gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Unify the sources (#339)
0 89 0
default
89 files changed with 1054 insertions and 1026 deletions:
↑ Collapse diff ↑
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -66,13 +66,13 @@
66 66
    .other("...");
67 67

	
68 68
  // Throw an exception when problems occurs. The default behavior is to
69 69
  // exit(1) on these cases, but this makes Valgrind falsely warn
70 70
  // about memory leaks.
71 71
  ap.throwOnProblems();
72
  
72

	
73 73
  // Perform the parsing process
74 74
  // (in case of any error it terminates the program)
75 75
  // The try {} construct is necessary only if the ap.trowOnProblems()
76 76
  // setting is in use.
77 77
  try {
78 78
    ap.parse();
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -22,23 +22,23 @@
22 22
\section intro Introduction
23 23

	
24 24
<b>LEMON</b> stands for <i><b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling
25 25
and <b>O</b>ptimization in <b>N</b>etworks</i>.
26 26
It is a C++ template library providing efficient implementations of common
27 27
data structures and algorithms with focus on combinatorial optimization
28
tasks connected mainly with graphs and networks. 
28
tasks connected mainly with graphs and networks.
29 29

	
30 30
<b>
31 31
LEMON is an <a class="el" href="http://opensource.org/">open&nbsp;source</a>
32 32
project.
33 33
You are free to use it in your commercial or
34 34
non-commercial applications under very permissive
35 35
\ref license "license terms".
36 36
</b>
37 37

	
38
The project is maintained by the 
38
The project is maintained by the
39 39
<a href="http://www.cs.elte.hu/egres/">Egerv&aacute;ry Research Group on
40 40
Combinatorial Optimization</a> \ref egres
41 41
at the Operations Research Department of the
42 42
<a href="http://www.elte.hu/en/">E&ouml;tv&ouml;s Lor&aacute;nd University</a>,
43 43
Budapest, Hungary.
44 44
LEMON is also a member of the <a href="http://www.coin-or.org/">COIN-OR</a>
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -78,13 +78,13 @@
78 78
   - if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$;
79 79
   - if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$.
80 80
 - For all \f$u\in V\f$ nodes:
81 81
   - \f$\pi(u)\leq 0\f$;
82 82
   - if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$,
83 83
     then \f$\pi(u)=0\f$.
84
 
84

	
85 85
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc
86 86
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e.
87 87
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f]
88 88

	
89 89
All algorithms provide dual solution (node potentials), as well,
90 90
if an optimal flow is found.
... ...
@@ -116,13 +116,13 @@
116 116

	
117 117
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f]
118 118
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq
119 119
    sup(u) \quad \forall u\in V \f]
120 120
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f]
121 121

	
122
It means that the total demand must be less or equal to the 
122
It means that the total demand must be less or equal to the
123 123
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or
124 124
positive) and all the demands have to be satisfied, but there
125 125
could be supplies that are not carried out from the supply
126 126
nodes.
127 127
The equality form is also a special case of this form, of course.
128 128

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -418,13 +418,13 @@
418 418
    SubDigraphBase()
419 419
      : Parent(), _node_filter(0), _arc_filter(0) { }
420 420

	
421 421
    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
422 422
      Parent::initialize(digraph);
423 423
      _node_filter = &node_filter;
424
      _arc_filter = &arc_filter;      
424
      _arc_filter = &arc_filter;
425 425
    }
426 426

	
427 427
  public:
428 428

	
429 429
    typedef typename Parent::Node Node;
430 430
    typedef typename Parent::Arc Arc;
... ...
@@ -505,17 +505,17 @@
505 505
      return arc;
506 506
    }
507 507

	
508 508
  public:
509 509

	
510 510
    template <typename V>
511
    class NodeMap 
512
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>, 
513
	      LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
511
    class NodeMap
512
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
513
              LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
514 514
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
515
	LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
515
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
516 516

	
517 517
    public:
518 518
      typedef V Value;
519 519

	
520 520
      NodeMap(const SubDigraphBase<DGR, NF, AF, ch>& adaptor)
521 521
        : Parent(adaptor) {}
... ...
@@ -532,15 +532,15 @@
532 532
        Parent::operator=(cmap);
533 533
        return *this;
534 534
      }
535 535
    };
536 536

	
537 537
    template <typename V>
538
    class ArcMap 
538
    class ArcMap
539 539
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
540
	      LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
540
              LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
541 541
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, ch>,
542 542
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
543 543

	
544 544
    public:
545 545
      typedef V Value;
546 546

	
... ...
@@ -579,13 +579,13 @@
579 579
    SubDigraphBase()
580 580
      : Parent(), _node_filter(0), _arc_filter(0) { }
581 581

	
582 582
    void initialize(DGR& digraph, NF& node_filter, AF& arc_filter) {
583 583
      Parent::initialize(digraph);
584 584
      _node_filter = &node_filter;
585
      _arc_filter = &arc_filter;      
585
      _arc_filter = &arc_filter;
586 586
    }
587 587

	
588 588
  public:
589 589

	
590 590
    typedef typename Parent::Node Node;
591 591
    typedef typename Parent::Arc Arc;
... ...
@@ -648,16 +648,16 @@
648 648
        arc = Parent::findArc(source, target, arc);
649 649
      }
650 650
      return arc;
651 651
    }
652 652

	
653 653
    template <typename V>
654
    class NodeMap 
654
    class NodeMap
655 655
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
656 656
          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> {
657
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>, 
657
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
658 658
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, NodeMap<V>)> Parent;
659 659

	
660 660
    public:
661 661
      typedef V Value;
662 662

	
663 663
      NodeMap(const SubDigraphBase<DGR, NF, AF, false>& adaptor)
... ...
@@ -675,13 +675,13 @@
675 675
        Parent::operator=(cmap);
676 676
        return *this;
677 677
      }
678 678
    };
679 679

	
680 680
    template <typename V>
681
    class ArcMap 
681
    class ArcMap
682 682
      : public SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
683 683
          LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> {
684 684
      typedef SubMapExtender<SubDigraphBase<DGR, NF, AF, false>,
685 685
        LEMON_SCOPE_FIX(DigraphAdaptorBase<DGR>, ArcMap<V>)> Parent;
686 686

	
687 687
    public:
... ...
@@ -1018,16 +1018,16 @@
1018 1018
        edge = Parent::findEdge(u, v, edge);
1019 1019
      }
1020 1020
      return edge;
1021 1021
    }
1022 1022

	
1023 1023
    template <typename V>
1024
    class NodeMap 
1024
    class NodeMap
1025 1025
      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1026 1026
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
1027
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, 
1027
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1028 1028
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1029 1029

	
1030 1030
    public:
1031 1031
      typedef V Value;
1032 1032

	
1033 1033
      NodeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
... ...
@@ -1045,16 +1045,16 @@
1045 1045
        Parent::operator=(cmap);
1046 1046
        return *this;
1047 1047
      }
1048 1048
    };
1049 1049

	
1050 1050
    template <typename V>
1051
    class ArcMap 
1051
    class ArcMap
1052 1052
      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1053 1053
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
1054
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, 
1054
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1055 1055
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1056 1056

	
1057 1057
    public:
1058 1058
      typedef V Value;
1059 1059

	
1060 1060
      ArcMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
... ...
@@ -1072,16 +1072,16 @@
1072 1072
        Parent::operator=(cmap);
1073 1073
        return *this;
1074 1074
      }
1075 1075
    };
1076 1076

	
1077 1077
    template <typename V>
1078
    class EdgeMap 
1078
    class EdgeMap
1079 1079
      : public SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1080 1080
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1081
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>, 
1081
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, ch>,
1082 1082
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1083 1083

	
1084 1084
    public:
1085 1085
      typedef V Value;
1086 1086

	
1087 1087
      EdgeMap(const SubGraphBase<GR, NF, EF, ch>& adaptor)
... ...
@@ -1114,14 +1114,14 @@
1114 1114
    typedef EF EdgeFilterMap;
1115 1115

	
1116 1116
    typedef SubGraphBase Adaptor;
1117 1117
  protected:
1118 1118
    NF* _node_filter;
1119 1119
    EF* _edge_filter;
1120
    SubGraphBase() 
1121
	  : Parent(), _node_filter(0), _edge_filter(0) { }
1120
    SubGraphBase()
1121
          : Parent(), _node_filter(0), _edge_filter(0) { }
1122 1122

	
1123 1123
    void initialize(GR& graph, NF& node_filter, EF& edge_filter) {
1124 1124
      Parent::initialize(graph);
1125 1125
      _node_filter = &node_filter;
1126 1126
      _edge_filter = &edge_filter;
1127 1127
    }
... ...
@@ -1216,16 +1216,16 @@
1216 1216
        edge = Parent::findEdge(u, v, edge);
1217 1217
      }
1218 1218
      return edge;
1219 1219
    }
1220 1220

	
1221 1221
    template <typename V>
1222
    class NodeMap 
1222
    class NodeMap
1223 1223
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1224 1224
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> {
1225
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
1225
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1226 1226
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, NodeMap<V>)> Parent;
1227 1227

	
1228 1228
    public:
1229 1229
      typedef V Value;
1230 1230

	
1231 1231
      NodeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
... ...
@@ -1243,16 +1243,16 @@
1243 1243
        Parent::operator=(cmap);
1244 1244
        return *this;
1245 1245
      }
1246 1246
    };
1247 1247

	
1248 1248
    template <typename V>
1249
    class ArcMap 
1249
    class ArcMap
1250 1250
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1251 1251
          LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> {
1252
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
1252
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1253 1253
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, ArcMap<V>)> Parent;
1254 1254

	
1255 1255
    public:
1256 1256
      typedef V Value;
1257 1257

	
1258 1258
      ArcMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
... ...
@@ -1270,17 +1270,17 @@
1270 1270
        Parent::operator=(cmap);
1271 1271
        return *this;
1272 1272
      }
1273 1273
    };
1274 1274

	
1275 1275
    template <typename V>
1276
    class EdgeMap 
1276
    class EdgeMap
1277 1277
      : public SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1278 1278
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> {
1279
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>, 
1280
	LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1279
      typedef SubMapExtender<SubGraphBase<GR, NF, EF, false>,
1280
        LEMON_SCOPE_FIX(GraphAdaptorBase<GR>, EdgeMap<V>)> Parent;
1281 1281

	
1282 1282
    public:
1283 1283
      typedef V Value;
1284 1284

	
1285 1285
      EdgeMap(const SubGraphBase<GR, NF, EF, false>& adaptor)
1286 1286
        : Parent(adaptor) {}
... ...
@@ -1501,13 +1501,13 @@
1501 1501
  class FilterNodes :
1502 1502
    public DigraphAdaptorExtender<
1503 1503
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1504 1504
                     true> > {
1505 1505
#endif
1506 1506
    typedef DigraphAdaptorExtender<
1507
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >, 
1507
      SubDigraphBase<GR, NF, ConstMap<typename GR::Arc, Const<bool, true> >,
1508 1508
                     true> > Parent;
1509 1509

	
1510 1510
  public:
1511 1511

	
1512 1512
    typedef GR Digraph;
1513 1513
    typedef NF NodeFilterMap;
... ...
@@ -1522,13 +1522,13 @@
1522 1522
  public:
1523 1523

	
1524 1524
    /// \brief Constructor
1525 1525
    ///
1526 1526
    /// Creates a subgraph for the given digraph or graph with the
1527 1527
    /// given node filter map.
1528
    FilterNodes(GR& graph, NF& node_filter) 
1528
    FilterNodes(GR& graph, NF& node_filter)
1529 1529
      : Parent(), const_true_map()
1530 1530
    {
1531 1531
      Parent::initialize(graph, node_filter, const_true_map);
1532 1532
    }
1533 1533

	
1534 1534
    /// \brief Sets the status of the given node
... ...
@@ -1560,17 +1560,17 @@
1560 1560
  };
1561 1561

	
1562 1562
  template<typename GR, typename NF>
1563 1563
  class FilterNodes<GR, NF,
1564 1564
                    typename enable_if<UndirectedTagIndicator<GR> >::type> :
1565 1565
    public GraphAdaptorExtender<
1566
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, 
1566
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1567 1567
                   true> > {
1568 1568

	
1569 1569
    typedef GraphAdaptorExtender<
1570
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >, 
1570
      SubGraphBase<GR, NF, ConstMap<typename GR::Edge, Const<bool, true> >,
1571 1571
                   true> > Parent;
1572 1572

	
1573 1573
  public:
1574 1574

	
1575 1575
    typedef GR Graph;
1576 1576
    typedef NF NodeFilterMap;
... ...
@@ -1650,13 +1650,13 @@
1650 1650
  class FilterArcs :
1651 1651
    public DigraphAdaptorExtender<
1652 1652
      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1653 1653
                     AF, false> > {
1654 1654
#endif
1655 1655
    typedef DigraphAdaptorExtender<
1656
      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >, 
1656
      SubDigraphBase<DGR, ConstMap<typename DGR::Node, Const<bool, true> >,
1657 1657
                     AF, false> > Parent;
1658 1658

	
1659 1659
  public:
1660 1660

	
1661 1661
    /// The type of the adapted digraph.
1662 1662
    typedef DGR Digraph;
... ...
@@ -1758,17 +1758,17 @@
1758 1758
  class FilterEdges {
1759 1759
#else
1760 1760
  template<typename GR,
1761 1761
           typename EF = typename GR::template EdgeMap<bool> >
1762 1762
  class FilterEdges :
1763 1763
    public GraphAdaptorExtender<
1764
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >, 
1764
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true> >,
1765 1765
                   EF, false> > {
1766 1766
#endif
1767 1767
    typedef GraphAdaptorExtender<
1768
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >, 
1768
      SubGraphBase<GR, ConstMap<typename GR::Node, Const<bool, true > >,
1769 1769
                   EF, false> > Parent;
1770 1770

	
1771 1771
  public:
1772 1772

	
1773 1773
    /// The type of the adapted graph.
1774 1774
    typedef GR Graph;
... ...
@@ -1787,13 +1787,13 @@
1787 1787
  public:
1788 1788

	
1789 1789
    /// \brief Constructor
1790 1790
    ///
1791 1791
    /// Creates a subgraph for the given graph with the given edge
1792 1792
    /// filter map.
1793
    FilterEdges(GR& graph, EF& edge_filter) 
1793
    FilterEdges(GR& graph, EF& edge_filter)
1794 1794
      : Parent(), const_true_map() {
1795 1795
      Parent::initialize(graph, const_true_map, edge_filter);
1796 1796
    }
1797 1797

	
1798 1798
    /// \brief Sets the status of the given edge
1799 1799
    ///
... ...
@@ -1855,13 +1855,13 @@
1855 1855
    class Arc {
1856 1856
      friend class UndirectorBase;
1857 1857
    protected:
1858 1858
      Edge _edge;
1859 1859
      bool _forward;
1860 1860

	
1861
      Arc(const Edge& edge, bool forward) 
1861
      Arc(const Edge& edge, bool forward)
1862 1862
        : _edge(edge), _forward(forward) {}
1863 1863

	
1864 1864
    public:
1865 1865
      Arc() {}
1866 1866

	
1867 1867
      Arc(Invalid) : _edge(INVALID), _forward(true) {}
... ...
@@ -2095,13 +2095,13 @@
2095 2095
      typedef typename MapTraits<MapImpl>::ReturnValue Reference;
2096 2096

	
2097 2097
      ArcMapBase(const UndirectorBase<DGR>& adaptor) :
2098 2098
        _forward(*adaptor._digraph), _backward(*adaptor._digraph) {}
2099 2099

	
2100 2100
      ArcMapBase(const UndirectorBase<DGR>& adaptor, const V& value)
2101
        : _forward(*adaptor._digraph, value), 
2101
        : _forward(*adaptor._digraph, value),
2102 2102
          _backward(*adaptor._digraph, value) {}
2103 2103

	
2104 2104
      void set(const Arc& a, const V& value) {
2105 2105
        if (direction(a)) {
2106 2106
          _forward.set(a, value);
2107 2107
        } else {
... ...
@@ -2213,13 +2213,13 @@
2213 2213

	
2214 2214
    typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier;
2215 2215
    NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); }
2216 2216

	
2217 2217
    typedef typename ItemSetTraits<DGR, Edge>::ItemNotifier EdgeNotifier;
2218 2218
    EdgeNotifier& notifier(Edge) const { return _digraph->notifier(Edge()); }
2219
    
2219

	
2220 2220
    typedef EdgeNotifier ArcNotifier;
2221 2221
    ArcNotifier& notifier(Arc) const { return _digraph->notifier(Edge()); }
2222 2222

	
2223 2223
  protected:
2224 2224

	
2225 2225
    UndirectorBase() : _digraph(0) {}
... ...
@@ -2725,13 +2725,13 @@
2725 2725
  class ResidualDigraph
2726 2726
#else
2727 2727
  template<typename DGR,
2728 2728
           typename CM = typename DGR::template ArcMap<int>,
2729 2729
           typename FM = CM,
2730 2730
           typename TL = Tolerance<typename CM::Value> >
2731
  class ResidualDigraph 
2731
  class ResidualDigraph
2732 2732
    : public SubDigraph<
2733 2733
        Undirector<const DGR>,
2734 2734
        ConstMap<typename DGR::Node, Const<bool, true> >,
2735 2735
        typename Undirector<const DGR>::template CombinedArcMap<
2736 2736
          _adaptor_bits::ResForwardFilter<const DGR, CM, FM, TL>,
2737 2737
          _adaptor_bits::ResBackwardFilter<const DGR, CM, FM, TL> > >
... ...
@@ -2782,13 +2782,13 @@
2782 2782
    /// \brief Constructor
2783 2783
    ///
2784 2784
    /// Constructor of the residual digraph adaptor. The parameters are the
2785 2785
    /// digraph, the capacity map, the flow map, and a tolerance object.
2786 2786
    ResidualDigraph(const DGR& digraph, const CM& capacity,
2787 2787
                    FM& flow, const TL& tolerance = Tolerance())
2788
      : Parent(), _capacity(&capacity), _flow(&flow), 
2788
      : Parent(), _capacity(&capacity), _flow(&flow),
2789 2789
        _graph(digraph), _node_filter(),
2790 2790
        _forward_filter(capacity, flow, tolerance),
2791 2791
        _backward_filter(capacity, flow, tolerance),
2792 2792
        _arc_filter(_forward_filter, _backward_filter)
2793 2793
    {
2794 2794
      Parent::initialize(_graph, _node_filter, _arc_filter);
... ...
@@ -2864,13 +2864,13 @@
2864 2864
      /// The key type of the map
2865 2865
      typedef Arc Key;
2866 2866
      /// The value type of the map
2867 2867
      typedef typename CapacityMap::Value Value;
2868 2868

	
2869 2869
      /// Constructor
2870
      ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor) 
2870
      ResidualCapacity(const ResidualDigraph<DGR, CM, FM, TL>& adaptor)
2871 2871
        : _adaptor(&adaptor) {}
2872 2872

	
2873 2873
      /// Returns the value associated with the given residual arc
2874 2874
      Value operator[](const Arc& a) const {
2875 2875
        return _adaptor->residualCapacity(a);
2876 2876
      }
... ...
@@ -3444,13 +3444,13 @@
3444 3444

	
3445 3445
    /// \brief Node map combined from two original node maps
3446 3446
    ///
3447 3447
    /// This map adaptor class adapts two node maps of the original digraph
3448 3448
    /// to get a node map of the split digraph.
3449 3449
    /// Its value type is inherited from the first node map type (\c IN).
3450
    /// \tparam IN The type of the node map for the in-nodes. 
3450
    /// \tparam IN The type of the node map for the in-nodes.
3451 3451
    /// \tparam OUT The type of the node map for the out-nodes.
3452 3452
    template <typename IN, typename OUT>
3453 3453
    class CombinedNodeMap {
3454 3454
    public:
3455 3455

	
3456 3456
      /// The key type of the map
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -23,14 +23,14 @@
23 23
  void ArgParser::_terminate(ArgParserException::Reason reason) const
24 24
  {
25 25
    if(_exit_on_problems)
26 26
      exit(1);
27 27
    else throw(ArgParserException(reason));
28 28
  }
29
  
30
  
29

	
30

	
31 31
  void ArgParser::_showHelp(void *p)
32 32
  {
33 33
    (static_cast<ArgParser*>(p))->showHelp();
34 34
    (static_cast<ArgParser*>(p))->_terminate(ArgParserException::HELP);
35 35
  }
36 36

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -39,16 +39,16 @@
39 39
  public:
40 40
    enum Reason {
41 41
      HELP,         /// <tt>--help</tt> option was given
42 42
      UNKNOWN_OPT,  /// Unknown option was given
43 43
      INVALID_OPT   /// Invalid combination of options
44 44
    };
45
    
45

	
46 46
  private:
47 47
    Reason _reason;
48
    
48

	
49 49
  public:
50 50
    ///Constructor
51 51
    ArgParserException(Reason r) throw() : _reason(r) {}
52 52
    ///Virtual destructor
53 53
    virtual ~ArgParserException() throw() {}
54 54
    ///A short description of the exception
... ...
@@ -138,13 +138,13 @@
138 138
    };
139 139

	
140 140
    std::vector<OtherArg> _others_help;
141 141
    std::vector<std::string> _file_args;
142 142
    std::string _command_name;
143 143

	
144
    
144

	
145 145
  private:
146 146
    //Bind a function to an option.
147 147

	
148 148
    //\param name The name of the option. The leading '-' must be omitted.
149 149
    //\param help A help string.
150 150
    //\retval func The function to be called when the option is given. It
... ...
@@ -152,13 +152,13 @@
152 152
    //\param data Data to be passed to \c func
153 153
    ArgParser &funcOption(const std::string &name,
154 154
                    const std::string &help,
155 155
                    void (*func)(void *),void *data);
156 156

	
157 157
    bool _exit_on_problems;
158
    
158

	
159 159
    void _terminate(ArgParserException::Reason reason) const;
160 160

	
161 161
  public:
162 162

	
163 163
    ///Constructor
164 164
    ArgParser(int argc, const char * const *argv);
... ...
@@ -420,13 +420,13 @@
420 420

	
421 421
    ///Give back a reference to a vector consisting of the program arguments
422 422
    ///not starting with a '-' character.
423 423
    const std::vector<std::string> &files() const { return _file_args; }
424 424

	
425 425
    ///Throw instead of exit in case of problems
426
    void throwOnProblems() 
426
    void throwOnProblems()
427 427
    {
428 428
      _exit_on_problems=false;
429 429
    }
430 430
  };
431 431
}
432 432

	
Ignore white space 6 line context
1
/* -*- C++ -*-
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -33,22 +33,22 @@
33 33

	
34 34
#include <limits>
35 35

	
36 36
namespace lemon {
37 37

	
38 38
  /// \brief Default operation traits for the BellmanFord algorithm class.
39
  ///  
39
  ///
40 40
  /// This operation traits class defines all computational operations
41 41
  /// and constants that are used in the Bellman-Ford algorithm.
42 42
  /// The default implementation is based on the \c numeric_limits class.
43 43
  /// If the numeric type does not have infinity value, then the maximum
44 44
  /// value is used as extremal infinity value.
45 45
  ///
46 46
  /// \see BellmanFordToleranceOperationTraits
47 47
  template <
48
    typename V, 
48
    typename V,
49 49
    bool has_inf = std::numeric_limits<V>::has_infinity>
50 50
  struct BellmanFordDefaultOperationTraits {
51 51
    /// \brief Value type for the algorithm.
52 52
    typedef V Value;
53 53
    /// \brief Gives back the zero value of the type.
54 54
    static Value zero() {
... ...
@@ -83,13 +83,13 @@
83 83
      return left + right;
84 84
    }
85 85
    static bool less(const Value& left, const Value& right) {
86 86
      return left < right;
87 87
    }
88 88
  };
89
  
89

	
90 90
  /// \brief Operation traits for the BellmanFord algorithm class
91 91
  /// using tolerance.
92 92
  ///
93 93
  /// This operation traits class defines all computational operations
94 94
  /// and constants that are used in the Bellman-Ford algorithm.
95 95
  /// The only difference between this implementation and
... ...
@@ -136,13 +136,13 @@
136 136
  ///
137 137
  /// Default traits class of BellmanFord class.
138 138
  /// \param GR The type of the digraph.
139 139
  /// \param LEN The type of the length map.
140 140
  template<typename GR, typename LEN>
141 141
  struct BellmanFordDefaultTraits {
142
    /// The type of the digraph the algorithm runs on. 
142
    /// The type of the digraph the algorithm runs on.
143 143
    typedef GR Digraph;
144 144

	
145 145
    /// \brief The type of the map that stores the arc lengths.
146 146
    ///
147 147
    /// The type of the map that stores the arc lengths.
148 148
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
... ...
@@ -155,24 +155,24 @@
155 155
    ///
156 156
    /// It defines the used operations and the infinity value for the
157 157
    /// given \c Value type.
158 158
    /// \see BellmanFordDefaultOperationTraits,
159 159
    /// BellmanFordToleranceOperationTraits
160 160
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
161
 
162
    /// \brief The type of the map that stores the last arcs of the 
161

	
162
    /// \brief The type of the map that stores the last arcs of the
163 163
    /// shortest paths.
164
    /// 
164
    ///
165 165
    /// The type of the map that stores the last
166 166
    /// arcs of the shortest paths.
167 167
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
168 168
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
169 169

	
170 170
    /// \brief Instantiates a \c PredMap.
171
    /// 
172
    /// This function instantiates a \ref PredMap. 
171
    ///
172
    /// This function instantiates a \ref PredMap.
173 173
    /// \param g is the digraph to which we would like to define the
174 174
    /// \ref PredMap.
175 175
    static PredMap *createPredMap(const GR& g) {
176 176
      return new PredMap(g);
177 177
    }
178 178

	
... ...
@@ -181,36 +181,36 @@
181 181
    /// The type of the map that stores the distances of the nodes.
182 182
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
183 183
    typedef typename GR::template NodeMap<typename LEN::Value> DistMap;
184 184

	
185 185
    /// \brief Instantiates a \c DistMap.
186 186
    ///
187
    /// This function instantiates a \ref DistMap. 
188
    /// \param g is the digraph to which we would like to define the 
187
    /// This function instantiates a \ref DistMap.
188
    /// \param g is the digraph to which we would like to define the
189 189
    /// \ref DistMap.
190 190
    static DistMap *createDistMap(const GR& g) {
191 191
      return new DistMap(g);
192 192
    }
193 193

	
194 194
  };
195
  
195

	
196 196
  /// \brief %BellmanFord algorithm class.
197 197
  ///
198 198
  /// \ingroup shortest_path
199
  /// This class provides an efficient implementation of the Bellman-Ford 
199
  /// This class provides an efficient implementation of the Bellman-Ford
200 200
  /// algorithm. The maximum time complexity of the algorithm is
201 201
  /// <tt>O(ne)</tt>.
202 202
  ///
203 203
  /// The Bellman-Ford algorithm solves the single-source shortest path
204 204
  /// problem when the arcs can have negative lengths, but the digraph
205 205
  /// should not contain directed cycles with negative total length.
206 206
  /// If all arc costs are non-negative, consider to use the Dijkstra
207 207
  /// algorithm instead, since it is more efficient.
208 208
  ///
209 209
  /// The arc lengths are passed to the algorithm using a
210
  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any 
210
  /// \ref concepts::ReadMap "ReadMap", so it is easy to change it to any
211 211
  /// kind of length. The type of the length values is determined by the
212 212
  /// \ref concepts::ReadMap::Value "Value" type of the length map.
213 213
  ///
214 214
  /// There is also a \ref bellmanFord() "function-type interface" for the
215 215
  /// Bellman-Ford algorithm, which is convenient in the simplier cases and
216 216
  /// it can be used easier.
... ...
@@ -234,13 +234,13 @@
234 234
#endif
235 235
  class BellmanFord {
236 236
  public:
237 237

	
238 238
    ///The type of the underlying digraph.
239 239
    typedef typename TR::Digraph Digraph;
240
    
240

	
241 241
    /// \brief The type of the arc lengths.
242 242
    typedef typename TR::LengthMap::Value Value;
243 243
    /// \brief The type of the map that stores the arc lengths.
244 244
    typedef typename TR::LengthMap LengthMap;
245 245
    /// \brief The type of the map that stores the last
246 246
    /// arcs of the shortest paths.
... ...
@@ -281,26 +281,26 @@
281 281

	
282 282
    std::vector<Node> _process;
283 283

	
284 284
    // Creates the maps if necessary.
285 285
    void create_maps() {
286 286
      if(!_pred) {
287
	_local_pred = true;
288
	_pred = Traits::createPredMap(*_gr);
287
        _local_pred = true;
288
        _pred = Traits::createPredMap(*_gr);
289 289
      }
290 290
      if(!_dist) {
291
	_local_dist = true;
292
	_dist = Traits::createDistMap(*_gr);
291
        _local_dist = true;
292
        _dist = Traits::createDistMap(*_gr);
293 293
      }
294 294
      if(!_mask) {
295 295
        _mask = new MaskMap(*_gr);
296 296
      }
297 297
    }
298
    
298

	
299 299
  public :
300
 
300

	
301 301
    typedef BellmanFord Create;
302 302

	
303 303
    /// \name Named Template Parameters
304 304

	
305 305
    ///@{
306 306

	
... ...
@@ -317,17 +317,17 @@
317 317
    /// \c PredMap type.
318 318
    ///
319 319
    /// \ref named-templ-param "Named parameter" for setting
320 320
    /// \c PredMap type.
321 321
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
322 322
    template <class T>
323
    struct SetPredMap 
323
    struct SetPredMap
324 324
      : public BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > {
325 325
      typedef BellmanFord< Digraph, LengthMap, SetPredMapTraits<T> > Create;
326 326
    };
327
    
327

	
328 328
    template <class T>
329 329
    struct SetDistMapTraits : public Traits {
330 330
      typedef T DistMap;
331 331
      static DistMap *createDistMap(const Digraph&) {
332 332
        LEMON_ASSERT(false, "DistMap is not initialized");
333 333
        return 0; // ignore warnings
... ...
@@ -338,53 +338,53 @@
338 338
    /// \c DistMap type.
339 339
    ///
340 340
    /// \ref named-templ-param "Named parameter" for setting
341 341
    /// \c DistMap type.
342 342
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
343 343
    template <class T>
344
    struct SetDistMap 
344
    struct SetDistMap
345 345
      : public BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > {
346 346
      typedef BellmanFord< Digraph, LengthMap, SetDistMapTraits<T> > Create;
347 347
    };
348 348

	
349 349
    template <class T>
350 350
    struct SetOperationTraitsTraits : public Traits {
351 351
      typedef T OperationTraits;
352 352
    };
353
    
354
    /// \brief \ref named-templ-param "Named parameter" for setting 
353

	
354
    /// \brief \ref named-templ-param "Named parameter" for setting
355 355
    /// \c OperationTraits type.
356 356
    ///
357 357
    /// \ref named-templ-param "Named parameter" for setting
358 358
    /// \c OperationTraits type.
359 359
    /// For more information, see \ref BellmanFordDefaultOperationTraits.
360 360
    template <class T>
361 361
    struct SetOperationTraits
362 362
      : public BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> > {
363 363
      typedef BellmanFord< Digraph, LengthMap, SetOperationTraitsTraits<T> >
364 364
      Create;
365 365
    };
366
    
366

	
367 367
    ///@}
368 368

	
369 369
  protected:
370
    
370

	
371 371
    BellmanFord() {}
372 372

	
373
  public:      
374
    
373
  public:
374

	
375 375
    /// \brief Constructor.
376 376
    ///
377 377
    /// Constructor.
378 378
    /// \param g The digraph the algorithm runs on.
379 379
    /// \param length The length map used by the algorithm.
380 380
    BellmanFord(const Digraph& g, const LengthMap& length) :
381 381
      _gr(&g), _length(&length),
382 382
      _pred(0), _local_pred(false),
383 383
      _dist(0), _local_dist(false), _mask(0) {}
384
    
384

	
385 385
    ///Destructor.
386 386
    ~BellmanFord() {
387 387
      if(_local_pred) delete _pred;
388 388
      if(_local_dist) delete _dist;
389 389
      if(_mask) delete _mask;
390 390
    }
... ...
@@ -405,14 +405,14 @@
405 405
    /// or \ref init(), an instance will be allocated automatically.
406 406
    /// The destructor deallocates this automatically allocated map,
407 407
    /// of course.
408 408
    /// \return <tt>(*this)</tt>
409 409
    BellmanFord &predMap(PredMap &map) {
410 410
      if(_local_pred) {
411
	delete _pred;
412
	_local_pred=false;
411
        delete _pred;
412
        _local_pred=false;
413 413
      }
414 414
      _pred = &map;
415 415
      return *this;
416 416
    }
417 417

	
418 418
    /// \brief Sets the map that stores the distances of the nodes.
... ...
@@ -423,14 +423,14 @@
423 423
    /// or \ref init(), an instance will be allocated automatically.
424 424
    /// The destructor deallocates this automatically allocated map,
425 425
    /// of course.
426 426
    /// \return <tt>(*this)</tt>
427 427
    BellmanFord &distMap(DistMap &map) {
428 428
      if(_local_dist) {
429
	delete _dist;
430
	_local_dist=false;
429
        delete _dist;
430
        _local_dist=false;
431 431
      }
432 432
      _dist = &map;
433 433
      return *this;
434 434
    }
435 435

	
436 436
    /// \name Execution Control
... ...
@@ -442,43 +442,43 @@
442 442
    /// performed with \ref start(), \ref checkedStart() or
443 443
    /// \ref limitedStart().
444 444

	
445 445
    ///@{
446 446

	
447 447
    /// \brief Initializes the internal data structures.
448
    /// 
448
    ///
449 449
    /// Initializes the internal data structures. The optional parameter
450 450
    /// is the initial distance of each node.
451 451
    void init(const Value value = OperationTraits::infinity()) {
452 452
      create_maps();
453 453
      for (NodeIt it(*_gr); it != INVALID; ++it) {
454
	_pred->set(it, INVALID);
455
	_dist->set(it, value);
454
        _pred->set(it, INVALID);
455
        _dist->set(it, value);
456 456
      }
457 457
      _process.clear();
458 458
      if (OperationTraits::less(value, OperationTraits::infinity())) {
459
	for (NodeIt it(*_gr); it != INVALID; ++it) {
460
	  _process.push_back(it);
461
	  _mask->set(it, true);
462
	}
459
        for (NodeIt it(*_gr); it != INVALID; ++it) {
460
          _process.push_back(it);
461
          _mask->set(it, true);
462
        }
463 463
      } else {
464
	for (NodeIt it(*_gr); it != INVALID; ++it) {
465
	  _mask->set(it, false);
466
	}
464
        for (NodeIt it(*_gr); it != INVALID; ++it) {
465
          _mask->set(it, false);
466
        }
467 467
      }
468 468
    }
469
    
469

	
470 470
    /// \brief Adds a new source node.
471 471
    ///
472 472
    /// This function adds a new source node. The optional second parameter
473 473
    /// is the initial distance of the node.
474 474
    void addSource(Node source, Value dst = OperationTraits::zero()) {
475 475
      _dist->set(source, dst);
476 476
      if (!(*_mask)[source]) {
477
	_process.push_back(source);
478
	_mask->set(source, true);
477
        _process.push_back(source);
478
        _mask->set(source, true);
479 479
      }
480 480
    }
481 481

	
482 482
    /// \brief Executes one round from the Bellman-Ford algorithm.
483 483
    ///
484 484
    /// If the algoritm calculated the distances in the previous round
... ...
@@ -497,32 +497,32 @@
497 497
    /// \return \c true when the algorithm have not found more shorter
498 498
    /// paths.
499 499
    ///
500 500
    /// \see ActiveIt
501 501
    bool processNextRound() {
502 502
      for (int i = 0; i < int(_process.size()); ++i) {
503
	_mask->set(_process[i], false);
503
        _mask->set(_process[i], false);
504 504
      }
505 505
      std::vector<Node> nextProcess;
506 506
      std::vector<Value> values(_process.size());
507 507
      for (int i = 0; i < int(_process.size()); ++i) {
508
	values[i] = (*_dist)[_process[i]];
508
        values[i] = (*_dist)[_process[i]];
509 509
      }
510 510
      for (int i = 0; i < int(_process.size()); ++i) {
511
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
512
	  Node target = _gr->target(it);
513
	  Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
514
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
515
	    _pred->set(target, it);
516
	    _dist->set(target, relaxed);
517
	    if (!(*_mask)[target]) {
518
	      _mask->set(target, true);
519
	      nextProcess.push_back(target);
520
	    }
521
	  }	  
522
	}
511
        for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
512
          Node target = _gr->target(it);
513
          Value relaxed = OperationTraits::plus(values[i], (*_length)[it]);
514
          if (OperationTraits::less(relaxed, (*_dist)[target])) {
515
            _pred->set(target, it);
516
            _dist->set(target, relaxed);
517
            if (!(*_mask)[target]) {
518
              _mask->set(target, true);
519
              nextProcess.push_back(target);
520
            }
521
          }
522
        }
523 523
      }
524 524
      _process.swap(nextProcess);
525 525
      return _process.empty();
526 526
    }
527 527

	
528 528
    /// \brief Executes one weak round from the Bellman-Ford algorithm.
... ...
@@ -538,29 +538,29 @@
538 538
    /// \return \c true when the algorithm have not found more shorter
539 539
    /// paths.
540 540
    ///
541 541
    /// \see ActiveIt
542 542
    bool processNextWeakRound() {
543 543
      for (int i = 0; i < int(_process.size()); ++i) {
544
	_mask->set(_process[i], false);
544
        _mask->set(_process[i], false);
545 545
      }
546 546
      std::vector<Node> nextProcess;
547 547
      for (int i = 0; i < int(_process.size()); ++i) {
548
	for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
549
	  Node target = _gr->target(it);
550
	  Value relaxed = 
551
	    OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
552
	  if (OperationTraits::less(relaxed, (*_dist)[target])) {
553
	    _pred->set(target, it);
554
	    _dist->set(target, relaxed);
555
	    if (!(*_mask)[target]) {
556
	      _mask->set(target, true);
557
	      nextProcess.push_back(target);
558
	    }
559
	  }	  
560
	}
548
        for (OutArcIt it(*_gr, _process[i]); it != INVALID; ++it) {
549
          Node target = _gr->target(it);
550
          Value relaxed =
551
            OperationTraits::plus((*_dist)[_process[i]], (*_length)[it]);
552
          if (OperationTraits::less(relaxed, (*_dist)[target])) {
553
            _pred->set(target, it);
554
            _dist->set(target, relaxed);
555
            if (!(*_mask)[target]) {
556
              _mask->set(target, true);
557
              nextProcess.push_back(target);
558
            }
559
          }
560
        }
561 561
      }
562 562
      _process.swap(nextProcess);
563 563
      return _process.empty();
564 564
    }
565 565

	
566 566
    /// \brief Executes the algorithm.
... ...
@@ -576,36 +576,36 @@
576 576
    ///
577 577
    /// \pre init() must be called and at least one root node should be
578 578
    /// added with addSource() before using this function.
579 579
    void start() {
580 580
      int num = countNodes(*_gr) - 1;
581 581
      for (int i = 0; i < num; ++i) {
582
	if (processNextWeakRound()) break;
582
        if (processNextWeakRound()) break;
583 583
      }
584 584
    }
585 585

	
586 586
    /// \brief Executes the algorithm and checks the negative cycles.
587 587
    ///
588 588
    /// Executes the algorithm and checks the negative cycles.
589 589
    ///
590 590
    /// This method runs the Bellman-Ford algorithm from the root node(s)
591 591
    /// in order to compute the shortest path to each node and also checks
592 592
    /// if the digraph contains cycles with negative total length.
593 593
    ///
594
    /// The algorithm computes 
594
    /// The algorithm computes
595 595
    /// - the shortest path tree (forest),
596 596
    /// - the distance of each node from the root(s).
597
    /// 
597
    ///
598 598
    /// \return \c false if there is a negative cycle in the digraph.
599 599
    ///
600 600
    /// \pre init() must be called and at least one root node should be
601
    /// added with addSource() before using this function. 
601
    /// added with addSource() before using this function.
602 602
    bool checkedStart() {
603 603
      int num = countNodes(*_gr);
604 604
      for (int i = 0; i < num; ++i) {
605
	if (processNextWeakRound()) return true;
605
        if (processNextWeakRound()) return true;
606 606
      }
607 607
      return _process.empty();
608 608
    }
609 609

	
610 610
    /// \brief Executes the algorithm with arc number limit.
611 611
    ///
... ...
@@ -623,21 +623,21 @@
623 623
    /// easily with \ref path() or \ref predArc() functions. If you also
624 624
    /// need the shortest paths and not only the distances, you should
625 625
    /// store the \ref predMap() "predecessor map" after each iteration
626 626
    /// and build the path manually.
627 627
    ///
628 628
    /// \pre init() must be called and at least one root node should be
629
    /// added with addSource() before using this function. 
629
    /// added with addSource() before using this function.
630 630
    void limitedStart(int num) {
631 631
      for (int i = 0; i < num; ++i) {
632
	if (processNextRound()) break;
632
        if (processNextRound()) break;
633 633
      }
634 634
    }
635
    
635

	
636 636
    /// \brief Runs the algorithm from the given root node.
637
    ///    
637
    ///
638 638
    /// This method runs the Bellman-Ford algorithm from the given root
639 639
    /// node \c s in order to compute the shortest path to each node.
640 640
    ///
641 641
    /// The algorithm computes
642 642
    /// - the shortest path tree (forest),
643 643
    /// - the distance of each node from the root(s).
... ...
@@ -650,16 +650,16 @@
650 650
    /// \endcode
651 651
    void run(Node s) {
652 652
      init();
653 653
      addSource(s);
654 654
      start();
655 655
    }
656
    
656

	
657 657
    /// \brief Runs the algorithm from the given root node with arc
658 658
    /// number limit.
659
    ///    
659
    ///
660 660
    /// This method runs the Bellman-Ford algorithm from the given root
661 661
    /// node \c s in order to compute the shortest path distance for each
662 662
    /// node using only the paths consisting of at most \c num arcs.
663 663
    ///
664 664
    /// The algorithm computes
665 665
    /// - the limited distance of each node from the root(s),
... ...
@@ -679,13 +679,13 @@
679 679
    /// \endcode
680 680
    void run(Node s, int num) {
681 681
      init();
682 682
      addSource(s);
683 683
      limitedStart(num);
684 684
    }
685
    
685

	
686 686
    ///@}
687 687

	
688 688
    /// \brief LEMON iterator for getting the active nodes.
689 689
    ///
690 690
    /// This class provides a common style LEMON iterator that traverses
691 691
    /// the active nodes of the Bellman-Ford algorithm after the last
... ...
@@ -694,13 +694,13 @@
694 694
    class ActiveIt {
695 695
    public:
696 696

	
697 697
      /// \brief Constructor.
698 698
      ///
699 699
      /// Constructor for getting the active nodes of the given BellmanFord
700
      /// instance. 
700
      /// instance.
701 701
      ActiveIt(const BellmanFord& algorithm) : _algorithm(&algorithm)
702 702
      {
703 703
        _index = _algorithm->_process.size() - 1;
704 704
      }
705 705

	
706 706
      /// \brief Invalid constructor.
... ...
@@ -708,59 +708,59 @@
708 708
      /// Invalid constructor.
709 709
      ActiveIt(Invalid) : _algorithm(0), _index(-1) {}
710 710

	
711 711
      /// \brief Conversion to \c Node.
712 712
      ///
713 713
      /// Conversion to \c Node.
714
      operator Node() const { 
714
      operator Node() const {
715 715
        return _index >= 0 ? _algorithm->_process[_index] : INVALID;
716 716
      }
717 717

	
718 718
      /// \brief Increment operator.
719 719
      ///
720 720
      /// Increment operator.
721 721
      ActiveIt& operator++() {
722 722
        --_index;
723
        return *this; 
723
        return *this;
724 724
      }
725 725

