |
check(checkedTopologicalSort(d, order), "The empty digraph is DAG."); |
54 | 54 |
check(loopFree(d), "The empty digraph is loop-free."); |
55 | 55 |
check(parallelFree(d), "The empty digraph is parallel-free."); |
56 | 56 |
check(simpleGraph(d), "The empty digraph is simple."); |
57 | 57 |
|
58 | 58 |
check(acyclic(g), "The empty graph is acyclic."); |
59 | 59 |
check(tree(g), "The empty graph is tree."); |
60 | 60 |
check(bipartite(g), "The empty graph is bipartite."); |
61 | 61 |
check(loopFree(g), "The empty graph is loop-free."); |
62 | 62 |
check(parallelFree(g), "The empty graph is parallel-free."); |
63 | 63 |
check(simpleGraph(g), "The empty graph is simple."); |
... | ... |
@@ -73,51 +73,51 @@ |
73 | 73 |
check(countStronglyConnectedComponents(d) == 1, |
74 | 74 |
"This digraph has 1 strongly connected component"); |
75 | 75 |
check(connected(g), "This graph is connected"); |
76 | 76 |
check(countConnectedComponents(g) == 1, |
77 | 77 |
"This graph has 1 connected component"); |
78 | 78 |
|
79 | 79 |
check(biNodeConnected(g), "This graph is bi-node-connected"); |
80 | 80 |
check(countBiNodeConnectedComponents(g) == 0, |
81 | 81 |
"This graph has 0 bi-node-connected component"); |
82 | 82 |
check(biEdgeConnected(g), "This graph is bi-edge-connected"); |
83 | 83 |
check(countBiEdgeConnectedComponents(g) == 1, |
84 | 84 |
"This graph has 1 bi-edge-connected component"); |
85 |
|
|
85 |
|
|
86 | 86 |
check(dag(d), "This digraph is DAG."); |
87 | 87 |
check(checkedTopologicalSort(d, order), "This digraph is DAG."); |
88 | 88 |
check(loopFree(d), "This digraph is loop-free."); |
89 | 89 |
check(parallelFree(d), "This digraph is parallel-free."); |
90 | 90 |
check(simpleGraph(d), "This digraph is simple."); |
91 | 91 |
|
92 | 92 |
check(acyclic(g), "This graph is acyclic."); |
93 | 93 |
check(tree(g), "This graph is tree."); |
94 | 94 |
check(bipartite(g), "This graph is bipartite."); |
95 | 95 |
check(loopFree(g), "This graph is loop-free."); |
96 | 96 |
check(parallelFree(g), "This graph is parallel-free."); |
97 | 97 |
check(simpleGraph(g), "This graph is simple."); |
98 | 98 |
} |
99 | 99 |
|
100 | 100 |
{ |
101 | 101 |
Digraph d; |
102 | 102 |
Digraph::NodeMap<int> order(d); |
103 | 103 |
Graph g(d); |
104 |
|
|
104 |
|
|
105 | 105 |
Digraph::Node n1 = d.addNode(); |
106 | 106 |
Digraph::Node n2 = d.addNode(); |
107 | 107 |
Digraph::Node n3 = d.addNode(); |
108 | 108 |
Digraph::Node n4 = d.addNode(); |
109 | 109 |
Digraph::Node n5 = d.addNode(); |
110 | 110 |
Digraph::Node n6 = d.addNode(); |
111 |
|
|
111 |
|
|
112 | 112 |
d.addArc(n1, n3); |
113 | 113 |
d.addArc(n3, n2); |
114 | 114 |
d.addArc(n2, n1); |
115 | 115 |
d.addArc(n4, n2); |
116 | 116 |
d.addArc(n4, n3); |
117 | 117 |
d.addArc(n5, n6); |
118 | 118 |
d.addArc(n6, n5); |
119 | 119 |
|
120 | 120 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
121 | 121 |
check(countStronglyConnectedComponents(d) == 3, |
122 | 122 |
"This digraph has 3 strongly connected components"); |
123 | 123 |
check(!connected(g), "This graph is not connected"); |
... | ... |
@@ -127,61 +127,61 @@ |
127 | 127 |
check(!dag(d), "This digraph is not DAG."); |
128 | 128 |
check(!checkedTopologicalSort(d, order), "This digraph is not DAG."); |
129 | 129 |
check(loopFree(d), "This digraph is loop-free."); |
130 | 130 |
check(parallelFree(d), "This digraph is parallel-free."); |
131 | 131 |
check(simpleGraph(d), "This digraph is simple."); |
132 | 132 |
|
133 | 133 |
check(!acyclic(g), "This graph is not acyclic."); |
134 | 134 |
check(!tree(g), "This graph is not tree."); |
135 | 135 |
check(!bipartite(g), "This graph is not bipartite."); |
136 | 136 |
check(loopFree(g), "This graph is loop-free."); |
137 | 137 |
check(!parallelFree(g), "This graph is not parallel-free."); |
138 | 138 |
check(!simpleGraph(g), "This graph is not simple."); |
139 |
|
|
139 |
|
|
140 | 140 |
d.addArc(n3, n3); |
141 |
|
|
141 |
|
|
142 | 142 |
check(!loopFree(d), "This digraph is not loop-free."); |
143 | 143 |
check(!loopFree(g), "This graph is not loop-free."); |
144 | 144 |
check(!simpleGraph(d), "This digraph is not simple."); |
145 |
|
|
145 |
|
|
146 | 146 |
d.addArc(n3, n2); |
147 |
|
|
147 |
|
|
148 | 148 |
check(!parallelFree(d), "This digraph is not parallel-free."); |
149 | 149 |
} |
150 |
|
|
150 |
|
|
151 | 151 |
{ |
152 | 152 |
Digraph d; |
153 | 153 |
Digraph::ArcMap<bool> cutarcs(d, false); |
154 | 154 |
Graph g(d); |
155 |
|
|
155 |
|
|
156 | 156 |
Digraph::Node n1 = d.addNode(); |
157 | 157 |
Digraph::Node n2 = d.addNode(); |
158 | 158 |
Digraph::Node n3 = d.addNode(); |
159 | 159 |
Digraph::Node n4 = d.addNode(); |
160 | 160 |
Digraph::Node n5 = d.addNode(); |
161 | 161 |
Digraph::Node n6 = d.addNode(); |
162 | 162 |
Digraph::Node n7 = d.addNode(); |
163 | 163 |
Digraph::Node n8 = d.addNode(); |
164 | 164 |
|
165 | 165 |
d.addArc(n1, n2); |
166 | 166 |
d.addArc(n5, n1); |
167 | 167 |
d.addArc(n2, n8); |
168 | 168 |
d.addArc(n8, n5); |
169 | 169 |
d.addArc(n6, n4); |
170 | 170 |
d.addArc(n4, n6); |
171 | 171 |
d.addArc(n2, n5); |
172 | 172 |
d.addArc(n1, n8); |
173 | 173 |
d.addArc(n6, n7); |
174 | 174 |
d.addArc(n7, n6); |
175 |
|
|
175 |
|
|
176 | 176 |
check(!stronglyConnected(d), "This digraph is not strongly connected"); |
177 | 177 |
check(countStronglyConnectedComponents(d) == 3, |
178 | 178 |
"This digraph has 3 strongly connected components"); |
179 | 179 |
Digraph::NodeMap<int> scomp1(d); |
180 | 180 |
check(stronglyConnectedComponents(d, scomp1) == 3, |
181 | 181 |
"This digraph has 3 strongly connected components"); |
182 | 182 |
check(scomp1[n1] != scomp1[n3] && scomp1[n1] != scomp1[n4] && |
183 | 183 |
scomp1[n3] != scomp1[n4], "Wrong stronglyConnectedComponents()"); |
184 | 184 |
check(scomp1[n1] == scomp1[n2] && scomp1[n1] == scomp1[n5] && |
185 | 185 |
scomp1[n1] == scomp1[n8], "Wrong stronglyConnectedComponents()"); |
186 | 186 |
check(scomp1[n4] == scomp1[n6] && scomp1[n4] == scomp1[n7], |
187 | 187 |
"Wrong stronglyConnectedComponents()"); |
... | ... |
@@ -226,72 +226,72 @@ |
226 | 226 |
check(stronglyConnectedCutArcs(d, scut2) == 5, |
227 | 227 |
"This digraph has 5 strongly connected cut arcs."); |
228 | 228 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
229 | 229 |
check(scut2[a] == cutarcs[a], "Wrong stronglyConnectedCutArcs()"); |
230 | 230 |
} |
231 | 231 |
} |
232 | 232 |
|
233 | 233 |
{ |
234 | 234 |
// DAG example for topological sort from the book New Algorithms |
235 | 235 |
// (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein) |
236 | 236 |
Digraph d; |
237 | 237 |
Digraph::NodeMap<int> order(d); |
238 |
|
|
238 |
|
|
239 | 239 |
Digraph::Node belt = d.addNode(); |
240 | 240 |
Digraph::Node trousers = d.addNode(); |
241 | 241 |
Digraph::Node necktie = d.addNode(); |
242 | 242 |
Digraph::Node coat = d.addNode(); |
243 | 243 |
Digraph::Node socks = d.addNode(); |
244 | 244 |
Digraph::Node shirt = d.addNode(); |
245 | 245 |
Digraph::Node shoe = d.addNode(); |
246 | 246 |
Digraph::Node watch = d.addNode(); |
247 | 247 |
Digraph::Node pants = d.addNode(); |
248 | 248 |
|
249 | 249 |
d.addArc(socks, shoe); |
250 | 250 |
d.addArc(pants, shoe); |
251 | 251 |
d.addArc(pants, trousers); |
252 | 252 |
d.addArc(trousers, shoe); |
253 | 253 |
d.addArc(trousers, belt); |
254 | 254 |
d.addArc(belt, coat); |
255 | 255 |
d.addArc(shirt, belt); |
256 | 256 |
d.addArc(shirt, necktie); |
257 | 257 |
d.addArc(necktie, coat); |
258 |
|
|
258 |
|
|
259 | 259 |
check(dag(d), "This digraph is DAG."); |
260 | 260 |
topologicalSort(d, order); |
261 | 261 |
for (Digraph::ArcIt a(d); a != INVALID; ++a) { |
262 | 262 |
check(order[d.source(a)] < order[d.target(a)], |
263 | 263 |
"Wrong topologicalSort()"); |
264 | 264 |
} |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
{ |
268 | 268 |
ListGraph g; |
269 | 269 |
ListGraph::NodeMap<bool> map(g); |
270 |
|
|
270 |
|
|
271 | 271 |
ListGraph::Node n1 = g.addNode(); |
272 | 272 |
ListGraph::Node n2 = g.addNode(); |
273 | 273 |
ListGraph::Node n3 = g.addNode(); |
274 | 274 |
ListGraph::Node n4 = g.addNode(); |
275 | 275 |
ListGraph::Node n5 = g.addNode(); |
276 | 276 |
ListGraph::Node n6 = g.addNode(); |
277 | 277 |
ListGraph::Node n7 = g.addNode(); |
278 | 278 |
|
279 | 279 |
g.addEdge(n1, n3); |
280 | 280 |
g.addEdge(n1, n4); |
281 | 281 |
g.addEdge(n2, n5); |
282 | 282 |
g.addEdge(n3, n6); |
283 | 283 |
g.addEdge(n4, n6); |
284 | 284 |
g.addEdge(n4, n7); |
285 | 285 |
g.addEdge(n5, n7); |
286 |
|
|
286 |
|
|
287 | 287 |
check(bipartite(g), "This graph is bipartite"); |
288 | 288 |
check(bipartitePartitions(g, map), "This graph is bipartite"); |
289 |
|
|
289 |
|
|
290 | 290 |
check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7], |
291 | 291 |
"Wrong bipartitePartitions()"); |
292 | 292 |
check(map[n3] == map[n4] && map[n3] == map[n5], |
293 | 293 |
"Wrong bipartitePartitions()"); |
294 | 294 |
} |
295 | 295 |
|
296 | 296 |
return 0; |
297 | 297 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -74,25 +74,25 @@ |
74 | 74 |
const DType& const_dfs_test = dfs_test; |
75 | 75 |
|
76 | 76 |
dfs_test.run(s); |
77 | 77 |
dfs_test.run(s,t); |
78 | 78 |
dfs_test.run(); |
79 | 79 |
|
80 | 80 |
dfs_test.init(); |
81 | 81 |
dfs_test.addSource(s); |
82 | 82 |
e = dfs_test.processNextArc(); |
83 | 83 |
e = const_dfs_test.nextArc(); |
84 | 84 |
b = const_dfs_test.emptyQueue(); |
85 | 85 |
i = const_dfs_test.queueSize(); |
86 |
|
|
86 |
|
|
87 | 87 |
dfs_test.start(); |
88 | 88 |
dfs_test.start(t); |
89 | 89 |
dfs_test.start(am); |
90 | 90 |
|
91 | 91 |
l = const_dfs_test.dist(t); |
92 | 92 |
e = const_dfs_test.predArc(t); |
93 | 93 |
s = const_dfs_test.predNode(t); |
94 | 94 |
b = const_dfs_test.reached(t); |
95 | 95 |
d = const_dfs_test.distMap(); |
96 | 96 |
p = const_dfs_test.predMap(); |
97 | 97 |
pp = const_dfs_test.path(t); |
98 | 98 |
} |
... | ... |
@@ -100,42 +100,42 @@ |
100 | 100 |
DType |
101 | 101 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
102 | 102 |
::SetDistMap<concepts::ReadWriteMap<Node,int> > |
103 | 103 |
::SetReachedMap<concepts::ReadWriteMap<Node,bool> > |
104 | 104 |
::SetStandardProcessedMap |
105 | 105 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
106 | 106 |
::Create dfs_test(G); |
107 | 107 |
|
108 | 108 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
109 | 109 |
concepts::ReadWriteMap<Node,int> dist_map; |
110 | 110 |
concepts::ReadWriteMap<Node,bool> reached_map; |
111 | 111 |
concepts::WriteMap<Node,bool> processed_map; |
112 |
|
|
112 |
|
|
113 | 113 |
dfs_test |
114 | 114 |
.predMap(pred_map) |
115 | 115 |
.distMap(dist_map) |
116 | 116 |
.reachedMap(reached_map) |
117 | 117 |
.processedMap(processed_map); |
118 | 118 |
|
119 | 119 |
dfs_test.run(s); |
120 | 120 |
dfs_test.run(s,t); |
121 | 121 |
dfs_test.run(); |
122 | 122 |
dfs_test.init(); |
123 | 123 |
|
124 | 124 |
dfs_test.addSource(s); |
125 | 125 |
e = dfs_test.processNextArc(); |
126 | 126 |
e = dfs_test.nextArc(); |
127 | 127 |
b = dfs_test.emptyQueue(); |
128 | 128 |
i = dfs_test.queueSize(); |
129 |
|
|
129 |
|
|
130 | 130 |
dfs_test.start(); |
131 | 131 |
dfs_test.start(t); |
132 | 132 |
dfs_test.start(am); |
133 | 133 |
|
134 | 134 |
l = dfs_test.dist(t); |
135 | 135 |
e = dfs_test.predArc(t); |
136 | 136 |
s = dfs_test.predNode(t); |
137 | 137 |
b = dfs_test.reached(t); |
138 | 138 |
