1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup demos |
20 | 20 |
///\file |
21 | 21 |
///\brief Argument parser demo |
22 | 22 |
/// |
23 | 23 |
/// This example shows how the argument parser can be used. |
24 | 24 |
/// |
25 | 25 |
/// \include arg_parser_demo.cc |
26 | 26 |
|
27 | 27 |
#include <lemon/arg_parser.h> |
28 | 28 |
|
29 | 29 |
using namespace lemon; |
30 | 30 |
int main(int argc, char **argv) |
31 | 31 |
{ |
32 | 32 |
// Initialize the argument parser |
33 | 33 |
ArgParser ap(argc, argv); |
34 | 34 |
int i; |
35 | 35 |
std::string s; |
36 | 36 |
double d = 1.0; |
37 | 37 |
bool b, nh; |
38 | 38 |
bool g1, g2, g3; |
39 | 39 |
|
40 | 40 |
// Add a mandatory integer option with storage reference |
41 | 41 |
ap.refOption("n", "An integer input.", i, true); |
42 | 42 |
// Add a double option with storage reference (the default value is 1.0) |
43 | 43 |
ap.refOption("val", "A double input.", d); |
44 | 44 |
// Add a double option without storage reference (the default value is 3.14) |
45 | 45 |
ap.doubleOption("val2", "A double input.", 3.14); |
46 | 46 |
// Set synonym for -val option |
47 | 47 |
ap.synonym("vals", "val"); |
48 | 48 |
// Add a string option |
49 | 49 |
ap.refOption("name", "A string input.", s); |
50 | 50 |
// Add bool options |
51 | 51 |
ap.refOption("f", "A switch.", b) |
52 | 52 |
.refOption("nohelp", "", nh) |
53 | 53 |
.refOption("gra", "Choice A", g1) |
54 | 54 |
.refOption("grb", "Choice B", g2) |
55 | 55 |
.refOption("grc", "Choice C", g3); |
56 | 56 |
// Bundle -gr* options into a group |
57 | 57 |
ap.optionGroup("gr", "gra") |
58 | 58 |
.optionGroup("gr", "grb") |
59 | 59 |
.optionGroup("gr", "grc"); |
60 | 60 |
// Set the group mandatory |
61 | 61 |
ap.mandatoryGroup("gr"); |
62 | 62 |
// Set the options of the group exclusive (only one option can be given) |
63 | 63 |
ap.onlyOneGroup("gr"); |
64 | 64 |
// Add non-parsed arguments (e.g. input files) |
65 | 65 |
ap.other("infile", "The input file.") |
66 | 66 |
.other("..."); |
67 | 67 |
|
68 | 68 |
// Throw an exception when problems occurs. The default behavior is to |
69 | 69 |
// exit(1) on these cases, but this makes Valgrind falsely warn |
70 | 70 |
// about memory leaks. |
71 | 71 |
ap.throwOnProblems(); |
72 | 72 |
|
73 | 73 |
// Perform the parsing process |
74 | 74 |
// (in case of any error it terminates the program) |
75 | 75 |
// The try {} construct is necessary only if the ap.trowOnProblems() |
76 | 76 |
// setting is in use. |
77 | 77 |
try { |
78 | 78 |
ap.parse(); |
79 | 79 |
} catch (ArgParserException &) { return 1; } |
80 | 80 |
|
81 | 81 |
// Check each option if it has been given and print its value |
82 | 82 |
std::cout << "Parameters of '" << ap.commandName() << "':\n"; |
83 | 83 |
|
84 | 84 |
std::cout << " Value of -n: " << i << std::endl; |
85 | 85 |
if(ap.given("val")) std::cout << " Value of -val: " << d << std::endl; |
86 | 86 |
if(ap.given("val2")) { |
87 | 87 |
d = ap["val2"]; |
88 | 88 |
std::cout << " Value of -val2: " << d << std::endl; |
89 | 89 |
} |
90 | 90 |
if(ap.given("name")) std::cout << " Value of -name: " << s << std::endl; |
91 | 91 |
if(ap.given("f")) std::cout << " -f is given\n"; |
92 | 92 |
if(ap.given("nohelp")) std::cout << " Value of -nohelp: " << nh << std::endl; |
93 | 93 |
if(ap.given("gra")) std::cout << " -gra is given\n"; |
94 | 94 |
if(ap.given("grb")) std::cout << " -grb is given\n"; |
95 | 95 |
if(ap.given("grc")) std::cout << " -grc is given\n"; |
96 | 96 |
|
97 | 97 |
switch(ap.files().size()) { |
98 | 98 |
case 0: |
99 | 99 |
std::cout << " No file argument was given.\n"; |
100 | 100 |
break; |
101 | 101 |
case 1: |
102 | 102 |
std::cout << " 1 file argument was given. It is:\n"; |
103 | 103 |
break; |
104 | 104 |
default: |
105 | 105 |
std::cout << " " |
106 | 106 |
<< ap.files().size() << " file arguments were given. They are:\n"; |
107 | 107 |
} |
108 | 108 |
for(unsigned int i=0;i<ap.files().size();++i) |
109 | 109 |
std::cout << " '" << ap.files()[i] << "'\n"; |
110 | 110 |
|
111 | 111 |
return 0; |
112 | 112 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
@defgroup datas Data Structures |
23 | 23 |
This group contains the several data structures implemented in LEMON. |
24 | 24 |
*/ |
25 | 25 |
|
26 | 26 |
/** |
27 | 27 |
@defgroup graphs Graph Structures |
28 | 28 |
@ingroup datas |
29 | 29 |
\brief Graph structures implemented in LEMON. |
30 | 30 |
|
31 | 31 |
The implementation of combinatorial algorithms heavily relies on |
32 | 32 |
efficient graph implementations. LEMON offers data structures which are |
33 | 33 |
planned to be easily used in an experimental phase of implementation studies, |
34 | 34 |
and thereafter the program code can be made efficient by small modifications. |
35 | 35 |
|
36 | 36 |
The most efficient implementation of diverse applications require the |
37 | 37 |
usage of different physical graph implementations. These differences |
38 | 38 |
appear in the size of graph we require to handle, memory or time usage |
39 | 39 |
limitations or in the set of operations through which the graph can be |
40 | 40 |
accessed. LEMON provides several physical graph structures to meet |
41 | 41 |
the diverging requirements of the possible users. In order to save on |
42 | 42 |
running time or on memory usage, some structures may fail to provide |
43 | 43 |
some graph features like arc/edge or node deletion. |
44 | 44 |
|
45 | 45 |
Alteration of standard containers need a very limited number of |
46 | 46 |
operations, these together satisfy the everyday requirements. |
47 | 47 |
In the case of graph structures, different operations are needed which do |
48 | 48 |
not alter the physical graph, but gives another view. If some nodes or |
49 | 49 |
arcs have to be hidden or the reverse oriented graph have to be used, then |
50 | 50 |
this is the case. It also may happen that in a flow implementation |
51 | 51 |
the residual graph can be accessed by another algorithm, or a node-set |
52 | 52 |
is to be shrunk for another algorithm. |
53 | 53 |
LEMON also provides a variety of graphs for these requirements called |
54 | 54 |
\ref graph_adaptors "graph adaptors". Adaptors cannot be used alone but only |
55 | 55 |
in conjunction with other graph representations. |
56 | 56 |
|
57 | 57 |
You are free to use the graph structure that fit your requirements |
58 | 58 |
the best, most graph algorithms and auxiliary data structures can be used |
59 | 59 |
with any graph structure. |
60 | 60 |
|
61 | 61 |
<b>See also:</b> \ref graph_concepts "Graph Structure Concepts". |
62 | 62 |
*/ |
63 | 63 |
|
64 | 64 |
/** |
65 | 65 |
@defgroup graph_adaptors Adaptor Classes for Graphs |
66 | 66 |
@ingroup graphs |
67 | 67 |
\brief Adaptor classes for digraphs and graphs |
68 | 68 |
|
69 | 69 |
This group contains several useful adaptor classes for digraphs and graphs. |
70 | 70 |
|
71 | 71 |
The main parts of LEMON are the different graph structures, generic |
72 | 72 |
graph algorithms, graph concepts, which couple them, and graph |
73 | 73 |
adaptors. While the previous notions are more or less clear, the |
74 | 74 |
latter one needs further explanation. Graph adaptors are graph classes |
75 | 75 |
which serve for considering graph structures in different ways. |
76 | 76 |
|
77 | 77 |
A short example makes this much clearer. Suppose that we have an |
78 | 78 |
instance \c g of a directed graph type, say ListDigraph and an algorithm |
79 | 79 |
\code |
80 | 80 |
template <typename Digraph> |
81 | 81 |
int algorithm(const Digraph&); |
82 | 82 |
\endcode |
83 | 83 |
is needed to run on the reverse oriented graph. It may be expensive |
84 | 84 |
(in time or in memory usage) to copy \c g with the reversed |
85 | 85 |
arcs. In this case, an adaptor class is used, which (according |
86 | 86 |
to LEMON \ref concepts::Digraph "digraph concepts") works as a digraph. |
87 | 87 |
The adaptor uses the original digraph structure and digraph operations when |
88 | 88 |
methods of the reversed oriented graph are called. This means that the adaptor |
89 | 89 |
have minor memory usage, and do not perform sophisticated algorithmic |
90 | 90 |
actions. The purpose of it is to give a tool for the cases when a |
91 | 91 |
graph have to be used in a specific alteration. If this alteration is |
92 | 92 |
obtained by a usual construction like filtering the node or the arc set or |
93 | 93 |
considering a new orientation, then an adaptor is worthwhile to use. |
94 | 94 |
To come back to the reverse oriented graph, in this situation |
95 | 95 |
\code |
96 | 96 |
template<typename Digraph> class ReverseDigraph; |
97 | 97 |
\endcode |
98 | 98 |
template class can be used. The code looks as follows |
99 | 99 |
\code |
100 | 100 |
ListDigraph g; |
101 | 101 |
ReverseDigraph<ListDigraph> rg(g); |
102 | 102 |
int result = algorithm(rg); |
103 | 103 |
\endcode |
104 | 104 |
During running the algorithm, the original digraph \c g is untouched. |
105 | 105 |
This techniques give rise to an elegant code, and based on stable |
106 | 106 |
graph adaptors, complex algorithms can be implemented easily. |
107 | 107 |
|
108 | 108 |
In flow, circulation and matching problems, the residual |
109 | 109 |
graph is of particular importance. Combining an adaptor implementing |
110 | 110 |
this with shortest path algorithms or minimum mean cycle algorithms, |
111 | 111 |
a range of weighted and cardinality optimization algorithms can be |
112 | 112 |
obtained. For other examples, the interested user is referred to the |
113 | 113 |
detailed documentation of particular adaptors. |
114 | 114 |
|
115 | 115 |
The behavior of graph adaptors can be very different. Some of them keep |
116 | 116 |
capabilities of the original graph while in other cases this would be |
117 | 117 |
meaningless. This means that the concepts that they meet depend |
118 | 118 |
on the graph adaptor, and the wrapped graph. |
119 | 119 |
For example, if an arc of a reversed digraph is deleted, this is carried |
120 | 120 |
out by deleting the corresponding arc of the original digraph, thus the |
121 | 121 |
adaptor modifies the original digraph. |
122 | 122 |
However in case of a residual digraph, this operation has no sense. |
123 | 123 |
|
124 | 124 |
Let us stand one more example here to simplify your work. |
125 | 125 |
ReverseDigraph has constructor |
126 | 126 |
\code |
127 | 127 |
ReverseDigraph(Digraph& digraph); |
128 | 128 |
\endcode |
129 | 129 |
This means that in a situation, when a <tt>const %ListDigraph&</tt> |
130 | 130 |
reference to a graph is given, then it have to be instantiated with |
131 | 131 |
<tt>Digraph=const %ListDigraph</tt>. |
132 | 132 |
\code |
133 | 133 |
int algorithm1(const ListDigraph& g) { |
134 | 134 |
ReverseDigraph<const ListDigraph> rg(g); |
135 | 135 |
return algorithm2(rg); |
136 | 136 |
} |
137 | 137 |
\endcode |
138 | 138 |
*/ |
139 | 139 |
|
140 | 140 |
/** |
141 | 141 |
@defgroup maps Maps |
142 | 142 |
@ingroup datas |
143 | 143 |
\brief Map structures implemented in LEMON. |
144 | 144 |
|
145 | 145 |
This group contains the map structures implemented in LEMON. |
146 | 146 |
|
147 | 147 |
LEMON provides several special purpose maps and map adaptors that e.g. combine |
148 | 148 |
new maps from existing ones. |
149 | 149 |
|
150 | 150 |
<b>See also:</b> \ref map_concepts "Map Concepts". |
151 | 151 |
*/ |
152 | 152 |
|
153 | 153 |
/** |
154 | 154 |
@defgroup graph_maps Graph Maps |
155 | 155 |
@ingroup maps |
156 | 156 |
\brief Special graph-related maps. |
157 | 157 |
|
158 | 158 |
This group contains maps that are specifically designed to assign |
159 | 159 |
values to the nodes and arcs/edges of graphs. |
160 | 160 |
|
161 | 161 |
If you are looking for the standard graph maps (\c NodeMap, \c ArcMap, |
162 | 162 |
\c EdgeMap), see the \ref graph_concepts "Graph Structure Concepts". |
163 | 163 |
*/ |
164 | 164 |
|
165 | 165 |
/** |
166 | 166 |
\defgroup map_adaptors Map Adaptors |
167 | 167 |
\ingroup maps |
168 | 168 |
\brief Tools to create new maps from existing ones |
169 | 169 |
|
170 | 170 |
This group contains map adaptors that are used to create "implicit" |
171 | 171 |
maps from other maps. |
172 | 172 |
|
173 | 173 |
Most of them are \ref concepts::ReadMap "read-only maps". |
174 | 174 |
They can make arithmetic and logical operations between one or two maps |
175 | 175 |
(negation, shifting, addition, multiplication, logical 'and', 'or', |
176 | 176 |
'not' etc.) or e.g. convert a map to another one of different Value type. |
177 | 177 |
|
178 | 178 |
The typical usage of this classes is passing implicit maps to |
179 | 179 |
algorithms. If a function type algorithm is called then the function |
180 | 180 |
type map adaptors can be used comfortable. For example let's see the |
181 | 181 |
usage of map adaptors with the \c graphToEps() function. |
182 | 182 |
\code |
183 | 183 |
Color nodeColor(int deg) { |
184 | 184 |
if (deg >= 2) { |
185 | 185 |
return Color(0.5, 0.0, 0.5); |
186 | 186 |
} else if (deg == 1) { |
187 | 187 |
return Color(1.0, 0.5, 1.0); |
188 | 188 |
} else { |
189 | 189 |
return Color(0.0, 0.0, 0.0); |
190 | 190 |
} |
191 | 191 |
} |
192 | 192 |
|
193 | 193 |
Digraph::NodeMap<int> degree_map(graph); |
194 | 194 |
|
195 | 195 |
graphToEps(graph, "graph.eps") |
196 | 196 |
.coords(coords).scaleToA4().undirected() |
197 | 197 |
.nodeColors(composeMap(functorToMap(nodeColor), degree_map)) |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
/** |
20 | 20 |
\mainpage LEMON Documentation |
21 | 21 |
|
22 | 22 |
\section intro Introduction |
23 | 23 |
|
24 | 24 |
<b>LEMON</b> stands for <i><b>L</b>ibrary for <b>E</b>fficient <b>M</b>odeling |
25 | 25 |
and <b>O</b>ptimization in <b>N</b>etworks</i>. |
26 | 26 |
It is a C++ template library providing efficient implementations of common |
27 | 27 |
data structures and algorithms with focus on combinatorial optimization |
28 | 28 |
tasks connected mainly with graphs and networks. |
29 | 29 |
|
30 | 30 |
<b> |
31 | 31 |
LEMON is an <a class="el" href="http://opensource.org/">open source</a> |
32 | 32 |
project. |
33 | 33 |
You are free to use it in your commercial or |
34 | 34 |
non-commercial applications under very permissive |
35 | 35 |
\ref license "license terms". |
36 | 36 |
</b> |
37 | 37 |
|
38 | 38 |
The project is maintained by the |
39 | 39 |
<a href="http://www.cs.elte.hu/egres/">Egerváry Research Group on |
40 | 40 |
Combinatorial Optimization</a> \ref egres |
41 | 41 |
at the Operations Research Department of the |
42 | 42 |
<a href="http://www.elte.hu/en/">Eötvös Loránd University</a>, |
43 | 43 |
Budapest, Hungary. |
44 | 44 |
LEMON is also a member of the <a href="http://www.coin-or.org/">COIN-OR</a> |
45 | 45 |
initiative \ref coinor. |
46 | 46 |
|
47 | 47 |
\section howtoread How to Read the Documentation |
48 | 48 |
|
49 | 49 |
If you would like to get to know the library, see |
50 | 50 |
<a class="el" href="http://lemon.cs.elte.hu/pub/tutorial/">LEMON Tutorial</a>. |
51 | 51 |
|
52 | 52 |
If you are interested in starting to use the library, see the <a class="el" |
53 | 53 |
href="http://lemon.cs.elte.hu/trac/lemon/wiki/InstallGuide/">Installation |
54 | 54 |
Guide</a>. |
55 | 55 |
|
56 | 56 |
If you know what you are looking for, then try to find it under the |
57 | 57 |
<a class="el" href="modules.html">Modules</a> section. |
58 | 58 |
|
59 | 59 |
If you are a user of the old (0.x) series of LEMON, please check out the |
60 | 60 |
\ref migration "Migration Guide" for the backward incompatibilities. |
61 | 61 |
*/ |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
namespace lemon { |
20 | 20 |
|
21 | 21 |
/** |
22 | 22 |
\page min_cost_flow Minimum Cost Flow Problem |
23 | 23 |
|
24 | 24 |
\section mcf_def Definition (GEQ form) |
25 | 25 |
|
26 | 26 |
The \e minimum \e cost \e flow \e problem is to find a feasible flow of |
27 | 27 |
minimum total cost from a set of supply nodes to a set of demand nodes |
28 | 28 |
in a network with capacity constraints (lower and upper bounds) |
29 | 29 |
and arc costs \ref amo93networkflows. |
30 | 30 |
|
31 | 31 |
Formally, let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$, |
32 | 32 |
\f$upper: A\rightarrow\mathbf{R}\cup\{+\infty\}\f$ denote the lower and |
33 | 33 |
upper bounds for the flow values on the arcs, for which |
34 | 34 |
\f$lower(uv) \leq upper(uv)\f$ must hold for all \f$uv\in A\f$, |
35 | 35 |
\f$cost: A\rightarrow\mathbf{R}\f$ denotes the cost per unit flow |
36 | 36 |
on the arcs and \f$sup: V\rightarrow\mathbf{R}\f$ denotes the |
37 | 37 |
signed supply values of the nodes. |
38 | 38 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
39 | 39 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
40 | 40 |
\f$-sup(u)\f$ demand. |
41 | 41 |
A minimum cost flow is an \f$f: A\rightarrow\mathbf{R}\f$ solution |
42 | 42 |
of the following optimization problem. |
43 | 43 |
|
44 | 44 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
45 | 45 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \geq |
46 | 46 |
sup(u) \quad \forall u\in V \f] |
47 | 47 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
48 | 48 |
|
49 | 49 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
50 | 50 |
zero or negative in order to have a feasible solution (since the sum |
51 | 51 |
of the expressions on the left-hand side of the inequalities is zero). |
52 | 52 |
It means that the total demand must be greater or equal to the total |
53 | 53 |
supply and all the supplies have to be carried out from the supply nodes, |
54 | 54 |
but there could be demands that are not satisfied. |
55 | 55 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
56 | 56 |
constraints have to be satisfied with equality, i.e. all demands |
57 | 57 |
have to be satisfied and all supplies have to be used. |
58 | 58 |
|
59 | 59 |
|
60 | 60 |
\section mcf_algs Algorithms |
61 | 61 |
|
62 | 62 |
LEMON contains several algorithms for solving this problem, for more |
63 | 63 |
information see \ref min_cost_flow_algs "Minimum Cost Flow Algorithms". |
64 | 64 |
|
65 | 65 |
A feasible solution for this problem can be found using \ref Circulation. |
66 | 66 |
|
67 | 67 |
|
68 | 68 |
\section mcf_dual Dual Solution |
69 | 69 |
|
70 | 70 |
The dual solution of the minimum cost flow problem is represented by |
71 | 71 |
node potentials \f$\pi: V\rightarrow\mathbf{R}\f$. |
72 | 72 |
An \f$f: A\rightarrow\mathbf{R}\f$ primal feasible solution is optimal |
73 | 73 |
if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ node potentials |
74 | 74 |
the following \e complementary \e slackness optimality conditions hold. |
75 | 75 |
|
76 | 76 |
- For all \f$uv\in A\f$ arcs: |
77 | 77 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
78 | 78 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
79 | 79 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
80 | 80 |
- For all \f$u\in V\f$ nodes: |
81 | 81 |
- \f$\pi(u)\leq 0\f$; |
82 | 82 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
83 | 83 |
then \f$\pi(u)=0\f$. |
84 | 84 |
|
85 | 85 |
Here \f$cost^\pi(uv)\f$ denotes the \e reduced \e cost of the arc |
86 | 86 |
\f$uv\in A\f$ with respect to the potential function \f$\pi\f$, i.e. |
87 | 87 |
\f[ cost^\pi(uv) = cost(uv) + \pi(u) - \pi(v).\f] |
88 | 88 |
|
89 | 89 |
All algorithms provide dual solution (node potentials), as well, |
90 | 90 |
if an optimal flow is found. |
91 | 91 |
|
92 | 92 |
|
93 | 93 |
\section mcf_eq Equality Form |
94 | 94 |
|
95 | 95 |
The above \ref mcf_def "definition" is actually more general than the |
96 | 96 |
usual formulation of the minimum cost flow problem, in which strict |
97 | 97 |
equalities are required in the supply/demand contraints. |
98 | 98 |
|
99 | 99 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
100 | 100 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) = |
101 | 101 |
sup(u) \quad \forall u\in V \f] |
102 | 102 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
103 | 103 |
|
104 | 104 |
However if the sum of the supply values is zero, then these two problems |
105 | 105 |
are equivalent. |
106 | 106 |
The \ref min_cost_flow_algs "algorithms" in LEMON support the general |
107 | 107 |
form, so if you need the equality form, you have to ensure this additional |
108 | 108 |
contraint manually. |
109 | 109 |
|
110 | 110 |
|
111 | 111 |
\section mcf_leq Opposite Inequalites (LEQ Form) |
112 | 112 |
|
113 | 113 |
Another possible definition of the minimum cost flow problem is |
114 | 114 |
when there are <em>"less or equal"</em> (LEQ) supply/demand constraints, |
115 | 115 |
instead of the <em>"greater or equal"</em> (GEQ) constraints. |
116 | 116 |
|
117 | 117 |
\f[ \min\sum_{uv\in A} f(uv) \cdot cost(uv) \f] |
118 | 118 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \leq |
119 | 119 |
sup(u) \quad \forall u\in V \f] |
120 | 120 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A \f] |
121 | 121 |
|
122 | 122 |
It means that the total demand must be less or equal to the |
123 | 123 |
total supply (i.e. \f$\sum_{u\in V} sup(u)\f$ must be zero or |
124 | 124 |
positive) and all the demands have to be satisfied, but there |
125 | 125 |
could be supplies that are not carried out from the supply |
126 | 126 |
nodes. |
127 | 127 |
The equality form is also a special case of this form, of course. |
128 | 128 |
|
129 | 129 |
You could easily transform this case to the \ref mcf_def "GEQ form" |
130 | 130 |
of the problem by reversing the direction of the arcs and taking the |
131 | 131 |
negative of the supply values (e.g. using \ref ReverseDigraph and |
132 | 132 |
\ref NegMap adaptors). |
133 | 133 |
However \ref NetworkSimplex algorithm also supports this form directly |
134 | 134 |
for the sake of convenience. |
135 | 135 |
|
136 | 136 |
Note that the optimality conditions for this supply constraint type are |
137 | 137 |
slightly differ from the conditions that are discussed for the GEQ form, |
138 | 138 |
namely the potentials have to be non-negative instead of non-positive. |
139 | 139 |
An \f$f: A\rightarrow\mathbf{R}\f$ feasible solution of this problem |
140 | 140 |
is optimal if and only if for some \f$\pi: V\rightarrow\mathbf{R}\f$ |
141 | 141 |
node potentials the following conditions hold. |
142 | 142 |
|
143 | 143 |
- For all \f$uv\in A\f$ arcs: |
144 | 144 |
- if \f$cost^\pi(uv)>0\f$, then \f$f(uv)=lower(uv)\f$; |
145 | 145 |
- if \f$lower(uv)<f(uv)<upper(uv)\f$, then \f$cost^\pi(uv)=0\f$; |
146 | 146 |
- if \f$cost^\pi(uv)<0\f$, then \f$f(uv)=upper(uv)\f$. |
147 | 147 |
- For all \f$u\in V\f$ nodes: |
148 | 148 |
- \f$\pi(u)\geq 0\f$; |
149 | 149 |
- if \f$\sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) \neq sup(u)\f$, |
150 | 150 |
then \f$\pi(u)=0\f$. |
151 | 151 |
|
152 | 152 |
*/ |
153 | 153 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ADAPTORS_H |
20 | 20 |
#define LEMON_ADAPTORS_H |
21 | 21 |
|
22 | 22 |
/// \ingroup graph_adaptors |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Adaptor classes for digraphs and graphs |
25 | 25 |
/// |
26 | 26 |
/// This file contains several useful adaptors for digraphs and graphs. |
27 | 27 |
|
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/maps.h> |
30 | 30 |
#include <lemon/bits/variant.h> |
31 | 31 |
|
32 | 32 |
#include <lemon/bits/graph_adaptor_extender.h> |
33 | 33 |
#include <lemon/bits/map_extender.h> |
34 | 34 |
#include <lemon/tolerance.h> |
35 | 35 |
|
36 | 36 |
#include <algorithm> |
37 | 37 |
|
38 | 38 |
namespace lemon { |
39 | 39 |
|
40 | 40 |
#ifdef _MSC_VER |
41 | 41 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) OUTER::NESTED |
42 | 42 |
#else |
43 | 43 |
#define LEMON_SCOPE_FIX(OUTER, NESTED) typename OUTER::template NESTED |
44 | 44 |
#endif |
45 | 45 |
|
46 | 46 |
template<typename DGR> |
47 | 47 |
class DigraphAdaptorBase { |
48 | 48 |
public: |
49 | 49 |
typedef DGR Digraph; |
50 | 50 |
typedef DigraphAdaptorBase Adaptor; |
51 | 51 |
|
52 | 52 |
protected: |
53 | 53 |
DGR* _digraph; |
54 | 54 |
DigraphAdaptorBase() : _digraph(0) { } |
55 | 55 |
void initialize(DGR& digraph) { _digraph = &digraph; } |
56 | 56 |
|
57 | 57 |
public: |
58 | 58 |
DigraphAdaptorBase(DGR& digraph) : _digraph(&digraph) { } |
59 | 59 |
|
60 | 60 |
typedef typename DGR::Node Node; |
61 | 61 |
typedef typename DGR::Arc Arc; |
62 | 62 |
|
63 | 63 |
void first(Node& i) const { _digraph->first(i); } |
64 | 64 |
void first(Arc& i) const { _digraph->first(i); } |
65 | 65 |
void firstIn(Arc& i, const Node& n) const { _digraph->firstIn(i, n); } |
66 | 66 |
void firstOut(Arc& i, const Node& n ) const { _digraph->firstOut(i, n); } |
67 | 67 |
|
68 | 68 |
void next(Node& i) const { _digraph->next(i); } |
69 | 69 |
void next(Arc& i) const { _digraph->next(i); } |
70 | 70 |
void nextIn(Arc& i) const { _digraph->nextIn(i); } |
71 | 71 |
void nextOut(Arc& i) const { _digraph->nextOut(i); } |
72 | 72 |
|
73 | 73 |
Node source(const Arc& a) const { return _digraph->source(a); } |
74 | 74 |
Node target(const Arc& a) const { return _digraph->target(a); } |
75 | 75 |
|
76 | 76 |
typedef NodeNumTagIndicator<DGR> NodeNumTag; |
77 | 77 |
int nodeNum() const { return _digraph->nodeNum(); } |
78 | 78 |
|
79 | 79 |
typedef ArcNumTagIndicator<DGR> ArcNumTag; |
80 | 80 |
int arcNum() const { return _digraph->arcNum(); } |
81 | 81 |
|
82 | 82 |
typedef FindArcTagIndicator<DGR> FindArcTag; |
83 | 83 |
Arc findArc(const Node& u, const Node& v, const Arc& prev = INVALID) const { |
84 | 84 |
return _digraph->findArc(u, v, prev); |
85 | 85 |
} |
86 | 86 |
|
87 | 87 |
Node addNode() { return _digraph->addNode(); } |
88 | 88 |
Arc addArc(const Node& u, const Node& v) { return _digraph->addArc(u, v); } |