	
726
      bool operator==(const ActiveIt& it) const { 
727
        return static_cast<Node>(*this) == static_cast<Node>(it); 
726
      bool operator==(const ActiveIt& it) const {
727
        return static_cast<Node>(*this) == static_cast<Node>(it);
728 728
      }
729
      bool operator!=(const ActiveIt& it) const { 
730
        return static_cast<Node>(*this) != static_cast<Node>(it); 
729
      bool operator!=(const ActiveIt& it) const {
730
        return static_cast<Node>(*this) != static_cast<Node>(it);
731 731
      }
732
      bool operator<(const ActiveIt& it) const { 
733
        return static_cast<Node>(*this) < static_cast<Node>(it); 
732
      bool operator<(const ActiveIt& it) const {
733
        return static_cast<Node>(*this) < static_cast<Node>(it);
734 734
      }
735
      
735

	
736 736
    private:
737 737
      const BellmanFord* _algorithm;
738 738
      int _index;
739 739
    };
740
    
740

	
741 741
    /// \name Query Functions
742 742
    /// The result of the Bellman-Ford algorithm can be obtained using these
743 743
    /// functions.\n
744 744
    /// Either \ref run() or \ref init() should be called before using them.
745
    
745

	
746 746
    ///@{
747 747

	
748 748
    /// \brief The shortest path to the given node.
749
    ///    
749
    ///
750 750
    /// Gives back the shortest path to the given node from the root(s).
751 751
    ///
752 752
    /// \warning \c t should be reached from the root(s).
753 753
    ///
754 754
    /// \pre Either \ref run() or \ref init() must be called before
755 755
    /// using this function.
756 756
    Path path(Node t) const
757 757
    {
758 758
      return Path(*_gr, *_pred, t);
759 759
    }
760
	  
760

	
761 761
    /// \brief The distance of the given node from the root(s).
762 762
    ///
763 763
    /// Returns the distance of the given node from the root(s).
764 764
    ///
765 765
    /// \warning If node \c v is not reached from the root(s), then
766 766
    /// the return value of this function is undefined.
... ...
@@ -794,48 +794,48 @@
794 794
    ///
795 795
    /// The shortest path tree used here is equal to the shortest path
796 796
    /// tree used in \ref predArc() and \ref predMap().
797 797
    ///
798 798
    /// \pre Either \ref run() or \ref init() must be called before
799 799
    /// using this function.
800
    Node predNode(Node v) const { 
801
      return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]); 
800
    Node predNode(Node v) const {
801
      return (*_pred)[v] == INVALID ? INVALID : _gr->source((*_pred)[v]);
802 802
    }
803
    
803

	
804 804
    /// \brief Returns a const reference to the node map that stores the
805 805
    /// distances of the nodes.
806 806
    ///
807 807
    /// Returns a const reference to the node map that stores the distances
808 808
    /// of the nodes calculated by the algorithm.
809 809
    ///
810 810
    /// \pre Either \ref run() or \ref init() must be called before
811 811
    /// using this function.
812 812
    const DistMap &distMap() const { return *_dist;}
813
 
813

	
814 814
    /// \brief Returns a const reference to the node map that stores the
815 815
    /// predecessor arcs.
816 816
    ///
817 817
    /// Returns a const reference to the node map that stores the predecessor
818 818
    /// arcs, which form the shortest path tree (forest).
819 819
    ///
820 820
    /// \pre Either \ref run() or \ref init() must be called before
821 821
    /// using this function.
822 822
    const PredMap &predMap() const { return *_pred; }
823
 
823

	
824 824
    /// \brief Checks if a node is reached from the root(s).
825 825
    ///
826 826
    /// Returns \c true if \c v is reached from the root(s).
827 827
    ///
828 828
    /// \pre Either \ref run() or \ref init() must be called before
829 829
    /// using this function.
830 830
    bool reached(Node v) const {
831 831
      return (*_dist)[v] != OperationTraits::infinity();
832 832
    }
833 833

	
834 834
    /// \brief Gives back a negative cycle.
835
    ///    
835
    ///
836 836
    /// This function gives back a directed cycle with negative total
837 837
    /// length if the algorithm has already found one.
838 838
    /// Otherwise it gives back an empty path.
839 839
    lemon::Path<Digraph> negativeCycle() const {
840 840
      typename Digraph::template NodeMap<int> state(*_gr, -1);
841 841
      lemon::Path<Digraph> cycle;
... ...
@@ -856,24 +856,24 @@
856 856
          }
857 857
          state[v] = i;
858 858
        }
859 859
      }
860 860
      return cycle;
861 861
    }
862
    
862

	
863 863
    ///@}
864 864
  };
865
 
865

	
866 866
  /// \brief Default traits class of bellmanFord() function.
867 867
  ///
868 868
  /// Default traits class of bellmanFord() function.
869 869
  /// \tparam GR The type of the digraph.
870 870
  /// \tparam LEN The type of the length map.
871 871
  template <typename GR, typename LEN>
872 872
  struct BellmanFordWizardDefaultTraits {
873
    /// The type of the digraph the algorithm runs on. 
873
    /// The type of the digraph the algorithm runs on.
874 874
    typedef GR Digraph;
875 875

	
876 876
    /// \brief The type of the map that stores the arc lengths.
877 877
    ///
878 878
    /// The type of the map that stores the arc lengths.
879 879
    /// It must meet the \ref concepts::ReadMap "ReadMap" concept.
... ...
@@ -889,19 +889,19 @@
889 889
    /// \see BellmanFordDefaultOperationTraits,
890 890
    /// BellmanFordToleranceOperationTraits
891 891
    typedef BellmanFordDefaultOperationTraits<Value> OperationTraits;
892 892

	
893 893
    /// \brief The type of the map that stores the last
894 894
    /// arcs of the shortest paths.
895
    /// 
895
    ///
896 896
    /// The type of the map that stores the last arcs of the shortest paths.
897 897
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
898 898
    typedef typename GR::template NodeMap<typename GR::Arc> PredMap;
899 899

	
900 900
    /// \brief Instantiates a \c PredMap.
901
    /// 
901
    ///
902 902
    /// This function instantiates a \ref PredMap.
903 903
    /// \param g is the digraph to which we would like to define the
904 904
    /// \ref PredMap.
905 905
    static PredMap *createPredMap(const GR &g) {
906 906
      return new PredMap(g);
907 907
    }
... ...
@@ -911,33 +911,33 @@
911 911
    /// The type of the map that stores the distances of the nodes.
912 912
    /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
913 913
    typedef typename GR::template NodeMap<Value> DistMap;
914 914

	
915 915
    /// \brief Instantiates a \c DistMap.
916 916
    ///
917
    /// This function instantiates a \ref DistMap. 
917
    /// This function instantiates a \ref DistMap.
918 918
    /// \param g is the digraph to which we would like to define the
919 919
    /// \ref DistMap.
920 920
    static DistMap *createDistMap(const GR &g) {
921 921
      return new DistMap(g);
922 922
    }
923 923

	
924 924
    ///The type of the shortest paths.
925 925

	
926 926
    ///The type of the shortest paths.
927 927
    ///It must meet the \ref concepts::Path "Path" concept.
928 928
    typedef lemon::Path<Digraph> Path;
929 929
  };
930
  
930

	
931 931
  /// \brief Default traits class used by BellmanFordWizard.
932 932
  ///
933 933
  /// Default traits class used by BellmanFordWizard.
934 934
  /// \tparam GR The type of the digraph.
935 935
  /// \tparam LEN The type of the length map.
936 936
  template <typename GR, typename LEN>
937
  class BellmanFordWizardBase 
937
  class BellmanFordWizardBase
938 938
    : public BellmanFordWizardDefaultTraits<GR, LEN> {
939 939

	
940 940
    typedef BellmanFordWizardDefaultTraits<GR, LEN> Base;
941 941
  protected:
942 942
    // Type of the nodes in the digraph.
943 943
    typedef typename Base::Digraph::Node Node;
... ...
@@ -954,32 +954,32 @@
954 954
    void *_path;
955 955
    //Pointer to the distance of the target node.
956 956
    void *_di;
957 957

	
958 958
    public:
959 959
    /// Constructor.
960
    
960

	
961 961
    /// This constructor does not require parameters, it initiates
962 962
    /// all of the attributes to default values \c 0.
963 963
    BellmanFordWizardBase() :
964 964
      _graph(0), _length(0), _pred(0), _dist(0), _path(0), _di(0) {}
965 965

	
966 966
    /// Constructor.
967
    
967

	
968 968
    /// This constructor requires two parameters,
969 969
    /// others are initiated to \c 0.
970 970
    /// \param gr The digraph the algorithm runs on.
971 971
    /// \param len The length map.
972
    BellmanFordWizardBase(const GR& gr, 
973
			  const LEN& len) :
974
      _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))), 
975
      _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))), 
972
    BellmanFordWizardBase(const GR& gr,
973
                          const LEN& len) :
974
      _graph(reinterpret_cast<void*>(const_cast<GR*>(&gr))),
975
      _length(reinterpret_cast<void*>(const_cast<LEN*>(&len))),
976 976
      _pred(0), _dist(0), _path(0), _di(0) {}
977 977

	
978 978
  };
979
  
979

	
980 980
  /// \brief Auxiliary class for the function-type interface of the
981 981
  /// \ref BellmanFord "Bellman-Ford" algorithm.
982 982
  ///
983 983
  /// This auxiliary class is created to implement the
984 984
  /// \ref bellmanFord() "function-type interface" of the
985 985
  /// \ref BellmanFord "Bellman-Ford" algorithm.
... ...
@@ -998,13 +998,13 @@
998 998
    typedef typename TR::Digraph Digraph;
999 999

	
1000 1000
    typedef typename Digraph::Node Node;
1001 1001
    typedef typename Digraph::NodeIt NodeIt;
1002 1002
    typedef typename Digraph::Arc Arc;
1003 1003
    typedef typename Digraph::OutArcIt ArcIt;
1004
    
1004

	
1005 1005
    typedef typename TR::LengthMap LengthMap;
1006 1006
    typedef typename LengthMap::Value Value;
1007 1007
    typedef typename TR::PredMap PredMap;
1008 1008
    typedef typename TR::DistMap DistMap;
1009 1009
    typedef typename TR::Path Path;
1010 1010

	
... ...
@@ -1015,27 +1015,27 @@
1015 1015
    /// \brief Constructor that requires parameters.
1016 1016
    ///
1017 1017
    /// Constructor that requires parameters.
1018 1018
    /// These parameters will be the default values for the traits class.
1019 1019
    /// \param gr The digraph the algorithm runs on.
1020 1020
    /// \param len The length map.
1021
    BellmanFordWizard(const Digraph& gr, const LengthMap& len) 
1021
    BellmanFordWizard(const Digraph& gr, const LengthMap& len)
1022 1022
      : TR(gr, len) {}
1023 1023

	
1024 1024
    /// \brief Copy constructor
1025 1025
    BellmanFordWizard(const TR &b) : TR(b) {}
1026 1026

	
1027 1027
    ~BellmanFordWizard() {}
1028 1028

	
1029 1029
    /// \brief Runs the Bellman-Ford algorithm from the given source node.
1030
    ///    
1030
    ///
1031 1031
    /// This method runs the Bellman-Ford algorithm from the given source
1032 1032
    /// node in order to compute the shortest path to each node.
1033 1033
    void run(Node s) {
1034
      BellmanFord<Digraph,LengthMap,TR> 
1035
	bf(*reinterpret_cast<const Digraph*>(Base::_graph), 
1034
      BellmanFord<Digraph,LengthMap,TR>
1035
        bf(*reinterpret_cast<const Digraph*>(Base::_graph),
1036 1036
           *reinterpret_cast<const LengthMap*>(Base::_length));
1037 1037
      if (Base::_pred) bf.predMap(*reinterpret_cast<PredMap*>(Base::_pred));
1038 1038
      if (Base::_dist) bf.distMap(*reinterpret_cast<DistMap*>(Base::_dist));
1039 1039
      bf.run(s);
1040 1040
    }
1041 1041

	
... ...
@@ -1064,31 +1064,31 @@
1064 1064
    template<class T>
1065 1065
    struct SetPredMapBase : public Base {
1066 1066
      typedef T PredMap;
1067 1067
      static PredMap *createPredMap(const Digraph &) { return 0; };
1068 1068
      SetPredMapBase(const TR &b) : TR(b) {}
1069 1069
    };
1070
    
1070

	
1071 1071
    /// \brief \ref named-templ-param "Named parameter" for setting
1072 1072
    /// the predecessor map.
1073 1073
    ///
1074 1074
    /// \ref named-templ-param "Named parameter" for setting
1075 1075
    /// the map that stores the predecessor arcs of the nodes.
1076 1076
    template<class T>
1077 1077
    BellmanFordWizard<SetPredMapBase<T> > predMap(const T &t) {
1078 1078
      Base::_pred=reinterpret_cast<void*>(const_cast<T*>(&t));
1079 1079
      return BellmanFordWizard<SetPredMapBase<T> >(*this);
1080 1080
    }
1081
    
1081

	
1082 1082
    template<class T>
1083 1083
    struct SetDistMapBase : public Base {
1084 1084
      typedef T DistMap;
1085 1085
      static DistMap *createDistMap(const Digraph &) { return 0; };
1086 1086
      SetDistMapBase(const TR &b) : TR(b) {}
1087 1087
    };
1088
    
1088

	
1089 1089
    /// \brief \ref named-templ-param "Named parameter" for setting
1090 1090
    /// the distance map.
1091 1091
    ///
1092 1092
    /// \ref named-templ-param "Named parameter" for setting
1093 1093
    /// the map that stores the distances of the nodes calculated
1094 1094
    /// by the algorithm.
... ...
@@ -1123,24 +1123,24 @@
1123 1123
    /// the distance of the target node.
1124 1124
    BellmanFordWizard dist(const Value &d)
1125 1125
    {
1126 1126
      Base::_di=reinterpret_cast<void*>(const_cast<Value*>(&d));
1127 1127
      return *this;
1128 1128
    }
1129
    
1129

	
1130 1130
  };
1131
  
1131

	
1132 1132
  /// \brief Function type interface for the \ref BellmanFord "Bellman-Ford"
1133 1133
  /// algorithm.
1134 1134
  ///
1135 1135
  /// \ingroup shortest_path
1136 1136
  /// Function type interface for the \ref BellmanFord "Bellman-Ford"
1137 1137
  /// algorithm.
1138 1138
  ///
1139
  /// This function also has several \ref named-templ-func-param 
1140
  /// "named parameters", they are declared as the members of class 
1139
  /// This function also has several \ref named-templ-func-param
1140
  /// "named parameters", they are declared as the members of class
1141 1141
  /// \ref BellmanFordWizard.
1142 1142
  /// The following examples show how to use these parameters.
1143 1143
  /// \code
1144 1144
  ///   // Compute shortest path from node s to each node
1145 1145
  ///   bellmanFord(g,length).predMap(preds).distMap(dists).run(s);
1146 1146
  ///
... ...
@@ -1151,13 +1151,13 @@
1151 1151
  /// to the end of the parameter list.
1152 1152
  /// \sa BellmanFordWizard
1153 1153
  /// \sa BellmanFord
1154 1154
  template<typename GR, typename LEN>
1155 1155
  BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >
1156 1156
  bellmanFord(const GR& digraph,
1157
	      const LEN& length)
1157
              const LEN& length)
1158 1158
  {
1159 1159
    return BellmanFordWizard<BellmanFordWizardBase<GR,LEN> >(digraph, length);
1160 1160
  }
1161 1161

	
1162 1162
} //END OF NAMESPACE LEMON
1163 1163

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -79,13 +79,14 @@
79 79
      return new ProcessedMap();
80 80
    }
81 81

	
82 82
    ///The type of the map that indicates which nodes are reached.
83 83

	
84 84
    ///The type of the map that indicates which nodes are reached.
85
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
85
    ///It must conform to
86
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
86 87
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
87 88
    ///Instantiates a \c ReachedMap.
88 89

	
89 90
    ///This function instantiates a \ref ReachedMap.
90 91
    ///\param g is the digraph, to which
91 92
    ///we would like to define the \ref ReachedMap.
... ...
@@ -268,13 +269,14 @@
268 269
    };
269 270
    ///\brief \ref named-templ-param "Named parameter" for setting
270 271
    ///\c ReachedMap type.
271 272
    ///
272 273
    ///\ref named-templ-param "Named parameter" for setting
273 274
    ///\c ReachedMap type.
274
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
275
    ///It must conform to
276
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
275 277
    template <class T>
276 278
    struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > {
277 279
      typedef Bfs< Digraph, SetReachedMapTraits<T> > Create;
278 280
    };
279 281

	
280 282
    template <class T>
... ...
@@ -869,13 +871,14 @@
869 871
      return new ProcessedMap();
870 872
    }
871 873

	
872 874
    ///The type of the map that indicates which nodes are reached.
873 875

	
874 876
    ///The type of the map that indicates which nodes are reached.
875
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
877
    ///It must conform to
878
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
876 879
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
877 880
    ///Instantiates a ReachedMap.
878 881

	
879 882
    ///This function instantiates a ReachedMap.
880 883
    ///\param g is the digraph, to which
881 884
    ///we would like to define the ReachedMap.
... ...
@@ -1262,13 +1265,14 @@
1262 1265
    /// \brief The type of the digraph the algorithm runs on.
1263 1266
    typedef GR Digraph;
1264 1267

	
1265 1268
    /// \brief The type of the map that indicates which nodes are reached.
1266 1269
    ///
1267 1270
    /// The type of the map that indicates which nodes are reached.
1268
    /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1271
    /// It must conform to
1272
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1269 1273
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
1270 1274

	
1271 1275
    /// \brief Instantiates a ReachedMap.
1272 1276
    ///
1273 1277
    /// This function instantiates a ReachedMap.
1274 1278
    /// \param digraph is the digraph, to which
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -255,13 +255,13 @@
255 255
    /// \param value The priority.
256 256
    /// \pre \e item must be stored in the heap with priority at least \e value.
257 257
    void decrease (Item item, const Prio& value) {
258 258
      int i=_iim[item];
259 259
      int p=_data[i].parent;
260 260
      _data[i].prio=value;
261
      
261

	
262 262
      while( p!=-1 && _comp(value, _data[p].prio) ) {
263 263
        _data[i].name=_data[p].name;
264 264
        _data[i].prio=_data[p].prio;
265 265
        _data[p].name=item;
266 266
        _data[p].prio=value;
267 267
        _iim[_data[i].name]=i;
... ...
@@ -319,13 +319,13 @@
319 319
      case IN_HEAP:
320 320
        break;
321 321
      }
322 322
    }
323 323

	
324 324
  private:
325
    
325

	
326 326
    // Find the minimum of the roots
327 327
    int findMin() {
328 328
      if( _head!=-1 ) {
329 329
        int min_loc=_head, min_val=_data[_head].prio;
330 330
        for( int x=_data[_head].right_neighbor; x!=-1;
331 331
             x=_data[x].right_neighbor ) {
... ...
@@ -347,13 +347,13 @@
347 347
        _data[a].right_neighbor=_head;
348 348
        _head=a;
349 349
      } else {
350 350
        interleave(a);
351 351
      }
352 352
      if( _data[_head].right_neighbor==-1 ) return;
353
      
353

	
354 354
      int x=_head;
355 355
      int x_prev=-1, x_next=_data[x].right_neighbor;
356 356
      while( x_next!=-1 ) {
357 357
        if( _data[x].degree!=_data[x_next].degree ||
358 358
            ( _data[x_next].right_neighbor!=-1 &&
359 359
              _data[_data[x_next].right_neighbor].degree==_data[x].degree ) ) {
... ...
@@ -381,26 +381,26 @@
381 381

	
382 382
    // Interleave the elements of the given list into the list of the roots
383 383
    void interleave(int a) {
384 384
      int p=_head, q=a;
385 385
      int curr=_data.size();
386 386
      _data.push_back(Store());
387
      
387

	
388 388
      while( p!=-1 || q!=-1 ) {
389 389
        if( q==-1 || ( p!=-1 && _data[p].degree<_data[q].degree ) ) {
390 390
          _data[curr].right_neighbor=p;
391 391
          curr=p;
392 392
          p=_data[p].right_neighbor;
393 393
        }
394 394
        else {
395 395
          _data[curr].right_neighbor=q;
396 396
          curr=q;
397 397
          q=_data[q].right_neighbor;
398 398
        }
399 399
      }
400
      
400

	
401 401
      _head=_data.back().right_neighbor;
402 402
      _data.pop_back();
403 403
    }
404 404

	
405 405
    // Lace node a under node b
406 406
    void fuse(int a, int b) {
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -67,13 +67,13 @@
67 67
    typedef ArrayMap Map;
68 68

	
69 69
    // The notifier type.
70 70
    typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier;
71 71

	
72 72
  private:
73
  
73

	
74 74
    // The MapBase of the Map which imlements the core regisitry function.
75 75
    typedef typename Notifier::ObserverBase Parent;
76 76

	
77 77
    typedef std::allocator<Value> Allocator;
78 78

	
79 79
  public:
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -154,13 +154,13 @@
154 154
  class DefaultMap
155 155
    : public DefaultMapSelector<_Graph, _Item, _Value>::Map {
156 156
    typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent;
157 157

	
158 158
  public:
159 159
    typedef DefaultMap<_Graph, _Item, _Value> Map;
160
    
160

	
161 161
    typedef typename Parent::GraphType GraphType;
162 162
    typedef typename Parent::Value Value;
163 163

	
164 164
    explicit DefaultMap(const GraphType& graph) : Parent(graph) {}
165 165
    DefaultMap(const GraphType& graph, const Value& value)
166 166
      : Parent(graph, value) {}
Ignore white space 6 line context
1
/* -*- C++ -*-
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -60,17 +60,17 @@
60 60
    Arc fromId(int id, Arc) const {
61 61
      return Parent::arcFromId(id);
62 62
    }
63 63

	
64 64
    Node oppositeNode(const Node &n, const Arc &e) const {
65 65
      if (n == Parent::source(e))
66
	return Parent::target(e);
66
        return Parent::target(e);
67 67
      else if(n==Parent::target(e))
68
	return Parent::source(e);
68
        return Parent::source(e);
69 69
      else
70
	return INVALID;
70
        return INVALID;
71 71
    }
72 72

	
73 73

	
74 74
    // Alteration notifier extensions
75 75

	
76 76
    // The arc observer registry.
... ...
@@ -88,101 +88,101 @@
88 88
    ArcNotifier& notifier(Arc) const {
89 89
      return arc_notifier;
90 90
    }
91 91

	
92 92
    // Iterable extensions
93 93

	
94
    class NodeIt : public Node { 
94
    class NodeIt : public Node {
95 95
      const Digraph* digraph;
96 96
    public:
97 97

	
98 98
      NodeIt() {}
99 99

	
100 100
      NodeIt(Invalid i) : Node(i) { }
101 101

	
102 102
      explicit NodeIt(const Digraph& _graph) : digraph(&_graph) {
103
	_graph.first(static_cast<Node&>(*this));
103
        _graph.first(static_cast<Node&>(*this));
104 104
      }
105 105

	
106
      NodeIt(const Digraph& _graph, const Node& node) 
107
	: Node(node), digraph(&_graph) {}
106
      NodeIt(const Digraph& _graph, const Node& node)
107
        : Node(node), digraph(&_graph) {}
108 108

	
109
      NodeIt& operator++() { 
110
	digraph->next(*this);
111
	return *this; 
109
      NodeIt& operator++() {
110
        digraph->next(*this);
111
        return *this;
112 112
      }
113 113

	
114 114
    };
115 115

	
116 116

	
117
    class ArcIt : public Arc { 
117
    class ArcIt : public Arc {
118 118
      const Digraph* digraph;
119 119
    public:
120 120

	
121 121
      ArcIt() { }
122 122

	
123 123
      ArcIt(Invalid i) : Arc(i) { }
124 124

	
125 125
      explicit ArcIt(const Digraph& _graph) : digraph(&_graph) {
126
	_graph.first(static_cast<Arc&>(*this));
126
        _graph.first(static_cast<Arc&>(*this));
127 127
      }
128 128

	
129
      ArcIt(const Digraph& _graph, const Arc& e) : 
130
	Arc(e), digraph(&_graph) { }
129
      ArcIt(const Digraph& _graph, const Arc& e) :
130
        Arc(e), digraph(&_graph) { }
131 131

	
132
      ArcIt& operator++() { 
133
	digraph->next(*this);
134
	return *this; 
132
      ArcIt& operator++() {
133
        digraph->next(*this);
134
        return *this;
135 135
      }
136 136

	
137 137
    };
138 138

	
139 139

	
140
    class OutArcIt : public Arc { 
140
    class OutArcIt : public Arc {
141 141
      const Digraph* digraph;
142 142
    public:
143 143

	
144 144
      OutArcIt() { }
145 145

	
146 146
      OutArcIt(Invalid i) : Arc(i) { }
147 147

	
148
      OutArcIt(const Digraph& _graph, const Node& node) 
149
	: digraph(&_graph) {
150
	_graph.firstOut(*this, node);
148
      OutArcIt(const Digraph& _graph, const Node& node)
149
        : digraph(&_graph) {
150
        _graph.firstOut(*this, node);
151 151
      }
152 152

	
153
      OutArcIt(const Digraph& _graph, const Arc& arc) 
154
	: Arc(arc), digraph(&_graph) {}
153
      OutArcIt(const Digraph& _graph, const Arc& arc)
154
        : Arc(arc), digraph(&_graph) {}
155 155

	
156
      OutArcIt& operator++() { 
157
	digraph->nextOut(*this);
158
	return *this; 
156
      OutArcIt& operator++() {
157
        digraph->nextOut(*this);
158
        return *this;
159 159
      }
160 160

	
161 161
    };
162 162

	
163 163

	
164
    class InArcIt : public Arc { 
164
    class InArcIt : public Arc {
165 165
      const Digraph* digraph;
166 166
    public:
167 167

	
168 168
      InArcIt() { }
169 169

	
170 170
      InArcIt(Invalid i) : Arc(i) { }
171 171

	
172
      InArcIt(const Digraph& _graph, const Node& node) 
173
	: digraph(&_graph) {
174
	_graph.firstIn(*this, node);
172
      InArcIt(const Digraph& _graph, const Node& node)
173
        : digraph(&_graph) {
174
        _graph.firstIn(*this, node);
175 175
      }
176 176

	
177
      InArcIt(const Digraph& _graph, const Arc& arc) : 
178
	Arc(arc), digraph(&_graph) {}
177
      InArcIt(const Digraph& _graph, const Arc& arc) :
178
        Arc(arc), digraph(&_graph) {}
179 179

	
180
      InArcIt& operator++() { 
181
	digraph->nextIn(*this);
182
	return *this; 
180
      InArcIt& operator++() {
181
        digraph->nextIn(*this);
182
        return *this;
183 183
      }
184 184

	
185 185
    };
186 186

	
187 187
    // \brief Base node of the iterator
188 188
    //
... ...
@@ -212,45 +212,45 @@
212 212
      return Parent::source(static_cast<const Arc&>(e));
213 213
    }
214 214

	
215 215
    using Parent::first;
216 216

	
217 217
    // Mappable extension
218
    
218

	
219 219
    template <typename _Value>
220
    class ArcMap 
220
    class ArcMap
221 221
      : public MapExtender<DefaultMap<Digraph, Arc, _Value> > {
222 222
      typedef MapExtender<DefaultMap<Digraph, Arc, _Value> > Parent;
223 223

	
224 224
    public:
225
      explicit ArcMap(const Digraph& _g) 
226
	: Parent(_g) {}
227
      ArcMap(const Digraph& _g, const _Value& _v) 
228
	: Parent(_g, _v) {}
225
      explicit ArcMap(const Digraph& _g)
226
        : Parent(_g) {}
227
      ArcMap(const Digraph& _g, const _Value& _v)
228
        : Parent(_g, _v) {}
229 229

	
230 230
      ArcMap& operator=(const ArcMap& cmap) {
231
	return operator=<ArcMap>(cmap);
231
        return operator=<ArcMap>(cmap);
232 232
      }
233 233

	
234 234
      template <typename CMap>
235 235
      ArcMap& operator=(const CMap& cmap) {
236 236
        Parent::operator=(cmap);
237
	return *this;
237
        return *this;
238 238
      }
239 239

	
240 240
    };
241 241

	
242 242

	
243 243
    // Alteration extension
244 244

	
245 245
    Arc addArc(const Node& from, const Node& to) {
246 246
      Arc arc = Parent::addArc(from, to);
247 247
      notifier(Arc()).add(arc);
248 248
      return arc;
249 249
    }
250
    
250

	
251 251
    void clear() {
252 252
      notifier(Arc()).clear();
253 253
      Parent::clear();
254 254
    }
255 255

	
256 256
    void erase(const Arc& arc) {
... ...
@@ -307,17 +307,17 @@
307 307
    Edge fromId(int id, Edge) const {
308 308
      return Parent::edgeFromId(id);
309 309
    }
310 310

	
311 311
    Node oppositeNode(const Node &n, const Edge &e) const {
312 312
      if( n == Parent::u(e))
313
	return Parent::v(e);
313
        return Parent::v(e);
314 314
      else if( n == Parent::v(e))
315
	return Parent::u(e);
315
        return Parent::u(e);
316 316
      else
317
	return INVALID;
317
        return INVALID;
318 318
    }
319 319

	
320 320
    Arc oppositeArc(const Arc &e) const {
321 321
      return Parent::direct(e, !Parent::direction(e));
322 322
    }
323 323

	
... ...
@@ -335,134 +335,134 @@
335 335
    mutable ArcNotifier arc_notifier;
336 336
    mutable EdgeNotifier edge_notifier;
337 337

	
338 338
  public:
339 339

	
340 340
    using Parent::notifier;
341
    
341

	
342 342
    ArcNotifier& notifier(Arc) const {
343 343
      return arc_notifier;
344 344
    }
345 345

	
346 346
    EdgeNotifier& notifier(Edge) const {
347 347
      return edge_notifier;
348 348
    }
349 349

	
350 350

	
351
    class NodeIt : public Node { 
351
    class NodeIt : public Node {
352 352
      const Graph* graph;
353 353
    public:
354 354

	
355 355
      NodeIt() {}
356 356

	
357 357
      NodeIt(Invalid i) : Node(i) { }
358 358

	
359 359
      explicit NodeIt(const Graph& _graph) : graph(&_graph) {
360
	_graph.first(static_cast<Node&>(*this));
360
        _graph.first(static_cast<Node&>(*this));
361 361
      }
362 362

	
363
      NodeIt(const Graph& _graph, const Node& node) 
364
	: Node(node), graph(&_graph) {}
363
      NodeIt(const Graph& _graph, const Node& node)
364
        : Node(node), graph(&_graph) {}
365 365

	
366
      NodeIt& operator++() { 
367
	graph->next(*this);
368
	return *this; 
366
      NodeIt& operator++() {
367
        graph->next(*this);
368
        return *this;
369 369
      }
370 370

	
371 371
    };
372 372

	
373 373

	
374
    class ArcIt : public Arc { 
374
    class ArcIt : public Arc {
375 375
      const Graph* graph;
376 376
    public:
377 377

	
378 378
      ArcIt() { }
379 379

	
380 380
      ArcIt(Invalid i) : Arc(i) { }
381 381

	
382 382
      explicit ArcIt(const Graph& _graph) : graph(&_graph) {
383
	_graph.first(static_cast<Arc&>(*this));
383
        _graph.first(static_cast<Arc&>(*this));
384 384
      }
385 385

	
386
      ArcIt(const Graph& _graph, const Arc& e) : 
387
	Arc(e), graph(&_graph) { }
386
      ArcIt(const Graph& _graph, const Arc& e) :
387
        Arc(e), graph(&_graph) { }
388 388

	
389
      ArcIt& operator++() { 
390
	graph->next(*this);
391
	return *this; 
389
      ArcIt& operator++() {
390
        graph->next(*this);
391
        return *this;
392 392
      }
393 393

	
394 394
    };
395 395

	
396 396

	
397
    class OutArcIt : public Arc { 
397
    class OutArcIt : public Arc {
398 398
      const Graph* graph;
399 399
    public:
400 400

	
401 401
      OutArcIt() { }
402 402

	
403 403
      OutArcIt(Invalid i) : Arc(i) { }
404 404

	
405
      OutArcIt(const Graph& _graph, const Node& node) 
406
	: graph(&_graph) {
407
	_graph.firstOut(*this, node);
405
      OutArcIt(const Graph& _graph, const Node& node)
406
        : graph(&_graph) {
407
        _graph.firstOut(*this, node);
408 408
      }
409 409

	
410
      OutArcIt(const Graph& _graph, const Arc& arc) 
411
	: Arc(arc), graph(&_graph) {}
410
      OutArcIt(const Graph& _graph, const Arc& arc)
411
        : Arc(arc), graph(&_graph) {}
412 412

	
413
      OutArcIt& operator++() { 
414
	graph->nextOut(*this);
415
	return *this; 
413
      OutArcIt& operator++() {
414
        graph->nextOut(*this);
415
        return *this;
416 416
      }
417 417

	
418 418
    };
419 419

	
420 420

	
421
    class InArcIt : public Arc { 
421
    class InArcIt : public Arc {
422 422
      const Graph* graph;
423 423
    public:
424 424

	
425 425
      InArcIt() { }
426 426

	
427 427
      InArcIt(Invalid i) : Arc(i) { }
428 428

	
429
      InArcIt(const Graph& _graph, const Node& node) 
430
	: graph(&_graph) {
431
	_graph.firstIn(*this, node);
429
      InArcIt(const Graph& _graph, const Node& node)
430
        : graph(&_graph) {
431
        _graph.firstIn(*this, node);
432 432
      }
433 433

	
434
      InArcIt(const Graph& _graph, const Arc& arc) : 
435
	Arc(arc), graph(&_graph) {}
434
      InArcIt(const Graph& _graph, const Arc& arc) :
435
        Arc(arc), graph(&_graph) {}
436 436

	
437
      InArcIt& operator++() { 
438
	graph->nextIn(*this);
439
	return *this; 
437
      InArcIt& operator++() {
438
        graph->nextIn(*this);
439
        return *this;
440 440
      }
441 441

	
442 442
    };
443 443

	
444 444

	
445
    class EdgeIt : public Parent::Edge { 
445
    class EdgeIt : public Parent::Edge {
446 446
      const Graph* graph;
447 447
    public:
448 448

	
449 449
      EdgeIt() { }
450 450

	
451 451
      EdgeIt(Invalid i) : Edge(i) { }
452 452

	
453 453
      explicit EdgeIt(const Graph& _graph) : graph(&_graph) {
454
	_graph.first(static_cast<Edge&>(*this));
454
        _graph.first(static_cast<Edge&>(*this));
455 455
      }
456 456

	
457
      EdgeIt(const Graph& _graph, const Edge& e) : 
458
	Edge(e), graph(&_graph) { }
457
      EdgeIt(const Graph& _graph, const Edge& e) :
458
        Edge(e), graph(&_graph) { }
459 459

	
460
      EdgeIt& operator++() { 
461
	graph->next(*this);
462
	return *this; 
460
      EdgeIt& operator++() {
461
        graph->next(*this);
462
        return *this;
463 463
      }
464 464

	
465 465
    };
466 466

	
467 467
    class IncEdgeIt : public Parent::Edge {
468 468
      friend class EdgeSetExtender;
... ...
@@ -472,23 +472,23 @@
472 472

	
473 473
      IncEdgeIt() { }
474 474

	
475 475
      IncEdgeIt(Invalid i) : Edge(i), direction(false) { }
476 476

	
477 477
      IncEdgeIt(const Graph& _graph, const Node &n) : graph(&_graph) {
478
	_graph.firstInc(*this, direction, n);
478
        _graph.firstInc(*this, direction, n);
479 479
      }
480 480

	
481 481
      IncEdgeIt(const Graph& _graph, const Edge &ue, const Node &n)
482
	: graph(&_graph), Edge(ue) {
483
	direction = (_graph.source(ue) == n);
482
        : graph(&_graph), Edge(ue) {
483
        direction = (_graph.source(ue) == n);
484 484
      }
485 485

	
486 486
      IncEdgeIt& operator++() {
487
	graph->nextInc(*this, direction);
488
	return *this; 
487
        graph->nextInc(*this, direction);
488
        return *this;
489 489
      }
490 490
    };
491 491

	
492 492
    // \brief Base node of the iterator
493 493
    //
494 494
    // Returns the base node (ie. the source in this case) of the iterator
... ...
@@ -529,55 +529,55 @@
529 529
    Node runningNode(const IncEdgeIt &e) const {
530 530
      return e.direction ? v(e) : u(e);
531 531
    }
532 532

	
533 533

	
534 534
    template <typename _Value>
535
    class ArcMap 
535
    class ArcMap
536 536
      : public MapExtender<DefaultMap<Graph, Arc, _Value> > {
537 537
      typedef MapExtender<DefaultMap<Graph, Arc, _Value> > Parent;
538 538

	
539 539
    public:
540
      explicit ArcMap(const Graph& _g) 
541
	: Parent(_g) {}
542
      ArcMap(const Graph& _g, const _Value& _v) 
543
	: Parent(_g, _v) {}
540
      explicit ArcMap(const Graph& _g)
541
        : Parent(_g) {}
542
      ArcMap(const Graph& _g, const _Value& _v)
543
        : Parent(_g, _v) {}
544 544

	
545 545
      ArcMap& operator=(const ArcMap& cmap) {
546
	return operator=<ArcMap>(cmap);
546
        return operator=<ArcMap>(cmap);
547 547
      }
548 548

	
549 549
      template <typename CMap>
550 550
      ArcMap& operator=(const CMap& cmap) {
551 551
        Parent::operator=(cmap);
552
	return *this;
552
        return *this;
553 553
      }
554 554

	
555 555
    };
556 556

	
557 557

	
558 558
    template <typename _Value>
559
    class EdgeMap 
559
    class EdgeMap
560 560
      : public MapExtender<DefaultMap<Graph, Edge, _Value> > {
561 561
      typedef MapExtender<DefaultMap<Graph, Edge, _Value> > Parent;
562 562

	
563 563
    public:
564
      explicit EdgeMap(const Graph& _g) 
565
	: Parent(_g) {}
564
      explicit EdgeMap(const Graph& _g)
565
        : Parent(_g) {}
566 566

	
567
      EdgeMap(const Graph& _g, const _Value& _v) 
568
	: Parent(_g, _v) {}
567
      EdgeMap(const Graph& _g, const _Value& _v)
568
        : Parent(_g, _v) {}
569 569

	
570 570
      EdgeMap& operator=(const EdgeMap& cmap) {
571
	return operator=<EdgeMap>(cmap);
571
        return operator=<EdgeMap>(cmap);
572 572
      }
573 573

	
574 574
      template <typename CMap>
575 575
      EdgeMap& operator=(const CMap& cmap) {
576 576
        Parent::operator=(cmap);
577
	return *this;
577
        return *this;
578 578
      }
579 579

	
580 580
    };
581 581

	
582 582

	
583 583
    // Alteration extension
... ...
@@ -588,13 +588,13 @@
588 588
      std::vector<Arc> arcs;
589 589
      arcs.push_back(Parent::direct(edge, true));
590 590
      arcs.push_back(Parent::direct(edge, false));
591 591
      notifier(Arc()).add(arcs);
592 592
      return edge;
593 593
    }
594
    
594

	
595 595
    void clear() {
596 596
      notifier(Arc()).clear();
597 597
      notifier(Edge()).clear();
598 598
      Parent::clear();
599 599
    }
600 600

	
... ...
@@ -614,12 +614,12 @@
614 614
    }
615 615

	
616 616
    ~EdgeSetExtender() {
617 617
      edge_notifier.clear();
618 618
      arc_notifier.clear();
619 619
    }
620
    
620

	
621 621
  };
622 622

	
623 623
}
624 624

	
625 625
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -93,13 +93,13 @@
93 93
    {
94 94
      std::ostringstream os;
95 95
#ifdef WIN32
96 96
      SYSTEMTIME time;
97 97
      GetSystemTime(&time);
98 98
      char buf1[11], buf2[9], buf3[5];
99
	  if (GetDateFormat(MY_LOCALE, 0, &time,
99
          if (GetDateFormat(MY_LOCALE, 0, &time,
100 100
                        ("ddd MMM dd"), buf1, 11) &&
101 101
          GetTimeFormat(MY_LOCALE, 0, &time,
102 102
                        ("HH':'mm':'ss"), buf2, 9) &&
103 103
          GetDateFormat(MY_LOCALE, 0, &time,
104 104
                        ("yyyy"), buf3, 5)) {
105 105
        os << buf1 << ' ' << buf2 << ' ' << buf3;
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -381,13 +381,13 @@
381 381
  /// that BucketHeap stores a doubly-linked list for each key while
382 382
  /// this class stores only simply-linked lists. It supports erasing
383 383
  /// only for the item having minimum priority and it does not support
384 384
  /// key increasing and decreasing.
385 385
  ///
386 386
  /// Note that this implementation does not conform to the
387
  /// \ref concepts::Heap "heap concept" due to the lack of some 
387
  /// \ref concepts::Heap "heap concept" due to the lack of some
388 388
  /// functionality.
389 389
  ///
390 390
  /// \tparam IM A read-writable item map with \c int values, used
391 391
  /// internally to handle the cross references.
392 392
  /// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap.
393 393
  /// The default is \e min-heap. If this parameter is set to \c false,
Ignore white space 6 line context
1
/* -*- C++ -*-
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -130,13 +130,13 @@
130 130
      /// upper bound. It means that the objective function is unbounded
131 131
      /// on that arc, however, note that it could actually be bounded
132 132
      /// over the feasible flows, but this algroithm cannot handle
133 133
      /// these cases.
134 134
      UNBOUNDED
135 135
    };
136
  
136

	
137 137
  private:
138 138

	
139 139
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
140 140

	
141 141
    typedef std::vector<int> IntVector;
142 142
    typedef std::vector<Value> ValueVector;
... ...
@@ -181,13 +181,13 @@
181 181

	
182 182
    Value _delta;
183 183
    int _factor;
184 184
    IntVector _pred;
185 185

	
186 186
  public:
187
  
187

	
188 188
    /// \brief Constant for infinite upper bounds (capacities).
189 189
    ///
190 190
    /// Constant for infinite upper bounds (capacities).
191 191
    /// It is \c std::numeric_limits<Value>::infinity() if available,
192 192
    /// \c std::numeric_limits<Value>::max() otherwise.
193 193
    const Value INF;
... ...
@@ -208,16 +208,16 @@
208 208
      const IntVector &_target;
209 209
      const CostVector &_cost;
210 210
      const ValueVector &_res_cap;
211 211
      const ValueVector &_excess;
212 212
      CostVector &_pi;
213 213
      IntVector &_pred;
214
      
214

	
215 215
      IntVector _proc_nodes;
216 216
      CostVector _dist;
217
      
217

	
218 218
    public:
219 219

	
220 220
      ResidualDijkstra(CapacityScaling& cs) :
221 221
        _node_num(cs._node_num), _geq(cs._sum_supply < 0),
222 222
        _first_out(cs._first_out), _target(cs._target), _cost(cs._cost),
223 223
        _res_cap(cs._res_cap), _excess(cs._excess), _pi(cs._pi),
... ...
@@ -436,13 +436,13 @@
436 436
        _supply[i] = 0;
437 437
      }
438 438
      _supply[_node_id[s]] =  k;
439 439
      _supply[_node_id[t]] = -k;
440 440
      return *this;
441 441
    }
442
    
442

	
443 443
    /// @}
444 444

	
445 445
    /// \name Execution control
446 446
    /// The algorithm can be executed using \ref run().
447 447

	
448 448
    /// @{
... ...
@@ -572,13 +572,13 @@
572 572
      _reverse.resize(_res_arc_num);
573 573

	
574 574
      _lower.resize(_res_arc_num);
575 575
      _upper.resize(_res_arc_num);
576 576
      _cost.resize(_res_arc_num);
577 577
      _supply.resize(_node_num);
578
      
578

	
579 579
      _res_cap.resize(_res_arc_num);
580 580
      _pi.resize(_node_num);
581 581
      _excess.resize(_node_num);
582 582
      _pred.resize(_node_num);
583 583

	
584 584
      // Copy the graph
... ...
@@ -616,13 +616,13 @@
616 616
      for (ArcIt a(_graph); a != INVALID; ++a) {
617 617
        int fi = _arc_idf[a];
618 618
        int bi = _arc_idb[a];
619 619
        _reverse[fi] = bi;
620 620
        _reverse[bi] = fi;
621 621
      }
622
      