pp = dfs_test.path(t); |
139 | 139 |
} |
140 | 140 |
} |
141 | 141 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -383,27 +383,27 @@ |
383 | 383 |
check(g.valid(n3), "Wrong validity check"); |
384 | 384 |
check(!g.valid(e1), "Wrong validity check"); |
385 | 385 |
check(g.valid(e2), "Wrong validity check"); |
386 | 386 |
|
387 | 387 |
check(!g.valid(g.nodeFromId(-1)), "Wrong validity check"); |
388 | 388 |
check(!g.valid(g.arcFromId(-1)), "Wrong validity check"); |
389 | 389 |
} |
390 | 390 |
|
391 | 391 |
void checkStaticDigraph() { |
392 | 392 |
SmartDigraph g; |
393 | 393 |
SmartDigraph::NodeMap<StaticDigraph::Node> nref(g); |
394 | 394 |
SmartDigraph::ArcMap<StaticDigraph::Arc> aref(g); |
395 |
|
|
395 |
|
|
396 | 396 |
StaticDigraph G; |
397 |
|
|
397 |
|
|
398 | 398 |
checkGraphNodeList(G, 0); |
399 | 399 |
checkGraphArcList(G, 0); |
400 | 400 |
|
401 | 401 |
G.build(g, nref, aref); |
402 | 402 |
|
403 | 403 |
checkGraphNodeList(G, 0); |
404 | 404 |
checkGraphArcList(G, 0); |
405 | 405 |
|
406 | 406 |
SmartDigraph::Node |
407 | 407 |
n1 = g.addNode(), |
408 | 408 |
n2 = g.addNode(), |
409 | 409 |
n3 = g.addNode(); |
... | ... |
@@ -455,49 +455,49 @@ |
455 | 455 |
std::vector<std::pair<int,int> > arcs; |
456 | 456 |
arcs.push_back(std::make_pair(0,1)); |
457 | 457 |
arcs.push_back(std::make_pair(0,2)); |
458 | 458 |
arcs.push_back(std::make_pair(1,3)); |
459 | 459 |
arcs.push_back(std::make_pair(1,2)); |
460 | 460 |
arcs.push_back(std::make_pair(3,0)); |
461 | 461 |
arcs.push_back(std::make_pair(3,3)); |
462 | 462 |
arcs.push_back(std::make_pair(4,2)); |
463 | 463 |
arcs.push_back(std::make_pair(4,3)); |
464 | 464 |
arcs.push_back(std::make_pair(4,1)); |
465 | 465 |
|
466 | 466 |
G.build(6, arcs.begin(), arcs.end()); |
467 |
|
|
467 |
|
|
468 | 468 |
checkGraphNodeList(G, 6); |
469 | 469 |
checkGraphArcList(G, 9); |
470 | 470 |
|
471 | 471 |
checkGraphOutArcList(G, G.node(0), 2); |
472 | 472 |
checkGraphOutArcList(G, G.node(1), 2); |
473 | 473 |
checkGraphOutArcList(G, G.node(2), 0); |
474 | 474 |
checkGraphOutArcList(G, G.node(3), 2); |
475 | 475 |
checkGraphOutArcList(G, G.node(4), 3); |
476 | 476 |
checkGraphOutArcList(G, G.node(5), 0); |
477 | 477 |
|
478 | 478 |
checkGraphInArcList(G, G.node(0), 1); |
479 | 479 |
checkGraphInArcList(G, G.node(1), 2); |
480 | 480 |
checkGraphInArcList(G, G.node(2), 3); |
481 | 481 |
checkGraphInArcList(G, G.node(3), 3); |
482 | 482 |
checkGraphInArcList(G, G.node(4), 0); |
483 | 483 |
checkGraphInArcList(G, G.node(5), 0); |
484 | 484 |
|
485 | 485 |
checkGraphConArcList(G, 9); |
486 | 486 |
|
487 | 487 |
checkNodeIds(G); |
488 | 488 |
checkArcIds(G); |
489 | 489 |
checkGraphNodeMap(G); |
490 | 490 |
checkGraphArcMap(G); |
491 |
|
|
491 |
|
|
492 | 492 |
int n = G.nodeNum(); |
493 | 493 |
int m = G.arcNum(); |
494 | 494 |
check(G.index(G.node(n-1)) == n-1, "Wrong index."); |
495 | 495 |
check(G.index(G.arc(m-1)) == m-1, "Wrong index."); |
496 | 496 |
} |
497 | 497 |
|
498 | 498 |
void checkFullDigraph(int num) { |
499 | 499 |
typedef FullDigraph Digraph; |
500 | 500 |
DIGRAPH_TYPEDEFS(Digraph); |
501 | 501 |
|
502 | 502 |
Digraph G(num); |
503 | 503 |
check(G.nodeNum() == num && G.arcNum() == num * num, "Wrong size"); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -76,76 +76,76 @@ |
76 | 76 |
const DType& const_dijkstra_test = dijkstra_test; |
77 | 77 |
|
78 | 78 |
dijkstra_test.run(s); |
79 | 79 |
dijkstra_test.run(s,t); |
80 | 80 |
|
81 | 81 |
dijkstra_test.init(); |
82 | 82 |
dijkstra_test.addSource(s); |
83 | 83 |
dijkstra_test.addSource(s, 1); |
84 | 84 |
n = dijkstra_test.processNextNode(); |
85 | 85 |
n = const_dijkstra_test.nextNode(); |
86 | 86 |
b = const_dijkstra_test.emptyQueue(); |
87 | 87 |
i = const_dijkstra_test.queueSize(); |
88 |
|
|
88 |
|
|
89 | 89 |
dijkstra_test.start(); |
90 | 90 |
dijkstra_test.start(t); |
91 | 91 |
dijkstra_test.start(nm); |
92 | 92 |
|
93 | 93 |
l = const_dijkstra_test.dist(t); |
94 | 94 |
e = const_dijkstra_test.predArc(t); |
95 | 95 |
s = const_dijkstra_test.predNode(t); |
96 | 96 |
b = const_dijkstra_test.reached(t); |
97 | 97 |
b = const_dijkstra_test.processed(t); |
98 | 98 |
d = const_dijkstra_test.distMap(); |
99 | 99 |
p = const_dijkstra_test.predMap(); |
100 | 100 |
pp = const_dijkstra_test.path(t); |
101 | 101 |
l = const_dijkstra_test.currentDist(t); |
102 | 102 |
} |
103 | 103 |
{ |
104 | 104 |
DType |
105 | 105 |
::SetPredMap<concepts::ReadWriteMap<Node,Arc> > |
106 | 106 |
::SetDistMap<concepts::ReadWriteMap<Node,VType> > |
107 | 107 |
::SetStandardProcessedMap |
108 | 108 |
::SetProcessedMap<concepts::WriteMap<Node,bool> > |
109 | 109 |
::SetOperationTraits<DijkstraDefaultOperationTraits<VType> > |
110 | 110 |
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
111 | 111 |
::SetStandardHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > > |
112 |
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> >, |
|
112 |
::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> >, |
|
113 | 113 |
concepts::ReadWriteMap<Node,int> > |
114 | 114 |
::Create dijkstra_test(G,length); |
115 | 115 |
|
116 | 116 |
LengthMap length_map; |
117 | 117 |
concepts::ReadWriteMap<Node,Arc> pred_map; |
118 | 118 |
concepts::ReadWriteMap<Node,VType> dist_map; |
119 | 119 |
concepts::WriteMap<Node,bool> processed_map; |
120 | 120 |
concepts::ReadWriteMap<Node,int> heap_cross_ref; |
121 | 121 |
BinHeap<VType, concepts::ReadWriteMap<Node,int> > heap(heap_cross_ref); |
122 |
|
|
122 |
|
|
123 | 123 |
dijkstra_test |
124 | 124 |
.lengthMap(length_map) |
125 | 125 |
.predMap(pred_map) |
126 | 126 |
.distMap(dist_map) |
127 | 127 |
.processedMap(processed_map) |
128 | 128 |
.heap(heap, heap_cross_ref); |
129 | 129 |
|
130 | 130 |
dijkstra_test.run(s); |
131 | 131 |
dijkstra_test.run(s,t); |
132 | 132 |
|
133 | 133 |
dijkstra_test.addSource(s); |
134 | 134 |
dijkstra_test.addSource(s, 1); |
135 | 135 |
n = dijkstra_test.processNextNode(); |
136 | 136 |
n = dijkstra_test.nextNode(); |
137 | 137 |
b = dijkstra_test.emptyQueue(); |
138 | 138 |
i = dijkstra_test.queueSize(); |
139 |
|
|
139 |
|
|
140 | 140 |
dijkstra_test.start(); |
141 | 141 |
dijkstra_test.start(t); |
142 | 142 |
dijkstra_test.start(nm); |
143 | 143 |
|
144 | 144 |
l = dijkstra_test.dist(t); |
145 | 145 |
e = dijkstra_test.predArc(t); |
146 | 146 |
s = dijkstra_test.predNode(t); |
147 | 147 |
b = dijkstra_test.reached(t); |
148 | 148 |
b = dijkstra_test.processed(t); |
149 | 149 |
pp = dijkstra_test.path(t); |
150 | 150 |
l = dijkstra_test.currentDist(t); |
151 | 151 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -76,29 +76,29 @@ |
76 | 76 |
|
77 | 77 |
for (typename Graph::EdgeIt e(g); e != INVALID; ++e) |
78 | 78 |
{ |
79 | 79 |
check(visitationNumber[e] == 1, |
80 | 80 |
"checkEulerIt: Not visited or multiple times visited edge found"); |
81 | 81 |
} |
82 | 82 |
} |
83 | 83 |
|
84 | 84 |
int main() |
85 | 85 |
{ |
86 | 86 |
typedef ListDigraph Digraph; |
87 | 87 |
typedef Undirector<Digraph> Graph; |
88 |
|
|
88 |
|
|
89 | 89 |
{ |
90 | 90 |
Digraph d; |
91 | 91 |
Graph g(d); |
92 |
|
|
92 |
|
|
93 | 93 |
checkDiEulerIt(d); |
94 | 94 |
checkDiEulerIt(g); |
95 | 95 |
checkEulerIt(g); |
96 | 96 |
|
97 | 97 |
check(eulerian(d), "This graph is Eulerian"); |
98 | 98 |
check(eulerian(g), "This graph is Eulerian"); |
99 | 99 |
} |
100 | 100 |
{ |
101 | 101 |
Digraph d; |
102 | 102 |
Graph g(d); |
103 | 103 |
Digraph::Node n = d.addNode(); |
104 | 104 |
|
... | ... |
@@ -119,50 +119,50 @@ |
119 | 119 |
checkDiEulerIt(g); |
120 | 120 |
checkEulerIt(g); |
121 | 121 |
|
122 | 122 |
check(eulerian(d), "This graph is Eulerian"); |
123 | 123 |
check(eulerian(g), "This graph is Eulerian"); |
124 | 124 |
} |
125 | 125 |
{ |
126 | 126 |
Digraph d; |
127 | 127 |
Graph g(d); |
128 | 128 |
Digraph::Node n1 = d.addNode(); |
129 | 129 |
Digraph::Node n2 = d.addNode(); |
130 | 130 |
Digraph::Node n3 = d.addNode(); |
131 |
|
|
131 |
|
|
132 | 132 |
d.addArc(n1, n2); |
133 | 133 |
d.addArc(n2, n1); |
134 | 134 |
d.addArc(n2, n3); |
135 | 135 |
d.addArc(n3, n2); |
136 | 136 |
|
137 | 137 |
checkDiEulerIt(d); |
138 | 138 |
checkDiEulerIt(d, n2); |
139 | 139 |
checkDiEulerIt(g); |
140 | 140 |
checkDiEulerIt(g, n2); |
141 | 141 |
checkEulerIt(g); |
142 | 142 |
checkEulerIt(g, n2); |
143 | 143 |
|
144 | 144 |
check(eulerian(d), "This graph is Eulerian"); |
145 | 145 |
check(eulerian(g), "This graph is Eulerian"); |
146 | 146 |
} |
147 | 147 |
{ |
148 | 148 |
Digraph d; |
149 | 149 |
Graph g(d); |
150 | 150 |
Digraph::Node n1 = d.addNode(); |
151 | 151 |
Digraph::Node n2 = d.addNode(); |
152 | 152 |
Digraph::Node n3 = d.addNode(); |
153 | 153 |
Digraph::Node n4 = d.addNode(); |
154 | 154 |
Digraph::Node n5 = d.addNode(); |
155 | 155 |
Digraph::Node n6 = d.addNode(); |
156 |
|
|
156 |
|
|
157 | 157 |
d.addArc(n1, n2); |
158 | 158 |
d.addArc(n2, n4); |
159 | 159 |
d.addArc(n1, n3); |
160 | 160 |
d.addArc(n3, n4); |
161 | 161 |
d.addArc(n4, n1); |
162 | 162 |
d.addArc(n3, n5); |
163 | 163 |
d.addArc(n5, n2); |
164 | 164 |
d.addArc(n4, n6); |
165 | 165 |
d.addArc(n2, n6); |
166 | 166 |
d.addArc(n6, n1); |
167 | 167 |
d.addArc(n6, n3); |
168 | 168 |
|
... | ... |
@@ -180,44 +180,44 @@ |
180 | 180 |
check(eulerian(d), "This graph is Eulerian"); |
181 | 181 |
check(eulerian(g), "This graph is Eulerian"); |
182 | 182 |
} |
183 | 183 |
{ |
184 | 184 |
Digraph d; |
185 | 185 |
Graph g(d); |
186 | 186 |
Digraph::Node n0 = d.addNode(); |
187 | 187 |
Digraph::Node n1 = d.addNode(); |
188 | 188 |
Digraph::Node n2 = d.addNode(); |
189 | 189 |
Digraph::Node n3 = d.addNode(); |
190 | 190 |
Digraph::Node n4 = d.addNode(); |
191 | 191 |
Digraph::Node n5 = d.addNode(); |
192 |
|
|
192 |
|
|
193 | 193 |
d.addArc(n1, n2); |
194 | 194 |
d.addArc(n2, n3); |
195 | 195 |
d.addArc(n3, n1); |
196 | 196 |
|
197 | 197 |
checkDiEulerIt(d); |
198 | 198 |
checkDiEulerIt(d, n2); |
199 | 199 |
|
200 | 200 |
checkDiEulerIt(g); |
201 | 201 |
checkDiEulerIt(g, n2); |
202 | 202 |
checkEulerIt(g); |
203 | 203 |
checkEulerIt(g, n2); |
204 | 204 |
|
205 | 205 |
check(!eulerian(d), "This graph is not Eulerian"); |
206 | 206 |
check(!eulerian(g), "This graph is not Eulerian"); |
207 | 207 |
} |
208 | 208 |
{ |
209 | 209 |
Digraph d; |
210 | 210 |
Graph g(d); |
211 | 211 |
Digraph::Node n1 = d.addNode(); |
212 | 212 |
Digraph::Node n2 = d.addNode(); |
213 | 213 |
Digraph::Node n3 = d.addNode(); |
214 |
|
|
214 |
|
|
215 | 215 |
d.addArc(n1, n2); |
216 | 216 |
d.addArc(n2, n3); |
217 | 217 |
|
218 | 218 |
check(!eulerian(d), "This graph is not Eulerian"); |
219 | 219 |
check(!eulerian(g), "This graph is not Eulerian"); |
220 | 220 |
} |
221 | 221 |
|
222 | 222 |
return 0; |
223 | 223 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -229,25 +229,25 @@ |
229 | 229 |
} |
230 | 230 |
if (mfm.matching(n) != INVALID) { |
231 | 231 |
check(indeg == 1, "Invalid matching"); |
232 | 232 |
++pv; |
233 | 233 |
} else { |
234 | 234 |
check(indeg == 0, "Invalid matching"); |
235 | 235 |
} |
236 | 236 |
} |
237 | 237 |
check(pv == mfm.matchingSize(), "Wrong matching size"); |
238 | 238 |
|
239 | 239 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
240 | 240 |
check((e == mfm.matching(graph.u(e)) ? 1 : 0) + |
241 |
(e == mfm.matching(graph.v(e)) ? 1 : 0) == |
|
241 |
(e == mfm.matching(graph.v(e)) ? 1 : 0) == |
|
242 | 242 |
mfm.matching(e), "Invalid matching"); |