89 | 89 |
|
90 | 90 |
void erase(const Node& n) { _digraph->erase(n); } |
91 | 91 |
void erase(const Arc& a) { _digraph->erase(a); } |
92 | 92 |
|
93 | 93 |
void clear() { _digraph->clear(); } |
94 | 94 |
|
95 | 95 |
int id(const Node& n) const { return _digraph->id(n); } |
96 | 96 |
int id(const Arc& a) const { return _digraph->id(a); } |
97 | 97 |
|
98 | 98 |
Node nodeFromId(int ix) const { return _digraph->nodeFromId(ix); } |
99 | 99 |
Arc arcFromId(int ix) const { return _digraph->arcFromId(ix); } |
100 | 100 |
|
101 | 101 |
int maxNodeId() const { return _digraph->maxNodeId(); } |
102 | 102 |
int maxArcId() const { return _digraph->maxArcId(); } |
103 | 103 |
|
104 | 104 |
typedef typename ItemSetTraits<DGR, Node>::ItemNotifier NodeNotifier; |
105 | 105 |
NodeNotifier& notifier(Node) const { return _digraph->notifier(Node()); } |
106 | 106 |
|
107 | 107 |
typedef typename ItemSetTraits<DGR, Arc>::ItemNotifier ArcNotifier; |
108 | 108 |
ArcNotifier& notifier(Arc) const { return _digraph->notifier(Arc()); } |
109 | 109 |
|
110 | 110 |
template <typename V> |
111 | 111 |
class NodeMap : public DGR::template NodeMap<V> { |
112 | 112 |
typedef typename DGR::template NodeMap<V> Parent; |
113 | 113 |
|
114 | 114 |
public: |
115 | 115 |
explicit NodeMap(const Adaptor& adaptor) |
116 | 116 |
: Parent(*adaptor._digraph) {} |
117 | 117 |
NodeMap(const Adaptor& adaptor, const V& value) |
118 | 118 |
: Parent(*adaptor._digraph, value) { } |
119 | 119 |
|
120 | 120 |
private: |
121 | 121 |
NodeMap& operator=(const NodeMap& cmap) { |
122 | 122 |
return operator=<NodeMap>(cmap); |
123 | 123 |
} |
124 | 124 |
|
125 | 125 |
template <typename CMap> |
126 | 126 |
NodeMap& operator=(const CMap& cmap) { |
127 | 127 |
Parent::operator=(cmap); |
128 | 128 |
return *this; |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
}; |
132 | 132 |
|
133 | 133 |
template <typename V> |
134 | 134 |
class ArcMap : public DGR::template ArcMap<V> { |
135 | 135 |
typedef typename DGR::template ArcMap<V> Parent; |
136 | 136 |
|
137 | 137 |
public: |
138 | 138 |
explicit ArcMap(const DigraphAdaptorBase<DGR>& adaptor) |
139 | 139 |
: Parent(*adaptor._digraph) {} |
140 | 140 |
ArcMap(const DigraphAdaptorBase<DGR>& adaptor, const V& value) |
141 | 141 |
: Parent(*adaptor._digraph, value) {} |
142 | 142 |
|
143 | 143 |
private: |
144 | 144 |
ArcMap& operator=(const ArcMap& cmap) { |
145 | 145 |
return operator=<ArcMap>(cmap); |
146 | 146 |
} |
147 | 147 |
|
148 | 148 |
template <typename CMap> |
149 | 149 |
ArcMap& operator=(const CMap& cmap) { |
150 | 150 |
Parent::operator=(cmap); |
151 | 151 |
return *this; |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
}; |
155 | 155 |
|
156 | 156 |
}; |
157 | 157 |
|
158 | 158 |
template<typename GR> |
159 | 159 |
class GraphAdaptorBase { |
160 | 160 |
public: |
161 | 161 |
typedef GR Graph; |
162 | 162 |
|
163 | 163 |
protected: |
164 | 164 |
GR* _graph; |
165 | 165 |
|
166 | 166 |
GraphAdaptorBase() : _graph(0) {} |
167 | 167 |
|
168 | 168 |
void initialize(GR& graph) { _graph = &graph; } |
169 | 169 |
|
170 | 170 |
public: |
171 | 171 |
GraphAdaptorBase(GR& graph) : _graph(&graph) {} |
172 | 172 |
|
173 | 173 |
typedef typename GR::Node Node; |
174 | 174 |
typedef typename GR::Arc Arc; |
175 | 175 |
typedef typename GR::Edge Edge; |
176 | 176 |
|
177 | 177 |
void first(Node& i) const { _graph->first(i); } |
178 | 178 |
void first(Arc& i) const { _graph->first(i); } |
179 | 179 |
void first(Edge& i) const { _graph->first(i); } |
180 | 180 |
void firstIn(Arc& i, const Node& n) const { _graph->firstIn(i, n); } |
181 | 181 |
void firstOut(Arc& i, const Node& n ) const { _graph->firstOut(i, n); } |
182 | 182 |
void firstInc(Edge &i, bool &d, const Node &n) const { |
183 | 183 |
_graph->firstInc(i, d, n); |
184 | 184 |
} |
185 | 185 |
|
186 | 186 |
void next(Node& i) const { _graph->next(i); } |
187 | 187 |
void next(Arc& i) const { _graph->next(i); } |
188 | 188 |
void next(Edge& i) const { _graph->next(i); } |
189 | 189 |
void nextIn(Arc& i) const { _graph->nextIn(i); } |
190 | 190 |
void nextOut(Arc& i) const { _graph->nextOut(i); } |
191 | 191 |
void nextInc(Edge &i, bool &d) const { _graph->nextInc(i, d); } |
192 | 192 |
|
193 | 193 |
Node u(const Edge& e) const { return _graph->u(e); } |
194 | 194 |
Node v(const Edge& e) const { return _graph->v(e); } |
195 | 195 |
|
196 | 196 |
Node source(const Arc& a) const { return _graph->source(a); } |
197 | 197 |
Node target(const Arc& a) const { return _graph->target(a); } |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/arg_parser.h> |
20 | 20 |
|
21 | 21 |
namespace lemon { |
22 | 22 |
|
23 | 23 |
void ArgParser::_terminate(ArgParserException::Reason reason) const |
24 | 24 |
{ |
25 | 25 |
if(_exit_on_problems) |
26 | 26 |
exit(1); |
27 | 27 |
else throw(ArgParserException(reason)); |
28 | 28 |
} |
29 | 29 |
|
30 | 30 |
|
31 | 31 |
void ArgParser::_showHelp(void *p) |
32 | 32 |
{ |
33 | 33 |
(static_cast<ArgParser*>(p))->showHelp(); |
34 | 34 |
(static_cast<ArgParser*>(p))->_terminate(ArgParserException::HELP); |
35 | 35 |
} |
36 | 36 |
|
37 | 37 |
ArgParser::ArgParser(int argc, const char * const *argv) |
38 | 38 |
:_argc(argc), _argv(argv), _command_name(argv[0]), |
39 | 39 |
_exit_on_problems(true) { |
40 | 40 |
funcOption("-help","Print a short help message",_showHelp,this); |
41 | 41 |
synonym("help","-help"); |
42 | 42 |
synonym("h","-help"); |
43 | 43 |
} |
44 | 44 |
|
45 | 45 |
ArgParser::~ArgParser() |
46 | 46 |
{ |
47 | 47 |
for(Opts::iterator i=_opts.begin();i!=_opts.end();++i) |
48 | 48 |
if(i->second.self_delete) |
49 | 49 |
switch(i->second.type) { |
50 | 50 |
case BOOL: |
51 | 51 |
delete i->second.bool_p; |
52 | 52 |
break; |
53 | 53 |
case STRING: |
54 | 54 |
delete i->second.string_p; |
55 | 55 |
break; |
56 | 56 |
case DOUBLE: |
57 | 57 |
delete i->second.double_p; |
58 | 58 |
break; |
59 | 59 |
case INTEGER: |
60 | 60 |
delete i->second.int_p; |
61 | 61 |
break; |
62 | 62 |
case UNKNOWN: |
63 | 63 |
break; |
64 | 64 |
case FUNC: |
65 | 65 |
break; |
66 | 66 |
} |
67 | 67 |
} |
68 | 68 |
|
69 | 69 |
|
70 | 70 |
ArgParser &ArgParser::intOption(const std::string &name, |
71 | 71 |
const std::string &help, |
72 | 72 |
int value, bool obl) |
73 | 73 |
{ |
74 | 74 |
ParData p; |
75 | 75 |
p.int_p=new int(value); |
76 | 76 |
p.self_delete=true; |
77 | 77 |
p.help=help; |
78 | 78 |
p.type=INTEGER; |
79 | 79 |
p.mandatory=obl; |
80 | 80 |
_opts[name]=p; |
81 | 81 |
return *this; |
82 | 82 |
} |
83 | 83 |
|
84 | 84 |
ArgParser &ArgParser::doubleOption(const std::string &name, |
85 | 85 |
const std::string &help, |
86 | 86 |
double value, bool obl) |
87 | 87 |
{ |
88 | 88 |
ParData p; |
89 | 89 |
p.double_p=new double(value); |
90 | 90 |
p.self_delete=true; |
91 | 91 |
p.help=help; |
92 | 92 |
p.type=DOUBLE; |
93 | 93 |
p.mandatory=obl; |
94 | 94 |
_opts[name]=p; |
95 | 95 |
return *this; |
96 | 96 |
} |
97 | 97 |
|
98 | 98 |
ArgParser &ArgParser::boolOption(const std::string &name, |
99 | 99 |
const std::string &help, |
100 | 100 |
bool value, bool obl) |
101 | 101 |
{ |
102 | 102 |
ParData p; |
103 | 103 |
p.bool_p=new bool(value); |
104 | 104 |
p.self_delete=true; |
105 | 105 |
p.help=help; |
106 | 106 |
p.type=BOOL; |
107 | 107 |
p.mandatory=obl; |
108 | 108 |
_opts[name]=p; |
109 | 109 |
return *this; |
110 | 110 |
} |
111 | 111 |
|
112 | 112 |
ArgParser &ArgParser::stringOption(const std::string &name, |
113 | 113 |
const std::string &help, |
114 | 114 |
std::string value, bool obl) |
115 | 115 |
{ |
116 | 116 |
ParData p; |
117 | 117 |
p.string_p=new std::string(value); |
118 | 118 |
p.self_delete=true; |
119 | 119 |
p.help=help; |
120 | 120 |
p.type=STRING; |
121 | 121 |
p.mandatory=obl; |
122 | 122 |
_opts[name]=p; |
123 | 123 |
return *this; |
124 | 124 |
} |
125 | 125 |
|
126 | 126 |
ArgParser &ArgParser::refOption(const std::string &name, |
127 | 127 |
const std::string &help, |
128 | 128 |
int &ref, bool obl) |
129 | 129 |
{ |
130 | 130 |
ParData p; |
131 | 131 |
p.int_p=&ref; |
132 | 132 |
p.self_delete=false; |
133 | 133 |
p.help=help; |
134 | 134 |
p.type=INTEGER; |
135 | 135 |
p.mandatory=obl; |
136 | 136 |
_opts[name]=p; |
137 | 137 |
return *this; |
138 | 138 |
} |
139 | 139 |
|
140 | 140 |
ArgParser &ArgParser::refOption(const std::string &name, |
141 | 141 |
const std::string &help, |
142 | 142 |
double &ref, bool obl) |
143 | 143 |
{ |
144 | 144 |
ParData p; |
145 | 145 |
p.double_p=&ref; |
146 | 146 |
p.self_delete=false; |
147 | 147 |
p.help=help; |
148 | 148 |
p.type=DOUBLE; |
149 | 149 |
p.mandatory=obl; |
150 | 150 |
_opts[name]=p; |
151 | 151 |
return *this; |
152 | 152 |
} |
153 | 153 |
|
154 | 154 |
ArgParser &ArgParser::refOption(const std::string &name, |
155 | 155 |
const std::string &help, |
156 | 156 |
bool &ref, bool obl) |
157 | 157 |
{ |
158 | 158 |
ParData p; |
159 | 159 |
p.bool_p=&ref; |
160 | 160 |
p.self_delete=false; |
161 | 161 |
p.help=help; |
162 | 162 |
p.type=BOOL; |
163 | 163 |
p.mandatory=obl; |
164 | 164 |
_opts[name]=p; |
165 | 165 |
|
166 | 166 |
ref = false; |
167 | 167 |
|
168 | 168 |
return *this; |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
ArgParser &ArgParser::refOption(const std::string &name, |
172 | 172 |
const std::string &help, |
173 | 173 |
std::string &ref, bool obl) |
174 | 174 |
{ |
175 | 175 |
ParData p; |
176 | 176 |
p.string_p=&ref; |
177 | 177 |
p.self_delete=false; |
178 | 178 |
p.help=help; |
179 | 179 |
p.type=STRING; |
180 | 180 |
p.mandatory=obl; |
181 | 181 |
_opts[name]=p; |
182 | 182 |
return *this; |
183 | 183 |
} |
184 | 184 |
|
185 | 185 |
ArgParser &ArgParser::funcOption(const std::string &name, |
186 | 186 |
const std::string &help, |
187 | 187 |
void (*func)(void *),void *data) |
188 | 188 |
{ |
189 | 189 |
ParData p; |
190 | 190 |
p.func_p.p=func; |
191 | 191 |
p.func_p.data=data; |
192 | 192 |
p.self_delete=false; |
193 | 193 |
p.help=help; |
194 | 194 |
p.type=FUNC; |
195 | 195 |
p.mandatory=false; |
196 | 196 |
_opts[name]=p; |
197 | 197 |
return *this; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_ARG_PARSER_H |
20 | 20 |
#define LEMON_ARG_PARSER_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <map> |
24 | 24 |
#include <list> |
25 | 25 |
#include <string> |
26 | 26 |
#include <iostream> |
27 | 27 |
#include <sstream> |
28 | 28 |
#include <algorithm> |
29 | 29 |
#include <lemon/assert.h> |
30 | 30 |
|
31 | 31 |
///\ingroup misc |
32 | 32 |
///\file |
33 | 33 |
///\brief A tool to parse command line arguments. |
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 | 37 |
///Exception used by ArgParser |
38 | 38 |
class ArgParserException : public Exception { |
39 | 39 |
public: |
40 | 40 |
enum Reason { |
41 | 41 |
HELP, /// <tt>--help</tt> option was given |
42 | 42 |
UNKNOWN_OPT, /// Unknown option was given |
43 | 43 |
INVALID_OPT /// Invalid combination of options |
44 | 44 |
}; |
45 | 45 |
|
46 | 46 |
private: |
47 | 47 |
Reason _reason; |
48 | 48 |
|
49 | 49 |
public: |
50 | 50 |
///Constructor |
51 | 51 |
ArgParserException(Reason r) throw() : _reason(r) {} |
52 | 52 |
///Virtual destructor |
53 | 53 |
virtual ~ArgParserException() throw() {} |
54 | 54 |
///A short description of the exception |
55 | 55 |
virtual const char* what() const throw() { |
56 | 56 |
switch(_reason) |
57 | 57 |
{ |
58 | 58 |
case HELP: |
59 | 59 |
return "lemon::ArgParseException: ask for help"; |
60 | 60 |
break; |
61 | 61 |
case UNKNOWN_OPT: |
62 | 62 |
return "lemon::ArgParseException: unknown option"; |
63 | 63 |
break; |
64 | 64 |
case INVALID_OPT: |
65 | 65 |
return "lemon::ArgParseException: invalid combination of options"; |
66 | 66 |
break; |
67 | 67 |
} |
68 | 68 |
return ""; |
69 | 69 |
} |
70 | 70 |
///Return the reason for the failure |
71 | 71 |
Reason reason() const {return _reason; } |
72 | 72 |
}; |
73 | 73 |
|
74 | 74 |
|
75 | 75 |
///Command line arguments parser |
76 | 76 |
|
77 | 77 |
///\ingroup misc |
78 | 78 |
///Command line arguments parser. |
79 | 79 |
/// |
80 | 80 |
///For a complete example see the \ref arg_parser_demo.cc demo file. |
81 | 81 |
class ArgParser { |
82 | 82 |
|
83 | 83 |
static void _showHelp(void *p); |
84 | 84 |
protected: |
85 | 85 |
|
86 | 86 |
int _argc; |
87 | 87 |
const char * const *_argv; |
88 | 88 |
|
89 | 89 |
enum OptType { UNKNOWN=0, BOOL=1, STRING=2, DOUBLE=3, INTEGER=4, FUNC=5 }; |
90 | 90 |
|
91 | 91 |
class ParData { |
92 | 92 |
public: |
93 | 93 |
union { |
94 | 94 |
bool *bool_p; |
95 | 95 |
int *int_p; |
96 | 96 |
double *double_p; |
97 | 97 |
std::string *string_p; |
98 | 98 |
struct { |
99 | 99 |
void (*p)(void *); |
100 | 100 |
void *data; |
101 | 101 |
} func_p; |
102 | 102 |
|
103 | 103 |
}; |
104 | 104 |
std::string help; |
105 | 105 |
bool mandatory; |
106 | 106 |
OptType type; |
107 | 107 |
bool set; |
108 | 108 |
bool ingroup; |
109 | 109 |
bool has_syn; |
110 | 110 |
bool syn; |
111 | 111 |
bool self_delete; |
112 | 112 |
ParData() : mandatory(false), type(UNKNOWN), set(false), ingroup(false), |
113 | 113 |
has_syn(false), syn(false), self_delete(false) {} |
114 | 114 |
}; |
115 | 115 |
|
116 | 116 |
typedef std::map<std::string,ParData> Opts; |
117 | 117 |
Opts _opts; |
118 | 118 |
|
119 | 119 |
class GroupData |
120 | 120 |
{ |
121 | 121 |
public: |
122 | 122 |
typedef std::list<std::string> Opts; |
123 | 123 |
Opts opts; |
124 | 124 |
bool only_one; |
125 | 125 |
bool mandatory; |
126 | 126 |
GroupData() :only_one(false), mandatory(false) {} |
127 | 127 |
}; |
128 | 128 |
|
129 | 129 |
typedef std::map<std::string,GroupData> Groups; |
130 | 130 |
Groups _groups; |
131 | 131 |
|
132 | 132 |
struct OtherArg |
133 | 133 |
{ |
134 | 134 |
std::string name; |
135 | 135 |
std::string help; |
136 | 136 |
OtherArg(std::string n, std::string h) :name(n), help(h) {} |
137 | 137 |
|
138 | 138 |
}; |
139 | 139 |
|
140 | 140 |
std::vector<OtherArg> _others_help; |
141 | 141 |
std::vector<std::string> _file_args; |
142 | 142 |
std::string _command_name; |
143 | 143 |
|
144 | 144 |
|
145 | 145 |
private: |
146 | 146 |
//Bind a function to an option. |
147 | 147 |
|
148 | 148 |
//\param name The name of the option. The leading '-' must be omitted. |
149 | 149 |
//\param help A help string. |
150 | 150 |
//\retval func The function to be called when the option is given. It |
151 | 151 |
// must be of type "void f(void *)" |
152 | 152 |
//\param data Data to be passed to \c func |
153 | 153 |
ArgParser &funcOption(const std::string &name, |
154 | 154 |
const std::string &help, |
155 | 155 |
void (*func)(void *),void *data); |
156 | 156 |
|
157 | 157 |
bool _exit_on_problems; |
158 | 158 |
|
159 | 159 |
void _terminate(ArgParserException::Reason reason) const; |
160 | 160 |
|
161 | 161 |
public: |
162 | 162 |
|
163 | 163 |
///Constructor |
164 | 164 |
ArgParser(int argc, const char * const *argv); |
165 | 165 |
|
166 | 166 |
~ArgParser(); |
167 | 167 |
|
168 | 168 |
///\name Options |
169 | 169 |
/// |
170 | 170 |
|
171 | 171 |
///@{ |
172 | 172 |
|
173 | 173 |
///Add a new integer type option |
174 | 174 |
|
175 | 175 |
///Add a new integer type option. |
176 | 176 |
///\param name The name of the option. The leading '-' must be omitted. |
177 | 177 |
///\param help A help string. |
178 | 178 |
///\param value A default value for the option. |
179 | 179 |
///\param obl Indicate if the option is mandatory. |
180 | 180 |
ArgParser &intOption(const std::string &name, |
181 | 181 |
const std::string &help, |
182 | 182 |
int value=0, bool obl=false); |
183 | 183 |
|
184 | 184 |
///Add a new floating point type option |
185 | 185 |
|
186 | 186 |
///Add a new floating point type option. |
187 | 187 |
///\param name The name of the option. The leading '-' must be omitted. |
188 | 188 |
///\param help A help string. |
189 | 189 |
///\param value A default value for the option. |
190 | 190 |
///\param obl Indicate if the option is mandatory. |
191 | 191 |
ArgParser &doubleOption(const std::string &name, |
192 | 192 |
const std::string &help, |
193 | 193 |
double value=0, bool obl=false); |
194 | 194 |
|
195 | 195 |
///Add a new bool type option |
196 | 196 |
|
197 | 197 |
///Add a new bool type option. |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BELLMAN_FORD_H |
20 | 20 |
#define LEMON_BELLMAN_FORD_H |
21 | 21 |
|
22 | 22 |
/// \ingroup shortest_path |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Bellman-Ford algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/tolerance.h> |
32 | 32 |
#include <lemon/path.h> |
33 | 33 |
|
34 | 34 |
#include <limits> |
35 | 35 |
|
36 | 36 |
namespace lemon { |
37 | 37 |
|
38 | 38 |
/// \brief Default operation traits for the BellmanFord algorithm class. |
39 | 39 |
/// |
40 | 40 |
/// This operation traits class defines all computational operations |
41 | 41 |
/// and constants that are used in the Bellman-Ford algorithm. |
42 | 42 |
/// The default implementation is based on the \c numeric_limits class. |
43 | 43 |
/// If the numeric type does not have infinity value, then the maximum |
44 | 44 |
/// value is used as extremal infinity value. |
45 | 45 |
/// |
46 | 46 |
/// \see BellmanFordToleranceOperationTraits |
47 | 47 |
template < |
48 | 48 |
typename V, |
49 | 49 |
bool has_inf = std::numeric_limits<V>::has_infinity> |
50 | 50 |
struct BellmanFordDefaultOperationTraits { |
51 | 51 |
/// \brief Value type for the algorithm. |
52 | 52 |
typedef V Value; |
53 | 53 |
/// \brief Gives back the zero value of the type. |
54 | 54 |
static Value zero() { |
55 | 55 |
return static_cast<Value>(0); |
56 | 56 |
} |
57 | 57 |
/// \brief Gives back the positive infinity value of the type. |
58 | 58 |
static Value infinity() { |
59 | 59 |
return std::numeric_limits<Value>::infinity(); |
60 | 60 |
} |
61 | 61 |
/// \brief Gives back the sum of the given two elements. |
62 | 62 |
static Value plus(const Value& left, const Value& right) { |
63 | 63 |
return left + right; |
64 | 64 |
} |
65 | 65 |
/// \brief Gives back \c true only if the first value is less than |
66 | 66 |
/// the second. |
67 | 67 |
static bool less(const Value& left, const Value& right) { |
68 | 68 |
return left < right; |
69 | 69 |
} |
70 | 70 |
}; |
71 | 71 |
|
72 | 72 |
template <typename V> |
73 | 73 |
struct BellmanFordDefaultOperationTraits<V, false> { |
74 | 74 |
typedef V Value; |
75 | 75 |
static Value zero() { |
76 | 76 |
return static_cast<Value>(0); |
77 | 77 |
} |
78 | 78 |
static Value infinity() { |
79 | 79 |
return std::numeric_limits<Value>::max(); |
80 | 80 |
} |
81 | 81 |
static Value plus(const Value& left, const Value& right) { |
82 | 82 |
if (left == infinity() || right == infinity()) return infinity(); |
83 | 83 |
return left + right; |
84 | 84 |
} |
85 | 85 |
static bool less(const Value& left, const Value& right) { |
86 | 86 |
return left < right; |
87 | 87 |
} |
88 | 88 |
}; |
89 | 89 |
|
90 | 90 |
/// \brief Operation traits for the BellmanFord algorithm class |
91 | 91 |
/// using tolerance. |
92 | 92 |
/// |
93 | 93 |
/// This operation traits class defines all computational operations |
94 | 94 |
/// and constants that are used in the Bellman-Ford algorithm. |
95 | 95 |
/// The only difference between this implementation and |
96 | 96 |
/// \ref BellmanFordDefaultOperationTraits is that this class uses |
97 | 97 |
/// the \ref Tolerance "tolerance technique" in its \ref less() |
98 | 98 |
/// function. |
99 | 99 |
/// |
100 | 100 |
/// \tparam V The value type. |
101 | 101 |
/// \tparam eps The epsilon value for the \ref less() function. |
102 | 102 |
/// By default, it is the epsilon value used by \ref Tolerance |
103 | 103 |
/// "Tolerance<V>". |
104 | 104 |
/// |
105 | 105 |
/// \see BellmanFordDefaultOperationTraits |
106 | 106 |
#ifdef DOXYGEN |
107 | 107 |
template <typename V, V eps> |
108 | 108 |
#else |
109 | 109 |
template < |
110 | 110 |
typename V, |
111 | 111 |
V eps = Tolerance<V>::def_epsilon> |
112 | 112 |
#endif |
113 | 113 |
struct BellmanFordToleranceOperationTraits { |
114 | 114 |
/// \brief Value type for the algorithm. |
115 | 115 |
typedef V Value; |
116 | 116 |
/// \brief Gives back the zero value of the type. |
117 | 117 |
static Value zero() { |
118 | 118 |
return static_cast<Value>(0); |
119 | 119 |
} |
120 | 120 |
/// \brief Gives back the positive infinity value of the type. |
121 | 121 |
static Value infinity() { |
122 | 122 |
return std::numeric_limits<Value>::infinity(); |
123 | 123 |
} |
124 | 124 |
/// \brief Gives back the sum of the given two elements. |
125 | 125 |
static Value plus(const Value& left, const Value& right) { |
126 | 126 |
return left + right; |
127 | 127 |
} |
128 | 128 |
/// \brief Gives back \c true only if the first value is less than |
129 | 129 |
/// the second. |
130 | 130 |
static bool less(const Value& left, const Value& right) { |
131 | 131 |
return left + eps < right; |
132 | 132 |
} |
133 | 133 |
}; |
134 | 134 |
|
135 | 135 |
/// \brief Default traits class of BellmanFord class. |
136 | 136 |
/// |
137 | 137 |
/// Default traits class of BellmanFord class. |
138 | 138 |
/// \param GR The type of the digraph. |
139 | 139 |
/// \param LEN The type of the length map. |
140 | 140 |
template<typename GR, typename LEN> |
141 | 141 |
struct BellmanFordDefaultTraits { |
142 | 142 |
/// The type of the digraph the algorithm runs on. |
143 | 143 |
typedef GR Digraph; |
144 | 144 |
|
145 | 145 |
/// \brief The type of the map that stores the arc lengths. |
146 | 146 |
/// |
147 | 147 |
/// The type of the map that stores the arc lengths. |
148 | 148 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
149 | 149 |
typedef LEN LengthMap; |
150 | 150 |
|
151 | 151 |
/// The type of the arc lengths. |
152 | 152 |
typedef typename LEN::Value Value; |
153 | 153 |
|
154 | 154 |
/// \brief Operation traits for Bellman-Ford algorithm. |
155 | 155 |
/// |
156 | 156 |
/// It defines the used operations and the infinity value for the |
157 | 157 |
/// given \c Value type. |
158 | 158 |
/// \see BellmanFordDefaultOperationTraits, |
159 | 159 |
/// BellmanFordToleranceOperationTraits |
160 | 160 |
typedef BellmanFordDefaultOperationTraits<Value> OperationTraits; |
161 | 161 |
|
162 | 162 |
/// \brief The type of the map that stores the last arcs of the |
163 | 163 |
/// shortest paths. |
164 | 164 |
/// |
165 | 165 |
/// The type of the map that stores the last |
166 | 166 |
/// arcs of the shortest paths. |
167 | 167 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
168 | 168 |
typedef typename GR::template NodeMap<typename GR::Arc> PredMap; |
169 | 169 |
|
170 | 170 |
/// \brief Instantiates a \c PredMap. |
171 | 171 |
/// |
172 | 172 |
/// This function instantiates a \ref PredMap. |
173 | 173 |
/// \param g is the digraph to which we would like to define the |
174 | 174 |
/// \ref PredMap. |
175 | 175 |
static PredMap *createPredMap(const GR& g) { |
176 | 176 |
return new PredMap(g); |
177 | 177 |
} |
178 | 178 |
|
179 | 179 |
/// \brief The type of the map that stores the distances of the nodes. |
180 | 180 |
/// |
181 | 181 |
/// The type of the map that stores the distances of the nodes. |
182 | 182 |
/// It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
183 | 183 |
typedef typename GR::template NodeMap<typename LEN::Value> DistMap; |
184 | 184 |
|
185 | 185 |
/// \brief Instantiates a \c DistMap. |
186 | 186 |
/// |
187 | 187 |
/// This function instantiates a \ref DistMap. |
188 | 188 |
/// \param g is the digraph to which we would like to define the |
189 | 189 |
/// \ref DistMap. |
190 | 190 |
static DistMap *createDistMap(const GR& g) { |
191 | 191 |
return new DistMap(g); |
192 | 192 |
} |
193 | 193 |
|
194 | 194 |
}; |
195 | 195 |
|
196 | 196 |
/// \brief %BellmanFord algorithm class. |
197 | 197 |
/// |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BFS_H |
20 | 20 |
#define LEMON_BFS_H |
21 | 21 |
|
22 | 22 |
///\ingroup search |
23 | 23 |
///\file |
24 | 24 |
///\brief BFS algorithm. |
25 | 25 |
|
26 | 26 |
#include <lemon/list_graph.h> |
27 | 27 |
#include <lemon/bits/path_dump.h> |
28 | 28 |
#include <lemon/core.h> |
29 | 29 |
#include <lemon/error.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
///Default traits class of Bfs class. |
36 | 36 |
|
37 | 37 |
///Default traits class of Bfs class. |
38 | 38 |
///\tparam GR Digraph type. |
39 | 39 |
template<class GR> |
40 | 40 |
struct BfsDefaultTraits |
41 | 41 |
{ |
42 | 42 |
///The type of the digraph the algorithm runs on. |
43 | 43 |
typedef GR Digraph; |
44 | 44 |
|
45 | 45 |
///\brief The type of the map that stores the predecessor |
46 | 46 |
///arcs of the shortest paths. |
47 | 47 |
/// |
48 | 48 |
///The type of the map that stores the predecessor |
49 | 49 |
///arcs of the shortest paths. |
50 | 50 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
51 | 51 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
52 | 52 |
///Instantiates a \c PredMap. |
53 | 53 |
|
54 | 54 |
///This function instantiates a \ref PredMap. |
55 | 55 |
///\param g is the digraph, to which we would like to define the |
56 | 56 |
///\ref PredMap. |
57 | 57 |
static PredMap *createPredMap(const Digraph &g) |
58 | 58 |
{ |
59 | 59 |
return new PredMap(g); |
60 | 60 |
} |
61 | 61 |
|
62 | 62 |
///The type of the map that indicates which nodes are processed. |
63 | 63 |
|
64 | 64 |
///The type of the map that indicates which nodes are processed. |
65 | 65 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
66 | 66 |
///By default, it is a NullMap. |
67 | 67 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
68 | 68 |
///Instantiates a \c ProcessedMap. |
69 | 69 |
|
70 | 70 |
///This function instantiates a \ref ProcessedMap. |
71 | 71 |