622

	
623 623
      // Reset parameters
624 624
      resetParams();
625 625
      return *this;
626 626
    }
627 627

	
628 628
    /// @}
... ...
@@ -725,13 +725,13 @@
725 725
      // Check the sum of supply values
726 726
      _sum_supply = 0;
727 727
      for (int i = 0; i != _root; ++i) {
728 728
        _sum_supply += _supply[i];
729 729
      }
730 730
      if (_sum_supply > 0) return INFEASIBLE;
731
      
731

	
732 732
      // Initialize vectors
733 733
      for (int i = 0; i != _root; ++i) {
734 734
        _pi[i] = 0;
735 735
        _excess[i] = _supply[i];
736 736
      }
737 737

	
... ...
@@ -773,13 +773,13 @@
773 773
            _excess[_target[j]] += rc;
774 774
            _res_cap[j] = 0;
775 775
            _res_cap[_reverse[j]] += rc;
776 776
          }
777 777
        }
778 778
      }
779
      
779

	
780 780
      // Handle GEQ supply type
781 781
      if (_sum_supply < 0) {
782 782
        _pi[_root] = 0;
783 783
        _excess[_root] = -_sum_supply;
784 784
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
785 785
          int ra = _reverse[a];
... ...
@@ -841,15 +841,15 @@
841 841

	
842 842
      // Shift potentials if necessary
843 843
      Cost pr = _pi[_root];
844 844
      if (_sum_supply < 0 || pr > 0) {
845 845
        for (int i = 0; i != _node_num; ++i) {
846 846
          _pi[i] -= pr;
847
        }        
847
        }
848 848
      }
849
      
849

	
850 850
      return pt;
851 851
    }
852 852

	
853 853
    // Execute the capacity scaling algorithm
854 854
    ProblemType startWithScaling() {
855 855
      // Perform capacity scaling phases
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -118,13 +118,13 @@
118 118

	
119 119
    virtual void _messageLevel(MessageLevel level);
120 120
    void _applyMessageLevel();
121 121

	
122 122
    int _message_level;
123 123

	
124
    
124

	
125 125

	
126 126
  };
127 127

	
128 128
}
129 129

	
130 130
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -56,14 +56,14 @@
56 56
    /// on the arcs.
57 57
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
58 58
    typedef UM UpperMap;
59 59

	
60 60
    /// \brief The type of supply map.
61 61
    ///
62
    /// The type of the map that stores the signed supply values of the 
63
    /// nodes. 
62
    /// The type of the map that stores the signed supply values of the
63
    /// nodes.
64 64
    /// It must conform to the \ref concepts::ReadMap "ReadMap" concept.
65 65
    typedef SM SupplyMap;
66 66

	
67 67
    /// \brief The type of the flow and supply values.
68 68
    typedef typename SupplyMap::Value Value;
69 69

	
... ...
@@ -138,23 +138,23 @@
138 138
     A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$
139 139
     solution of the following problem.
140 140

	
141 141
     \f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu)
142 142
     \geq sup(u) \quad \forall u\in V, \f]
143 143
     \f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f]
144
     
144

	
145 145
     The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be
146 146
     zero or negative in order to have a feasible solution (since the sum
147 147
     of the expressions on the left-hand side of the inequalities is zero).
148 148
     It means that the total demand must be greater or equal to the total
149 149
     supply and all the supplies have to be carried out from the supply nodes,
150 150
     but there could be demands that are not satisfied.
151 151
     If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand
152 152
     constraints have to be satisfied with equality, i.e. all demands
153 153
     have to be satisfied and all supplies have to be used.
154
     
154

	
155 155
     If you need the opposite inequalities in the supply/demand constraints
156 156
     (i.e. the total demand is less than the total supply and all the demands
157 157
     have to be satisfied while there could be supplies that are not used),
158 158
     then you could easily transform the problem to the above form by reversing
159 159
     the direction of the arcs and taking the negative of the supply values
160 160
     (e.g. using \ref ReverseDigraph and \ref NegMap adaptors).
... ...
@@ -334,13 +334,13 @@
334 334
    /// Constructor.
335 335

	
336 336
    /// The constructor of the class.
337 337
    ///
338 338
    /// \param graph The digraph the algorithm runs on.
339 339
    /// \param lower The lower bounds for the flow values on the arcs.
340
    /// \param upper The upper bounds (capacities) for the flow values 
340
    /// \param upper The upper bounds (capacities) for the flow values
341 341
    /// on the arcs.
342 342
    /// \param supply The signed supply values of the nodes.
343 343
    Circulation(const Digraph &graph, const LowerMap &lower,
344 344
                const UpperMap &upper, const SupplyMap &supply)
345 345
      : _g(graph), _lo(&lower), _up(&upper), _supply(&supply),
346 346
        _flow(NULL), _local_flow(false), _level(NULL), _local_level(false),
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -135,13 +135,13 @@
135 135
    virtual ProblemType _getPrimalType() const;
136 136
    virtual ProblemType _getDualType() const;
137 137

	
138 138
    virtual void _clear();
139 139

	
140 140
    virtual void _messageLevel(MessageLevel);
141
    
141

	
142 142
  public:
143 143

	
144 144
    ///Solves LP with primal simplex method.
145 145
    SolveExitStatus solvePrimal();
146 146

	
147 147
    ///Solves LP with dual simplex method.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -431,13 +431,13 @@
431 431
        explicit NodeMap(const Digraph&) { }
432 432
        /// Constructor with given initial value
433 433
        NodeMap(const Digraph&, T) { }
434 434

	
435 435
      private:
436 436
        ///Copy constructor
437
        NodeMap(const NodeMap& nm) : 
437
        NodeMap(const NodeMap& nm) :
438 438
          ReferenceMap<Node, T, T&, const T&>(nm) { }
439 439
        ///Assignment operator
440 440
        template <typename CMap>
441 441
        NodeMap& operator=(const CMap&) {
442 442
          checkConcept<ReadMap<Node, T>, CMap>();
443 443
          return *this;
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -40,13 +40,13 @@
40 40
    ///
41 41
    /// Like all concept classes, it only provides an interface
42 42
    /// without any sensible implementation. So any general algorithm for
43 43
    /// undirected graphs should compile with this class, but it will not
44 44
    /// run properly, of course.
45 45
    /// An actual graph implementation like \ref ListGraph or
46
    /// \ref SmartGraph may have additional functionality.    
46
    /// \ref SmartGraph may have additional functionality.
47 47
    ///
48 48
    /// The undirected graphs also fulfill the concept of \ref Digraph
49 49
    /// "directed graphs", since each edge can also be regarded as two
50 50
    /// oppositely directed arcs.
51 51
    /// Undirected graphs provide an Edge type for the undirected edges and
52 52
    /// an Arc type for the directed arcs. The Arc type is convertible to
... ...
@@ -82,13 +82,13 @@
82 82
      /// Default constructor.
83 83
      Graph() {}
84 84

	
85 85
      /// \brief Undirected graphs should be tagged with \c UndirectedTag.
86 86
      ///
87 87
      /// Undirected graphs should be tagged with \c UndirectedTag.
88
      /// 
88
      ///
89 89
      /// This tag helps the \c enable_if technics to make compile time
90 90
      /// specializations for undirected graphs.
91 91
      typedef True UndirectedTag;
92 92

	
93 93
      /// The node type of the graph
94 94

	
... ...
@@ -357,13 +357,13 @@
357 357
        /// \note This operator only has to define some strict ordering of
358 358
        /// the arcs; this order has nothing to do with the iteration
359 359
        /// ordering of the arcs.
360 360
        bool operator<(Arc) const { return false; }
361 361

	
362 362
        /// Converison to \c Edge
363
        
363

	
364 364
        /// Converison to \c Edge.
365 365
        ///
366 366
        operator Edge() const { return Edge(); }
367 367
      };
368 368

	
369 369
      /// Iterator class for the arcs.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -35,13 +35,13 @@
35 35
    ///
36 36
    /// This class describes the concept of \c Node, \c Arc and \c Edge
37 37
    /// subtypes of digraph and graph types.
38 38
    ///
39 39
    /// \note This class is a template class so that we can use it to
40 40
    /// create graph skeleton classes. The reason for this is that \c Node
41
    /// and \c Arc (or \c Edge) types should \e not derive from the same 
41
    /// and \c Arc (or \c Edge) types should \e not derive from the same
42 42
    /// base class. For \c Node you should instantiate it with character
43 43
    /// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'.
44 44
#ifndef DOXYGEN
45 45
    template <char sel = '0'>
46 46
#endif
47 47
    class GraphItem {
... ...
@@ -86,13 +86,13 @@
86 86
      /// Inequality operator.
87 87
      bool operator!=(const GraphItem&) const { return false; }
88 88

	
89 89
      /// \brief Ordering operator.
90 90
      ///
91 91
      /// This operator defines an ordering of the items.
92
      /// It makes possible to use graph item types as key types in 
92
      /// It makes possible to use graph item types as key types in
93 93
      /// associative containers (e.g. \c std::map).
94 94
      ///
95 95
      /// \note This operator only has to define some strict ordering of
96 96
      /// the items; this order has nothing to do with the iteration
97 97
      /// ordering of the items.
98 98
      bool operator<(const GraphItem&) const { return false; }
... ...
@@ -119,13 +119,13 @@
119 119
    };
120 120

	
121 121
    /// \brief Base skeleton class for directed graphs.
122 122
    ///
123 123
    /// This class describes the base interface of directed graph types.
124 124
    /// All digraph %concepts have to conform to this class.
125
    /// It just provides types for nodes and arcs and functions 
125
    /// It just provides types for nodes and arcs and functions
126 126
    /// to get the source and the target nodes of arcs.
127 127
    class BaseDigraphComponent {
128 128
    public:
129 129

	
130 130
      typedef BaseDigraphComponent Digraph;
131 131

	
... ...
@@ -423,13 +423,13 @@
423 423
        const _Graph& graph;
424 424
      };
425 425
    };
426 426

	
427 427
    /// \brief Concept class for \c NodeIt, \c ArcIt and \c EdgeIt types.
428 428
    ///
429
    /// This class describes the concept of \c NodeIt, \c ArcIt and 
429
    /// This class describes the concept of \c NodeIt, \c ArcIt and
430 430
    /// \c EdgeIt subtypes of digraph and graph types.
431 431
    template <typename GR, typename Item>
432 432
    class GraphItemIt : public Item {
433 433
    public:
434 434
      /// \brief Default constructor.
435 435
      ///
... ...
@@ -463,13 +463,13 @@
463 463

	
464 464
      /// \brief Increment the iterator.
465 465
      ///
466 466
      /// This operator increments the iterator, i.e. assigns it to the
467 467
      /// next item.
468 468
      GraphItemIt& operator++() { return *this; }
469
 
469

	
470 470
      /// \brief Equality operator
471 471
      ///
472 472
      /// Equality operator.
473 473
      /// Two iterators are equal if and only if they point to the
474 474
      /// same object or both are invalid.
475 475
      bool operator==(const GraphItemIt&) const { return true;}
... ...
@@ -498,21 +498,21 @@
498 498
          bi = it2;
499 499
        }
500 500
        const GR& g;
501 501
      };
502 502
    };
503 503

	
504
    /// \brief Concept class for \c InArcIt, \c OutArcIt and 
504
    /// \brief Concept class for \c InArcIt, \c OutArcIt and
505 505
    /// \c IncEdgeIt types.
506 506
    ///
507
    /// This class describes the concept of \c InArcIt, \c OutArcIt 
507
    /// This class describes the concept of \c InArcIt, \c OutArcIt
508 508
    /// and \c IncEdgeIt subtypes of digraph and graph types.
509 509
    ///
510 510
    /// \note Since these iterator classes do not inherit from the same
511 511
    /// base class, there is an additional template parameter (selector)
512
    /// \c sel. For \c InArcIt you should instantiate it with character 
512
    /// \c sel. For \c InArcIt you should instantiate it with character
513 513
    /// \c 'i', for \c OutArcIt with \c 'o' and for \c IncEdgeIt with \c 'e'.
514 514
    template <typename GR,
515 515
              typename Item = typename GR::Arc,
516 516
              typename Base = typename GR::Node,
517 517
              char sel = '0'>
518 518
    class GraphIncIt : public Item {
... ...
@@ -527,16 +527,16 @@
527 527

	
528 528
      /// \brief Copy constructor.
529 529
      ///
530 530
      /// Copy constructor.
531 531
      GraphIncIt(const GraphIncIt& it) : Item(it) {}
532 532

	
533
      /// \brief Constructor that sets the iterator to the first 
533
      /// \brief Constructor that sets the iterator to the first
534 534
      /// incoming or outgoing arc.
535 535
      ///
536
      /// Constructor that sets the iterator to the first arc 
536
      /// Constructor that sets the iterator to the first arc
537 537
      /// incoming to or outgoing from the given node.
538 538
      explicit GraphIncIt(const GR&, const Base&) {}
539 539

	
540 540
      /// \brief Constructor for conversion from \c INVALID.
541 541
      ///
542 542
      /// Constructor for conversion from \c INVALID.
... ...
@@ -801,22 +801,22 @@
801 801
      ///
802 802
      /// This function gives back the next edge in the iteration order.
803 803
      void next(Edge&) const {}
804 804

	
805 805
      /// \brief Return the first edge incident to the given node.
806 806
      ///
807
      /// This function gives back the first edge incident to the given 
807
      /// This function gives back the first edge incident to the given
808 808
      /// node. The bool parameter gives back the direction for which the
809
      /// source node of the directed arc representing the edge is the 
809
      /// source node of the directed arc representing the edge is the
810 810
      /// given node.
811 811
      void firstInc(Edge&, bool&, const Node&) const {}
812 812

	
813 813
      /// \brief Gives back the next of the edges from the
814 814
      /// given node.
815 815
      ///
816
      /// This function gives back the next edge incident to the given 
816
      /// This function gives back the next edge incident to the given
817 817
      /// node. The bool parameter should be used as \c firstInc() use it.
818 818
      void nextInc(Edge&, bool&) const {}
819 819

	
820 820
      using IterableDigraphComponent<Base>::baseNode;
821 821
      using IterableDigraphComponent<Base>::runningNode;
822 822

	
... ...
@@ -987,13 +987,13 @@
987 987
      };
988 988
    };
989 989

	
990 990
    /// \brief Concept class for standard graph maps.
991 991
    ///
992 992
    /// This class describes the concept of standard graph maps, i.e.
993
    /// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and 
993
    /// the \c NodeMap, \c ArcMap and \c EdgeMap subtypes of digraph and
994 994
    /// graph types, which can be used for associating data to graph items.
995 995
    /// The standard graph maps must conform to the ReferenceMap concept.
996 996
    template <typename GR, typename K, typename V>
997 997
    class GraphMap : public ReferenceMap<K, V, V&, const V&> {
998 998
      typedef ReferenceMap<K, V, V&, const V&> Parent;
999 999

	
... ...
@@ -1042,13 +1042,13 @@
1042 1042
      struct Constraints {
1043 1043
        void constraints() {
1044 1044
          checkConcept
1045 1045
            <ReferenceMap<Key, Value, Value&, const Value&>, _Map>();
1046 1046
          _Map m1(g);
1047 1047
          _Map m2(g,t);
1048
          
1048

	
1049 1049
          // Copy constructor
1050 1050
          // _Map m3(m);
1051 1051

	
1052 1052
          // Assignment operator
1053 1053
          // ReadMap<Key, Value> cmap;
1054 1054
          // m3 = cmap;
... ...
@@ -1065,13 +1065,13 @@
1065 1065

	
1066 1066
    };
1067 1067

	
1068 1068
    /// \brief Skeleton class for mappable directed graphs.
1069 1069
    ///
1070 1070
    /// This class describes the interface of mappable directed graphs.
1071
    /// It extends \ref BaseDigraphComponent with the standard digraph 
1071
    /// It extends \ref BaseDigraphComponent with the standard digraph
1072 1072
    /// map classes, namely \c NodeMap and \c ArcMap.
1073 1073
    /// This concept is part of the Digraph concept.
1074 1074
    template <typename BAS = BaseDigraphComponent>
1075 1075
    class MappableDigraphComponent : public BAS  {
1076 1076
    public:
1077 1077

	
... ...
@@ -1202,13 +1202,13 @@
1202 1202
      };
1203 1203
    };
1204 1204

	
1205 1205
    /// \brief Skeleton class for mappable undirected graphs.
1206 1206
    ///
1207 1207
    /// This class describes the interface of mappable undirected graphs.
1208
    /// It extends \ref MappableDigraphComponent with the standard graph 
1208
    /// It extends \ref MappableDigraphComponent with the standard graph
1209 1209
    /// map class for edges (\c EdgeMap).
1210 1210
    /// This concept is part of the Graph concept.
1211 1211
    template <typename BAS = BaseGraphComponent>
1212 1212
    class MappableGraphComponent : public MappableDigraphComponent<BAS>  {
1213 1213
    public:
1214 1214

	
... ...
@@ -1287,13 +1287,13 @@
1287 1287
      };
1288 1288
    };
1289 1289

	
1290 1290
    /// \brief Skeleton class for extendable directed graphs.
1291 1291
    ///
1292 1292
    /// This class describes the interface of extendable directed graphs.
1293
    /// It extends \ref BaseDigraphComponent with functions for adding 
1293
    /// It extends \ref BaseDigraphComponent with functions for adding
1294 1294
    /// nodes and arcs to the digraph.
1295 1295
    /// This concept requires \ref AlterableDigraphComponent.
1296 1296
    template <typename BAS = BaseDigraphComponent>
1297 1297
    class ExtendableDigraphComponent : public BAS {
1298 1298
    public:
1299 1299
      typedef BAS Base;
... ...
@@ -1331,13 +1331,13 @@
1331 1331
      };
1332 1332
    };
1333 1333

	
1334 1334
    /// \brief Skeleton class for extendable undirected graphs.
1335 1335
    ///
1336 1336
    /// This class describes the interface of extendable undirected graphs.
1337
    /// It extends \ref BaseGraphComponent with functions for adding 
1337
    /// It extends \ref BaseGraphComponent with functions for adding
1338 1338
    /// nodes and edges to the graph.
1339 1339
    /// This concept requires \ref AlterableGraphComponent.
1340 1340
    template <typename BAS = BaseGraphComponent>
1341 1341
    class ExtendableGraphComponent : public BAS {
1342 1342
    public:
1343 1343

	
... ...
@@ -1375,26 +1375,26 @@
1375 1375
      };
1376 1376
    };
1377 1377

	
1378 1378
    /// \brief Skeleton class for erasable directed graphs.
1379 1379
    ///
1380 1380
    /// This class describes the interface of erasable directed graphs.
1381
    /// It extends \ref BaseDigraphComponent with functions for removing 
1381
    /// It extends \ref BaseDigraphComponent with functions for removing
1382 1382
    /// nodes and arcs from the digraph.
1383 1383
    /// This concept requires \ref AlterableDigraphComponent.
1384 1384
    template <typename BAS = BaseDigraphComponent>
1385 1385
    class ErasableDigraphComponent : public BAS {
1386 1386
    public:
1387 1387

	
1388 1388
      typedef BAS Base;
1389 1389
      typedef typename Base::Node Node;
1390 1390
      typedef typename Base::Arc Arc;
1391 1391

	
1392 1392
      /// \brief Erase a node from the digraph.
1393 1393
      ///
1394
      /// This function erases the given node from the digraph and all arcs 
1394
      /// This function erases the given node from the digraph and all arcs
1395 1395
      /// connected to the node.
1396 1396
      void erase(const Node&) {}
1397 1397

	
1398 1398
      /// \brief Erase an arc from the digraph.
1399 1399
      ///
1400 1400
      /// This function erases the given arc from the digraph.
... ...
@@ -1414,13 +1414,13 @@
1414 1414
      };
1415 1415
    };
1416 1416

	
1417 1417
    /// \brief Skeleton class for erasable undirected graphs.
1418 1418
    ///
1419 1419
    /// This class describes the interface of erasable undirected graphs.
1420
    /// It extends \ref BaseGraphComponent with functions for removing 
1420
    /// It extends \ref BaseGraphComponent with functions for removing
1421 1421
    /// nodes and edges from the graph.
1422 1422
    /// This concept requires \ref AlterableGraphComponent.
1423 1423
    template <typename BAS = BaseGraphComponent>
1424 1424
    class ErasableGraphComponent : public BAS {
1425 1425
    public:
1426 1426

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -89,13 +89,13 @@
89 89
      /// handle the cross references. The assigned value must be
90 90
      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
91 91
#ifdef DOXYGEN
92 92
      explicit Heap(ItemIntMap &map) {}
93 93
#else
94 94
      explicit Heap(ItemIntMap&) {}
95
#endif      
95
#endif
96 96

	
97 97
      /// \brief Constructor.
98 98
      ///
99 99
      /// Constructor.
100 100
      /// \param map A map that assigns \c int values to keys of type
101 101
      /// \c Item. It is used internally by the heap implementations to
... ...
@@ -103,13 +103,13 @@
103 103
      /// \c PRE_HEAP (<tt>-1</tt>) for each item.
104 104
      /// \param comp The function object used for comparing the priorities.
105 105
#ifdef DOXYGEN
106 106
      explicit Heap(ItemIntMap &map, const CMP &comp) {}
107 107
#else
108 108
      explicit Heap(ItemIntMap&, const CMP&) {}
109
#endif      
109
#endif
110 110

	
111 111
      /// \brief The number of items stored in the heap.
112 112
      ///
113 113
      /// This function returns the number of items stored in the heap.
114 114
      int size() const { return 0; }
115 115

	
... ...
@@ -135,13 +135,13 @@
135 135
      /// \param p The priority of the item.
136 136
      /// \pre \e i must not be stored in the heap.
137 137
#ifdef DOXYGEN
138 138
      void push(const Item &i, const Prio &p) {}
139 139
#else
140 140
      void push(const Item&, const Prio&) {}
141
#endif      
141
#endif
142 142

	
143 143
      /// \brief Return the item having minimum priority.
144 144
      ///
145 145
      /// This function returns the item having minimum priority.
146 146
      /// \pre The heap must be non-empty.
147 147
      Item top() const { return Item(); }
... ...
@@ -165,24 +165,24 @@
165 165
      /// \param i The item to delete.
166 166
      /// \pre \e i must be in the heap.
167 167
#ifdef DOXYGEN
168 168
      void erase(const Item &i) {}
169 169
#else
170 170
      void erase(const Item&) {}
171
#endif      
171
#endif
172 172

	
173 173
      /// \brief The priority of the given item.
174 174
      ///
175 175
      /// This function returns the priority of the given item.
176 176
      /// \param i The item.
177 177
      /// \pre \e i must be in the heap.
178 178
#ifdef DOXYGEN
179 179
      Prio operator[](const Item &i) const {}
180 180
#else
181 181
      Prio operator[](const Item&) const { return Prio(); }
182
#endif      
182
#endif
183 183

	
184 184
      /// \brief Set the priority of an item or insert it, if it is
185 185
      /// not stored in the heap.
186 186
      ///
187 187
      /// This method sets the priority of the given item if it is
188 188
      /// already stored in the heap. Otherwise it inserts the given
... ...
@@ -191,37 +191,37 @@
191 191
      /// \param i The item.
192 192
      /// \param p The priority.
193 193
#ifdef DOXYGEN
194 194
      void set(const Item &i, const Prio &p) {}
195 195
#else
196 196
      void set(const Item&, const Prio&) {}
197
#endif      
197
#endif
198 198

	
199 199
      /// \brief Decrease the priority of an item to the given value.
200 200
      ///
201 201
      /// This function decreases the priority of an item to the given value.
202 202
      /// \param i The item.
203 203
      /// \param p The priority.
204 204
      /// \pre \e i must be stored in the heap with priority at least \e p.
205 205
#ifdef DOXYGEN
206 206
      void decrease(const Item &i, const Prio &p) {}
207 207
#else
208 208
      void decrease(const Item&, const Prio&) {}
209
#endif      
209
#endif
210 210

	
211 211
      /// \brief Increase the priority of an item to the given value.
212 212
      ///
213 213
      /// This function increases the priority of an item to the given value.
214 214
      /// \param i The item.
215 215
      /// \param p The priority.
216 216
      /// \pre \e i must be stored in the heap with priority at most \e p.
217 217
#ifdef DOXYGEN
218 218
      void increase(const Item &i, const Prio &p) {}
219 219
#else
220 220
      void increase(const Item&, const Prio&) {}
221
#endif      
221
#endif
222 222

	
223 223
      /// \brief Return the state of an item.
224 224
      ///
225 225
      /// This method returns \c PRE_HEAP if the given item has never
226 226
      /// been in the heap, \c IN_HEAP if it is in the heap at the moment,
227 227
      /// and \c POST_HEAP otherwise.
... ...
@@ -229,26 +229,26 @@
229 229
      /// to the heap again.
230 230
      /// \param i The item.
231 231
#ifdef DOXYGEN
232 232
      State state(const Item &i) const {}
233 233
#else
234 234
      State state(const Item&) const { return PRE_HEAP; }
235
#endif      
235
#endif
236 236

	
237 237
      /// \brief Set the state of an item in the heap.
238 238
      ///
239 239
      /// This function sets the state of the given item in the heap.
240 240
      /// It can be used to manually clear the heap when it is important
241 241
      /// to achive better time complexity.
242 242
      /// \param i The item.
243 243
      /// \param st The state. It should not be \c IN_HEAP.
244 244
#ifdef DOXYGEN
245 245
      void state(const Item& i, State st) {}
246 246
#else
247 247
      void state(const Item&, State) {}
248
#endif      
248
#endif
249 249

	
250 250

	
251 251
      template <typename _Heap>
252 252
      struct Constraints {
253 253
      public:
254 254
        void constraints() {
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -255,13 +255,13 @@
255 255
  /// This function checks whether the given directed graph is strongly
256 256
  /// connected, i.e. any two nodes of the digraph are
257 257
  /// connected with directed paths in both direction.
258 258
  ///
259 259
  /// \return \c true if the digraph is strongly connected.
260 260
  /// \note By definition, the empty digraph is strongly connected.
261
  /// 
261
  ///
262 262
  /// \see countStronglyConnectedComponents(), stronglyConnectedComponents()
263 263
  /// \see connected()
264 264
  template <typename Digraph>
265 265
  bool stronglyConnected(const Digraph& digraph) {
266 266
    checkConcept<concepts::Digraph, Digraph>();
267 267

	
... ...
@@ -307,13 +307,13 @@
307 307

	
308 308
    return true;
309 309
  }
310 310

	
311 311
  /// \ingroup graph_properties
312 312
  ///
313
  /// \brief Count the number of strongly connected components of a 
313
  /// \brief Count the number of strongly connected components of a
314 314
  /// directed graph
315 315
  ///
316 316
  /// This function counts the number of strongly connected components of
317 317
  /// the given directed graph.
318 318
  ///
319 319
  /// The strongly connected components are the classes of an
... ...
@@ -741,13 +741,13 @@
741 741
  int countBiNodeConnectedComponents(const Graph& graph);
742 742

	
743 743
  /// \ingroup graph_properties
744 744
  ///
745 745
  /// \brief Check whether an undirected graph is bi-node-connected.
746 746
  ///
747
  /// This function checks whether the given undirected graph is 
747
  /// This function checks whether the given undirected graph is
748 748
  /// bi-node-connected, i.e. any two edges are on same circle.
749 749
  ///
750 750
  /// \return \c true if the graph bi-node-connected.
751 751
  /// \note By definition, the empty graph is bi-node-connected.
752 752
  ///
753 753
  /// \see countBiNodeConnectedComponents(), biNodeConnectedComponents()
... ...
@@ -755,13 +755,13 @@
755 755
  bool biNodeConnected(const Graph& graph) {
756 756
    return countBiNodeConnectedComponents(graph) <= 1;
757 757
  }
758 758

	
759 759
  /// \ingroup graph_properties
760 760
  ///
761
  /// \brief Count the number of bi-node-connected components of an 
761
  /// \brief Count the number of bi-node-connected components of an
762 762
  /// undirected graph.
763 763
  ///
764 764
  /// This function counts the number of bi-node-connected components of
765 765
  /// the given undirected graph.
766 766
  ///
767 767
  /// The bi-node-connected components are the classes of an equivalence
... ...
@@ -809,13 +809,13 @@
809 809
  /// \image html node_biconnected_components.png
810 810
  /// \image latex node_biconnected_components.eps "bi-node-connected components" width=\textwidth
811 811
  ///
812 812
  /// \param graph The undirected graph.
813 813
  /// \retval compMap A writable edge map. The values will be set from 0
814 814
  /// to the number of the bi-node-connected components minus one. Each
815
  /// value of the map will be set exactly once, and the values of a 
815
  /// value of the map will be set exactly once, and the values of a
816 816
  /// certain component will be set continuously.
817 817
  /// \return The number of bi-node-connected components.
818 818
  ///
819 819
  /// \see biNodeConnected(), countBiNodeConnectedComponents()
820 820
  template <typename Graph, typename EdgeMap>
821 821
  int biNodeConnectedComponents(const Graph& graph,
... ...
@@ -855,13 +855,13 @@
855 855
  /// relation on the edges of a undirected graph. Two edges are in the
856 856
  /// same class if they are on same circle.
857 857
  /// The bi-node-connected components are separted by the cut nodes of
858 858
  /// the components.
859 859
  ///
860 860
  /// \param graph The undirected graph.
861
  /// \retval cutMap A writable node map. The values will be set to 
861
  /// \retval cutMap A writable node map. The values will be set to
862 862
  /// \c true for the nodes that separate two or more components
863 863
  /// (exactly once for each cut node), and will not be changed for
864 864
  /// other nodes.
865 865
  /// \return The number of the cut nodes.
866 866
  ///
867 867
  /// \see biNodeConnected(), biNodeConnectedComponents()
... ...
@@ -1082,13 +1082,13 @@
1082 1082
  int countBiEdgeConnectedComponents(const Graph& graph);
1083 1083

	
1084 1084
  /// \ingroup graph_properties
1085 1085
  ///
1086 1086
  /// \brief Check whether an undirected graph is bi-edge-connected.
1087 1087
  ///
1088
  /// This function checks whether the given undirected graph is 
1088
  /// This function checks whether the given undirected graph is
1089 1089
  /// bi-edge-connected, i.e. any two nodes are connected with at least
1090 1090
  /// two edge-disjoint paths.
1091 1091
  ///
1092 1092
  /// \return \c true if the graph is bi-edge-connected.
1093 1093
  /// \note By definition, the empty graph is bi-edge-connected.
1094 1094
  ///
... ...
@@ -1189,13 +1189,13 @@
1189 1189

	
1190 1190
  /// \ingroup graph_properties
1191 1191
  ///
1192 1192
  /// \brief Find the bi-edge-connected cut edges in an undirected graph.
1193 1193
  ///
1194 1194
  /// This function finds the bi-edge-connected cut edges in the given
1195
  /// undirected graph. 
1195
  /// undirected graph.
1196 1196
  ///
1197 1197
  /// The bi-edge-connected components are the classes of an equivalence
1198 1198
  /// relation on the nodes of an undirected graph. Two nodes are in the
1199 1199
  /// same class if they are connected with at least two edge-disjoint
1200 1200
  /// paths.
1201 1201
  /// The bi-edge-connected components are separted by the cut edges of
... ...
@@ -1346,13 +1346,13 @@
1346 1346
  /// This function sorts the nodes of the given acyclic digraph (DAG)
1347 1347
  /// into topolgical order and also checks whether the given digraph
1348 1348
  /// is DAG.
1349 1349
  ///
1350 1350
  /// \param digraph The digraph.
1351 1351
  /// \retval order A readable and writable node map. The values will be
1352
  /// set from 0 to the number of the nodes in the digraph minus one. 
1352
  /// set from 0 to the number of the nodes in the digraph minus one.
1353 1353
  /// Each value of the map will be set exactly once, and the values will
1354 1354
  /// be set descending order.
1355 1355
  /// \return \c false if the digraph is not DAG.
1356 1356
  ///
1357 1357
  /// \see dag(), topologicalSort()
1358 1358
  template <typename Digraph, typename NodeMap>
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -1236,13 +1236,14 @@
1236 1236

	
1237 1237
    /// The Digraph type
1238 1238
    typedef GR Digraph;
1239 1239

	
1240 1240
  protected:
1241 1241

	
1242
    class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type {
1242
    class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type
1243
    {
1243 1244
      typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent;
1244 1245

	
1245 1246
    public:
1246 1247

	
1247 1248
      AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {}
1248 1249

	
... ...
@@ -1275,13 +1276,13 @@
1275 1276
      bool operator()(Arc a,Arc b) const
1276 1277
      {
1277 1278
        return g.target(a)<g.target(b);
1278 1279
      }
1279 1280
    };
1280 1281

	
1281
  protected: 
1282
  protected:
1282 1283

	
1283 1284
    const Digraph &_g;
1284 1285
    AutoNodeMap _head;
1285 1286
    typename Digraph::template ArcMap<Arc> _parent;
1286 1287
    typename Digraph::template ArcMap<Arc> _left;
1287 1288
    typename Digraph::template ArcMap<Arc> _right;
Ignore white space 6 line context
1
/* -*- C++ -*-
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -89,13 +89,13 @@
89 89
  /// \brief Implementation of the Cost Scaling algorithm for
90 90
  /// finding a \ref min_cost_flow "minimum cost flow".
91 91
  ///
92 92
  /// \ref CostScaling implements a cost scaling algorithm that performs
93 93
  /// push/augment and relabel operations for finding a \ref min_cost_flow
94 94
  /// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation,
95
  /// \ref goldberg97efficient, \ref bunnagel98efficient. 
95
  /// \ref goldberg97efficient, \ref bunnagel98efficient.
96 96
  /// It is a highly efficient primal-dual solution method, which
97 97
  /// can be viewed as the generalization of the \ref Preflow
98 98
  /// "preflow push-relabel" algorithm for the maximum flow problem.
99 99
  ///
100 100
  /// Most of the parameters of the problem (except for the digraph)
101 101
  /// can be given using separate functions, and the algorithm can be
... ...
@@ -186,13 +186,13 @@
186 186
      /// Local push operations are used, i.e. flow is moved only on one
187 187
      /// admissible arc at once.
188 188
      PUSH,
189 189
      /// Augment operations are used, i.e. flow is moved on admissible
190 190
      /// paths from a node with excess to a node with deficit.
191 191
      AUGMENT,
192
      /// Partial augment operations are used, i.e. flow is moved on 
192
      /// Partial augment operations are used, i.e. flow is moved on
193 193
      /// admissible paths started from a node with excess, but the
194 194
      /// lengths of these paths are limited. This method can be viewed
195 195
      /// as a combined version of the previous two operations.
196 196
      PARTIAL_AUGMENT
197 197
    };
198 198

	
... ...
@@ -205,29 +205,29 @@
205 205
    typedef std::vector<Cost> CostVector;
206 206
    typedef std::vector<LargeCost> LargeCostVector;
207 207
    typedef std::vector<char> BoolVector;
208 208
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
209 209

	
210 210
  private:
211
  
211

	
212 212
    template <typename KT, typename VT>
213 213
    class StaticVectorMap {
214 214
    public:
215 215
      typedef KT Key;
216 216
      typedef VT Value;
217
      
217

	
218 218
      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
219
      
219

	
220 220
      const Value& operator[](const Key& key) const {
221 221
        return _v[StaticDigraph::id(key)];
222 222
      }
223 223

	
224 224
      Value& operator[](const Key& key) {
225 225
        return _v[StaticDigraph::id(key)];
226 226
      }
227
      
227

	
228 228
      void set(const Key& key, const Value& val) {
229 229
        _v[StaticDigraph::id(key)] = val;
230 230
      }
231 231

	
232 232
    private:
233 233
      std::vector<Value>& _v;
... ...
@@ -280,23 +280,23 @@
280 280

	
281 281
    IntVector _buckets;
282 282
    IntVector _bucket_next;
283 283
    IntVector _bucket_prev;
284 284
    IntVector _rank;
285 285
    int _max_rank;
286
  
286

	
287 287
    // Data for a StaticDigraph structure
288 288
    typedef std::pair<int, int> IntPair;
289 289
    StaticDigraph _sgr;
290 290
    std::vector<IntPair> _arc_vec;
291 291
    std::vector<LargeCost> _cost_vec;
292 292
    LargeCostArcMap _cost_map;
293 293
    LargeCostNodeMap _pi_map;
294
  
294

	
295 295
  public:
296
  
296

	
297 297
    /// \brief Constant for infinite upper bounds (capacities).
298 298
    ///
299 299
    /// Constant for infinite upper bounds (capacities).
300 300
    /// It is \c std::numeric_limits<Value>::infinity() if available,
301 301
    /// \c std::numeric_limits<Value>::max() otherwise.
302 302
    const Value INF;
... ...
@@ -345,13 +345,13 @@
345 345
    {
346 346
      // Check the number types
347 347
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
348 348
        "The flow type of CostScaling must be signed");
349 349
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
350 350
        "The cost type of CostScaling must be signed");
351
      
351

	
352 352
      // Reset data structures
353 353
      reset();
354 354
    }
355 355

	
356 356
    /// \name Parameters
357 357
    /// The parameters of the algorithm can be specified using these
... ...
@@ -461,13 +461,13 @@
461 461
        _supply[i] = 0;
462 462
      }
463 463
      _supply[_node_id[s]] =  k;
464 464
      _supply[_node_id[t]] = -k;
465 465
      return *this;
466 466
    }
467
    
467

	
468 468
    /// @}
469 469

	
470 470
    /// \name Execution control
471 471
    /// The algorithm can be executed using \ref run().
472 472

	
473 473
    /// @{
... ...
@@ -563,13 +563,13 @@
563 563
      }
564 564
      for (int j = limit; j != _res_arc_num; ++j) {
565 565
        _lower[j] = 0;
566 566
        _upper[j] = INF;
567 567
        _scost[j] = 0;
568 568
        _scost[_reverse[j]] = 0;
569
      }      
569
      }
570 570
      _have_lower = false;
571 571
      return *this;
572 572
    }
573 573

	
574 574
    /// \brief Reset all the parameters that have been given before.
575 575
    ///
... ...
@@ -598,13 +598,13 @@
598 598
      _reverse.resize(_res_arc_num);
599 599

	
600 600
      _lower.resize(_res_arc_num);
601 601
      _upper.resize(_res_arc_num);
602 602
      _scost.resize(_res_arc_num);
603 603
      _supply.resize(_res_node_num);
604
      
604

	
605 605
      _res_cap.resize(_res_arc_num);
606 606
      _cost.resize(_res_arc_num);
607 607
      _pi.resize(_res_node_num);
608 608
      _excess.resize(_res_node_num);
609 609
      _next_out.resize(_res_node_num);
610 610

	
... ...
@@ -646,13 +646,13 @@
646 646
      for (ArcIt a(_graph); a != INVALID; ++a) {
647 647
        int fi = _arc_idf[a];
648 648
        int bi = _arc_idb[a];
649 649
        _reverse[fi] = bi;
650 650
        _reverse[bi] = fi;
651 651
      }
652
      
652

	
653 653
      // Reset parameters
654 654
      resetParams();
655 655
      return *this;
656 656
    }
657 657

	
658 658
    /// @}
... ...
@@ -755,20 +755,20 @@
755 755
      // Check the sum of supply values
756 756
      _sum_supply = 0;
757 757
      for (int i = 0; i != _root; ++i) {
758 758
        _sum_supply += _supply[i];
759 759
      }
760 760
      if (_sum_supply > 0) return INFEASIBLE;
761
      
761

	
762 762

	
763 763
      // Initialize vectors
764 764
      for (int i = 0; i != _res_node_num; ++i) {
765 765
        _pi[i] = 0;
766 766
        _excess[i] = _supply[i];
767 767
      }
768
      
768

	
769 769
      // Remove infinite upper bounds and check negative arcs
770 770
      const Value MAX = std::numeric_limits<Value>::max();
771 771
      int last_out;
772 772
      if (_have_lower) {
773 773
        for (int i = 0; i != _root; ++i) {
774 774
          last_out = _first_out[i+1];
... ...
@@ -882,28 +882,28 @@
882 882
          _res_cap[a] = 0;
883 883
          _res_cap[ra] = 0;
884 884
          _cost[a] = 0;
885 885
          _cost[ra] = 0;
886 886
        }
887 887
      }
888
      
888

	
889 889
      return OPTIMAL;
890 890
    }
891 891

	
892 892
    // Execute the algorithm and transform the results
893 893
    void start(Method method) {
894 894
      // Maximum path length for partial augment
895 895
      const int MAX_PATH_LENGTH = 4;
896 896

	
897
      // Initialize data structures for buckets      
897
      // Initialize data structures for buckets
898 898
      _max_rank = _alpha * _res_node_num;
899 899
      _buckets.resize(_max_rank);
900 900
      _bucket_next.resize(_res_node_num + 1);
901 901
      _bucket_prev.resize(_res_node_num + 1);
902 902
      _rank.resize(_res_node_num + 1);
903
  
903

	
904 904
      // Execute the algorithm
905 905
      switch (method) {
906 906
        case PUSH:
907 907
          startPush();
908 908
          break;
909 909
        case AUGMENT:
... ...
@@ -936,13 +936,13 @@
936 936
        int limit = _first_out[_root];
937 937
        for (int j = 0; j != limit; ++j) {
938 938
          if (!_forward[j]) _res_cap[j] += _lower[j];
939 939
        }
940 940
      }
941 941
    }
942
    
942

	
943 943
    // Initialize a cost scaling phase
944 944
    void initPhase() {
945 945
      // Saturate arcs not satisfying the optimality condition
946 946
      for (int u = 0; u != _res_node_num; ++u) {
947 947
        int last_out = _first_out[u+1];
948 948
        LargeCost pi_u = _pi[u];
... ...
@@ -954,24 +954,24 @@
954 954
            _excess[v] += delta;
955 955
            _res_cap[a] = 0;
956 956
            _res_cap[_reverse[a]] += delta;
957 957
          }
958 958
        }
959 959
      }
960
      
960

	
961 961
      // Find active nodes (i.e. nodes with positive excess)
962 962
      for (int u = 0; u != _res_node_num; ++u) {
963 963
        if (_excess[u] > 0) _active_nodes.push_back(u);
964 964
      }
965 965

	
966 966
      // Initialize the next arcs
967 967
      for (int u = 0; u != _res_node_num; ++u) {
968 968
        _next_out[u] = _first_out[u];
969 969
      }
970 970
    }
971
    
971

	
972 972
    // Early termination heuristic
973 973
    bool earlyTermination() {
974 974
      const double EARLY_TERM_FACTOR = 3.0;
975 975

	
976 976
      // Build a static residual graph
977 977
      _arc_vec.clear();
... ...
@@ -995,13 +995,13 @@
995 995
      return done;
996 996
    }
997 997

	
998 998
    // Global potential update heuristic
999 999
    void globalUpdate() {
1000 1000
      int bucket_end = _root + 1;
1001
    
1001

	
1002 1002
      // Initialize buckets
1003 1003
      for (int r = 0; r != _max_rank; ++r) {
1004 1004
        _buckets[r] = bucket_end;
1005 1005
      }
1006 1006
      Value total_excess = 0;
1007 1007
      for (int i = 0; i != _res_node_num; ++i) {
... ...
@@ -1021,13 +1021,13 @@
1021 1021
      int r = 0;
1022 1022
      for ( ; r != _max_rank; ++r) {
1023 1023
        while (_buckets[r] != bucket_end) {
1024 1024
          // Remove the first node from the current bucket
1025 1025
          int u = _buckets[r];
1026 1026
          _buckets[r] = _bucket_next[u];
1027
          
1027

	
1028 1028
          // Search the incomming arcs of u
1029 1029
          LargeCost pi_u = _pi[u];
1030 1030
          int last_out = _first_out[u+1];
1031 1031
          for (int a = _first_out[u]; a != last_out; ++a) {
1032 1032
            int ra = _reverse[a];
1033 1033
            if (_res_cap[ra] > 0) {
... ...
@@ -1036,28 +1036,28 @@
1036 1036
              if (r < old_rank_v) {
1037 1037
                // Compute the new rank of v
1038 1038
                LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
1039 1039
                int new_rank_v = old_rank_v;
1040 1040
                if (nrc < LargeCost(_max_rank))
1041 1041
                  new_rank_v = r + 1 + int(nrc);
1042
                  