243 | 243 |
} |
244 | 244 |
|
245 | 245 |
SmartGraph::NodeMap<bool> processed(graph, false); |
246 | 246 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
247 | 247 |
if (processed[n]) continue; |
248 | 248 |
processed[n] = true; |
249 | 249 |
if (mfm.matching(n) == INVALID) continue; |
250 | 250 |
int num = 1; |
251 | 251 |
Node v = graph.target(mfm.matching(n)); |
252 | 252 |
while (v != n) { |
253 | 253 |
processed[v] = true; |
... | ... |
@@ -283,25 +283,25 @@ |
283 | 283 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
284 | 284 |
int indeg = 0; |
285 | 285 |
for (InArcIt a(graph, n); a != INVALID; ++a) { |
286 | 286 |
if (mfm.matching(graph.source(a)) == a) { |
287 | 287 |
++indeg; |
288 | 288 |
} |
289 | 289 |
} |
290 | 290 |
check(mfm.matching(n) != INVALID, "Invalid matching"); |
291 | 291 |
check(indeg == 1, "Invalid matching"); |
292 | 292 |
} |
293 | 293 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
294 | 294 |
check((e == mfm.matching(graph.u(e)) ? 1 : 0) + |
295 |
(e == mfm.matching(graph.v(e)) ? 1 : 0) == |
|
295 |
(e == mfm.matching(graph.v(e)) ? 1 : 0) == |
|
296 | 296 |
mfm.matching(e), "Invalid matching"); |
297 | 297 |
} |
298 | 298 |
} else { |
299 | 299 |
int anum = 0, bnum = 0; |
300 | 300 |
SmartGraph::NodeMap<bool> neighbours(graph, false); |
301 | 301 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
302 | 302 |
if (!mfm.barrier(n)) continue; |
303 | 303 |
++anum; |
304 | 304 |
for (SmartGraph::InArcIt a(graph, n); a != INVALID; ++a) { |
305 | 305 |
Node u = graph.source(a); |
306 | 306 |
if (!allow_loops && u == n) continue; |
307 | 307 |
if (!neighbours[u]) { |
... | ... |
@@ -341,25 +341,25 @@ |
341 | 341 |
check(mwfm.nodeValue(n) >= 0, "Invalid node value"); |
342 | 342 |
check(indeg == 1, "Invalid matching"); |
343 | 343 |
pv += weight[mwfm.matching(n)]; |
344 | 344 |
SmartGraph::Node o = graph.target(mwfm.matching(n)); |
345 | 345 |
} else { |
346 | 346 |
check(mwfm.nodeValue(n) == 0, "Invalid matching"); |
347 | 347 |
check(indeg == 0, "Invalid matching"); |
348 | 348 |
} |
349 | 349 |
} |
350 | 350 |
|
351 | 351 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
352 | 352 |
check((e == mwfm.matching(graph.u(e)) ? 1 : 0) + |
353 |
(e == mwfm.matching(graph.v(e)) ? 1 : 0) == |
|
353 |
(e == mwfm.matching(graph.v(e)) ? 1 : 0) == |
|
354 | 354 |
mwfm.matching(e), "Invalid matching"); |
355 | 355 |
} |
356 | 356 |
|
357 | 357 |
int dv = 0; |
358 | 358 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
359 | 359 |
dv += mwfm.nodeValue(n); |
360 | 360 |
} |
361 | 361 |
|
362 | 362 |
check(pv * mwfm.dualScale == dv * 2, "Wrong duality"); |
363 | 363 |
|
364 | 364 |
SmartGraph::NodeMap<bool> processed(graph, false); |
365 | 365 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
... | ... |
@@ -401,25 +401,25 @@ |
401 | 401 |
if (mwpfm.matching(graph.source(a)) == a) { |
402 | 402 |
++indeg; |
403 | 403 |
} |
404 | 404 |
} |
405 | 405 |
check(mwpfm.matching(n) != INVALID, "Invalid perfect matching"); |
406 | 406 |
check(indeg == 1, "Invalid perfect matching"); |
407 | 407 |
pv += weight[mwpfm.matching(n)]; |
408 | 408 |
SmartGraph::Node o = graph.target(mwpfm.matching(n)); |
409 | 409 |
} |
410 | 410 |
|
411 | 411 |
for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) { |
412 | 412 |
check((e == mwpfm.matching(graph.u(e)) ? 1 : 0) + |
413 |
(e == mwpfm.matching(graph.v(e)) ? 1 : 0) == |
|
413 |
(e == mwpfm.matching(graph.v(e)) ? 1 : 0) == |
|
414 | 414 |
mwpfm.matching(e), "Invalid matching"); |
415 | 415 |
} |
416 | 416 |
|
417 | 417 |
int dv = 0; |
418 | 418 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
419 | 419 |
dv += mwpfm.nodeValue(n); |
420 | 420 |
} |
421 | 421 |
|
422 | 422 |
check(pv * mwpfm.dualScale == dv * 2, "Wrong duality"); |
423 | 423 |
|
424 | 424 |
SmartGraph::NodeMap<bool> processed(graph, false); |
425 | 425 |
for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) { |
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 |
* |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 |
* |
|
5 |
* Copyright (C) 2003-2010 |
|
6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|
7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
|
8 |
* |
|
9 |
* Permission to use, modify and distribute this software is granted |
|
10 |
* provided that this copyright notice appears in all copies. For |
|
11 |
* precise terms see the accompanying LICENSE file. |
|
12 |
* |
|
13 |
* This software is provided "AS IS" with no warranty of any kind, |
|
14 |
* express or implied, and with no claim as to its suitability for any |
|
15 |
* purpose. |
|
16 |
* |
|
17 |
*/ |
|
18 |
|
|
1 | 19 |
#include <iostream> |
2 | 20 |
|
3 | 21 |
#include "test_tools.h" |
4 | 22 |
#include <lemon/smart_graph.h> |
5 | 23 |
#include <lemon/concepts/graph.h> |
6 | 24 |
#include <lemon/concepts/maps.h> |
7 | 25 |
#include <lemon/lgf_reader.h> |
8 | 26 |
#include <lemon/gomory_hu.h> |
9 | 27 |
#include <cstdlib> |
10 | 28 |
|
11 | 29 |
using namespace std; |
12 | 30 |
using namespace lemon; |
... | ... |
@@ -24,25 +42,25 @@ |
24 | 42 |
"@arcs\n" |
25 | 43 |
" label capacity\n" |
26 | 44 |
"0 1 0 1\n" |
27 | 45 |
"1 2 1 1\n" |
28 | 46 |
"2 3 2 1\n" |
29 | 47 |
"0 3 4 5\n" |
30 | 48 |
"0 3 5 10\n" |
31 | 49 |
"0 3 6 7\n" |
32 | 50 |
"4 2 7 1\n" |
33 | 51 |
"@attributes\n" |
34 | 52 |
"source 0\n" |
35 | 53 |
"target 3\n"; |
36 |
|
|
54 |
|
|
37 | 55 |
void checkGomoryHuCompile() |
38 | 56 |
{ |
39 | 57 |
typedef int Value; |
40 | 58 |
typedef concepts::Graph Graph; |
41 | 59 |
|
42 | 60 |
typedef Graph::Node Node; |
43 | 61 |
typedef Graph::Edge Edge; |
44 | 62 |
typedef concepts::ReadMap<Edge, Value> CapMap; |
45 | 63 |
typedef concepts::ReadWriteMap<Node, bool> CutMap; |
46 | 64 |
|
47 | 65 |
Graph g; |
48 | 66 |
Node n; |
... | ... |
@@ -60,25 +78,25 @@ |
60 | 78 |
n = const_gh_test.predNode(n); |
61 | 79 |
v = const_gh_test.predValue(n); |
62 | 80 |
d = const_gh_test.rootDist(n); |
63 | 81 |
v = const_gh_test.minCutValue(n, n); |
64 | 82 |
v = const_gh_test.minCutMap(n, n, cut); |
65 | 83 |
} |
66 | 84 |
|
67 | 85 |
GRAPH_TYPEDEFS(Graph); |
68 | 86 |
typedef Graph::EdgeMap<int> IntEdgeMap; |
69 | 87 |
typedef Graph::NodeMap<bool> BoolNodeMap; |
70 | 88 |
|
71 | 89 |
int cutValue(const Graph& graph, const BoolNodeMap& cut, |
72 |
|
|
90 |
const IntEdgeMap& capacity) { |
|
73 | 91 |
|
74 | 92 |
int sum = 0; |
75 | 93 |
for (EdgeIt e(graph); e != INVALID; ++e) { |
76 | 94 |
Node s = graph.u(e); |
77 | 95 |
Node t = graph.v(e); |
78 | 96 |
|
79 | 97 |
if (cut[s] != cut[t]) { |
80 | 98 |
sum += capacity[e]; |
81 | 99 |
} |
82 | 100 |
} |
83 | 101 |
return sum; |
84 | 102 |
} |
... | ... |
@@ -98,26 +116,26 @@ |
98 | 116 |
for (NodeIt u(graph); u != INVALID; ++u) { |
99 | 117 |
for (NodeIt v(graph); v != u; ++v) { |
100 | 118 |
Preflow<Graph, IntEdgeMap> pf(graph, capacity, u, v); |
101 | 119 |
pf.runMinCut(); |
102 | 120 |
BoolNodeMap cm(graph); |
103 | 121 |
ght.minCutMap(u, v, cm); |
104 | 122 |
check(pf.flowValue() == ght.minCutValue(u, v), "Wrong cut 1"); |
105 | 123 |
check(cm[u] != cm[v], "Wrong cut 2"); |
106 | 124 |
check(pf.flowValue() == cutValue(graph, cm, capacity), "Wrong cut 3"); |
107 | 125 |
|
108 | 126 |
int sum=0; |
109 | 127 |
for(GomoryHu<Graph>::MinCutEdgeIt a(ght, u, v);a!=INVALID;++a) |
110 |
sum+=capacity[a]; |
|
128 |
sum+=capacity[a]; |
|
111 | 129 |
check(sum == ght.minCutValue(u, v), "Problem with MinCutEdgeIt"); |
112 | 130 |
|
113 | 131 |
sum=0; |
114 | 132 |
for(GomoryHu<Graph>::MinCutNodeIt n(ght, u, v,true);n!=INVALID;++n) |
115 | 133 |
sum++; |
116 | 134 |
for(GomoryHu<Graph>::MinCutNodeIt n(ght, u, v,false);n!=INVALID;++n) |
117 | 135 |
sum++; |
118 | 136 |
check(sum == countNodes(graph), "Problem with MinCutNodeIt"); |
119 | 137 |
} |
120 | 138 |
} |
121 |
|
|
139 |
|
|
122 | 140 |
return 0; |
123 | 141 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -255,25 +255,25 @@ |
255 | 255 |
|
256 | 256 |
G.addNode(); |
257 | 257 |
snapshot.save(G); |
258 | 258 |
|
259 | 259 |
G.addEdge(G.addNode(), G.addNode()); |
260 | 260 |
|
261 | 261 |
snapshot.restore(); |
262 | 262 |
snapshot.save(G); |
263 | 263 |
|
264 | 264 |
checkGraphNodeList(G, 4); |
265 | 265 |
checkGraphEdgeList(G, 3); |
266 | 266 |
checkGraphArcList(G, 6); |
267 |
|
|
267 |
|
|
268 | 268 |
G.addEdge(G.addNode(), G.addNode()); |
269 | 269 |
|
270 | 270 |
snapshot.restore(); |
271 | 271 |
|
272 | 272 |
checkGraphNodeList(G, 4); |
273 | 273 |
checkGraphEdgeList(G, 3); |
274 | 274 |
checkGraphArcList(G, 6); |
275 | 275 |
} |
276 | 276 |
|
277 | 277 |
void checkFullGraph(int num) { |
278 | 278 |
typedef FullGraph Graph; |
279 | 279 |
GRAPH_TYPEDEFS(Graph); |
... | ... |
@@ -504,25 +504,25 @@ |
504 | 504 |
checkGraphEdgeMap(G); |
505 | 505 |
|
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
void checkHypercubeGraph(int dim) { |
509 | 509 |
GRAPH_TYPEDEFS(HypercubeGraph); |
510 | 510 |
|
511 | 511 |
HypercubeGraph G(dim); |
512 | 512 |
check(G.dimension() == dim, "Wrong dimension"); |
513 | 513 |
|
514 | 514 |
G.resize(dim); |
515 | 515 |
check(G.dimension() == dim, "Wrong dimension"); |
516 |
|
|
516 |
|
|
517 | 517 |
checkGraphNodeList(G, 1 << dim); |
518 | 518 |
checkGraphEdgeList(G, dim * (1 << (dim-1))); |
519 | 519 |
checkGraphArcList(G, dim * (1 << dim)); |
520 | 520 |
|
521 | 521 |
Node n = G.nodeFromId(dim); |
522 | 522 |
|
523 | 523 |
for (NodeIt n(G); n != INVALID; ++n) { |
524 | 524 |
checkGraphIncEdgeList(G, n, dim); |
525 | 525 |
for (IncEdgeIt e(G, n); e != INVALID; ++e) { |
526 | 526 |
check( (G.u(e) == n && |
527 | 527 |
G.id(G.v(e)) == (G.id(n) ^ (1 << G.dimension(e)))) || |
528 | 528 |
(G.v(e) == n && |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -74,25 +74,25 @@ |
74 | 74 |
ho_test.init(); |
75 | 75 |
ho_test.init(n); |
76 | 76 |
ho_test.calculateOut(); |
77 | 77 |
ho_test.calculateIn(); |
78 | 78 |
ho_test.run(); |
79 | 79 |
ho_test.run(n); |
80 | 80 |
|
81 | 81 |
v = const_ho_test.minCutValue(); |
82 | 82 |
v = const_ho_test.minCutMap(cut); |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
template <typename Graph, typename CapMap, typename CutMap> |
86 |
typename CapMap::Value |
|
86 |
typename CapMap::Value |
|
87 | 87 |
cutValue(const Graph& graph, const CapMap& cap, const CutMap& cut) |
88 | 88 |
{ |
89 | 89 |
typename CapMap::Value sum = 0; |
90 | 90 |
for (typename Graph::ArcIt a(graph); a != INVALID; ++a) { |
91 | 91 |
if (cut[graph.source(a)] && !cut[graph.target(a)]) |
92 | 92 |
sum += cap[a]; |
93 | 93 |
} |
94 | 94 |
return sum; |
95 | 95 |
} |
96 | 96 |
|
97 | 97 |
int main() { |
98 | 98 |
SmartDigraph graph; |
... | ... |
@@ -101,63 +101,63 @@ |
101 | 101 |
|
102 | 102 |
istringstream input(lgf); |
103 | 103 |
digraphReader(graph, input) |
104 | 104 |
.arcMap("cap1", cap1) |
105 | 105 |
.arcMap("cap2", cap2) |
106 | 106 |
.arcMap("cap3", cap3) |
107 | 107 |
.run(); |
108 | 108 |
|
109 | 109 |
{ |
110 | 110 |
HaoOrlin<SmartDigraph> ho(graph, cap1); |
111 | 111 |
ho.run(); |
112 | 112 |
ho.minCutMap(cut); |
113 |
|
|
113 |
|
|
114 | 114 |
check(ho.minCutValue() == 1, "Wrong cut value"); |
115 | 115 |
check(ho.minCutValue() == cutValue(graph, cap1, cut), "Wrong cut value"); |
116 | 116 |
} |
117 | 117 |
{ |
118 | 118 |
HaoOrlin<SmartDigraph> ho(graph, cap2); |
119 | 119 |
ho.run(); |
120 | 120 |
ho.minCutMap(cut); |