///\param g is the digraph, to which |
72 | 72 |
///we would like to define the \ref ProcessedMap |
73 | 73 |
#ifdef DOXYGEN |
74 | 74 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
75 | 75 |
#else |
76 | 76 |
static ProcessedMap *createProcessedMap(const Digraph &) |
77 | 77 |
#endif |
78 | 78 |
{ |
79 | 79 |
return new ProcessedMap(); |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
///The type of the map that indicates which nodes are reached. |
83 | 83 |
|
84 | 84 |
///The type of the map that indicates which nodes are reached. |
85 |
///It must conform to |
|
85 |
///It must conform to |
|
86 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
86 | 87 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
87 | 88 |
///Instantiates a \c ReachedMap. |
88 | 89 |
|
89 | 90 |
///This function instantiates a \ref ReachedMap. |
90 | 91 |
///\param g is the digraph, to which |
91 | 92 |
///we would like to define the \ref ReachedMap. |
92 | 93 |
static ReachedMap *createReachedMap(const Digraph &g) |
93 | 94 |
{ |
94 | 95 |
return new ReachedMap(g); |
95 | 96 |
} |
96 | 97 |
|
97 | 98 |
///The type of the map that stores the distances of the nodes. |
98 | 99 |
|
99 | 100 |
///The type of the map that stores the distances of the nodes. |
100 | 101 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
101 | 102 |
typedef typename Digraph::template NodeMap<int> DistMap; |
102 | 103 |
///Instantiates a \c DistMap. |
103 | 104 |
|
104 | 105 |
///This function instantiates a \ref DistMap. |
105 | 106 |
///\param g is the digraph, to which we would like to define the |
106 | 107 |
///\ref DistMap. |
107 | 108 |
static DistMap *createDistMap(const Digraph &g) |
108 | 109 |
{ |
109 | 110 |
return new DistMap(g); |
110 | 111 |
} |
111 | 112 |
}; |
112 | 113 |
|
113 | 114 |
///%BFS algorithm class. |
114 | 115 |
|
115 | 116 |
///\ingroup search |
116 | 117 |
///This class provides an efficient implementation of the %BFS algorithm. |
117 | 118 |
/// |
118 | 119 |
///There is also a \ref bfs() "function-type interface" for the BFS |
119 | 120 |
///algorithm, which is convenient in the simplier cases and it can be |
120 | 121 |
///used easier. |
121 | 122 |
/// |
122 | 123 |
///\tparam GR The type of the digraph the algorithm runs on. |
123 | 124 |
///The default type is \ref ListDigraph. |
124 | 125 |
///\tparam TR The traits class that defines various types used by the |
125 | 126 |
///algorithm. By default, it is \ref BfsDefaultTraits |
126 | 127 |
///"BfsDefaultTraits<GR>". |
127 | 128 |
///In most cases, this parameter should not be set directly, |
128 | 129 |
///consider to use the named template parameters instead. |
129 | 130 |
#ifdef DOXYGEN |
130 | 131 |
template <typename GR, |
131 | 132 |
typename TR> |
132 | 133 |
#else |
133 | 134 |
template <typename GR=ListDigraph, |
134 | 135 |
typename TR=BfsDefaultTraits<GR> > |
135 | 136 |
#endif |
136 | 137 |
class Bfs { |
137 | 138 |
public: |
138 | 139 |
|
139 | 140 |
///The type of the digraph the algorithm runs on. |
140 | 141 |
typedef typename TR::Digraph Digraph; |
141 | 142 |
|
142 | 143 |
///\brief The type of the map that stores the predecessor arcs of the |
143 | 144 |
///shortest paths. |
144 | 145 |
typedef typename TR::PredMap PredMap; |
145 | 146 |
///The type of the map that stores the distances of the nodes. |
146 | 147 |
typedef typename TR::DistMap DistMap; |
147 | 148 |
///The type of the map that indicates which nodes are reached. |
148 | 149 |
typedef typename TR::ReachedMap ReachedMap; |
149 | 150 |
///The type of the map that indicates which nodes are processed. |
150 | 151 |
typedef typename TR::ProcessedMap ProcessedMap; |
151 | 152 |
///The type of the paths. |
152 | 153 |
typedef PredMapPath<Digraph, PredMap> Path; |
153 | 154 |
|
154 | 155 |
///The \ref BfsDefaultTraits "traits class" of the algorithm. |
155 | 156 |
typedef TR Traits; |
156 | 157 |
|
157 | 158 |
private: |
158 | 159 |
|
159 | 160 |
typedef typename Digraph::Node Node; |
160 | 161 |
typedef typename Digraph::NodeIt NodeIt; |
161 | 162 |
typedef typename Digraph::Arc Arc; |
162 | 163 |
typedef typename Digraph::OutArcIt OutArcIt; |
163 | 164 |
|
164 | 165 |
//Pointer to the underlying digraph. |
165 | 166 |
const Digraph *G; |
166 | 167 |
//Pointer to the map of predecessor arcs. |
167 | 168 |
PredMap *_pred; |
168 | 169 |
//Indicates if _pred is locally allocated (true) or not. |
169 | 170 |
bool local_pred; |
170 | 171 |
//Pointer to the map of distances. |
171 | 172 |
DistMap *_dist; |
172 | 173 |
//Indicates if _dist is locally allocated (true) or not. |
173 | 174 |
bool local_dist; |
174 | 175 |
//Pointer to the map of reached status of the nodes. |
175 | 176 |
ReachedMap *_reached; |
176 | 177 |
//Indicates if _reached is locally allocated (true) or not. |
177 | 178 |
bool local_reached; |
178 | 179 |
//Pointer to the map of processed status of the nodes. |
179 | 180 |
ProcessedMap *_processed; |
180 | 181 |
//Indicates if _processed is locally allocated (true) or not. |
181 | 182 |
bool local_processed; |
182 | 183 |
|
183 | 184 |
std::vector<typename Digraph::Node> _queue; |
184 | 185 |
int _queue_head,_queue_tail,_queue_next_dist; |
185 | 186 |
int _curr_dist; |
186 | 187 |
|
187 | 188 |
//Creates the maps if necessary. |
188 | 189 |
void create_maps() |
189 | 190 |
{ |
190 | 191 |
if(!_pred) { |
191 | 192 |
local_pred = true; |
192 | 193 |
_pred = Traits::createPredMap(*G); |
193 | 194 |
} |
194 | 195 |
if(!_dist) { |
195 | 196 |
local_dist = true; |
196 | 197 |
_dist = Traits::createDistMap(*G); |
197 | 198 |
} |
198 | 199 |
if(!_reached) { |
199 | 200 |
local_reached = true; |
200 | 201 |
_reached = Traits::createReachedMap(*G); |
201 | 202 |
} |
202 | 203 |
if(!_processed) { |
203 | 204 |
local_processed = true; |
204 | 205 |
_processed = Traits::createProcessedMap(*G); |
205 | 206 |
} |
206 | 207 |
} |
207 | 208 |
|
208 | 209 |
protected: |
209 | 210 |
|
210 | 211 |
Bfs() {} |
211 | 212 |
|
212 | 213 |
public: |
213 | 214 |
|
214 | 215 |
typedef Bfs Create; |
215 | 216 |
|
216 | 217 |
///\name Named Template Parameters |
217 | 218 |
|
218 | 219 |
///@{ |
219 | 220 |
|
220 | 221 |
template <class T> |
221 | 222 |
struct SetPredMapTraits : public Traits { |
222 | 223 |
typedef T PredMap; |
223 | 224 |
static PredMap *createPredMap(const Digraph &) |
224 | 225 |
{ |
225 | 226 |
LEMON_ASSERT(false, "PredMap is not initialized"); |
226 | 227 |
return 0; // ignore warnings |
227 | 228 |
} |
228 | 229 |
}; |
229 | 230 |
///\brief \ref named-templ-param "Named parameter" for setting |
230 | 231 |
///\c PredMap type. |
231 | 232 |
/// |
232 | 233 |
///\ref named-templ-param "Named parameter" for setting |
233 | 234 |
///\c PredMap type. |
234 | 235 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
235 | 236 |
template <class T> |
236 | 237 |
struct SetPredMap : public Bfs< Digraph, SetPredMapTraits<T> > { |
237 | 238 |
typedef Bfs< Digraph, SetPredMapTraits<T> > Create; |
238 | 239 |
}; |
239 | 240 |
|
240 | 241 |
template <class T> |
241 | 242 |
struct SetDistMapTraits : public Traits { |
242 | 243 |
typedef T DistMap; |
243 | 244 |
static DistMap *createDistMap(const Digraph &) |
244 | 245 |
{ |
245 | 246 |
LEMON_ASSERT(false, "DistMap is not initialized"); |
246 | 247 |
return 0; // ignore warnings |
247 | 248 |
} |
248 | 249 |
}; |
249 | 250 |
///\brief \ref named-templ-param "Named parameter" for setting |
250 | 251 |
///\c DistMap type. |
251 | 252 |
/// |
252 | 253 |
///\ref named-templ-param "Named parameter" for setting |
253 | 254 |
///\c DistMap type. |
254 | 255 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
255 | 256 |
template <class T> |
256 | 257 |
struct SetDistMap : public Bfs< Digraph, SetDistMapTraits<T> > { |
257 | 258 |
typedef Bfs< Digraph, SetDistMapTraits<T> > Create; |
258 | 259 |
}; |
259 | 260 |
|
260 | 261 |
template <class T> |
261 | 262 |
struct SetReachedMapTraits : public Traits { |
262 | 263 |
typedef T ReachedMap; |
263 | 264 |
static ReachedMap *createReachedMap(const Digraph &) |
264 | 265 |
{ |
265 | 266 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
266 | 267 |
return 0; // ignore warnings |
267 | 268 |
} |
268 | 269 |
}; |
269 | 270 |
///\brief \ref named-templ-param "Named parameter" for setting |
270 | 271 |
///\c ReachedMap type. |
271 | 272 |
/// |
272 | 273 |
///\ref named-templ-param "Named parameter" for setting |
273 | 274 |
///\c ReachedMap type. |
274 |
///It must conform to |
|
275 |
///It must conform to |
|
276 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
275 | 277 |
template <class T> |
276 | 278 |
struct SetReachedMap : public Bfs< Digraph, SetReachedMapTraits<T> > { |
277 | 279 |
typedef Bfs< Digraph, SetReachedMapTraits<T> > Create; |
278 | 280 |
}; |
279 | 281 |
|
280 | 282 |
template <class T> |
281 | 283 |
struct SetProcessedMapTraits : public Traits { |
282 | 284 |
typedef T ProcessedMap; |
283 | 285 |
static ProcessedMap *createProcessedMap(const Digraph &) |
284 | 286 |
{ |
285 | 287 |
LEMON_ASSERT(false, "ProcessedMap is not initialized"); |
286 | 288 |
return 0; // ignore warnings |
287 | 289 |
} |
288 | 290 |
}; |
289 | 291 |
///\brief \ref named-templ-param "Named parameter" for setting |
290 | 292 |
///\c ProcessedMap type. |
291 | 293 |
/// |
292 | 294 |
///\ref named-templ-param "Named parameter" for setting |
293 | 295 |
///\c ProcessedMap type. |
294 | 296 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
295 | 297 |
template <class T> |
296 | 298 |
struct SetProcessedMap : public Bfs< Digraph, SetProcessedMapTraits<T> > { |
297 | 299 |
typedef Bfs< Digraph, SetProcessedMapTraits<T> > Create; |
298 | 300 |
}; |
299 | 301 |
|
300 | 302 |
struct SetStandardProcessedMapTraits : public Traits { |
301 | 303 |
typedef typename Digraph::template NodeMap<bool> ProcessedMap; |
302 | 304 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
303 | 305 |
{ |
304 | 306 |
return new ProcessedMap(g); |
305 | 307 |
return 0; // ignore warnings |
306 | 308 |
} |
307 | 309 |
}; |
308 | 310 |
///\brief \ref named-templ-param "Named parameter" for setting |
309 | 311 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
310 | 312 |
/// |
311 | 313 |
///\ref named-templ-param "Named parameter" for setting |
312 | 314 |
///\c ProcessedMap type to be <tt>Digraph::NodeMap<bool></tt>. |
313 | 315 |
///If you don't set it explicitly, it will be automatically allocated. |
314 | 316 |
struct SetStandardProcessedMap : |
315 | 317 |
public Bfs< Digraph, SetStandardProcessedMapTraits > { |
316 | 318 |
typedef Bfs< Digraph, SetStandardProcessedMapTraits > Create; |
317 | 319 |
}; |
318 | 320 |
|
319 | 321 |
///@} |
320 | 322 |
|
321 | 323 |
public: |
322 | 324 |
|
323 | 325 |
///Constructor. |
324 | 326 |
|
325 | 327 |
///Constructor. |
326 | 328 |
///\param g The digraph the algorithm runs on. |
327 | 329 |
Bfs(const Digraph &g) : |
328 | 330 |
G(&g), |
329 | 331 |
_pred(NULL), local_pred(false), |
330 | 332 |
_dist(NULL), local_dist(false), |
331 | 333 |
_reached(NULL), local_reached(false), |
332 | 334 |
_processed(NULL), local_processed(false) |
333 | 335 |
{ } |
334 | 336 |
|
335 | 337 |
///Destructor. |
336 | 338 |
~Bfs() |
337 | 339 |
{ |
338 | 340 |
if(local_pred) delete _pred; |
339 | 341 |
if(local_dist) delete _dist; |
340 | 342 |
if(local_reached) delete _reached; |
341 | 343 |
if(local_processed) delete _processed; |
342 | 344 |
} |
343 | 345 |
|
344 | 346 |
///Sets the map that stores the predecessor arcs. |
345 | 347 |
|
346 | 348 |
///Sets the map that stores the predecessor arcs. |
347 | 349 |
///If you don't use this function before calling \ref run(Node) "run()" |
348 | 350 |
///or \ref init(), an instance will be allocated automatically. |
349 | 351 |
///The destructor deallocates this automatically allocated map, |
350 | 352 |
///of course. |
351 | 353 |
///\return <tt> (*this) </tt> |
352 | 354 |
Bfs &predMap(PredMap &m) |
353 | 355 |
{ |
354 | 356 |
if(local_pred) { |
355 | 357 |
delete _pred; |
356 | 358 |
local_pred=false; |
357 | 359 |
} |
358 | 360 |
_pred = &m; |
359 | 361 |
return *this; |
360 | 362 |
} |
361 | 363 |
|
362 | 364 |
///Sets the map that indicates which nodes are reached. |
363 | 365 |
|
364 | 366 |
///Sets the map that indicates which nodes are reached. |
365 | 367 |
///If you don't use this function before calling \ref run(Node) "run()" |
366 | 368 |
///or \ref init(), an instance will be allocated automatically. |
367 | 369 |
///The destructor deallocates this automatically allocated map, |
368 | 370 |
///of course. |
369 | 371 |
///\return <tt> (*this) </tt> |
370 | 372 |
Bfs &reachedMap(ReachedMap &m) |
371 | 373 |
{ |
372 | 374 |
if(local_reached) { |
373 | 375 |
delete _reached; |
374 | 376 |
local_reached=false; |
375 | 377 |
} |
376 | 378 |
_reached = &m; |
377 | 379 |
return *this; |
378 | 380 |
} |
379 | 381 |
|
380 | 382 |
///Sets the map that indicates which nodes are processed. |
381 | 383 |
|
382 | 384 |
///Sets the map that indicates which nodes are processed. |
383 | 385 |
///If you don't use this function before calling \ref run(Node) "run()" |
384 | 386 |
///or \ref init(), an instance will be allocated automatically. |
385 | 387 |
///The destructor deallocates this automatically allocated map, |
386 | 388 |
///of course. |
387 | 389 |
///\return <tt> (*this) </tt> |
388 | 390 |
Bfs &processedMap(ProcessedMap &m) |
389 | 391 |
{ |
390 | 392 |
if(local_processed) { |
391 | 393 |
delete _processed; |
392 | 394 |
local_processed=false; |
393 | 395 |
} |
394 | 396 |
_processed = &m; |
395 | 397 |
return *this; |
396 | 398 |
} |
397 | 399 |
|
398 | 400 |
///Sets the map that stores the distances of the nodes. |
399 | 401 |
|
400 | 402 |
///Sets the map that stores the distances of the nodes calculated by |
401 | 403 |
///the algorithm. |
402 | 404 |
///If you don't use this function before calling \ref run(Node) "run()" |
403 | 405 |
///or \ref init(), an instance will be allocated automatically. |
404 | 406 |
///The destructor deallocates this automatically allocated map, |
405 | 407 |
///of course. |
406 | 408 |
///\return <tt> (*this) </tt> |
407 | 409 |
Bfs &distMap(DistMap &m) |
408 | 410 |
{ |
409 | 411 |
if(local_dist) { |
410 | 412 |
delete _dist; |
411 | 413 |
local_dist=false; |
412 | 414 |
} |
413 | 415 |
_dist = &m; |
414 | 416 |
return *this; |
415 | 417 |
} |
416 | 418 |
|
417 | 419 |
public: |
418 | 420 |
|
419 | 421 |
///\name Execution Control |
420 | 422 |
///The simplest way to execute the BFS algorithm is to use one of the |
421 | 423 |
///member functions called \ref run(Node) "run()".\n |
422 | 424 |
///If you need better control on the execution, you have to call |
423 | 425 |
///\ref init() first, then you can add several source nodes with |
424 | 426 |
///\ref addSource(). Finally the actual path computation can be |
425 | 427 |
///performed with one of the \ref start() functions. |
426 | 428 |
|
427 | 429 |
///@{ |
428 | 430 |
|
429 | 431 |
///\brief Initializes the internal data structures. |
430 | 432 |
/// |
431 | 433 |
///Initializes the internal data structures. |
432 | 434 |
void init() |
433 | 435 |
{ |
434 | 436 |
create_maps(); |
435 | 437 |
_queue.resize(countNodes(*G)); |
436 | 438 |
_queue_head=_queue_tail=0; |
437 | 439 |
_curr_dist=1; |
438 | 440 |
for ( NodeIt u(*G) ; u!=INVALID ; ++u ) { |
439 | 441 |
_pred->set(u,INVALID); |
440 | 442 |
_reached->set(u,false); |
441 | 443 |
_processed->set(u,false); |
442 | 444 |
} |
443 | 445 |
} |
444 | 446 |
|
445 | 447 |
///Adds a new source node. |
446 | 448 |
|
447 | 449 |
///Adds a new source node to the set of nodes to be processed. |
448 | 450 |
/// |
449 | 451 |
void addSource(Node s) |
450 | 452 |
{ |
451 | 453 |
if(!(*_reached)[s]) |
452 | 454 |
{ |
453 | 455 |
_reached->set(s,true); |
454 | 456 |
_pred->set(s,INVALID); |
455 | 457 |
_dist->set(s,0); |
456 | 458 |
_queue[_queue_head++]=s; |
457 | 459 |
_queue_next_dist=_queue_head; |
458 | 460 |
} |
459 | 461 |
} |
460 | 462 |
|
461 | 463 |
///Processes the next node. |
462 | 464 |
|
463 | 465 |
///Processes the next node. |
464 | 466 |
/// |
465 | 467 |
///\return The processed node. |
466 | 468 |
/// |
... | ... |
@@ -683,385 +685,386 @@ |
683 | 685 |
} |
684 | 686 |
|
685 | 687 |
///Finds the shortest path between \c s and \c t. |
686 | 688 |
|
687 | 689 |
///This method runs the %BFS algorithm from node \c s |
688 | 690 |
///in order to compute the shortest path to node \c t |
689 | 691 |
///(it stops searching when \c t is processed). |
690 | 692 |
/// |
691 | 693 |
///\return \c true if \c t is reachable form \c s. |
692 | 694 |
/// |
693 | 695 |
///\note Apart from the return value, <tt>b.run(s,t)</tt> is just a |
694 | 696 |
///shortcut of the following code. |
695 | 697 |
///\code |
696 | 698 |
/// b.init(); |
697 | 699 |
/// b.addSource(s); |
698 | 700 |
/// b.start(t); |
699 | 701 |
///\endcode |
700 | 702 |
bool run(Node s,Node t) { |
701 | 703 |
init(); |
702 | 704 |
addSource(s); |
703 | 705 |
start(t); |
704 | 706 |
return reached(t); |
705 | 707 |
} |
706 | 708 |
|
707 | 709 |
///Runs the algorithm to visit all nodes in the digraph. |
708 | 710 |
|
709 | 711 |
///This method runs the %BFS algorithm in order to visit all nodes |
710 | 712 |
///in the digraph. |
711 | 713 |
/// |
712 | 714 |
///\note <tt>b.run(s)</tt> is just a shortcut of the following code. |
713 | 715 |
///\code |
714 | 716 |
/// b.init(); |
715 | 717 |
/// for (NodeIt n(gr); n != INVALID; ++n) { |
716 | 718 |
/// if (!b.reached(n)) { |
717 | 719 |
/// b.addSource(n); |
718 | 720 |
/// b.start(); |
719 | 721 |
/// } |
720 | 722 |
/// } |
721 | 723 |
///\endcode |
722 | 724 |
void run() { |
723 | 725 |
init(); |
724 | 726 |
for (NodeIt n(*G); n != INVALID; ++n) { |
725 | 727 |
if (!reached(n)) { |
726 | 728 |
addSource(n); |
727 | 729 |
start(); |
728 | 730 |
} |
729 | 731 |
} |
730 | 732 |
} |
731 | 733 |
|
732 | 734 |
///@} |
733 | 735 |
|
734 | 736 |
///\name Query Functions |
735 | 737 |
///The results of the BFS algorithm can be obtained using these |
736 | 738 |
///functions.\n |
737 | 739 |
///Either \ref run(Node) "run()" or \ref start() should be called |
738 | 740 |
///before using them. |
739 | 741 |
|
740 | 742 |
///@{ |
741 | 743 |
|
742 | 744 |
///The shortest path to the given node. |
743 | 745 |
|
744 | 746 |
///Returns the shortest path to the given node from the root(s). |
745 | 747 |
/// |
746 | 748 |
///\warning \c t should be reached from the root(s). |
747 | 749 |
/// |
748 | 750 |
///\pre Either \ref run(Node) "run()" or \ref init() |
749 | 751 |
///must be called before using this function. |
750 | 752 |
Path path(Node t) const { return Path(*G, *_pred, t); } |
751 | 753 |
|
752 | 754 |
///The distance of the given node from the root(s). |
753 | 755 |
|
754 | 756 |
///Returns the distance of the given node from the root(s). |
755 | 757 |
/// |
756 | 758 |
///\warning If node \c v is not reached from the root(s), then |
757 | 759 |
///the return value of this function is undefined. |
758 | 760 |
/// |
759 | 761 |
///\pre Either \ref run(Node) "run()" or \ref init() |
760 | 762 |
///must be called before using this function. |
761 | 763 |
int dist(Node v) const { return (*_dist)[v]; } |
762 | 764 |
|
763 | 765 |
///\brief Returns the 'previous arc' of the shortest path tree for |
764 | 766 |
///the given node. |
765 | 767 |
/// |
766 | 768 |
///This function returns the 'previous arc' of the shortest path |
767 | 769 |
///tree for the node \c v, i.e. it returns the last arc of a |
768 | 770 |
///shortest path from a root to \c v. It is \c INVALID if \c v |
769 | 771 |
///is not reached from the root(s) or if \c v is a root. |
770 | 772 |
/// |
771 | 773 |
///The shortest path tree used here is equal to the shortest path |
772 | 774 |
///tree used in \ref predNode() and \ref predMap(). |
773 | 775 |
/// |
774 | 776 |
///\pre Either \ref run(Node) "run()" or \ref init() |
775 | 777 |
///must be called before using this function. |
776 | 778 |
Arc predArc(Node v) const { return (*_pred)[v];} |
777 | 779 |
|
778 | 780 |
///\brief Returns the 'previous node' of the shortest path tree for |
779 | 781 |
///the given node. |
780 | 782 |
/// |
781 | 783 |
///This function returns the 'previous node' of the shortest path |
782 | 784 |
///tree for the node \c v, i.e. it returns the last but one node |
783 | 785 |
///of a shortest path from a root to \c v. It is \c INVALID |
784 | 786 |
///if \c v is not reached from the root(s) or if \c v is a root. |
785 | 787 |
/// |
786 | 788 |
///The shortest path tree used here is equal to the shortest path |
787 | 789 |
///tree used in \ref predArc() and \ref predMap(). |
788 | 790 |
/// |
789 | 791 |
///\pre Either \ref run(Node) "run()" or \ref init() |
790 | 792 |
///must be called before using this function. |
791 | 793 |
Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID: |
792 | 794 |
G->source((*_pred)[v]); } |
793 | 795 |
|
794 | 796 |
///\brief Returns a const reference to the node map that stores the |
795 | 797 |
/// distances of the nodes. |
796 | 798 |
/// |
797 | 799 |
///Returns a const reference to the node map that stores the distances |
798 | 800 |
///of the nodes calculated by the algorithm. |
799 | 801 |
/// |
800 | 802 |
///\pre Either \ref run(Node) "run()" or \ref init() |
801 | 803 |
///must be called before using this function. |
802 | 804 |
const DistMap &distMap() const { return *_dist;} |
803 | 805 |
|
804 | 806 |
///\brief Returns a const reference to the node map that stores the |
805 | 807 |
///predecessor arcs. |
806 | 808 |
/// |
807 | 809 |
///Returns a const reference to the node map that stores the predecessor |
808 | 810 |
///arcs, which form the shortest path tree (forest). |
809 | 811 |
/// |
810 | 812 |
///\pre Either \ref run(Node) "run()" or \ref init() |
811 | 813 |
///must be called before using this function. |
812 | 814 |
const PredMap &predMap() const { return *_pred;} |
813 | 815 |
|
814 | 816 |
///Checks if the given node is reached from the root(s). |
815 | 817 |
|
816 | 818 |
///Returns \c true if \c v is reached from the root(s). |
817 | 819 |
/// |
818 | 820 |
///\pre Either \ref run(Node) "run()" or \ref init() |
819 | 821 |
///must be called before using this function. |
820 | 822 |
bool reached(Node v) const { return (*_reached)[v]; } |
821 | 823 |
|
822 | 824 |
///@} |
823 | 825 |
}; |
824 | 826 |
|
825 | 827 |
///Default traits class of bfs() function. |
826 | 828 |
|
827 | 829 |
///Default traits class of bfs() function. |
828 | 830 |
///\tparam GR Digraph type. |
829 | 831 |
template<class GR> |
830 | 832 |
struct BfsWizardDefaultTraits |
831 | 833 |
{ |
832 | 834 |
///The type of the digraph the algorithm runs on. |
833 | 835 |
typedef GR Digraph; |
834 | 836 |
|
835 | 837 |
///\brief The type of the map that stores the predecessor |
836 | 838 |
///arcs of the shortest paths. |
837 | 839 |
/// |
838 | 840 |
///The type of the map that stores the predecessor |
839 | 841 |
///arcs of the shortest paths. |
840 | 842 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
841 | 843 |
typedef typename Digraph::template NodeMap<typename Digraph::Arc> PredMap; |
842 | 844 |
///Instantiates a PredMap. |
843 | 845 |
|
844 | 846 |
///This function instantiates a PredMap. |
845 | 847 |
///\param g is the digraph, to which we would like to define the |
846 | 848 |
///PredMap. |
847 | 849 |
static PredMap *createPredMap(const Digraph &g) |
848 | 850 |
{ |
849 | 851 |
return new PredMap(g); |
850 | 852 |
} |
851 | 853 |
|
852 | 854 |
///The type of the map that indicates which nodes are processed. |
853 | 855 |
|
854 | 856 |
///The type of the map that indicates which nodes are processed. |
855 | 857 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
856 | 858 |
///By default, it is a NullMap. |
857 | 859 |
typedef NullMap<typename Digraph::Node,bool> ProcessedMap; |
858 | 860 |
///Instantiates a ProcessedMap. |
859 | 861 |
|
860 | 862 |
///This function instantiates a ProcessedMap. |
861 | 863 |
///\param g is the digraph, to which |
862 | 864 |
///we would like to define the ProcessedMap. |
863 | 865 |
#ifdef DOXYGEN |
864 | 866 |
static ProcessedMap *createProcessedMap(const Digraph &g) |
865 | 867 |
#else |
866 | 868 |
static ProcessedMap *createProcessedMap(const Digraph &) |
867 | 869 |
#endif |
868 | 870 |
{ |
869 | 871 |
return new ProcessedMap(); |
870 | 872 |
} |
871 | 873 |
|
872 | 874 |
///The type of the map that indicates which nodes are reached. |
873 | 875 |
|
874 | 876 |
///The type of the map that indicates which nodes are reached. |
875 |
///It must conform to |
|
877 |
///It must conform to |
|
878 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
876 | 879 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
877 | 880 |
///Instantiates a ReachedMap. |
878 | 881 |
|
879 | 882 |
///This function instantiates a ReachedMap. |
880 | 883 |
///\param g is the digraph, to which |
881 | 884 |
///we would like to define the ReachedMap. |
882 | 885 |
static ReachedMap *createReachedMap(const Digraph &g) |
883 | 886 |
{ |
884 | 887 |
return new ReachedMap(g); |
885 | 888 |
} |
886 | 889 |
|
887 | 890 |
///The type of the map that stores the distances of the nodes. |
888 | 891 |
|
889 | 892 |
///The type of the map that stores the distances of the nodes. |
890 | 893 |
///It must conform to the \ref concepts::WriteMap "WriteMap" concept. |
891 | 894 |
typedef typename Digraph::template NodeMap<int> DistMap; |
892 | 895 |
///Instantiates a DistMap. |
893 | 896 |
|
894 | 897 |
///This function instantiates a DistMap. |
895 | 898 |
///\param g is the digraph, to which we would like to define |
896 | 899 |
///the DistMap |