1042

	
1043 1043
                // Change the rank of v
1044 1044
                if (new_rank_v < old_rank_v) {
1045 1045
                  _rank[v] = new_rank_v;
1046 1046
                  _next_out[v] = _first_out[v];
1047
                  
1047

	
1048 1048
                  // Remove v from its old bucket
1049 1049
                  if (old_rank_v < _max_rank) {
1050 1050
                    if (_buckets[old_rank_v] == v) {
1051 1051
                      _buckets[old_rank_v] = _bucket_next[v];
1052 1052
                    } else {
1053 1053
                      _bucket_next[_bucket_prev[v]] = _bucket_next[v];
1054 1054
                      _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
1055 1055
                    }
1056 1056
                  }
1057
                  
1057

	
1058 1058
                  // Insert v to its new bucket
1059 1059
                  _bucket_next[v] = _buckets[new_rank_v];
1060 1060
                  _bucket_prev[_buckets[new_rank_v]] = v;
1061 1061
                  _buckets[new_rank_v] = v;
1062 1062
                }
1063 1063
              }
... ...
@@ -1069,13 +1069,13 @@
1069 1069
            total_excess -= _excess[u];
1070 1070
            if (total_excess <= 0) break;
1071 1071
          }
1072 1072
        }
1073 1073
        if (total_excess <= 0) break;
1074 1074
      }
1075
      
1075

	
1076 1076
      // Relabel nodes
1077 1077
      for (int u = 0; u != _res_node_num; ++u) {
1078 1078
        int k = std::min(_rank[u], r);
1079 1079
        if (k > 0) {
1080 1080
          _pi[u] -= _epsilon * k;
1081 1081
          _next_out[u] = _first_out[u];
... ...
@@ -1089,28 +1089,28 @@
1089 1089
      const int EARLY_TERM_EPSILON_LIMIT = 1000;
1090 1090
      const double GLOBAL_UPDATE_FACTOR = 3.0;
1091 1091

	
1092 1092
      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1093 1093
        (_res_node_num + _sup_node_num * _sup_node_num));
1094 1094
      int next_update_limit = global_update_freq;
1095
      
1095

	
1096 1096
      int relabel_cnt = 0;
1097
      
1097

	
1098 1098
      // Perform cost scaling phases
1099 1099
      std::vector<int> path;
1100 1100
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1101 1101
                                        1 : _epsilon / _alpha )
1102 1102
      {
1103 1103
        // Early termination heuristic
1104 1104
        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1105 1105
          if (earlyTermination()) break;
1106 1106
        }
1107
        
1107

	
1108 1108
        // Initialize current phase
1109 1109
        initPhase();
1110
        
1110

	
1111 1111
        // Perform partial augment and relabel operations
1112 1112
        while (true) {
1113 1113
          // Select an active node (FIFO selection)
1114 1114
          while (_active_nodes.size() > 0 &&
1115 1115
                 _excess[_active_nodes.front()] <= 0) {
1116 1116
            _active_nodes.pop_front();
... ...
@@ -1193,24 +1193,24 @@
1193 1193

	
1194 1194
      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1195 1195
        (_res_node_num + _sup_node_num * _sup_node_num));
1196 1196
      int next_update_limit = global_update_freq;
1197 1197

	
1198 1198
      int relabel_cnt = 0;
1199
      
1199

	
1200 1200
      // Perform cost scaling phases
1201 1201
      BoolVector hyper(_res_node_num, false);
1202 1202
      LargeCostVector hyper_cost(_res_node_num);
1203 1203
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1204 1204
                                        1 : _epsilon / _alpha )
1205 1205
      {
1206 1206
        // Early termination heuristic
1207 1207
        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1208 1208
          if (earlyTermination()) break;
1209 1209
        }
1210
        
1210

	
1211 1211
        // Initialize current phase
1212 1212
        initPhase();
1213 1213

	
1214 1214
        // Perform push and relabel operations
1215 1215
        while (_active_nodes.size() > 0) {
1216 1216
          LargeCost min_red_cost, rc, pi_n;
... ...
@@ -1219,13 +1219,13 @@
1219 1219

	
1220 1220
        next_node:
1221 1221
          // Select an active node (FIFO selection)
1222 1222
          n = _active_nodes.front();
1223 1223
          last_out = _first_out[n+1];
1224 1224
          pi_n = _pi[n];
1225
          
1225

	
1226 1226
          // Perform push operations if there are admissible arcs
1227 1227
          if (_excess[n] > 0) {
1228 1228
            for (a = _next_out[n]; a != last_out; ++a) {
1229 1229
              if (_res_cap[a] > 0 &&
1230 1230
                  _cost[a] + pi_n - _pi[_target[a]] < 0) {
1231 1231
                delta = std::min(_res_cap[a], _excess[n]);
... ...
@@ -1233,13 +1233,13 @@
1233 1233

	
1234 1234
                // Push-look-ahead heuristic
1235 1235
                Value ahead = -_excess[t];
1236 1236
                int last_out_t = _first_out[t+1];
1237 1237
                LargeCost pi_t = _pi[t];
1238 1238
                for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
1239
                  if (_res_cap[ta] > 0 && 
1239
                  if (_res_cap[ta] > 0 &&
1240 1240
                      _cost[ta] + pi_t - _pi[_target[ta]] < 0)
1241 1241
                    ahead += _res_cap[ta];
1242 1242
                  if (ahead >= delta) break;
1243 1243
                }
1244 1244
                if (ahead < 0) ahead = 0;
1245 1245

	
... ...
@@ -1284,21 +1284,21 @@
1284 1284
            }
1285 1285
            _pi[n] -= min_red_cost + _epsilon;
1286 1286
            _next_out[n] = _first_out[n];
1287 1287
            hyper[n] = false;
1288 1288
            ++relabel_cnt;
1289 1289
          }
1290
        
1290

	
1291 1291
          // Remove nodes that are not active nor hyper
1292 1292
        remove_nodes:
1293 1293
          while ( _active_nodes.size() > 0 &&
1294 1294
                  _excess[_active_nodes.front()] <= 0 &&
1295 1295
                  !hyper[_active_nodes.front()] ) {
1296 1296
            _active_nodes.pop_front();
1297 1297
          }
1298
          
1298

	
1299 1299
          // Global update heuristic
1300 1300
          if (relabel_cnt >= next_update_limit) {
1301 1301
            globalUpdate();
1302 1302
            for (int u = 0; u != _res_node_num; ++u)
1303 1303
              hyper[u] = false;
1304 1304
            next_update_limit += global_update_freq;
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -108,13 +108,13 @@
108 108
    const double ub = INF;
109 109
    const char s = 'L';
110 110
    CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0);
111 111
    return i;
112 112
  }
113 113

	
114
  int CplexBase::_addRow(Value lb, ExprIterator b, 
114
  int CplexBase::_addRow(Value lb, ExprIterator b,
115 115
                         ExprIterator e, Value ub) {
116 116
    int i = CPXgetnumrows(cplexEnv(), _prob);
117 117
    if (lb == -INF) {
118 118
      const char s = 'L';
119 119
      CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0);
120 120
    } else if (ub == INF) {
... ...
@@ -486,13 +486,13 @@
486 486
      _message_enabled = true;
487 487
      break;
488 488
    }
489 489
  }
490 490

	
491 491
  void CplexBase::_applyMessageLevel() {
492
    CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND, 
492
    CPXsetintparam(cplexEnv(), CPX_PARAM_SCRIND,
493 493
                   _message_enabled ? CPX_ON : CPX_OFF);
494 494
  }
495 495

	
496 496
  // CplexLp members
497 497

	
498 498
  CplexLp::CplexLp()
Ignore white space 6 line context
1
/* -*- C++ -*-
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -139,38 +139,38 @@
139 139
      CANCEL_AND_TIGHTEN
140 140
    };
141 141

	
142 142
  private:
143 143

	
144 144
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
145
    
145

	
146 146
    typedef std::vector<int> IntVector;
147 147
    typedef std::vector<double> DoubleVector;
148 148
    typedef std::vector<Value> ValueVector;
149 149
    typedef std::vector<Cost> CostVector;
150 150
    typedef std::vector<char> BoolVector;
151 151
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
152 152

	
153 153
  private:
154
  
154

	
155 155
    template <typename KT, typename VT>
156 156
    class StaticVectorMap {
157 157
    public:
158 158
      typedef KT Key;
159 159
      typedef VT Value;
160
      
160

	
161 161
      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
162
      
162

	
163 163
      const Value& operator[](const Key& key) const {
164 164
        return _v[StaticDigraph::id(key)];
165 165
      }
166 166

	
167 167
      Value& operator[](const Key& key) {
168 168
        return _v[StaticDigraph::id(key)];
169 169
      }
170
      
170

	
171 171
      void set(const Key& key, const Value& val) {
172 172
        _v[StaticDigraph::id(key)] = val;
173 173
      }
174 174

	
175 175
    private:
176 176
      std::vector<Value>& _v;
... ...
@@ -218,15 +218,15 @@
218 218
    StaticDigraph _sgr;
219 219
    std::vector<IntPair> _arc_vec;
220 220
    std::vector<Cost> _cost_vec;
221 221
    IntVector _id_vec;
222 222
    CostArcMap _cost_map;
223 223
    CostNodeMap _pi_map;
224
  
224

	
225 225
  public:
226
  
226

	
227 227
    /// \brief Constant for infinite upper bounds (capacities).
228 228
    ///
229 229
    /// Constant for infinite upper bounds (capacities).
230 230
    /// It is \c std::numeric_limits<Value>::infinity() if available,
231 231
    /// \c std::numeric_limits<Value>::max() otherwise.
232 232
    const Value INF;
... ...
@@ -363,13 +363,13 @@
363 363
        _supply[i] = 0;
364 364
      }
365 365
      _supply[_node_id[s]] =  k;
366 366
      _supply[_node_id[t]] = -k;
367 367
      return *this;
368 368
    }
369
    
369

	
370 370
    /// @}
371 371

	
372 372
    /// \name Execution control
373 373
    /// The algorithm can be executed using \ref run().
374 374

	
375 375
    /// @{
... ...
@@ -463,13 +463,13 @@
463 463
      }
464 464
      for (int j = limit; j != _res_arc_num; ++j) {
465 465
        _lower[j] = 0;
466 466
        _upper[j] = INF;
467 467
        _cost[j] = 0;
468 468
        _cost[_reverse[j]] = 0;
469
      }      
469
      }
470 470
      _have_lower = false;
471 471
      return *this;
472 472
    }
473 473

	
474 474
    /// \brief Reset the internal data structures and all the parameters
475 475
    /// that have been given before.
... ...
@@ -505,13 +505,13 @@
505 505
      _reverse.resize(_res_arc_num);
506 506

	
507 507
      _lower.resize(_res_arc_num);
508 508
      _upper.resize(_res_arc_num);
509 509
      _cost.resize(_res_arc_num);
510 510
      _supply.resize(_res_node_num);
511
      
511

	
512 512
      _res_cap.resize(_res_arc_num);
513 513
      _pi.resize(_res_node_num);
514 514

	
515 515
      _arc_vec.reserve(_res_arc_num);
516 516
      _cost_vec.reserve(_res_arc_num);
517 517
      _id_vec.reserve(_res_arc_num);
... ...
@@ -551,13 +551,13 @@
551 551
      for (ArcIt a(_graph); a != INVALID; ++a) {
552 552
        int fi = _arc_idf[a];
553 553
        int bi = _arc_idb[a];
554 554
        _reverse[fi] = bi;
555 555
        _reverse[bi] = fi;
556 556
      }
557
      
557

	
558 558
      // Reset parameters
559 559
      resetParams();
560 560
      return *this;
561 561
    }
562 562

	
563 563
    /// @}
... ...
@@ -660,20 +660,20 @@
660 660
      // Check the sum of supply values
661 661
      _sum_supply = 0;
662 662
      for (int i = 0; i != _root; ++i) {
663 663
        _sum_supply += _supply[i];
664 664
      }
665 665
      if (_sum_supply > 0) return INFEASIBLE;
666
      
666

	
667 667

	
668 668
      // Initialize vectors
669 669
      for (int i = 0; i != _res_node_num; ++i) {
670 670
        _pi[i] = 0;
671 671
      }
672 672
      ValueVector excess(_supply);
673
      
673

	
674 674
      // Remove infinite upper bounds and check negative arcs
675 675
      const Value MAX = std::numeric_limits<Value>::max();
676 676
      int last_out;
677 677
      if (_have_lower) {
678 678
        for (int i = 0; i != _root; ++i) {
679 679
          last_out = _first_out[i+1];
... ...
@@ -767,16 +767,16 @@
767 767
          _res_cap[a] = 1;
768 768
          _res_cap[ra] = 0;
769 769
          _cost[a] = 0;
770 770
          _cost[ra] = 0;
771 771
        }
772 772
      }
773
      
773

	
774 774
      return OPTIMAL;
775 775
    }
776
    
776

	
777 777
    // Build a StaticDigraph structure containing the current
778 778
    // residual network
779 779
    void buildResidualNetwork() {
780 780
      _arc_vec.clear();
781 781
      _cost_vec.clear();
782 782
      _id_vec.clear();
... ...
@@ -826,20 +826,20 @@
826 826

	
827 827
    // Execute the "Simple Cycle Canceling" method
828 828
    void startSimpleCycleCanceling() {
829 829
      // Constants for computing the iteration limits
830 830
      const int BF_FIRST_LIMIT  = 2;
831 831
      const double BF_LIMIT_FACTOR = 1.5;
832
      
832

	
833 833
      typedef StaticVectorMap<StaticDigraph::Arc, Value> FilterMap;
834 834
      typedef FilterArcs<StaticDigraph, FilterMap> ResDigraph;
835 835
      typedef StaticVectorMap<StaticDigraph::Node, StaticDigraph::Arc> PredMap;
836 836
      typedef typename BellmanFord<ResDigraph, CostArcMap>
837 837
        ::template SetDistMap<CostNodeMap>
838 838
        ::template SetPredMap<PredMap>::Create BF;
839
      
839

	
840 840
      // Build the residual network
841 841
      _arc_vec.clear();
842 842
      _cost_vec.clear();
843 843
      for (int j = 0; j != _res_arc_num; ++j) {
844 844
        _arc_vec.push_back(IntPair(_source[j], _target[j]));
845 845
        _cost_vec.push_back(_cost[j]);
... ...
@@ -923,13 +923,13 @@
923 923
    // Execute the "Minimum Mean Cycle Canceling" method
924 924
    void startMinMeanCycleCanceling() {
925 925
      typedef SimplePath<StaticDigraph> SPath;
926 926
      typedef typename SPath::ArcIt SPathArcIt;
927 927
      typedef typename HowardMmc<StaticDigraph, CostArcMap>
928 928
        ::template SetPath<SPath>::Create MMC;
929
      
929

	
930 930
      SPath cycle;
931 931
      MMC mmc(_sgr, _cost_map);
932 932
      mmc.cycle(cycle);
933 933
      buildResidualNetwork();
934 934
      while (mmc.findCycleMean() && mmc.cycleCost() < 0) {
935 935
        // Find the cycle
... ...
@@ -946,13 +946,13 @@
946 946
        for (SPathArcIt a(cycle); a != INVALID; ++a) {
947 947
          int j = _id_vec[_sgr.id(a)];
948 948
          _res_cap[j] -= delta;
949 949
          _res_cap[_reverse[j]] += delta;
950 950
        }
951 951

	
952
        // Rebuild the residual network        
952
        // Rebuild the residual network
953 953
        buildResidualNetwork();
954 954
      }
955 955
    }
956 956

	
957 957
    // Execute the "Cancel And Tighten" method
958 958
    void startCancelAndTighten() {
... ...
@@ -1140,25 +1140,25 @@
1140 1140
          buildResidualNetwork();
1141 1141
          MMC mmc(_sgr, _cost_map);
1142 1142
          mmc.findCycleMean();
1143 1143
          epsilon = -mmc.cycleMean();
1144 1144
          Cost cycle_cost = mmc.cycleCost();
1145 1145
          int cycle_size = mmc.cycleSize();
1146
          
1146

	
1147 1147
          // Compute feasible potentials for the current epsilon
1148 1148
          for (int i = 0; i != int(_cost_vec.size()); ++i) {
1149 1149
            _cost_vec[i] = cycle_size * _cost_vec[i] - cycle_cost;
1150 1150
          }
1151 1151
          BF bf(_sgr, _cost_map);
1152 1152
          bf.distMap(_pi_map);
1153 1153
          bf.init(0);
1154 1154
          bf.start();
1155 1155
          for (int u = 0; u != _res_node_num; ++u) {
1156 1156
            pi[u] = static_cast<double>(_pi[u]) / cycle_size;
1157 1157
          }
1158
        
1158

	
1159 1159
          iter = limit;
1160 1160
        }
1161 1161
      }
1162 1162
    }
1163 1163

	
1164 1164
  }; //class CycleCanceling
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -79,13 +79,14 @@
79 79
      return new ProcessedMap();
80 80
    }
81 81

	
82 82
    ///The type of the map that indicates which nodes are reached.
83 83

	
84 84
    ///The type of the map that indicates which nodes are reached.
85
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
85
    ///It must conform to
86
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
86 87
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
87 88
    ///Instantiates a \c ReachedMap.
88 89

	
89 90
    ///This function instantiates a \ref ReachedMap.
90 91
    ///\param g is the digraph, to which
91 92
    ///we would like to define the \ref ReachedMap.
... ...
@@ -267,13 +268,14 @@
267 268
    };
268 269
    ///\brief \ref named-templ-param "Named parameter" for setting
269 270
    ///\c ReachedMap type.
270 271
    ///
271 272
    ///\ref named-templ-param "Named parameter" for setting
272 273
    ///\c ReachedMap type.
273
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
274
    ///It must conform to
275
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
274 276
    template <class T>
275 277
    struct SetReachedMap : public Dfs< Digraph, SetReachedMapTraits<T> > {
276 278
      typedef Dfs< Digraph, SetReachedMapTraits<T> > Create;
277 279
    };
278 280

	
279 281
    template <class T>
... ...
@@ -799,13 +801,14 @@
799 801
      return new ProcessedMap();
800 802
    }
801 803

	
802 804
    ///The type of the map that indicates which nodes are reached.
803 805

	
804 806
    ///The type of the map that indicates which nodes are reached.
805
    ///It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
807
    ///It must conform to
808
    ///the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
806 809
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
807 810
    ///Instantiates a ReachedMap.
808 811

	
809 812
    ///This function instantiates a ReachedMap.
810 813
    ///\param g is the digraph, to which
811 814
    ///we would like to define the ReachedMap.
... ...
@@ -1204,13 +1207,14 @@
1204 1207
    /// \brief The type of the digraph the algorithm runs on.
1205 1208
    typedef GR Digraph;
1206 1209

	
1207 1210
    /// \brief The type of the map that indicates which nodes are reached.
1208 1211
    ///
1209 1212
    /// The type of the map that indicates which nodes are reached.
1210
    /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1213
    /// It must conform to the
1214
    /// \ref concepts::ReadWriteMap "ReadWriteMap" concept.
1211 1215
    typedef typename Digraph::template NodeMap<bool> ReachedMap;
1212 1216

	
1213 1217
    /// \brief Instantiates a ReachedMap.
1214 1218
    ///
1215 1219
    /// This function instantiates a ReachedMap.
1216 1220
    /// \param digraph is the digraph, to which
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -58,13 +58,13 @@
58 58
    DimacsDescriptor() : type(NONE) {}
59 59
  };
60 60

	
61 61
  ///Discover the type of a DIMACS file
62 62

	
63 63
  ///This function starts seeking the beginning of the given file for the
64
  ///problem type and size info. 
64
  ///problem type and size info.
65 65
  ///The found data is returned in a special struct that can be evaluated
66 66
  ///and passed to the appropriate reader function.
67 67
  DimacsDescriptor dimacsType(std::istream& is)
68 68
  {
69 69
    DimacsDescriptor r;
70 70
    std::string problem,str;
... ...
@@ -209,13 +209,13 @@
209 209
    typedef typename CapacityMap::Value Capacity;
210 210

	
211 211
    if(infty==0)
212 212
      infty = std::numeric_limits<Capacity>::has_infinity ?
213 213
        std::numeric_limits<Capacity>::infinity() :
214 214
        std::numeric_limits<Capacity>::max();
215
 
215

	
216 216
    while (is >> c) {
217 217
      switch (c) {
218 218
      case 'c': // comment line
219 219
        getline(is, str);
220 220
        break;
221 221
      case 'n': // node definition line
... ...
@@ -234,13 +234,13 @@
234 234
      case 'a': // arc definition line
235 235
        if (desc.type==DimacsDescriptor::SP) {
236 236
          is >> i >> j >> _cap;
237 237
          getline(is, str);
238 238
          e = g.addArc(nodes[i], nodes[j]);
239 239
          capacity.set(e, _cap);
240
        } 
240
        }
241 241
        else if (desc.type==DimacsDescriptor::MAX) {
242 242
          is >> i >> j >> _cap;
243 243
          getline(is, str);
244 244
          e = g.addArc(nodes[i], nodes[j]);
245 245
          if (_cap >= 0)
246 246
            capacity.set(e, _cap);
... ...
@@ -359,17 +359,17 @@
359 359
  typename disable_if<lemon::UndirectedTagIndicator<Graph>,void>::type
360 360
  _addArcEdge(Graph &g, typename Graph::Node s, typename Graph::Node t,
361 361
              dummy<1> = 1)
362 362
  {
363 363
    g.addArc(s,t);
364 364
  }
365
  
365

	
366 366
  /// \brief DIMACS plain (di)graph reader function.
367 367
  ///
368 368
  /// This function reads a plain (di)graph without any designated nodes
369
  /// and maps (e.g. a matching instance) from DIMACS format, i.e. from 
369
  /// and maps (e.g. a matching instance) from DIMACS format, i.e. from
370 370
  /// DIMACS files having a line starting with
371 371
  /// \code
372 372
  ///   p mat
373 373
  /// \endcode
374 374
  /// At the beginning, \c g is cleared by \c g.clear().
375 375
  ///
... ...
@@ -389,13 +389,13 @@
389 389
    int i, j;
390 390
    std::string str;
391 391
    nodes.resize(desc.nodeNum + 1);
392 392
    for (int k = 1; k <= desc.nodeNum; ++k) {
393 393
      nodes[k] = g.addNode();
394 394
    }
395
    
395

	
396 396
    while (is >> c) {
397 397
      switch (c) {
398 398
      case 'c': // comment line
399 399
        getline(is, str);
400 400
        break;
401 401
      case 'n': // node definition line
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -23,13 +23,13 @@
23 23
#include<lemon/adaptors.h>
24 24
#include<lemon/connectivity.h>
25 25
#include <list>
26 26

	
27 27
/// \ingroup graph_properties
28 28
/// \file
29
/// \brief Euler tour iterators and a function for checking the \e Eulerian 
29
/// \brief Euler tour iterators and a function for checking the \e Eulerian
30 30
/// property.
31 31
///
32 32
///This file provides Euler tour iterators and a function to check
33 33
///if a (di)graph is \e Eulerian.
34 34

	
35 35
namespace lemon {
... ...
@@ -38,13 +38,13 @@
38 38

	
39 39
  /// \ingroup graph_prop
40 40
  ///This iterator provides an Euler tour (Eulerian circuit) of a \e directed
41 41
  ///graph (if there exists) and it converts to the \c Arc type of the digraph.
42 42
  ///
43 43
  ///For example, if the given digraph has an Euler tour (i.e it has only one
44
  ///non-trivial component and the in-degree is equal to the out-degree 
44
  ///non-trivial component and the in-degree is equal to the out-degree
45 45
  ///for all nodes), then the following code will put the arcs of \c g
46 46
  ///to the vector \c et according to an Euler tour of \c g.
47 47
  ///\code
48 48
  ///  std::vector<ListDigraph::Arc> et;
49 49
  ///  for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e)
50 50
  ///    et.push_back(e);
... ...
@@ -135,22 +135,22 @@
135 135

	
136 136
  /// \ingroup graph_properties
137 137
  ///This iterator provides an Euler tour (Eulerian circuit) of an
138 138
  ///\e undirected graph (if there exists) and it converts to the \c Arc
139 139
  ///and \c Edge types of the graph.
140 140
  ///
141
  ///For example, if the given graph has an Euler tour (i.e it has only one 
141
  ///For example, if the given graph has an Euler tour (i.e it has only one
142 142
  ///non-trivial component and the degree of each node is even),
143 143
  ///the following code will print the arc IDs according to an
144 144
  ///Euler tour of \c g.
145 145
  ///\code
146 146
  ///  for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) {
147 147
  ///    std::cout << g.id(Edge(e)) << std::eol;
148 148
  ///  }
149 149
  ///\endcode
150
  ///Although this iterator is for undirected graphs, it still returns 
150
  ///Although this iterator is for undirected graphs, it still returns
151 151
  ///arcs in order to indicate the direction of the tour.
152 152
  ///(But arcs convert to edges, of course.)
153 153
  ///
154 154
  ///If \c g has no Euler tour, then the resulted walk will not be closed
155 155
  ///or not contain all edges.
156 156
  template<typename GR>
... ...
@@ -230,13 +230,13 @@
230 230
    }
231 231

	
232 232
    ///Postfix incrementation
233 233

	
234 234
    /// Postfix incrementation.
235 235
    ///
236
    ///\warning This incrementation returns an \c Arc (which converts to 
236
    ///\warning This incrementation returns an \c Arc (which converts to
237 237
    ///an \c Edge), not an \ref EulerIt, as one may expect.
238 238
    Arc operator++(int)
239 239
    {
240 240
      Arc e=*this;
241 241
      ++(*this);
242 242
      return e;
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -2006,13 +2006,13 @@
2006 2006
      }
2007 2007
      return true;
2008 2008
    }
2009 2009

	
2010 2010
    /// \brief Run the algorithm.
2011 2011
    ///
2012
    /// This method runs the \c %MaxWeightedPerfectFractionalMatching 
2012
    /// This method runs the \c %MaxWeightedPerfectFractionalMatching
2013 2013
    /// algorithm.
2014 2014
    ///
2015 2015
    /// \note mwfm.run() is just a shortcut of the following code.
2016 2016
    /// \code
2017 2017
    ///   mwpfm.init();
2018 2018
    ///   mwpfm.start();
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -200,22 +200,22 @@
200 200
      Parent::notifier(Node()).build();
201 201
      Parent::notifier(Arc()).build();
202 202
    }
203 203

	
204 204
    /// \brief Returns the node with the given index.
205 205
    ///
206
    /// Returns the node with the given index. Since this structure is 
206
    /// Returns the node with the given index. Since this structure is
207 207
    /// completely static, the nodes can be indexed with integers from
208 208
    /// the range <tt>[0..nodeNum()-1]</tt>.
209 209
    /// The index of a node is the same as its ID.
210 210
    /// \sa index()
211 211
    Node operator()(int ix) const { return Parent::operator()(ix); }
212 212

	
213 213
    /// \brief Returns the index of the given node.
214 214
    ///
215
    /// Returns the index of the given node. Since this structure is 
215
    /// Returns the index of the given node. Since this structure is
216 216
    /// completely static, the nodes can be indexed with integers from
217 217
    /// the range <tt>[0..nodeNum()-1]</tt>.
218 218
    /// The index of a node is the same as its ID.
219 219
    /// \sa operator()()
220 220
    static int index(const Node& node) { return Parent::index(node); }
221 221

	
... ...
@@ -579,22 +579,22 @@
579 579
      Parent::notifier(Edge()).build();
580 580
      Parent::notifier(Arc()).build();
581 581
    }
582 582

	
583 583
    /// \brief Returns the node with the given index.
584 584
    ///
585
    /// Returns the node with the given index. Since this structure is 
585
    /// Returns the node with the given index. Since this structure is
586 586
    /// completely static, the nodes can be indexed with integers from
587 587
    /// the range <tt>[0..nodeNum()-1]</tt>.
588 588
    /// The index of a node is the same as its ID.
589 589
    /// \sa index()
590 590
    Node operator()(int ix) const { return Parent::operator()(ix); }
591 591

	
592 592
    /// \brief Returns the index of the given node.
593 593
    ///
594
    /// Returns the index of the given node. Since this structure is 
594
    /// Returns the index of the given node. Since this structure is
595 595
    /// completely static, the nodes can be indexed with integers from
596 596
    /// the range <tt>[0..nodeNum()-1]</tt>.
597 597
    /// The index of a node is the same as its ID.
598 598
    /// \sa operator()()
599 599
    static int index(const Node& node) { return Parent::index(node); }
600 600

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -56,26 +56,26 @@
56 56
  int GlpkBase::_addRow() {
57 57
    int i = glp_add_rows(lp, 1);
58 58
    glp_set_row_bnds(lp, i, GLP_FR, 0.0, 0.0);
59 59
    return i;
60 60
  }
61 61

	
62
  int GlpkBase::_addRow(Value lo, ExprIterator b, 
62
  int GlpkBase::_addRow(Value lo, ExprIterator b,
63 63
                        ExprIterator e, Value up) {
64 64
    int i = glp_add_rows(lp, 1);
65 65

	
66 66
    if (lo == -INF) {
67 67
      if (up == INF) {
68 68
        glp_set_row_bnds(lp, i, GLP_FR, lo, up);
69 69
      } else {
70 70
        glp_set_row_bnds(lp, i, GLP_UP, lo, up);
71
      }    
71
      }
72 72
    } else {
73 73
      if (up == INF) {
74 74
        glp_set_row_bnds(lp, i, GLP_LO, lo, up);
75
      } else if (lo != up) {        
75
      } else if (lo != up) {
76 76
        glp_set_row_bnds(lp, i, GLP_DB, lo, up);
77 77
      } else {
78 78
        glp_set_row_bnds(lp, i, GLP_FX, lo, up);
79 79
      }
80 80
    }
81 81

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -27,22 +27,22 @@
27 27

	
28 28
namespace lemon {
29 29

	
30 30
  namespace _solver_bits {
31 31
    class VoidPtr {
32 32
    private:
33
      void *_ptr;      
33
      void *_ptr;
34 34
    public:
35 35
      VoidPtr() : _ptr(0) {}
36 36

	
37 37
      template <typename T>
38 38
      VoidPtr(T* ptr) : _ptr(reinterpret_cast<void*>(ptr)) {}
39 39

	
40 40
      template <typename T>
41
      VoidPtr& operator=(T* ptr) { 
42
        _ptr = reinterpret_cast<void*>(ptr); 
41
      VoidPtr& operator=(T* ptr) {
42
        _ptr = reinterpret_cast<void*>(ptr);
43 43
        return *this;
44 44
      }
45 45

	
46 46
      template <typename T>
47 47
      operator T*() const { return reinterpret_cast<T*>(_ptr); }
48 48
    };
... ...
@@ -121,19 +121,19 @@
121 121

	
122 122
    struct FreeEnvHelper {
123 123
      ~FreeEnvHelper() {
124 124
        freeEnv();
125 125
      }
126 126
    };
127
    
127

	
128 128
    static FreeEnvHelper freeEnvHelper;
129 129

	
130 130
  protected:
131
    
131

	
132 132
    int _message_level;
133
    
133

	
134 134
  public:
135 135

	
136 136
    ///Pointer to the underlying GLPK data structure.
137 137
    _solver_bits::VoidPtr lpx() {return lp;}
138 138
    ///Const pointer to the underlying GLPK data structure.
139 139
    _solver_bits::VoidPtr lpx() const {return lp;}
Ignore white space 6 line context
1
/* -*- C++ -*-
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -24,30 +24,30 @@
24 24
#include <lemon/core.h>
25 25
#include <lemon/preflow.h>
26 26
#include <lemon/concept_check.h>
27 27
#include <lemon/concepts/maps.h>
28 28

	
29 29
/// \ingroup min_cut
30
/// \file 
30
/// \file
31 31
/// \brief Gomory-Hu cut tree in graphs.
32 32

	
33 33
namespace lemon {
34 34

	
35 35
  /// \ingroup min_cut
36 36
  ///
37 37
  /// \brief Gomory-Hu cut tree algorithm
38 38
  ///
39 39
  /// The Gomory-Hu tree is a tree on the node set of a given graph, but it
40 40
  /// may contain edges which are not in the original graph. It has the
41
  /// property that the minimum capacity edge of the path between two nodes 
41
  /// property that the minimum capacity edge of the path between two nodes
42 42
  /// in this tree has the same weight as the minimum cut in the graph
43 43
  /// between these nodes. Moreover the components obtained by removing
44 44
  /// this edge from the tree determine the corresponding minimum cut.
45 45
  /// Therefore once this tree is computed, the minimum cut between any pair
46 46
  /// of nodes can easily be obtained.
47
  /// 
47
  ///
48 48
  /// The algorithm calculates \e n-1 distinct minimum cuts (currently with
49 49
  /// the \ref Preflow algorithm), thus it has \f$O(n^3\sqrt{e})\f$ overall
50 50
  /// time complexity. It calculates a rooted Gomory-Hu tree.
51 51
  /// The structure of the tree and the edge weights can be
52 52
  /// obtained using \c predNode(), \c predValue() and \c rootDist().
53 53
  /// The functions \c minCutMap() and \c minCutValue() calculate
... ...
@@ -57,27 +57,27 @@
57 57
  ///
58 58
  /// \tparam GR The type of the undirected graph the algorithm runs on.
59 59
  /// \tparam CAP The type of the edge map containing the capacities.
60 60
  /// The default map type is \ref concepts::Graph::EdgeMap "GR::EdgeMap<int>".
61 61
#ifdef DOXYGEN
62 62
  template <typename GR,
63
	    typename CAP>
63
            typename CAP>
64 64
#else
65 65
  template <typename GR,
66
	    typename CAP = typename GR::template EdgeMap<int> >
66
            typename CAP = typename GR::template EdgeMap<int> >
67 67
#endif
68 68
  class GomoryHu {
69 69
  public:
70 70

	
71 71
    /// The graph type of the algorithm
72 72
    typedef GR Graph;
73 73
    /// The capacity map type of the algorithm
74 74
    typedef CAP Capacity;
75 75
    /// The value type of capacities
76 76
    typedef typename Capacity::Value Value;
77
    
77

	
78 78
  private:
79 79

	
80 80
    TEMPLATE_GRAPH_TYPEDEFS(Graph);
81 81

	
82 82
    const Graph& _graph;
83 83
    const Capacity& _capacity;
... ...
@@ -86,44 +86,44 @@
86 86
    typename Graph::template NodeMap<Node>* _pred;
87 87
    typename Graph::template NodeMap<Value>* _weight;
88 88
    typename Graph::template NodeMap<int>* _order;
89 89

	
90 90
    void createStructures() {
91 91
      if (!_pred) {
92
	_pred = new typename Graph::template NodeMap<Node>(_graph);
92
        _pred = new typename Graph::template NodeMap<Node>(_graph);
93 93
      }
94 94
      if (!_weight) {
95
	_weight = new typename Graph::template NodeMap<Value>(_graph);
95
        _weight = new typename Graph::template NodeMap<Value>(_graph);
96 96
      }
97 97
      if (!_order) {
98
	_order = new typename Graph::template NodeMap<int>(_graph);
98
        _order = new typename Graph::template NodeMap<int>(_graph);
99 99
      }
100 100
    }
101 101

	
102 102
    void destroyStructures() {
103 103
      if (_pred) {
104
	delete _pred;
104
        delete _pred;
105 105
      }
106 106
      if (_weight) {
107
	delete _weight;
107
        delete _weight;
108 108
      }
109 109
      if (_order) {
110
	delete _order;
110
        delete _order;
111 111
      }
112 112
    }
113
  
113

	
114 114
  public:
115 115

	
116 116
    /// \brief Constructor
117 117
    ///
118 118
    /// Constructor.
119 119
    /// \param graph The undirected graph the algorithm runs on.
120 120
    /// \param capacity The edge capacity map.
121
    GomoryHu(const Graph& graph, const Capacity& capacity) 
121
    GomoryHu(const Graph& graph, const Capacity& capacity)
122 122
      : _graph(graph), _capacity(capacity),
123
	_pred(0), _weight(0), _order(0) 
123
        _pred(0), _weight(0), _order(0)
124 124
    {
125 125
      checkConcept<concepts::ReadMap<Edge, Value>, Capacity>();
126 126
    }
127 127

	
128 128

	
129 129
    /// \brief Destructor
... ...
@@ -131,86 +131,86 @@
131 131
    /// Destructor.
132 132
    ~GomoryHu() {
133 133
      destroyStructures();
134 134
    }
135 135

	
136 136
  private:
137
  
137

	
138 138
    // Initialize the internal data structures
139 139
    void init() {
140 140
      createStructures();
141 141

	
142 142
      _root = NodeIt(_graph);
143 143
      for (NodeIt n(_graph); n != INVALID; ++n) {
144 144
        (*_pred)[n] = _root;
145 145
        (*_order)[n] = -1;
146 146
      }
147 147
      (*_pred)[_root] = INVALID;
148
      (*_weight)[_root] = std::numeric_limits<Value>::max(); 
148
      (*_weight)[_root] = std::numeric_limits<Value>::max();
149 149
    }
150 150

	
151 151

	
152 152
    // Start the algorithm
153 153
    void start() {
154 154
      Preflow<Graph, Capacity> fa(_graph, _capacity, _root, INVALID);
155 155

	
156 156
      for (NodeIt n(_graph); n != INVALID; ++n) {
157
	if (n == _root) continue;
157
        if (n == _root) continue;
158 158

	
159
	Node pn = (*_pred)[n];
160
	fa.source(n);
161
	fa.target(pn);
159
        Node pn = (*_pred)[n];
160
        fa.source(n);
161
        fa.target(pn);
162 162

	
163
	fa.runMinCut();
163
        fa.runMinCut();
164 164

	
165
	(*_weight)[n] = fa.flowValue();
165
        (*_weight)[n] = fa.flowValue();
166 166

	
167
	for (NodeIt nn(_graph); nn != INVALID; ++nn) {
168
	  if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
169
	    (*_pred)[nn] = n;
170
	  }
171
	}
172
	if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
173
	  (*_pred)[n] = (*_pred)[pn];
174
	  (*_pred)[pn] = n;
175
	  (*_weight)[n] = (*_weight)[pn];
176
	  (*_weight)[pn] = fa.flowValue();
177
	}
167
        for (NodeIt nn(_graph); nn != INVALID; ++nn) {
168
          if (nn != n && fa.minCut(nn) && (*_pred)[nn] == pn) {
169
            (*_pred)[nn] = n;
170
          }
171
        }
172
        if ((*_pred)[pn] != INVALID && fa.minCut((*_pred)[pn])) {
173
          (*_pred)[n] = (*_pred)[pn];
174
          (*_pred)[pn] = n;
175
          (*_weight)[n] = (*_weight)[pn];
176
          (*_weight)[pn] = fa.flowValue();
177
        }
178 178
      }
179 179

	
180 180
      (*_order)[_root] = 0;
181 181
      int index = 1;
182 182

	
183 183
      for (NodeIt n(_graph); n != INVALID; ++n) {
184
	std::vector<Node> st;
185
	Node nn = n;
186
	while ((*_order)[nn] == -1) {
187
	  st.push_back(nn);
188
	  nn = (*_pred)[nn];
189
	}
190
	while (!st.empty()) {
191
	  (*_order)[st.back()] = index++;
192
	  st.pop_back();
193
	}
184
        std::vector<Node> st;
185
        Node nn = n;
186
        while ((*_order)[nn] == -1) {
187
          st.push_back(nn);
188
          nn = (*_pred)[nn];
189
        }
190
        while (!st.empty()) {
191
          (*_order)[st.back()] = index++;
192
          st.pop_back();
193
        }
194 194
      }
195 195
    }
196 196

	
197 197
  public:
198 198

	
199 199
    ///\name Execution Control
200
 
200

	
201 201
    ///@{
202 202

	
203 203
    /// \brief Run the Gomory-Hu algorithm.
204 204
    ///
205 205
    /// This function runs the Gomory-Hu algorithm.
206 206
    void run() {
207 207
      init();
208 208
      start();
209 209
    }
210
    
210

	
211 211
    /// @}
212 212

	
213 213
    ///\name Query Functions
214 214
    ///The results of the algorithm can be obtained using these
215 215
    ///functions.\n
216 216
    ///\ref run() should be called before using them.\n
... ...
@@ -229,13 +229,13 @@
229 229
      return (*_pred)[node];
230 230
    }
231 231

	
232 232
    /// \brief Return the weight of the predecessor edge in the
233 233
    /// Gomory-Hu tree.
234 234
    ///
235
    /// This function returns the weight of the predecessor edge of the 
235
    /// This function returns the weight of the predecessor edge of the
236 236
    /// given node in the Gomory-Hu tree.
237 237
    /// If \c node is the root of the tree, the result is undefined.
238 238
    ///
239 239
    /// \pre \ref run() must be called before using this function.
240 240
    Value predValue(const Node& node) const {
241 241
      return (*_weight)[node];
... ...
@@ -251,30 +251,30 @@
251 251
      return (*_order)[node];
252 252
    }
253 253

	
254 254
    /// \brief Return the minimum cut value between two nodes
255 255
    ///
256 256
    /// This function returns the minimum cut value between the nodes
257
    /// \c s and \c t. 
257
    /// \c s and \c t.
258 258
    /// It finds the nearest common ancestor of the given nodes in the
259 259
    /// Gomory-Hu tree and calculates the minimum weight edge on the
260 260
    /// paths to the ancestor.
261 261
    ///
262 262
    /// \pre \ref run() must be called before using this function.
263 263
    Value minCutValue(const Node& s, const Node& t) const {
264 264
      Node sn = s, tn = t;
265 265
      Value value = std::numeric_limits<Value>::max();
266
      
266

	
267 267
      while (sn != tn) {
268
	if ((*_order)[sn] < (*_order)[tn]) {
269
	  if ((*_weight)[tn] <= value) value = (*_weight)[tn];
270
	  tn = (*_pred)[tn];
271
	} else {
272
	  if ((*_weight)[sn] <= value) value = (*_weight)[sn];
273
	  sn = (*_pred)[sn];
274
	}
268
        if ((*_order)[sn] < (*_order)[tn]) {
269
          if ((*_weight)[tn] <= value) value = (*_weight)[tn];
270
          tn = (*_pred)[tn];
271
        } else {
272
          if ((*_weight)[sn] <= value) value = (*_weight)[sn];
273
          sn = (*_pred)[sn];
274
        }
275 275
      }
276 276
      return value;
277 277
    }
278 278

	
279 279
    /// \brief Return the minimum cut between two nodes
280 280
    ///
... ...
@@ -299,60 +299,60 @@
299 299
                    CutMap& cutMap
300 300
                    ) const {
301 301
      Node sn = s, tn = t;
302 302
      bool s_root=false;
303 303
      Node rn = INVALID;
304 304
      Value value = std::numeric_limits<Value>::max();
305
      
305

	
306 306
      while (sn != tn) {
307
	if ((*_order)[sn] < (*_order)[tn]) {
308
	  if ((*_weight)[tn] <= value) {
309
	    rn = tn;
307
        if ((*_order)[sn] < (*_order)[tn]) {
308
          if ((*_weight)[tn] <= value) {
309
            rn = tn;
310 310
            s_root = false;
311
	    value = (*_weight)[tn];
312
	  }
313
	  tn = (*_pred)[tn];
314
	} else {
315
	  if ((*_weight)[sn] <= value) {
316
	    rn = sn;
311
            value = (*_weight)[tn];
312
          }
313
          tn = (*_pred)[tn];
314
        } else {
315
          if ((*_weight)[sn] <= value) {
316
            rn = sn;
317 317
            s_root = true;
318
	    value = (*_weight)[sn];
319
	  }
320
	  sn = (*_pred)[sn];
321
	}
318
            value = (*_weight)[sn];
319
          }
320
          sn = (*_pred)[sn];
321
        }
322 322
      }
323 323