121 | 121 |
|
122 | 122 |
check(ho.minCutValue() == 1, "Wrong cut value"); |
123 | 123 |
check(ho.minCutValue() == cutValue(graph, cap2, cut), "Wrong cut value"); |
124 | 124 |
} |
125 | 125 |
{ |
126 | 126 |
HaoOrlin<SmartDigraph> ho(graph, cap3); |
127 | 127 |
ho.run(); |
128 | 128 |
ho.minCutMap(cut); |
129 |
|
|
129 |
|
|
130 | 130 |
check(ho.minCutValue() == 1, "Wrong cut value"); |
131 | 131 |
check(ho.minCutValue() == cutValue(graph, cap3, cut), "Wrong cut value"); |
132 | 132 |
} |
133 |
|
|
133 |
|
|
134 | 134 |
typedef Undirector<SmartDigraph> UGraph; |
135 | 135 |
UGraph ugraph(graph); |
136 |
|
|
136 |
|
|
137 | 137 |
{ |
138 | 138 |
HaoOrlin<UGraph, SmartDigraph::ArcMap<int> > ho(ugraph, cap1); |
139 | 139 |
ho.run(); |
140 | 140 |
ho.minCutMap(cut); |
141 |
|
|
141 |
|
|
142 | 142 |
check(ho.minCutValue() == 2, "Wrong cut value"); |
143 | 143 |
check(ho.minCutValue() == cutValue(ugraph, cap1, cut), "Wrong cut value"); |
144 | 144 |
} |
145 | 145 |
{ |
146 | 146 |
HaoOrlin<UGraph, SmartDigraph::ArcMap<int> > ho(ugraph, cap2); |
147 | 147 |
ho.run(); |
148 | 148 |
ho.minCutMap(cut); |
149 |
|
|
149 |
|
|
150 | 150 |
check(ho.minCutValue() == 5, "Wrong cut value"); |
151 | 151 |
check(ho.minCutValue() == cutValue(ugraph, cap2, cut), "Wrong cut value"); |
152 | 152 |
} |
153 | 153 |
{ |
154 | 154 |
HaoOrlin<UGraph, SmartDigraph::ArcMap<int> > ho(ugraph, cap3); |
155 | 155 |
ho.run(); |
156 | 156 |
ho.minCutMap(cut); |
157 |
|
|
157 |
|
|
158 | 158 |
check(ho.minCutValue() == 5, "Wrong cut value"); |
159 | 159 |
check(ho.minCutValue() == cutValue(ugraph, cap3, cut), "Wrong cut value"); |
160 | 160 |
} |
161 | 161 |
|
162 | 162 |
return 0; |
163 | 163 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -216,25 +216,26 @@ |
216 | 216 |
"Something is wrong with CombineMap"); |
217 | 217 |
} |
218 | 218 |
|
219 | 219 |
// FunctorToMap, MapToFunctor |
220 | 220 |
{ |
221 | 221 |
checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >(); |
222 | 222 |
checkConcept<ReadMap<A,B>, FunctorToMap<F> >(); |
223 | 223 |
FunctorToMap<F> map1; |
224 | 224 |
FunctorToMap<F> map2 = FunctorToMap<F>(F()); |
225 | 225 |
B b = functorToMap(F())[A()]; |
226 | 226 |
|
227 | 227 |
checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >(); |
228 |
MapToFunctor<ReadMap<A,B> > map = |
|
228 |
MapToFunctor<ReadMap<A,B> > map = |
|
229 |
MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>()); |
|
229 | 230 |
|
230 | 231 |
check(functorToMap(&func)[A()] == 3, |
231 | 232 |
"Something is wrong with FunctorToMap"); |
232 | 233 |
check(mapToFunctor(constMap<A,int>(2))(A()) == 2, |
233 | 234 |
"Something is wrong with MapToFunctor"); |
234 | 235 |
check(mapToFunctor(functorToMap(&func))(A()) == 3 && |
235 | 236 |
mapToFunctor(functorToMap(&func))[A()] == 3, |
236 | 237 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
237 | 238 |
check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2, |
238 | 239 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
239 | 240 |
} |
240 | 241 |
|
... | ... |
@@ -368,213 +369,213 @@ |
368 | 369 |
map1.set(30, false); map2.set(40, false); |
369 | 370 |
map1.set(50, true); map2.set(50, true); |
370 | 371 |
map1.set(60, true); map2.set(60, true); |
371 | 372 |
check(v1.size() == 3 && v2.size() == 10 && |
372 | 373 |
v1[0]==20 && v1[1]==50 && v1[2]==60 && |
373 | 374 |
v2[0]==20 && v2[1]==50 && v2[2]==60, |
374 | 375 |
"Something is wrong with LoggerBoolMap"); |
375 | 376 |
|
376 | 377 |
int i = 0; |
377 | 378 |
for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin(); |
378 | 379 |
it != map2.end(); ++it ) |
379 | 380 |
check(v1[i++] == *it, "Something is wrong with LoggerBoolMap"); |
380 |
|
|
381 |
|
|
381 | 382 |
typedef ListDigraph Graph; |
382 | 383 |
DIGRAPH_TYPEDEFS(Graph); |
383 | 384 |
Graph gr; |
384 | 385 |
|
385 | 386 |
Node n0 = gr.addNode(); |
386 | 387 |
Node n1 = gr.addNode(); |
387 | 388 |
Node n2 = gr.addNode(); |
388 | 389 |
Node n3 = gr.addNode(); |
389 |
|
|
390 |
|
|
390 | 391 |
gr.addArc(n3, n0); |
391 | 392 |
gr.addArc(n3, n2); |
392 | 393 |
gr.addArc(n0, n2); |
393 | 394 |
gr.addArc(n2, n1); |
394 | 395 |
gr.addArc(n0, n1); |
395 |
|
|
396 |
|
|
396 | 397 |
{ |
397 | 398 |
std::vector<Node> v; |
398 | 399 |
dfs(gr).processedMap(loggerBoolMap(std::back_inserter(v))).run(); |
399 | 400 |
|
400 | 401 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
401 | 402 |
"Something is wrong with LoggerBoolMap"); |
402 | 403 |
} |
403 | 404 |
{ |
404 | 405 |
std::vector<Node> v(countNodes(gr)); |
405 | 406 |
dfs(gr).processedMap(loggerBoolMap(v.begin())).run(); |
406 |
|
|
407 |
|
|
407 | 408 |
check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3, |
408 | 409 |
"Something is wrong with LoggerBoolMap"); |
409 | 410 |
} |
410 | 411 |
} |
411 |
|
|
412 |
|
|
412 | 413 |
// IdMap, RangeIdMap |
413 | 414 |
{ |
414 | 415 |
typedef ListDigraph Graph; |
415 | 416 |
DIGRAPH_TYPEDEFS(Graph); |
416 | 417 |
|
417 | 418 |
checkConcept<ReadMap<Node, int>, IdMap<Graph, Node> >(); |
418 | 419 |
checkConcept<ReadMap<Arc, int>, IdMap<Graph, Arc> >(); |
419 | 420 |
checkConcept<ReadMap<Node, int>, RangeIdMap<Graph, Node> >(); |
420 | 421 |
checkConcept<ReadMap<Arc, int>, RangeIdMap<Graph, Arc> >(); |
421 |
|
|
422 |
|
|
422 | 423 |
Graph gr; |
423 | 424 |
IdMap<Graph, Node> nmap(gr); |
424 | 425 |
IdMap<Graph, Arc> amap(gr); |
425 | 426 |
RangeIdMap<Graph, Node> nrmap(gr); |
426 | 427 |
RangeIdMap<Graph, Arc> armap(gr); |
427 |
|
|
428 |
|
|
428 | 429 |
Node n0 = gr.addNode(); |
429 | 430 |
Node n1 = gr.addNode(); |
430 | 431 |
Node n2 = gr.addNode(); |
431 |
|
|
432 |
|
|
432 | 433 |
Arc a0 = gr.addArc(n0, n1); |
433 | 434 |
Arc a1 = gr.addArc(n0, n2); |
434 | 435 |
Arc a2 = gr.addArc(n2, n1); |
435 | 436 |
Arc a3 = gr.addArc(n2, n0); |
436 |
|
|
437 |
|
|
437 | 438 |
check(nmap[n0] == gr.id(n0) && nmap(gr.id(n0)) == n0, "Wrong IdMap"); |
438 | 439 |
check(nmap[n1] == gr.id(n1) && nmap(gr.id(n1)) == n1, "Wrong IdMap"); |
439 | 440 |
check(nmap[n2] == gr.id(n2) && nmap(gr.id(n2)) == n2, "Wrong IdMap"); |
440 | 441 |
|
441 | 442 |
check(amap[a0] == gr.id(a0) && amap(gr.id(a0)) == a0, "Wrong IdMap"); |
442 | 443 |
check(amap[a1] == gr.id(a1) && amap(gr.id(a1)) == a1, "Wrong IdMap"); |
443 | 444 |
check(amap[a2] == gr.id(a2) && amap(gr.id(a2)) == a2, "Wrong IdMap"); |
444 | 445 |
check(amap[a3] == gr.id(a3) && amap(gr.id(a3)) == a3, "Wrong IdMap"); |
445 | 446 |
|
446 | 447 |
check(nmap.inverse()[gr.id(n0)] == n0, "Wrong IdMap::InverseMap"); |
447 | 448 |
check(amap.inverse()[gr.id(a0)] == a0, "Wrong IdMap::InverseMap"); |
448 |
|
|
449 |
|
|
449 | 450 |
check(nrmap.size() == 3 && armap.size() == 4, |
450 | 451 |
"Wrong RangeIdMap::size()"); |
451 | 452 |
|
452 | 453 |
check(nrmap[n0] == 0 && nrmap(0) == n0, "Wrong RangeIdMap"); |
453 | 454 |
check(nrmap[n1] == 1 && nrmap(1) == n1, "Wrong RangeIdMap"); |
454 | 455 |
check(nrmap[n2] == 2 && nrmap(2) == n2, "Wrong RangeIdMap"); |
455 |
|
|
456 |
|
|
456 | 457 |
check(armap[a0] == 0 && armap(0) == a0, "Wrong RangeIdMap"); |
457 | 458 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
458 | 459 |
check(armap[a2] == 2 && armap(2) == a2, "Wrong RangeIdMap"); |
459 | 460 |
check(armap[a3] == 3 && armap(3) == a3, "Wrong RangeIdMap"); |
460 | 461 |
|
461 | 462 |
check(nrmap.inverse()[0] == n0, "Wrong RangeIdMap::InverseMap"); |
462 | 463 |
check(armap.inverse()[0] == a0, "Wrong RangeIdMap::InverseMap"); |
463 |
|
|
464 |
|
|
464 | 465 |
gr.erase(n1); |
465 |
|
|
466 |
|
|
466 | 467 |
if (nrmap[n0] == 1) nrmap.swap(n0, n2); |
467 | 468 |
nrmap.swap(n2, n0); |
468 | 469 |
if (armap[a1] == 1) armap.swap(a1, a3); |
469 | 470 |
armap.swap(a3, a1); |
470 |
|
|
471 |
|
|
471 | 472 |
check(nrmap.size() == 2 && armap.size() == 2, |
472 | 473 |
"Wrong RangeIdMap::size()"); |
473 | 474 |
|
474 | 475 |
check(nrmap[n0] == 1 && nrmap(1) == n0, "Wrong RangeIdMap"); |
475 | 476 |
check(nrmap[n2] == 0 && nrmap(0) == n2, "Wrong RangeIdMap"); |
476 |
|
|
477 |
|
|
477 | 478 |
check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap"); |
478 | 479 |
check(armap[a3] == 0 && armap(0) == a3, "Wrong RangeIdMap"); |
479 | 480 |
|
480 | 481 |
check(nrmap.inverse()[0] == n2, "Wrong RangeIdMap::InverseMap"); |
481 | 482 |
check(armap.inverse()[0] == a3, "Wrong RangeIdMap::InverseMap"); |
482 | 483 |
} |
483 |
|
|
484 |
|
|
484 | 485 |
// SourceMap, TargetMap, ForwardMap, BackwardMap, InDegMap, OutDegMap |
485 | 486 |
{ |
486 | 487 |
typedef ListGraph Graph; |
487 | 488 |
GRAPH_TYPEDEFS(Graph); |
488 |
|
|
489 |
|
|
489 | 490 |
checkConcept<ReadMap<Arc, Node>, SourceMap<Graph> >(); |
490 | 491 |
checkConcept<ReadMap<Arc, Node>, TargetMap<Graph> >(); |
491 | 492 |
checkConcept<ReadMap<Edge, Arc>, ForwardMap<Graph> >(); |
492 | 493 |
checkConcept<ReadMap<Edge, Arc>, BackwardMap<Graph> >(); |
493 | 494 |
checkConcept<ReadMap<Node, int>, InDegMap<Graph> >(); |
494 | 495 |
checkConcept<ReadMap<Node, int>, OutDegMap<Graph> >(); |
495 | 496 |
|
496 | 497 |
Graph gr; |
497 | 498 |
Node n0 = gr.addNode(); |
498 | 499 |
Node n1 = gr.addNode(); |
499 | 500 |
Node n2 = gr.addNode(); |
500 |
|
|
501 |
|
|
501 | 502 |
gr.addEdge(n0,n1); |
502 | 503 |
gr.addEdge(n1,n2); |
503 | 504 |
gr.addEdge(n0,n2); |
504 | 505 |
gr.addEdge(n2,n1); |
505 | 506 |
gr.addEdge(n1,n2); |
506 | 507 |
gr.addEdge(n0,n1); |
507 |
|
|
508 |
|
|
508 | 509 |
for (EdgeIt e(gr); e != INVALID; ++e) { |
509 | 510 |
check(forwardMap(gr)[e] == gr.direct(e, true), "Wrong ForwardMap"); |
510 | 511 |
check(backwardMap(gr)[e] == gr.direct(e, false), "Wrong BackwardMap"); |
511 | 512 |
} |
512 |
|
|
513 |
|
|
513 | 514 |
check(mapCompare(gr, |
514 | 515 |
sourceMap(orienter(gr, constMap<Edge, bool>(true))), |
515 | 516 |
targetMap(orienter(gr, constMap<Edge, bool>(false)))), |
516 | 517 |
"Wrong SourceMap or TargetMap"); |
517 | 518 |
|
518 | 519 |
typedef Orienter<Graph, const ConstMap<Edge, bool> > Digraph; |
519 | 520 |
Digraph dgr(gr, constMap<Edge, bool>(true)); |
520 | 521 |
OutDegMap<Digraph> odm(dgr); |
521 | 522 |
InDegMap<Digraph> idm(dgr); |
522 |
|
|
523 |
|
|
523 | 524 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 1, "Wrong OutDegMap"); |
524 | 525 |
check(idm[n0] == 0 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
525 |
|
|
526 |
|
|
526 | 527 |
gr.addEdge(n2, n0); |
527 | 528 |
|
528 | 529 |
check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 2, "Wrong OutDegMap"); |
529 | 530 |
check(idm[n0] == 1 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap"); |
530 | 531 |
} |
531 |
|
|
532 |
|
|
532 | 533 |
// CrossRefMap |
533 | 534 |
{ |
534 | 535 |
typedef ListDigraph Graph; |
535 | 536 |
DIGRAPH_TYPEDEFS(Graph); |
536 | 537 |
|
537 | 538 |
checkConcept<ReadWriteMap<Node, int>, |
538 | 539 |
CrossRefMap<Graph, Node, int> >(); |
539 | 540 |
checkConcept<ReadWriteMap<Node, bool>, |
540 | 541 |
CrossRefMap<Graph, Node, bool> >(); |
541 | 542 |
checkConcept<ReadWriteMap<Node, double>, |
542 | 543 |
CrossRefMap<Graph, Node, double> >(); |
543 |
|
|
544 |
|
|
544 | 545 |
Graph gr; |
545 | 546 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
546 | 547 |
CRMap map(gr); |
547 |
|
|
548 |
|
|
548 | 549 |
Node n0 = gr.addNode(); |
549 | 550 |
Node n1 = gr.addNode(); |
550 | 551 |
Node n2 = gr.addNode(); |
551 |
|
|
552 |
|
|
552 | 553 |
map.set(n0, 'A'); |
553 | 554 |
map.set(n1, 'B'); |