897 | 900 |
static DistMap *createDistMap(const Digraph &g) |
898 | 901 |
{ |
899 | 902 |
return new DistMap(g); |
900 | 903 |
} |
901 | 904 |
|
902 | 905 |
///The type of the shortest paths. |
903 | 906 |
|
904 | 907 |
///The type of the shortest paths. |
905 | 908 |
///It must conform to the \ref concepts::Path "Path" concept. |
906 | 909 |
typedef lemon::Path<Digraph> Path; |
907 | 910 |
}; |
908 | 911 |
|
909 | 912 |
/// Default traits class used by BfsWizard |
910 | 913 |
|
911 | 914 |
/// Default traits class used by BfsWizard. |
912 | 915 |
/// \tparam GR The type of the digraph. |
913 | 916 |
template<class GR> |
914 | 917 |
class BfsWizardBase : public BfsWizardDefaultTraits<GR> |
915 | 918 |
{ |
916 | 919 |
|
917 | 920 |
typedef BfsWizardDefaultTraits<GR> Base; |
918 | 921 |
protected: |
919 | 922 |
//The type of the nodes in the digraph. |
920 | 923 |
typedef typename Base::Digraph::Node Node; |
921 | 924 |
|
922 | 925 |
//Pointer to the digraph the algorithm runs on. |
923 | 926 |
void *_g; |
924 | 927 |
//Pointer to the map of reached nodes. |
925 | 928 |
void *_reached; |
926 | 929 |
//Pointer to the map of processed nodes. |
927 | 930 |
void *_processed; |
928 | 931 |
//Pointer to the map of predecessors arcs. |
929 | 932 |
void *_pred; |
930 | 933 |
//Pointer to the map of distances. |
931 | 934 |
void *_dist; |
932 | 935 |
//Pointer to the shortest path to the target node. |
933 | 936 |
void *_path; |
934 | 937 |
//Pointer to the distance of the target node. |
935 | 938 |
int *_di; |
936 | 939 |
|
937 | 940 |
public: |
938 | 941 |
/// Constructor. |
939 | 942 |
|
940 | 943 |
/// This constructor does not require parameters, it initiates |
941 | 944 |
/// all of the attributes to \c 0. |
942 | 945 |
BfsWizardBase() : _g(0), _reached(0), _processed(0), _pred(0), |
943 | 946 |
_dist(0), _path(0), _di(0) {} |
944 | 947 |
|
945 | 948 |
/// Constructor. |
946 | 949 |
|
947 | 950 |
/// This constructor requires one parameter, |
948 | 951 |
/// others are initiated to \c 0. |
949 | 952 |
/// \param g The digraph the algorithm runs on. |
950 | 953 |
BfsWizardBase(const GR &g) : |
951 | 954 |
_g(reinterpret_cast<void*>(const_cast<GR*>(&g))), |
952 | 955 |
_reached(0), _processed(0), _pred(0), _dist(0), _path(0), _di(0) {} |
953 | 956 |
|
954 | 957 |
}; |
955 | 958 |
|
956 | 959 |
/// Auxiliary class for the function-type interface of BFS algorithm. |
957 | 960 |
|
958 | 961 |
/// This auxiliary class is created to implement the |
959 | 962 |
/// \ref bfs() "function-type interface" of \ref Bfs algorithm. |
960 | 963 |
/// It does not have own \ref run(Node) "run()" method, it uses the |
961 | 964 |
/// functions and features of the plain \ref Bfs. |
962 | 965 |
/// |
963 | 966 |
/// This class should only be used through the \ref bfs() function, |
964 | 967 |
/// which makes it easier to use the algorithm. |
965 | 968 |
/// |
966 | 969 |
/// \tparam TR The traits class that defines various types used by the |
967 | 970 |
/// algorithm. |
968 | 971 |
template<class TR> |
969 | 972 |
class BfsWizard : public TR |
970 | 973 |
{ |
971 | 974 |
typedef TR Base; |
972 | 975 |
|
973 | 976 |
typedef typename TR::Digraph Digraph; |
974 | 977 |
|
975 | 978 |
typedef typename Digraph::Node Node; |
976 | 979 |
typedef typename Digraph::NodeIt NodeIt; |
977 | 980 |
typedef typename Digraph::Arc Arc; |
978 | 981 |
typedef typename Digraph::OutArcIt OutArcIt; |
979 | 982 |
|
980 | 983 |
typedef typename TR::PredMap PredMap; |
981 | 984 |
typedef typename TR::DistMap DistMap; |
982 | 985 |
typedef typename TR::ReachedMap ReachedMap; |
983 | 986 |
typedef typename TR::ProcessedMap ProcessedMap; |
984 | 987 |
typedef typename TR::Path Path; |
985 | 988 |
|
986 | 989 |
public: |
987 | 990 |
|
988 | 991 |
/// Constructor. |
989 | 992 |
BfsWizard() : TR() {} |
990 | 993 |
|
991 | 994 |
/// Constructor that requires parameters. |
992 | 995 |
|
993 | 996 |
/// Constructor that requires parameters. |
994 | 997 |
/// These parameters will be the default values for the traits class. |
995 | 998 |
/// \param g The digraph the algorithm runs on. |
996 | 999 |
BfsWizard(const Digraph &g) : |
997 | 1000 |
TR(g) {} |
998 | 1001 |
|
999 | 1002 |
///Copy constructor |
1000 | 1003 |
BfsWizard(const TR &b) : TR(b) {} |
1001 | 1004 |
|
1002 | 1005 |
~BfsWizard() {} |
1003 | 1006 |
|
1004 | 1007 |
///Runs BFS algorithm from the given source node. |
1005 | 1008 |
|
1006 | 1009 |
///This method runs BFS algorithm from node \c s |
1007 | 1010 |
///in order to compute the shortest path to each node. |
1008 | 1011 |
void run(Node s) |
1009 | 1012 |
{ |
1010 | 1013 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1011 | 1014 |
if (Base::_pred) |
1012 | 1015 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1013 | 1016 |
if (Base::_dist) |
1014 | 1017 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1015 | 1018 |
if (Base::_reached) |
1016 | 1019 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1017 | 1020 |
if (Base::_processed) |
1018 | 1021 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1019 | 1022 |
if (s!=INVALID) |
1020 | 1023 |
alg.run(s); |
1021 | 1024 |
else |
1022 | 1025 |
alg.run(); |
1023 | 1026 |
} |
1024 | 1027 |
|
1025 | 1028 |
///Finds the shortest path between \c s and \c t. |
1026 | 1029 |
|
1027 | 1030 |
///This method runs BFS algorithm from node \c s |
1028 | 1031 |
///in order to compute the shortest path to node \c t |
1029 | 1032 |
///(it stops searching when \c t is processed). |
1030 | 1033 |
/// |
1031 | 1034 |
///\return \c true if \c t is reachable form \c s. |
1032 | 1035 |
bool run(Node s, Node t) |
1033 | 1036 |
{ |
1034 | 1037 |
Bfs<Digraph,TR> alg(*reinterpret_cast<const Digraph*>(Base::_g)); |
1035 | 1038 |
if (Base::_pred) |
1036 | 1039 |
alg.predMap(*reinterpret_cast<PredMap*>(Base::_pred)); |
1037 | 1040 |
if (Base::_dist) |
1038 | 1041 |
alg.distMap(*reinterpret_cast<DistMap*>(Base::_dist)); |
1039 | 1042 |
if (Base::_reached) |
1040 | 1043 |
alg.reachedMap(*reinterpret_cast<ReachedMap*>(Base::_reached)); |
1041 | 1044 |
if (Base::_processed) |
1042 | 1045 |
alg.processedMap(*reinterpret_cast<ProcessedMap*>(Base::_processed)); |
1043 | 1046 |
alg.run(s,t); |
1044 | 1047 |
if (Base::_path) |
1045 | 1048 |
*reinterpret_cast<Path*>(Base::_path) = alg.path(t); |
1046 | 1049 |
if (Base::_di) |
1047 | 1050 |
*Base::_di = alg.dist(t); |
1048 | 1051 |
return alg.reached(t); |
1049 | 1052 |
} |
1050 | 1053 |
|
1051 | 1054 |
///Runs BFS algorithm to visit all nodes in the digraph. |
1052 | 1055 |
|
1053 | 1056 |
///This method runs BFS algorithm in order to visit all nodes |
1054 | 1057 |
///in the digraph. |
1055 | 1058 |
void run() |
1056 | 1059 |
{ |
1057 | 1060 |
run(INVALID); |
1058 | 1061 |
} |
1059 | 1062 |
|
1060 | 1063 |
template<class T> |
1061 | 1064 |
struct SetPredMapBase : public Base { |
1062 | 1065 |
typedef T PredMap; |
1063 | 1066 |
static PredMap *createPredMap(const Digraph &) { return 0; }; |
1064 | 1067 |
SetPredMapBase(const TR &b) : TR(b) {} |
1065 | 1068 |
}; |
1066 | 1069 |
|
1067 | 1070 |
///\brief \ref named-templ-param "Named parameter" for setting |
... | ... |
@@ -1076,385 +1079,386 @@ |
1076 | 1079 |
return BfsWizard<SetPredMapBase<T> >(*this); |
1077 | 1080 |
} |
1078 | 1081 |
|
1079 | 1082 |
template<class T> |
1080 | 1083 |
struct SetReachedMapBase : public Base { |
1081 | 1084 |
typedef T ReachedMap; |
1082 | 1085 |
static ReachedMap *createReachedMap(const Digraph &) { return 0; }; |
1083 | 1086 |
SetReachedMapBase(const TR &b) : TR(b) {} |
1084 | 1087 |
}; |
1085 | 1088 |
|
1086 | 1089 |
///\brief \ref named-templ-param "Named parameter" for setting |
1087 | 1090 |
///the reached map. |
1088 | 1091 |
/// |
1089 | 1092 |
///\ref named-templ-param "Named parameter" function for setting |
1090 | 1093 |
///the map that indicates which nodes are reached. |
1091 | 1094 |
template<class T> |
1092 | 1095 |
BfsWizard<SetReachedMapBase<T> > reachedMap(const T &t) |
1093 | 1096 |
{ |
1094 | 1097 |
Base::_reached=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1095 | 1098 |
return BfsWizard<SetReachedMapBase<T> >(*this); |
1096 | 1099 |
} |
1097 | 1100 |
|
1098 | 1101 |
template<class T> |
1099 | 1102 |
struct SetDistMapBase : public Base { |
1100 | 1103 |
typedef T DistMap; |
1101 | 1104 |
static DistMap *createDistMap(const Digraph &) { return 0; }; |
1102 | 1105 |
SetDistMapBase(const TR &b) : TR(b) {} |
1103 | 1106 |
}; |
1104 | 1107 |
|
1105 | 1108 |
///\brief \ref named-templ-param "Named parameter" for setting |
1106 | 1109 |
///the distance map. |
1107 | 1110 |
/// |
1108 | 1111 |
///\ref named-templ-param "Named parameter" function for setting |
1109 | 1112 |
///the map that stores the distances of the nodes calculated |
1110 | 1113 |
///by the algorithm. |
1111 | 1114 |
template<class T> |
1112 | 1115 |
BfsWizard<SetDistMapBase<T> > distMap(const T &t) |
1113 | 1116 |
{ |
1114 | 1117 |
Base::_dist=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1115 | 1118 |
return BfsWizard<SetDistMapBase<T> >(*this); |
1116 | 1119 |
} |
1117 | 1120 |
|
1118 | 1121 |
template<class T> |
1119 | 1122 |
struct SetProcessedMapBase : public Base { |
1120 | 1123 |
typedef T ProcessedMap; |
1121 | 1124 |
static ProcessedMap *createProcessedMap(const Digraph &) { return 0; }; |
1122 | 1125 |
SetProcessedMapBase(const TR &b) : TR(b) {} |
1123 | 1126 |
}; |
1124 | 1127 |
|
1125 | 1128 |
///\brief \ref named-func-param "Named parameter" for setting |
1126 | 1129 |
///the processed map. |
1127 | 1130 |
/// |
1128 | 1131 |
///\ref named-templ-param "Named parameter" function for setting |
1129 | 1132 |
///the map that indicates which nodes are processed. |
1130 | 1133 |
template<class T> |
1131 | 1134 |
BfsWizard<SetProcessedMapBase<T> > processedMap(const T &t) |
1132 | 1135 |
{ |
1133 | 1136 |
Base::_processed=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1134 | 1137 |
return BfsWizard<SetProcessedMapBase<T> >(*this); |
1135 | 1138 |
} |
1136 | 1139 |
|
1137 | 1140 |
template<class T> |
1138 | 1141 |
struct SetPathBase : public Base { |
1139 | 1142 |
typedef T Path; |
1140 | 1143 |
SetPathBase(const TR &b) : TR(b) {} |
1141 | 1144 |
}; |
1142 | 1145 |
///\brief \ref named-func-param "Named parameter" |
1143 | 1146 |
///for getting the shortest path to the target node. |
1144 | 1147 |
/// |
1145 | 1148 |
///\ref named-func-param "Named parameter" |
1146 | 1149 |
///for getting the shortest path to the target node. |
1147 | 1150 |
template<class T> |
1148 | 1151 |
BfsWizard<SetPathBase<T> > path(const T &t) |
1149 | 1152 |
{ |
1150 | 1153 |
Base::_path=reinterpret_cast<void*>(const_cast<T*>(&t)); |
1151 | 1154 |
return BfsWizard<SetPathBase<T> >(*this); |
1152 | 1155 |
} |
1153 | 1156 |
|
1154 | 1157 |
///\brief \ref named-func-param "Named parameter" |
1155 | 1158 |
///for getting the distance of the target node. |
1156 | 1159 |
/// |
1157 | 1160 |
///\ref named-func-param "Named parameter" |
1158 | 1161 |
///for getting the distance of the target node. |
1159 | 1162 |
BfsWizard dist(const int &d) |
1160 | 1163 |
{ |
1161 | 1164 |
Base::_di=const_cast<int*>(&d); |
1162 | 1165 |
return *this; |
1163 | 1166 |
} |
1164 | 1167 |
|
1165 | 1168 |
}; |
1166 | 1169 |
|
1167 | 1170 |
///Function-type interface for BFS algorithm. |
1168 | 1171 |
|
1169 | 1172 |
/// \ingroup search |
1170 | 1173 |
///Function-type interface for BFS algorithm. |
1171 | 1174 |
/// |
1172 | 1175 |
///This function also has several \ref named-func-param "named parameters", |
1173 | 1176 |
///they are declared as the members of class \ref BfsWizard. |
1174 | 1177 |
///The following examples show how to use these parameters. |
1175 | 1178 |
///\code |
1176 | 1179 |
/// // Compute shortest path from node s to each node |
1177 | 1180 |
/// bfs(g).predMap(preds).distMap(dists).run(s); |
1178 | 1181 |
/// |
1179 | 1182 |
/// // Compute shortest path from s to t |
1180 | 1183 |
/// bool reached = bfs(g).path(p).dist(d).run(s,t); |
1181 | 1184 |
///\endcode |
1182 | 1185 |
///\warning Don't forget to put the \ref BfsWizard::run(Node) "run()" |
1183 | 1186 |
///to the end of the parameter list. |
1184 | 1187 |
///\sa BfsWizard |
1185 | 1188 |
///\sa Bfs |
1186 | 1189 |
template<class GR> |
1187 | 1190 |
BfsWizard<BfsWizardBase<GR> > |
1188 | 1191 |
bfs(const GR &digraph) |
1189 | 1192 |
{ |
1190 | 1193 |
return BfsWizard<BfsWizardBase<GR> >(digraph); |
1191 | 1194 |
} |
1192 | 1195 |
|
1193 | 1196 |
#ifdef DOXYGEN |
1194 | 1197 |
/// \brief Visitor class for BFS. |
1195 | 1198 |
/// |
1196 | 1199 |
/// This class defines the interface of the BfsVisit events, and |
1197 | 1200 |
/// it could be the base of a real visitor class. |
1198 | 1201 |
template <typename GR> |
1199 | 1202 |
struct BfsVisitor { |
1200 | 1203 |
typedef GR Digraph; |
1201 | 1204 |
typedef typename Digraph::Arc Arc; |
1202 | 1205 |
typedef typename Digraph::Node Node; |
1203 | 1206 |
/// \brief Called for the source node(s) of the BFS. |
1204 | 1207 |
/// |
1205 | 1208 |
/// This function is called for the source node(s) of the BFS. |
1206 | 1209 |
void start(const Node& node) {} |
1207 | 1210 |
/// \brief Called when a node is reached first time. |
1208 | 1211 |
/// |
1209 | 1212 |
/// This function is called when a node is reached first time. |
1210 | 1213 |
void reach(const Node& node) {} |
1211 | 1214 |
/// \brief Called when a node is processed. |
1212 | 1215 |
/// |
1213 | 1216 |
/// This function is called when a node is processed. |
1214 | 1217 |
void process(const Node& node) {} |
1215 | 1218 |
/// \brief Called when an arc reaches a new node. |
1216 | 1219 |
/// |
1217 | 1220 |
/// This function is called when the BFS finds an arc whose target node |
1218 | 1221 |
/// is not reached yet. |
1219 | 1222 |
void discover(const Arc& arc) {} |
1220 | 1223 |
/// \brief Called when an arc is examined but its target node is |
1221 | 1224 |
/// already discovered. |
1222 | 1225 |
/// |
1223 | 1226 |
/// This function is called when an arc is examined but its target node is |
1224 | 1227 |
/// already discovered. |
1225 | 1228 |
void examine(const Arc& arc) {} |
1226 | 1229 |
}; |
1227 | 1230 |
#else |
1228 | 1231 |
template <typename GR> |
1229 | 1232 |
struct BfsVisitor { |
1230 | 1233 |
typedef GR Digraph; |
1231 | 1234 |
typedef typename Digraph::Arc Arc; |
1232 | 1235 |
typedef typename Digraph::Node Node; |
1233 | 1236 |
void start(const Node&) {} |
1234 | 1237 |
void reach(const Node&) {} |
1235 | 1238 |
void process(const Node&) {} |
1236 | 1239 |
void discover(const Arc&) {} |
1237 | 1240 |
void examine(const Arc&) {} |
1238 | 1241 |
|
1239 | 1242 |
template <typename _Visitor> |
1240 | 1243 |
struct Constraints { |
1241 | 1244 |
void constraints() { |
1242 | 1245 |
Arc arc; |
1243 | 1246 |
Node node; |
1244 | 1247 |
visitor.start(node); |
1245 | 1248 |
visitor.reach(node); |
1246 | 1249 |
visitor.process(node); |
1247 | 1250 |
visitor.discover(arc); |
1248 | 1251 |
visitor.examine(arc); |
1249 | 1252 |
} |
1250 | 1253 |
_Visitor& visitor; |
1251 | 1254 |
}; |
1252 | 1255 |
}; |
1253 | 1256 |
#endif |
1254 | 1257 |
|
1255 | 1258 |
/// \brief Default traits class of BfsVisit class. |
1256 | 1259 |
/// |
1257 | 1260 |
/// Default traits class of BfsVisit class. |
1258 | 1261 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1259 | 1262 |
template<class GR> |
1260 | 1263 |
struct BfsVisitDefaultTraits { |
1261 | 1264 |
|
1262 | 1265 |
/// \brief The type of the digraph the algorithm runs on. |
1263 | 1266 |
typedef GR Digraph; |
1264 | 1267 |
|
1265 | 1268 |
/// \brief The type of the map that indicates which nodes are reached. |
1266 | 1269 |
/// |
1267 | 1270 |
/// The type of the map that indicates which nodes are reached. |
1268 |
/// It must conform to |
|
1271 |
/// It must conform to |
|
1272 |
///the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
1269 | 1273 |
typedef typename Digraph::template NodeMap<bool> ReachedMap; |
1270 | 1274 |
|
1271 | 1275 |
/// \brief Instantiates a ReachedMap. |
1272 | 1276 |
/// |
1273 | 1277 |
/// This function instantiates a ReachedMap. |
1274 | 1278 |
/// \param digraph is the digraph, to which |
1275 | 1279 |
/// we would like to define the ReachedMap. |
1276 | 1280 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1277 | 1281 |
return new ReachedMap(digraph); |
1278 | 1282 |
} |
1279 | 1283 |
|
1280 | 1284 |
}; |
1281 | 1285 |
|
1282 | 1286 |
/// \ingroup search |
1283 | 1287 |
/// |
1284 | 1288 |
/// \brief BFS algorithm class with visitor interface. |
1285 | 1289 |
/// |
1286 | 1290 |
/// This class provides an efficient implementation of the BFS algorithm |
1287 | 1291 |
/// with visitor interface. |
1288 | 1292 |
/// |
1289 | 1293 |
/// The BfsVisit class provides an alternative interface to the Bfs |
1290 | 1294 |
/// class. It works with callback mechanism, the BfsVisit object calls |
1291 | 1295 |
/// the member functions of the \c Visitor class on every BFS event. |
1292 | 1296 |
/// |
1293 | 1297 |
/// This interface of the BFS algorithm should be used in special cases |
1294 | 1298 |
/// when extra actions have to be performed in connection with certain |
1295 | 1299 |
/// events of the BFS algorithm. Otherwise consider to use Bfs or bfs() |
1296 | 1300 |
/// instead. |
1297 | 1301 |
/// |
1298 | 1302 |
/// \tparam GR The type of the digraph the algorithm runs on. |
1299 | 1303 |
/// The default type is \ref ListDigraph. |
1300 | 1304 |
/// The value of GR is not used directly by \ref BfsVisit, |
1301 | 1305 |
/// it is only passed to \ref BfsVisitDefaultTraits. |
1302 | 1306 |
/// \tparam VS The Visitor type that is used by the algorithm. |
1303 | 1307 |
/// \ref BfsVisitor "BfsVisitor<GR>" is an empty visitor, which |
1304 | 1308 |
/// does not observe the BFS events. If you want to observe the BFS |
1305 | 1309 |
/// events, you should implement your own visitor class. |
1306 | 1310 |
/// \tparam TR The traits class that defines various types used by the |
1307 | 1311 |
/// algorithm. By default, it is \ref BfsVisitDefaultTraits |
1308 | 1312 |
/// "BfsVisitDefaultTraits<GR>". |
1309 | 1313 |
/// In most cases, this parameter should not be set directly, |
1310 | 1314 |
/// consider to use the named template parameters instead. |
1311 | 1315 |
#ifdef DOXYGEN |
1312 | 1316 |
template <typename GR, typename VS, typename TR> |
1313 | 1317 |
#else |
1314 | 1318 |
template <typename GR = ListDigraph, |
1315 | 1319 |
typename VS = BfsVisitor<GR>, |
1316 | 1320 |
typename TR = BfsVisitDefaultTraits<GR> > |
1317 | 1321 |
#endif |
1318 | 1322 |
class BfsVisit { |
1319 | 1323 |
public: |
1320 | 1324 |
|
1321 | 1325 |
///The traits class. |
1322 | 1326 |
typedef TR Traits; |
1323 | 1327 |
|
1324 | 1328 |
///The type of the digraph the algorithm runs on. |
1325 | 1329 |
typedef typename Traits::Digraph Digraph; |
1326 | 1330 |
|
1327 | 1331 |
///The visitor type used by the algorithm. |
1328 | 1332 |
typedef VS Visitor; |
1329 | 1333 |
|
1330 | 1334 |
///The type of the map that indicates which nodes are reached. |
1331 | 1335 |
typedef typename Traits::ReachedMap ReachedMap; |
1332 | 1336 |
|
1333 | 1337 |
private: |
1334 | 1338 |
|
1335 | 1339 |
typedef typename Digraph::Node Node; |
1336 | 1340 |
typedef typename Digraph::NodeIt NodeIt; |
1337 | 1341 |
typedef typename Digraph::Arc Arc; |
1338 | 1342 |
typedef typename Digraph::OutArcIt OutArcIt; |
1339 | 1343 |
|
1340 | 1344 |
//Pointer to the underlying digraph. |
1341 | 1345 |
const Digraph *_digraph; |
1342 | 1346 |
//Pointer to the visitor object. |
1343 | 1347 |
Visitor *_visitor; |
1344 | 1348 |
//Pointer to the map of reached status of the nodes. |
1345 | 1349 |
ReachedMap *_reached; |
1346 | 1350 |
//Indicates if _reached is locally allocated (true) or not. |
1347 | 1351 |
bool local_reached; |
1348 | 1352 |
|
1349 | 1353 |
std::vector<typename Digraph::Node> _list; |
1350 | 1354 |
int _list_front, _list_back; |
1351 | 1355 |
|
1352 | 1356 |
//Creates the maps if necessary. |
1353 | 1357 |
void create_maps() { |
1354 | 1358 |
if(!_reached) { |
1355 | 1359 |
local_reached = true; |
1356 | 1360 |
_reached = Traits::createReachedMap(*_digraph); |
1357 | 1361 |
} |
1358 | 1362 |
} |
1359 | 1363 |
|
1360 | 1364 |
protected: |
1361 | 1365 |
|
1362 | 1366 |
BfsVisit() {} |
1363 | 1367 |
|
1364 | 1368 |
public: |
1365 | 1369 |
|
1366 | 1370 |
typedef BfsVisit Create; |
1367 | 1371 |
|
1368 | 1372 |
/// \name Named Template Parameters |
1369 | 1373 |
|
1370 | 1374 |
///@{ |
1371 | 1375 |
template <class T> |
1372 | 1376 |
struct SetReachedMapTraits : public Traits { |
1373 | 1377 |
typedef T ReachedMap; |
1374 | 1378 |
static ReachedMap *createReachedMap(const Digraph &digraph) { |
1375 | 1379 |
LEMON_ASSERT(false, "ReachedMap is not initialized"); |
1376 | 1380 |
return 0; // ignore warnings |
1377 | 1381 |
} |
1378 | 1382 |
}; |
1379 | 1383 |
/// \brief \ref named-templ-param "Named parameter" for setting |
1380 | 1384 |
/// ReachedMap type. |
1381 | 1385 |
/// |
1382 | 1386 |
/// \ref named-templ-param "Named parameter" for setting ReachedMap type. |
1383 | 1387 |
template <class T> |
1384 | 1388 |
struct SetReachedMap : public BfsVisit< Digraph, Visitor, |
1385 | 1389 |
SetReachedMapTraits<T> > { |
1386 | 1390 |
typedef BfsVisit< Digraph, Visitor, SetReachedMapTraits<T> > Create; |
1387 | 1391 |
}; |
1388 | 1392 |
///@} |
1389 | 1393 |
|
1390 | 1394 |
public: |
1391 | 1395 |
|
1392 | 1396 |
/// \brief Constructor. |
1393 | 1397 |
/// |
1394 | 1398 |
/// Constructor. |
1395 | 1399 |
/// |
1396 | 1400 |
/// \param digraph The digraph the algorithm runs on. |
1397 | 1401 |
/// \param visitor The visitor object of the algorithm. |
1398 | 1402 |
BfsVisit(const Digraph& digraph, Visitor& visitor) |
1399 | 1403 |
: _digraph(&digraph), _visitor(&visitor), |
1400 | 1404 |
_reached(0), local_reached(false) {} |
1401 | 1405 |
|
1402 | 1406 |
/// \brief Destructor. |
1403 | 1407 |
~BfsVisit() { |
1404 | 1408 |
if(local_reached) delete _reached; |
1405 | 1409 |
} |
1406 | 1410 |
|
1407 | 1411 |
/// \brief Sets the map that indicates which nodes are reached. |
1408 | 1412 |
/// |
1409 | 1413 |
/// Sets the map that indicates which nodes are reached. |
1410 | 1414 |
/// If you don't use this function before calling \ref run(Node) "run()" |
1411 | 1415 |
/// or \ref init(), an instance will be allocated automatically. |
1412 | 1416 |
/// The destructor deallocates this automatically allocated map, |
1413 | 1417 |
/// of course. |
1414 | 1418 |
/// \return <tt> (*this) </tt> |
1415 | 1419 |
BfsVisit &reachedMap(ReachedMap &m) { |
1416 | 1420 |
if(local_reached) { |
1417 | 1421 |
delete _reached; |
1418 | 1422 |
local_reached = false; |
1419 | 1423 |
} |
1420 | 1424 |
_reached = &m; |
1421 | 1425 |
return *this; |
1422 | 1426 |
} |
1423 | 1427 |
|
1424 | 1428 |
public: |
1425 | 1429 |
|
1426 | 1430 |
/// \name Execution Control |
1427 | 1431 |
/// The simplest way to execute the BFS algorithm is to use one of the |
1428 | 1432 |
/// member functions called \ref run(Node) "run()".\n |
1429 | 1433 |
/// If you need better control on the execution, you have to call |
1430 | 1434 |
/// \ref init() first, then you can add several source nodes with |
1431 | 1435 |
/// \ref addSource(). Finally the actual path computation can be |
1432 | 1436 |
/// performed with one of the \ref start() functions. |
1433 | 1437 |
|
1434 | 1438 |
/// @{ |
1435 | 1439 |
|
1436 | 1440 |
/// \brief Initializes the internal data structures. |
1437 | 1441 |
/// |
1438 | 1442 |
/// Initializes the internal data structures. |
1439 | 1443 |
void init() { |
1440 | 1444 |
create_maps(); |
1441 | 1445 |
_list.resize(countNodes(*_digraph)); |
1442 | 1446 |
_list_front = _list_back = -1; |
1443 | 1447 |
for (NodeIt u(*_digraph) ; u != INVALID ; ++u) { |
1444 | 1448 |
_reached->set(u, false); |
1445 | 1449 |
} |
1446 | 1450 |
} |
1447 | 1451 |
|
1448 | 1452 |
/// \brief Adds a new source node. |
1449 | 1453 |
/// |
1450 | 1454 |
/// Adds a new source node to the set of nodes to be processed. |
1451 | 1455 |
void addSource(Node s) { |
1452 | 1456 |
if(!(*_reached)[s]) { |
1453 | 1457 |
_reached->set(s,true); |
1454 | 1458 |
_visitor->start(s); |
1455 | 1459 |
_visitor->reach(s); |
1456 | 1460 |
_list[++_list_back] = s; |
1457 | 1461 |
} |
1458 | 1462 |
} |
1459 | 1463 |
|
1460 | 1464 |
/// \brief Processes the next node. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BINOMIAL_HEAP_H |
20 | 20 |
#define LEMON_BINOMIAL_HEAP_H |
21 | 21 |
|
22 | 22 |
///\file |
23 | 23 |
///\ingroup heaps |
24 | 24 |
///\brief Binomial Heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
#include <lemon/math.h> |
30 | 30 |
#include <lemon/counter.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \ingroup heaps |
35 | 35 |
/// |
36 | 36 |
///\brief Binomial heap data structure. |
37 | 37 |
/// |
38 | 38 |
/// This class implements the \e binomial \e heap data structure. |
39 | 39 |
/// It fully conforms to the \ref concepts::Heap "heap concept". |
40 | 40 |
/// |
41 | 41 |
/// The methods \ref increase() and \ref erase() are not efficient |
42 | 42 |
/// in a binomial heap. In case of many calls of these operations, |
43 | 43 |
/// it is better to use other heap structure, e.g. \ref BinHeap |
44 | 44 |
/// "binary heap". |
45 | 45 |
/// |
46 | 46 |
/// \tparam PR Type of the priorities of the items. |
47 | 47 |
/// \tparam IM A read-writable item map with \c int values, used |
48 | 48 |
/// internally to handle the cross references. |
49 | 49 |
/// \tparam CMP A functor class for comparing the priorities. |
50 | 50 |
/// The default is \c std::less<PR>. |
51 | 51 |
#ifdef DOXYGEN |
52 | 52 |