	
324 324
      typename Graph::template NodeMap<bool> reached(_graph, false);
325 325
      reached[_root] = true;
326 326
      cutMap.set(_root, !s_root);
327 327
      reached[rn] = true;
328 328
      cutMap.set(rn, s_root);
329 329

	
330 330
      std::vector<Node> st;
331 331
      for (NodeIt n(_graph); n != INVALID; ++n) {
332
	st.clear();
332
        st.clear();
333 333
        Node nn = n;
334
	while (!reached[nn]) {
335
	  st.push_back(nn);
336
	  nn = (*_pred)[nn];
337
	}
338
	while (!st.empty()) {
339
	  cutMap.set(st.back(), cutMap[nn]);
340
	  st.pop_back();
341
	}
334
        while (!reached[nn]) {
335
          st.push_back(nn);
336
          nn = (*_pred)[nn];
337
        }
338
        while (!st.empty()) {
339
          cutMap.set(st.back(), cutMap[nn]);
340
          st.pop_back();
341
        }
342 342
      }
343
      
343

	
344 344
      return value;
345 345
    }
346 346

	
347 347
    ///@}
348 348

	
349 349
    friend class MinCutNodeIt;
350 350

	
351 351
    /// Iterate on the nodes of a minimum cut
352
    
352

	
353 353
    /// This iterator class lists the nodes of a minimum cut found by
354 354
    /// GomoryHu. Before using it, you must allocate a GomoryHu class
355 355
    /// and call its \ref GomoryHu::run() "run()" method.
356 356
    ///
357 357
    /// This example counts the nodes in the minimum cut separating \c s from
358 358
    /// \c t.
... ...
@@ -439,17 +439,17 @@
439 439
      {
440 440
        typename Graph::Node n=*this;
441 441
        ++(*this);
442 442
        return n;
443 443
      }
444 444
    };
445
    
445

	
446 446
    friend class MinCutEdgeIt;
447
    
447

	
448 448
    /// Iterate on the edges of a minimum cut
449
    
449

	
450 450
    /// This iterator class lists the edges of a minimum cut found by
451 451
    /// GomoryHu. Before using it, you must allocate a GomoryHu class
452 452
    /// and call its \ref GomoryHu::run() "run()" method.
453 453
    ///
454 454
    /// This example computes the value of the minimum cut separating \c s from
455 455
    /// \c t.
... ...
@@ -476,13 +476,13 @@
476 476
          {
477 477
            for(++_node_it;_node_it!=INVALID&&!_cut[_node_it];++_node_it) {}
478 478
            if(_node_it!=INVALID)
479 479
              _arc_it=typename Graph::OutArcIt(_graph,_node_it);
480 480
          }
481 481
      }
482
      
482

	
483 483
    public:
484 484
      /// Constructor
485 485

	
486 486
      /// Constructor.
487 487
      ///
488 488
      MinCutEdgeIt(GomoryHu const &gomory,
... ...
@@ -545,13 +545,13 @@
545 545
      {
546 546
        step();
547 547
        while(_arc_it!=INVALID && _cut[_graph.target(_arc_it)]) step();
548 548
        return *this;
549 549
      }
550 550
      /// Postfix incrementation
551
      
551

	
552 552
      /// Postfix incrementation.
553 553
      ///
554 554
      /// \warning This incrementation
555 555
      /// returns an \c Arc, not a \c MinCutEdgeIt, as one may expect.
556 556
      typename Graph::Arc operator++(int)
557 557
      {
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -28,23 +28,23 @@
28 28
#include <lemon/tolerance.h>
29 29

	
30 30
/// \file
31 31
/// \ingroup min_cut
32 32
/// \brief Implementation of the Hao-Orlin algorithm.
33 33
///
34
/// Implementation of the Hao-Orlin algorithm for finding a minimum cut 
34
/// Implementation of the Hao-Orlin algorithm for finding a minimum cut
35 35
/// in a digraph.
36 36

	
37 37
namespace lemon {
38 38

	
39 39
  /// \ingroup min_cut
40 40
  ///
41 41
  /// \brief Hao-Orlin algorithm for finding a minimum cut in a digraph.
42 42
  ///
43 43
  /// This class implements the Hao-Orlin algorithm for finding a minimum
44
  /// value cut in a directed graph \f$D=(V,A)\f$. 
44
  /// value cut in a directed graph \f$D=(V,A)\f$.
45 45
  /// It takes a fixed node \f$ source \in V \f$ and
46 46
  /// consists of two phases: in the first phase it determines a
47 47
  /// minimum cut with \f$ source \f$ on the source-side (i.e. a set
48 48
  /// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal outgoing
49 49
  /// capacity) and in the second phase it determines a minimum cut
50 50
  /// with \f$ source \f$ on the sink-side (i.e. a set
... ...
@@ -55,13 +55,13 @@
55 55
  /// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the
56 56
  /// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The
57 57
  /// purpose of such algorithm is e.g. testing network reliability.
58 58
  ///
59 59
  /// For an undirected graph you can run just the first phase of the
60 60
  /// algorithm or you can use the algorithm of Nagamochi and Ibaraki,
61
  /// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ 
61
  /// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$
62 62
  /// time. It is implemented in the NagamochiIbaraki algorithm class.
63 63
  ///
64 64
  /// \tparam GR The type of the digraph the algorithm runs on.
65 65
  /// \tparam CAP The type of the arc map containing the capacities,
66 66
  /// which can be any numreric type. The default map type is
67 67
  /// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>".
... ...
@@ -73,13 +73,13 @@
73 73
  template <typename GR,
74 74
            typename CAP = typename GR::template ArcMap<int>,
75 75
            typename TOL = Tolerance<typename CAP::Value> >
76 76
#endif
77 77
  class HaoOrlin {
78 78
  public:
79
   
79

	
80 80
    /// The digraph type of the algorithm
81 81
    typedef GR Digraph;
82 82
    /// The capacity map type of the algorithm
83 83
    typedef CAP CapacityMap;
84 84
    /// The tolerance type of the algorithm
85 85
    typedef TOL Tolerance;
... ...
@@ -861,13 +861,13 @@
861 861
      init(NodeIt(_graph));
862 862
    }
863 863

	
864 864
    /// \brief Initialize the internal data structures.
865 865
    ///
866 866
    /// This function initializes the internal data structures. It creates
867
    /// the maps and some bucket structures for the algorithm. 
867
    /// the maps and some bucket structures for the algorithm.
868 868
    /// The given node is used as the source node for the push-relabel
869 869
    /// algorithm.
870 870
    void init(const Node& source) {
871 871
      _source = source;
872 872

	
873 873
      _node_num = countNodes(_graph);
... ...
@@ -941,13 +941,13 @@
941 941
      calculateOut();
942 942
      calculateIn();
943 943
    }
944 944

	
945 945
    /// \brief Run the algorithm.
946 946
    ///
947
    /// This function runs the algorithm. It uses the given \c source node, 
947
    /// This function runs the algorithm. It uses the given \c source node,
948 948
    /// finds a proper \c target node and then calls the \ref init(),
949 949
    /// \ref calculateOut() and \ref calculateIn().
950 950
    void run(const Node& s) {
951 951
      init(s);
952 952
      calculateOut();
953 953
      calculateIn();
... ...
@@ -955,22 +955,22 @@
955 955

	
956 956
    /// @}
957 957

	
958 958
    /// \name Query Functions
959 959
    /// The result of the %HaoOrlin algorithm
960 960
    /// can be obtained using these functions.\n
961
    /// \ref run(), \ref calculateOut() or \ref calculateIn() 
961
    /// \ref run(), \ref calculateOut() or \ref calculateIn()
962 962
    /// should be called before using them.
963 963

	
964 964
    /// @{
965 965

	
966 966
    /// \brief Return the value of the minimum cut.
967 967
    ///
968 968
    /// This function returns the value of the minimum cut.
969 969
    ///
970
    /// \pre \ref run(), \ref calculateOut() or \ref calculateIn() 
970
    /// \pre \ref run(), \ref calculateOut() or \ref calculateIn()
971 971
    /// must be called before using this function.
972 972
    Value minCutValue() const {
973 973
      return _min_cut;
974 974
    }
975 975

	
976 976

	
... ...
@@ -983,13 +983,13 @@
983 983
    ///
984 984
    /// \param cutMap A \ref concepts::WriteMap "writable" node map with
985 985
    /// \c bool (or convertible) value type.
986 986
    ///
987 987
    /// \return The value of the minimum cut.
988 988
    ///
989
    /// \pre \ref run(), \ref calculateOut() or \ref calculateIn() 
989
    /// \pre \ref run(), \ref calculateOut() or \ref calculateIn()
990 990
    /// must be called before using this function.
991 991
    template <typename CutMap>
992 992
    Value minCutMap(CutMap& cutMap) const {
993 993
      for (NodeIt it(_graph); it != INVALID; ++it) {
994 994
        cutMap.set(it, (*_min_cut_map)[it]);
995 995
      }
Ignore white space 6 line context
1
/* -*- C++ -*-
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -340,20 +340,20 @@
340 340
    ///
341 341
    /// \return \c true if a directed cycle exists in the digraph.
342 342
    bool findCycleMean() {
343 343
      // Initialization and find strongly connected components
344 344
      init();
345 345
      findComponents();
346
      
346

	
347 347
      // Find the minimum cycle mean in the components
348 348
      for (int comp = 0; comp < _comp_num; ++comp) {
349 349
        if (!initComponent(comp)) continue;
350 350
        processRounds();
351
        
351

	
352 352
        // Update the best cycle (global minimum mean cycle)
353
        if ( _curr_found && (!_best_found || 
353
        if ( _curr_found && (!_best_found ||
354 354
             _curr_cost * _best_size < _best_cost * _curr_size) ) {
355 355
          _best_found = true;
356 356
          _best_cost = _curr_cost;
357 357
          _best_size = _curr_size;
358 358
          _best_node = _curr_node;
359 359
          _best_level = _curr_level;
... ...
@@ -500,13 +500,13 @@
500 500
    // Initialize path data for the current component
501 501
    bool initComponent(int comp) {
502 502
      _nodes = &(_comp_nodes[comp]);
503 503
      int n = _nodes->size();
504 504
      if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
505 505
        return false;
506
      }      
506
      }
507 507
      for (int i = 0; i < n; ++i) {
508 508
        _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
509 509
      }
510 510
      return true;
511 511
    }
512 512

	
... ...
@@ -573,23 +573,23 @@
573 573
          if (_tolerance.less(d, _data[v][k].dist)) {
574 574
            _data[v][k] = PathData(d, e);
575 575
          }
576 576
        }
577 577
      }
578 578
    }
579
    
579

	
580 580
    // Check early termination
581 581
    bool checkTermination(int k) {
582 582
      typedef std::pair<int, int> Pair;
583 583
      typename GR::template NodeMap<Pair> level(_gr, Pair(-1, 0));
584 584
      typename GR::template NodeMap<LargeCost> pi(_gr);
585 585
      int n = _nodes->size();
586 586
      LargeCost cost;
587 587
      int size;
588 588
      Node u;
589
      
589

	
590 590
      // Search for cycles that are already found
591 591
      _curr_found = false;
592 592
      for (int i = 0; i < n; ++i) {
593 593
        u = (*_nodes)[i];
594 594
        if (_data[u][k].dist == INF) continue;
595 595
        for (int j = k; j >= 0; --j) {
... ...
@@ -604,14 +604,14 @@
604 604
              _curr_level = level[u].second;
605 605
              _curr_found = true;
606 606
            }
607 607
          }
608 608
          level[u] = Pair(i, j);
609 609
          if (j != 0) {
610
	    u = _gr.source(_data[u][j].pred);
611
	  }
610
            u = _gr.source(_data[u][j].pred);
611
          }
612 612
        }
613 613
      }
614 614

	
615 615
      // If at least one cycle is found, check the optimality condition
616 616
      LargeCost d;
617 617
      if (_curr_found && k < n) {
Ignore white space 6 line context
1
/* -*- C++ -*-
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -118,13 +118,13 @@
118 118
             typename CM = typename GR::template ArcMap<int>,
119 119
             typename TR = HowardMmcDefaultTraits<GR, CM> >
120 120
#endif
121 121
  class HowardMmc
122 122
  {
123 123
  public:
124
  
124

	
125 125
    /// The type of the digraph
126 126
    typedef typename TR::Digraph Digraph;
127 127
    /// The type of the cost map
128 128
    typedef typename TR::CostMap CostMap;
129 129
    /// The type of the arc costs
130 130
    typedef typename TR::Cost Cost;
... ...
@@ -149,13 +149,13 @@
149 149
    /// The \ref HowardMmcDefaultTraits "traits class" of the algorithm
150 150
    typedef TR Traits;
151 151

	
152 152
  private:
153 153

	
154 154
    TEMPLATE_DIGRAPH_TYPEDEFS(Digraph);
155
  
155

	
156 156
    // The digraph the algorithm runs on
157 157
    const Digraph &_gr;
158 158
    // The cost of the arcs
159 159
    const CostMap &_cost;
160 160

	
161 161
    // Data for the found cycles
... ...
@@ -176,24 +176,24 @@
176 176
    // Data for storing the strongly connected components
177 177
    int _comp_num;
178 178
    typename Digraph::template NodeMap<int> _comp;
179 179
    std::vector<std::vector<Node> > _comp_nodes;
180 180
    std::vector<Node>* _nodes;
181 181
    typename Digraph::template NodeMap<std::vector<Arc> > _in_arcs;
182
    
182

	
183 183
    // Queue used for BFS search
184 184
    std::vector<Node> _queue;
185 185
    int _qfront, _qback;
186 186

	
187 187
    Tolerance _tolerance;
188
  
188

	
189 189
    // Infinite constant
190 190
    const LargeCost INF;
191 191

	
192 192
  public:
193
  
193

	
194 194
    /// \name Named Template Parameters
195 195
    /// @{
196 196

	
197 197
    template <typename T>
198 198
    struct SetLargeCostTraits : public Traits {
199 199
      typedef T LargeCost;
... ...
@@ -225,13 +225,13 @@
225 225
    /// and it must have an \c addBack() function.
226 226
    template <typename T>
227 227
    struct SetPath
228 228
      : public HowardMmc<GR, CM, SetPathTraits<T> > {
229 229
      typedef HowardMmc<GR, CM, SetPathTraits<T> > Create;
230 230
    };
231
    
231

	
232 232
    /// @}
233 233

	
234 234
  protected:
235 235

	
236 236
    HowardMmc() {}
237 237

	
... ...
@@ -331,13 +331,13 @@
331 331
    ///
332 332
    /// \return \c true if a directed cycle exists in the digraph.
333 333
    bool findCycleMean() {
334 334
      // Initialize and find strongly connected components
335 335
      init();
336 336
      findComponents();
337
      
337

	
338 338
      // Find the minimum cycle mean in the components
339 339
      for (int comp = 0; comp < _comp_num; ++comp) {
340 340
        // Find the minimum mean cycle in the current component
341 341
        if (!buildPolicyGraph(comp)) continue;
342 342
        while (true) {
343 343
          findPolicyCycle();
... ...
@@ -442,13 +442,13 @@
442 442
      _queue.resize(countNodes(_gr));
443 443
      _best_found = false;
444 444
      _best_cost = 0;
445 445
      _best_size = 1;
446 446
      _cycle_path->clear();
447 447
    }
448
    
448

	
449 449
    // Find strongly connected components and initialize _comp_nodes
450 450
    // and _in_arcs
451 451
    void findComponents() {
452 452
      _comp_num = stronglyConnectedComponents(_gr, _comp);
453 453
      _comp_nodes.resize(_comp_num);
454 454
      if (_comp_num == 1) {
Ignore white space 6 line context
1
/* -*- C++ -*-
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -188,13 +188,13 @@
188 188
    // Node map for storing path data
189 189
    PathDataNodeMap _data;
190 190
    // The processed nodes in the last round
191 191
    std::vector<Node> _process;
192 192

	
193 193
    Tolerance _tolerance;
194
    
194

	
195 195
    // Infinite constant
196 196
    const LargeCost INF;
197 197

	
198 198
  public:
199 199

	
200 200
    /// \name Named Template Parameters
... ...
@@ -336,13 +336,13 @@
336 336
    ///
337 337
    /// \return \c true if a directed cycle exists in the digraph.
338 338
    bool findCycleMean() {
339 339
      // Initialization and find strongly connected components
340 340
      init();
341 341
      findComponents();
342
      
342

	
343 343
      // Find the minimum cycle mean in the components
344 344
      for (int comp = 0; comp < _comp_num; ++comp) {
345 345
        if (!initComponent(comp)) continue;
346 346
        processRounds();
347 347
        updateMinMean();
348 348
      }
... ...
@@ -486,13 +486,13 @@
486 486
    // Initialize path data for the current component
487 487
    bool initComponent(int comp) {
488 488
      _nodes = &(_comp_nodes[comp]);
489 489
      int n = _nodes->size();
490 490
      if (n < 1 || (n == 1 && _out_arcs[(*_nodes)[0]].size() == 0)) {
491 491
        return false;
492
      }      
492
      }
493 493
      for (int i = 0; i < n; ++i) {
494 494
        _data[(*_nodes)[i]].resize(n + 1, PathData(INF));
495 495
      }
496 496
      return true;
497 497
    }
498 498

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -559,13 +559,13 @@
559 559

	
560 560
  private:
561 561

	
562 562
    template <typename TDGR>
563 563
    friend DigraphReader<TDGR> digraphReader(TDGR& digraph, std::istream& is);
564 564
    template <typename TDGR>
565
    friend DigraphReader<TDGR> digraphReader(TDGR& digraph, 
565
    friend DigraphReader<TDGR> digraphReader(TDGR& digraph,
566 566
                                             const std::string& fn);
567 567
    template <typename TDGR>
568 568
    friend DigraphReader<TDGR> digraphReader(TDGR& digraph, const char *fn);
569 569

	
570 570
    DigraphReader(DigraphReader& other)
571 571
      : _is(other._is), local_is(other.local_is), _digraph(other._digraph),
... ...
@@ -1184,20 +1184,20 @@
1184 1184

	
1185 1185
    }
1186 1186

	
1187 1187
    /// @}
1188 1188

	
1189 1189
  };
1190
  
1190

	
1191 1191
  /// \ingroup lemon_io
1192 1192
  ///
1193 1193
  /// \brief Return a \ref DigraphReader class
1194 1194
  ///
1195 1195
  /// This function just returns a \ref DigraphReader class.
1196 1196
  ///
1197
  /// With this function a digraph can be read from an 
1197
  /// With this function a digraph can be read from an
1198 1198
  /// \ref lgf-format "LGF" file or input stream with several maps and
1199 1199
  /// attributes. For example, there is network flow problem on a
1200 1200
  /// digraph, i.e. a digraph with a \e capacity map on the arcs and
1201 1201
  /// \e source and \e target nodes. This digraph can be read with the
1202 1202
  /// following code:
1203 1203
  ///
... ...
@@ -1246,13 +1246,13 @@
1246 1246
    DigraphReader<TDGR> tmp(digraph, fn);
1247 1247
    return tmp;
1248 1248
  }
1249 1249

	
1250 1250
  template <typename GR>
1251 1251
  class GraphReader;
1252
 
1252

	
1253 1253
  template <typename TGR>
1254 1254
  GraphReader<TGR> graphReader(TGR& graph, std::istream& is = std::cin);
1255 1255
  template <typename TGR>
1256 1256
  GraphReader<TGR> graphReader(TGR& graph, const std::string& fn);
1257 1257
  template <typename TGR>
1258 1258
  GraphReader<TGR> graphReader(TGR& graph, const char *fn);
... ...
@@ -1383,13 +1383,13 @@
1383 1383
    }
1384 1384

	
1385 1385
  private:
1386 1386
    template <typename TGR>
1387 1387
    friend GraphReader<TGR> graphReader(TGR& graph, std::istream& is);
1388 1388
    template <typename TGR>
1389
    friend GraphReader<TGR> graphReader(TGR& graph, const std::string& fn); 
1389
    friend GraphReader<TGR> graphReader(TGR& graph, const std::string& fn);
1390 1390
    template <typename TGR>
1391 1391
    friend GraphReader<TGR> graphReader(TGR& graph, const char *fn);
1392 1392

	
1393 1393
    GraphReader(GraphReader& other)
1394 1394
      : _is(other._is), local_is(other.local_is), _graph(other._graph),
1395 1395
        _use_nodes(other._use_nodes), _use_edges(other._use_edges),
... ...
@@ -2060,15 +2060,15 @@
2060 2060
  };
2061 2061

	
2062 2062
  /// \ingroup lemon_io
2063 2063
  ///
2064 2064
  /// \brief Return a \ref GraphReader class
2065 2065
  ///
2066
  /// This function just returns a \ref GraphReader class. 
2066
  /// This function just returns a \ref GraphReader class.
2067 2067
  ///
2068
  /// With this function a graph can be read from an 
2068
  /// With this function a graph can be read from an
2069 2069
  /// \ref lgf-format "LGF" file or input stream with several maps and
2070 2070
  /// attributes. For example, there is weighted matching problem on a
2071 2071
  /// graph, i.e. a graph with a \e weight map on the edges. This
2072 2072
  /// graph can be read with the following code:
2073 2073
  ///
2074 2074
  ///\code
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -348,13 +348,13 @@
348 348
  }
349 349

	
350 350
  template <typename DGR>
351 351
  class DigraphWriter;
352 352

	
353 353
  template <typename TDGR>
354
  DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, 
354
  DigraphWriter<TDGR> digraphWriter(const TDGR& digraph,
355 355
                                   std::ostream& os = std::cout);
356 356
  template <typename TDGR>
357 357
  DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, const std::string& fn);
358 358

	
359 359
  template <typename TDGR>
360 360
  DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, const char* fn);
... ...
@@ -501,13 +501,13 @@
501 501
      }
502 502
    }
503 503

	
504 504
  private:
505 505

	
506 506
    template <typename TDGR>
507
    friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, 
507
    friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph,
508 508
                                             std::ostream& os);
509 509
    template <typename TDGR>
510 510
    friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph,
511 511
                                             const std::string& fn);
512 512
    template <typename TDGR>
513 513
    friend DigraphWriter<TDGR> digraphWriter(const TDGR& digraph,
... ...
@@ -914,13 +914,13 @@
914 914
  };
915 915

	
916 916
  /// \ingroup lemon_io
917 917
  ///
918 918
  /// \brief Return a \ref DigraphWriter class
919 919
  ///
920
  /// This function just returns a \ref DigraphWriter class. 
920
  /// This function just returns a \ref DigraphWriter class.
921 921
  ///
922 922
  /// With this function a digraph can be write to a file or output
923 923
  /// stream in \ref lgf-format "LGF" format with several maps and
924 924
  /// attributes. For example, with the following code a network flow
925 925
  /// problem can be written to the standard output, i.e. a digraph
926 926
  /// with a \e capacity map on the arcs and \e source and \e target
... ...
@@ -954,13 +954,13 @@
954 954
  /// \brief Return a \ref DigraphWriter class
955 955
  ///
956 956
  /// This function just returns a \ref DigraphWriter class.
957 957
  /// \relates DigraphWriter
958 958
  /// \sa digraphWriter(const TDGR& digraph, std::ostream& os)
959 959
  template <typename TDGR>
960
  DigraphWriter<TDGR> digraphWriter(const TDGR& digraph, 
960
  DigraphWriter<TDGR> digraphWriter(const TDGR& digraph,
961 961
                                    const std::string& fn) {
962 962
    DigraphWriter<TDGR> tmp(digraph, fn);
963 963
    return tmp;
964 964
  }
965 965

	
966 966
  /// \brief Return a \ref DigraphWriter class
... ...
@@ -1098,17 +1098,17 @@
1098 1098

	
1099 1099
  private:
1100 1100

	
1101 1101
    template <typename TGR>
1102 1102
    friend GraphWriter<TGR> graphWriter(const TGR& graph, std::ostream& os);
1103 1103
    template <typename TGR>
1104
    friend GraphWriter<TGR> graphWriter(const TGR& graph, 
1104
    friend GraphWriter<TGR> graphWriter(const TGR& graph,
1105 1105
                                        const std::string& fn);
1106 1106
    template <typename TGR>
1107 1107
    friend GraphWriter<TGR> graphWriter(const TGR& graph, const char *fn);
1108
    
1108

	
1109 1109
    GraphWriter(GraphWriter& other)
1110 1110
      : _os(other._os), local_os(other.local_os), _graph(other._graph),
1111 1111
        _skip_nodes(other._skip_nodes), _skip_edges(other._skip_edges) {
1112 1112

	
1113 1113
      other._os = 0;
1114 1114
      other.local_os = false;
... ...
@@ -1553,13 +1553,13 @@
1553 1553
  };
1554 1554

	
1555 1555
  /// \ingroup lemon_io
1556 1556
  ///
1557 1557
  /// \brief Return a \ref GraphWriter class
1558 1558
  ///
1559
  /// This function just returns a \ref GraphWriter class. 
1559
  /// This function just returns a \ref GraphWriter class.
1560 1560
  ///
1561 1561
  /// With this function a graph can be write to a file or output
1562 1562
  /// stream in \ref lgf-format "LGF" format with several maps and
1563 1563
  /// attributes. For example, with the following code a weighted
1564 1564
  /// matching problem can be written to the standard output, i.e. a
1565 1565
  /// graph with a \e weight map on the edges:
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -443,13 +443,13 @@
443 443
    ///then the newly created loops are removed.
444 444
    ///
445 445
    ///\note The moved arcs are joined to node \c u using changeSource()
446 446
    ///or changeTarget(), thus \c ArcIt and \c OutArcIt iterators are
447 447
    ///invalidated for the outgoing arcs of node \c v and \c InArcIt
448 448
    ///iterators are invalidated for the incomming arcs of \c v.
449
    ///Moreover all iterators referencing node \c v or the removed 
449
    ///Moreover all iterators referencing node \c v or the removed
450 450
    ///loops are also invalidated. Other iterators remain valid.
451 451
    ///
452 452
    ///\warning This functionality cannot be used together with the Snapshot
453 453
    ///feature.
454 454
    void contract(Node u, Node v, bool r = true)
455 455
    {
... ...
@@ -549,13 +549,13 @@
549 549
    ///
550 550
    /// Class to make a snapshot of the digraph and restore it later.
551 551
    ///
552 552
    /// The newly added nodes and arcs can be removed using the
553 553
    /// restore() function.
554 554
    ///
555
    /// \note After a state is restored, you cannot restore a later state, 
555
    /// \note After a state is restored, you cannot restore a later state,
556 556
    /// i.e. you cannot add the removed nodes and arcs again using
557 557
    /// another Snapshot instance.
558 558
    ///
559 559
    /// \warning Node and arc deletions and other modifications (e.g.
560 560
    /// reversing, contracting, splitting arcs or nodes) cannot be
561 561
    /// restored. These events invalidate the snapshot.
... ...
@@ -1304,13 +1304,13 @@
1304 1304
    /// If the last parameter \c r is \c true (this is the default value),
1305 1305
    /// then the newly created loops are removed.
1306 1306
    ///
1307 1307
    /// \note The moved edges are joined to node \c a using changeU()
1308 1308
    /// or changeV(), thus all edge and arc iterators whose base node is
1309 1309
    /// \c b are invalidated.
1310
    /// Moreover all iterators referencing node \c b or the removed 
1310
    /// Moreover all iterators referencing node \c b or the removed
1311 1311
    /// loops are also invalidated. Other iterators remain valid.
1312 1312
    ///
1313 1313
    ///\warning This functionality cannot be used together with the
1314 1314
    ///Snapshot feature.
1315 1315
    void contract(Node a, Node b, bool r = true) {
1316 1316
      for(IncEdgeIt e(*this, b); e!=INVALID;) {
... ...
@@ -1361,13 +1361,13 @@
1361 1361
    ///
1362 1362
    /// Class to make a snapshot of the graph and restore it later.
1363 1363
    ///
1364 1364
    /// The newly added nodes and edges can be removed
1365 1365
    /// using the restore() function.
1366 1366
    ///
1367
    /// \note After a state is restored, you cannot restore a later state, 
1367
    /// \note After a state is restored, you cannot restore a later state,
1368 1368
    /// i.e. you cannot add the removed nodes and edges again using
1369 1369
    /// another Snapshot instance.
1370 1370
    ///
1371 1371
    /// \warning Node and edge deletions and other modifications
1372 1372
    /// (e.g. changing the end-nodes of edges or contracting nodes)
1373 1373
    /// cannot be restored. These events invalidate the snapshot.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -81,13 +81,13 @@
81 81
  typedef CplexMip Mip;
82 82
#elif LEMON_HAVE_SOPLEX
83 83
# define DEFAULT_LP SOPLEX
84 84
  typedef SoplexLp Lp;
85 85
#elif LEMON_HAVE_CLP
86 86
# define DEFAULT_LP CLP
87
  typedef ClpLp Lp;  
87
  typedef ClpLp Lp;
88 88
#endif
89 89
#endif
90 90

	
91 91
} //namespace lemon
92 92

	
93 93
#endif //LEMON_LP_H
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -79,13 +79,13 @@
79 79
      MESSAGE_WARNING,
80 80
      /// Normal output.
81 81
      MESSAGE_NORMAL,
82 82
      /// Verbose output.
83 83
      MESSAGE_VERBOSE
84 84
    };
85
    
85

	
86 86

	
87 87
    ///The floating point type used by the solver
88 88
    typedef double Value;
89 89
    ///The infinity constant
90 90
    static const Value INF;
91 91
    ///The not a number constant
... ...
@@ -111,20 +111,20 @@
111 111
      int _id;
112 112
      explicit Col(int id) : _id(id) {}
113 113
    public:
114 114
      typedef Value ExprValue;
115 115
      typedef True LpCol;
116 116
      /// Default constructor
117
      
117

	
118 118
      /// \warning The default constructor sets the Col to an
119 119
      /// undefined value.
120 120
      Col() {}
121 121
      /// Invalid constructor \& conversion.
122
      
122

	
123 123
      /// This constructor initializes the Col to be invalid.
124
      /// \sa Invalid for more details.      
124
      /// \sa Invalid for more details.
125 125
      Col(const Invalid&) : _id(-1) {}
126 126
      /// Equality operator
127 127

	
128 128
      /// Two \ref Col "Col"s are equal if and only if they point to
129 129
      /// the same LP column or both are invalid.
130 130
      bool operator==(Col c) const  {return _id == c._id;}
... ...
@@ -153,31 +153,31 @@
153 153
    /// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count;
154 154
    ///\endcode
155 155
    class ColIt : public Col {
156 156
      const LpBase *_solver;
157 157
    public:
158 158
      /// Default constructor
159
      
159

	
160 160
      /// \warning The default constructor sets the iterator
161 161
      /// to an undefined value.
162 162
      ColIt() {}
163 163
      /// Sets the iterator to the first Col
164
      
164

	
165 165
      /// Sets the iterator to the first Col.
166 166
      ///
167 167
      ColIt(const LpBase &solver) : _solver(&solver)
168 168
      {
169 169
        _solver->cols.firstItem(_id);
170 170
      }
171 171
      /// Invalid constructor \& conversion
172
      
172

	
173 173
      /// Initialize the iterator to be invalid.
174 174
      /// \sa Invalid for more details.
175 175
      ColIt(const Invalid&) : Col(INVALID) {}
176 176
      /// Next column
177
      
177

	
178 178
      /// Assign the iterator to the next column.
179 179
      ///
180 180
      ColIt &operator++()
181 181
      {
182 182
        _solver->cols.nextItem(_id);
183 183
        return *this;
... ...
@@ -206,28 +206,28 @@
206 206
      int _id;
207 207
      explicit Row(int id) : _id(id) {}
208 208
    public:
209 209
      typedef Value ExprValue;
210 210
      typedef True LpRow;
211 211
      /// Default constructor
212
      
212

	
213 213
      /// \warning The default constructor sets the Row to an
214 214
      /// undefined value.
215 215
      Row() {}
216 216
      /// Invalid constructor \& conversion.
217
      
217

	
218 218
      /// This constructor initializes the Row to be invalid.
219
      /// \sa Invalid for more details.      
219
      /// \sa Invalid for more details.
220 220
      Row(const Invalid&) : _id(-1) {}
221 221
      /// Equality operator
222 222

	
223 223
      /// Two \ref Row "Row"s are equal if and only if they point to
224 224
      /// the same LP row or both are invalid.
225 225
      bool operator==(Row r) const  {return _id == r._id;}
226 226
      /// Inequality operator
227
      
227

	
228 228
      /// \sa operator==(Row r)
229 229
      ///
230 230
      bool operator!=(Row r) const  {return _id != r._id;}
231 231
      /// Artificial ordering operator.
232 232

	
233 233
      /// To allow the use of this object in std::map or similar
... ...
@@ -248,31 +248,31 @@
248 248
    /// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count;
249 249
    ///\endcode
250 250
    class RowIt : public Row {
251 251
      const LpBase *_solver;
252 252
    public:
253 253
      /// Default constructor
254
      
254

	
255 255
      /// \warning The default constructor sets the iterator
256 256
      /// to an undefined value.
257 257
      RowIt() {}
258 258
      /// Sets the iterator to the first Row
259
      
259

	
260 260
      /// Sets the iterator to the first Row.
261 261
      ///
262 262
      RowIt(const LpBase &solver) : _solver(&solver)
263 263
      {
264 264
        _solver->rows.firstItem(_id);
265 265
      }
266 266
      /// Invalid constructor \& conversion
267
      
267

	
268 268
      /// Initialize the iterator to be invalid.
269 269
      /// \sa Invalid for more details.
270 270
      RowIt(const Invalid&) : Row(INVALID) {}
271 271
      /// Next row
272
      
272

	
273 273
      /// Assign the iterator to the next row.
274 274
      ///
275 275
      RowIt &operator++()
276 276
      {
277 277
        _solver->rows.nextItem(_id);
278 278
        return *this;
... ...
@@ -344,13 +344,13 @@
344 344
      Value const_comp;
345 345
      std::map<int, Value> comps;
346 346

	
347 347
    public:
348 348
      typedef True SolverExpr;
349 349
      /// Default constructor
350
      
350

	
351 351
      /// Construct an empty expression, the coefficients and
352 352
      /// the constant component are initialized to zero.
353 353
      Expr() : const_comp(0) {}
354 354
      /// Construct an expression from a column
355 355

	
356 356
      /// Construct an expression, which has a term with \c c variable
... ...
@@ -445,15 +445,15 @@
445 445
          it->second/=c;
446 446
        const_comp/=c;
447 447
        return *this;
448 448
      }
449 449

	
450 450
      ///Iterator over the expression
451
      
452
      ///The iterator iterates over the terms of the expression. 
453
      /// 
451

	
452
      ///The iterator iterates over the terms of the expression.
453
      ///
454 454
      ///\code
455 455
      ///double s=0;
456 456
      ///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i)
457 457
      ///  s+= *i * primal(i);
458 458
      ///\endcode
459 459
      class CoeffIt {
... ...
@@ -461,13 +461,13 @@
461 461

	
462 462
        std::map<int, Value>::iterator _it, _end;
463 463

	
464 464
      public:
465 465

	
466 466
        /// Sets the iterator to the first term
467
        
467

	
468 468
        /// Sets the iterator to the first term of the expression.
469 469
        ///
470 470
        CoeffIt(Expr& e)
471 471
          : _it(e.comps.begin()), _end(e.comps.end()){}
472 472

	
473 473
        /// Convert the iterator to the column of the term
... ...
@@ -478,27 +478,27 @@
478 478
        /// Returns the coefficient of the term
479 479
        Value& operator*() { return _it->second; }
480 480

	
481 481
        /// Returns the coefficient of the term
482 482
        const Value& operator*() const { return _it->second; }
483 483
        /// Next term
484
        
484

	
485 485
        /// Assign the iterator to the next term.
486 486
        ///
487 487
        CoeffIt& operator++() { ++_it; return *this; }
488 488

	
489 489
        /// Equality operator
490 490
        bool operator==(Invalid) const { return _it == _end; }
491 491
        /// Inequality operator
492 492
        bool operator!=(Invalid) const { return _it != _end; }
493 493
      };
494 494

	
495 495
      /// Const iterator over the expression
496
      
497
      ///The iterator iterates over the terms of the expression. 
498
      /// 
496

	
497
      ///The iterator iterates over the terms of the expression.
498
      ///
499 499
      ///\code
500 500
      ///double s=0;
501 501
      ///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i)
502 502
      ///  s+=*i * primal(i);
503 503
      ///\endcode
504 504
      class ConstCoeffIt {
... ...
@@ -506,13 +506,13 @@
506 506

	
507 507
        std::map<int, Value>::const_iterator _it, _end;
508 508

	
509 509
      public:
510 510

	
511 511
        /// Sets the iterator to the first term
512
        
512

	
513 513
        /// Sets the iterator to the first term of the expression.
514 514
        ///
515 515
        ConstCoeffIt(const Expr& e)
516 516
          : _it(e.comps.begin()), _end(e.comps.end()){}
517 517

	
518 518
        /// Convert the iterator to the column of the term
... ...
@@ -521,13 +521,13 @@
521 521
        }
522 522

	
523 523
        /// Returns the coefficient of the term
524 524
        const Value& operator*() const { return _it->second; }
525 525

	
526 526
        /// Next term
527
        
527

	
528 528
        /// Assign the iterator to the next term.
529 529
        ///
530 530
        ConstCoeffIt& operator++() { ++_it; return *this; }
531 531

	
532 532
        /// Equality operator
533 533
        bool operator==(Invalid) const { return _it == _end; }
... ...
@@ -670,13 +670,13 @@
670 670
    protected:
671 671
      std::map<int, Value> comps;
672 672

	
673 673
    public:
674 674
      typedef True SolverExpr;
675 675
      /// Default constructor
676
      
676

	
677 677
      /// Construct an empty expression, the coefficients are
678 678
      /// initialized to zero.
679 679
      DualExpr() {}
680 680
      /// Construct an expression from a row
681 681

	
682 682
      /// Construct an expression, which has a term with \c r dual
... ...
@@ -705,13 +705,13 @@
705 705
          comps.insert(pair_type(id(r), v));
706 706
        } else {
707 707
          comps.erase(id(r));
708 708
        }
709 709
      }
710 710
      /// \brief Removes the coefficients which's absolute value does
711
      /// not exceed \c epsilon. 
711
      /// not exceed \c epsilon.
712 712
      void simplify(Value epsilon = 0.0) {
713 713
        std::map<int, Value>::iterator it=comps.begin();
714 714
        while (it != comps.end()) {
715 715
          std::map<int, Value>::iterator jt=it;
716 716
          ++jt;
717 717
          if (std::fabs((*it).second) <= epsilon) comps.erase(it);
... ...
@@ -754,15 +754,15 @@
754 754
             it!=comps.end(); ++it)
755 755
          it->second/=v;
756 756
        return *this;
757 757
      }
758 758

	
759 759
      ///Iterator over the expression
760
      
761
      ///The iterator iterates over the terms of the expression. 
762
      /// 
760

	
761
      ///The iterator iterates over the terms of the expression.
762
      ///
763 763
      ///\code
764 764
      ///double s=0;
765 765
      ///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i)
766 766
      ///  s+= *i * dual(i);
767 767
      ///\endcode
768 768
      class CoeffIt {
... ...
@@ -770,13 +770,13 @@
770 770

	
771 771
        std::map<int, Value>::iterator _it, _end;
772 772

	
773 773
      public:
774 774

	
775 775
        /// Sets the iterator to the first term
776
        
776

	
777 777
        /// Sets the iterator to the first term of the expression.
778 778
        ///
779 779
        CoeffIt(DualExpr& e)
780 780
          : _it(e.comps.begin()), _end(e.comps.end()){}
781 781

	
782 782
        /// Convert the iterator to the row of the term
... ...
@@ -788,27 +788,27 @@
788 788
        Value& operator*() { return _it->second; }
789 789

	
790 790
        /// Returns the coefficient of the term
791 791
        const Value& operator*() const { return _it->second; }
792 792

	
793 793
        /// Next term
794
        
794

	
795 795
        /// Assign the iterator to the next term.
796 796
        ///
797 797
        CoeffIt& operator++() { ++_it; return *this; }
798 798

	
799 799
        /// Equality operator
800 800
        bool operator==(Invalid) const { return _it == _end; }
801 801
        /// Inequality operator
802 802
        bool operator!=(Invalid) const { return _it != _end; }
803 803
      };
804 804

	
805 805
      ///Iterator over the expression
806
      
807
      ///The iterator iterates over the terms of the expression. 
808
      /// 
806

	
807
      ///The iterator iterates over the terms of the expression.
808
      ///
809 809
      ///\code
810 810
      ///double s=0;
811 811
      ///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i)
812 812
      ///  s+= *i * dual(i);
813 813
      ///\endcode
814 814
      class ConstCoeffIt {
... ...
@@ -816,13 +816,13 @@
816 816

	
817 817
        std::map<int, Value>::const_iterator _it, _end;
818 818

	
819 819
      public:
820 820

	
821 821
        /// Sets the iterator to the first term
822
        
822

	
823 823
        /// Sets the iterator to the first term of the expression.
824 824
        ///
825 825
        ConstCoeffIt(const DualExpr& e)
826 826
          : _it(e.comps.begin()), _end(e.comps.end()){}
827 827

	
828 828
        /// Convert the iterator to the row of the term
... ...
@@ -831,13 +831,13 @@
831 831
        }
832 832

	
833 833
        /// Returns the coefficient of the term
834 834
        const Value& operator*() const { return _it->second; }
835 835

	
836 836
        /// Next term
837
        
837

	
838 838
        /// Assign the iterator to the next term.
839 839
        ///
840 840
        ConstCoeffIt& operator++() { ++_it; return *this; }
841 841

	
842 842
        /// Equality operator
843 843
        bool operator==(Invalid) const { return _it == _end; }
... ...
@@ -1226,13 +1226,13 @@
1226 1226

	
1227 1227
    ///\param c is a linear expression (see \ref Constr)
1228 1228
    ///\return The created row.
1229 1229
    Row addRow(const Constr &c) {
1230 1230
      Row r;
1231 1231
      c.expr().simplify();
1232
      r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound()-*c.expr():-INF, 
1232
      r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound()-*c.expr():-INF,
1233 1233
                                ExprIterator(c.expr().comps.begin(), cols),
1234 1234
                                ExprIterator(c.expr().comps.end(), cols),
1235 1235
                                c.upperBounded()?c.upperBound()-*c.expr():INF));
1236 1236
      return r;
1237 1237
    }
1238 1238
    ///Erase a column (i.e a variable) from the LP
... ...
@@ -1814,16 +1814,16 @@
1814 1814
      UNBOUNDED = 4
1815 1815
    };
1816 1816

	
1817 1817
    ///The basis status of variables
1818 1818
    enum VarStatus {
1819 1819
      /// The variable is in the basis
1820
      BASIC, 
1820
      BASIC,
1821 1821
      /// The variable is free, but not basic
1822 1822
      FREE,
1823
      /// The variable has active lower bound 
1823
      /// The variable has active lower bound
1824 1824
      LOWER,
1825 1825
      /// The variable has active upper bound
1826 1826
      UPPER,
1827 1827
      /// The variable is non-basic and fixed
1828 1828
      FIXED
1829 1829
    };
... ...
@@ -1896,13 +1896,13 @@
1896 1896
      for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
1897 1897
        res += *c * primal(c);
1898 1898
      }
1899 1899
      return res;
1900 1900
    }
1901 1901
    /// Returns a component of the primal ray
1902
    
1902

	
1903 1903
    /// The primal ray is solution of the modified primal problem,
1904 1904
    /// where we change each finite bound to 0, and we looking for a
1905 1905
    /// negative objective value in case of minimization, and positive
1906 1906
    /// objective value for maximization. If there is such solution,
1907 1907
    /// that proofs the unsolvability of the dual problem, and if a
1908 1908
    /// feasible primal solution exists, then the unboundness of
... ...
@@ -1930,13 +1930,13 @@
1930 1930
        res += *r * dual(r);
1931 1931
      }
1932 1932
      return res;
1933 1933
    }
1934 1934