554 | 555 |
map.set(n2, 'C'); |
555 |
|
|
556 |
|
|
556 | 557 |
check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0, |
557 | 558 |
"Wrong CrossRefMap"); |
558 | 559 |
check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1, |
559 | 560 |
"Wrong CrossRefMap"); |
560 | 561 |
check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2, |
561 | 562 |
"Wrong CrossRefMap"); |
562 | 563 |
check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1, |
563 | 564 |
"Wrong CrossRefMap::count()"); |
564 |
|
|
565 |
|
|
565 | 566 |
CRMap::ValueIt it = map.beginValue(); |
566 | 567 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
567 | 568 |
it == map.endValue(), "Wrong value iterator"); |
568 |
|
|
569 |
|
|
569 | 570 |
map.set(n2, 'A'); |
570 | 571 |
|
571 | 572 |
check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A', |
572 | 573 |
"Wrong CrossRefMap"); |
573 | 574 |
check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap"); |
574 | 575 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
575 | 576 |
check(map('C') == INVALID && map.inverse()['C'] == INVALID, |
576 | 577 |
"Wrong CrossRefMap"); |
577 | 578 |
check(map.count('A') == 2 && map.count('B') == 1 && map.count('C') == 0, |
578 | 579 |
"Wrong CrossRefMap::count()"); |
579 | 580 |
|
580 | 581 |
it = map.beginValue(); |
... | ... |
@@ -594,51 +595,51 @@ |
594 | 595 |
it = map.beginValue(); |
595 | 596 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
596 | 597 |
it == map.endValue(), "Wrong value iterator"); |
597 | 598 |
} |
598 | 599 |
|
599 | 600 |
// CrossRefMap |
600 | 601 |
{ |
601 | 602 |
typedef SmartDigraph Graph; |
602 | 603 |
DIGRAPH_TYPEDEFS(Graph); |
603 | 604 |
|
604 | 605 |
checkConcept<ReadWriteMap<Node, int>, |
605 | 606 |
CrossRefMap<Graph, Node, int> >(); |
606 |
|
|
607 |
|
|
607 | 608 |
Graph gr; |
608 | 609 |
typedef CrossRefMap<Graph, Node, char> CRMap; |
609 | 610 |
typedef CRMap::ValueIterator ValueIt; |
610 | 611 |
CRMap map(gr); |
611 |
|
|
612 |
|
|
612 | 613 |
Node n0 = gr.addNode(); |
613 | 614 |
Node n1 = gr.addNode(); |
614 | 615 |
Node n2 = gr.addNode(); |
615 |
|
|
616 |
|
|
616 | 617 |
map.set(n0, 'A'); |
617 | 618 |
map.set(n1, 'B'); |
618 | 619 |
map.set(n2, 'C'); |
619 | 620 |
map.set(n2, 'A'); |
620 | 621 |
map.set(n0, 'C'); |
621 | 622 |
|
622 | 623 |
check(map[n0] == 'C' && map[n1] == 'B' && map[n2] == 'A', |
623 | 624 |
"Wrong CrossRefMap"); |
624 | 625 |
check(map('A') == n2 && map.inverse()['A'] == n2, "Wrong CrossRefMap"); |
625 | 626 |
check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap"); |
626 | 627 |
check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap"); |
627 | 628 |
|
628 | 629 |
ValueIt it = map.beginValue(); |
629 | 630 |
check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' && |
630 | 631 |
it == map.endValue(), "Wrong value iterator"); |
631 | 632 |
} |
632 |
|
|
633 |
|
|
633 | 634 |
// Iterable bool map |
634 | 635 |
{ |
635 | 636 |
typedef SmartGraph Graph; |
636 | 637 |
typedef SmartGraph::Node Item; |
637 | 638 |
|
638 | 639 |
typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm; |
639 | 640 |
checkConcept<ReferenceMap<Item, bool, bool&, const bool&>, Ibm>(); |
640 | 641 |
|
641 | 642 |
const int num = 10; |
642 | 643 |
Graph g; |
643 | 644 |
std::vector<Item> items; |
644 | 645 |
for (int i = 0; i < num; ++i) { |
... | ... |
@@ -808,65 +809,65 @@ |
808 | 809 |
check(map1[static_cast<Item>(it)] == 0.0, "Wrong value"); |
809 | 810 |
++n; |
810 | 811 |
} |
811 | 812 |
check(n == (num + 1) / 2, "Wrong number"); |
812 | 813 |
|
813 | 814 |
for (Ivm::ItemIt it(map1, 1.0); it != INVALID; ++it) { |
814 | 815 |
check(map1[static_cast<Item>(it)] == 1.0, "Wrong value"); |
815 | 816 |
++n; |
816 | 817 |
} |
817 | 818 |
check(n == num, "Wrong number"); |
818 | 819 |
|
819 | 820 |
} |
820 |
|
|
821 |
|
|
821 | 822 |
// Graph map utilities: |
822 | 823 |
// mapMin(), mapMax(), mapMinValue(), mapMaxValue() |
823 | 824 |
// mapFind(), mapFindIf(), mapCount(), mapCountIf() |
824 | 825 |
// mapCopy(), mapCompare(), mapFill() |
825 | 826 |
{ |
826 | 827 |
DIGRAPH_TYPEDEFS(SmartDigraph); |
827 | 828 |
|
828 | 829 |
SmartDigraph g; |
829 | 830 |
Node n1 = g.addNode(); |
830 | 831 |
Node n2 = g.addNode(); |
831 | 832 |
Node n3 = g.addNode(); |
832 |
|
|
833 |
|
|
833 | 834 |
SmartDigraph::NodeMap<int> map1(g); |
834 | 835 |
SmartDigraph::ArcMap<char> map2(g); |
835 | 836 |
ConstMap<Node, A> cmap1 = A(); |
836 | 837 |
ConstMap<Arc, C> cmap2 = C(0); |
837 |
|
|
838 |
|
|
838 | 839 |
map1[n1] = 10; |
839 | 840 |
map1[n2] = 5; |
840 | 841 |
map1[n3] = 12; |
841 |
|
|
842 |
|
|
842 | 843 |
// mapMin(), mapMax(), mapMinValue(), mapMaxValue() |
843 | 844 |
check(mapMin(g, map1) == n2, "Wrong mapMin()"); |
844 | 845 |
check(mapMax(g, map1) == n3, "Wrong mapMax()"); |
845 | 846 |
check(mapMin(g, map1, std::greater<int>()) == n3, "Wrong mapMin()"); |
846 | 847 |
check(mapMax(g, map1, std::greater<int>()) == n2, "Wrong mapMax()"); |
847 | 848 |
check(mapMinValue(g, map1) == 5, "Wrong mapMinValue()"); |
848 | 849 |
check(mapMaxValue(g, map1) == 12, "Wrong mapMaxValue()"); |
849 | 850 |
|
850 | 851 |
check(mapMin(g, map2) == INVALID, "Wrong mapMin()"); |
851 | 852 |
check(mapMax(g, map2) == INVALID, "Wrong mapMax()"); |
852 | 853 |
|
853 | 854 |
check(mapMin(g, cmap1) != INVALID, "Wrong mapMin()"); |
854 | 855 |
check(mapMax(g, cmap2) == INVALID, "Wrong mapMax()"); |
855 | 856 |
|
856 | 857 |
Arc a1 = g.addArc(n1, n2); |
857 | 858 |
Arc a2 = g.addArc(n1, n3); |
858 | 859 |
Arc a3 = g.addArc(n2, n3); |
859 | 860 |
Arc a4 = g.addArc(n3, n1); |
860 |
|
|
861 |
|
|
861 | 862 |
map2[a1] = 'b'; |
862 | 863 |
map2[a2] = 'a'; |
863 | 864 |
map2[a3] = 'b'; |
864 | 865 |
map2[a4] = 'c'; |
865 | 866 |
|
866 | 867 |
// mapMin(), mapMax(), mapMinValue(), mapMaxValue() |
867 | 868 |
check(mapMin(g, map2) == a2, "Wrong mapMin()"); |
868 | 869 |
check(mapMax(g, map2) == a4, "Wrong mapMax()"); |
869 | 870 |
check(mapMin(g, map2, std::greater<int>()) == a4, "Wrong mapMin()"); |
870 | 871 |
check(mapMax(g, map2, std::greater<int>()) == a2, "Wrong mapMax()"); |
871 | 872 |
check(mapMinValue(g, map2, std::greater<int>()) == 'c', |
872 | 873 |
"Wrong mapMinValue()"); |
... | ... |
@@ -915,85 +916,85 @@ |
915 | 916 |
check(mapCountIf(g, map1, Less<int>(11)) == 2, |
916 | 917 |
"Wrong mapCountIf()"); |
917 | 918 |
check(mapCountIf(g, map1, Less<int>(13)) == 3, |
918 | 919 |
"Wrong mapCountIf()"); |
919 | 920 |
check(mapCountIf(g, map1, Less<int>(5)) == 0, |
920 | 921 |
"Wrong mapCountIf()"); |
921 | 922 |
check(mapCountIf(g, map2, Less<char>('d')) == 4, |
922 | 923 |
"Wrong mapCountIf()"); |
923 | 924 |
check(mapCountIf(g, map2, Less<char>('c')) == 3, |
924 | 925 |
"Wrong mapCountIf()"); |
925 | 926 |
check(mapCountIf(g, map2, Less<char>('a')) == 0, |
926 | 927 |
"Wrong mapCountIf()"); |
927 |
|
|
928 |
|
|
928 | 929 |
// MapIt, ConstMapIt |
929 | 930 |
/* |
930 | 931 |
These tests can be used after applying bugfix #330 |
931 | 932 |
typedef SmartDigraph::NodeMap<int>::MapIt MapIt; |
932 | 933 |
typedef SmartDigraph::NodeMap<int>::ConstMapIt ConstMapIt; |
933 | 934 |
check(*std::min_element(MapIt(map1), MapIt(INVALID)) == 5, |
934 | 935 |
"Wrong NodeMap<>::MapIt"); |
935 | 936 |
check(*std::max_element(ConstMapIt(map1), ConstMapIt(INVALID)) == 12, |
936 | 937 |
"Wrong NodeMap<>::MapIt"); |
937 |
|
|
938 |
|
|
938 | 939 |
int sum = 0; |
939 | 940 |
std::for_each(MapIt(map1), MapIt(INVALID), Sum<int>(sum)); |
940 | 941 |
check(sum == 27, "Wrong NodeMap<>::MapIt"); |
941 | 942 |
std::for_each(ConstMapIt(map1), ConstMapIt(INVALID), Sum<int>(sum)); |
942 | 943 |
check(sum == 54, "Wrong NodeMap<>::ConstMapIt"); |
943 | 944 |
*/ |
944 | 945 |
|
945 | 946 |
// mapCopy(), mapCompare(), mapFill() |
946 | 947 |
check(mapCompare(g, map1, map1), "Wrong mapCompare()"); |
947 | 948 |
check(mapCompare(g, cmap2, cmap2), "Wrong mapCompare()"); |
948 | 949 |
check(mapCompare(g, map1, shiftMap(map1, 0)), "Wrong mapCompare()"); |
949 | 950 |
check(mapCompare(g, map2, scaleMap(map2, 1)), "Wrong mapCompare()"); |
950 | 951 |
check(!mapCompare(g, map1, shiftMap(map1, 1)), "Wrong mapCompare()"); |
951 | 952 |
|
952 | 953 |
SmartDigraph::NodeMap<int> map3(g, 0); |
953 | 954 |
SmartDigraph::ArcMap<char> map4(g, 'a'); |
954 |
|
|
955 |
|
|
955 | 956 |
check(!mapCompare(g, map1, map3), "Wrong mapCompare()"); |
956 |
check(!mapCompare(g, map2, map4), "Wrong mapCompare()"); |
|
957 |
|
|
957 |
check(!mapCompare(g, map2, map4), "Wrong mapCompare()"); |
|
958 |
|
|
958 | 959 |
mapCopy(g, map1, map3); |
959 | 960 |
mapCopy(g, map2, map4); |
960 | 961 |
|
961 | 962 |
check(mapCompare(g, map1, map3), "Wrong mapCompare() or mapCopy()"); |
962 |
check(mapCompare(g, map2, map4), "Wrong mapCompare() or mapCopy()"); |
|
963 |
|
|
963 |
check(mapCompare(g, map2, map4), "Wrong mapCompare() or mapCopy()"); |
|
964 |
|
|
964 | 965 |
Undirector<SmartDigraph> ug(g); |
965 | 966 |
Undirector<SmartDigraph>::EdgeMap<char> umap1(ug, 'x'); |
966 | 967 |
Undirector<SmartDigraph>::ArcMap<double> umap2(ug, 3.14); |
967 |
|
|
968 |
|
|
968 | 969 |
check(!mapCompare(g, map2, umap1), "Wrong mapCompare() or mapCopy()"); |
969 | 970 |
check(!mapCompare(g, umap1, map2), "Wrong mapCompare() or mapCopy()"); |
970 | 971 |
check(!mapCompare(ug, map2, umap1), "Wrong mapCompare() or mapCopy()"); |
971 | 972 |
check(!mapCompare(ug, umap1, map2), "Wrong mapCompare() or mapCopy()"); |
972 |
|
|
973 |
|
|
973 | 974 |
mapCopy(g, map2, umap1); |
974 | 975 |
|
975 | 976 |
check(mapCompare(g, map2, umap1), "Wrong mapCompare() or mapCopy()"); |
976 | 977 |
check(mapCompare(g, umap1, map2), "Wrong mapCompare() or mapCopy()"); |
977 | 978 |
check(mapCompare(ug, map2, umap1), "Wrong mapCompare() or mapCopy()"); |
978 | 979 |
check(mapCompare(ug, umap1, map2), "Wrong mapCompare() or mapCopy()"); |
979 |
|
|
980 |
|
|
980 | 981 |
mapCopy(g, map2, umap1); |
981 | 982 |
mapCopy(g, umap1, map2); |
982 | 983 |
mapCopy(ug, map2, umap1); |
983 | 984 |
mapCopy(ug, umap1, map2); |
984 |
|
|
985 |
|
|
985 | 986 |
check(!mapCompare(ug, umap1, umap2), "Wrong mapCompare() or mapCopy()"); |
986 | 987 |
mapCopy(ug, umap1, umap2); |
987 | 988 |
check(mapCompare(ug, umap1, umap2), "Wrong mapCompare() or mapCopy()"); |
988 |
|
|
989 |
|
|
989 | 990 |
check(!mapCompare(g, map1, constMap<Node>(2)), "Wrong mapCompare()"); |
990 | 991 |
mapFill(g, map1, 2); |
991 | 992 |
check(mapCompare(g, constMap<Node>(2), map1), "Wrong mapFill()"); |
992 | 993 |
|
993 | 994 |
check(!mapCompare(g, map2, constMap<Arc>('z')), "Wrong mapCompare()"); |
994 | 995 |
mapCopy(g, constMap<Arc>('z'), map2); |
995 | 996 |
check(mapCompare(g, constMap<Arc>('z'), map2), "Wrong mapCopy()"); |
996 | 997 |
} |
997 |
|
|
998 |
|
|
998 | 999 |
return 0; |
999 | 1000 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -125,34 +125,34 @@ |
125 | 125 |
MatMap mat(g); |
126 | 126 |
|
127 | 127 |
MaxMatching<Graph> mat_test(g); |
128 | 128 |
const MaxMatching<Graph>& |
129 | 129 |
const_mat_test = mat_test; |
130 | 130 |
|
131 | 131 |
mat_test.init(); |
132 | 132 |
mat_test.greedyInit(); |
133 | 133 |
mat_test.matchingInit(mat); |
134 | 134 |
mat_test.startSparse(); |
135 | 135 |
mat_test.startDense(); |
136 | 136 |
mat_test.run(); |
137 |
|
|
137 |
|
|
138 | 138 |
const_mat_test.matchingSize(); |
139 | 139 |
const_mat_test.matching(e); |