template <typename PR, typename IM, typename CMP> |
53 | 53 |
#else |
54 | 54 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
55 | 55 |
#endif |
56 | 56 |
class BinomialHeap { |
57 | 57 |
public: |
58 | 58 |
/// Type of the item-int map. |
59 | 59 |
typedef IM ItemIntMap; |
60 | 60 |
/// Type of the priorities. |
61 | 61 |
typedef PR Prio; |
62 | 62 |
/// Type of the items stored in the heap. |
63 | 63 |
typedef typename ItemIntMap::Key Item; |
64 | 64 |
/// Functor type for comparing the priorities. |
65 | 65 |
typedef CMP Compare; |
66 | 66 |
|
67 | 67 |
/// \brief Type to represent the states of the items. |
68 | 68 |
/// |
69 | 69 |
/// Each item has a state associated to it. It can be "in heap", |
70 | 70 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
71 | 71 |
/// heap's point of view, but may be useful to the user. |
72 | 72 |
/// |
73 | 73 |
/// The item-int map must be initialized in such way that it assigns |
74 | 74 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
75 | 75 |
enum State { |
76 | 76 |
IN_HEAP = 0, ///< = 0. |
77 | 77 |
PRE_HEAP = -1, ///< = -1. |
78 | 78 |
POST_HEAP = -2 ///< = -2. |
79 | 79 |
}; |
80 | 80 |
|
81 | 81 |
private: |
82 | 82 |
class Store; |
83 | 83 |
|
84 | 84 |
std::vector<Store> _data; |
85 | 85 |
int _min, _head; |
86 | 86 |
ItemIntMap &_iim; |
87 | 87 |
Compare _comp; |
88 | 88 |
int _num_items; |
89 | 89 |
|
90 | 90 |
public: |
91 | 91 |
/// \brief Constructor. |
92 | 92 |
/// |
93 | 93 |
/// Constructor. |
94 | 94 |
/// \param map A map that assigns \c int values to the items. |
95 | 95 |
/// It is used internally to handle the cross references. |
96 | 96 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
97 | 97 |
explicit BinomialHeap(ItemIntMap &map) |
98 | 98 |
: _min(0), _head(-1), _iim(map), _num_items(0) {} |
99 | 99 |
|
100 | 100 |
/// \brief Constructor. |
101 | 101 |
/// |
102 | 102 |
/// Constructor. |
103 | 103 |
/// \param map A map that assigns \c int values to the items. |
104 | 104 |
/// It is used internally to handle the cross references. |
105 | 105 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
106 | 106 |
/// \param comp The function object used for comparing the priorities. |
107 | 107 |
BinomialHeap(ItemIntMap &map, const Compare &comp) |
108 | 108 |
: _min(0), _head(-1), _iim(map), _comp(comp), _num_items(0) {} |
109 | 109 |
|
110 | 110 |
/// \brief The number of items stored in the heap. |
111 | 111 |
/// |
112 | 112 |
/// This function returns the number of items stored in the heap. |
113 | 113 |
int size() const { return _num_items; } |
114 | 114 |
|
115 | 115 |
/// \brief Check if the heap is empty. |
116 | 116 |
/// |
117 | 117 |
/// This function returns \c true if the heap is empty. |
118 | 118 |
bool empty() const { return _num_items==0; } |
119 | 119 |
|
120 | 120 |
/// \brief Make the heap empty. |
121 | 121 |
/// |
122 | 122 |
/// This functon makes the heap empty. |
123 | 123 |
/// It does not change the cross reference map. If you want to reuse |
124 | 124 |
/// a heap that is not surely empty, you should first clear it and |
125 | 125 |
/// then you should set the cross reference map to \c PRE_HEAP |
126 | 126 |
/// for each item. |
127 | 127 |
void clear() { |
128 | 128 |
_data.clear(); _min=0; _num_items=0; _head=-1; |
129 | 129 |
} |
130 | 130 |
|
131 | 131 |
/// \brief Set the priority of an item or insert it, if it is |
132 | 132 |
/// not stored in the heap. |
133 | 133 |
/// |
134 | 134 |
/// This method sets the priority of the given item if it is |
135 | 135 |
/// already stored in the heap. Otherwise it inserts the given |
136 | 136 |
/// item into the heap with the given priority. |
137 | 137 |
/// \param item The item. |
138 | 138 |
/// \param value The priority. |
139 | 139 |
void set (const Item& item, const Prio& value) { |
140 | 140 |
int i=_iim[item]; |
141 | 141 |
if ( i >= 0 && _data[i].in ) { |
142 | 142 |
if ( _comp(value, _data[i].prio) ) decrease(item, value); |
143 | 143 |
if ( _comp(_data[i].prio, value) ) increase(item, value); |
144 | 144 |
} else push(item, value); |
145 | 145 |
} |
146 | 146 |
|
147 | 147 |
/// \brief Insert an item into the heap with the given priority. |
148 | 148 |
/// |
149 | 149 |
/// This function inserts the given item into the heap with the |
150 | 150 |
/// given priority. |
151 | 151 |
/// \param item The item to insert. |
152 | 152 |
/// \param value The priority of the item. |
153 | 153 |
/// \pre \e item must not be stored in the heap. |
154 | 154 |
void push (const Item& item, const Prio& value) { |
155 | 155 |
int i=_iim[item]; |
156 | 156 |
if ( i<0 ) { |
157 | 157 |
int s=_data.size(); |
158 | 158 |
_iim.set( item,s ); |
159 | 159 |
Store st; |
160 | 160 |
st.name=item; |
161 | 161 |
st.prio=value; |
162 | 162 |
_data.push_back(st); |
163 | 163 |
i=s; |
164 | 164 |
} |
165 | 165 |
else { |
166 | 166 |
_data[i].parent=_data[i].right_neighbor=_data[i].child=-1; |
167 | 167 |
_data[i].degree=0; |
168 | 168 |
_data[i].in=true; |
169 | 169 |
_data[i].prio=value; |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
if( 0==_num_items ) { |
173 | 173 |
_head=i; |
174 | 174 |
_min=i; |
175 | 175 |
} else { |
176 | 176 |
merge(i); |
177 | 177 |
if( _comp(_data[i].prio, _data[_min].prio) ) _min=i; |
178 | 178 |
} |
179 | 179 |
++_num_items; |
180 | 180 |
} |
181 | 181 |
|
182 | 182 |
/// \brief Return the item having minimum priority. |
183 | 183 |
/// |
184 | 184 |
/// This function returns the item having minimum priority. |
185 | 185 |
/// \pre The heap must be non-empty. |
186 | 186 |
Item top() const { return _data[_min].name; } |
187 | 187 |
|
188 | 188 |
/// \brief The minimum priority. |
189 | 189 |
/// |
190 | 190 |
/// This function returns the minimum priority. |
191 | 191 |
/// \pre The heap must be non-empty. |
192 | 192 |
Prio prio() const { return _data[_min].prio; } |
193 | 193 |
|
194 | 194 |
/// \brief The priority of the given item. |
195 | 195 |
/// |
196 | 196 |
/// This function returns the priority of the given item. |
197 | 197 |
/// \param item The item. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_ARRAY_MAP_H |
20 | 20 |
#define LEMON_BITS_ARRAY_MAP_H |
21 | 21 |
|
22 | 22 |
#include <memory> |
23 | 23 |
|
24 | 24 |
#include <lemon/bits/traits.h> |
25 | 25 |
#include <lemon/bits/alteration_notifier.h> |
26 | 26 |
#include <lemon/concept_check.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
// \ingroup graphbits |
30 | 30 |
// \file |
31 | 31 |
// \brief Graph map based on the array storage. |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
// \ingroup graphbits |
36 | 36 |
// |
37 | 37 |
// \brief Graph map based on the array storage. |
38 | 38 |
// |
39 | 39 |
// The ArrayMap template class is graph map structure that automatically |
40 | 40 |
// updates the map when a key is added to or erased from the graph. |
41 | 41 |
// This map uses the allocators to implement the container functionality. |
42 | 42 |
// |
43 | 43 |
// The template parameters are the Graph, the current Item type and |
44 | 44 |
// the Value type of the map. |
45 | 45 |
template <typename _Graph, typename _Item, typename _Value> |
46 | 46 |
class ArrayMap |
47 | 47 |
: public ItemSetTraits<_Graph, _Item>::ItemNotifier::ObserverBase { |
48 | 48 |
public: |
49 | 49 |
// The graph type. |
50 | 50 |
typedef _Graph GraphType; |
51 | 51 |
// The item type. |
52 | 52 |
typedef _Item Item; |
53 | 53 |
// The reference map tag. |
54 | 54 |
typedef True ReferenceMapTag; |
55 | 55 |
|
56 | 56 |
// The key type of the map. |
57 | 57 |
typedef _Item Key; |
58 | 58 |
// The value type of the map. |
59 | 59 |
typedef _Value Value; |
60 | 60 |
|
61 | 61 |
// The const reference type of the map. |
62 | 62 |
typedef const _Value& ConstReference; |
63 | 63 |
// The reference type of the map. |
64 | 64 |
typedef _Value& Reference; |
65 | 65 |
|
66 | 66 |
// The map type. |
67 | 67 |
typedef ArrayMap Map; |
68 | 68 |
|
69 | 69 |
// The notifier type. |
70 | 70 |
typedef typename ItemSetTraits<_Graph, _Item>::ItemNotifier Notifier; |
71 | 71 |
|
72 | 72 |
private: |
73 | 73 |
|
74 | 74 |
// The MapBase of the Map which imlements the core regisitry function. |
75 | 75 |
typedef typename Notifier::ObserverBase Parent; |
76 | 76 |
|
77 | 77 |
typedef std::allocator<Value> Allocator; |
78 | 78 |
|
79 | 79 |
public: |
80 | 80 |
|
81 | 81 |
// \brief Graph initialized map constructor. |
82 | 82 |
// |
83 | 83 |
// Graph initialized map constructor. |
84 | 84 |
explicit ArrayMap(const GraphType& graph) { |
85 | 85 |
Parent::attach(graph.notifier(Item())); |
86 | 86 |
allocate_memory(); |
87 | 87 |
Notifier* nf = Parent::notifier(); |
88 | 88 |
Item it; |
89 | 89 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
90 | 90 |
int id = nf->id(it);; |
91 | 91 |
allocator.construct(&(values[id]), Value()); |
92 | 92 |
} |
93 | 93 |
} |
94 | 94 |
|
95 | 95 |
// \brief Constructor to use default value to initialize the map. |
96 | 96 |
// |
97 | 97 |
// It constructs a map and initialize all of the the map. |
98 | 98 |
ArrayMap(const GraphType& graph, const Value& value) { |
99 | 99 |
Parent::attach(graph.notifier(Item())); |
100 | 100 |
allocate_memory(); |
101 | 101 |
Notifier* nf = Parent::notifier(); |
102 | 102 |
Item it; |
103 | 103 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
104 | 104 |
int id = nf->id(it);; |
105 | 105 |
allocator.construct(&(values[id]), value); |
106 | 106 |
} |
107 | 107 |
} |
108 | 108 |
|
109 | 109 |
private: |
110 | 110 |
// \brief Constructor to copy a map of the same map type. |
111 | 111 |
// |
112 | 112 |
// Constructor to copy a map of the same map type. |
113 | 113 |
ArrayMap(const ArrayMap& copy) : Parent() { |
114 | 114 |
if (copy.attached()) { |
115 | 115 |
attach(*copy.notifier()); |
116 | 116 |
} |
117 | 117 |
capacity = copy.capacity; |
118 | 118 |
if (capacity == 0) return; |
119 | 119 |
values = allocator.allocate(capacity); |
120 | 120 |
Notifier* nf = Parent::notifier(); |
121 | 121 |
Item it; |
122 | 122 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
123 | 123 |
int id = nf->id(it);; |
124 | 124 |
allocator.construct(&(values[id]), copy.values[id]); |
125 | 125 |
} |
126 | 126 |
} |
127 | 127 |
|
128 | 128 |
// \brief Assign operator. |
129 | 129 |
// |
130 | 130 |
// This operator assigns for each item in the map the |
131 | 131 |
// value mapped to the same item in the copied map. |
132 | 132 |
// The parameter map should be indiced with the same |
133 | 133 |
// itemset because this assign operator does not change |
134 | 134 |
// the container of the map. |
135 | 135 |
ArrayMap& operator=(const ArrayMap& cmap) { |
136 | 136 |
return operator=<ArrayMap>(cmap); |
137 | 137 |
} |
138 | 138 |
|
139 | 139 |
|
140 | 140 |
// \brief Template assign operator. |
141 | 141 |
// |
142 | 142 |
// The given parameter should conform to the ReadMap |
143 | 143 |
// concecpt and could be indiced by the current item set of |
144 | 144 |
// the NodeMap. In this case the value for each item |
145 | 145 |
// is assigned by the value of the given ReadMap. |
146 | 146 |
template <typename CMap> |
147 | 147 |
ArrayMap& operator=(const CMap& cmap) { |
148 | 148 |
checkConcept<concepts::ReadMap<Key, _Value>, CMap>(); |
149 | 149 |
const typename Parent::Notifier* nf = Parent::notifier(); |
150 | 150 |
Item it; |
151 | 151 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
152 | 152 |
set(it, cmap[it]); |
153 | 153 |
} |
154 | 154 |
return *this; |
155 | 155 |
} |
156 | 156 |
|
157 | 157 |
public: |
158 | 158 |
// \brief The destructor of the map. |
159 | 159 |
// |
160 | 160 |
// The destructor of the map. |
161 | 161 |
virtual ~ArrayMap() { |
162 | 162 |
if (attached()) { |
163 | 163 |
clear(); |
164 | 164 |
detach(); |
165 | 165 |
} |
166 | 166 |
} |
167 | 167 |
|
168 | 168 |
protected: |
169 | 169 |
|
170 | 170 |
using Parent::attach; |
171 | 171 |
using Parent::detach; |
172 | 172 |
using Parent::attached; |
173 | 173 |
|
174 | 174 |
public: |
175 | 175 |
|
176 | 176 |
// \brief The subscript operator. |
177 | 177 |
// |
178 | 178 |
// The subscript operator. The map can be subscripted by the |
179 | 179 |
// actual keys of the graph. |
180 | 180 |
Value& operator[](const Key& key) { |
181 | 181 |
int id = Parent::notifier()->id(key); |
182 | 182 |
return values[id]; |
183 | 183 |
} |
184 | 184 |
|
185 | 185 |
// \brief The const subscript operator. |
186 | 186 |
// |
187 | 187 |
// The const subscript operator. The map can be subscripted by the |
188 | 188 |
// actual keys of the graph. |
189 | 189 |
const Value& operator[](const Key& key) const { |
190 | 190 |
int id = Parent::notifier()->id(key); |
191 | 191 |
return values[id]; |
192 | 192 |
} |
193 | 193 |
|
194 | 194 |
// \brief Setter function of the map. |
195 | 195 |
// |
196 | 196 |
// Setter function of the map. Equivalent with map[key] = val. |
197 | 197 |
// This is a compatibility feature with the not dereferable maps. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_DEFAULT_MAP_H |
20 | 20 |
#define LEMON_BITS_DEFAULT_MAP_H |
21 | 21 |
|
22 | 22 |
#include <lemon/config.h> |
23 | 23 |
#include <lemon/bits/array_map.h> |
24 | 24 |
#include <lemon/bits/vector_map.h> |
25 | 25 |
//#include <lemon/bits/debug_map.h> |
26 | 26 |
|
27 | 27 |
//\ingroup graphbits |
28 | 28 |
//\file |
29 | 29 |
//\brief Graph maps that construct and destruct their elements dynamically. |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
|
33 | 33 |
|
34 | 34 |
//#ifndef LEMON_USE_DEBUG_MAP |
35 | 35 |
|
36 | 36 |
template <typename _Graph, typename _Item, typename _Value> |
37 | 37 |
struct DefaultMapSelector { |
38 | 38 |
typedef ArrayMap<_Graph, _Item, _Value> Map; |
39 | 39 |
}; |
40 | 40 |
|
41 | 41 |
// bool |
42 | 42 |
template <typename _Graph, typename _Item> |
43 | 43 |
struct DefaultMapSelector<_Graph, _Item, bool> { |
44 | 44 |
typedef VectorMap<_Graph, _Item, bool> Map; |
45 | 45 |
}; |
46 | 46 |
|
47 | 47 |
// char |
48 | 48 |
template <typename _Graph, typename _Item> |
49 | 49 |
struct DefaultMapSelector<_Graph, _Item, char> { |
50 | 50 |
typedef VectorMap<_Graph, _Item, char> Map; |
51 | 51 |
}; |
52 | 52 |
|
53 | 53 |
template <typename _Graph, typename _Item> |
54 | 54 |
struct DefaultMapSelector<_Graph, _Item, signed char> { |
55 | 55 |
typedef VectorMap<_Graph, _Item, signed char> Map; |
56 | 56 |
}; |
57 | 57 |
|
58 | 58 |
template <typename _Graph, typename _Item> |
59 | 59 |
struct DefaultMapSelector<_Graph, _Item, unsigned char> { |
60 | 60 |
typedef VectorMap<_Graph, _Item, unsigned char> Map; |
61 | 61 |
}; |
62 | 62 |
|
63 | 63 |
|
64 | 64 |
// int |
65 | 65 |
template <typename _Graph, typename _Item> |
66 | 66 |
struct DefaultMapSelector<_Graph, _Item, signed int> { |
67 | 67 |
typedef VectorMap<_Graph, _Item, signed int> Map; |
68 | 68 |
}; |
69 | 69 |
|
70 | 70 |
template <typename _Graph, typename _Item> |
71 | 71 |
struct DefaultMapSelector<_Graph, _Item, unsigned int> { |
72 | 72 |
typedef VectorMap<_Graph, _Item, unsigned int> Map; |
73 | 73 |
}; |
74 | 74 |
|
75 | 75 |
|
76 | 76 |
// short |
77 | 77 |
template <typename _Graph, typename _Item> |
78 | 78 |
struct DefaultMapSelector<_Graph, _Item, signed short> { |
79 | 79 |
typedef VectorMap<_Graph, _Item, signed short> Map; |
80 | 80 |
}; |
81 | 81 |
|
82 | 82 |
template <typename _Graph, typename _Item> |
83 | 83 |
struct DefaultMapSelector<_Graph, _Item, unsigned short> { |
84 | 84 |
typedef VectorMap<_Graph, _Item, unsigned short> Map; |
85 | 85 |
}; |
86 | 86 |
|
87 | 87 |
|
88 | 88 |
// long |
89 | 89 |
template <typename _Graph, typename _Item> |
90 | 90 |
struct DefaultMapSelector<_Graph, _Item, signed long> { |
91 | 91 |
typedef VectorMap<_Graph, _Item, signed long> Map; |
92 | 92 |
}; |
93 | 93 |
|
94 | 94 |
template <typename _Graph, typename _Item> |
95 | 95 |
struct DefaultMapSelector<_Graph, _Item, unsigned long> { |
96 | 96 |
typedef VectorMap<_Graph, _Item, unsigned long> Map; |
97 | 97 |
}; |
98 | 98 |
|
99 | 99 |
|
100 | 100 |
#if defined LEMON_HAVE_LONG_LONG |
101 | 101 |
|
102 | 102 |
// long long |
103 | 103 |
template <typename _Graph, typename _Item> |
104 | 104 |
struct DefaultMapSelector<_Graph, _Item, signed long long> { |
105 | 105 |
typedef VectorMap<_Graph, _Item, signed long long> Map; |
106 | 106 |
}; |
107 | 107 |
|
108 | 108 |
template <typename _Graph, typename _Item> |
109 | 109 |
struct DefaultMapSelector<_Graph, _Item, unsigned long long> { |
110 | 110 |
typedef VectorMap<_Graph, _Item, unsigned long long> Map; |
111 | 111 |
}; |
112 | 112 |
|
113 | 113 |
#endif |
114 | 114 |
|
115 | 115 |
|
116 | 116 |
// float |
117 | 117 |
template <typename _Graph, typename _Item> |
118 | 118 |
struct DefaultMapSelector<_Graph, _Item, float> { |
119 | 119 |
typedef VectorMap<_Graph, _Item, float> Map; |
120 | 120 |
}; |
121 | 121 |
|
122 | 122 |
|
123 | 123 |
// double |
124 | 124 |
template <typename _Graph, typename _Item> |
125 | 125 |
struct DefaultMapSelector<_Graph, _Item, double> { |
126 | 126 |
typedef VectorMap<_Graph, _Item, double> Map; |
127 | 127 |
}; |
128 | 128 |
|
129 | 129 |
|
130 | 130 |
// long double |
131 | 131 |
template <typename _Graph, typename _Item> |
132 | 132 |
struct DefaultMapSelector<_Graph, _Item, long double> { |
133 | 133 |
typedef VectorMap<_Graph, _Item, long double> Map; |
134 | 134 |
}; |
135 | 135 |
|
136 | 136 |
|
137 | 137 |
// pointer |
138 | 138 |
template <typename _Graph, typename _Item, typename _Ptr> |
139 | 139 |
struct DefaultMapSelector<_Graph, _Item, _Ptr*> { |
140 | 140 |
typedef VectorMap<_Graph, _Item, _Ptr*> Map; |
141 | 141 |
}; |
142 | 142 |
|
143 | 143 |
// #else |
144 | 144 |
|
145 | 145 |
// template <typename _Graph, typename _Item, typename _Value> |
146 | 146 |
// struct DefaultMapSelector { |
147 | 147 |
// typedef DebugMap<_Graph, _Item, _Value> Map; |
148 | 148 |
// }; |
149 | 149 |
|
150 | 150 |
// #endif |
151 | 151 |
|
152 | 152 |
// DefaultMap class |
153 | 153 |
template <typename _Graph, typename _Item, typename _Value> |
154 | 154 |
class DefaultMap |
155 | 155 |
: public DefaultMapSelector<_Graph, _Item, _Value>::Map { |
156 | 156 |
typedef typename DefaultMapSelector<_Graph, _Item, _Value>::Map Parent; |
157 | 157 |
|
158 | 158 |
public: |
159 | 159 |
typedef DefaultMap<_Graph, _Item, _Value> Map; |
160 | 160 |
|
161 | 161 |
typedef typename Parent::GraphType GraphType; |
162 | 162 |
typedef typename Parent::Value Value; |
163 | 163 |
|
164 | 164 |
explicit DefaultMap(const GraphType& graph) : Parent(graph) {} |
165 | 165 |
DefaultMap(const GraphType& graph, const Value& value) |
166 | 166 |
: Parent(graph, value) {} |
167 | 167 |
|
168 | 168 |
DefaultMap& operator=(const DefaultMap& cmap) { |
169 | 169 |
return operator=<DefaultMap>(cmap); |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
template <typename CMap> |
173 | 173 |
DefaultMap& operator=(const CMap& cmap) { |
174 | 174 |
Parent::operator=(cmap); |
175 | 175 |
return *this; |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
}; |
179 | 179 |
|
180 | 180 |
} |
181 | 181 |
|
182 | 182 |
#endif |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_EDGE_SET_EXTENDER_H |
20 | 20 |
#define LEMON_BITS_EDGE_SET_EXTENDER_H |
21 | 21 |
|
22 | 22 |
#include <lemon/core.h> |
23 | 23 |
#include <lemon/error.h> |
24 | 24 |
#include <lemon/bits/default_map.h> |
25 | 25 |
#include <lemon/bits/map_extender.h> |
26 | 26 |
|
27 | 27 |
//\ingroup digraphbits |
28 | 28 |
//\file |
29 | 29 |
//\brief Extenders for the arc set types |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
// \ingroup digraphbits |
33 | 33 |
// |
34 | 34 |
// \brief Extender for the ArcSets |
35 | 35 |
template <typename Base> |
36 | 36 |
class ArcSetExtender : public Base { |
37 | 37 |
typedef Base Parent; |
38 | 38 |
|
39 | 39 |
public: |
40 | 40 |
|
41 | 41 |
typedef ArcSetExtender Digraph; |
42 | 42 |
|
43 | 43 |
// Base extensions |
44 | 44 |
|
45 | 45 |
typedef typename Parent::Node Node; |
46 | 46 |
typedef typename Parent::Arc Arc; |
47 | 47 |
|
48 | 48 |
int maxId(Node) const { |
49 | 49 |
return Parent::maxNodeId(); |
50 | 50 |
} |
51 | 51 |
|
52 | 52 |
int maxId(Arc) const { |
53 | 53 |
return Parent::maxArcId(); |
54 | 54 |
} |
55 | 55 |
|
56 | 56 |
Node fromId(int id, Node) const { |
57 | 57 |
return Parent::nodeFromId(id); |
58 | 58 |
} |
59 | 59 |
|
60 | 60 |
Arc fromId(int id, Arc) const { |
61 | 61 |
return Parent::arcFromId(id); |
62 | 62 |
} |
63 | 63 |
|
64 | 64 |
Node oppositeNode(const Node &n, const Arc &e) const { |
65 | 65 |
if (n == Parent::source(e)) |
66 | 66 |
return Parent::target(e); |
67 | 67 |
else if(n==Parent::target(e)) |
68 | 68 |
return Parent::source(e); |
69 | 69 |
else |
70 | 70 |
return INVALID; |
71 | 71 |
} |
72 | 72 |
|
73 | 73 |
|
74 | 74 |
// Alteration notifier extensions |
75 | 75 |
|
76 | 76 |
// The arc observer registry. |
77 | 77 |
typedef AlterationNotifier<ArcSetExtender, Arc> ArcNotifier; |
78 | 78 |
|
79 | 79 |
protected: |
80 | 80 |
|
81 | 81 |
mutable ArcNotifier arc_notifier; |
82 | 82 |
|
83 | 83 |
public: |
84 | 84 |
|
85 | 85 |
using Parent::notifier; |
86 | 86 |
|
87 | 87 |
// Gives back the arc alteration notifier. |
88 | 88 |
ArcNotifier& notifier(Arc) const { |
89 | 89 |
return arc_notifier; |
90 | 90 |
} |
91 | 91 |
|
92 | 92 |
// Iterable extensions |
93 | 93 |
|
94 | 94 |
class NodeIt : public Node { |
95 | 95 |
const Digraph* digraph; |
96 | 96 |
public: |
97 | 97 |
|
98 | 98 |
NodeIt() {} |
99 | 99 |
|
100 | 100 |
NodeIt(Invalid i) : Node(i) { } |
101 | 101 |
|
102 | 102 |
explicit NodeIt(const Digraph& _graph) : digraph(&_graph) { |
103 | 103 |
_graph.first(static_cast<Node&>(*this)); |
104 | 104 |
} |
105 | 105 |
|
106 | 106 |
NodeIt(const Digraph& _graph, const Node& node) |
107 | 107 |
: Node(node), digraph(&_graph) {} |
108 | 108 |
|
109 | 109 |
NodeIt& operator++() { |
110 | 110 |
digraph->next(*this); |
111 | 111 |
return *this; |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
}; |
115 | 115 |
|
116 | 116 |
|
117 | 117 |
class ArcIt : public Arc { |
118 | 118 |
const Digraph* digraph; |
119 | 119 |
public: |
120 | 120 |
|
121 | 121 |
ArcIt() { } |
122 | 122 |
|
123 | 123 |
ArcIt(Invalid i) : Arc(i) { } |
124 | 124 |
|
125 | 125 |
explicit ArcIt(const Digraph& _graph) : digraph(&_graph) { |
126 | 126 |
_graph.first(static_cast<Arc&>(*this)); |
127 | 127 |
} |
128 | 128 |
|
129 | 129 |
ArcIt(const Digraph& _graph, const Arc& e) : |
130 | 130 |
Arc(e), digraph(&_graph) { } |
131 | 131 |
|
132 | 132 |
ArcIt& operator++() { |
133 | 133 |
digraph->next(*this); |
134 | 134 |
return *this; |
135 | 135 |
} |
136 | 136 |
|
137 | 137 |
}; |
138 | 138 |
|
139 | 139 |
|
140 | 140 |
class OutArcIt : public Arc { |
141 | 141 |
const Digraph* digraph; |
142 | 142 |
public: |
143 | 143 |
|
144 | 144 |
OutArcIt() { } |
145 | 145 |
|
146 | 146 |
OutArcIt(Invalid i) : Arc(i) { } |
147 | 147 |
|
148 | 148 |
OutArcIt(const Digraph& _graph, const Node& node) |
149 | 149 |
: digraph(&_graph) { |
150 | 150 |
_graph.firstOut(*this, node); |
151 | 151 |
} |
152 | 152 |
|
153 | 153 |
OutArcIt(const Digraph& _graph, const Arc& arc) |
154 | 154 |
: Arc(arc), digraph(&_graph) {} |
155 | 155 |
|
156 | 156 |
OutArcIt& operator++() { |
157 | 157 |
digraph->nextOut(*this); |
158 | 158 |
return *this; |
159 | 159 |
} |
160 | 160 |
|
161 | 161 |
}; |
162 | 162 |
|
163 | 163 |
|
164 | 164 |
class InArcIt : public Arc { |
165 | 165 |
const Digraph* digraph; |
166 | 166 |
public: |
167 | 167 |
|
168 | 168 |
InArcIt() { } |
169 | 169 |
|
170 | 170 |
InArcIt(Invalid i) : Arc(i) { } |
171 | 171 |
|
172 | 172 |
InArcIt(const Digraph& _graph, const Node& node) |
173 | 173 |
: digraph(&_graph) { |
174 | 174 |
_graph.firstIn(*this, node); |
175 | 175 |
} |
176 | 176 |
|
177 | 177 |
InArcIt(const Digraph& _graph, const Arc& arc) : |
178 | 178 |
Arc(arc), digraph(&_graph) {} |
179 | 179 |
|
180 | 180 |
InArcIt& operator++() { |
181 | 181 |
digraph->nextIn(*this); |
182 | 182 |
return *this; |
183 | 183 |
} |
184 | 184 |
|
185 | 185 |
}; |
186 | 186 |
|
187 | 187 |
// \brief Base node of the iterator |
188 | 188 |
// |
189 | 189 |
// Returns the base node (ie. the source in this case) of the iterator |
190 | 190 |
Node baseNode(const OutArcIt &e) const { |
191 | 191 |
return Parent::source(static_cast<const Arc&>(e)); |
192 | 192 |
} |
193 | 193 |
// \brief Running node of the iterator |
194 | 194 |
// |
195 | 195 |
// Returns the running node (ie. the target in this case) of the |
196 | 196 |
// iterator |
197 | 197 |
Node runningNode(const OutArcIt &e) const { |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BITS_SOLVER_BITS_H |
20 | 20 |
#define LEMON_BITS_SOLVER_BITS_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
|
24 | 24 |
namespace lemon { |
25 | 25 |
|
26 | 26 |
namespace _solver_bits { |
27 | 27 |
|
28 | 28 |
class VarIndex { |
29 | 29 |
private: |
30 | 30 |
struct ItemT { |
31 | 31 |
int prev, next; |
32 | 32 |
int index; |
33 | 33 |
}; |
34 | 34 |
std::vector<ItemT> items; |
35 | 35 |
int first_item, last_item, first_free_item; |
36 | 36 |
|
37 | 37 |
std::vector<int> cross; |
38 | 38 |
|
39 | 39 |
public: |
40 | 40 |
|
41 | 41 |
VarIndex() |
42 | 42 |
: first_item(-1), last_item(-1), first_free_item(-1) { |
43 | 43 |
} |
44 | 44 |
|
45 | 45 |
void clear() { |
46 | 46 |
first_item = -1; |
47 | 47 |
first_free_item = -1; |
48 | 48 |
items.clear(); |
49 | 49 |
cross.clear(); |
50 | 50 |
} |
51 | 51 |
|
52 | 52 |
int addIndex(int idx) { |
53 | 53 |
int n; |
54 | 54 |
if (first_free_item == -1) { |
55 | 55 |
n = items.size(); |
56 | 56 |
items.push_back(ItemT()); |
57 | 57 |
} else { |
58 | 58 |
n = first_free_item; |
59 | 59 |
first_free_item = items[n].next; |