	
1935 1935
    /// Returns a component of the dual ray
1936
    
1936

	
1937 1937
    /// The dual ray is solution of the modified primal problem, where
1938 1938
    /// we change each finite bound to 0 (i.e. the objective function
1939 1939
    /// coefficients in the primal problem), and we looking for a
1940 1940
    /// ositive objective value. If there is such solution, that
1941 1941
    /// proofs the unsolvability of the primal problem, and if a
1942 1942
    /// feasible dual solution exists, then the unboundness of
... ...
@@ -2072,13 +2072,13 @@
2072 2072
      for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
2073 2073
        res += *c * sol(c);
2074 2074
      }
2075 2075
      return res;
2076 2076
    }
2077 2077
    ///The value of the objective function
2078
    
2078

	
2079 2079
    ///\return
2080 2080
    ///- \ref INF or -\ref INF means either infeasibility or unboundedness
2081 2081
    /// of the problem, depending on whether we minimize or maximize.
2082 2082
    ///- \ref NaN if no primal solution is found.
2083 2083
    ///- The (finite) objective value if an optimal solution is found.
2084 2084
    Value solValue() const { return _getSolValue()+obj_const_comp;}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -20,19 +20,19 @@
20 20
#define LEMON_LP_SKELETON_H
21 21

	
22 22
#include <lemon/lp_base.h>
23 23

	
24 24
///\file
25 25
///\brief Skeleton file to implement LP/MIP solver interfaces
26
///  
26
///
27 27
///The classes in this file do nothing, but they can serve as skeletons when
28 28
///implementing an interface to new solvers.
29 29
namespace lemon {
30 30

	
31 31
  ///A skeleton class to implement LP/MIP solver base interface
32
  
32

	
33 33
  ///This class does nothing, but it can serve as a skeleton when
34 34
  ///implementing an interface to new solvers.
35 35
  class SkeletonSolverBase : public virtual LpBase {
36 36
    int col_num,row_num;
37 37

	
38 38
  protected:
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -230,13 +230,13 @@
230 230
  ///
231 231
  /// This map is essentially a wrapper for \c std::vector. It assigns
232 232
  /// values to integer keys from the range <tt>[0..size-1]</tt>.
233 233
  /// It can be used together with some data structures, e.g.
234 234
  /// heap types and \c UnionFind, when the used items are small
235 235
  /// integers. This map conforms to the \ref concepts::ReferenceMap
236
  /// "ReferenceMap" concept. 
236
  /// "ReferenceMap" concept.
237 237
  ///
238 238
  /// The simplest way of using this map is through the rangeMap()
239 239
  /// function.
240 240
  template <typename V>
241 241
  class RangeMap : public MapBase<int, V> {
242 242
    template <typename V1>
... ...
@@ -1913,17 +1913,17 @@
1913 1913
  /// This class provides simple invertable graph maps.
1914 1914
  /// It wraps a standard graph map (\c NodeMap, \c ArcMap or \c EdgeMap)
1915 1915
  /// and if a key is set to a new value, then stores it in the inverse map.
1916 1916
  /// The graph items can be accessed by their values either using
1917 1917
  /// \c InverseMap or \c operator()(), and the values of the map can be
1918 1918
  /// accessed with an STL compatible forward iterator (\c ValueIt).
1919
  /// 
1919
  ///
1920 1920
  /// This map is intended to be used when all associated values are
1921 1921
  /// different (the map is actually invertable) or there are only a few
1922 1922
  /// items with the same value.
1923
  /// Otherwise consider to use \c IterableValueMap, which is more 
1923
  /// Otherwise consider to use \c IterableValueMap, which is more
1924 1924
  /// suitable and more efficient for such cases. It provides iterators
1925 1925
  /// to traverse the items with the same associated value, but
1926 1926
  /// it does not have \c InverseMap.
1927 1927
  ///
1928 1928
  /// This type is not reference map, so it cannot be modified with
1929 1929
  /// the subscript operator.
... ...
@@ -1999,13 +1999,13 @@
1999 1999
      /// \e
2000 2000
      bool operator!=(ValueIt jt) const { return it != jt.it; }
2001 2001

	
2002 2002
    private:
2003 2003
      typename Container::const_iterator it;
2004 2004
    };
2005
    
2005

	
2006 2006
    /// Alias for \c ValueIt
2007 2007
    typedef ValueIt ValueIterator;
2008 2008

	
2009 2009
    /// \brief Returns an iterator to the first value.
2010 2010
    ///
2011 2011
    /// Returns an STL compatible iterator to the
... ...
@@ -2058,13 +2058,13 @@
2058 2058
    /// If there are more items with the same associated value,
2059 2059
    /// only one of them is returned.
2060 2060
    Key operator()(const Value& val) const {
2061 2061
      typename Container::const_iterator it = _inv_map.find(val);
2062 2062
      return it != _inv_map.end() ? it->second : INVALID;
2063 2063
    }
2064
    
2064

	
2065 2065
    /// \brief Returns the number of items with the given value.
2066 2066
    ///
2067 2067
    /// This function returns the number of items with the given value
2068 2068
    /// associated with it.
2069 2069
    int count(const Value &val) const {
2070 2070
      return _inv_map.count(val);
... ...
@@ -2375,13 +2375,13 @@
2375 2375
  /// This function just returns an \c RangeIdMap class.
2376 2376
  /// \relates RangeIdMap
2377 2377
  template <typename K, typename GR>
2378 2378
  inline RangeIdMap<GR, K> rangeIdMap(const GR& graph) {
2379 2379
    return RangeIdMap<GR, K>(graph);
2380 2380
  }
2381
  
2381

	
2382 2382
  /// \brief Dynamic iterable \c bool map.
2383 2383
  ///
2384 2384
  /// This class provides a special graph map type which can store a
2385 2385
  /// \c bool value for graph items (\c Node, \c Arc or \c Edge).
2386 2386
  /// For both \c true and \c false values it is possible to iterate on
2387 2387
  /// the keys mapped to the value.
... ...
@@ -2635,13 +2635,13 @@
2635 2635
      ///
2636 2636
      /// Creates an iterator with a value. It iterates on the
2637 2637
      /// keys mapped to the given value.
2638 2638
      /// \param map The IterableBoolMap.
2639 2639
      /// \param value The value.
2640 2640
      ItemIt(const IterableBoolMap& map, bool value)
2641
        : Parent(value ? 
2641
        : Parent(value ?
2642 2642
                 (map._sep > 0 ?
2643 2643
                  map._array[map._sep - 1] : INVALID) :
2644 2644
                 (map._sep < int(map._array.size()) ?
2645 2645
                  map._array.back() : INVALID)), _map(&map) {}
2646 2646

	
2647 2647
      /// \brief Invalid constructor \& conversion.
... ...
@@ -3783,33 +3783,33 @@
3783 3783
  /// \param to The map to which the values have to be copied.
3784 3784
  /// It must conform to the \ref concepts::WriteMap "WriteMap" concept.
3785 3785
  template <typename GR, typename From, typename To>
3786 3786
  void mapCopy(const GR& gr, const From& from, To& to) {
3787 3787
    typedef typename To::Key Item;
3788 3788
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3789
    
3789

	
3790 3790
    for (ItemIt it(gr); it != INVALID; ++it) {
3791 3791
      to.set(it, from[it]);
3792 3792
    }
3793 3793
  }
3794 3794

	
3795 3795
  /// \brief Compare two graph maps.
3796 3796
  ///
3797
  /// This function compares the values of two graph maps. It returns 
3797
  /// This function compares the values of two graph maps. It returns
3798 3798
  /// \c true if the maps assign the same value for all items in the graph.
3799 3799
  /// The \c Key type of the maps (\c Node, \c Arc or \c Edge) must be equal
3800 3800
  /// and their \c Value types must be comparable using \c %operator==().
3801 3801
  ///
3802 3802
  /// \param gr The graph for which the maps are defined.
3803 3803
  /// \param map1 The first map.
3804 3804
  /// \param map2 The second map.
3805 3805
  template <typename GR, typename Map1, typename Map2>
3806 3806
  bool mapCompare(const GR& gr, const Map1& map1, const Map2& map2) {
3807 3807
    typedef typename Map2::Key Item;
3808 3808
    typedef typename ItemSetTraits<GR, Item>::ItemIt ItemIt;
3809
    
3809

	
3810 3810
    for (ItemIt it(gr); it != INVALID; ++it) {
3811 3811
      if (!(map1[it] == map2[it])) return false;
3812 3812
    }
3813 3813
    return true;
3814 3814
  }
3815 3815

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -1620,13 +1620,13 @@
1620 1620
        (*_delta3_index)[e] = _delta3->PRE_HEAP;
1621 1621
      }
1622 1622
      for (int i = 0; i < _blossom_num; ++i) {
1623 1623
        (*_delta2_index)[i] = _delta2->PRE_HEAP;
1624 1624
        (*_delta4_index)[i] = _delta4->PRE_HEAP;
1625 1625
      }
1626
      
1626

	
1627 1627
      _unmatched = _node_num;
1628 1628

	
1629 1629
      _delta1->clear();
1630 1630
      _delta2->clear();
1631 1631
      _delta3->clear();
1632 1632
      _delta4->clear();
... ...
@@ -1675,13 +1675,13 @@
1675 1675
    /// matching. This initialization is also called jumpstart heuristic.
1676 1676
    void fractionalInit() {
1677 1677
      createStructures();
1678 1678

	
1679 1679
      _blossom_node_list.clear();
1680 1680
      _blossom_potential.clear();
1681
      
1681

	
1682 1682
      if (_fractional == 0) {
1683 1683
        _fractional = new FractionalMatching(_graph, _weight, false);
1684 1684
      }
1685 1685
      _fractional->run();
1686 1686

	
1687 1687
      for (ArcIt e(_graph); e != INVALID; ++e) {
... ...
@@ -1747,23 +1747,23 @@
1747 1747
          subblossoms[--num] = _blossom_set->find(n);
1748 1748
          _delta1->push(n, _fractional->nodeValue(n));
1749 1749
          v = _graph.target(_fractional->matching(n));
1750 1750
          while (n != v) {
1751 1751
            subblossoms[--num] = _blossom_set->find(v);
1752 1752
            _delta1->push(v, _fractional->nodeValue(v));
1753
            v = _graph.target(_fractional->matching(v));            
1753
            v = _graph.target(_fractional->matching(v));
1754 1754
          }
1755
          
1756
          int surface = 
1755

	
1756
          int surface =
1757 1757
            _blossom_set->join(subblossoms.begin(), subblossoms.end());
1758 1758
          (*_blossom_data)[surface].status = EVEN;
1759 1759
          (*_blossom_data)[surface].pred = INVALID;
1760 1760
          (*_blossom_data)[surface].next = INVALID;
1761 1761
          (*_blossom_data)[surface].pot = 0;
1762 1762
          (*_blossom_data)[surface].offset = 0;
1763
          
1763

	
1764 1764
          _tree_set->insert(surface);
1765 1765
          ++_unmatched;
1766 1766
        }
1767 1767
      }
1768 1768

	
1769 1769
      for (EdgeIt e(_graph); e != INVALID; ++e) {
... ...
@@ -1807,13 +1807,13 @@
1807 1807
            } else {
1808 1808
              (*_node_data)[ni].heap.push(e, rw);
1809 1809
              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, e));
1810 1810
            }
1811 1811
          }
1812 1812
        }
1813
            
1813

	
1814 1814
        if (!(*_node_data)[ni].heap.empty()) {
1815 1815
          _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
1816 1816
          _delta2->push(nb, _blossom_set->classPrio(nb));
1817 1817
        }
1818 1818
      }
1819 1819
    }
... ...
@@ -2266,13 +2266,13 @@
2266 2266
    IntIntMap *_delta4_index;
2267 2267
    BinHeap<Value, IntIntMap> *_delta4;
2268 2268

	
2269 2269
    Value _delta_sum;
2270 2270
    int _unmatched;
2271 2271

	
2272
    typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap> 
2272
    typedef MaxWeightedPerfectFractionalMatching<Graph, WeightMap>
2273 2273
    FractionalMatching;
2274 2274
    FractionalMatching *_fractional;
2275 2275

	
2276 2276
    void createStructures() {
2277 2277
      _node_num = countNodes(_graph);
2278 2278
      _blossom_num = _node_num * 3 / 2;
... ...
@@ -3092,13 +3092,13 @@
3092 3092
    /// matching. This initialization is also called jumpstart heuristic.
3093 3093
    void fractionalInit() {
3094 3094
      createStructures();
3095 3095

	
3096 3096
      _blossom_node_list.clear();
3097 3097
      _blossom_potential.clear();
3098
      
3098

	
3099 3099
      if (_fractional == 0) {
3100 3100
        _fractional = new FractionalMatching(_graph, _weight, false);
3101 3101
      }
3102 3102
      if (!_fractional->run()) {
3103 3103
        _unmatched = -1;
3104 3104
        return;
... ...
@@ -3158,23 +3158,23 @@
3158 3158
          std::vector<int> subblossoms(num);
3159 3159

	
3160 3160
          subblossoms[--num] = _blossom_set->find(n);
3161 3161
          v = _graph.target(_fractional->matching(n));
3162 3162
          while (n != v) {
3163 3163
            subblossoms[--num] = _blossom_set->find(v);
3164
            v = _graph.target(_fractional->matching(v));            
3164
            v = _graph.target(_fractional->matching(v));
3165 3165
          }
3166
          
3167
          int surface = 
3166

	
3167
          int surface =
3168 3168
            _blossom_set->join(subblossoms.begin(), subblossoms.end());
3169 3169
          (*_blossom_data)[surface].status = EVEN;
3170 3170
          (*_blossom_data)[surface].pred = INVALID;
3171 3171
          (*_blossom_data)[surface].next = INVALID;
3172 3172
          (*_blossom_data)[surface].pot = 0;
3173 3173
          (*_blossom_data)[surface].offset = 0;
3174
          
3174

	
3175 3175
          _tree_set->insert(surface);
3176 3176
          ++_unmatched;
3177 3177
        }
3178 3178
      }
3179 3179

	
3180 3180
      for (EdgeIt e(_graph); e != INVALID; ++e) {
... ...
@@ -3218,13 +3218,13 @@
3218 3218
            } else {
3219 3219
              (*_node_data)[ni].heap.push(e, rw);
3220 3220
              (*_node_data)[ni].heap_index.insert(std::make_pair(vt, e));
3221 3221
            }
3222 3222
          }
3223 3223
        }
3224
            
3224

	
3225 3225
        if (!(*_node_data)[ni].heap.empty()) {
3226 3226
          _blossom_set->decrease(n, (*_node_data)[ni].heap.prio());
3227 3227
          _delta2->push(nb, _blossom_set->classPrio(nb));
3228 3228
        }
3229 3229
      }
3230 3230
    }
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -53,13 +53,13 @@
53 53
  /// sqrt(2)
54 54
  const long double SQRT2   = 1.4142135623730950488016887242096981L;
55 55
  /// 1/sqrt(2)
56 56
  const long double SQRT1_2 = 0.7071067811865475244008443621048490L;
57 57

	
58 58
  ///Check whether the parameter is NaN or not
59
  
59

	
60 60
  ///This function checks whether the parameter is NaN or not.
61 61
  ///Is should be equivalent with std::isnan(), but it is not
62 62
  ///provided by all compilers.
63 63
  inline bool isNaN(double v)
64 64
    {
65 65
      return v!=v;
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -125,14 +125,14 @@
125 125
#else
126 126
  template <typename GR, typename CM, typename TR>
127 127
#endif
128 128
  class MinCostArborescence {
129 129
  public:
130 130

	
131
    /// \brief The \ref MinCostArborescenceDefaultTraits "traits class" 
132
    /// of the algorithm. 
131
    /// \brief The \ref MinCostArborescenceDefaultTraits "traits class"
132
    /// of the algorithm.
133 133
    typedef TR Traits;
134 134
    /// The type of the underlying digraph.
135 135
    typedef typename Traits::Digraph Digraph;
136 136
    /// The type of the map that stores the arc costs.
137 137
    typedef typename Traits::CostMap CostMap;
138 138
    ///The type of the costs of the arcs.
... ...
@@ -433,13 +433,13 @@
433 433

	
434 434
    /// \brief \ref named-templ-param "Named parameter" for
435 435
    /// setting \c PredMap type
436 436
    ///
437 437
    /// \ref named-templ-param "Named parameter" for setting
438 438
    /// \c PredMap type.
439
    /// It must meet the \ref concepts::WriteMap "WriteMap" concept, 
439
    /// It must meet the \ref concepts::WriteMap "WriteMap" concept,
440 440
    /// and its value type must be the \c Arc type of the digraph.
441 441
    template <class T>
442 442
    struct SetPredMap
443 443
      : public MinCostArborescence<Digraph, CostMap, SetPredMapTraits<T> > {
444 444
    };
445 445

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -94,13 +94,13 @@
94 94
      OPTIMAL,
95 95
      /// The objective function of the problem is unbounded, i.e.
96 96
      /// there is a directed cycle having negative total cost and
97 97
      /// infinite upper bound.
98 98
      UNBOUNDED
99 99
    };
100
    
100

	
101 101
    /// \brief Constants for selecting the type of the supply constraints.
102 102
    ///
103 103
    /// Enum type containing constants for selecting the supply type,
104 104
    /// i.e. the direction of the inequalities in the supply/demand
105 105
    /// constraints of the \ref min_cost_flow "minimum cost flow problem".
106 106
    ///
... ...
@@ -112,13 +112,13 @@
112 112
      /// supply/demand constraints in the definition of the problem.
113 113
      GEQ,
114 114
      /// This option means that there are <em>"less or equal"</em>
115 115
      /// supply/demand constraints in the definition of the problem.
116 116
      LEQ
117 117
    };
118
    
118

	
119 119
    /// \brief Constants for selecting the pivot rule.
120 120
    ///
121 121
    /// Enum type containing constants for selecting the pivot rule for
122 122
    /// the \ref run() function.
123 123
    ///
124 124
    /// \ref NetworkSimplex provides five different pivot rule
... ...
@@ -155,13 +155,13 @@
155 155
      /// The \e Altering \e Candidate \e List pivot rule.
156 156
      /// It is a modified version of the Candidate List method.
157 157
      /// It keeps only the several best eligible arcs from the former
158 158
      /// candidate list and extends this list in every iteration.
159 159
      ALTERING_LIST
160 160
    };
161
    
161

	
162 162
  private:
163 163

	
164 164
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
165 165

	
166 166
    typedef std::vector<int> IntVector;
167 167
    typedef std::vector<Value> ValueVector;
... ...
@@ -224,17 +224,17 @@
224 224

	
225 225
    // Temporary data used in the current pivot iteration
226 226
    int in_arc, join, u_in, v_in, u_out, v_out;
227 227
    int first, second, right, last;
228 228
    int stem, par_stem, new_stem;
229 229
    Value delta;
230
    
230

	
231 231
    const Value MAX;
232 232

	
233 233
  public:
234
  
234

	
235 235
    /// \brief Constant for infinite upper bounds (capacities).
236 236
    ///
237 237
    /// Constant for infinite upper bounds (capacities).
238 238
    /// It is \c std::numeric_limits<Value>::infinity() if available,
239 239
    /// \c std::numeric_limits<Value>::max() otherwise.
240 240
    const Value INF;
... ...
@@ -495,14 +495,14 @@
495 495
              _in_arc = e;
496 496
            }
497 497
            if (_curr_length == _list_length) goto search_end;
498 498
          }
499 499
        }
500 500
        if (_curr_length == 0) return false;
501
      
502
      search_end:        
501

	
502
      search_end:
503 503
        _minor_count = 1;
504 504
        _next_arc = e;
505 505
        return true;
506 506
      }
507 507

	
508 508
    }; //class CandidateListPivotRule
... ...
@@ -605,13 +605,13 @@
605 605
            if (_curr_length > limit) goto search_end;
606 606
            limit = 0;
607 607
            cnt = _block_size;
608 608
          }
609 609
        }
610 610
        if (_curr_length == 0) return false;
611
        
611

	
612 612
      search_end:
613 613

	
614 614
        // Make heap of the candidate list (approximating a partial sort)
615 615
        make_heap( _candidates.begin(), _candidates.begin() + _curr_length,
616 616
                   _sort_func );
617 617

	
... ...
@@ -631,13 +631,13 @@
631 631
    /// \brief Constructor.
632 632
    ///
633 633
    /// The constructor of the class.
634 634
    ///
635 635
    /// \param graph The digraph the algorithm runs on.
636 636
    /// \param arc_mixing Indicate if the arcs have to be stored in a
637
    /// mixed order in the internal data structure. 
637
    /// mixed order in the internal data structure.
638 638
    /// In special cases, it could lead to better overall performance,
639 639
    /// but it is usually slower. Therefore it is disabled by default.
640 640
    NetworkSimplex(const GR& graph, bool arc_mixing = false) :
641 641
      _graph(graph), _node_id(graph), _arc_id(graph),
642 642
      _arc_mixing(arc_mixing),
643 643
      MAX(std::numeric_limits<Value>::max()),
... ...
@@ -646,13 +646,13 @@
646 646
    {
647 647
      // Check the number types
648 648
      LEMON_ASSERT(std::numeric_limits<Value>::is_signed,
649 649
        "The flow type of NetworkSimplex must be signed");
650 650
      LEMON_ASSERT(std::numeric_limits<Cost>::is_signed,
651 651
        "The cost type of NetworkSimplex must be signed");
652
        
652

	
653 653
      // Reset data structures
654 654
      reset();
655 655
    }
656 656

	
657 657
    /// \name Parameters
658 658
    /// The parameters of the algorithm can be specified using these
... ...
@@ -760,13 +760,13 @@
760 760
        _supply[i] = 0;
761 761
      }
762 762
      _supply[_node_id[s]] =  k;
763 763
      _supply[_node_id[t]] = -k;
764 764
      return *this;
765 765
    }
766
    
766

	
767 767
    /// \brief Set the type of the supply constraints.
768 768
    ///
769 769
    /// This function sets the type of the supply/demand constraints.
770 770
    /// If it is not used before calling \ref run(), the \ref GEQ supply
771 771
    /// type will be used.
772 772
    ///
... ...
@@ -786,13 +786,13 @@
786 786
    /// @{
787 787

	
788 788
    /// \brief Run the algorithm.
789 789
    ///
790 790
    /// This function runs the algorithm.
791 791
    /// The paramters can be specified using functions \ref lowerMap(),
792
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(), 
792
    /// \ref upperMap(), \ref costMap(), \ref supplyMap(), \ref stSupply(),
793 793
    /// \ref supplyType().
794 794
    /// For example,
795 795
    /// \code
796 796
    ///   NetworkSimplex<ListDigraph> ns(graph);
797 797
    ///   ns.lowerMap(lower).upperMap(upper).costMap(cost)
798 798
    ///     .supplyMap(sup).run();
... ...
@@ -941,18 +941,18 @@
941 941
        for (ArcIt a(_graph); a != INVALID; ++a, ++i) {
942 942
          _arc_id[a] = i;
943 943
          _source[i] = _node_id[_graph.source(a)];
944 944
          _target[i] = _node_id[_graph.target(a)];
945 945
        }
946 946
      }
947
      
947

	
948 948
      // Reset parameters
949 949
      resetParams();
950 950
      return *this;
951 951
    }
952
    
952

	
953 953
    /// @}
954 954

	
955 955
    /// \name Query Functions
956 956
    /// The results of the algorithm can be obtained using these
957 957
    /// functions.\n
958 958
    /// The \ref run() function must be called before using them.
... ...
@@ -1086,13 +1086,13 @@
1086 1086

	
1087 1087
      // Initialize arc maps
1088 1088
      for (int i = 0; i != _arc_num; ++i) {
1089 1089
        _flow[i] = 0;
1090 1090
        _state[i] = STATE_LOWER;
1091 1091
      }
1092
      
1092

	
1093 1093
      // Set data for the artificial root node
1094 1094
      _root = _node_num;
1095 1095
      _parent[_root] = -1;
1096 1096
      _pred[_root] = -1;
1097 1097
      _thread[_root] = 0;
1098 1098
      _rev_thread[0] = _root;
... ...
@@ -1260,13 +1260,13 @@
1260 1260
          result = 1;
1261 1261
        }
1262 1262
      }
1263 1263
      // Search the cycle along the path form the second node to the root
1264 1264
      for (int u = second; u != join; u = _parent[u]) {
1265 1265
        e = _pred[u];
1266
        d = _forward[u] ? 
1266
        d = _forward[u] ?
1267 1267
          (_cap[e] >= MAX ? INF : _cap[e] - _flow[e]) : _flow[e];
1268 1268
        if (d <= delta) {
1269 1269
          delta = d;
1270 1270
          u_out = u;
1271 1271
          result = 2;
1272 1272
        }
... ...
@@ -1564,13 +1564,13 @@
1564 1564
        changeFlow(change);
1565 1565
        if (change) {
1566 1566
          updateTreeStructure();
1567 1567
          updatePotential();
1568 1568
        }
1569 1569
      }
1570
      
1570

	
1571 1571
      // Check feasibility
1572 1572
      for (int e = _search_arc_num; e != _all_arc_num; ++e) {
1573 1573
        if (_flow[e] != 0) return INFEASIBLE;
1574 1574
      }
1575 1575

	
1576 1576
      // Transform the solution and the supply map to the original form
... ...
@@ -1581,13 +1581,13 @@
1581 1581
            _flow[i] += c;
1582 1582
            _supply[_source[i]] += c;
1583 1583
            _supply[_target[i]] -= c;
1584 1584
          }
1585 1585
        }
1586 1586
      }
1587
      
1587

	
1588 1588
      // Shift potentials to meet the requirements of the GEQ/LEQ type
1589 1589
      // optimality conditions
1590 1590
      if (_sum_supply == 0) {
1591 1591
        if (_stype == GEQ) {
1592 1592
          Cost max_pot = std::numeric_limits<Cost>::min();
1593 1593
          for (int i = 0; i != _node_num; ++i) {
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -963,26 +963,26 @@
963 963
      static void copy(const From& from, To& to) {
964 964
        to.clear();
965 965
        to.buildRev(from);
966 966
      }
967 967
    };
968 968

	
969
    
969

	
970 970
    template <typename From, typename To,
971 971
              bool revEnable = RevPathTagIndicator<From>::value>
972 972
    struct PathCopySelector {
973 973
      static void copy(const From& from, To& to) {
974 974
        PathCopySelectorForward<From, To>::copy(from, to);
975
      }      
975
      }
976 976
    };
977 977

	
978 978
    template <typename From, typename To>
979 979
    struct PathCopySelector<From, To, true> {
980 980
      static void copy(const From& from, To& to) {
981 981
        PathCopySelectorBackward<From, To>::copy(from, to);
982
      }      
982
      }
983 983
    };
984 984

	
985 985
  }
986 986

	
987 987

	
988 988
  /// \brief Make a copy of a path.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -137,23 +137,23 @@
137 137
      typename Graph::Arc prev, next;
138 138
    };
139 139

	
140 140
    template <typename Graph>
141 141
    class PlanarityChecking {
142 142
    private:
143
      
143

	
144 144
      TEMPLATE_GRAPH_TYPEDEFS(Graph);
145 145

	
146 146
      const Graph& _graph;
147 147

	
148 148
    private:
149
      
149

	
150 150
      typedef typename Graph::template NodeMap<Arc> PredMap;
151
      
151

	
152 152
      typedef typename Graph::template EdgeMap<bool> TreeMap;
153
      
153

	
154 154
      typedef typename Graph::template NodeMap<int> OrderMap;
155 155
      typedef std::vector<Node> OrderList;
156 156

	
157 157
      typedef typename Graph::template NodeMap<int> LowMap;
158 158
      typedef typename Graph::template NodeMap<int> AncestorMap;
159 159

	
... ...
@@ -218,13 +218,13 @@
218 218
              walkUp(target, source, i, pred_map, low_map,
219 219
                     order_map, order_list, node_data, merge_roots);
220 220
            }
221 221
          }
222 222

	
223 223
          for (typename MergeRoots::Value::iterator it =
224
                 merge_roots[node].begin(); 
224
                 merge_roots[node].begin();
225 225
               it != merge_roots[node].end(); ++it) {
226 226
            int rn = *it;
227 227
            walkDown(rn, i, node_data, order_list, child_lists,
228 228
                     ancestor_map, low_map, embed_arc, merge_roots);
229 229
          }
230 230
          merge_roots[node].clear();
... ...
@@ -429,13 +429,13 @@
429 429
              Node xnode = order_list[xn];
430 430

	
431 431
              int yn = node_data[rn].prev;
432 432
              Node ynode = order_list[yn];
433 433

	
434 434
              bool rd;
435
              if (!external(xnode, rorder, child_lists, 
435
              if (!external(xnode, rorder, child_lists,
436 436
                            ancestor_map, low_map)) {
437 437
                rd = true;
438 438
              } else if (!external(ynode, rorder, child_lists,
439 439
                                   ancestor_map, low_map)) {
440 440
                rd = false;
441 441
              } else if (pertinent(xnode, embed_arc, merge_roots)) {
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -183,13 +183,13 @@
183 183
  ///\ingroup graphs
184 184
  ///
185 185
  ///\brief A smart directed graph class.
186 186
  ///
187 187
  ///\ref SmartDigraph is a simple and fast digraph implementation.
188 188
  ///It is also quite memory efficient but at the price
189
  ///that it does not support node and arc deletion 
189
  ///that it does not support node and arc deletion
190 190
  ///(except for the Snapshot feature).
191 191
  ///
192 192
  ///This type fully conforms to the \ref concepts::Digraph "Digraph concept"
193 193
  ///and it also provides some additional functionalities.
194 194
  ///Most of its member functions and nested classes are documented
195 195
  ///only in the concept class.
... ...
@@ -332,13 +332,13 @@
332 332
    ///Class to make a snapshot of the digraph and to restore it later.
333 333
    ///
334 334
    ///The newly added nodes and arcs can be removed using the
335 335
    ///restore() function. This is the only way for deleting nodes and/or
336 336
    ///arcs from a SmartDigraph structure.
337 337
    ///
338
    ///\note After a state is restored, you cannot restore a later state, 
338
    ///\note After a state is restored, you cannot restore a later state,
339 339
    ///i.e. you cannot add the removed nodes and arcs again using
340 340
    ///another Snapshot instance.
341 341
    ///
342 342
    ///\warning Node splitting cannot be restored.
343 343
    ///\warning The validity of the snapshot is not stored due to
344 344
    ///performance reasons. If you do not use the snapshot correctly,
... ...
@@ -611,13 +611,13 @@
611 611
  /// \ingroup graphs
612 612
  ///
613 613
  /// \brief A smart undirected graph class.
614 614
  ///
615 615
  /// \ref SmartGraph is a simple and fast graph implementation.
616 616
  /// It is also quite memory efficient but at the price
617
  /// that it does not support node and edge deletion 
617
  /// that it does not support node and edge deletion
618 618
  /// (except for the Snapshot feature).
619 619
  ///
620 620
  /// This type fully conforms to the \ref concepts::Graph "Graph concept"
621 621
  /// and it also provides some additional functionalities.
622 622
  /// Most of its member functions and nested classes are documented
623 623
  /// only in the concept class.
... ...
@@ -758,13 +758,13 @@
758 758
    ///Class to make a snapshot of the graph and to restore it later.
759 759
    ///
760 760
    ///The newly added nodes and edges can be removed using the
761 761
    ///restore() function. This is the only way for deleting nodes and/or
762 762
    ///edges from a SmartGraph structure.
763 763
    ///
764
    ///\note After a state is restored, you cannot restore a later state, 
764
    ///\note After a state is restored, you cannot restore a later state,
765 765
    ///i.e. you cannot add the removed nodes and edges again using
766 766
    ///another Snapshot instance.
767 767
    ///
768 768
    ///\warning The validity of the snapshot is not stored due to
769 769
    ///performance reasons. If you do not use the snapshot correctly,
770 770
    ///it can cause broken program, invalid or not restored state of
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -284,13 +284,13 @@
284 284
    return soplex->obj(i);
285 285
  }
286 286

	
287 287
  SoplexLp::SolveExitStatus SoplexLp::_solve() {
288 288

	
289 289
    _clear_temporals();
290
    
290

	
291 291
    _applyMessageLevel();
292 292

	
293 293
    soplex::SPxSolver::Status status = soplex->solve();
294 294

	
295 295
    switch (status) {
296 296
    case soplex::SPxSolver::OPTIMAL:
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
Ignore white space 6 line context
1
/* -*- C++ -*-
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library
3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -28,18 +28,18 @@
28 28

	
29 29
namespace lemon {
30 30

	
31 31
  class StaticDigraphBase {
32 32
  public:
33 33

	
34
    StaticDigraphBase() 
35
      : built(false), node_num(0), arc_num(0), 
34
    StaticDigraphBase()
35
      : built(false), node_num(0), arc_num(0),
36 36
        node_first_out(NULL), node_first_in(NULL),
37
        arc_source(NULL), arc_target(NULL), 
37
        arc_source(NULL), arc_target(NULL),
38 38
        arc_next_in(NULL), arc_next_out(NULL) {}
39
    
39

	
40 40
    ~StaticDigraphBase() {
41 41
      if (built) {
42 42
        delete[] node_first_out;
43 43
        delete[] node_first_in;
44 44
        delete[] arc_source;
45 45
        delete[] arc_target;
... ...
@@ -59,13 +59,13 @@
59 59
      bool operator==(const Node& node) const { return id == node.id; }
60 60
      bool operator!=(const Node& node) const { return id != node.id; }
61 61
      bool operator<(const Node& node) const { return id < node.id; }
62 62
    };
63 63

	
64 64
    class Arc {
65
      friend class StaticDigraphBase;      
65
      friend class StaticDigraphBase;
66 66
    protected:
67 67
      int id;
68 68
      Arc(int _id) : id(_id) {}
69 69
    public:
70 70
      Arc() { }
71 71
      Arc (Invalid) : id(-1) {}
... ...
@@ -80,14 +80,14 @@
80 80
    void first(Node& n) const { n.id = node_num - 1; }
81 81
    static void next(Node& n) { --n.id; }
82 82

	
83 83
    void first(Arc& e) const { e.id = arc_num - 1; }
84 84
    static void next(Arc& e) { --e.id; }
85 85

	
86
    void firstOut(Arc& e, const Node& n) const { 
87
      e.id = node_first_out[n.id] != node_first_out[n.id + 1] ? 
86
    void firstOut(Arc& e, const Node& n) const {
87
      e.id = node_first_out[n.id] != node_first_out[n.id + 1] ?
88 88
        node_first_out[n.id] : -1;
89 89
    }
90 90
    void nextOut(Arc& e) const { e.id = arc_next_out[e.id]; }
91 91

	
92 92
    void firstIn(Arc& e, const Node& n) const { e.id = node_first_in[n.id]; }
93 93
    void nextIn(Arc& e) const { e.id = arc_next_in[e.id]; }
... ...
@@ -110,27 +110,27 @@
110 110

	
111 111
    template <typename Digraph, typename NodeRefMap>
112 112
    class ArcLess {
113 113
    public:
114 114
      typedef typename Digraph::Arc Arc;
115 115

	
116
      ArcLess(const Digraph &_graph, const NodeRefMap& _nodeRef) 
116
      ArcLess(const Digraph &_graph, const NodeRefMap& _nodeRef)
117 117
        : digraph(_graph), nodeRef(_nodeRef) {}
118
      
118

	
119 119
      bool operator()(const Arc& left, const Arc& right) const {
120
	return nodeRef[digraph.target(left)] < nodeRef[digraph.target(right)];
120
        return nodeRef[digraph.target(left)] < nodeRef[digraph.target(right)];
121 121
      }
122 122
    private:
123 123
      const Digraph& digraph;
124 124
      const NodeRefMap& nodeRef;
125 125
    };
126
    
126

	
127 127
  public:
128 128

	
129 129
    typedef True BuildTag;
130
    
130

	
131 131
    void clear() {
132 132
      if (built) {
133 133
        delete[] node_first_out;
134 134
        delete[] node_first_in;
135 135
        delete[] arc_source;
136 136
        delete[] arc_target;
... ...
@@ -138,13 +138,13 @@
138 138
        delete[] arc_next_in;
139 139
      }
140 140
      built = false;
141 141
      node_num = 0;
142 142
      arc_num = 0;
143 143
    }
144
    
144

	
145 145
    template <typename Digraph, typename NodeRefMap, typename ArcRefMap>
146 146
    void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) {
147 147
      typedef typename Digraph::Node GNode;
148 148
      typedef typename Digraph::Arc GArc;
149 149

	
150 150
      built = true;
... ...
@@ -180,13 +180,13 @@
180 180
          node_first_out[source] = arc_index;
181 181
          std::sort(arcs.begin(), arcs.end(), arcLess);
182 182
          for (typename std::vector<GArc>::iterator it = arcs.begin();
183 183
               it != arcs.end(); ++it) {
184 184
            int target = nodeRef[digraph.target(*it)].id;
185 185
            arcRef[*it] = Arc(arc_index);
186
            arc_source[arc_index] = source; 
186
            arc_source[arc_index] = source;
187 187
            arc_target[arc_index] = target;
188 188
            arc_next_in[arc_index] = node_first_in[target];
189 189
            node_first_in[target] = arc_index;
190 190
            arc_next_out[arc_index] = arc_index + 1;
191 191
            ++arc_index;
192 192
          }
... ...
@@ -194,13 +194,13 @@
194 194
        } else {
195 195
          node_first_out[source] = arc_index;
196 196
        }
197 197
      }
198 198
      node_first_out[node_num] = arc_num;
199 199
    }
200
    
200

	
201 201
    template <typename ArcListIterator>
202 202
    void build(int n, ArcListIterator first, ArcListIterator last) {
203 203
      built = true;
204 204

	
205 205
      node_num = n;
206 206
      arc_num = std::distance(first, last);
... ...
@@ -209,17 +209,17 @@
209 209
      node_first_in = new int[node_num];
210 210

	
211 211
      arc_source = new int[arc_num];
212 212
      arc_target = new int[arc_num];
213 213
      arc_next_out = new int[arc_num];
214 214
      arc_next_in = new int[arc_num];
215
      
215

	
216 216
      for (int i = 0; i != node_num; ++i) {
217 217
        node_first_in[i] = -1;
218
      }      
219
      
218
      }
219

	
220 220
      int arc_index = 0;
221 221
      for (int i = 0; i != node_num; ++i) {
222 222
        node_first_out[i] = arc_index;
223 223
        for ( ; first != last && (*first).first == i; ++first) {
224 224
          int j = (*first).second;
225 225
          LEMON_ASSERT(j >= 0 && j < node_num,
... ...
@@ -279,13 +279,13 @@
279 279
  /// iterators, since its arcs are stored in an appropriate order.
280 280
  /// However it only provides build() and clear() functions and does not
281 281
  /// support any other modification of the digraph.
282 282
  ///
283 283
  /// Since this digraph structure is completely static, its nodes and arcs
284 284
  /// can be indexed with integers from the ranges <tt>[0..nodeNum()-1]</tt>
285
  /// and <tt>[0..arcNum()-1]</tt>, respectively. 
285
  /// and <tt>[0..arcNum()-1]</tt>, respectively.
286 286
  /// The index of an item is the same as its ID, it can be obtained
287 287
  /// using the corresponding \ref index() or \ref concepts::Digraph::id()
288 288
  /// "id()" function. A node or arc with a certain index can be obtained
289 289
  /// using node() or arc().
290 290
  ///
291 291
  /// This type fully conforms to the \ref concepts::Digraph "Digraph concept".
... ...
@@ -296,15 +296,15 @@
296 296
  ///
297 297
  /// \sa concepts::Digraph
298 298
  class StaticDigraph : public ExtendedStaticDigraphBase {
299 299
  public:
300 300

	
301 301
    typedef ExtendedStaticDigraphBase Parent;
302
  
302

	
303 303
  public:
304
  
304

	
305 305
    /// \brief Constructor
306 306
    ///
307 307
    /// Default constructor.
308 308
    StaticDigraph() : Parent() {}
309 309

	
310 310
    /// \brief The node with the given index.
... ...
@@ -346,13 +346,13 @@
346 346
    /// This function builds the digraph copying another digraph of any
347 347
    /// kind. It can be called more than once, but in such case, the whole
348 348
    /// structure and all maps will be cleared and rebuilt.
349 349
    ///
350 350
    /// This method also makes possible to copy a digraph to a StaticDigraph
351 351
    /// structure using \ref DigraphCopy.
352
    /// 
352
    ///
353 353
    /// \param digraph An existing digraph to be copied.
354 354
    /// \param nodeRef The node references will be copied into this map.
355 355
    /// Its key type must be \c Digraph::Node and its value type must be
356 356
    /// \c StaticDigraph::Node.
357 357
    /// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap"
358 358
    /// concept.
... ...
@@ -367,13 +367,13 @@
367 367
    /// from the map.
368 368
    template <typename Digraph, typename NodeRefMap, typename ArcRefMap>
369 369
    void build(const Digraph& digraph, NodeRefMap& nodeRef, ArcRefMap& arcRef) {
370 370
      if (built) Parent::clear();
371 371
      Parent::build(digraph, nodeRef, arcRef);
372 372
    }
373
  
373

	
374 374
    /// \brief Build the digraph from an arc list.
375 375
    ///
376 376
    /// This function builds the digraph from the given arc list.
377 377
    /// It can be called more than once, but in such case, the whole
378 378
    /// structure and all maps will be cleared and rebuilt.
379 379
    ///
... ...
@@ -418,38 +418,38 @@
418 418

	
419 419
  protected:
420 420

	
421 421
    using Parent::fastFirstOut;
422 422
    using Parent::fastNextOut;
423 423
    using Parent::fastLastOut;
424
    
424

	
425 425
  public:
426 426

	
427 427
    class OutArcIt : public Arc {
428 428
    public:
429 429

	
430 430
      OutArcIt() { }
431 431

	
432 432
      OutArcIt(Invalid i) : Arc(i) { }
433 433

	
434 434
      OutArcIt(const StaticDigraph& digraph, const Node& node) {
435
	digraph.fastFirstOut(*this, node);
436
	digraph.fastLastOut(last, node);
435
        digraph.fastFirstOut(*this, node);
436
        digraph.fastLastOut(last, node);
437 437
        if (last == *this) *this = INVALID;
438 438
      }
439 439

	
440 440
      OutArcIt(const StaticDigraph& digraph, const Arc& arc) : Arc(arc) {
441 441
        if (arc != INVALID) {
442 442
          digraph.fastLastOut(last, digraph.source(arc));
443 443
        }
444 444
      }
445 445

	
446
      OutArcIt& operator++() { 
446
      OutArcIt& operator++() {
447 447
        StaticDigraph::fastNextOut(*this);
448 448
        if (last == *this) *this = INVALID;
449
        return *this; 
449
        return *this;
450 450
      }
451 451

	
452 452
    private:
453 453
      Arc last;
454 454
    };
455 455

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -62,13 +62,13 @@
62 62
    /// \brief The path type
63 63
    ///
64 64
    /// The type used for storing the found arc-disjoint paths.
65 65
    /// It must conform to the \ref lemon::concepts::Path "Path" concept
66 66
    /// and it must have an \c addBack() function.
67 67
    typedef lemon::Path<Digraph> Path;
68
    
68

	
69 69
    /// The cross reference type used for the heap.
70 70
    typedef typename GR::template NodeMap<int> HeapCrossRef;
71 71

	
72 72
    /// \brief The heap type used for internal Dijkstra computations.
73 73
    ///
74 74
    /// The type of the heap used for internal Dijkstra computations.
... ...
@@ -155,32 +155,32 @@
155 155
      const LengthMap &_length;
156 156
      const FlowMap &_flow;
157 157
      PotentialMap &_pi;
158 158
      PredMap &_pred;
159 159
      Node _s;
160 160
      Node _t;
161
      
161

	
162 162
      PotentialMap _dist;
163 163
      std::vector<Node> _proc_nodes;
164 164

	
165 165
    public:
166 166

	
167 167
      // Constructor
168 168
      ResidualDijkstra(Suurballe &srb) :
169 169
        _graph(srb._graph), _length(srb._length),
170
        _flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred), 
170
        _flow(*srb._flow), _pi(*srb._potential), _pred(srb._pred),
171 171
        _s(srb._s), _t(srb._t), _dist(_graph) {}
172
        