140 | 140 |
const_mat_test.matching(n); |
141 | 141 |
const MaxMatching<Graph>::MatchingMap& mmap = |
142 | 142 |
const_mat_test.matchingMap(); |
143 | 143 |
e = mmap[n]; |
144 | 144 |
const_mat_test.mate(n); |
145 | 145 |
|
146 |
MaxMatching<Graph>::Status stat = |
|
146 |
MaxMatching<Graph>::Status stat = |
|
147 | 147 |
const_mat_test.status(n); |
148 | 148 |
const MaxMatching<Graph>::StatusMap& smap = |
149 | 149 |
const_mat_test.statusMap(); |
150 | 150 |
stat = smap[n]; |
151 | 151 |
const_mat_test.barrier(n); |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
void checkMaxWeightedMatchingCompile() |
155 | 155 |
{ |
156 | 156 |
typedef concepts::Graph Graph; |
157 | 157 |
typedef Graph::Node Node; |
158 | 158 |
typedef Graph::Edge Edge; |
... | ... |
@@ -161,34 +161,34 @@ |
161 | 161 |
Graph g; |
162 | 162 |
Node n; |
163 | 163 |
Edge e; |
164 | 164 |
WeightMap w(g); |
165 | 165 |
|
166 | 166 |
MaxWeightedMatching<Graph> mat_test(g, w); |
167 | 167 |
const MaxWeightedMatching<Graph>& |
168 | 168 |
const_mat_test = mat_test; |
169 | 169 |
|
170 | 170 |
mat_test.init(); |
171 | 171 |
mat_test.start(); |
172 | 172 |
mat_test.run(); |
173 |
|
|
173 |
|
|
174 | 174 |
const_mat_test.matchingWeight(); |
175 | 175 |
const_mat_test.matchingSize(); |
176 | 176 |
const_mat_test.matching(e); |
177 | 177 |
const_mat_test.matching(n); |
178 | 178 |
const MaxWeightedMatching<Graph>::MatchingMap& mmap = |
179 | 179 |
const_mat_test.matchingMap(); |
180 | 180 |
e = mmap[n]; |
181 | 181 |
const_mat_test.mate(n); |
182 |
|
|
182 |
|
|
183 | 183 |
int k = 0; |
184 | 184 |
const_mat_test.dualValue(); |
185 | 185 |
const_mat_test.nodeValue(n); |
186 | 186 |
const_mat_test.blossomNum(); |
187 | 187 |
const_mat_test.blossomSize(k); |
188 | 188 |
const_mat_test.blossomValue(k); |
189 | 189 |
} |
190 | 190 |
|
191 | 191 |
void checkMaxWeightedPerfectMatchingCompile() |
192 | 192 |
{ |
193 | 193 |
typedef concepts::Graph Graph; |
194 | 194 |
typedef Graph::Node Node; |
... | ... |
@@ -198,33 +198,33 @@ |
198 | 198 |
Graph g; |
199 | 199 |
Node n; |
200 | 200 |
Edge e; |
201 | 201 |
WeightMap w(g); |
202 | 202 |
|
203 | 203 |
MaxWeightedPerfectMatching<Graph> mat_test(g, w); |
204 | 204 |
const MaxWeightedPerfectMatching<Graph>& |
205 | 205 |
const_mat_test = mat_test; |
206 | 206 |
|
207 | 207 |
mat_test.init(); |
208 | 208 |
mat_test.start(); |
209 | 209 |
mat_test.run(); |
210 |
|
|
210 |
|
|
211 | 211 |
const_mat_test.matchingWeight(); |
212 | 212 |
const_mat_test.matching(e); |
213 | 213 |
const_mat_test.matching(n); |
214 | 214 |
const MaxWeightedPerfectMatching<Graph>::MatchingMap& mmap = |
215 | 215 |
const_mat_test.matchingMap(); |
216 | 216 |
e = mmap[n]; |
217 | 217 |
const_mat_test.mate(n); |
218 |
|
|
218 |
|
|
219 | 219 |
int k = 0; |
220 | 220 |
const_mat_test.dualValue(); |
221 | 221 |
const_mat_test.nodeValue(n); |
222 | 222 |
const_mat_test.blossomNum(); |
223 | 223 |
const_mat_test.blossomSize(k); |
224 | 224 |
const_mat_test.blossomValue(k); |
225 | 225 |
} |
226 | 226 |
|
227 | 227 |
void checkMatching(const SmartGraph& graph, |
228 | 228 |
const MaxMatching<SmartGraph>& mm) { |
229 | 229 |
int num = 0; |
230 | 230 |
|
... | ... |
@@ -416,33 +416,33 @@ |
416 | 416 |
} |
417 | 417 |
|
418 | 418 |
{ |
419 | 419 |
MaxWeightedMatching<SmartGraph> mwm(graph, weight); |
420 | 420 |
mwm.init(); |
421 | 421 |
mwm.start(); |
422 | 422 |
checkWeightedMatching(graph, weight, mwm); |
423 | 423 |
} |
424 | 424 |
|
425 | 425 |
{ |
426 | 426 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
427 | 427 |
bool result = mwpm.run(); |
428 |
|
|
428 |
|
|
429 | 429 |
check(result == perfect, "Perfect matching found"); |
430 | 430 |
if (perfect) { |
431 | 431 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
432 | 432 |
} |
433 | 433 |
} |
434 | 434 |
|
435 | 435 |
{ |
436 | 436 |
MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight); |
437 | 437 |
mwpm.init(); |
438 | 438 |
bool result = mwpm.start(); |
439 |
|
|
439 |
|
|
440 | 440 |
check(result == perfect, "Perfect matching found"); |
441 | 441 |
if (perfect) { |
442 | 442 |
checkWeightedPerfectMatching(graph, weight, mwpm); |
443 | 443 |
} |
444 | 444 |
} |
445 | 445 |
} |
446 | 446 |
|
447 | 447 |
return 0; |
448 | 448 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -101,40 +101,40 @@ |
101 | 101 |
|
102 | 102 |
mcarb_test |
103 | 103 |
.arborescenceMap(arb) |
104 | 104 |
.predMap(pred) |
105 | 105 |
.run(s); |
106 | 106 |
|
107 | 107 |
mcarb_test.init(); |
108 | 108 |
mcarb_test.addSource(s); |
109 | 109 |
mcarb_test.start(); |
110 | 110 |
n = mcarb_test.processNextNode(); |
111 | 111 |
b = const_mcarb_test.emptyQueue(); |
112 | 112 |
i = const_mcarb_test.queueSize(); |
113 |
|
|
113 |
|
|
114 | 114 |
c = const_mcarb_test.arborescenceCost(); |
115 | 115 |
b = const_mcarb_test.arborescence(e); |
116 | 116 |
e = const_mcarb_test.pred(n); |
117 | 117 |
const MinCostArbType::ArborescenceMap &am = |
118 | 118 |
const_mcarb_test.arborescenceMap(); |
119 | 119 |
const MinCostArbType::PredMap &pm = |
120 | 120 |
const_mcarb_test.predMap(); |
121 | 121 |
b = const_mcarb_test.reached(n); |
122 | 122 |
b = const_mcarb_test.processed(n); |
123 |
|
|
123 |
|
|
124 | 124 |
i = const_mcarb_test.dualNum(); |
125 | 125 |
c = const_mcarb_test.dualValue(); |
126 | 126 |
i = const_mcarb_test.dualSize(i); |
127 | 127 |
c = const_mcarb_test.dualValue(i); |
128 |
|
|
128 |
|
|
129 | 129 |
ignore_unused_variable_warning(am); |
130 | 130 |
ignore_unused_variable_warning(pm); |
131 | 131 |
} |
132 | 132 |
|
133 | 133 |
int main() { |
134 | 134 |
typedef SmartDigraph Digraph; |
135 | 135 |
DIGRAPH_TYPEDEFS(Digraph); |
136 | 136 |
|
137 | 137 |
typedef Digraph::ArcMap<double> CostMap; |
138 | 138 |
|
139 | 139 |
Digraph digraph; |
140 | 140 |
CostMap cost(digraph); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -43,25 +43,25 @@ |
43 | 43 |
" 1 20 27 0 30 20 30\n" |
44 | 44 |
" 2 -4 0 0 0 -8 -3\n" |
45 | 45 |
" 3 0 0 0 0 0 0\n" |
46 | 46 |
" 4 0 0 0 0 0 0\n" |
47 | 47 |
" 5 9 0 0 0 6 11\n" |
48 | 48 |
" 6 -6 0 0 0 -5 -6\n" |
49 | 49 |
" 7 0 0 0 0 0 0\n" |
50 | 50 |
" 8 0 0 0 0 0 3\n" |
51 | 51 |
" 9 3 0 0 0 0 0\n" |
52 | 52 |
" 10 -2 0 0 0 -7 -2\n" |
53 | 53 |
" 11 0 0 0 0 -10 0\n" |
54 | 54 |
" 12 -20 -27 0 -30 -30 -20\n" |
55 |
"\n" |
|
55 |
"\n" |
|
56 | 56 |
"@arcs\n" |
57 | 57 |
" cost cap low1 low2 low3\n" |
58 | 58 |
" 1 2 70 11 0 8 8\n" |
59 | 59 |
" 1 3 150 3 0 1 0\n" |
60 | 60 |
" 1 4 80 15 0 2 2\n" |
61 | 61 |
" 2 8 80 12 0 0 0\n" |
62 | 62 |
" 3 5 140 5 0 3 1\n" |
63 | 63 |
" 4 6 60 10 0 1 0\n" |
64 | 64 |
" 4 7 80 2 0 0 0\n" |
65 | 65 |
" 4 8 110 3 0 0 0\n" |
66 | 66 |
" 5 7 60 14 0 0 0\n" |
67 | 67 |
" 5 11 120 12 0 0 0\n" |
... | ... |
@@ -93,25 +93,25 @@ |
93 | 93 |
" 7 0\n" |
94 | 94 |
"@arcs\n" |
95 | 95 |
" cost low1 low2\n" |
96 | 96 |
"1 2 100 0 0\n" |
97 | 97 |
"1 3 30 0 0\n" |
98 | 98 |
"2 4 20 0 0\n" |
99 | 99 |
"3 4 80 0 0\n" |
100 | 100 |
"3 2 50 0 0\n" |
101 | 101 |
"5 3 10 0 0\n" |
102 | 102 |
"5 6 80 0 1000\n" |
103 | 103 |
"6 7 30 0 -1000\n" |
104 | 104 |
"7 5 -120 0 0\n"; |
105 |
|
|
105 |
|
|
106 | 106 |
char test_neg2_lgf[] = |
107 | 107 |
"@nodes\n" |
108 | 108 |
"label sup\n" |
109 | 109 |
" 1 100\n" |
110 | 110 |
" 2 -300\n" |
111 | 111 |
"@arcs\n" |
112 | 112 |
" cost\n" |
113 | 113 |
"1 2 -1\n"; |
114 | 114 |
|
115 | 115 |
|
116 | 116 |
// Test data |
117 | 117 |
typedef ListDigraph Digraph; |
... | ... |
@@ -142,25 +142,25 @@ |
142 | 142 |
|
143 | 143 |
|
144 | 144 |
// Check the interface of an MCF algorithm |
145 | 145 |
template <typename GR, typename Value, typename Cost> |
146 | 146 |
class McfClassConcept |
147 | 147 |
{ |
148 | 148 |
public: |
149 | 149 |
|
150 | 150 |
template <typename MCF> |
151 | 151 |
struct Constraints { |
152 | 152 |
void constraints() { |
153 | 153 |
checkConcept<concepts::Digraph, GR>(); |
154 |
|
|
154 |
|
|
155 | 155 |
const Constraints& me = *this; |
156 | 156 |
|
157 | 157 |
MCF mcf(me.g); |
158 | 158 |
const MCF& const_mcf = mcf; |
159 | 159 |
|
160 | 160 |
b = mcf.reset().resetParams() |
161 | 161 |
.lowerMap(me.lower) |
162 | 162 |
.upperMap(me.upper) |
163 | 163 |
.costMap(me.cost) |
164 | 164 |
.supplyMap(me.sup) |
165 | 165 |
.stSupply(me.n, me.n, me.k) |
166 | 166 |
.run(); |
... | ... |
@@ -171,25 +171,25 @@ |
171 | 171 |
c = const_mcf.potential(me.n); |
172 | 172 |
const_mcf.flowMap(fm); |
173 | 173 |
const_mcf.potentialMap(pm); |
174 | 174 |
} |
175 | 175 |
|
176 | 176 |
typedef typename GR::Node Node; |
177 | 177 |
typedef typename GR::Arc Arc; |
178 | 178 |
typedef concepts::ReadMap<Node, Value> NM; |
179 | 179 |
typedef concepts::ReadMap<Arc, Value> VAM; |
180 | 180 |
typedef concepts::ReadMap<Arc, Cost> CAM; |
181 | 181 |
typedef concepts::WriteMap<Arc, Value> FlowMap; |
182 | 182 |
typedef concepts::WriteMap<Node, Cost> PotMap; |
183 |
|
|
183 |
|
|
184 | 184 |
GR g; |
185 | 185 |
VAM lower; |
186 | 186 |
VAM upper; |
187 | 187 |
CAM cost; |
188 | 188 |
NM sup; |
189 | 189 |
Node n; |
190 | 190 |
Arc a; |
191 | 191 |
Value k; |
192 | 192 |
|
193 | 193 |
FlowMap fm; |
194 | 194 |
PotMap pm; |
195 | 195 |
bool b; |
... | ... |
@@ -225,85 +225,85 @@ |
225 | 225 |
(type == LEQ && sum <= supply[n]); |
226 | 226 |
if (!b) return false; |
227 | 227 |
} |
228 | 228 |
|
229 | 229 |
return true; |
230 | 230 |
} |
231 | 231 |
|
232 | 232 |
// Check the feasibility of the given potentials (dual soluiton) |
233 | 233 |
// using the "Complementary Slackness" optimality condition |
234 | 234 |
template < typename GR, typename LM, typename UM, |
235 | 235 |
typename CM, typename SM, typename FM, typename PM > |
236 | 236 |
bool checkPotential( const GR& gr, const LM& lower, const UM& upper, |
237 |
const CM& cost, const SM& supply, const FM& flow, |
|
237 |
const CM& cost, const SM& supply, const FM& flow, |
|
238 | 238 |
const PM& pi, SupplyType type ) |
239 | 239 |
{ |
240 | 240 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
241 | 241 |
|
242 | 242 |
bool opt = true; |
243 | 243 |
for (ArcIt e(gr); opt && e != INVALID; ++e) { |
244 | 244 |
typename CM::Value red_cost = |
245 | 245 |
cost[e] + pi[gr.source(e)] - pi[gr.target(e)]; |
246 | 246 |
opt = red_cost == 0 || |
247 | 247 |
(red_cost > 0 && flow[e] == lower[e]) || |
248 | 248 |
(red_cost < 0 && flow[e] == upper[e]); |
249 | 249 |
} |
250 |
|
|
250 |
|
|
251 | 251 |
for (NodeIt n(gr); opt && n != INVALID; ++n) { |
252 | 252 |
typename SM::Value sum = 0; |
253 | 253 |
for (OutArcIt e(gr, n); e != INVALID; ++e) |
254 | 254 |
sum += flow[e]; |
255 | 255 |
for (InArcIt e(gr, n); e != INVALID; ++e) |
256 | 256 |
sum -= flow[e]; |
257 | 257 |
if (type != LEQ) { |
258 | 258 |
opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0); |
259 | 259 |
} else { |
260 | 260 |
opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0); |
261 | 261 |
} |
262 | 262 |
} |
263 |
|
|
263 |
|
|
264 | 264 |
return opt; |
265 | 265 |
} |
266 | 266 |
|
267 | 267 |
// Check whether the dual cost is equal to the primal cost |
268 | 268 |
template < typename GR, typename LM, typename UM, |
269 | 269 |
typename CM, typename SM, typename PM > |
270 | 270 |
bool checkDualCost( const GR& gr, const LM& lower, const UM& upper, |
271 | 271 |
const CM& cost, const SM& supply, const PM& pi, |
272 | 272 |
typename CM::Value total ) |
273 | 273 |
{ |