60 | 60 |
if (first_free_item != -1) { |
61 | 61 |
items[first_free_item].prev = -1; |
62 | 62 |
} |
63 | 63 |
} |
64 | 64 |
items[n].index = idx; |
65 | 65 |
if (static_cast<int>(cross.size()) <= idx) { |
66 | 66 |
cross.resize(idx + 1, -1); |
67 | 67 |
} |
68 | 68 |
cross[idx] = n; |
69 | 69 |
|
70 | 70 |
items[n].prev = last_item; |
71 | 71 |
items[n].next = -1; |
72 | 72 |
if (last_item != -1) { |
73 | 73 |
items[last_item].next = n; |
74 | 74 |
} else { |
75 | 75 |
first_item = n; |
76 | 76 |
} |
77 | 77 |
last_item = n; |
78 | 78 |
|
79 | 79 |
return n; |
80 | 80 |
} |
81 | 81 |
|
82 | 82 |
int addIndex(int idx, int n) { |
83 | 83 |
while (n >= static_cast<int>(items.size())) { |
84 | 84 |
items.push_back(ItemT()); |
85 | 85 |
items.back().prev = -1; |
86 | 86 |
items.back().next = first_free_item; |
87 | 87 |
if (first_free_item != -1) { |
88 | 88 |
items[first_free_item].prev = items.size() - 1; |
89 | 89 |
} |
90 | 90 |
first_free_item = items.size() - 1; |
91 | 91 |
} |
92 | 92 |
if (items[n].next != -1) { |
93 | 93 |
items[items[n].next].prev = items[n].prev; |
94 | 94 |
} |
95 | 95 |
if (items[n].prev != -1) { |
96 | 96 |
items[items[n].prev].next = items[n].next; |
97 | 97 |
} else { |
98 | 98 |
first_free_item = items[n].next; |
99 | 99 |
} |
100 | 100 |
|
101 | 101 |
items[n].index = idx; |
102 | 102 |
if (static_cast<int>(cross.size()) <= idx) { |
103 | 103 |
cross.resize(idx + 1, -1); |
104 | 104 |
} |
105 | 105 |
cross[idx] = n; |
106 | 106 |
|
107 | 107 |
items[n].prev = last_item; |
108 | 108 |
items[n].next = -1; |
109 | 109 |
if (last_item != -1) { |
110 | 110 |
items[last_item].next = n; |
111 | 111 |
} else { |
112 | 112 |
first_item = n; |
113 | 113 |
} |
114 | 114 |
last_item = n; |
115 | 115 |
|
116 | 116 |
return n; |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
void eraseIndex(int idx) { |
120 | 120 |
int n = cross[idx]; |
121 | 121 |
|
122 | 122 |
if (items[n].prev != -1) { |
123 | 123 |
items[items[n].prev].next = items[n].next; |
124 | 124 |
} else { |
125 | 125 |
first_item = items[n].next; |
126 | 126 |
} |
127 | 127 |
if (items[n].next != -1) { |
128 | 128 |
items[items[n].next].prev = items[n].prev; |
129 | 129 |
} else { |
130 | 130 |
last_item = items[n].prev; |
131 | 131 |
} |
132 | 132 |
|
133 | 133 |
if (first_free_item != -1) { |
134 | 134 |
items[first_free_item].prev = n; |
135 | 135 |
} |
136 | 136 |
items[n].next = first_free_item; |
137 | 137 |
items[n].prev = -1; |
138 | 138 |
first_free_item = n; |
139 | 139 |
|
140 | 140 |
while (!cross.empty() && cross.back() == -1) { |
141 | 141 |
cross.pop_back(); |
142 | 142 |
} |
143 | 143 |
} |
144 | 144 |
|
145 | 145 |
int maxIndex() const { |
146 | 146 |
return cross.size() - 1; |
147 | 147 |
} |
148 | 148 |
|
149 | 149 |
void shiftIndices(int idx) { |
150 | 150 |
for (int i = idx + 1; i < static_cast<int>(cross.size()); ++i) { |
151 | 151 |
cross[i - 1] = cross[i]; |
152 | 152 |
if (cross[i] != -1) { |
153 | 153 |
--items[cross[i]].index; |
154 | 154 |
} |
155 | 155 |
} |
156 | 156 |
cross.back() = -1; |
157 | 157 |
cross.pop_back(); |
158 | 158 |
while (!cross.empty() && cross.back() == -1) { |
159 | 159 |
cross.pop_back(); |
160 | 160 |
} |
161 | 161 |
} |
162 | 162 |
|
163 | 163 |
void relocateIndex(int idx, int jdx) { |
164 | 164 |
cross[idx] = cross[jdx]; |
165 | 165 |
items[cross[jdx]].index = idx; |
166 | 166 |
cross[jdx] = -1; |
167 | 167 |
|
168 | 168 |
while (!cross.empty() && cross.back() == -1) { |
169 | 169 |
cross.pop_back(); |
170 | 170 |
} |
171 | 171 |
} |
172 | 172 |
|
173 | 173 |
int operator[](int idx) const { |
174 | 174 |
return cross[idx]; |
175 | 175 |
} |
176 | 176 |
|
177 | 177 |
int operator()(int fdx) const { |
178 | 178 |
return items[fdx].index; |
179 | 179 |
} |
180 | 180 |
|
181 | 181 |
void firstItem(int& fdx) const { |
182 | 182 |
fdx = first_item; |
183 | 183 |
} |
184 | 184 |
|
185 | 185 |
void nextItem(int& fdx) const { |
186 | 186 |
fdx = items[fdx].next; |
187 | 187 |
} |
188 | 188 |
|
189 | 189 |
}; |
190 | 190 |
} |
191 | 191 |
} |
192 | 192 |
|
193 | 193 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\file |
20 | 20 |
///\brief Some basic non-inline functions and static global data. |
21 | 21 |
|
22 | 22 |
#include<lemon/bits/windows.h> |
23 | 23 |
|
24 | 24 |
#ifdef WIN32 |
25 | 25 |
#ifndef WIN32_LEAN_AND_MEAN |
26 | 26 |
#define WIN32_LEAN_AND_MEAN |
27 | 27 |
#endif |
28 | 28 |
#ifndef NOMINMAX |
29 | 29 |
#define NOMINMAX |
30 | 30 |
#endif |
31 | 31 |
#ifdef UNICODE |
32 | 32 |
#undef UNICODE |
33 | 33 |
#endif |
34 | 34 |
#include <windows.h> |
35 | 35 |
#ifdef LOCALE_INVARIANT |
36 | 36 |
#define MY_LOCALE LOCALE_INVARIANT |
37 | 37 |
#else |
38 | 38 |
#define MY_LOCALE LOCALE_NEUTRAL |
39 | 39 |
#endif |
40 | 40 |
#else |
41 | 41 |
#include <unistd.h> |
42 | 42 |
#include <ctime> |
43 | 43 |
#include <sys/times.h> |
44 | 44 |
#include <sys/time.h> |
45 | 45 |
#endif |
46 | 46 |
|
47 | 47 |
#include <cmath> |
48 | 48 |
#include <sstream> |
49 | 49 |
|
50 | 50 |
namespace lemon { |
51 | 51 |
namespace bits { |
52 | 52 |
void getWinProcTimes(double &rtime, |
53 | 53 |
double &utime, double &stime, |
54 | 54 |
double &cutime, double &cstime) |
55 | 55 |
{ |
56 | 56 |
#ifdef WIN32 |
57 | 57 |
static const double ch = 4294967296.0e-7; |
58 | 58 |
static const double cl = 1.0e-7; |
59 | 59 |
|
60 | 60 |
FILETIME system; |
61 | 61 |
GetSystemTimeAsFileTime(&system); |
62 | 62 |
rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime; |
63 | 63 |
|
64 | 64 |
FILETIME create, exit, kernel, user; |
65 | 65 |
if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) { |
66 | 66 |
utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime; |
67 | 67 |
stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime; |
68 | 68 |
cutime = 0; |
69 | 69 |
cstime = 0; |
70 | 70 |
} else { |
71 | 71 |
rtime = 0; |
72 | 72 |
utime = 0; |
73 | 73 |
stime = 0; |
74 | 74 |
cutime = 0; |
75 | 75 |
cstime = 0; |
76 | 76 |
} |
77 | 77 |
#else |
78 | 78 |
timeval tv; |
79 | 79 |
gettimeofday(&tv, 0); |
80 | 80 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6; |
81 | 81 |
|
82 | 82 |
tms ts; |
83 | 83 |
double tck=sysconf(_SC_CLK_TCK); |
84 | 84 |
times(&ts); |
85 | 85 |
utime=ts.tms_utime/tck; |
86 | 86 |
stime=ts.tms_stime/tck; |
87 | 87 |
cutime=ts.tms_cutime/tck; |
88 | 88 |
cstime=ts.tms_cstime/tck; |
89 | 89 |
#endif |
90 | 90 |
} |
91 | 91 |
|
92 | 92 |
std::string getWinFormattedDate() |
93 | 93 |
{ |
94 | 94 |
std::ostringstream os; |
95 | 95 |
#ifdef WIN32 |
96 | 96 |
SYSTEMTIME time; |
97 | 97 |
GetSystemTime(&time); |
98 | 98 |
char buf1[11], buf2[9], buf3[5]; |
99 | 99 |
if (GetDateFormat(MY_LOCALE, 0, &time, |
100 | 100 |
("ddd MMM dd"), buf1, 11) && |
101 | 101 |
GetTimeFormat(MY_LOCALE, 0, &time, |
102 | 102 |
("HH':'mm':'ss"), buf2, 9) && |
103 | 103 |
GetDateFormat(MY_LOCALE, 0, &time, |
104 | 104 |
("yyyy"), buf3, 5)) { |
105 | 105 |
os << buf1 << ' ' << buf2 << ' ' << buf3; |
106 | 106 |
} |
107 | 107 |
else os << "unknown"; |
108 | 108 |
#else |
109 | 109 |
timeval tv; |
110 | 110 |
gettimeofday(&tv, 0); |
111 | 111 |
|
112 | 112 |
char cbuf[26]; |
113 | 113 |
ctime_r(&tv.tv_sec,cbuf); |
114 | 114 |
os << cbuf; |
115 | 115 |
#endif |
116 | 116 |
return os.str(); |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
int getWinRndSeed() |
120 | 120 |
{ |
121 | 121 |
#ifdef WIN32 |
122 | 122 |
FILETIME time; |
123 | 123 |
GetSystemTimeAsFileTime(&time); |
124 | 124 |
return GetCurrentProcessId() + time.dwHighDateTime + time.dwLowDateTime; |
125 | 125 |
#else |
126 | 126 |
timeval tv; |
127 | 127 |
gettimeofday(&tv, 0); |
128 | 128 |
return getpid() + tv.tv_sec + tv.tv_usec; |
129 | 129 |
#endif |
130 | 130 |
} |
131 | 131 |
} |
132 | 132 |
} |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_BUCKET_HEAP_H |
20 | 20 |
#define LEMON_BUCKET_HEAP_H |
21 | 21 |
|
22 | 22 |
///\ingroup heaps |
23 | 23 |
///\file |
24 | 24 |
///\brief Bucket heap implementation. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <utility> |
28 | 28 |
#include <functional> |
29 | 29 |
|
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
namespace _bucket_heap_bits { |
33 | 33 |
|
34 | 34 |
template <bool MIN> |
35 | 35 |
struct DirectionTraits { |
36 | 36 |
static bool less(int left, int right) { |
37 | 37 |
return left < right; |
38 | 38 |
} |
39 | 39 |
static void increase(int& value) { |
40 | 40 |
++value; |
41 | 41 |
} |
42 | 42 |
}; |
43 | 43 |
|
44 | 44 |
template <> |
45 | 45 |
struct DirectionTraits<false> { |
46 | 46 |
static bool less(int left, int right) { |
47 | 47 |
return left > right; |
48 | 48 |
} |
49 | 49 |
static void increase(int& value) { |
50 | 50 |
--value; |
51 | 51 |
} |
52 | 52 |
}; |
53 | 53 |
|
54 | 54 |
} |
55 | 55 |
|
56 | 56 |
/// \ingroup heaps |
57 | 57 |
/// |
58 | 58 |
/// \brief Bucket heap data structure. |
59 | 59 |
/// |
60 | 60 |
/// This class implements the \e bucket \e heap data structure. |
61 | 61 |
/// It practically conforms to the \ref concepts::Heap "heap concept", |
62 | 62 |
/// but it has some limitations. |
63 | 63 |
/// |
64 | 64 |
/// The bucket heap is a very simple structure. It can store only |
65 | 65 |
/// \c int priorities and it maintains a list of items for each priority |
66 | 66 |
/// in the range <tt>[0..C)</tt>. So it should only be used when the |
67 | 67 |
/// priorities are small. It is not intended to use as a Dijkstra heap. |
68 | 68 |
/// |
69 | 69 |
/// \tparam IM A read-writable item map with \c int values, used |
70 | 70 |
/// internally to handle the cross references. |
71 | 71 |
/// \tparam MIN Indicate if the heap is a \e min-heap or a \e max-heap. |
72 | 72 |
/// The default is \e min-heap. If this parameter is set to \c false, |
73 | 73 |
/// then the comparison is reversed, so the top(), prio() and pop() |
74 | 74 |
/// functions deal with the item having maximum priority instead of the |
75 | 75 |
/// minimum. |
76 | 76 |
/// |
77 | 77 |
/// \sa SimpleBucketHeap |
78 | 78 |
template <typename IM, bool MIN = true> |
79 | 79 |
class BucketHeap { |
80 | 80 |
|
81 | 81 |
public: |
82 | 82 |
|
83 | 83 |
/// Type of the item-int map. |
84 | 84 |
typedef IM ItemIntMap; |
85 | 85 |
/// Type of the priorities. |
86 | 86 |
typedef int Prio; |
87 | 87 |
/// Type of the items stored in the heap. |
88 | 88 |
typedef typename ItemIntMap::Key Item; |
89 | 89 |
/// Type of the item-priority pairs. |
90 | 90 |
typedef std::pair<Item,Prio> Pair; |
91 | 91 |
|
92 | 92 |
private: |
93 | 93 |
|
94 | 94 |
typedef _bucket_heap_bits::DirectionTraits<MIN> Direction; |
95 | 95 |
|
96 | 96 |
public: |
97 | 97 |
|
98 | 98 |
/// \brief Type to represent the states of the items. |
99 | 99 |
/// |
100 | 100 |
/// Each item has a state associated to it. It can be "in heap", |
101 | 101 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
102 | 102 |
/// heap's point of view, but may be useful to the user. |
103 | 103 |
/// |
104 | 104 |
/// The item-int map must be initialized in such way that it assigns |
105 | 105 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
106 | 106 |
enum State { |
107 | 107 |
IN_HEAP = 0, ///< = 0. |
108 | 108 |
PRE_HEAP = -1, ///< = -1. |
109 | 109 |
POST_HEAP = -2 ///< = -2. |
110 | 110 |
}; |
111 | 111 |
|
112 | 112 |
public: |
113 | 113 |
|
114 | 114 |
/// \brief Constructor. |
115 | 115 |
/// |
116 | 116 |
/// Constructor. |
117 | 117 |
/// \param map A map that assigns \c int values to the items. |
118 | 118 |
/// It is used internally to handle the cross references. |
119 | 119 |
/// The assigned value must be \c PRE_HEAP (<tt>-1</tt>) for each item. |
120 | 120 |
explicit BucketHeap(ItemIntMap &map) : _iim(map), _minimum(0) {} |
121 | 121 |
|
122 | 122 |
/// \brief The number of items stored in the heap. |
123 | 123 |
/// |
124 | 124 |
/// This function returns the number of items stored in the heap. |
125 | 125 |
int size() const { return _data.size(); } |
126 | 126 |
|
127 | 127 |
/// \brief Check if the heap is empty. |
128 | 128 |
/// |
129 | 129 |
/// This function returns \c true if the heap is empty. |
130 | 130 |
bool empty() const { return _data.empty(); } |
131 | 131 |
|
132 | 132 |
/// \brief Make the heap empty. |
133 | 133 |
/// |
134 | 134 |
/// This functon makes the heap empty. |
135 | 135 |
/// It does not change the cross reference map. If you want to reuse |
136 | 136 |
/// a heap that is not surely empty, you should first clear it and |
137 | 137 |
/// then you should set the cross reference map to \c PRE_HEAP |
138 | 138 |
/// for each item. |
139 | 139 |
void clear() { |
140 | 140 |
_data.clear(); _first.clear(); _minimum = 0; |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
private: |
144 | 144 |
|
145 | 145 |
void relocateLast(int idx) { |
146 | 146 |
if (idx + 1 < int(_data.size())) { |
147 | 147 |
_data[idx] = _data.back(); |
148 | 148 |
if (_data[idx].prev != -1) { |
149 | 149 |
_data[_data[idx].prev].next = idx; |
150 | 150 |
} else { |
151 | 151 |
_first[_data[idx].value] = idx; |
152 | 152 |
} |
153 | 153 |
if (_data[idx].next != -1) { |
154 | 154 |
_data[_data[idx].next].prev = idx; |
155 | 155 |
} |
156 | 156 |
_iim[_data[idx].item] = idx; |
157 | 157 |
} |
158 | 158 |
_data.pop_back(); |
159 | 159 |
} |
160 | 160 |
|
161 | 161 |
void unlace(int idx) { |
162 | 162 |
if (_data[idx].prev != -1) { |
163 | 163 |
_data[_data[idx].prev].next = _data[idx].next; |
164 | 164 |
} else { |
165 | 165 |
_first[_data[idx].value] = _data[idx].next; |
166 | 166 |
} |
167 | 167 |
if (_data[idx].next != -1) { |
168 | 168 |
_data[_data[idx].next].prev = _data[idx].prev; |
169 | 169 |
} |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
void lace(int idx) { |
173 | 173 |
if (int(_first.size()) <= _data[idx].value) { |
174 | 174 |
_first.resize(_data[idx].value + 1, -1); |
175 | 175 |
} |
176 | 176 |
_data[idx].next = _first[_data[idx].value]; |
177 | 177 |
if (_data[idx].next != -1) { |
178 | 178 |
_data[_data[idx].next].prev = idx; |
179 | 179 |
} |
180 | 180 |
_first[_data[idx].value] = idx; |
181 | 181 |
_data[idx].prev = -1; |
182 | 182 |
} |
183 | 183 |
|
184 | 184 |
public: |
185 | 185 |
|
186 | 186 |
/// \brief Insert a pair of item and priority into the heap. |
187 | 187 |
/// |
188 | 188 |
/// This function inserts \c p.first to the heap with priority |
189 | 189 |
/// \c p.second. |
190 | 190 |
/// \param p The pair to insert. |
191 | 191 |
/// \pre \c p.first must not be stored in the heap. |
192 | 192 |
void push(const Pair& p) { |
193 | 193 |
push(p.first, p.second); |
194 | 194 |
} |
195 | 195 |
|
196 | 196 |
/// \brief Insert an item into the heap with the given priority. |
197 | 197 |
/// |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CAPACITY_SCALING_H |
20 | 20 |
#define LEMON_CAPACITY_SCALING_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// |
24 | 24 |
/// \file |
25 | 25 |
/// \brief Capacity Scaling algorithm for finding a minimum cost flow. |
26 | 26 |
|
27 | 27 |
#include <vector> |
28 | 28 |
#include <limits> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/bin_heap.h> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \brief Default traits class of CapacityScaling algorithm. |
35 | 35 |
/// |
36 | 36 |
/// Default traits class of CapacityScaling algorithm. |
37 | 37 |
/// \tparam GR Digraph type. |
38 | 38 |
/// \tparam V The number type used for flow amounts, capacity bounds |
39 | 39 |
/// and supply values. By default it is \c int. |
40 | 40 |
/// \tparam C The number type used for costs and potentials. |
41 | 41 |
/// By default it is the same as \c V. |
42 | 42 |
template <typename GR, typename V = int, typename C = V> |
43 | 43 |
struct CapacityScalingDefaultTraits |
44 | 44 |
{ |
45 | 45 |
/// The type of the digraph |
46 | 46 |
typedef GR Digraph; |
47 | 47 |
/// The type of the flow amounts, capacity bounds and supply values |
48 | 48 |
typedef V Value; |
49 | 49 |
/// The type of the arc costs |
50 | 50 |
typedef C Cost; |
51 | 51 |
|
52 | 52 |
/// \brief The type of the heap used for internal Dijkstra computations. |
53 | 53 |
/// |
54 | 54 |
/// The type of the heap used for internal Dijkstra computations. |
55 | 55 |
/// It must conform to the \ref lemon::concepts::Heap "Heap" concept, |
56 | 56 |
/// its priority type must be \c Cost and its cross reference type |
57 | 57 |
/// must be \ref RangeMap "RangeMap<int>". |
58 | 58 |
typedef BinHeap<Cost, RangeMap<int> > Heap; |
59 | 59 |
}; |
60 | 60 |
|
61 | 61 |
/// \addtogroup min_cost_flow_algs |
62 | 62 |
/// @{ |
63 | 63 |
|
64 | 64 |
/// \brief Implementation of the Capacity Scaling algorithm for |
65 | 65 |
/// finding a \ref min_cost_flow "minimum cost flow". |
66 | 66 |
/// |
67 | 67 |
/// \ref CapacityScaling implements the capacity scaling version |
68 | 68 |
/// of the successive shortest path algorithm for finding a |
69 | 69 |
/// \ref min_cost_flow "minimum cost flow" \ref amo93networkflows, |
70 | 70 |
/// \ref edmondskarp72theoretical. It is an efficient dual |
71 | 71 |
/// solution method. |
72 | 72 |
/// |
73 | 73 |
/// Most of the parameters of the problem (except for the digraph) |
74 | 74 |
/// can be given using separate functions, and the algorithm can be |
75 | 75 |
/// executed using the \ref run() function. If some parameters are not |
76 | 76 |
/// specified, then default values will be used. |
77 | 77 |
/// |
78 | 78 |
/// \tparam GR The digraph type the algorithm runs on. |
79 | 79 |
/// \tparam V The number type used for flow amounts, capacity bounds |
80 | 80 |
/// and supply values in the algorithm. By default, it is \c int. |
81 | 81 |
/// \tparam C The number type used for costs and potentials in the |
82 | 82 |
/// algorithm. By default, it is the same as \c V. |
83 | 83 |
/// \tparam TR The traits class that defines various types used by the |
84 | 84 |
/// algorithm. By default, it is \ref CapacityScalingDefaultTraits |
85 | 85 |
/// "CapacityScalingDefaultTraits<GR, V, C>". |
86 | 86 |
/// In most cases, this parameter should not be set directly, |
87 | 87 |
/// consider to use the named template parameters instead. |
88 | 88 |
/// |
89 | 89 |
/// \warning Both number types must be signed and all input data must |
90 | 90 |
/// be integer. |
91 | 91 |
/// \warning This algorithm does not support negative costs for such |
92 | 92 |
/// arcs that have infinite upper bound. |
93 | 93 |
#ifdef DOXYGEN |
94 | 94 |
template <typename GR, typename V, typename C, typename TR> |
95 | 95 |
#else |
96 | 96 |
template < typename GR, typename V = int, typename C = V, |
97 | 97 |
typename TR = CapacityScalingDefaultTraits<GR, V, C> > |
98 | 98 |
#endif |
99 | 99 |
class CapacityScaling |
100 | 100 |
{ |
101 | 101 |
public: |
102 | 102 |
|
103 | 103 |
/// The type of the digraph |
104 | 104 |
typedef typename TR::Digraph Digraph; |
105 | 105 |
/// The type of the flow amounts, capacity bounds and supply values |
106 | 106 |
typedef typename TR::Value Value; |
107 | 107 |
/// The type of the arc costs |
108 | 108 |
typedef typename TR::Cost Cost; |
109 | 109 |
|
110 | 110 |
/// The type of the heap used for internal Dijkstra computations |
111 | 111 |
typedef typename TR::Heap Heap; |
112 | 112 |
|
113 | 113 |
/// The \ref CapacityScalingDefaultTraits "traits class" of the algorithm |
114 | 114 |
typedef TR Traits; |
115 | 115 |
|
116 | 116 |
public: |
117 | 117 |
|
118 | 118 |
/// \brief Problem type constants for the \c run() function. |
119 | 119 |
/// |
120 | 120 |
/// Enum type containing the problem type constants that can be |
121 | 121 |
/// returned by the \ref run() function of the algorithm. |
122 | 122 |
enum ProblemType { |
123 | 123 |
/// The problem has no feasible solution (flow). |
124 | 124 |
INFEASIBLE, |
125 | 125 |
/// The problem has optimal solution (i.e. it is feasible and |
126 | 126 |
/// bounded), and the algorithm has found optimal flow and node |
127 | 127 |
/// potentials (primal and dual solutions). |
128 | 128 |
OPTIMAL, |
129 | 129 |
/// The digraph contains an arc of negative cost and infinite |
130 | 130 |
/// upper bound. It means that the objective function is unbounded |
131 | 131 |
/// on that arc, however, note that it could actually be bounded |
132 | 132 |
/// over the feasible flows, but this algroithm cannot handle |
133 | 133 |
/// these cases. |
134 | 134 |
UNBOUNDED |
135 | 135 |
}; |
136 | 136 |
|
137 | 137 |
private: |
138 | 138 |
|
139 | 139 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
140 | 140 |
|
141 | 141 |
typedef std::vector<int> IntVector; |
142 | 142 |
typedef std::vector<Value> ValueVector; |
143 | 143 |
typedef std::vector<Cost> CostVector; |
144 | 144 |
typedef std::vector<char> BoolVector; |
145 | 145 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
146 | 146 |
|
147 | 147 |
private: |
148 | 148 |
|
149 | 149 |
// Data related to the underlying digraph |
150 | 150 |
const GR &_graph; |
151 | 151 |
int _node_num; |
152 | 152 |
int _arc_num; |
153 | 153 |
int _res_arc_num; |
154 | 154 |
int _root; |
155 | 155 |
|
156 | 156 |
// Parameters of the problem |
157 | 157 |
bool _have_lower; |
158 | 158 |
Value _sum_supply; |
159 | 159 |
|
160 | 160 |
// Data structures for storing the digraph |
161 | 161 |
IntNodeMap _node_id; |
162 | 162 |
IntArcMap _arc_idf; |
163 | 163 |
IntArcMap _arc_idb; |
164 | 164 |
IntVector _first_out; |
165 | 165 |
BoolVector _forward; |
166 | 166 |
IntVector _source; |
167 | 167 |
IntVector _target; |
168 | 168 |
IntVector _reverse; |
169 | 169 |
|
170 | 170 |
// Node and arc data |
171 | 171 |
ValueVector _lower; |
172 | 172 |
ValueVector _upper; |
173 | 173 |
CostVector _cost; |
174 | 174 |
ValueVector _supply; |
175 | 175 |
|
176 | 176 |
ValueVector _res_cap; |
177 | 177 |
CostVector _pi; |
178 | 178 |
ValueVector _excess; |
179 | 179 |
IntVector _excess_nodes; |
180 | 180 |
IntVector _deficit_nodes; |
181 | 181 |
|
182 | 182 |
Value _delta; |
183 | 183 |
int _factor; |
184 | 184 |
IntVector _pred; |
185 | 185 |
|
186 | 186 |
public: |
187 | 187 |
|
188 | 188 |
/// \brief Constant for infinite upper bounds (capacities). |
189 | 189 |
/// |
190 | 190 |
/// Constant for infinite upper bounds (capacities). |
191 | 191 |
/// It is \c std::numeric_limits<Value>::infinity() if available, |
192 | 192 |
/// \c std::numeric_limits<Value>::max() otherwise. |
193 | 193 |
const Value INF; |
194 | 194 |
|
195 | 195 |
private: |
196 | 196 |
|
197 | 197 |
// Special implementation of the Dijkstra algorithm for finding |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
// -*- C++ -*- |
20 | 20 |
#ifndef LEMON_CBC_H |
21 | 21 |
#define LEMON_CBC_H |
22 | 22 |
|
23 | 23 |
///\file |
24 | 24 |
///\brief Header of the LEMON-CBC mip solver interface. |
25 | 25 |
///\ingroup lp_group |
26 | 26 |
|
27 | 27 |
#include <lemon/lp_base.h> |
28 | 28 |
|
29 | 29 |
class CoinModel; |
30 | 30 |
class OsiSolverInterface; |
31 | 31 |
class CbcModel; |
32 | 32 |
|
33 | 33 |
namespace lemon { |
34 | 34 |
|
35 | 35 |
/// \brief Interface for the CBC MIP solver |
36 | 36 |
/// |
37 | 37 |
/// This class implements an interface for the CBC MIP solver. |
38 | 38 |
///\ingroup lp_group |
39 | 39 |
class CbcMip : public MipSolver { |
40 | 40 |
protected: |
41 | 41 |
|
42 | 42 |
CoinModel *_prob; |
43 | 43 |
OsiSolverInterface *_osi_solver; |
44 | 44 |
CbcModel *_cbc_model; |
45 | 45 |
|
46 | 46 |
public: |
47 | 47 |
|
48 | 48 |
/// \e |
49 | 49 |
CbcMip(); |
50 | 50 |
/// \e |
51 | 51 |
CbcMip(const CbcMip&); |
52 | 52 |
/// \e |
53 | 53 |
~CbcMip(); |
54 | 54 |
/// \e |
55 | 55 |
virtual CbcMip* newSolver() const; |
56 | 56 |
/// \e |
57 | 57 |
virtual CbcMip* cloneSolver() const; |
58 | 58 |
|
59 | 59 |
protected: |
60 | 60 |
|
61 | 61 |
virtual const char* _solverName() const; |
62 | 62 |
|
63 | 63 |
virtual int _addCol(); |
64 | 64 |
virtual int _addRow(); |
65 | 65 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
66 | 66 |
|
67 | 67 |
virtual void _eraseCol(int i); |
68 | 68 |
virtual void _eraseRow(int i); |
69 | 69 |
|
70 | 70 |
virtual void _eraseColId(int i); |
71 | 71 |
virtual void _eraseRowId(int i); |
72 | 72 |
|
73 | 73 |
virtual void _getColName(int col, std::string& name) const; |
74 | 74 |
virtual void _setColName(int col, const std::string& name); |
75 | 75 |
virtual int _colByName(const std::string& name) const; |
76 | 76 |
|
77 | 77 |
virtual void _getRowName(int row, std::string& name) const; |
78 | 78 |
virtual void _setRowName(int row, const std::string& name); |
79 | 79 |
virtual int _rowByName(const std::string& name) const; |
80 | 80 |
|
81 | 81 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
82 | 82 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
83 | 83 |
|
84 | 84 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
85 | 85 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
86 | 86 |
|
87 | 87 |
virtual void _setCoeff(int row, int col, Value value); |
88 | 88 |
virtual Value _getCoeff(int row, int col) const; |
89 | 89 |
|
90 | 90 |
virtual void _setColLowerBound(int i, Value value); |
91 | 91 |
virtual Value _getColLowerBound(int i) const; |
92 | 92 |
virtual void _setColUpperBound(int i, Value value); |
93 | 93 |
virtual Value _getColUpperBound(int i) const; |
94 | 94 |
|
95 | 95 |
virtual void _setRowLowerBound(int i, Value value); |
96 | 96 |
virtual Value _getRowLowerBound(int i) const; |
97 | 97 |
virtual void _setRowUpperBound(int i, Value value); |
98 | 98 |
virtual Value _getRowUpperBound(int i) const; |
99 | 99 |
|
100 | 100 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e); |
101 | 101 |
virtual void _getObjCoeffs(InsertIterator b) const; |
102 | 102 |
|
103 | 103 |
virtual void _setObjCoeff(int i, Value obj_coef); |