172

	
173 173
      // Run the algorithm and return true if a path is found
174 174
      // from the source node to the target node.
175 175
      bool run(int cnt) {
176 176
        return cnt == 0 ? startFirst() : start();
177 177
      }
178 178

	
179 179
    private:
180
    
180

	
181 181
      // Execute the algorithm for the first time (the flow and potential
182 182
      // functions have to be identically zero).
183 183
      bool startFirst() {
184 184
        HeapCrossRef heap_cross_ref(_graph, Heap::PRE_HEAP);
185 185
        Heap heap(heap_cross_ref);
186 186
        heap.push(_s, 0);
... ...
@@ -345,24 +345,24 @@
345 345
    /// and it must have an \c addBack() function.
346 346
    template <typename T>
347 347
    struct SetPath
348 348
      : public Suurballe<GR, LEN, SetPathTraits<T> > {
349 349
      typedef Suurballe<GR, LEN, SetPathTraits<T> > Create;
350 350
    };
351
    
351

	
352 352
    template <typename H, typename CR>
353 353
    struct SetHeapTraits : public Traits {
354 354
      typedef H Heap;
355 355
      typedef CR HeapCrossRef;
356 356
    };
357 357

	
358 358
    /// \brief \ref named-templ-param "Named parameter" for setting
359 359
    /// \c Heap and \c HeapCrossRef types.
360 360
    ///
361 361
    /// \ref named-templ-param "Named parameter" for setting \c Heap
362
    /// and \c HeapCrossRef types with automatic allocation. 
362
    /// and \c HeapCrossRef types with automatic allocation.
363 363
    /// They will be used for internal Dijkstra computations.
364 364
    /// The heap type must conform to the \ref lemon::concepts::Heap "Heap"
365 365
    /// concept and its priority type must be \c Length.
366 366
    template <typename H,
367 367
              typename CR = typename Digraph::template NodeMap<int> >
368 368
    struct SetHeap
... ...
@@ -394,13 +394,13 @@
394 394
    // Container to store the found paths
395 395
    std::vector<Path> _paths;
396 396
    int _path_num;
397 397

	
398 398
    // The pred arc map
399 399
    PredMap _pred;
400
    
400

	
401 401
    // Data for full init
402 402
    PotentialMap *_init_dist;
403 403
    PredMap *_init_pred;
404 404
    bool _full_init;
405 405

	
406 406
  protected:
... ...
@@ -552,13 +552,13 @@
552 552
        ::template SetStandardHeap<Heap>
553 553
        ::template SetDistMap<PotentialMap>
554 554
        ::template SetPredMap<PredMap>
555 555
        ::Create dijk(_graph, _length);
556 556
      dijk.distMap(*_init_dist).predMap(*_init_pred);
557 557
      dijk.run(s);
558
      
558

	
559 559
      _full_init = true;
560 560
    }
561 561

	
562 562
    /// \brief Execute the algorithm.
563 563
    ///
564 564
    /// This function executes the algorithm.
... ...
@@ -596,13 +596,13 @@
596 596
    /// Otherwise it returns the number of arc-disjoint paths found.
597 597
    ///
598 598
    /// \pre \ref init() must be called before using this function.
599 599
    int findFlow(const Node& t, int k = 2) {
600 600
      _t = t;
601 601
      ResidualDijkstra dijkstra(*this);
602
      
602

	
603 603
      // Initialization
604 604
      for (ArcIt e(_graph); e != INVALID; ++e) {
605 605
        (*_flow)[e] = 0;
606 606
      }
607 607
      if (_full_init) {
608 608
        for (NodeIt n(_graph); n != INVALID; ++n) {
... ...
@@ -610,13 +610,13 @@
610 610
        }
611 611
        Node u = _t;
612 612
        Arc e;
613 613
        while ((e = (*_init_pred)[u]) != INVALID) {
614 614
          (*_flow)[e] = 1;
615 615
          u = _graph.source(e);
616
        }        
616
        }
617 617
        _path_num = 1;
618 618
      } else {
619 619
        for (NodeIt n(_graph); n != INVALID; ++n) {
620 620
          (*_potential)[n] = 0;
621 621
        }
622 622
        _path_num = 0;
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -94,26 +94,26 @@
94 94
    s  = const_bf_test.predNode(t);
95 95
    b  = const_bf_test.reached(t);
96 96
    d  = const_bf_test.distMap();
97 97
    p  = const_bf_test.predMap();
98 98
    pp = const_bf_test.path(t);
99 99
    pp = const_bf_test.negativeCycle();
100
    
100

	
101 101
    for (BF::ActiveIt it(const_bf_test); it != INVALID; ++it) {}
102 102
  }
103 103
  {
104 104
    BF::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
105 105
      ::SetDistMap<concepts::ReadWriteMap<Node,Value> >
106 106
      ::SetOperationTraits<BellmanFordDefaultOperationTraits<Value> >
107 107
      ::SetOperationTraits<BellmanFordToleranceOperationTraits<Value, 0> >
108 108
      ::Create bf_test(gr,length);
109 109

	
110 110
    LengthMap length_map;
111 111
    concepts::ReadWriteMap<Node,Arc> pred_map;
112 112
    concepts::ReadWriteMap<Node,Value> dist_map;
113
    
113

	
114 114
    bf_test
115 115
      .lengthMap(length_map)
116 116
      .predMap(pred_map)
117 117
      .distMap(dist_map);
118 118

	
119 119
    bf_test.run(s);
... ...
@@ -186,13 +186,13 @@
186 186

	
187 187
  check(bf.reached(t) && bf.dist(t) == -1, "Bellman-Ford found a wrong path.");
188 188
  check(p.length() == 3, "path() found a wrong path.");
189 189
  check(checkPath(gr, p), "path() found a wrong path.");
190 190
  check(pathSource(gr, p) == s, "path() found a wrong path.");
191 191
  check(pathTarget(gr, p) == t, "path() found a wrong path.");
192
  
192

	
193 193
  ListPath<Digraph> path;
194 194
  Value dist;
195 195
  bool reached = bellmanFord(gr,length).path(path).dist(dist).run(s,t);
196 196

	
197 197
  check(reached && dist == -1, "Bellman-Ford found a wrong path.");
198 198
  check(path.length() == 3, "path() found a wrong path.");
... ...
@@ -225,46 +225,46 @@
225 225

	
226 226
void checkBellmanFordNegativeCycle() {
227 227
  DIGRAPH_TYPEDEFS(SmartDigraph);
228 228

	
229 229
  SmartDigraph gr;
230 230
  IntArcMap length(gr);
231
  
231

	
232 232
  Node n1 = gr.addNode();
233 233
  Node n2 = gr.addNode();
234 234
  Node n3 = gr.addNode();
235 235
  Node n4 = gr.addNode();
236
  
236

	
237 237
  Arc a1 = gr.addArc(n1, n2);
238 238
  Arc a2 = gr.addArc(n2, n2);
239
  
239

	
240 240
  length[a1] = 2;
241 241
  length[a2] = -1;
242
  
242

	
243 243
  {
244 244
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
245 245
    bf.run(n1);
246 246
    StaticPath<SmartDigraph> p = bf.negativeCycle();
247 247
    check(p.length() == 1 && p.front() == p.back() && p.front() == a2,
248 248
          "Wrong negative cycle.");
249 249
  }
250
 
250

	
251 251
  length[a2] = 0;
252
  
252

	
253 253
  {
254 254
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
255 255
    bf.run(n1);
256 256
    check(bf.negativeCycle().empty(),
257 257
          "Negative cycle should not be found.");
258 258
  }
259
  
259

	
260 260
  length[gr.addArc(n1, n3)] = 5;
261 261
  length[gr.addArc(n4, n3)] = 1;
262 262
  length[gr.addArc(n2, n4)] = 2;
263 263
  length[gr.addArc(n3, n2)] = -4;
264
  
264

	
265 265
  {
266 266
    BellmanFord<SmartDigraph, IntArcMap> bf(gr, length);
267 267
    bf.init();
268 268
    bf.addSource(n1);
269 269
    for (int i = 0; i < 4; ++i) {
270 270
      check(bf.negativeCycle().empty(),
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -80,13 +80,13 @@
80 80
    n = bfs_test.processNextNode();
81 81
    n = bfs_test.processNextNode(t, b);
82 82
    n = bfs_test.processNextNode(nm, n);
83 83
    n = const_bfs_test.nextNode();
84 84
    b = const_bfs_test.emptyQueue();
85 85
    i = const_bfs_test.queueSize();
86
    
86

	
87 87
    bfs_test.start();
88 88
    bfs_test.start(t);
89 89
    bfs_test.start(nm);
90 90

	
91 91
    l  = const_bfs_test.dist(t);
92 92
    e  = const_bfs_test.predArc(t);
... ...
@@ -101,37 +101,37 @@
101 101
      ::SetPredMap<concepts::ReadWriteMap<Node,Arc> >
102 102
      ::SetDistMap<concepts::ReadWriteMap<Node,int> >
103 103
      ::SetReachedMap<concepts::ReadWriteMap<Node,bool> >
104 104
      ::SetStandardProcessedMap
105 105
      ::SetProcessedMap<concepts::WriteMap<Node,bool> >
106 106
      ::Create bfs_test(G);
107
      
107

	
108 108
    concepts::ReadWriteMap<Node,Arc> pred_map;
109 109
    concepts::ReadWriteMap<Node,int> dist_map;
110 110
    concepts::ReadWriteMap<Node,bool> reached_map;
111 111
    concepts::WriteMap<Node,bool> processed_map;
112
    
112

	
113 113
    bfs_test
114 114
      .predMap(pred_map)
115 115
      .distMap(dist_map)
116 116
      .reachedMap(reached_map)
117 117
      .processedMap(processed_map);
118 118

	
119 119
    bfs_test.run(s);
120 120
    bfs_test.run(s,t);
121 121
    bfs_test.run();
122
    
122

	
123 123
    bfs_test.init();
124 124
    bfs_test.addSource(s);
125 125
    n = bfs_test.processNextNode();
126 126
    n = bfs_test.processNextNode(t, b);
127 127
    n = bfs_test.processNextNode(nm, n);
128 128
    n = bfs_test.nextNode();
129 129
    b = bfs_test.emptyQueue();
130 130
    i = bfs_test.queueSize();
131
    
131

	
132 132
    bfs_test.start();
133 133
    bfs_test.start(t);
134 134
    bfs_test.start(nm);
135 135

	
136 136
    l  = bfs_test.dist(t);
137 137
    e  = bfs_test.predArc(t);
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -78,19 +78,19 @@
78 78
            ::SetFlowMap<FlowMap>
79 79
            ::SetElevator<Elev>
80 80
            ::SetStandardElevator<LinkedElev>
81 81
            ::Create CirculationType;
82 82
  CirculationType circ_test(g, lcap, ucap, supply);
83 83
  const CirculationType& const_circ_test = circ_test;
84
   
84

	
85 85
  circ_test
86 86
    .lowerMap(lcap)
87 87
    .upperMap(ucap)
88 88
    .supplyMap(supply)
89 89
    .flowMap(flow);
90
  
90

	
91 91
  const CirculationType::Elevator& elev = const_circ_test.elevator();
92 92
  circ_test.elevator(const_cast<CirculationType::Elevator&>(elev));
93 93
  CirculationType::Tolerance tol = const_circ_test.tolerance();
94 94
  circ_test.tolerance(tol);
95 95

	
96 96
  circ_test.init();
... ...
@@ -99,13 +99,13 @@
99 99
  circ_test.run();
100 100

	
101 101
  v = const_circ_test.flow(a);
102 102
  const FlowMap& fm = const_circ_test.flowMap();
103 103
  b = const_circ_test.barrier(n);
104 104
  const_circ_test.barrierMap(bar);
105
  
105

	
106 106
  ignore_unused_variable_warning(fm);
107 107
}
108 108

	
109 109
template <class G, class LM, class UM, class DM>
110 110
void checkCirculation(const G& g, const LM& lm, const UM& um,
111 111
                      const DM& dm, bool find)
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -26,18 +26,18 @@
26 26

	
27 27

	
28 28
int main()
29 29
{
30 30
  typedef ListDigraph Digraph;
31 31
  typedef Undirector<Digraph> Graph;
32
  
32

	
33 33
  {
34 34
    Digraph d;
35 35
    Digraph::NodeMap<int> order(d);
36 36
    Graph g(d);
37
    
37

	
38 38
    check(stronglyConnected(d), "The empty digraph is strongly connected");
39 39
    check(countStronglyConnectedComponents(d) == 0,
40 40
          "The empty digraph has 0 strongly connected component");
41 41
    check(connected(g), "The empty graph is connected");
42 42
    check(countConnectedComponents(g) == 0,
43 43
          "The empty graph has 0 connected component");
... ...
@@ -45,13 +45,13 @@
45 45
    check(biNodeConnected(g), "The empty graph is bi-node-connected");
46 46
    check(countBiNodeConnectedComponents(g) == 0,
47 47
          "The empty graph has 0 bi-node-connected component");
48 48
    check(biEdgeConnected(g), "The empty graph is bi-edge-connected");
49 49
    check(countBiEdgeConnectedComponents(g) == 0,
50 50
          "The empty graph has 0 bi-edge-connected component");
51
          
51

	
52 52
    check(dag(d), "The empty digraph is DAG.");
53 53
    check(checkedTopologicalSort(d, order), "The empty digraph is DAG.");
54 54
    check(loopFree(d), "The empty digraph is loop-free.");
55 55
    check(parallelFree(d), "The empty digraph is parallel-free.");
56 56
    check(simpleGraph(d), "The empty digraph is simple.");
57 57

	
... ...
@@ -79,13 +79,13 @@
79 79
    check(biNodeConnected(g), "This graph is bi-node-connected");
80 80
    check(countBiNodeConnectedComponents(g) == 0,
81 81
          "This graph has 0 bi-node-connected component");
82 82
    check(biEdgeConnected(g), "This graph is bi-edge-connected");
83 83
    check(countBiEdgeConnectedComponents(g) == 1,
84 84
          "This graph has 1 bi-edge-connected component");
85
          
85

	
86 86
    check(dag(d), "This digraph is DAG.");
87 87
    check(checkedTopologicalSort(d, order), "This digraph is DAG.");
88 88
    check(loopFree(d), "This digraph is loop-free.");
89 89
    check(parallelFree(d), "This digraph is parallel-free.");
90 90
    check(simpleGraph(d), "This digraph is simple.");
91 91

	
... ...
@@ -98,20 +98,20 @@
98 98
  }
99 99

	
100 100
  {
101 101
    Digraph d;
102 102
    Digraph::NodeMap<int> order(d);
103 103
    Graph g(d);
104
    
104

	
105 105
    Digraph::Node n1 = d.addNode();
106 106
    Digraph::Node n2 = d.addNode();
107 107
    Digraph::Node n3 = d.addNode();
108 108
    Digraph::Node n4 = d.addNode();
109 109
    Digraph::Node n5 = d.addNode();
110 110
    Digraph::Node n6 = d.addNode();
111
    
111

	
112 112
    d.addArc(n1, n3);
113 113
    d.addArc(n3, n2);
114 114
    d.addArc(n2, n1);
115 115
    d.addArc(n4, n2);
116 116
    d.addArc(n4, n3);
117 117
    d.addArc(n5, n6);
... ...
@@ -133,29 +133,29 @@
133 133
    check(!acyclic(g), "This graph is not acyclic.");
134 134
    check(!tree(g), "This graph is not tree.");
135 135
    check(!bipartite(g), "This graph is not bipartite.");
136 136
    check(loopFree(g), "This graph is loop-free.");
137 137
    check(!parallelFree(g), "This graph is not parallel-free.");
138 138
    check(!simpleGraph(g), "This graph is not simple.");
139
    
139

	
140 140
    d.addArc(n3, n3);
141
    
141

	
142 142
    check(!loopFree(d), "This digraph is not loop-free.");
143 143
    check(!loopFree(g), "This graph is not loop-free.");
144 144
    check(!simpleGraph(d), "This digraph is not simple.");
145
    
145

	
146 146
    d.addArc(n3, n2);
147
    
147

	
148 148
    check(!parallelFree(d), "This digraph is not parallel-free.");
149 149
  }
150
  
150

	
151 151
  {
152 152
    Digraph d;
153 153
    Digraph::ArcMap<bool> cutarcs(d, false);
154 154
    Graph g(d);
155
    
155

	
156 156
    Digraph::Node n1 = d.addNode();
157 157
    Digraph::Node n2 = d.addNode();
158 158
    Digraph::Node n3 = d.addNode();
159 159
    Digraph::Node n4 = d.addNode();
160 160
    Digraph::Node n5 = d.addNode();
161 161
    Digraph::Node n6 = d.addNode();
... ...
@@ -169,13 +169,13 @@
169 169
    d.addArc(n6, n4);
170 170
    d.addArc(n4, n6);
171 171
    d.addArc(n2, n5);
172 172
    d.addArc(n1, n8);
173 173
    d.addArc(n6, n7);
174 174
    d.addArc(n7, n6);
175
   
175

	
176 176
    check(!stronglyConnected(d), "This digraph is not strongly connected");
177 177
    check(countStronglyConnectedComponents(d) == 3,
178 178
          "This digraph has 3 strongly connected components");
179 179
    Digraph::NodeMap<int> scomp1(d);
180 180
    check(stronglyConnectedComponents(d, scomp1) == 3,
181 181
          "This digraph has 3 strongly connected components");
... ...
@@ -232,13 +232,13 @@
232 232

	
233 233
  {
234 234
    // DAG example for topological sort from the book New Algorithms
235 235
    // (T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein)
236 236
    Digraph d;
237 237
    Digraph::NodeMap<int> order(d);
238
    
238

	
239 239
    Digraph::Node belt = d.addNode();
240 240
    Digraph::Node trousers = d.addNode();
241 241
    Digraph::Node necktie = d.addNode();
242 242
    Digraph::Node coat = d.addNode();
243 243
    Digraph::Node socks = d.addNode();
244 244
    Digraph::Node shirt = d.addNode();
... ...
@@ -252,25 +252,25 @@
252 252
    d.addArc(trousers, shoe);
253 253
    d.addArc(trousers, belt);
254 254
    d.addArc(belt, coat);
255 255
    d.addArc(shirt, belt);
256 256
    d.addArc(shirt, necktie);
257 257
    d.addArc(necktie, coat);
258
    
258

	
259 259
    check(dag(d), "This digraph is DAG.");
260 260
    topologicalSort(d, order);
261 261
    for (Digraph::ArcIt a(d); a != INVALID; ++a) {
262 262
      check(order[d.source(a)] < order[d.target(a)],
263 263
            "Wrong topologicalSort()");
264 264
    }
265 265
  }
266 266

	
267 267
  {
268 268
    ListGraph g;
269 269
    ListGraph::NodeMap<bool> map(g);
270
    
270

	
271 271
    ListGraph::Node n1 = g.addNode();
272 272
    ListGraph::Node n2 = g.addNode();
273 273
    ListGraph::Node n3 = g.addNode();
274 274
    ListGraph::Node n4 = g.addNode();
275 275
    ListGraph::Node n5 = g.addNode();
276 276
    ListGraph::Node n6 = g.addNode();
... ...
@@ -280,16 +280,16 @@
280 280
    g.addEdge(n1, n4);
281 281
    g.addEdge(n2, n5);
282 282
    g.addEdge(n3, n6);
283 283
    g.addEdge(n4, n6);
284 284
    g.addEdge(n4, n7);
285 285
    g.addEdge(n5, n7);
286
   
286

	
287 287
    check(bipartite(g), "This graph is bipartite");
288 288
    check(bipartitePartitions(g, map), "This graph is bipartite");
289
    
289

	
290 290
    check(map[n1] == map[n2] && map[n1] == map[n6] && map[n1] == map[n7],
291 291
          "Wrong bipartitePartitions()");
292 292
    check(map[n3] == map[n4] && map[n3] == map[n5],
293 293
          "Wrong bipartitePartitions()");
294 294
  }
295 295

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -80,13 +80,13 @@
80 80
    dfs_test.init();
81 81
    dfs_test.addSource(s);
82 82
    e = dfs_test.processNextArc();
83 83
    e = const_dfs_test.nextArc();
84 84
    b = const_dfs_test.emptyQueue();
85 85
    i = const_dfs_test.queueSize();
86
    
86

	
87 87
    dfs_test.start();
88 88
    dfs_test.start(t);
89 89
    dfs_test.start(am);
90 90

	
91 91
    l  = const_dfs_test.dist(t);
92 92
    e  = const_dfs_test.predArc(t);
... ...
@@ -106,13 +106,13 @@
106 106
      ::Create dfs_test(G);
107 107

	
108 108
    concepts::ReadWriteMap<Node,Arc> pred_map;
109 109
    concepts::ReadWriteMap<Node,int> dist_map;
110 110
    concepts::ReadWriteMap<Node,bool> reached_map;
111 111
    concepts::WriteMap<Node,bool> processed_map;
112
    
112

	
113 113
    dfs_test
114 114
      .predMap(pred_map)
115 115
      .distMap(dist_map)
116 116
      .reachedMap(reached_map)
117 117
      .processedMap(processed_map);
118 118

	
... ...
@@ -123,13 +123,13 @@
123 123

	
124 124
    dfs_test.addSource(s);
125 125
    e = dfs_test.processNextArc();
126 126
    e = dfs_test.nextArc();
127 127
    b = dfs_test.emptyQueue();
128 128
    i = dfs_test.queueSize();
129
    
129

	
130 130
    dfs_test.start();
131 131
    dfs_test.start(t);
132 132
    dfs_test.start(am);
133 133

	
134 134
    l  = dfs_test.dist(t);
135 135
    e  = dfs_test.predArc(t);
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -389,15 +389,15 @@
389 389
}
390 390

	
391 391
void checkStaticDigraph() {
392 392
  SmartDigraph g;
393 393
  SmartDigraph::NodeMap<StaticDigraph::Node> nref(g);
394 394
  SmartDigraph::ArcMap<StaticDigraph::Arc> aref(g);
395
  
395

	
396 396
  StaticDigraph G;
397
  
397

	
398 398
  checkGraphNodeList(G, 0);
399 399
  checkGraphArcList(G, 0);
400 400

	
401 401
  G.build(g, nref, aref);
402 402

	
403 403
  checkGraphNodeList(G, 0);
... ...
@@ -461,13 +461,13 @@
461 461
  arcs.push_back(std::make_pair(3,3));
462 462
  arcs.push_back(std::make_pair(4,2));
463 463
  arcs.push_back(std::make_pair(4,3));
464 464
  arcs.push_back(std::make_pair(4,1));
465 465

	
466 466
  G.build(6, arcs.begin(), arcs.end());
467
  
467

	
468 468
  checkGraphNodeList(G, 6);
469 469
  checkGraphArcList(G, 9);
470 470

	
471 471
  checkGraphOutArcList(G, G.node(0), 2);
472 472
  checkGraphOutArcList(G, G.node(1), 2);
473 473
  checkGraphOutArcList(G, G.node(2), 0);
... ...
@@ -485,13 +485,13 @@
485 485
  checkGraphConArcList(G, 9);
486 486

	
487 487
  checkNodeIds(G);
488 488
  checkArcIds(G);
489 489
  checkGraphNodeMap(G);
490 490
  checkGraphArcMap(G);
491
  
491

	
492 492
  int n = G.nodeNum();
493 493
  int m = G.arcNum();
494 494
  check(G.index(G.node(n-1)) == n-1, "Wrong index.");
495 495
  check(G.index(G.arc(m-1)) == m-1, "Wrong index.");
496 496
}
497 497

	
Ignore white space 12 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -82,13 +82,13 @@
82 82
    dijkstra_test.addSource(s);
83 83
    dijkstra_test.addSource(s, 1);
84 84
    n = dijkstra_test.processNextNode();
85 85
    n = const_dijkstra_test.nextNode();
86 86
    b = const_dijkstra_test.emptyQueue();
87 87
    i = const_dijkstra_test.queueSize();
88
    
88

	
89 89
    dijkstra_test.start();
90 90
    dijkstra_test.start(t);
91 91
    dijkstra_test.start(nm);
92 92

	
93 93
    l  = const_dijkstra_test.dist(t);
94 94
    e  = const_dijkstra_test.predArc(t);
... ...
@@ -106,23 +106,23 @@
106 106
      ::SetDistMap<concepts::ReadWriteMap<Node,VType> >
107 107
      ::SetStandardProcessedMap
108 108
      ::SetProcessedMap<concepts::WriteMap<Node,bool> >
109 109
      ::SetOperationTraits<DijkstraDefaultOperationTraits<VType> >
110 110
      ::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > >
111 111
      ::SetStandardHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> > >
112
      ::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> >, 
112
      ::SetHeap<BinHeap<VType, concepts::ReadWriteMap<Node,int> >,
113 113
                concepts::ReadWriteMap<Node,int> >
114 114
      ::Create dijkstra_test(G,length);
115 115

	
116 116
    LengthMap length_map;
117 117
    concepts::ReadWriteMap<Node,Arc> pred_map;
118 118
    concepts::ReadWriteMap<Node,VType> dist_map;
119 119
    concepts::WriteMap<Node,bool> processed_map;
120 120
    concepts::ReadWriteMap<Node,int> heap_cross_ref;
121 121
    BinHeap<VType, concepts::ReadWriteMap<Node,int> > heap(heap_cross_ref);
122
    
122

	
123 123
    dijkstra_test
124 124
      .lengthMap(length_map)
125 125
      .predMap(pred_map)
126 126
      .distMap(dist_map)
127 127
      .processedMap(processed_map)
128 128
      .heap(heap, heap_cross_ref);
... ...
@@ -133,13 +133,13 @@
133 133
    dijkstra_test.addSource(s);
134 134
    dijkstra_test.addSource(s, 1);
135 135
    n = dijkstra_test.processNextNode();
136 136
    n = dijkstra_test.nextNode();
137 137
    b = dijkstra_test.emptyQueue();
138 138
    i = dijkstra_test.queueSize();
139
    
139

	
140 140
    dijkstra_test.start();
141 141
    dijkstra_test.start(t);
142 142
    dijkstra_test.start(nm);
143 143

	
144 144
    l  = dijkstra_test.dist(t);
145 145
    e  = dijkstra_test.predArc(t);
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -82,17 +82,17 @@
82 82
}
83 83

	
84 84
int main()
85 85
{
86 86
  typedef ListDigraph Digraph;
87 87
  typedef Undirector<Digraph> Graph;
88
  
88

	
89 89
  {
90 90
    Digraph d;
91 91
    Graph g(d);
92
    
92

	
93 93
    checkDiEulerIt(d);
94 94
    checkDiEulerIt(g);
95 95
    checkEulerIt(g);
96 96

	
97 97
    check(eulerian(d), "This graph is Eulerian");
98 98
    check(eulerian(g), "This graph is Eulerian");
... ...
@@ -125,13 +125,13 @@
125 125
  {
126 126
    Digraph d;
127 127
    Graph g(d);
128 128
    Digraph::Node n1 = d.addNode();
129 129
    Digraph::Node n2 = d.addNode();
130 130
    Digraph::Node n3 = d.addNode();
131
    
131

	
132 132
    d.addArc(n1, n2);
133 133
    d.addArc(n2, n1);
134 134
    d.addArc(n2, n3);
135 135
    d.addArc(n3, n2);
136 136

	
137 137
    checkDiEulerIt(d);
... ...
@@ -150,13 +150,13 @@
150 150
    Digraph::Node n1 = d.addNode();
151 151
    Digraph::Node n2 = d.addNode();
152 152
    Digraph::Node n3 = d.addNode();
153 153
    Digraph::Node n4 = d.addNode();
154 154
    Digraph::Node n5 = d.addNode();
155 155
    Digraph::Node n6 = d.addNode();
156
    
156

	
157 157
    d.addArc(n1, n2);
158 158
    d.addArc(n2, n4);
159 159
    d.addArc(n1, n3);
160 160
    d.addArc(n3, n4);
161 161
    d.addArc(n4, n1);
162 162
    d.addArc(n3, n5);
... ...
@@ -186,13 +186,13 @@
186 186
    Digraph::Node n0 = d.addNode();
187 187
    Digraph::Node n1 = d.addNode();
188 188
    Digraph::Node n2 = d.addNode();
189 189
    Digraph::Node n3 = d.addNode();
190 190
    Digraph::Node n4 = d.addNode();
191 191
    Digraph::Node n5 = d.addNode();
192
    
192

	
193 193
    d.addArc(n1, n2);
194 194
    d.addArc(n2, n3);
195 195
    d.addArc(n3, n1);
196 196

	
197 197
    checkDiEulerIt(d);
198 198
    checkDiEulerIt(d, n2);
... ...
@@ -208,13 +208,13 @@
208 208
  {
209 209
    Digraph d;
210 210
    Graph g(d);
211 211
    Digraph::Node n1 = d.addNode();
212 212
    Digraph::Node n2 = d.addNode();
213 213
    Digraph::Node n3 = d.addNode();
214
    
214

	
215 215
    d.addArc(n1, n2);
216 216
    d.addArc(n2, n3);
217 217

	
218 218
    check(!eulerian(d), "This graph is not Eulerian");
219 219
    check(!eulerian(g), "This graph is not Eulerian");
220 220
  }
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -235,13 +235,13 @@
235 235
    }
236 236
  }
237 237
  check(pv == mfm.matchingSize(), "Wrong matching size");
238 238

	
239 239
  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
240 240
    check((e == mfm.matching(graph.u(e)) ? 1 : 0) +
241
          (e == mfm.matching(graph.v(e)) ? 1 : 0) == 
241
          (e == mfm.matching(graph.v(e)) ? 1 : 0) ==
242 242
          mfm.matching(e), "Invalid matching");
243 243
  }
244 244

	
245 245
  SmartGraph::NodeMap<bool> processed(graph, false);
246 246
  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
247 247
    if (processed[n]) continue;
... ...
@@ -289,13 +289,13 @@
289 289
      }
290 290
      check(mfm.matching(n) != INVALID, "Invalid matching");
291 291
      check(indeg == 1, "Invalid matching");
292 292
    }
293 293
    for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
294 294
      check((e == mfm.matching(graph.u(e)) ? 1 : 0) +
295
            (e == mfm.matching(graph.v(e)) ? 1 : 0) == 
295
            (e == mfm.matching(graph.v(e)) ? 1 : 0) ==
296 296
            mfm.matching(e), "Invalid matching");
297 297
    }
298 298
  } else {
299 299
    int anum = 0, bnum = 0;
300 300
    SmartGraph::NodeMap<bool> neighbours(graph, false);
301 301
    for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
... ...
@@ -347,13 +347,13 @@
347 347
      check(indeg == 0, "Invalid matching");
348 348
    }
349 349
  }
350 350

	
351 351
  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
352 352
    check((e == mwfm.matching(graph.u(e)) ? 1 : 0) +
353
          (e == mwfm.matching(graph.v(e)) ? 1 : 0) == 
353
          (e == mwfm.matching(graph.v(e)) ? 1 : 0) ==
354 354
          mwfm.matching(e), "Invalid matching");
355 355
  }
356 356

	
357 357
  int dv = 0;
358 358
  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
359 359
    dv += mwfm.nodeValue(n);
... ...
@@ -407,13 +407,13 @@
407 407
    pv += weight[mwpfm.matching(n)];
408 408
    SmartGraph::Node o = graph.target(mwpfm.matching(n));
409 409
  }
410 410

	
411 411
  for (SmartGraph::EdgeIt e(graph); e != INVALID; ++e) {
412 412
    check((e == mwpfm.matching(graph.u(e)) ? 1 : 0) +
413
          (e == mwpfm.matching(graph.v(e)) ? 1 : 0) == 
413
          (e == mwpfm.matching(graph.v(e)) ? 1 : 0) ==
414 414
          mwpfm.matching(e), "Invalid matching");
415 415
  }
416 416

	
417 417
  int dv = 0;
418 418
  for (SmartGraph::NodeIt n(graph); n != INVALID; ++n) {
419 419
    dv += mwpfm.nodeValue(n);
Ignore white space 6 line context
1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2
 *
3
 * This file is a part of LEMON, a generic C++ optimization library.
4
 *
5
 * Copyright (C) 2003-2010
6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8
 *
9
 * Permission to use, modify and distribute this software is granted
10
 * provided that this copyright notice appears in all copies. For
11
 * precise terms see the accompanying LICENSE file.
12
 *
13
 * This software is provided "AS IS" with no warranty of any kind,
14
 * express or implied, and with no claim as to its suitability for any
15
 * purpose.
16
 *
17
 */
18

	
1 19
#include <iostream>
2 20

	
3 21
#include "test_tools.h"
4 22
#include <lemon/smart_graph.h>
5 23
#include <lemon/concepts/graph.h>
6 24
#include <lemon/concepts/maps.h>
... ...
@@ -30,13 +48,13 @@
30 48
  "0 3  5     10\n"
31 49
  "0 3  6     7\n"
32 50
  "4 2  7     1\n"
33 51
  "@attributes\n"
34 52
  "source 0\n"
35 53
  "target 3\n";
36
  
54

	
37 55
void checkGomoryHuCompile()
38 56
{
39 57
  typedef int Value;
40 58
  typedef concepts::Graph Graph;
41 59

	
42 60
  typedef Graph::Node Node;
... ...
@@ -66,13 +84,13 @@
66 84

	
67 85
GRAPH_TYPEDEFS(Graph);
68 86
typedef Graph::EdgeMap<int> IntEdgeMap;
69 87
typedef Graph::NodeMap<bool> BoolNodeMap;
70 88

	
71 89
int cutValue(const Graph& graph, const BoolNodeMap& cut,
72
	     const IntEdgeMap& capacity) {
90
             const IntEdgeMap& capacity) {
73 91

	
74 92
  int sum = 0;
75 93
  for (EdgeIt e(graph); e != INVALID; ++e) {
76 94
    Node s = graph.u(e);
77 95
    Node t = graph.v(e);
78 96

	
... ...
@@ -104,20 +122,20 @@
104 122
      check(pf.flowValue() == ght.minCutValue(u, v), "Wrong cut 1");
105 123
      check(cm[u] != cm[v], "Wrong cut 2");
106 124
      check(pf.flowValue() == cutValue(graph, cm, capacity), "Wrong cut 3");
107 125

	
108 126
      int sum=0;
109 127
      for(GomoryHu<Graph>::MinCutEdgeIt a(ght, u, v);a!=INVALID;++a)
110
        sum+=capacity[a]; 
128
        sum+=capacity[a];
111 129
      check(sum == ght.minCutValue(u, v), "Problem with MinCutEdgeIt");
112 130

	
113 131
      sum=0;
114 132
      for(GomoryHu<Graph>::MinCutNodeIt n(ght, u, v,true);n!=INVALID;++n)
115 133
        sum++;
116 134
      for(GomoryHu<Graph>::MinCutNodeIt n(ght, u, v,false);n!=INVALID;++n)
117 135
        sum++;
118 136
      check(sum == countNodes(graph), "Problem with MinCutNodeIt");
119 137
    }
120 138
  }
121
  
139

	
122 140
  return 0;
123 141
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -261,13 +261,13 @@
261 261
  snapshot.restore();
262 262
  snapshot.save(G);
263 263

	
264 264
  checkGraphNodeList(G, 4);
265 265
  checkGraphEdgeList(G, 3);
266 266
  checkGraphArcList(G, 6);
267
  
267

	
268 268
  G.addEdge(G.addNode(), G.addNode());
269 269

	
270 270
  snapshot.restore();
271 271

	
272 272
  checkGraphNodeList(G, 4);
273 273
  checkGraphEdgeList(G, 3);
... ...
@@ -510,13 +510,13 @@
510 510

	
511 511
  HypercubeGraph G(dim);
512 512
  check(G.dimension() == dim, "Wrong dimension");
513 513

	
514 514
  G.resize(dim);
515 515
  check(G.dimension() == dim, "Wrong dimension");
516
  
516

	
517 517
  checkGraphNodeList(G, 1 << dim);
518 518
  checkGraphEdgeList(G, dim * (1 << (dim-1)));
519 519
  checkGraphArcList(G, dim * (1 << dim));
520 520

	
521 521
  Node n = G.nodeFromId(dim);
522 522

	
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -80,13 +80,13 @@
80 80

	
81 81
  v = const_ho_test.minCutValue();
82 82
  v = const_ho_test.minCutMap(cut);
83 83
}
84 84

	
85 85
template <typename Graph, typename CapMap, typename CutMap>
86
typename CapMap::Value 
86
typename CapMap::Value
87 87
  cutValue(const Graph& graph, const CapMap& cap, const CutMap& cut)
88 88
{
89 89
  typename CapMap::Value sum = 0;
90 90
  for (typename Graph::ArcIt a(graph); a != INVALID; ++a) {
91 91
    if (cut[graph.source(a)] && !cut[graph.target(a)])
92 92
      sum += cap[a];
... ...
@@ -107,13 +107,13 @@
107 107
    .run();
108 108

	
109 109
  {
110 110
    HaoOrlin<SmartDigraph> ho(graph, cap1);
111 111
    ho.run();
112 112
    ho.minCutMap(cut);
113
    
113

	
114 114
    check(ho.minCutValue() == 1, "Wrong cut value");
115 115
    check(ho.minCutValue() == cutValue(graph, cap1, cut), "Wrong cut value");
116 116
  }
117 117
  {
118 118
    HaoOrlin<SmartDigraph> ho(graph, cap2);
119 119
    ho.run();
... ...
@@ -123,41 +123,41 @@
123 123
    check(ho.minCutValue() == cutValue(graph, cap2, cut), "Wrong cut value");
124 124
  }
125 125
  {
126 126
    HaoOrlin<SmartDigraph> ho(graph, cap3);
127 127
    ho.run();
128 128
    ho.minCutMap(cut);
129
    
129

	
130 130
    check(ho.minCutValue() == 1, "Wrong cut value");
131 131
    check(ho.minCutValue() == cutValue(graph, cap3, cut), "Wrong cut value");
132 132
  }
133
  
133

	
134 134
  typedef Undirector<SmartDigraph> UGraph;
135 135
  UGraph ugraph(graph);
136
  
136

	
137 137
  {
138 138
    HaoOrlin<UGraph, SmartDigraph::ArcMap<int> > ho(ugraph, cap1);
139 139
    ho.run();
140 140
    ho.minCutMap(cut);
141
    
141

	
142 142
    check(ho.minCutValue() == 2, "Wrong cut value");
143 143
    check(ho.minCutValue() == cutValue(ugraph, cap1, cut), "Wrong cut value");
144 144
  }
145 145
  {
146 146
    HaoOrlin<UGraph, SmartDigraph::ArcMap<int> > ho(ugraph, cap2);
147 147
    ho.run();
148 148
    ho.minCutMap(cut);
149
    
149

	
150 150
    check(ho.minCutValue() == 5, "Wrong cut value");
151 151
    check(ho.minCutValue() == cutValue(ugraph, cap2, cut), "Wrong cut value");
152 152
  }
153 153
  {
154 154
    HaoOrlin<UGraph, SmartDigraph::ArcMap<int> > ho(ugraph, cap3);
155 155
    ho.run();
156 156
    ho.minCutMap(cut);
157
    
157

	
158 158
    check(ho.minCutValue() == 5, "Wrong cut value");
159 159
    check(ho.minCutValue() == cutValue(ugraph, cap3, cut), "Wrong cut value");
160 160
  }
161 161

	
162 162
  return 0;
163 163
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -222,13 +222,14 @@
222 222
    checkConcept<ReadMap<A,B>, FunctorToMap<F> >();
223 223
    FunctorToMap<F> map1;
224 224
    FunctorToMap<F> map2 = FunctorToMap<F>(F());
225 225
    B b = functorToMap(F())[A()];
226 226

	
227 227
    checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >();
228
    MapToFunctor<ReadMap<A,B> > map = MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>());
228
    MapToFunctor<ReadMap<A,B> > map =
229
      MapToFunctor<ReadMap<A,B> >(ReadMap<A,B>());
229 230

	
230 231
    check(functorToMap(&func)[A()] == 3,
231 232
          "Something is wrong with FunctorToMap");
232 233
    check(mapToFunctor(constMap<A,int>(2))(A()) == 2,
233 234
          "Something is wrong with MapToFunctor");
234 235
    check(mapToFunctor(functorToMap(&func))(A()) == 3 &&
... ...
@@ -374,201 +375,201 @@
374 375
          "Something is wrong with LoggerBoolMap");
375 376

	
376 377
    int i = 0;
377 378
    for ( LoggerBoolMap<vec::iterator>::Iterator it = map2.begin();
378 379
          it != map2.end(); ++it )
379 380
      check(v1[i++] == *it, "Something is wrong with LoggerBoolMap");
380
    
381

	
381 382
    typedef ListDigraph Graph;
382 383
    DIGRAPH_TYPEDEFS(Graph);
383 384
    Graph gr;
384 385

	
385 386
    Node n0 = gr.addNode();
386 387
    Node n1 = gr.addNode();
387 388
    Node n2 = gr.addNode();
388 389
    Node n3 = gr.addNode();
389
    
390

	
390 391
    gr.addArc(n3, n0);
391 392
    gr.addArc(n3, n2);
392 393
    gr.addArc(n0, n2);
393 394
    gr.addArc(n2, n1);
394 395
    gr.addArc(n0, n1);
395
    
396

	
396 397
    {
397 398
      std::vector<Node> v;
398 399
      dfs(gr).processedMap(loggerBoolMap(std::back_inserter(v))).run();
399 400

	
400 401
      check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3,
401 402
            "Something is wrong with LoggerBoolMap");
402 403
    }
403 404
    {
404 405
      std::vector<Node> v(countNodes(gr));
405 406
      dfs(gr).processedMap(loggerBoolMap(v.begin())).run();
406
      
407

	
407 408
      check(v.size()==4 && v[0]==n1 && v[1]==n2 && v[2]==n0 && v[3]==n3,
408 409
            "Something is wrong with LoggerBoolMap");
409 410
    }
410 411
  }
411
  
412

	
412 413
  // IdMap, RangeIdMap
413 414
  {
414 415
    typedef ListDigraph Graph;
415 416
    DIGRAPH_TYPEDEFS(Graph);
416 417

	
417 418
    checkConcept<ReadMap<Node, int>, IdMap<Graph, Node> >();
418 419
    checkConcept<ReadMap<Arc, int>, IdMap<Graph, Arc> >();
419 420
    checkConcept<ReadMap<Node, int>, RangeIdMap<Graph, Node> >();
420 421
    checkConcept<ReadMap<Arc, int>, RangeIdMap<Graph, Arc> >();
421
    
422

	
422 423
    Graph gr;
423 424
    IdMap<Graph, Node> nmap(gr);
424 425
    IdMap<Graph, Arc> amap(gr);
425 426
    RangeIdMap<Graph, Node> nrmap(gr);
426 427
    RangeIdMap<Graph, Arc> armap(gr);
427
    
428

	
428 429
    Node n0 = gr.addNode();
429 430
    Node n1 = gr.addNode();
430 431
    Node n2 = gr.addNode();
431
    
432

	
432 433
    Arc a0 = gr.addArc(n0, n1);
433 434
    Arc a1 = gr.addArc(n0, n2);
434 435
    Arc a2 = gr.addArc(n2, n1);
435 436
    Arc a3 = gr.addArc(n2, n0);
436
    
437

	
437 438
    check(nmap[n0] == gr.id(n0) && nmap(gr.id(n0)) == n0, "Wrong IdMap");
438 439
    check(nmap[n1] == gr.id(n1) && nmap(gr.id(n1)) == n1, "Wrong IdMap");
439 440
    check(nmap[n2] == gr.id(n2) && nmap(gr.id(n2)) == n2, "Wrong IdMap");
440 441

	
441 442
    check(amap[a0] == gr.id(a0) && amap(gr.id(a0)) == a0, "Wrong IdMap");
442 443
    check(amap[a1] == gr.id(a1) && amap(gr.id(a1)) == a1, "Wrong IdMap");
443 444
    check(amap[a2] == gr.id(a2) && amap(gr.id(a2)) == a2, "Wrong IdMap");
444 445
    check(amap[a3] == gr.id(a3) && amap(gr.id(a3)) == a3, "Wrong IdMap");
445 446