274 | 274 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
275 | 275 |
|
276 | 276 |
typename CM::Value dual_cost = 0; |
277 | 277 |
SM red_supply(gr); |
278 | 278 |
for (NodeIt n(gr); n != INVALID; ++n) { |
279 | 279 |
red_supply[n] = supply[n]; |
280 | 280 |
} |
281 | 281 |
for (ArcIt a(gr); a != INVALID; ++a) { |
282 | 282 |
if (lower[a] != 0) { |
283 | 283 |
dual_cost += lower[a] * cost[a]; |
284 | 284 |
red_supply[gr.source(a)] -= lower[a]; |
285 | 285 |
red_supply[gr.target(a)] += lower[a]; |
286 | 286 |
} |
287 | 287 |
} |
288 |
|
|
288 |
|
|
289 | 289 |
for (NodeIt n(gr); n != INVALID; ++n) { |
290 | 290 |
dual_cost -= red_supply[n] * pi[n]; |
291 | 291 |
} |
292 | 292 |
for (ArcIt a(gr); a != INVALID; ++a) { |
293 | 293 |
typename CM::Value red_cost = |
294 | 294 |
cost[a] + pi[gr.source(a)] - pi[gr.target(a)]; |
295 | 295 |
dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0); |
296 | 296 |
} |
297 |
|
|
297 |
|
|
298 | 298 |
return dual_cost == total; |
299 | 299 |
} |
300 | 300 |
|
301 | 301 |
// Run a minimum cost flow algorithm and check the results |
302 | 302 |
template < typename MCF, typename GR, |
303 | 303 |
typename LM, typename UM, |
304 | 304 |
typename CM, typename SM, |
305 | 305 |
typename PT > |
306 | 306 |
void checkMcf( const MCF& mcf, PT mcf_result, |
307 | 307 |
const GR& gr, const LM& lower, const UM& upper, |
308 | 308 |
const CM& cost, const SM& supply, |
309 | 309 |
PT result, bool optimal, typename CM::Value total, |
... | ... |
@@ -323,25 +323,25 @@ |
323 | 323 |
"Wrong potentials " + test_id); |
324 | 324 |
check(checkDualCost(gr, lower, upper, cost, supply, pi, total), |
325 | 325 |
"Wrong dual cost " + test_id); |
326 | 326 |
} |
327 | 327 |
} |
328 | 328 |
|
329 | 329 |
template < typename MCF, typename Param > |
330 | 330 |
void runMcfGeqTests( Param param, |
331 | 331 |
const std::string &test_str = "", |
332 | 332 |
bool full_neg_cost_support = false ) |
333 | 333 |
{ |
334 | 334 |
MCF mcf1(gr), mcf2(neg1_gr), mcf3(neg2_gr); |
335 |
|
|
335 |
|
|
336 | 336 |
// Basic tests |
337 | 337 |
mcf1.upperMap(u).costMap(c).supplyMap(s1); |
338 | 338 |
checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s1, |
339 | 339 |
mcf1.OPTIMAL, true, 5240, test_str + "-1"); |
340 | 340 |
mcf1.stSupply(v, w, 27); |
341 | 341 |
checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s2, |
342 | 342 |
mcf1.OPTIMAL, true, 7620, test_str + "-2"); |
343 | 343 |
mcf1.lowerMap(l2).supplyMap(s1); |
344 | 344 |
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s1, |
345 | 345 |
mcf1.OPTIMAL, true, 5970, test_str + "-3"); |
346 | 346 |
mcf1.stSupply(v, w, 27); |
347 | 347 |
checkMcf(mcf1, mcf1.run(param), gr, l2, u, c, s2, |
... | ... |
@@ -426,39 +426,39 @@ |
426 | 426 |
.arcMap("low1", l1) |
427 | 427 |
.arcMap("low2", l2) |
428 | 428 |
.arcMap("low3", l3) |
429 | 429 |
.nodeMap("sup1", s1) |
430 | 430 |
.nodeMap("sup2", s2) |
431 | 431 |
.nodeMap("sup3", s3) |
432 | 432 |
.nodeMap("sup4", s4) |
433 | 433 |
.nodeMap("sup5", s5) |
434 | 434 |
.nodeMap("sup6", s6) |
435 | 435 |
.node("source", v) |
436 | 436 |
.node("target", w) |
437 | 437 |
.run(); |
438 |
|
|
438 |
|
|
439 | 439 |
std::istringstream neg_inp1(test_neg1_lgf); |
440 | 440 |
DigraphReader<Digraph>(neg1_gr, neg_inp1) |
441 | 441 |
.arcMap("cost", neg1_c) |
442 | 442 |
.arcMap("low1", neg1_l1) |
443 | 443 |
.arcMap("low2", neg1_l2) |
444 | 444 |
.nodeMap("sup", neg1_s) |
445 | 445 |
.run(); |
446 |
|
|
446 |
|
|
447 | 447 |
std::istringstream neg_inp2(test_neg2_lgf); |
448 | 448 |
DigraphReader<Digraph>(neg2_gr, neg_inp2) |
449 | 449 |
.arcMap("cost", neg2_c) |
450 | 450 |
.nodeMap("sup", neg2_s) |
451 | 451 |
.run(); |
452 |
|
|
452 |
|
|
453 | 453 |
// Check the interface of NetworkSimplex |
454 | 454 |
{ |
455 | 455 |
typedef concepts::Digraph GR; |
456 | 456 |
checkConcept< McfClassConcept<GR, int, int>, |
457 | 457 |
NetworkSimplex<GR> >(); |
458 | 458 |
checkConcept< McfClassConcept<GR, double, double>, |
459 | 459 |
NetworkSimplex<GR, double> >(); |
460 | 460 |
checkConcept< McfClassConcept<GR, int, double>, |
461 | 461 |
NetworkSimplex<GR, int, double> >(); |
462 | 462 |
} |
463 | 463 |
|
464 | 464 |
// Check the interface of CapacityScaling |
... | ... |
@@ -492,38 +492,38 @@ |
492 | 492 |
// Check the interface of CycleCanceling |
493 | 493 |
{ |
494 | 494 |
typedef concepts::Digraph GR; |
495 | 495 |
checkConcept< McfClassConcept<GR, int, int>, |
496 | 496 |
CycleCanceling<GR> >(); |
497 | 497 |
checkConcept< McfClassConcept<GR, double, double>, |
498 | 498 |
CycleCanceling<GR, double> >(); |
499 | 499 |
checkConcept< McfClassConcept<GR, int, double>, |
500 | 500 |
CycleCanceling<GR, int, double> >(); |
501 | 501 |
} |
502 | 502 |
|
503 | 503 |
// Test NetworkSimplex |
504 |
{ |
|
504 |
{ |
|
505 | 505 |
typedef NetworkSimplex<Digraph> MCF; |
506 | 506 |
runMcfGeqTests<MCF>(MCF::FIRST_ELIGIBLE, "NS-FE", true); |
507 | 507 |
runMcfLeqTests<MCF>(MCF::FIRST_ELIGIBLE, "NS-FE"); |
508 | 508 |
runMcfGeqTests<MCF>(MCF::BEST_ELIGIBLE, "NS-BE", true); |
509 | 509 |
runMcfLeqTests<MCF>(MCF::BEST_ELIGIBLE, "NS-BE"); |
510 | 510 |
runMcfGeqTests<MCF>(MCF::BLOCK_SEARCH, "NS-BS", true); |
511 | 511 |
runMcfLeqTests<MCF>(MCF::BLOCK_SEARCH, "NS-BS"); |
512 | 512 |
runMcfGeqTests<MCF>(MCF::CANDIDATE_LIST, "NS-CL", true); |
513 | 513 |
runMcfLeqTests<MCF>(MCF::CANDIDATE_LIST, "NS-CL"); |
514 | 514 |
runMcfGeqTests<MCF>(MCF::ALTERING_LIST, "NS-AL", true); |
515 | 515 |
runMcfLeqTests<MCF>(MCF::ALTERING_LIST, "NS-AL"); |
516 | 516 |
} |
517 |
|
|
517 |
|
|
518 | 518 |
// Test CapacityScaling |
519 | 519 |
{ |
520 | 520 |
typedef CapacityScaling<Digraph> MCF; |
521 | 521 |
runMcfGeqTests<MCF>(0, "SSP"); |
522 | 522 |
runMcfGeqTests<MCF>(2, "CAS"); |
523 | 523 |
} |
524 | 524 |
|
525 | 525 |
// Test CostScaling |
526 | 526 |
{ |
527 | 527 |
typedef CostScaling<Digraph> MCF; |
528 | 528 |
runMcfGeqTests<MCF>(MCF::PUSH, "COS-PR"); |
529 | 529 |
runMcfGeqTests<MCF>(MCF::AUGMENT, "COS-AR"); |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -52,56 +52,56 @@ |
52 | 52 |
"3 4 4 4 4 4 0 0 0 0\n" |
53 | 53 |
"3 7 -4 -4 -4 -4 0 0 0 0\n" |
54 | 54 |
"4 1 2 2 2 2 0 0 0 0\n" |
55 | 55 |
"4 3 3 3 3 3 1 0 0 0\n" |
56 | 56 |
"4 4 3 3 0 0 0 0 1 0\n" |
57 | 57 |
"5 2 4 4 4 4 0 0 0 0\n" |
58 | 58 |
"5 6 3 3 3 3 0 1 0 0\n" |
59 | 59 |
"6 5 2 2 2 2 0 1 0 0\n" |
60 | 60 |
"6 4 -1 -1 -1 -1 0 0 0 0\n" |
61 | 61 |
"6 7 1 1 1 1 0 0 0 0\n" |
62 | 62 |
"7 7 4 4 4 -1 0 0 0 1\n"; |
63 | 63 |
|
64 |
|
|
64 |
|
|
65 | 65 |
// Check the interface of an MMC algorithm |
66 | 66 |
template <typename GR, typename Cost> |
67 | 67 |
struct MmcClassConcept |
68 | 68 |
{ |
69 | 69 |
template <typename MMC> |
70 | 70 |
struct Constraints { |
71 | 71 |
void constraints() { |
72 | 72 |
const Constraints& me = *this; |
73 | 73 |
|
74 | 74 |
typedef typename MMC |
75 | 75 |
::template SetPath<ListPath<GR> > |
76 | 76 |
::template SetLargeCost<Cost> |
77 | 77 |
::Create MmcAlg; |
78 | 78 |
MmcAlg mmc(me.g, me.cost); |
79 | 79 |
const MmcAlg& const_mmc = mmc; |
80 |
|
|
80 |
|
|
81 | 81 |
typename MmcAlg::Tolerance tol = const_mmc.tolerance(); |
82 | 82 |
mmc.tolerance(tol); |
83 |
|
|
83 |
|
|
84 | 84 |
b = mmc.cycle(p).run(); |
85 | 85 |
b = mmc.findCycleMean(); |
86 | 86 |
b = mmc.findCycle(); |
87 | 87 |
|
88 | 88 |
v = const_mmc.cycleCost(); |
89 | 89 |
i = const_mmc.cycleSize(); |
90 | 90 |
d = const_mmc.cycleMean(); |
91 | 91 |
p = const_mmc.cycle(); |
92 | 92 |
} |
93 | 93 |
|
94 | 94 |
typedef concepts::ReadMap<typename GR::Arc, Cost> CM; |
95 |
|
|
95 |
|
|
96 | 96 |
GR g; |
97 | 97 |
CM cost; |
98 | 98 |
ListPath<GR> p; |
99 | 99 |
Cost v; |
100 | 100 |
int i; |
101 | 101 |
double d; |
102 | 102 |
bool b; |
103 | 103 |
}; |
104 | 104 |
}; |
105 | 105 |
|
106 | 106 |
// Perform a test with the given parameters |
107 | 107 |
template <typename MMC> |
... | ... |
@@ -144,52 +144,52 @@ |
144 | 144 |
typedef long long_int; |
145 | 145 |
#endif |
146 | 146 |
|
147 | 147 |
// Check the interface |
148 | 148 |
{ |
149 | 149 |
typedef concepts::Digraph GR; |
150 | 150 |
|
151 | 151 |
// KarpMmc |
152 | 152 |
checkConcept< MmcClassConcept<GR, int>, |
153 | 153 |
KarpMmc<GR, concepts::ReadMap<GR::Arc, int> > >(); |
154 | 154 |
checkConcept< MmcClassConcept<GR, float>, |
155 | 155 |
KarpMmc<GR, concepts::ReadMap<GR::Arc, float> > >(); |
156 |
|
|
156 |
|
|
157 | 157 |
// HartmannOrlinMmc |
158 | 158 |
checkConcept< MmcClassConcept<GR, int>, |
159 | 159 |
HartmannOrlinMmc<GR, concepts::ReadMap<GR::Arc, int> > >(); |
160 | 160 |
checkConcept< MmcClassConcept<GR, float>, |
161 | 161 |
HartmannOrlinMmc<GR, concepts::ReadMap<GR::Arc, float> > >(); |
162 |
|
|
162 |
|
|
163 | 163 |
// HowardMmc |
164 | 164 |
checkConcept< MmcClassConcept<GR, int>, |
165 | 165 |
HowardMmc<GR, concepts::ReadMap<GR::Arc, int> > >(); |
166 | 166 |
checkConcept< MmcClassConcept<GR, float>, |
167 | 167 |
HowardMmc<GR, concepts::ReadMap<GR::Arc, float> > >(); |
168 | 168 |
|
169 | 169 |
check((IsSameType<HowardMmc<GR, concepts::ReadMap<GR::Arc, int> > |
170 | 170 |
::LargeCost, long_int>::result == 1), "Wrong LargeCost type"); |
171 | 171 |
check((IsSameType<HowardMmc<GR, concepts::ReadMap<GR::Arc, float> > |
172 | 172 |
::LargeCost, double>::result == 1), "Wrong LargeCost type"); |
173 | 173 |
} |
174 | 174 |
|
175 | 175 |
// Run various tests |
176 | 176 |
{ |
177 | 177 |
typedef SmartDigraph GR; |
178 | 178 |
DIGRAPH_TYPEDEFS(GR); |
179 |
|
|
179 |
|
|
180 | 180 |
GR gr; |
181 | 181 |
IntArcMap l1(gr), l2(gr), l3(gr), l4(gr); |
182 | 182 |
IntArcMap c1(gr), c2(gr), c3(gr), c4(gr); |
183 |
|
|
183 |
|
|
184 | 184 |
std::istringstream input(test_lgf); |
185 | 185 |
digraphReader(gr, input). |
186 | 186 |
arcMap("len1", l1). |
187 | 187 |
arcMap("len2", l2). |
188 | 188 |
arcMap("len3", l3). |
189 | 189 |
arcMap("len4", l4). |
190 | 190 |
arcMap("c1", c1). |
191 | 191 |
arcMap("c2", c2). |
192 | 192 |
arcMap("c3", c3). |
193 | 193 |
arcMap("c4", c4). |
194 | 194 |
run(); |
195 | 195 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -85,49 +85,49 @@ |
85 | 85 |
FlowMap flow; |
86 | 86 |
CutMap cut; |
87 | 87 |
VType v; |
88 | 88 |
bool b; |
89 | 89 |
|
90 | 90 |
typedef Preflow<Digraph, CapMap> |
91 | 91 |
::SetFlowMap<FlowMap> |
92 | 92 |
::SetElevator<Elev> |
93 | 93 |
::SetStandardElevator<LinkedElev> |
94 | 94 |
::Create PreflowType; |
95 | 95 |
PreflowType preflow_test(g, cap, n, n); |
96 | 96 |
const PreflowType& const_preflow_test = preflow_test; |
97 |
|
|
97 |
|
|
98 | 98 |
const PreflowType::Elevator& elev = const_preflow_test.elevator(); |
99 | 99 |
preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev)); |
100 | 100 |
PreflowType::Tolerance tol = const_preflow_test.tolerance(); |
101 | 101 |
preflow_test.tolerance(tol); |
102 | 102 |
|
103 | 103 |
preflow_test |
104 | 104 |
.capacityMap(cap) |
105 | 105 |
.flowMap(flow) |
106 | 106 |
.source(n) |
107 | 107 |
.target(n); |
108 | 108 |
|
109 | 109 |
preflow_test.init(); |
110 | 110 |
preflow_test.init(cap); |
111 | 111 |
preflow_test.startFirstPhase(); |
112 | 112 |
preflow_test.startSecondPhase(); |
113 | 113 |
preflow_test.run(); |
114 | 114 |
preflow_test.runMinCut(); |
115 | 115 |
|
116 | 116 |
v = const_preflow_test.flowValue(); |
117 | 117 |
v = const_preflow_test.flow(e); |
118 | 118 |
const FlowMap& fm = const_preflow_test.flowMap(); |
119 | 119 |