104 | 104 |
virtual Value _getObjCoeff(int i) const; |
105 | 105 |
|
106 | 106 |
virtual void _setSense(Sense sense); |
107 | 107 |
virtual Sense _getSense() const; |
108 | 108 |
|
109 | 109 |
virtual ColTypes _getColType(int col) const; |
110 | 110 |
virtual void _setColType(int col, ColTypes col_type); |
111 | 111 |
|
112 | 112 |
virtual SolveExitStatus _solve(); |
113 | 113 |
virtual ProblemType _getType() const; |
114 | 114 |
virtual Value _getSol(int i) const; |
115 | 115 |
virtual Value _getSolValue() const; |
116 | 116 |
|
117 | 117 |
virtual void _clear(); |
118 | 118 |
|
119 | 119 |
virtual void _messageLevel(MessageLevel level); |
120 | 120 |
void _applyMessageLevel(); |
121 | 121 |
|
122 | 122 |
int _message_level; |
123 | 123 |
|
124 | 124 |
|
125 | 125 |
|
126 | 126 |
}; |
127 | 127 |
|
128 | 128 |
} |
129 | 129 |
|
130 | 130 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CIRCULATION_H |
20 | 20 |
#define LEMON_CIRCULATION_H |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 | 24 |
#include <limits> |
25 | 25 |
|
26 | 26 |
///\ingroup max_flow |
27 | 27 |
///\file |
28 | 28 |
///\brief Push-relabel algorithm for finding a feasible circulation. |
29 | 29 |
/// |
30 | 30 |
namespace lemon { |
31 | 31 |
|
32 | 32 |
/// \brief Default traits class of Circulation class. |
33 | 33 |
/// |
34 | 34 |
/// Default traits class of Circulation class. |
35 | 35 |
/// |
36 | 36 |
/// \tparam GR Type of the digraph the algorithm runs on. |
37 | 37 |
/// \tparam LM The type of the lower bound map. |
38 | 38 |
/// \tparam UM The type of the upper bound (capacity) map. |
39 | 39 |
/// \tparam SM The type of the supply map. |
40 | 40 |
template <typename GR, typename LM, |
41 | 41 |
typename UM, typename SM> |
42 | 42 |
struct CirculationDefaultTraits { |
43 | 43 |
|
44 | 44 |
/// \brief The type of the digraph the algorithm runs on. |
45 | 45 |
typedef GR Digraph; |
46 | 46 |
|
47 | 47 |
/// \brief The type of the lower bound map. |
48 | 48 |
/// |
49 | 49 |
/// The type of the map that stores the lower bounds on the arcs. |
50 | 50 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
51 | 51 |
typedef LM LowerMap; |
52 | 52 |
|
53 | 53 |
/// \brief The type of the upper bound (capacity) map. |
54 | 54 |
/// |
55 | 55 |
/// The type of the map that stores the upper bounds (capacities) |
56 | 56 |
/// on the arcs. |
57 | 57 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
58 | 58 |
typedef UM UpperMap; |
59 | 59 |
|
60 | 60 |
/// \brief The type of supply map. |
61 | 61 |
/// |
62 | 62 |
/// The type of the map that stores the signed supply values of the |
63 | 63 |
/// nodes. |
64 | 64 |
/// It must conform to the \ref concepts::ReadMap "ReadMap" concept. |
65 | 65 |
typedef SM SupplyMap; |
66 | 66 |
|
67 | 67 |
/// \brief The type of the flow and supply values. |
68 | 68 |
typedef typename SupplyMap::Value Value; |
69 | 69 |
|
70 | 70 |
/// \brief The type of the map that stores the flow values. |
71 | 71 |
/// |
72 | 72 |
/// The type of the map that stores the flow values. |
73 | 73 |
/// It must conform to the \ref concepts::ReadWriteMap "ReadWriteMap" |
74 | 74 |
/// concept. |
75 | 75 |
#ifdef DOXYGEN |
76 | 76 |
typedef GR::ArcMap<Value> FlowMap; |
77 | 77 |
#else |
78 | 78 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
79 | 79 |
#endif |
80 | 80 |
|
81 | 81 |
/// \brief Instantiates a FlowMap. |
82 | 82 |
/// |
83 | 83 |
/// This function instantiates a \ref FlowMap. |
84 | 84 |
/// \param digraph The digraph for which we would like to define |
85 | 85 |
/// the flow map. |
86 | 86 |
static FlowMap* createFlowMap(const Digraph& digraph) { |
87 | 87 |
return new FlowMap(digraph); |
88 | 88 |
} |
89 | 89 |
|
90 | 90 |
/// \brief The elevator type used by the algorithm. |
91 | 91 |
/// |
92 | 92 |
/// The elevator type used by the algorithm. |
93 | 93 |
/// |
94 | 94 |
/// \sa Elevator, LinkedElevator |
95 | 95 |
#ifdef DOXYGEN |
96 | 96 |
typedef lemon::Elevator<GR, GR::Node> Elevator; |
97 | 97 |
#else |
98 | 98 |
typedef lemon::Elevator<Digraph, typename Digraph::Node> Elevator; |
99 | 99 |
#endif |
100 | 100 |
|
101 | 101 |
/// \brief Instantiates an Elevator. |
102 | 102 |
/// |
103 | 103 |
/// This function instantiates an \ref Elevator. |
104 | 104 |
/// \param digraph The digraph for which we would like to define |
105 | 105 |
/// the elevator. |
106 | 106 |
/// \param max_level The maximum level of the elevator. |
107 | 107 |
static Elevator* createElevator(const Digraph& digraph, int max_level) { |
108 | 108 |
return new Elevator(digraph, max_level); |
109 | 109 |
} |
110 | 110 |
|
111 | 111 |
/// \brief The tolerance used by the algorithm |
112 | 112 |
/// |
113 | 113 |
/// The tolerance used by the algorithm to handle inexact computation. |
114 | 114 |
typedef lemon::Tolerance<Value> Tolerance; |
115 | 115 |
|
116 | 116 |
}; |
117 | 117 |
|
118 | 118 |
/** |
119 | 119 |
\brief Push-relabel algorithm for the network circulation problem. |
120 | 120 |
|
121 | 121 |
\ingroup max_flow |
122 | 122 |
This class implements a push-relabel algorithm for the \e network |
123 | 123 |
\e circulation problem. |
124 | 124 |
It is to find a feasible circulation when lower and upper bounds |
125 | 125 |
are given for the flow values on the arcs and lower bounds are |
126 | 126 |
given for the difference between the outgoing and incoming flow |
127 | 127 |
at the nodes. |
128 | 128 |
|
129 | 129 |
The exact formulation of this problem is the following. |
130 | 130 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$ |
131 | 131 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and |
132 | 132 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
133 | 133 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
134 | 134 |
denotes the signed supply values of the nodes. |
135 | 135 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
136 | 136 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
137 | 137 |
\f$-sup(u)\f$ demand. |
138 | 138 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$ |
139 | 139 |
solution of the following problem. |
140 | 140 |
|
141 | 141 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
142 | 142 |
\geq sup(u) \quad \forall u\in V, \f] |
143 | 143 |
\f[ lower(uv) \leq f(uv) \leq upper(uv) \quad \forall uv\in A. \f] |
144 | 144 |
|
145 | 145 |
The sum of the supply values, i.e. \f$\sum_{u\in V} sup(u)\f$ must be |
146 | 146 |
zero or negative in order to have a feasible solution (since the sum |
147 | 147 |
of the expressions on the left-hand side of the inequalities is zero). |
148 | 148 |
It means that the total demand must be greater or equal to the total |
149 | 149 |
supply and all the supplies have to be carried out from the supply nodes, |
150 | 150 |
but there could be demands that are not satisfied. |
151 | 151 |
If \f$\sum_{u\in V} sup(u)\f$ is zero, then all the supply/demand |
152 | 152 |
constraints have to be satisfied with equality, i.e. all demands |
153 | 153 |
have to be satisfied and all supplies have to be used. |
154 | 154 |
|
155 | 155 |
If you need the opposite inequalities in the supply/demand constraints |
156 | 156 |
(i.e. the total demand is less than the total supply and all the demands |
157 | 157 |
have to be satisfied while there could be supplies that are not used), |
158 | 158 |
then you could easily transform the problem to the above form by reversing |
159 | 159 |
the direction of the arcs and taking the negative of the supply values |
160 | 160 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
161 | 161 |
|
162 | 162 |
This algorithm either calculates a feasible circulation, or provides |
163 | 163 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
164 | 164 |
cannot exist. |
165 | 165 |
|
166 | 166 |
Note that this algorithm also provides a feasible solution for the |
167 | 167 |
\ref min_cost_flow "minimum cost flow problem". |
168 | 168 |
|
169 | 169 |
\tparam GR The type of the digraph the algorithm runs on. |
170 | 170 |
\tparam LM The type of the lower bound map. The default |
171 | 171 |
map type is \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
172 | 172 |
\tparam UM The type of the upper bound (capacity) map. |
173 | 173 |
The default map type is \c LM. |
174 | 174 |
\tparam SM The type of the supply map. The default map type is |
175 | 175 |
\ref concepts::Digraph::NodeMap "GR::NodeMap<UM::Value>". |
176 | 176 |
\tparam TR The traits class that defines various types used by the |
177 | 177 |
algorithm. By default, it is \ref CirculationDefaultTraits |
178 | 178 |
"CirculationDefaultTraits<GR, LM, UM, SM>". |
179 | 179 |
In most cases, this parameter should not be set directly, |
180 | 180 |
consider to use the named template parameters instead. |
181 | 181 |
*/ |
182 | 182 |
#ifdef DOXYGEN |
183 | 183 |
template< typename GR, |
184 | 184 |
typename LM, |
185 | 185 |
typename UM, |
186 | 186 |
typename SM, |
187 | 187 |
typename TR > |
188 | 188 |
#else |
189 | 189 |
template< typename GR, |
190 | 190 |
typename LM = typename GR::template ArcMap<int>, |
191 | 191 |
typename UM = LM, |
192 | 192 |
typename SM = typename GR::template NodeMap<typename UM::Value>, |
193 | 193 |
typename TR = CirculationDefaultTraits<GR, LM, UM, SM> > |
194 | 194 |
#endif |
195 | 195 |
class Circulation { |
196 | 196 |
public: |
197 | 197 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/clp.h> |
20 | 20 |
#include <coin/ClpSimplex.hpp> |
21 | 21 |
|
22 | 22 |
namespace lemon { |
23 | 23 |
|
24 | 24 |
ClpLp::ClpLp() { |
25 | 25 |
_prob = new ClpSimplex(); |
26 | 26 |
_init_temporals(); |
27 | 27 |
messageLevel(MESSAGE_NOTHING); |
28 | 28 |
} |
29 | 29 |
|
30 | 30 |
ClpLp::ClpLp(const ClpLp& other) { |
31 | 31 |
_prob = new ClpSimplex(*other._prob); |
32 | 32 |
rows = other.rows; |
33 | 33 |
cols = other.cols; |
34 | 34 |
_init_temporals(); |
35 | 35 |
messageLevel(MESSAGE_NOTHING); |
36 | 36 |
} |
37 | 37 |
|
38 | 38 |
ClpLp::~ClpLp() { |
39 | 39 |
delete _prob; |
40 | 40 |
_clear_temporals(); |
41 | 41 |
} |
42 | 42 |
|
43 | 43 |
void ClpLp::_init_temporals() { |
44 | 44 |
_primal_ray = 0; |
45 | 45 |
_dual_ray = 0; |
46 | 46 |
} |
47 | 47 |
|
48 | 48 |
void ClpLp::_clear_temporals() { |
49 | 49 |
if (_primal_ray) { |
50 | 50 |
delete[] _primal_ray; |
51 | 51 |
_primal_ray = 0; |
52 | 52 |
} |
53 | 53 |
if (_dual_ray) { |
54 | 54 |
delete[] _dual_ray; |
55 | 55 |
_dual_ray = 0; |
56 | 56 |
} |
57 | 57 |
} |
58 | 58 |
|
59 | 59 |
ClpLp* ClpLp::newSolver() const { |
60 | 60 |
ClpLp* newlp = new ClpLp; |
61 | 61 |
return newlp; |
62 | 62 |
} |
63 | 63 |
|
64 | 64 |
ClpLp* ClpLp::cloneSolver() const { |
65 | 65 |
ClpLp* copylp = new ClpLp(*this); |
66 | 66 |
return copylp; |
67 | 67 |
} |
68 | 68 |
|
69 | 69 |
const char* ClpLp::_solverName() const { return "ClpLp"; } |
70 | 70 |
|
71 | 71 |
int ClpLp::_addCol() { |
72 | 72 |
_prob->addColumn(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX, 0.0); |
73 | 73 |
return _prob->numberColumns() - 1; |
74 | 74 |
} |
75 | 75 |
|
76 | 76 |
int ClpLp::_addRow() { |
77 | 77 |
_prob->addRow(0, 0, 0, -COIN_DBL_MAX, COIN_DBL_MAX); |
78 | 78 |
return _prob->numberRows() - 1; |
79 | 79 |
} |
80 | 80 |
|
81 | 81 |
int ClpLp::_addRow(Value l, ExprIterator b, ExprIterator e, Value u) { |
82 | 82 |
std::vector<int> indexes; |
83 | 83 |
std::vector<Value> values; |
84 | 84 |
|
85 | 85 |
for(ExprIterator it = b; it != e; ++it) { |
86 | 86 |
indexes.push_back(it->first); |
87 | 87 |
values.push_back(it->second); |
88 | 88 |
} |
89 | 89 |
|
90 | 90 |
_prob->addRow(values.size(), &indexes.front(), &values.front(), l, u); |
91 | 91 |
return _prob->numberRows() - 1; |
92 | 92 |
} |
93 | 93 |
|
94 | 94 |
|
95 | 95 |
void ClpLp::_eraseCol(int c) { |
96 | 96 |
_col_names_ref.erase(_prob->getColumnName(c)); |
97 | 97 |
_prob->deleteColumns(1, &c); |
98 | 98 |
} |
99 | 99 |
|
100 | 100 |
void ClpLp::_eraseRow(int r) { |
101 | 101 |
_row_names_ref.erase(_prob->getRowName(r)); |
102 | 102 |
_prob->deleteRows(1, &r); |
103 | 103 |
} |
104 | 104 |
|
105 | 105 |
void ClpLp::_eraseColId(int i) { |
106 | 106 |
cols.eraseIndex(i); |
107 | 107 |
cols.shiftIndices(i); |
108 | 108 |
} |
109 | 109 |
|
110 | 110 |
void ClpLp::_eraseRowId(int i) { |
111 | 111 |
rows.eraseIndex(i); |
112 | 112 |
rows.shiftIndices(i); |
113 | 113 |
} |
114 | 114 |
|
115 | 115 |
void ClpLp::_getColName(int c, std::string& name) const { |
116 | 116 |
name = _prob->getColumnName(c); |
117 | 117 |
} |
118 | 118 |
|
119 | 119 |
void ClpLp::_setColName(int c, const std::string& name) { |
120 | 120 |
_prob->setColumnName(c, const_cast<std::string&>(name)); |
121 | 121 |
_col_names_ref[name] = c; |
122 | 122 |
} |
123 | 123 |
|
124 | 124 |
int ClpLp::_colByName(const std::string& name) const { |
125 | 125 |
std::map<std::string, int>::const_iterator it = _col_names_ref.find(name); |
126 | 126 |
return it != _col_names_ref.end() ? it->second : -1; |
127 | 127 |
} |
128 | 128 |
|
129 | 129 |
void ClpLp::_getRowName(int r, std::string& name) const { |
130 | 130 |
name = _prob->getRowName(r); |
131 | 131 |
} |
132 | 132 |
|
133 | 133 |
void ClpLp::_setRowName(int r, const std::string& name) { |
134 | 134 |
_prob->setRowName(r, const_cast<std::string&>(name)); |
135 | 135 |
_row_names_ref[name] = r; |
136 | 136 |
} |
137 | 137 |
|
138 | 138 |
int ClpLp::_rowByName(const std::string& name) const { |
139 | 139 |
std::map<std::string, int>::const_iterator it = _row_names_ref.find(name); |
140 | 140 |
return it != _row_names_ref.end() ? it->second : -1; |
141 | 141 |
} |
142 | 142 |
|
143 | 143 |
|
144 | 144 |
void ClpLp::_setRowCoeffs(int ix, ExprIterator b, ExprIterator e) { |
145 | 145 |
std::map<int, Value> coeffs; |
146 | 146 |
|
147 | 147 |
int n = _prob->clpMatrix()->getNumCols(); |
148 | 148 |
|
149 | 149 |
const int* indices = _prob->clpMatrix()->getIndices(); |
150 | 150 |
const double* elements = _prob->clpMatrix()->getElements(); |
151 | 151 |
|
152 | 152 |
for (int i = 0; i < n; ++i) { |
153 | 153 |
CoinBigIndex begin = _prob->clpMatrix()->getVectorStarts()[i]; |
154 | 154 |
CoinBigIndex end = begin + _prob->clpMatrix()->getVectorLengths()[i]; |
155 | 155 |
|
156 | 156 |
const int* it = std::lower_bound(indices + begin, indices + end, ix); |
157 | 157 |
if (it != indices + end && *it == ix && elements[it - indices] != 0.0) { |
158 | 158 |
coeffs[i] = 0.0; |
159 | 159 |
} |
160 | 160 |
} |
161 | 161 |
|
162 | 162 |
for (ExprIterator it = b; it != e; ++it) { |
163 | 163 |
coeffs[it->first] = it->second; |
164 | 164 |
} |
165 | 165 |
|
166 | 166 |
for (std::map<int, Value>::iterator it = coeffs.begin(); |
167 | 167 |
it != coeffs.end(); ++it) { |
168 | 168 |
_prob->modifyCoefficient(ix, it->first, it->second); |
169 | 169 |
} |
170 | 170 |
} |
171 | 171 |
|
172 | 172 |
void ClpLp::_getRowCoeffs(int ix, InsertIterator b) const { |
173 | 173 |
int n = _prob->clpMatrix()->getNumCols(); |
174 | 174 |
|
175 | 175 |
const int* indices = _prob->clpMatrix()->getIndices(); |
176 | 176 |
const double* elements = _prob->clpMatrix()->getElements(); |
177 | 177 |
|
178 | 178 |
for (int i = 0; i < n; ++i) { |
179 | 179 |
CoinBigIndex begin = _prob->clpMatrix()->getVectorStarts()[i]; |
180 | 180 |
CoinBigIndex end = begin + _prob->clpMatrix()->getVectorLengths()[i]; |
181 | 181 |
|
182 | 182 |
const int* it = std::lower_bound(indices + begin, indices + end, ix); |
183 | 183 |
if (it != indices + end && *it == ix) { |
184 | 184 |
*b = std::make_pair(i, elements[it - indices]); |
185 | 185 |
} |
186 | 186 |
} |
187 | 187 |
} |
188 | 188 |
|
189 | 189 |
void ClpLp::_setColCoeffs(int ix, ExprIterator b, ExprIterator e) { |
190 | 190 |
std::map<int, Value> coeffs; |
191 | 191 |
|
192 | 192 |
CoinBigIndex begin = _prob->clpMatrix()->getVectorStarts()[ix]; |
193 | 193 |
CoinBigIndex end = begin + _prob->clpMatrix()->getVectorLengths()[ix]; |
194 | 194 |
|
195 | 195 |
const int* indices = _prob->clpMatrix()->getIndices(); |
196 | 196 |
const double* elements = _prob->clpMatrix()->getElements(); |
197 | 197 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CLP_H |
20 | 20 |
#define LEMON_CLP_H |
21 | 21 |
|
22 | 22 |
///\file |
23 | 23 |
///\brief Header of the LEMON-CLP lp solver interface. |
24 | 24 |
|
25 | 25 |
#include <vector> |
26 | 26 |
#include <string> |
27 | 27 |
|
28 | 28 |
#include <lemon/lp_base.h> |
29 | 29 |
|
30 | 30 |
class ClpSimplex; |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \ingroup lp_group |
35 | 35 |
/// |
36 | 36 |
/// \brief Interface for the CLP solver |
37 | 37 |
/// |
38 | 38 |
/// This class implements an interface for the Clp LP solver. The |
39 | 39 |
/// Clp library is an object oriented lp solver library developed at |
40 | 40 |
/// the IBM. The CLP is part of the COIN-OR package and it can be |
41 | 41 |
/// used with Common Public License. |
42 | 42 |
class ClpLp : public LpSolver { |
43 | 43 |
protected: |
44 | 44 |
|
45 | 45 |
ClpSimplex* _prob; |
46 | 46 |
|
47 | 47 |
std::map<std::string, int> _col_names_ref; |
48 | 48 |
std::map<std::string, int> _row_names_ref; |
49 | 49 |
|
50 | 50 |
public: |
51 | 51 |
|
52 | 52 |
/// \e |
53 | 53 |
ClpLp(); |
54 | 54 |
/// \e |
55 | 55 |
ClpLp(const ClpLp&); |
56 | 56 |
/// \e |
57 | 57 |
~ClpLp(); |
58 | 58 |
|
59 | 59 |
/// \e |
60 | 60 |
virtual ClpLp* newSolver() const; |
61 | 61 |
/// \e |
62 | 62 |
virtual ClpLp* cloneSolver() const; |
63 | 63 |
|
64 | 64 |
protected: |
65 | 65 |
|
66 | 66 |
mutable double* _primal_ray; |
67 | 67 |
mutable double* _dual_ray; |
68 | 68 |
|
69 | 69 |
void _init_temporals(); |
70 | 70 |
void _clear_temporals(); |
71 | 71 |
|
72 | 72 |
protected: |
73 | 73 |
|
74 | 74 |
virtual const char* _solverName() const; |
75 | 75 |
|
76 | 76 |
virtual int _addCol(); |
77 | 77 |
virtual int _addRow(); |
78 | 78 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u); |
79 | 79 |
|
80 | 80 |
virtual void _eraseCol(int i); |
81 | 81 |
virtual void _eraseRow(int i); |
82 | 82 |
|
83 | 83 |
virtual void _eraseColId(int i); |
84 | 84 |
virtual void _eraseRowId(int i); |
85 | 85 |
|
86 | 86 |
virtual void _getColName(int col, std::string& name) const; |
87 | 87 |
virtual void _setColName(int col, const std::string& name); |
88 | 88 |
virtual int _colByName(const std::string& name) const; |
89 | 89 |
|
90 | 90 |
virtual void _getRowName(int row, std::string& name) const; |
91 | 91 |
virtual void _setRowName(int row, const std::string& name); |
92 | 92 |
virtual int _rowByName(const std::string& name) const; |
93 | 93 |
|
94 | 94 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e); |
95 | 95 |
virtual void _getRowCoeffs(int i, InsertIterator b) const; |
96 | 96 |
|
97 | 97 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e); |
98 | 98 |
virtual void _getColCoeffs(int i, InsertIterator b) const; |
99 | 99 |
|
100 | 100 |
virtual void _setCoeff(int row, int col, Value value); |
101 | 101 |
virtual Value _getCoeff(int row, int col) const; |
102 | 102 |
|
103 | 103 |
virtual void _setColLowerBound(int i, Value value); |
104 | 104 |
virtual Value _getColLowerBound(int i) const; |
105 | 105 |
virtual void _setColUpperBound(int i, Value value); |
106 | 106 |
virtual Value _getColUpperBound(int i) const; |
107 | 107 |
|
108 | 108 |
virtual void _setRowLowerBound(int i, Value value); |
109 | 109 |
virtual Value _getRowLowerBound(int i) const; |
110 | 110 |
virtual void _setRowUpperBound(int i, Value value); |
111 | 111 |
virtual Value _getRowUpperBound(int i) const; |
112 | 112 |
|
113 | 113 |
virtual void _setObjCoeffs(ExprIterator, ExprIterator); |
114 | 114 |
virtual void _getObjCoeffs(InsertIterator) const; |
115 | 115 |
|
116 | 116 |
virtual void _setObjCoeff(int i, Value obj_coef); |
117 | 117 |
virtual Value _getObjCoeff(int i) const; |
118 | 118 |
|
119 | 119 |
virtual void _setSense(Sense sense); |
120 | 120 |
virtual Sense _getSense() const; |
121 | 121 |
|
122 | 122 |
virtual SolveExitStatus _solve(); |
123 | 123 |
|
124 | 124 |
virtual Value _getPrimal(int i) const; |
125 | 125 |
virtual Value _getDual(int i) const; |
126 | 126 |
|
127 | 127 |
virtual Value _getPrimalValue() const; |
128 | 128 |
|
129 | 129 |
virtual Value _getPrimalRay(int i) const; |
130 | 130 |
virtual Value _getDualRay(int i) const; |
131 | 131 |
|
132 | 132 |
virtual VarStatus _getColStatus(int i) const; |
133 | 133 |
virtual VarStatus _getRowStatus(int i) const; |
134 | 134 |
|
135 | 135 |
virtual ProblemType _getPrimalType() const; |
136 | 136 |
virtual ProblemType _getDualType() const; |
137 | 137 |
|
138 | 138 |
virtual void _clear(); |
139 | 139 |
|
140 | 140 |
virtual void _messageLevel(MessageLevel); |
141 | 141 |
|
142 | 142 |
public: |
143 | 143 |
|
144 | 144 |
///Solves LP with primal simplex method. |
145 | 145 |
SolveExitStatus solvePrimal(); |
146 | 146 |
|
147 | 147 |
///Solves LP with dual simplex method. |
148 | 148 |
SolveExitStatus solveDual(); |
149 | 149 |
|
150 | 150 |
///Solves LP with barrier method. |
151 | 151 |
SolveExitStatus solveBarrier(); |
152 | 152 |
|
153 | 153 |
///Returns the constraint identifier understood by CLP. |
154 | 154 |
int clpRow(Row r) const { return rows(id(r)); } |
155 | 155 |
|
156 | 156 |
///Returns the variable identifier understood by CLP. |
157 | 157 |
int clpCol(Col c) const { return cols(id(c)); } |
158 | 158 |
|
159 | 159 |
}; |
160 | 160 |
|
161 | 161 |
} //END OF NAMESPACE LEMON |
162 | 162 |
|
163 | 163 |
#endif //LEMON_CLP_H |
164 | 164 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONCEPTS_DIGRAPH_H |
20 | 20 |
#define LEMON_CONCEPTS_DIGRAPH_H |
21 | 21 |
|
22 | 22 |
///\ingroup graph_concepts |
23 | 23 |
///\file |
24 | 24 |
///\brief The concept of directed graphs. |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
#include <lemon/concepts/graph_components.h> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
namespace concepts { |
33 | 33 |
|
34 | 34 |
/// \ingroup graph_concepts |
35 | 35 |
/// |
36 | 36 |
/// \brief Class describing the concept of directed graphs. |
37 | 37 |
/// |
38 | 38 |
/// This class describes the common interface of all directed |
39 | 39 |
/// graphs (digraphs). |
40 | 40 |
/// |
41 | 41 |
/// Like all concept classes, it only provides an interface |
42 | 42 |
/// without any sensible implementation. So any general algorithm for |
43 | 43 |
/// directed graphs should compile with this class, but it will not |
44 | 44 |
/// run properly, of course. |
45 | 45 |
/// An actual digraph implementation like \ref ListDigraph or |
46 | 46 |
/// \ref SmartDigraph may have additional functionality. |
47 | 47 |
/// |
48 | 48 |
/// \sa Graph |
49 | 49 |
class Digraph { |
50 | 50 |
private: |
51 | 51 |
/// Diraphs are \e not copy constructible. Use DigraphCopy instead. |
52 | 52 |
Digraph(const Digraph &) {} |
53 | 53 |
/// \brief Assignment of a digraph to another one is \e not allowed. |
54 | 54 |
/// Use DigraphCopy instead. |
55 | 55 |
void operator=(const Digraph &) {} |
56 | 56 |
|
57 | 57 |
public: |
58 | 58 |
/// Default constructor. |
59 | 59 |
Digraph() { } |
60 | 60 |
|
61 | 61 |
/// The node type of the digraph |
62 | 62 |
|
63 | 63 |
/// This class identifies a node of the digraph. It also serves |
64 | 64 |
/// as a base class of the node iterators, |
65 | 65 |
/// thus they convert to this type. |
66 | 66 |
class Node { |
67 | 67 |
public: |
68 | 68 |
/// Default constructor |
69 | 69 |
|
70 | 70 |
/// Default constructor. |
71 | 71 |
/// \warning It sets the object to an undefined value. |
72 | 72 |
Node() { } |
73 | 73 |
/// Copy constructor. |
74 | 74 |
|
75 | 75 |
/// Copy constructor. |
76 | 76 |
/// |
77 | 77 |
Node(const Node&) { } |
78 | 78 |
|
79 | 79 |
/// %Invalid constructor \& conversion. |
80 | 80 |
|
81 | 81 |
/// Initializes the object to be invalid. |
82 | 82 |
/// \sa Invalid for more details. |
83 | 83 |
Node(Invalid) { } |
84 | 84 |
/// Equality operator |
85 | 85 |
|
86 | 86 |
/// Equality operator. |
87 | 87 |
/// |
88 | 88 |
/// Two iterators are equal if and only if they point to the |
89 | 89 |
/// same object or both are \c INVALID. |
90 | 90 |
bool operator==(Node) const { return true; } |
91 | 91 |
|
92 | 92 |
/// Inequality operator |
93 | 93 |
|
94 | 94 |
/// Inequality operator. |
95 | 95 |
bool operator!=(Node) const { return true; } |
96 | 96 |
|
97 | 97 |
/// Artificial ordering operator. |
98 | 98 |
|
99 | 99 |
/// Artificial ordering operator. |
100 | 100 |
/// |
101 | 101 |
/// \note This operator only has to define some strict ordering of |
102 | 102 |
/// the nodes; this order has nothing to do with the iteration |
103 | 103 |
/// ordering of the nodes. |
104 | 104 |
bool operator<(Node) const { return false; } |
105 | 105 |
}; |
106 | 106 |
|
107 | 107 |
/// Iterator class for the nodes. |
108 | 108 |
|
109 | 109 |
/// This iterator goes through each node of the digraph. |
110 | 110 |
/// Its usage is quite simple, for example, you can count the number |
111 | 111 |
/// of nodes in a digraph \c g of type \c %Digraph like this: |
112 | 112 |
///\code |
113 | 113 |
/// int count=0; |
114 | 114 |
/// for (Digraph::NodeIt n(g); n!=INVALID; ++n) ++count; |
115 | 115 |
///\endcode |
116 | 116 |
class NodeIt : public Node { |
117 | 117 |
public: |
118 | 118 |
/// Default constructor |
119 | 119 |
|
120 | 120 |
/// Default constructor. |
121 | 121 |
/// \warning It sets the iterator to an undefined value. |
122 | 122 |
NodeIt() { } |
123 | 123 |
/// Copy constructor. |
124 | 124 |
|
125 | 125 |
/// Copy constructor. |
126 | 126 |
/// |
127 | 127 |
NodeIt(const NodeIt& n) : Node(n) { } |
128 | 128 |
/// %Invalid constructor \& conversion. |
129 | 129 |
|
130 | 130 |
/// Initializes the iterator to be invalid. |
131 | 131 |
/// \sa Invalid for more details. |