	
446 447
    check(nmap.inverse()[gr.id(n0)] == n0, "Wrong IdMap::InverseMap");
447 448
    check(amap.inverse()[gr.id(a0)] == a0, "Wrong IdMap::InverseMap");
448
    
449

	
449 450
    check(nrmap.size() == 3 && armap.size() == 4,
450 451
          "Wrong RangeIdMap::size()");
451 452

	
452 453
    check(nrmap[n0] == 0 && nrmap(0) == n0, "Wrong RangeIdMap");
453 454
    check(nrmap[n1] == 1 && nrmap(1) == n1, "Wrong RangeIdMap");
454 455
    check(nrmap[n2] == 2 && nrmap(2) == n2, "Wrong RangeIdMap");
455
    
456

	
456 457
    check(armap[a0] == 0 && armap(0) == a0, "Wrong RangeIdMap");
457 458
    check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap");
458 459
    check(armap[a2] == 2 && armap(2) == a2, "Wrong RangeIdMap");
459 460
    check(armap[a3] == 3 && armap(3) == a3, "Wrong RangeIdMap");
460 461

	
461 462
    check(nrmap.inverse()[0] == n0, "Wrong RangeIdMap::InverseMap");
462 463
    check(armap.inverse()[0] == a0, "Wrong RangeIdMap::InverseMap");
463
    
464

	
464 465
    gr.erase(n1);
465
    
466

	
466 467
    if (nrmap[n0] == 1) nrmap.swap(n0, n2);
467 468
    nrmap.swap(n2, n0);
468 469
    if (armap[a1] == 1) armap.swap(a1, a3);
469 470
    armap.swap(a3, a1);
470
    
471

	
471 472
    check(nrmap.size() == 2 && armap.size() == 2,
472 473
          "Wrong RangeIdMap::size()");
473 474

	
474 475
    check(nrmap[n0] == 1 && nrmap(1) == n0, "Wrong RangeIdMap");
475 476
    check(nrmap[n2] == 0 && nrmap(0) == n2, "Wrong RangeIdMap");
476
    
477

	
477 478
    check(armap[a1] == 1 && armap(1) == a1, "Wrong RangeIdMap");
478 479
    check(armap[a3] == 0 && armap(0) == a3, "Wrong RangeIdMap");
479 480

	
480 481
    check(nrmap.inverse()[0] == n2, "Wrong RangeIdMap::InverseMap");
481 482
    check(armap.inverse()[0] == a3, "Wrong RangeIdMap::InverseMap");
482 483
  }
483
  
484

	
484 485
  // SourceMap, TargetMap, ForwardMap, BackwardMap, InDegMap, OutDegMap
485 486
  {
486 487
    typedef ListGraph Graph;
487 488
    GRAPH_TYPEDEFS(Graph);
488
    
489

	
489 490
    checkConcept<ReadMap<Arc, Node>, SourceMap<Graph> >();
490 491
    checkConcept<ReadMap<Arc, Node>, TargetMap<Graph> >();
491 492
    checkConcept<ReadMap<Edge, Arc>, ForwardMap<Graph> >();
492 493
    checkConcept<ReadMap<Edge, Arc>, BackwardMap<Graph> >();
493 494
    checkConcept<ReadMap<Node, int>, InDegMap<Graph> >();
494 495
    checkConcept<ReadMap<Node, int>, OutDegMap<Graph> >();
495 496

	
496 497
    Graph gr;
497 498
    Node n0 = gr.addNode();
498 499
    Node n1 = gr.addNode();
499 500
    Node n2 = gr.addNode();
500
    
501

	
501 502
    gr.addEdge(n0,n1);
502 503
    gr.addEdge(n1,n2);
503 504
    gr.addEdge(n0,n2);
504 505
    gr.addEdge(n2,n1);
505 506
    gr.addEdge(n1,n2);
506 507
    gr.addEdge(n0,n1);
507
    
508

	
508 509
    for (EdgeIt e(gr); e != INVALID; ++e) {
509 510
      check(forwardMap(gr)[e] == gr.direct(e, true), "Wrong ForwardMap");
510 511
      check(backwardMap(gr)[e] == gr.direct(e, false), "Wrong BackwardMap");
511 512
    }
512
    
513

	
513 514
    check(mapCompare(gr,
514 515
          sourceMap(orienter(gr, constMap<Edge, bool>(true))),
515 516
          targetMap(orienter(gr, constMap<Edge, bool>(false)))),
516 517
          "Wrong SourceMap or TargetMap");
517 518

	
518 519
    typedef Orienter<Graph, const ConstMap<Edge, bool> > Digraph;
519 520
    Digraph dgr(gr, constMap<Edge, bool>(true));
520 521
    OutDegMap<Digraph> odm(dgr);
521 522
    InDegMap<Digraph> idm(dgr);
522
    
523

	
523 524
    check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 1, "Wrong OutDegMap");
524 525
    check(idm[n0] == 0 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap");
525
   
526

	
526 527
    gr.addEdge(n2, n0);
527 528

	
528 529
    check(odm[n0] == 3 && odm[n1] == 2 && odm[n2] == 2, "Wrong OutDegMap");
529 530
    check(idm[n0] == 1 && idm[n1] == 3 && idm[n2] == 3, "Wrong InDegMap");
530 531
  }
531
  
532

	
532 533
  // CrossRefMap
533 534
  {
534 535
    typedef ListDigraph Graph;
535 536
    DIGRAPH_TYPEDEFS(Graph);
536 537

	
537 538
    checkConcept<ReadWriteMap<Node, int>,
538 539
                 CrossRefMap<Graph, Node, int> >();
539 540
    checkConcept<ReadWriteMap<Node, bool>,
540 541
                 CrossRefMap<Graph, Node, bool> >();
541 542
    checkConcept<ReadWriteMap<Node, double>,
542 543
                 CrossRefMap<Graph, Node, double> >();
543
    
544

	
544 545
    Graph gr;
545 546
    typedef CrossRefMap<Graph, Node, char> CRMap;
546 547
    CRMap map(gr);
547
    
548

	
548 549
    Node n0 = gr.addNode();
549 550
    Node n1 = gr.addNode();
550 551
    Node n2 = gr.addNode();
551
    
552

	
552 553
    map.set(n0, 'A');
553 554
    map.set(n1, 'B');
554 555
    map.set(n2, 'C');
555
    
556

	
556 557
    check(map[n0] == 'A' && map('A') == n0 && map.inverse()['A'] == n0,
557 558
          "Wrong CrossRefMap");
558 559
    check(map[n1] == 'B' && map('B') == n1 && map.inverse()['B'] == n1,
559 560
          "Wrong CrossRefMap");
560 561
    check(map[n2] == 'C' && map('C') == n2 && map.inverse()['C'] == n2,
561 562
          "Wrong CrossRefMap");
562 563
    check(map.count('A') == 1 && map.count('B') == 1 && map.count('C') == 1,
563 564
          "Wrong CrossRefMap::count()");
564
    
565

	
565 566
    CRMap::ValueIt it = map.beginValue();
566 567
    check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' &&
567 568
          it == map.endValue(), "Wrong value iterator");
568
    
569

	
569 570
    map.set(n2, 'A');
570 571

	
571 572
    check(map[n0] == 'A' && map[n1] == 'B' && map[n2] == 'A',
572 573
          "Wrong CrossRefMap");
573 574
    check(map('A') == n0 && map.inverse()['A'] == n0, "Wrong CrossRefMap");
574 575
    check(map('B') == n1 && map.inverse()['B'] == n1, "Wrong CrossRefMap");
... ...
@@ -600,22 +601,22 @@
600 601
  {
601 602
    typedef SmartDigraph Graph;
602 603
    DIGRAPH_TYPEDEFS(Graph);
603 604

	
604 605
    checkConcept<ReadWriteMap<Node, int>,
605 606
                 CrossRefMap<Graph, Node, int> >();
606
    
607

	
607 608
    Graph gr;
608 609
    typedef CrossRefMap<Graph, Node, char> CRMap;
609 610
    typedef CRMap::ValueIterator ValueIt;
610 611
    CRMap map(gr);
611
    
612

	
612 613
    Node n0 = gr.addNode();
613 614
    Node n1 = gr.addNode();
614 615
    Node n2 = gr.addNode();
615
    
616

	
616 617
    map.set(n0, 'A');
617 618
    map.set(n1, 'B');
618 619
    map.set(n2, 'C');
619 620
    map.set(n2, 'A');
620 621
    map.set(n0, 'C');
621 622

	
... ...
@@ -626,13 +627,13 @@
626 627
    check(map('C') == n0 && map.inverse()['C'] == n0, "Wrong CrossRefMap");
627 628

	
628 629
    ValueIt it = map.beginValue();
629 630
    check(*it++ == 'A' && *it++ == 'B' && *it++ == 'C' &&
630 631
          it == map.endValue(), "Wrong value iterator");
631 632
  }
632
  
633

	
633 634
  // Iterable bool map
634 635
  {
635 636
    typedef SmartGraph Graph;
636 637
    typedef SmartGraph::Node Item;
637 638

	
638 639
    typedef IterableBoolMap<SmartGraph, SmartGraph::Node> Ibm;
... ...
@@ -814,34 +815,34 @@
814 815
      check(map1[static_cast<Item>(it)] == 1.0, "Wrong value");
815 816
      ++n;
816 817
    }
817 818
    check(n == num, "Wrong number");
818 819

	
819 820
  }
820
  
821

	
821 822
  // Graph map utilities:
822 823
  // mapMin(), mapMax(), mapMinValue(), mapMaxValue()
823 824
  // mapFind(), mapFindIf(), mapCount(), mapCountIf()
824 825
  // mapCopy(), mapCompare(), mapFill()
825 826
  {
826 827
    DIGRAPH_TYPEDEFS(SmartDigraph);
827 828

	
828 829
    SmartDigraph g;
829 830
    Node n1 = g.addNode();
830 831
    Node n2 = g.addNode();
831 832
    Node n3 = g.addNode();
832
    
833

	
833 834
    SmartDigraph::NodeMap<int> map1(g);
834 835
    SmartDigraph::ArcMap<char> map2(g);
835 836
    ConstMap<Node, A> cmap1 = A();
836 837
    ConstMap<Arc, C> cmap2 = C(0);
837
    
838

	
838 839
    map1[n1] = 10;
839 840
    map1[n2] = 5;
840 841
    map1[n3] = 12;
841
    
842

	
842 843
    // mapMin(), mapMax(), mapMinValue(), mapMaxValue()
843 844
    check(mapMin(g, map1) == n2, "Wrong mapMin()");
844 845
    check(mapMax(g, map1) == n3, "Wrong mapMax()");
845 846
    check(mapMin(g, map1, std::greater<int>()) == n3, "Wrong mapMin()");
846 847
    check(mapMax(g, map1, std::greater<int>()) == n2, "Wrong mapMax()");
847 848
    check(mapMinValue(g, map1) == 5, "Wrong mapMinValue()");
... ...
@@ -854,13 +855,13 @@
854 855
    check(mapMax(g, cmap2) == INVALID, "Wrong mapMax()");
855 856

	
856 857
    Arc a1 = g.addArc(n1, n2);
857 858
    Arc a2 = g.addArc(n1, n3);
858 859
    Arc a3 = g.addArc(n2, n3);
859 860
    Arc a4 = g.addArc(n3, n1);
860
    
861

	
861 862
    map2[a1] = 'b';
862 863
    map2[a2] = 'a';
863 864
    map2[a3] = 'b';
864 865
    map2[a4] = 'c';
865 866

	
866 867
    // mapMin(), mapMax(), mapMinValue(), mapMaxValue()
... ...
@@ -921,23 +922,23 @@
921 922
    check(mapCountIf(g, map2, Less<char>('d')) == 4,
922 923
          "Wrong mapCountIf()");
923 924
    check(mapCountIf(g, map2, Less<char>('c')) == 3,
924 925
          "Wrong mapCountIf()");
925 926
    check(mapCountIf(g, map2, Less<char>('a')) == 0,
926 927
          "Wrong mapCountIf()");
927
     
928

	
928 929
    // MapIt, ConstMapIt
929 930
/*
930 931
These tests can be used after applying bugfix #330
931 932
    typedef SmartDigraph::NodeMap<int>::MapIt MapIt;
932 933
    typedef SmartDigraph::NodeMap<int>::ConstMapIt ConstMapIt;
933 934
    check(*std::min_element(MapIt(map1), MapIt(INVALID)) == 5,
934 935
          "Wrong NodeMap<>::MapIt");
935 936
    check(*std::max_element(ConstMapIt(map1), ConstMapIt(INVALID)) == 12,
936 937
          "Wrong NodeMap<>::MapIt");
937
    
938

	
938 939
    int sum = 0;
939 940
    std::for_each(MapIt(map1), MapIt(INVALID), Sum<int>(sum));
940 941
    check(sum == 27, "Wrong NodeMap<>::MapIt");
941 942
    std::for_each(ConstMapIt(map1), ConstMapIt(INVALID), Sum<int>(sum));
942 943
    check(sum == 54, "Wrong NodeMap<>::ConstMapIt");
943 944
*/
... ...
@@ -948,52 +949,52 @@
948 949
    check(mapCompare(g, map1, shiftMap(map1, 0)), "Wrong mapCompare()");
949 950
    check(mapCompare(g, map2, scaleMap(map2, 1)), "Wrong mapCompare()");
950 951
    check(!mapCompare(g, map1, shiftMap(map1, 1)), "Wrong mapCompare()");
951 952

	
952 953
    SmartDigraph::NodeMap<int> map3(g, 0);
953 954
    SmartDigraph::ArcMap<char> map4(g, 'a');
954
    
955

	
955 956
    check(!mapCompare(g, map1, map3), "Wrong mapCompare()");
956
    check(!mapCompare(g, map2, map4), "Wrong mapCompare()");    
957
    
957
    check(!mapCompare(g, map2, map4), "Wrong mapCompare()");
958

	
958 959
    mapCopy(g, map1, map3);
959 960
    mapCopy(g, map2, map4);
960 961

	
961 962
    check(mapCompare(g, map1, map3), "Wrong mapCompare() or mapCopy()");
962
    check(mapCompare(g, map2, map4), "Wrong mapCompare() or mapCopy()");    
963
    
963
    check(mapCompare(g, map2, map4), "Wrong mapCompare() or mapCopy()");
964

	
964 965
    Undirector<SmartDigraph> ug(g);
965 966
    Undirector<SmartDigraph>::EdgeMap<char> umap1(ug, 'x');
966 967
    Undirector<SmartDigraph>::ArcMap<double> umap2(ug, 3.14);
967
    
968

	
968 969
    check(!mapCompare(g, map2, umap1), "Wrong mapCompare() or mapCopy()");
969 970
    check(!mapCompare(g, umap1, map2), "Wrong mapCompare() or mapCopy()");
970 971
    check(!mapCompare(ug, map2, umap1), "Wrong mapCompare() or mapCopy()");
971 972
    check(!mapCompare(ug, umap1, map2), "Wrong mapCompare() or mapCopy()");
972
    
973

	
973 974
    mapCopy(g, map2, umap1);
974 975

	
975 976
    check(mapCompare(g, map2, umap1), "Wrong mapCompare() or mapCopy()");
976 977
    check(mapCompare(g, umap1, map2), "Wrong mapCompare() or mapCopy()");
977 978
    check(mapCompare(ug, map2, umap1), "Wrong mapCompare() or mapCopy()");
978 979
    check(mapCompare(ug, umap1, map2), "Wrong mapCompare() or mapCopy()");
979
    
980

	
980 981
    mapCopy(g, map2, umap1);
981 982
    mapCopy(g, umap1, map2);
982 983
    mapCopy(ug, map2, umap1);
983 984
    mapCopy(ug, umap1, map2);
984
    
985

	
985 986
    check(!mapCompare(ug, umap1, umap2), "Wrong mapCompare() or mapCopy()");
986 987
    mapCopy(ug, umap1, umap2);
987 988
    check(mapCompare(ug, umap1, umap2), "Wrong mapCompare() or mapCopy()");
988
    
989

	
989 990
    check(!mapCompare(g, map1, constMap<Node>(2)), "Wrong mapCompare()");
990 991
    mapFill(g, map1, 2);
991 992
    check(mapCompare(g, constMap<Node>(2), map1), "Wrong mapFill()");
992 993

	
993 994
    check(!mapCompare(g, map2, constMap<Arc>('z')), "Wrong mapCompare()");
994 995
    mapCopy(g, constMap<Arc>('z'), map2);
995 996
    check(mapCompare(g, constMap<Arc>('z'), map2), "Wrong mapCopy()");
996 997
  }
997
  
998

	
998 999
  return 0;
999 1000
}
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -131,22 +131,22 @@
131 131
  mat_test.init();
132 132
  mat_test.greedyInit();
133 133
  mat_test.matchingInit(mat);
134 134
  mat_test.startSparse();
135 135
  mat_test.startDense();
136 136
  mat_test.run();
137
  
137

	
138 138
  const_mat_test.matchingSize();
139 139
  const_mat_test.matching(e);
140 140
  const_mat_test.matching(n);
141 141
  const MaxMatching<Graph>::MatchingMap& mmap =
142 142
    const_mat_test.matchingMap();
143 143
  e = mmap[n];
144 144
  const_mat_test.mate(n);
145 145

	
146
  MaxMatching<Graph>::Status stat = 
146
  MaxMatching<Graph>::Status stat =
147 147
    const_mat_test.status(n);
148 148
  const MaxMatching<Graph>::StatusMap& smap =
149 149
    const_mat_test.statusMap();
150 150
  stat = smap[n];
151 151
  const_mat_test.barrier(n);
152 152
}
... ...
@@ -167,22 +167,22 @@
167 167
  const MaxWeightedMatching<Graph>&
168 168
    const_mat_test = mat_test;
169 169

	
170 170
  mat_test.init();
171 171
  mat_test.start();
172 172
  mat_test.run();
173
  
173

	
174 174
  const_mat_test.matchingWeight();
175 175
  const_mat_test.matchingSize();
176 176
  const_mat_test.matching(e);
177 177
  const_mat_test.matching(n);
178 178
  const MaxWeightedMatching<Graph>::MatchingMap& mmap =
179 179
    const_mat_test.matchingMap();
180 180
  e = mmap[n];
181 181
  const_mat_test.mate(n);
182
  
182

	
183 183
  int k = 0;
184 184
  const_mat_test.dualValue();
185 185
  const_mat_test.nodeValue(n);
186 186
  const_mat_test.blossomNum();
187 187
  const_mat_test.blossomSize(k);
188 188
  const_mat_test.blossomValue(k);
... ...
@@ -204,21 +204,21 @@
204 204
  const MaxWeightedPerfectMatching<Graph>&
205 205
    const_mat_test = mat_test;
206 206

	
207 207
  mat_test.init();
208 208
  mat_test.start();
209 209
  mat_test.run();
210
  
210

	
211 211
  const_mat_test.matchingWeight();
212 212
  const_mat_test.matching(e);
213 213
  const_mat_test.matching(n);
214 214
  const MaxWeightedPerfectMatching<Graph>::MatchingMap& mmap =
215 215
    const_mat_test.matchingMap();
216 216
  e = mmap[n];
217 217
  const_mat_test.mate(n);
218
  
218

	
219 219
  int k = 0;
220 220
  const_mat_test.dualValue();
221 221
  const_mat_test.nodeValue(n);
222 222
  const_mat_test.blossomNum();
223 223
  const_mat_test.blossomSize(k);
224 224
  const_mat_test.blossomValue(k);
... ...
@@ -422,24 +422,24 @@
422 422
      checkWeightedMatching(graph, weight, mwm);
423 423
    }
424 424

	
425 425
    {
426 426
      MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight);
427 427
      bool result = mwpm.run();
428
      
428

	
429 429
      check(result == perfect, "Perfect matching found");
430 430
      if (perfect) {
431 431
        checkWeightedPerfectMatching(graph, weight, mwpm);
432 432
      }
433 433
    }
434 434

	
435 435
    {
436 436
      MaxWeightedPerfectMatching<SmartGraph> mwpm(graph, weight);
437 437
      mwpm.init();
438 438
      bool result = mwpm.start();
439
      
439

	
440 440
      check(result == perfect, "Perfect matching found");
441 441
      if (perfect) {
442 442
        checkWeightedPerfectMatching(graph, weight, mwpm);
443 443
      }
444 444
    }
445 445
  }
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2008
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -107,28 +107,28 @@
107 107
  mcarb_test.init();
108 108
  mcarb_test.addSource(s);
109 109
  mcarb_test.start();
110 110
  n = mcarb_test.processNextNode();
111 111
  b = const_mcarb_test.emptyQueue();
112 112
  i = const_mcarb_test.queueSize();
113
  
113

	
114 114
  c = const_mcarb_test.arborescenceCost();
115 115
  b = const_mcarb_test.arborescence(e);
116 116
  e = const_mcarb_test.pred(n);
117 117
  const MinCostArbType::ArborescenceMap &am =
118 118
    const_mcarb_test.arborescenceMap();
119 119
  const MinCostArbType::PredMap &pm =
120 120
    const_mcarb_test.predMap();
121 121
  b = const_mcarb_test.reached(n);
122 122
  b = const_mcarb_test.processed(n);
123
  
123

	
124 124
  i = const_mcarb_test.dualNum();
125 125
  c = const_mcarb_test.dualValue();
126 126
  i = const_mcarb_test.dualSize(i);
127 127
  c = const_mcarb_test.dualValue(i);
128
  
128

	
129 129
  ignore_unused_variable_warning(am);
130 130
  ignore_unused_variable_warning(pm);
131 131
}
132 132

	
133 133
int main() {
134 134
  typedef SmartDigraph Digraph;
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -49,13 +49,13 @@
49 49
  "    7     0    0    0    0    0    0\n"
50 50
  "    8     0    0    0    0    0    3\n"
51 51
  "    9     3    0    0    0    0    0\n"
52 52
  "   10    -2    0    0    0   -7   -2\n"
53 53
  "   11     0    0    0    0  -10    0\n"
54 54
  "   12   -20  -27    0  -30  -30  -20\n"
55
  "\n"                
55
  "\n"
56 56
  "@arcs\n"
57 57
  "       cost  cap low1 low2 low3\n"
58 58
  " 1  2    70   11    0    8    8\n"
59 59
  " 1  3   150    3    0    1    0\n"
60 60
  " 1  4    80   15    0    2    2\n"
61 61
  " 2  8    80   12    0    0    0\n"
... ...
@@ -99,13 +99,13 @@
99 99
  "3 4     80      0      0\n"
100 100
  "3 2     50      0      0\n"
101 101
  "5 3     10      0      0\n"
102 102
  "5 6     80      0   1000\n"
103 103
  "6 7     30      0  -1000\n"
104 104
  "7 5   -120      0      0\n";
105
  
105

	
106 106
char test_neg2_lgf[] =
107 107
  "@nodes\n"
108 108
  "label   sup\n"
109 109
  "    1   100\n"
110 110
  "    2  -300\n"
111 111
  "@arcs\n"
... ...
@@ -148,13 +148,13 @@
148 148
public:
149 149

	
150 150
  template <typename MCF>
151 151
  struct Constraints {
152 152
    void constraints() {
153 153
      checkConcept<concepts::Digraph, GR>();
154
      
154

	
155 155
      const Constraints& me = *this;
156 156

	
157 157
      MCF mcf(me.g);
158 158
      const MCF& const_mcf = mcf;
159 159

	
160 160
      b = mcf.reset().resetParams()
... ...
@@ -177,13 +177,13 @@
177 177
    typedef typename GR::Arc Arc;
178 178
    typedef concepts::ReadMap<Node, Value> NM;
179 179
    typedef concepts::ReadMap<Arc, Value> VAM;
180 180
    typedef concepts::ReadMap<Arc, Cost> CAM;
181 181
    typedef concepts::WriteMap<Arc, Value> FlowMap;
182 182
    typedef concepts::WriteMap<Node, Cost> PotMap;
183
  
183

	
184 184
    GR g;
185 185
    VAM lower;
186 186
    VAM upper;
187 187
    CAM cost;
188 188
    NM sup;
189 189
    Node n;
... ...
@@ -231,39 +231,39 @@
231 231

	
232 232
// Check the feasibility of the given potentials (dual soluiton)
233 233
// using the "Complementary Slackness" optimality condition
234 234
template < typename GR, typename LM, typename UM,
235 235
           typename CM, typename SM, typename FM, typename PM >
236 236
bool checkPotential( const GR& gr, const LM& lower, const UM& upper,
237
                     const CM& cost, const SM& supply, const FM& flow, 
237
                     const CM& cost, const SM& supply, const FM& flow,
238 238
                     const PM& pi, SupplyType type )
239 239
{
240 240
  TEMPLATE_DIGRAPH_TYPEDEFS(GR);
241 241

	
242 242
  bool opt = true;
243 243
  for (ArcIt e(gr); opt && e != INVALID; ++e) {
244 244
    typename CM::Value red_cost =
245 245
      cost[e] + pi[gr.source(e)] - pi[gr.target(e)];
246 246
    opt = red_cost == 0 ||
247 247
          (red_cost > 0 && flow[e] == lower[e]) ||
248 248
          (red_cost < 0 && flow[e] == upper[e]);
249 249
  }
250
  
250

	
251 251
  for (NodeIt n(gr); opt && n != INVALID; ++n) {
252 252
    typename SM::Value sum = 0;
253 253
    for (OutArcIt e(gr, n); e != INVALID; ++e)
254 254
      sum += flow[e];
255 255
    for (InArcIt e(gr, n); e != INVALID; ++e)
256 256
      sum -= flow[e];
257 257
    if (type != LEQ) {
258 258
      opt = (pi[n] <= 0) && (sum == supply[n] || pi[n] == 0);
259 259
    } else {
260 260
      opt = (pi[n] >= 0) && (sum == supply[n] || pi[n] == 0);
261 261
    }
262 262
  }
263
  
263

	
264 264
  return opt;
265 265
}
266 266

	
267 267
// Check whether the dual cost is equal to the primal cost
268 268
template < typename GR, typename LM, typename UM,
269 269
           typename CM, typename SM, typename PM >
... ...
@@ -282,22 +282,22 @@
282 282
    if (lower[a] != 0) {
283 283
      dual_cost += lower[a] * cost[a];
284 284
      red_supply[gr.source(a)] -= lower[a];
285 285
      red_supply[gr.target(a)] += lower[a];
286 286
    }
287 287
  }
288
  
288

	
289 289
  for (NodeIt n(gr); n != INVALID; ++n) {
290 290
    dual_cost -= red_supply[n] * pi[n];
291 291
  }
292 292
  for (ArcIt a(gr); a != INVALID; ++a) {
293 293
    typename CM::Value red_cost =
294 294
      cost[a] + pi[gr.source(a)] - pi[gr.target(a)];
295 295
    dual_cost -= (upper[a] - lower[a]) * std::max(-red_cost, 0);
296 296
  }
297
  
297

	
298 298
  return dual_cost == total;
299 299
}
300 300

	
301 301
// Run a minimum cost flow algorithm and check the results
302 302
template < typename MCF, typename GR,
303 303
           typename LM, typename UM,
... ...
@@ -329,13 +329,13 @@
329 329
template < typename MCF, typename Param >
330 330
void runMcfGeqTests( Param param,
331 331
                     const std::string &test_str = "",
332 332
                     bool full_neg_cost_support = false )
333 333
{
334 334
  MCF mcf1(gr), mcf2(neg1_gr), mcf3(neg2_gr);
335
  
335

	
336 336
  // Basic tests
337 337
  mcf1.upperMap(u).costMap(c).supplyMap(s1);
338 338
  checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s1,
339 339
           mcf1.OPTIMAL, true,     5240, test_str + "-1");
340 340
  mcf1.stSupply(v, w, 27);
341 341
  checkMcf(mcf1, mcf1.run(param), gr, l1, u, c, s2,
... ...
@@ -432,27 +432,27 @@
432 432
    .nodeMap("sup4", s4)
433 433
    .nodeMap("sup5", s5)
434 434
    .nodeMap("sup6", s6)
435 435
    .node("source", v)
436 436
    .node("target", w)
437 437
    .run();
438
  
438

	
439 439
  std::istringstream neg_inp1(test_neg1_lgf);
440 440
  DigraphReader<Digraph>(neg1_gr, neg_inp1)
441 441
    .arcMap("cost", neg1_c)
442 442
    .arcMap("low1", neg1_l1)
443 443
    .arcMap("low2", neg1_l2)
444 444
    .nodeMap("sup", neg1_s)
445 445
    .run();
446
  
446

	
447 447
  std::istringstream neg_inp2(test_neg2_lgf);
448 448
  DigraphReader<Digraph>(neg2_gr, neg_inp2)
449 449
    .arcMap("cost", neg2_c)
450 450
    .nodeMap("sup", neg2_s)
451 451
    .run();
452
  
452

	
453 453
  // Check the interface of NetworkSimplex
454 454
  {
455 455
    typedef concepts::Digraph GR;
456 456
    checkConcept< McfClassConcept<GR, int, int>,
457 457
                  NetworkSimplex<GR> >();
458 458
    checkConcept< McfClassConcept<GR, double, double>,
... ...
@@ -498,26 +498,26 @@
498 498
                  CycleCanceling<GR, double> >();
499 499
    checkConcept< McfClassConcept<GR, int, double>,
500 500
                  CycleCanceling<GR, int, double> >();
501 501
  }
502 502

	
503 503
  // Test NetworkSimplex
504
  { 
504
  {
505 505
    typedef NetworkSimplex<Digraph> MCF;
506 506
    runMcfGeqTests<MCF>(MCF::FIRST_ELIGIBLE, "NS-FE", true);
507 507
    runMcfLeqTests<MCF>(MCF::FIRST_ELIGIBLE, "NS-FE");
508 508
    runMcfGeqTests<MCF>(MCF::BEST_ELIGIBLE,  "NS-BE", true);
509 509
    runMcfLeqTests<MCF>(MCF::BEST_ELIGIBLE,  "NS-BE");
510 510
    runMcfGeqTests<MCF>(MCF::BLOCK_SEARCH,   "NS-BS", true);
511 511
    runMcfLeqTests<MCF>(MCF::BLOCK_SEARCH,   "NS-BS");
512 512
    runMcfGeqTests<MCF>(MCF::CANDIDATE_LIST, "NS-CL", true);
513 513
    runMcfLeqTests<MCF>(MCF::CANDIDATE_LIST, "NS-CL");
514 514
    runMcfGeqTests<MCF>(MCF::ALTERING_LIST,  "NS-AL", true);
515 515
    runMcfLeqTests<MCF>(MCF::ALTERING_LIST,  "NS-AL");
516 516
  }
517
  
517

	
518 518
  // Test CapacityScaling
519 519
  {
520 520
    typedef CapacityScaling<Digraph> MCF;
521 521
    runMcfGeqTests<MCF>(0, "SSP");
522 522
    runMcfGeqTests<MCF>(2, "CAS");
523 523
  }
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -58,13 +58,13 @@
58 58
  "5 6    3    3    3    3   0  1  0  0\n"
59 59
  "6 5    2    2    2    2   0  1  0  0\n"
60 60
  "6 4   -1   -1   -1   -1   0  0  0  0\n"
61 61
  "6 7    1    1    1    1   0  0  0  0\n"
62 62
  "7 7    4    4    4   -1   0  0  0  1\n";
63 63

	
64
                        
64

	
65 65
// Check the interface of an MMC algorithm
66 66
template <typename GR, typename Cost>
67 67
struct MmcClassConcept
68 68
{
69 69
  template <typename MMC>
70 70
  struct Constraints {
... ...
@@ -74,28 +74,28 @@
74 74
      typedef typename MMC
75 75
        ::template SetPath<ListPath<GR> >
76 76
        ::template SetLargeCost<Cost>
77 77
        ::Create MmcAlg;
78 78
      MmcAlg mmc(me.g, me.cost);
79 79
      const MmcAlg& const_mmc = mmc;
80
      
80

	
81 81
      typename MmcAlg::Tolerance tol = const_mmc.tolerance();
82 82
      mmc.tolerance(tol);
83
      
83

	
84 84
      b = mmc.cycle(p).run();
85 85
      b = mmc.findCycleMean();
86 86
      b = mmc.findCycle();
87 87

	
88 88
      v = const_mmc.cycleCost();
89 89
      i = const_mmc.cycleSize();
90 90
      d = const_mmc.cycleMean();
91 91
      p = const_mmc.cycle();
92 92
    }
93 93

	
94 94
    typedef concepts::ReadMap<typename GR::Arc, Cost> CM;
95
  
95

	
96 96
    GR g;
97 97
    CM cost;
98 98
    ListPath<GR> p;
99 99
    Cost v;
100 100
    int i;
101 101
    double d;
... ...
@@ -150,19 +150,19 @@
150 150

	
151 151
    // KarpMmc
152 152
    checkConcept< MmcClassConcept<GR, int>,
153 153
                  KarpMmc<GR, concepts::ReadMap<GR::Arc, int> > >();
154 154
    checkConcept< MmcClassConcept<GR, float>,
155 155
                  KarpMmc<GR, concepts::ReadMap<GR::Arc, float> > >();
156
    
156

	
157 157
    // HartmannOrlinMmc
158 158
    checkConcept< MmcClassConcept<GR, int>,
159 159
                  HartmannOrlinMmc<GR, concepts::ReadMap<GR::Arc, int> > >();
160 160
    checkConcept< MmcClassConcept<GR, float>,
161 161
                  HartmannOrlinMmc<GR, concepts::ReadMap<GR::Arc, float> > >();
162
    
162

	
163 163
    // HowardMmc
164 164
    checkConcept< MmcClassConcept<GR, int>,
165 165
                  HowardMmc<GR, concepts::ReadMap<GR::Arc, int> > >();
166 166
    checkConcept< MmcClassConcept<GR, float>,
167 167
                  HowardMmc<GR, concepts::ReadMap<GR::Arc, float> > >();
168 168

	
... ...
@@ -173,17 +173,17 @@
173 173
  }
174 174

	
175 175
  // Run various tests
176 176
  {
177 177
    typedef SmartDigraph GR;
178 178
    DIGRAPH_TYPEDEFS(GR);
179
    
179

	
180 180
    GR gr;
181 181
    IntArcMap l1(gr), l2(gr), l3(gr), l4(gr);
182 182
    IntArcMap c1(gr), c2(gr), c3(gr), c4(gr);
183
    
183

	
184 184
    std::istringstream input(test_lgf);
185 185
    digraphReader(gr, input).
186 186
      arcMap("len1", l1).
187 187
      arcMap("len2", l2).
188 188
      arcMap("len3", l3).
189 189
      arcMap("len4", l4).
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -91,13 +91,13 @@
91 91
            ::SetFlowMap<FlowMap>
92 92
            ::SetElevator<Elev>
93 93
            ::SetStandardElevator<LinkedElev>
94 94
            ::Create PreflowType;
95 95
  PreflowType preflow_test(g, cap, n, n);
96 96
  const PreflowType& const_preflow_test = preflow_test;
97
  
97

	
98 98
  const PreflowType::Elevator& elev = const_preflow_test.elevator();
99 99
  preflow_test.elevator(const_cast<PreflowType::Elevator&>(elev));
100 100
  PreflowType::Tolerance tol = const_preflow_test.tolerance();
101 101
  preflow_test.tolerance(tol);
102 102

	
103 103
  preflow_test
... ...
@@ -115,13 +115,13 @@
115 115

	
116 116
  v = const_preflow_test.flowValue();
117 117
  v = const_preflow_test.flow(e);
118 118
  const FlowMap& fm = const_preflow_test.flowMap();
119 119
  b = const_preflow_test.minCut(n);
120 120
  const_preflow_test.minCutMap(cut);
121
  
121

	
122 122
  ignore_unused_variable_warning(fm);
123 123
}
124 124

	
125 125
int cutValue (const SmartDigraph& g,
126 126
              const SmartDigraph::NodeMap<bool>& cut,
127 127
              const SmartDigraph::ArcMap<int>& cap) {
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -78,13 +78,13 @@
78 78
  typedef int VType;
79 79
  typedef concepts::Digraph Digraph;
80 80

	
81 81
  typedef Digraph::Node Node;
82 82
  typedef Digraph::Arc Arc;
83 83
  typedef concepts::ReadMap<Arc, VType> LengthMap;
84
  
84

	
85 85
  typedef Suurballe<Digraph, LengthMap> ST;
86 86
  typedef Suurballe<Digraph, LengthMap>
87 87
    ::SetFlowMap<ST::FlowMap>
88 88
    ::SetPotentialMap<ST::PotentialMap>
89 89
    ::SetPath<SimplePath<Digraph> >
90 90
    ::SetHeap<concepts::Heap<VType, Digraph::NodeMap<int> > >
... ...
@@ -111,25 +111,25 @@
111 111
  suurb_test.fullInit(n);
112 112
  suurb_test.start(n);
113 113
  suurb_test.start(n, k);
114 114
  k = suurb_test.findFlow(n);
115 115
  k = suurb_test.findFlow(n, k);
116 116
  suurb_test.findPaths();
117
  
117

	
118 118
  int f;
119 119
  VType c;
120 120
  c = const_suurb_test.totalLength();
121 121
  f = const_suurb_test.flow(e);
122 122
  const SuurballeType::FlowMap& fm =
123 123
    const_suurb_test.flowMap();
124 124
  c = const_suurb_test.potential(n);
125 125
  const SuurballeType::PotentialMap& pm =
126 126
    const_suurb_test.potentialMap();
127 127
  k = const_suurb_test.pathNum();
128 128
  Path<Digraph> p = const_suurb_test.path(k);
129
  
129

	
130 130
  ignore_unused_variable_warning(fm);
131 131
  ignore_unused_variable_warning(pm);
132 132
}
133 133

	
134 134
// Check the feasibility of the flow
135 135
template <typename Digraph, typename FlowMap>
... ...
@@ -205,52 +205,52 @@
205 205
    node("target", t).
206 206
    run();
207 207

	
208 208
  // Check run()
209 209
  {
210 210
    Suurballe<ListDigraph> suurballe(digraph, length);
211
    
211

	
212 212
    // Find 2 paths
213 213
    check(suurballe.run(s, t) == 2, "Wrong number of paths");
214 214
    check(checkFlow(digraph, suurballe.flowMap(), s, t, 2),
215 215
          "The flow is not feasible");
216 216
    check(suurballe.totalLength() == 510, "The flow is not optimal");
217 217
    check(checkOptimality(digraph, length, suurballe.flowMap(),
218 218
                          suurballe.potentialMap()),
219 219
          "Wrong potentials");
220 220
    for (int i = 0; i < suurballe.pathNum(); ++i)
221 221
      check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path");
222
   
222

	
223 223
    // Find 3 paths
224 224
    check(suurballe.run(s, t, 3) == 3, "Wrong number of paths");
225 225
    check(checkFlow(digraph, suurballe.flowMap(), s, t, 3),
226 226
          "The flow is not feasible");
227 227
    check(suurballe.totalLength() == 1040, "The flow is not optimal");
228 228
    check(checkOptimality(digraph, length, suurballe.flowMap(),
229 229
                          suurballe.potentialMap()),
230 230
          "Wrong potentials");
231 231
    for (int i = 0; i < suurballe.pathNum(); ++i)
232 232
      check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path");
233
    
233

	
234 234
    // Find 5 paths (only 3 can be found)
235 235
    check(suurballe.run(s, t, 5) == 3, "Wrong number of paths");
236 236
    check(checkFlow(digraph, suurballe.flowMap(), s, t, 3),
237 237
          "The flow is not feasible");
238 238
    check(suurballe.totalLength() == 1040, "The flow is not optimal");
239 239
    check(checkOptimality(digraph, length, suurballe.flowMap(),
240 240
                          suurballe.potentialMap()),
241 241
          "Wrong potentials");
242 242
    for (int i = 0; i < suurballe.pathNum(); ++i)
243 243
      check(checkPath(digraph, suurballe.path(i), s, t), "Wrong path");
244 244
  }
245
  
245

	
246 246
  // Check fullInit() + start()
247 247
  {
248 248
    Suurballe<ListDigraph> suurballe(digraph, length);
249 249
    suurballe.fullInit(s);
250
    
250

	
251 251
    // Find 2 paths
252 252
    check(suurballe.start(t) == 2, "Wrong number of paths");
253 253
    check(suurballe.totalLength() == 510, "The flow is not optimal");
254 254

	
255 255
    // Find 3 paths
256 256
    check(suurballe.start(t, 3) == 3, "Wrong number of paths");
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -42,9 +42,9 @@
42 42
    if(!(rc)) {                                                         \
43 43
      std::cerr << __FILE__ ":" << __LINE__ << ": error: "              \
44 44
                << msg << std::endl;                                    \
45 45
      abort();                                                          \
46 46
    } else { }                                                          \
47 47
  }                                                                     \
48
    
48

	
49 49

	
50 50
#endif
Ignore white space 6 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5
 * Copyright (C) 2003-2009
5
 * Copyright (C) 2003-2010
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
... ...
@@ -85,13 +85,13 @@
85 85
  ti.restart();
86 86
  Preflow<Digraph, Digraph::ArcMap<Value> > pre(g,cap,s,t);
87 87
  if(report) std::cerr << "Setup Preflow class: " << ti << '\n';
88 88
  ti.restart();
89 89
  pre.run();
90 90
  if(report) std::cerr << "Run Preflow: " << ti << '\n';
91
  if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n';  
91
  if(report) std::cerr << "\nMax flow value: " << pre.flowValue() << '\n';
92 92
}
93 93

	
94 94
template<class Value, class LargeValue>
95 95
void solve_min(ArgParser &ap, std::istream &is, std::ostream &,
96 96
               Value infty, DimacsDescriptor &desc)
97 97
{
... ...
@@ -145,13 +145,13 @@
145 145
  MaxMatching<Graph> mat(g);
146 146
  if(report) std::cerr << "Setup MaxMatching class: " << ti << '\n';
147 147
  ti.restart();
148 148
  mat.run();
149 149
  if(report) std::cerr << "Run MaxMatching: " << ti << '\n';
150 150
  if(report) std::cerr << "\nCardinality of max matching: "
151
                       << mat.matchingSize() << '\n';  
151
                       << mat.matchingSize() << '\n';
152 152
}
153 153

	
154 154

	
155 155
template<class Value, class LargeValue>
156 156
void solve(ArgParser &ap, std::istream &is, std::ostream &os,
157 157
           DimacsDescriptor &desc)
... ...
@@ -163,13 +163,13 @@
163 163
    {
164 164
      std::cerr << "Cannot interpret '"
165 165
                << static_cast<std::string>(ap["infcap"]) << "' as infinite"
166 166
                << std::endl;
167 167
      exit(1);
168 168
    }
169
  
169

	
170 170
  switch(desc.type)
171 171
    {
172 172
    case DimacsDescriptor::MIN:
173 173
      solve_min<Value, LargeValue>(ap,is,os,infty,desc);
174 174
      break;
175 175
    case DimacsDescriptor::MAX:
... ...
@@ -235,13 +235,13 @@
235 235
      return 1;
236 236
    }
237 237
  std::istream& is = (ap.files().size()<1 ? std::cin : input);
238 238
  std::ostream& os = (ap.files().size()<2 ? std::cout : output);
239 239

	
240 240
  DimacsDescriptor desc = dimacsType(is);
241
  
241

	
242 242
  if(!ap.given("q"))
243 243
    {
244 244
      std::cout << "Problem type: ";
245 245
      switch(desc.type)
246 246
        {
247 247
        case DimacsDescriptor::MIN:
... ...
@@ -260,13 +260,13 @@
260 260
          break;
261 261
        }
262 262
      std::cout << "\nNum of nodes: " << desc.nodeNum;
263 263
      std::cout << "\nNum of arcs:  " << desc.edgeNum;
264 264
      std::cout << "\n\n";
265 265
    }
266
    
266

	
267 267
  if(ap.given("double"))
268 268
    solve<double, double>(ap,is,os,desc);
269 269
  else if(ap.given("ldouble"))
270 270
    solve<long double, long double>(ap,is,os,desc);
271 271
#ifdef LEMON_HAVE_LONG_LONG
272 272
  else if(ap.given("long"))
0 comments (0 inline)