b = const_preflow_test.minCut(n); |
120 | 120 |
const_preflow_test.minCutMap(cut); |
121 |
|
|
121 |
|
|
122 | 122 |
ignore_unused_variable_warning(fm); |
123 | 123 |
} |
124 | 124 |
|
125 | 125 |
int cutValue (const SmartDigraph& g, |
126 | 126 |
const SmartDigraph::NodeMap<bool>& cut, |
127 | 127 |
const SmartDigraph::ArcMap<int>& cap) { |
128 | 128 |
|
129 | 129 |
int c=0; |
130 | 130 |
for(SmartDigraph::ArcIt e(g); e!=INVALID; ++e) { |
131 | 131 |
if (cut[g.source(e)] && !cut[g.target(e)]) c+=cap[e]; |
132 | 132 |
} |
133 | 133 |
return c; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -72,25 +72,25 @@ |
72 | 72 |
"target 12\n" |
73 | 73 |
"@end\n"; |
74 | 74 |
|
75 | 75 |
// Check the interface of Suurballe |
76 | 76 |
void checkSuurballeCompile() |
77 | 77 |
{ |
78 | 78 |
typedef int VType; |
79 | 79 |
typedef concepts::Digraph Digraph; |
80 | 80 |
|
81 | 81 |
typedef Digraph::Node Node; |
82 | 82 |
typedef Digraph::Arc Arc; |
83 | 83 |
typedef concepts::ReadMap<Arc, VType> LengthMap; |
84 |
|
|
84 |
|
|
85 | 85 |
typedef Suurballe<Digraph, LengthMap> ST; |
86 | 86 |
typedef Suurballe<Digraph, LengthMap> |
87 | 87 |
::SetFlowMap<ST::FlowMap> |
88 | 88 |
::SetPotentialMap<ST::PotentialMap> |
89 | 89 |
::SetPath<SimplePath<Digraph> > |
90 | 90 |
::SetHeap<concepts::Heap<VType, Digraph::NodeMap<int> > > |
91 | 91 |
::Create SuurballeType; |
92 | 92 |
|
93 | 93 |
Digraph g; |
94 | 94 |
Node n; |
95 | 95 |
Arc e; |
96 | 96 |
LengthMap len; |
... | ... |
@@ -105,37 +105,37 @@ |
105 | 105 |
.potentialMap(pi); |
106 | 106 |
|
107 | 107 |
int k; |
108 | 108 |
k = suurb_test.run(n, n); |
109 | 109 |
k = suurb_test.run(n, n, k); |
110 | 110 |
suurb_test.init(n); |
111 | 111 |
suurb_test.fullInit(n); |
112 | 112 |
suurb_test.start(n); |
113 | 113 |
suurb_test.start(n, k); |
114 | 114 |
k = suurb_test.findFlow(n); |
115 | 115 |
k = suurb_test.findFlow(n, k); |
116 | 116 |
suurb_test.findPaths(); |
117 |
|
|
117 |
|
|
118 | 118 |
int f; |
119 | 119 |
VType c; |
120 | 120 |
c = const_suurb_test.totalLength(); |
121 | 121 |
f = const_suurb_test.flow(e); |
122 | 122 |
const SuurballeType::FlowMap& fm = |
123 | 123 |
const_suurb_test.flowMap(); |
124 | 124 |
c = const_suurb_test.potential(n); |
125 | 125 |
const SuurballeType::PotentialMap& pm = |
126 | 126 |
const_suurb_test.potentialMap(); |
127 | 127 |
k = const_suurb_test.pathNum(); |
128 | 128 |
Path<Digraph> p = const_suurb_test.path(k); |
129 |
|
|
129 |
|
|
130 | 130 |
ignore_unused_variable_warning(fm); |
131 | 131 |
ignore_unused_variable_warning(pm); |
132 | 132 |
} |
133 | 133 |
|
134 | 134 |
// Check the feasibility of the flow |
135 | 135 |
template <typename Digraph, typename FlowMap> |
136 | 136 |
bool checkFlow( const Digraph& gr, const FlowMap& flow, |
137 | 137 |
typename Digraph::Node s, typename Digraph::Node t, |
138 | 138 |
int value ) |
139 | 139 |
{ |
140 | 140 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
141 | 141 |
for (ArcIt e(gr); e != INVALID; ++e) |
... | ... |
@@ -199,64 +199,64 @@ |
199 | 199 |
Node s, t; |
200 | 200 |
|
201 | 201 |
std::istringstream input(test_lgf); |
202 | 202 |
DigraphReader<ListDigraph>(digraph, input). |
203 | 203 |
arcMap("length", length). |
204 | 204 |
node("source", s). |
205 | 205 |
node("target", t). |
206 | 206 |
run(); |
207 | 207 |
|
208 | 208 |
// Check run() |
209 | 209 |
{ |
210 | 210 |
Suurballe<ListDigraph> suurballe(digraph, length); |
211 |
|
|
211 |
|
|
212 | 212 |
// Find 2 paths |
213 | 213 |
check(suurballe.run(s, t) == 2, "Wrong number of paths"); |
214 | 214 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 2), |
215 | 215 |
"The flow is not feasible"); |
216 | 216 |
check(suurballe.totalLength() == 510, "The flow is not optimal"); |
217 | 217 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
218 | 218 |
suurballe.potentialMap()), |
219 | 219 |
"Wrong potentials"); |
220 | 220 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
221 | 221 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
222 |
|
|
222 |
|
|
223 | 223 |
// Find 3 paths |
224 | 224 |
check(suurballe.run(s, t, 3) == 3, "Wrong number of paths"); |
225 | 225 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), |
226 | 226 |
"The flow is not feasible"); |
227 | 227 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
228 | 228 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
229 | 229 |
suurballe.potentialMap()), |
230 | 230 |
"Wrong potentials"); |
231 | 231 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
232 | 232 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
233 |
|
|
233 |
|
|
234 | 234 |
// Find 5 paths (only 3 can be found) |
235 | 235 |
check(suurballe.run(s, t, 5) == 3, "Wrong number of paths"); |
236 | 236 |
check(checkFlow(digraph, suurballe.flowMap(), s, t, 3), |
237 | 237 |
"The flow is not feasible"); |
238 | 238 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
239 | 239 |
check(checkOptimality(digraph, length, suurballe.flowMap(), |
240 | 240 |
suurballe.potentialMap()), |
241 | 241 |
"Wrong potentials"); |
242 | 242 |
for (int i = 0; i < suurballe.pathNum(); ++i) |
243 | 243 |
check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path"); |
244 | 244 |
} |
245 |
|
|
245 |
|
|
246 | 246 |
// Check fullInit() + start() |
247 | 247 |
{ |
248 | 248 |
Suurballe<ListDigraph> suurballe(digraph, length); |
249 | 249 |
suurballe.fullInit(s); |
250 |
|
|
250 |
|
|
251 | 251 |
// Find 2 paths |
252 | 252 |
check(suurballe.start(t) == 2, "Wrong number of paths"); |
253 | 253 |
check(suurballe.totalLength() == 510, "The flow is not optimal"); |
254 | 254 |
|
255 | 255 |
// Find 3 paths |
256 | 256 |
check(suurballe.start(t, 3) == 3, "Wrong number of paths"); |
257 | 257 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
258 | 258 |
|
259 | 259 |
// Find 5 paths (only 3 can be found) |
260 | 260 |
check(suurballe.start(t, 5) == 3, "Wrong number of paths"); |
261 | 261 |
check(suurballe.totalLength() == 1040, "The flow is not optimal"); |
262 | 262 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -36,15 +36,15 @@ |
36 | 36 |
///For example |
37 | 37 |
///\code check(0==1,"This is obviously false.");\endcode will |
38 | 38 |
///print something like this (and then exits). |
39 | 39 |
///\verbatim file_name.cc:123: error: This is obviously false. \endverbatim |
40 | 40 |
#define check(rc, msg) \ |
41 | 41 |
{ \ |
42 | 42 |
if(!(rc)) { \ |
43 | 43 |
std::cerr << __FILE__ ":" << __LINE__ << ": error: " \ |
44 | 44 |
<< msg << std::endl; \ |
45 | 45 |
abort(); \ |
46 | 46 |
} else { } \ |
47 | 47 |
} \ |
48 |
|
|
48 |
|
|
49 | 49 |
|
50 | 50 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
... | ... |
@@ -79,25 +79,25 @@ |
79 | 79 |
Node s,t; |
80 | 80 |
Digraph::ArcMap<Value> cap(g); |
81 | 81 |
Timer ti; |
82 | 82 |
ti.restart(); |
83 | 83 |
readDimacsMax(is, g, cap, s, t, infty, desc); |
84 | 84 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
85 | 85 |
ti.restart(); |
86 | 86 |
Preflow<Digraph, Digraph::ArcMap<Value> > pre(g,cap,s,t); |
87 | 87 |
if(report) std::cerr << "Setup Preflow class: " << ti << '\n'; |
88 | 88 |
ti.restart(); |
89 | 89 |
pre.run(); |
90 | 90 |
if(report) std::cerr << "Run Preflow: " << ti << '\n'; |
91 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
|
91 |
if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n'; |
|
92 | 92 |
} |
93 | 93 |
|
94 | 94 |
template<class Value, class LargeValue> |
95 | 95 |
void solve_min(ArgParser &ap, std::istream &is, std::ostream &, |
96 | 96 |
Value infty, DimacsDescriptor &desc) |
97 | 97 |
{ |
98 | 98 |
bool report = !ap.given("q"); |
99 | 99 |
Digraph g; |
100 | 100 |
Digraph::ArcMap<Value> lower(g), cap(g), cost(g); |
101 | 101 |
Digraph::NodeMap<Value> sup(g); |
102 | 102 |
Timer ti; |
103 | 103 |
|
... | ... |
@@ -139,43 +139,43 @@ |
139 | 139 |
Graph g; |
140 | 140 |
Timer ti; |
141 | 141 |
ti.restart(); |
142 | 142 |
readDimacsMat(is, g, desc); |
143 | 143 |
if(report) std::cerr << "Read the file: " << ti << '\n'; |
144 | 144 |
ti.restart(); |
145 | 145 |
MaxMatching<Graph> mat(g); |
146 | 146 |
if(report) std::cerr << "Setup MaxMatching class: " << ti << '\n'; |
147 | 147 |
ti.restart(); |
148 | 148 |
mat.run(); |
149 | 149 |
if(report) std::cerr << "Run MaxMatching: " << ti << '\n'; |
150 | 150 |
if(report) std::cerr << "\nCardinality of max matching: " |
151 |
<< mat.matchingSize() << '\n'; |
|
151 |
<< mat.matchingSize() << '\n'; |
|
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
|
155 | 155 |
template<class Value, class LargeValue> |
156 | 156 |
void solve(ArgParser &ap, std::istream &is, std::ostream &os, |
157 | 157 |
DimacsDescriptor &desc) |
158 | 158 |
{ |
159 | 159 |
std::stringstream iss(static_cast<std::string>(ap["infcap"])); |
160 | 160 |
Value infty; |
161 | 161 |
iss >> infty; |
162 | 162 |
if(iss.fail()) |
163 | 163 |
{ |
164 | 164 |
std::cerr << "Cannot interpret '" |
165 | 165 |
<< static_cast<std::string>(ap["infcap"]) << "' as infinite" |
166 | 166 |
<< std::endl; |
167 | 167 |
exit(1); |
168 | 168 |
} |
169 |
|
|
169 |
|
|
170 | 170 |
switch(desc.type) |
171 | 171 |
{ |
172 | 172 |
case DimacsDescriptor::MIN: |
173 | 173 |
solve_min<Value, LargeValue>(ap,is,os,infty,desc); |
174 | 174 |
break; |
175 | 175 |
case DimacsDescriptor::MAX: |
176 | 176 |
solve_max<Value>(ap,is,os,infty,desc); |
177 | 177 |
break; |
178 | 178 |
case DimacsDescriptor::SP: |
179 | 179 |
solve_sp<Value>(ap,is,os,desc); |
180 | 180 |
break; |
181 | 181 |
case DimacsDescriptor::MAT: |
... | ... |
@@ -229,50 +229,50 @@ |
229 | 229 |
throw IoError("File cannot be found", ap.files()[0]); |
230 | 230 |
} |
231 | 231 |
case 0: |
232 | 232 |
break; |
233 | 233 |
default: |
234 | 234 |
std::cerr << ap.commandName() << ": too many arguments\n"; |
235 | 235 |
return 1; |
236 | 236 |
} |
237 | 237 |
std::istream& is = (ap.files().size()<1 ? std::cin : input); |
238 | 238 |
std::ostream& os = (ap.files().size()<2 ? std::cout : output); |
239 | 239 |
|
240 | 240 |
DimacsDescriptor desc = dimacsType(is); |
241 |
|
|
241 |
|
|
242 | 242 |
if(!ap.given("q")) |
243 | 243 |
{ |
244 | 244 |
std::cout << "Problem type: "; |
245 | 245 |
switch(desc.type) |
246 | 246 |
{ |
247 | 247 |
case DimacsDescriptor::MIN: |
248 | 248 |
std::cout << "min"; |
249 | 249 |
break; |
250 | 250 |
case DimacsDescriptor::MAX: |
251 | 251 |
std::cout << "max"; |
252 | 252 |
break; |
253 | 253 |
case DimacsDescriptor::SP: |
254 | 254 |
std::cout << "sp"; |
255 | 255 |
case DimacsDescriptor::MAT: |
256 | 256 |
std::cout << "mat"; |
257 | 257 |
break; |
258 | 258 |
default: |
259 | 259 |
exit(1); |
260 | 260 |
break; |
261 | 261 |
} |
262 | 262 |
std::cout << "\nNum of nodes: " << desc.nodeNum; |
263 | 263 |
std::cout << "\nNum of arcs: " << desc.edgeNum; |
264 | 264 |
std::cout << "\n\n"; |
265 | 265 |
} |
266 |
|
|
266 |
|
|
267 | 267 |
if(ap.given("double")) |
268 | 268 |
solve<double, double>(ap,is,os,desc); |
269 | 269 |
else if(ap.given("ldouble")) |
270 | 270 |
solve<long double, long double>(ap,is,os,desc); |
271 | 271 |
#ifdef LEMON_HAVE_LONG_LONG |
272 | 272 |
else if(ap.given("long")) |
273 | 273 |
solve<long long, long long>(ap,is,os,desc); |
274 | 274 |
else solve<int, long long>(ap,is,os,desc); |
275 | 275 |
#else |
276 | 276 |
else solve<int, long>(ap,is,os,desc); |
277 | 277 |
#endif |
278 | 278 |
|
0 comments (0 inline)