132 | 132 |
NodeIt(Invalid) { } |
133 | 133 |
/// Sets the iterator to the first node. |
134 | 134 |
|
135 | 135 |
/// Sets the iterator to the first node of the given digraph. |
136 | 136 |
/// |
137 | 137 |
explicit NodeIt(const Digraph&) { } |
138 | 138 |
/// Sets the iterator to the given node. |
139 | 139 |
|
140 | 140 |
/// Sets the iterator to the given node of the given digraph. |
141 | 141 |
/// |
142 | 142 |
NodeIt(const Digraph&, const Node&) { } |
143 | 143 |
/// Next node. |
144 | 144 |
|
145 | 145 |
/// Assign the iterator to the next node. |
146 | 146 |
/// |
147 | 147 |
NodeIt& operator++() { return *this; } |
148 | 148 |
}; |
149 | 149 |
|
150 | 150 |
|
151 | 151 |
/// The arc type of the digraph |
152 | 152 |
|
153 | 153 |
/// This class identifies an arc of the digraph. It also serves |
154 | 154 |
/// as a base class of the arc iterators, |
155 | 155 |
/// thus they will convert to this type. |
156 | 156 |
class Arc { |
157 | 157 |
public: |
158 | 158 |
/// Default constructor |
159 | 159 |
|
160 | 160 |
/// Default constructor. |
161 | 161 |
/// \warning It sets the object to an undefined value. |
162 | 162 |
Arc() { } |
163 | 163 |
/// Copy constructor. |
164 | 164 |
|
165 | 165 |
/// Copy constructor. |
166 | 166 |
/// |
167 | 167 |
Arc(const Arc&) { } |
168 | 168 |
/// %Invalid constructor \& conversion. |
169 | 169 |
|
170 | 170 |
/// Initializes the object to be invalid. |
171 | 171 |
/// \sa Invalid for more details. |
172 | 172 |
Arc(Invalid) { } |
173 | 173 |
/// Equality operator |
174 | 174 |
|
175 | 175 |
/// Equality operator. |
176 | 176 |
/// |
177 | 177 |
/// Two iterators are equal if and only if they point to the |
178 | 178 |
/// same object or both are \c INVALID. |
179 | 179 |
bool operator==(Arc) const { return true; } |
180 | 180 |
/// Inequality operator |
181 | 181 |
|
182 | 182 |
/// Inequality operator. |
183 | 183 |
bool operator!=(Arc) const { return true; } |
184 | 184 |
|
185 | 185 |
/// Artificial ordering operator. |
186 | 186 |
|
187 | 187 |
/// Artificial ordering operator. |
188 | 188 |
/// |
189 | 189 |
/// \note This operator only has to define some strict ordering of |
190 | 190 |
/// the arcs; this order has nothing to do with the iteration |
191 | 191 |
/// ordering of the arcs. |
192 | 192 |
bool operator<(Arc) const { return false; } |
193 | 193 |
}; |
194 | 194 |
|
195 | 195 |
/// Iterator class for the outgoing arcs of a node. |
196 | 196 |
|
197 | 197 |
/// This iterator goes trough the \e outgoing arcs of a certain node |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 | 21 |
///\brief The concept of undirected graphs. |
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_H |
24 | 24 |
#define LEMON_CONCEPTS_GRAPH_H |
25 | 25 |
|
26 | 26 |
#include <lemon/concepts/graph_components.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
#include <lemon/concept_check.h> |
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
namespace concepts { |
33 | 33 |
|
34 | 34 |
/// \ingroup graph_concepts |
35 | 35 |
/// |
36 | 36 |
/// \brief Class describing the concept of undirected graphs. |
37 | 37 |
/// |
38 | 38 |
/// This class describes the common interface of all undirected |
39 | 39 |
/// graphs. |
40 | 40 |
/// |
41 | 41 |
/// Like all concept classes, it only provides an interface |
42 | 42 |
/// without any sensible implementation. So any general algorithm for |
43 | 43 |
/// undirected graphs should compile with this class, but it will not |
44 | 44 |
/// run properly, of course. |
45 | 45 |
/// An actual graph implementation like \ref ListGraph or |
46 | 46 |
/// \ref SmartGraph may have additional functionality. |
47 | 47 |
/// |
48 | 48 |
/// The undirected graphs also fulfill the concept of \ref Digraph |
49 | 49 |
/// "directed graphs", since each edge can also be regarded as two |
50 | 50 |
/// oppositely directed arcs. |
51 | 51 |
/// Undirected graphs provide an Edge type for the undirected edges and |
52 | 52 |
/// an Arc type for the directed arcs. The Arc type is convertible to |
53 | 53 |
/// Edge or inherited from it, i.e. the corresponding edge can be |
54 | 54 |
/// obtained from an arc. |
55 | 55 |
/// EdgeIt and EdgeMap classes can be used for the edges, while ArcIt |
56 | 56 |
/// and ArcMap classes can be used for the arcs (just like in digraphs). |
57 | 57 |
/// Both InArcIt and OutArcIt iterates on the same edges but with |
58 | 58 |
/// opposite direction. IncEdgeIt also iterates on the same edges |
59 | 59 |
/// as OutArcIt and InArcIt, but it is not convertible to Arc, |
60 | 60 |
/// only to Edge. |
61 | 61 |
/// |
62 | 62 |
/// In LEMON, each undirected edge has an inherent orientation. |
63 | 63 |
/// Thus it can defined if an arc is forward or backward oriented in |
64 | 64 |
/// an undirected graph with respect to this default oriantation of |
65 | 65 |
/// the represented edge. |
66 | 66 |
/// With the direction() and direct() functions the direction |
67 | 67 |
/// of an arc can be obtained and set, respectively. |
68 | 68 |
/// |
69 | 69 |
/// Only nodes and edges can be added to or removed from an undirected |
70 | 70 |
/// graph and the corresponding arcs are added or removed automatically. |
71 | 71 |
/// |
72 | 72 |
/// \sa Digraph |
73 | 73 |
class Graph { |
74 | 74 |
private: |
75 | 75 |
/// Graphs are \e not copy constructible. Use DigraphCopy instead. |
76 | 76 |
Graph(const Graph&) {} |
77 | 77 |
/// \brief Assignment of a graph to another one is \e not allowed. |
78 | 78 |
/// Use DigraphCopy instead. |
79 | 79 |
void operator=(const Graph&) {} |
80 | 80 |
|
81 | 81 |
public: |
82 | 82 |
/// Default constructor. |
83 | 83 |
Graph() {} |
84 | 84 |
|
85 | 85 |
/// \brief Undirected graphs should be tagged with \c UndirectedTag. |
86 | 86 |
/// |
87 | 87 |
/// Undirected graphs should be tagged with \c UndirectedTag. |
88 | 88 |
/// |
89 | 89 |
/// This tag helps the \c enable_if technics to make compile time |
90 | 90 |
/// specializations for undirected graphs. |
91 | 91 |
typedef True UndirectedTag; |
92 | 92 |
|
93 | 93 |
/// The node type of the graph |
94 | 94 |
|
95 | 95 |
/// This class identifies a node of the graph. It also serves |
96 | 96 |
/// as a base class of the node iterators, |
97 | 97 |
/// thus they convert to this type. |
98 | 98 |
class Node { |
99 | 99 |
public: |
100 | 100 |
/// Default constructor |
101 | 101 |
|
102 | 102 |
/// Default constructor. |
103 | 103 |
/// \warning It sets the object to an undefined value. |
104 | 104 |
Node() { } |
105 | 105 |
/// Copy constructor. |
106 | 106 |
|
107 | 107 |
/// Copy constructor. |
108 | 108 |
/// |
109 | 109 |
Node(const Node&) { } |
110 | 110 |
|
111 | 111 |
/// %Invalid constructor \& conversion. |
112 | 112 |
|
113 | 113 |
/// Initializes the object to be invalid. |
114 | 114 |
/// \sa Invalid for more details. |
115 | 115 |
Node(Invalid) { } |
116 | 116 |
/// Equality operator |
117 | 117 |
|
118 | 118 |
/// Equality operator. |
119 | 119 |
/// |
120 | 120 |
/// Two iterators are equal if and only if they point to the |
121 | 121 |
/// same object or both are \c INVALID. |
122 | 122 |
bool operator==(Node) const { return true; } |
123 | 123 |
|
124 | 124 |
/// Inequality operator |
125 | 125 |
|
126 | 126 |
/// Inequality operator. |
127 | 127 |
bool operator!=(Node) const { return true; } |
128 | 128 |
|
129 | 129 |
/// Artificial ordering operator. |
130 | 130 |
|
131 | 131 |
/// Artificial ordering operator. |
132 | 132 |
/// |
133 | 133 |
/// \note This operator only has to define some strict ordering of |
134 | 134 |
/// the items; this order has nothing to do with the iteration |
135 | 135 |
/// ordering of the items. |
136 | 136 |
bool operator<(Node) const { return false; } |
137 | 137 |
|
138 | 138 |
}; |
139 | 139 |
|
140 | 140 |
/// Iterator class for the nodes. |
141 | 141 |
|
142 | 142 |
/// This iterator goes through each node of the graph. |
143 | 143 |
/// Its usage is quite simple, for example, you can count the number |
144 | 144 |
/// of nodes in a graph \c g of type \c %Graph like this: |
145 | 145 |
///\code |
146 | 146 |
/// int count=0; |
147 | 147 |
/// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
148 | 148 |
///\endcode |
149 | 149 |
class NodeIt : public Node { |
150 | 150 |
public: |
151 | 151 |
/// Default constructor |
152 | 152 |
|
153 | 153 |
/// Default constructor. |
154 | 154 |
/// \warning It sets the iterator to an undefined value. |
155 | 155 |
NodeIt() { } |
156 | 156 |
/// Copy constructor. |
157 | 157 |
|
158 | 158 |
/// Copy constructor. |
159 | 159 |
/// |
160 | 160 |
NodeIt(const NodeIt& n) : Node(n) { } |
161 | 161 |
/// %Invalid constructor \& conversion. |
162 | 162 |
|
163 | 163 |
/// Initializes the iterator to be invalid. |
164 | 164 |
/// \sa Invalid for more details. |
165 | 165 |
NodeIt(Invalid) { } |
166 | 166 |
/// Sets the iterator to the first node. |
167 | 167 |
|
168 | 168 |
/// Sets the iterator to the first node of the given digraph. |
169 | 169 |
/// |
170 | 170 |
explicit NodeIt(const Graph&) { } |
171 | 171 |
/// Sets the iterator to the given node. |
172 | 172 |
|
173 | 173 |
/// Sets the iterator to the given node of the given digraph. |
174 | 174 |
/// |
175 | 175 |
NodeIt(const Graph&, const Node&) { } |
176 | 176 |
/// Next node. |
177 | 177 |
|
178 | 178 |
/// Assign the iterator to the next node. |
179 | 179 |
/// |
180 | 180 |
NodeIt& operator++() { return *this; } |
181 | 181 |
}; |
182 | 182 |
|
183 | 183 |
|
184 | 184 |
/// The edge type of the graph |
185 | 185 |
|
186 | 186 |
/// This class identifies an edge of the graph. It also serves |
187 | 187 |
/// as a base class of the edge iterators, |
188 | 188 |
/// thus they will convert to this type. |
189 | 189 |
class Edge { |
190 | 190 |
public: |
191 | 191 |
/// Default constructor |
192 | 192 |
|
193 | 193 |
/// Default constructor. |
194 | 194 |
/// \warning It sets the object to an undefined value. |
195 | 195 |
Edge() { } |
196 | 196 |
/// Copy constructor. |
197 | 197 |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\ingroup graph_concepts |
20 | 20 |
///\file |
21 | 21 |
///\brief The concepts of graph components. |
22 | 22 |
|
23 | 23 |
#ifndef LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
24 | 24 |
#define LEMON_CONCEPTS_GRAPH_COMPONENTS_H |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concepts/maps.h> |
28 | 28 |
|
29 | 29 |
#include <lemon/bits/alteration_notifier.h> |
30 | 30 |
|
31 | 31 |
namespace lemon { |
32 | 32 |
namespace concepts { |
33 | 33 |
|
34 | 34 |
/// \brief Concept class for \c Node, \c Arc and \c Edge types. |
35 | 35 |
/// |
36 | 36 |
/// This class describes the concept of \c Node, \c Arc and \c Edge |
37 | 37 |
/// subtypes of digraph and graph types. |
38 | 38 |
/// |
39 | 39 |
/// \note This class is a template class so that we can use it to |
40 | 40 |
/// create graph skeleton classes. The reason for this is that \c Node |
41 | 41 |
/// and \c Arc (or \c Edge) types should \e not derive from the same |
42 | 42 |
/// base class. For \c Node you should instantiate it with character |
43 | 43 |
/// \c 'n', for \c Arc with \c 'a' and for \c Edge with \c 'e'. |
44 | 44 |
#ifndef DOXYGEN |
45 | 45 |
template <char sel = '0'> |
46 | 46 |
#endif |
47 | 47 |
class GraphItem { |
48 | 48 |
public: |
49 | 49 |
/// \brief Default constructor. |
50 | 50 |
/// |
51 | 51 |
/// Default constructor. |
52 | 52 |
/// \warning The default constructor is not required to set |
53 | 53 |
/// the item to some well-defined value. So you should consider it |
54 | 54 |
/// as uninitialized. |
55 | 55 |
GraphItem() {} |
56 | 56 |
|
57 | 57 |
/// \brief Copy constructor. |
58 | 58 |
/// |
59 | 59 |
/// Copy constructor. |
60 | 60 |
GraphItem(const GraphItem &) {} |
61 | 61 |
|
62 | 62 |
/// \brief Constructor for conversion from \c INVALID. |
63 | 63 |
/// |
64 | 64 |
/// Constructor for conversion from \c INVALID. |
65 | 65 |
/// It initializes the item to be invalid. |
66 | 66 |
/// \sa Invalid for more details. |
67 | 67 |
GraphItem(Invalid) {} |
68 | 68 |
|
69 | 69 |
/// \brief Assignment operator. |
70 | 70 |
/// |
71 | 71 |
/// Assignment operator for the item. |
72 | 72 |
GraphItem& operator=(const GraphItem&) { return *this; } |
73 | 73 |
|
74 | 74 |
/// \brief Assignment operator for INVALID. |
75 | 75 |
/// |
76 | 76 |
/// This operator makes the item invalid. |
77 | 77 |
GraphItem& operator=(Invalid) { return *this; } |
78 | 78 |
|
79 | 79 |
/// \brief Equality operator. |
80 | 80 |
/// |
81 | 81 |
/// Equality operator. |
82 | 82 |
bool operator==(const GraphItem&) const { return false; } |
83 | 83 |
|
84 | 84 |
/// \brief Inequality operator. |
85 | 85 |
/// |
86 | 86 |
/// Inequality operator. |
87 | 87 |
bool operator!=(const GraphItem&) const { return false; } |
88 | 88 |
|
89 | 89 |
/// \brief Ordering operator. |
90 | 90 |
/// |
91 | 91 |
/// This operator defines an ordering of the items. |
92 | 92 |
/// It makes possible to use graph item types as key types in |
93 | 93 |
/// associative containers (e.g. \c std::map). |
94 | 94 |
/// |
95 | 95 |
/// \note This operator only has to define some strict ordering of |
96 | 96 |
/// the items; this order has nothing to do with the iteration |
97 | 97 |
/// ordering of the items. |
98 | 98 |
bool operator<(const GraphItem&) const { return false; } |
99 | 99 |
|
100 | 100 |
template<typename _GraphItem> |
101 | 101 |
struct Constraints { |
102 | 102 |
void constraints() { |
103 | 103 |
_GraphItem i1; |
104 | 104 |
i1=INVALID; |
105 | 105 |
_GraphItem i2 = i1; |
106 | 106 |
_GraphItem i3 = INVALID; |
107 | 107 |
|
108 | 108 |
i1 = i2 = i3; |
109 | 109 |
|
110 | 110 |
bool b; |
111 | 111 |
b = (ia == ib) && (ia != ib); |
112 | 112 |
b = (ia == INVALID) && (ib != INVALID); |
113 | 113 |
b = (ia < ib); |
114 | 114 |
} |
115 | 115 |
|
116 | 116 |
const _GraphItem &ia; |
117 | 117 |
const _GraphItem &ib; |
118 | 118 |
}; |
119 | 119 |
}; |
120 | 120 |
|
121 | 121 |
/// \brief Base skeleton class for directed graphs. |
122 | 122 |
/// |
123 | 123 |
/// This class describes the base interface of directed graph types. |
124 | 124 |
/// All digraph %concepts have to conform to this class. |
125 | 125 |
/// It just provides types for nodes and arcs and functions |
126 | 126 |
/// to get the source and the target nodes of arcs. |
127 | 127 |
class BaseDigraphComponent { |
128 | 128 |
public: |
129 | 129 |
|
130 | 130 |
typedef BaseDigraphComponent Digraph; |
131 | 131 |
|
132 | 132 |
/// \brief Node class of the digraph. |
133 | 133 |
/// |
134 | 134 |
/// This class represents the nodes of the digraph. |
135 | 135 |
typedef GraphItem<'n'> Node; |
136 | 136 |
|
137 | 137 |
/// \brief Arc class of the digraph. |
138 | 138 |
/// |
139 | 139 |
/// This class represents the arcs of the digraph. |
140 | 140 |
typedef GraphItem<'a'> Arc; |
141 | 141 |
|
142 | 142 |
/// \brief Return the source node of an arc. |
143 | 143 |
/// |
144 | 144 |
/// This function returns the source node of an arc. |
145 | 145 |
Node source(const Arc&) const { return INVALID; } |
146 | 146 |
|
147 | 147 |
/// \brief Return the target node of an arc. |
148 | 148 |
/// |
149 | 149 |
/// This function returns the target node of an arc. |
150 | 150 |
Node target(const Arc&) const { return INVALID; } |
151 | 151 |
|
152 | 152 |
/// \brief Return the opposite node on the given arc. |
153 | 153 |
/// |
154 | 154 |
/// This function returns the opposite node on the given arc. |
155 | 155 |
Node oppositeNode(const Node&, const Arc&) const { |
156 | 156 |
return INVALID; |
157 | 157 |
} |
158 | 158 |
|
159 | 159 |
template <typename _Digraph> |
160 | 160 |
struct Constraints { |
161 | 161 |
typedef typename _Digraph::Node Node; |
162 | 162 |
typedef typename _Digraph::Arc Arc; |
163 | 163 |
|
164 | 164 |
void constraints() { |
165 | 165 |
checkConcept<GraphItem<'n'>, Node>(); |
166 | 166 |
checkConcept<GraphItem<'a'>, Arc>(); |
167 | 167 |
{ |
168 | 168 |
Node n; |
169 | 169 |
Arc e(INVALID); |
170 | 170 |
n = digraph.source(e); |
171 | 171 |
n = digraph.target(e); |
172 | 172 |
n = digraph.oppositeNode(n, e); |
173 | 173 |
} |
174 | 174 |
} |
175 | 175 |
|
176 | 176 |
const _Digraph& digraph; |
177 | 177 |
}; |
178 | 178 |
}; |
179 | 179 |
|
180 | 180 |
/// \brief Base skeleton class for undirected graphs. |
181 | 181 |
/// |
182 | 182 |
/// This class describes the base interface of undirected graph types. |
183 | 183 |
/// All graph %concepts have to conform to this class. |
184 | 184 |
/// It extends the interface of \ref BaseDigraphComponent with an |
185 | 185 |
/// \c Edge type and functions to get the end nodes of edges, |
186 | 186 |
/// to convert from arcs to edges and to get both direction of edges. |
187 | 187 |
class BaseGraphComponent : public BaseDigraphComponent { |
188 | 188 |
public: |
189 | 189 |
|
190 | 190 |
typedef BaseGraphComponent Graph; |
191 | 191 |
|
192 | 192 |
typedef BaseDigraphComponent::Node Node; |
193 | 193 |
typedef BaseDigraphComponent::Arc Arc; |
194 | 194 |
|
195 | 195 |
/// \brief Undirected edge class of the graph. |
196 | 196 |
/// |
197 | 197 |
/// This class represents the undirected edges of the graph. |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONCEPTS_HEAP_H |
20 | 20 |
#define LEMON_CONCEPTS_HEAP_H |
21 | 21 |
|
22 | 22 |
///\ingroup concept |
23 | 23 |
///\file |
24 | 24 |
///\brief The concept of heaps. |
25 | 25 |
|
26 | 26 |
#include <lemon/core.h> |
27 | 27 |
#include <lemon/concept_check.h> |
28 | 28 |
|
29 | 29 |
namespace lemon { |
30 | 30 |
|
31 | 31 |
namespace concepts { |
32 | 32 |
|
33 | 33 |
/// \addtogroup concept |
34 | 34 |
/// @{ |
35 | 35 |
|
36 | 36 |
/// \brief The heap concept. |
37 | 37 |
/// |
38 | 38 |
/// This concept class describes the main interface of heaps. |
39 | 39 |
/// The various \ref heaps "heap structures" are efficient |
40 | 40 |
/// implementations of the abstract data type \e priority \e queue. |
41 | 41 |
/// They store items with specified values called \e priorities |
42 | 42 |
/// in such a way that finding and removing the item with minimum |
43 | 43 |
/// priority are efficient. The basic operations are adding and |
44 | 44 |
/// erasing items, changing the priority of an item, etc. |
45 | 45 |
/// |
46 | 46 |
/// Heaps are crucial in several algorithms, such as Dijkstra and Prim. |
47 | 47 |
/// Any class that conforms to this concept can be used easily in such |
48 | 48 |
/// algorithms. |
49 | 49 |
/// |
50 | 50 |
/// \tparam PR Type of the priorities of the items. |
51 | 51 |
/// \tparam IM A read-writable item map with \c int values, used |
52 | 52 |
/// internally to handle the cross references. |
53 | 53 |
/// \tparam CMP A functor class for comparing the priorities. |
54 | 54 |
/// The default is \c std::less<PR>. |
55 | 55 |
#ifdef DOXYGEN |
56 | 56 |
template <typename PR, typename IM, typename CMP> |
57 | 57 |
#else |
58 | 58 |
template <typename PR, typename IM, typename CMP = std::less<PR> > |
59 | 59 |
#endif |
60 | 60 |
class Heap { |
61 | 61 |
public: |
62 | 62 |
|
63 | 63 |
/// Type of the item-int map. |
64 | 64 |
typedef IM ItemIntMap; |
65 | 65 |
/// Type of the priorities. |
66 | 66 |
typedef PR Prio; |
67 | 67 |
/// Type of the items stored in the heap. |
68 | 68 |
typedef typename ItemIntMap::Key Item; |
69 | 69 |
|
70 | 70 |
/// \brief Type to represent the states of the items. |
71 | 71 |
/// |
72 | 72 |
/// Each item has a state associated to it. It can be "in heap", |
73 | 73 |
/// "pre-heap" or "post-heap". The latter two are indifferent from the |
74 | 74 |
/// heap's point of view, but may be useful to the user. |
75 | 75 |
/// |
76 | 76 |
/// The item-int map must be initialized in such way that it assigns |
77 | 77 |
/// \c PRE_HEAP (<tt>-1</tt>) to any element to be put in the heap. |
78 | 78 |
enum State { |
79 | 79 |
IN_HEAP = 0, ///< = 0. The "in heap" state constant. |
80 | 80 |
PRE_HEAP = -1, ///< = -1. The "pre-heap" state constant. |
81 | 81 |
POST_HEAP = -2 ///< = -2. The "post-heap" state constant. |
82 | 82 |
}; |
83 | 83 |
|
84 | 84 |
/// \brief Constructor. |
85 | 85 |
/// |
86 | 86 |
/// Constructor. |
87 | 87 |
/// \param map A map that assigns \c int values to keys of type |
88 | 88 |
/// \c Item. It is used internally by the heap implementations to |
89 | 89 |
/// handle the cross references. The assigned value must be |
90 | 90 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
91 | 91 |
#ifdef DOXYGEN |
92 | 92 |
explicit Heap(ItemIntMap &map) {} |
93 | 93 |
#else |
94 | 94 |
explicit Heap(ItemIntMap&) {} |
95 | 95 |
#endif |
96 | 96 |
|
97 | 97 |
/// \brief Constructor. |
98 | 98 |
/// |
99 | 99 |
/// Constructor. |
100 | 100 |
/// \param map A map that assigns \c int values to keys of type |
101 | 101 |
/// \c Item. It is used internally by the heap implementations to |
102 | 102 |
/// handle the cross references. The assigned value must be |
103 | 103 |
/// \c PRE_HEAP (<tt>-1</tt>) for each item. |
104 | 104 |
/// \param comp The function object used for comparing the priorities. |
105 | 105 |
#ifdef DOXYGEN |
106 | 106 |
explicit Heap(ItemIntMap &map, const CMP &comp) {} |
107 | 107 |
#else |
108 | 108 |
explicit Heap(ItemIntMap&, const CMP&) {} |
109 | 109 |
#endif |
110 | 110 |
|
111 | 111 |
/// \brief The number of items stored in the heap. |
112 | 112 |
/// |
113 | 113 |
/// This function returns the number of items stored in the heap. |
114 | 114 |
int size() const { return 0; } |
115 | 115 |
|
116 | 116 |
/// \brief Check if the heap is empty. |
117 | 117 |
/// |
118 | 118 |
/// This function returns \c true if the heap is empty. |
119 | 119 |
bool empty() const { return false; } |
120 | 120 |
|
121 | 121 |
/// \brief Make the heap empty. |
122 | 122 |
/// |
123 | 123 |
/// This functon makes the heap empty. |
124 | 124 |
/// It does not change the cross reference map. If you want to reuse |
125 | 125 |
/// a heap that is not surely empty, you should first clear it and |
126 | 126 |
/// then you should set the cross reference map to \c PRE_HEAP |
127 | 127 |
/// for each item. |
128 | 128 |
void clear() {} |
129 | 129 |
|
130 | 130 |
/// \brief Insert an item into the heap with the given priority. |
131 | 131 |
/// |
132 | 132 |
/// This function inserts the given item into the heap with the |
133 | 133 |
/// given priority. |
134 | 134 |
/// \param i The item to insert. |
135 | 135 |
/// \param p The priority of the item. |
136 | 136 |
/// \pre \e i must not be stored in the heap. |
137 | 137 |
#ifdef DOXYGEN |
138 | 138 |
void push(const Item &i, const Prio &p) {} |
139 | 139 |
#else |
140 | 140 |
void push(const Item&, const Prio&) {} |
141 | 141 |
#endif |
142 | 142 |
|
143 | 143 |
/// \brief Return the item having minimum priority. |
144 | 144 |
/// |
145 | 145 |
/// This function returns the item having minimum priority. |
146 | 146 |
/// \pre The heap must be non-empty. |
147 | 147 |
Item top() const { return Item(); } |
148 | 148 |
|
149 | 149 |
/// \brief The minimum priority. |
150 | 150 |
/// |
151 | 151 |
/// This function returns the minimum priority. |
152 | 152 |
/// \pre The heap must be non-empty. |
153 | 153 |
Prio prio() const { return Prio(); } |
154 | 154 |
|
155 | 155 |
/// \brief Remove the item having minimum priority. |
156 | 156 |
/// |
157 | 157 |
/// This function removes the item having minimum priority. |
158 | 158 |
/// \pre The heap must be non-empty. |
159 | 159 |
void pop() {} |
160 | 160 |
|
161 | 161 |
/// \brief Remove the given item from the heap. |
162 | 162 |
/// |
163 | 163 |
/// This function removes the given item from the heap if it is |
164 | 164 |
/// already stored. |
165 | 165 |
/// \param i The item to delete. |
166 | 166 |
/// \pre \e i must be in the heap. |
167 | 167 |
#ifdef DOXYGEN |
168 | 168 |
void erase(const Item &i) {} |
169 | 169 |
#else |
170 | 170 |
void erase(const Item&) {} |
171 | 171 |
#endif |
172 | 172 |
|
173 | 173 |
/// \brief The priority of the given item. |
174 | 174 |
/// |
175 | 175 |
/// This function returns the priority of the given item. |
176 | 176 |
/// \param i The item. |
177 | 177 |
/// \pre \e i must be in the heap. |
178 | 178 |
#ifdef DOXYGEN |
179 | 179 |
Prio operator[](const Item &i) const {} |
180 | 180 |
#else |
181 | 181 |
Prio operator[](const Item&) const { return Prio(); } |
182 | 182 |
#endif |
183 | 183 |
|
184 | 184 |
/// \brief Set the priority of an item or insert it, if it is |
185 | 185 |
/// not stored in the heap. |
186 | 186 |
/// |
187 | 187 |
/// This method sets the priority of the given item if it is |
188 | 188 |
/// already stored in the heap. Otherwise it inserts the given |
189 | 189 |
/// item into the heap with the given priority. |
190 | 190 |
/// |
191 | 191 |
/// \param i The item. |
192 | 192 |
/// \param p The priority. |
193 | 193 |
#ifdef DOXYGEN |
194 | 194 |
void set(const Item &i, const Prio &p) {} |
195 | 195 |
#else |
196 | 196 |
void set(const Item&, const Prio&) {} |
197 | 197 |
#endif |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CONNECTIVITY_H |
20 | 20 |
#define LEMON_CONNECTIVITY_H |
21 | 21 |
|
22 | 22 |
#include <lemon/dfs.h> |
23 | 23 |
#include <lemon/bfs.h> |
24 | 24 |
#include <lemon/core.h> |
25 | 25 |
#include <lemon/maps.h> |
26 | 26 |
#include <lemon/adaptors.h> |
27 | 27 |
|
28 | 28 |
#include <lemon/concepts/digraph.h> |
29 | 29 |
#include <lemon/concepts/graph.h> |
30 | 30 |
#include <lemon/concept_check.h> |
31 | 31 |
|
32 | 32 |
#include <stack> |
33 | 33 |
#include <functional> |
34 | 34 |
|
35 | 35 |
/// \ingroup graph_properties |
36 | 36 |
/// \file |
37 | 37 |
/// \brief Connectivity algorithms |
38 | 38 |
/// |
39 | 39 |
/// Connectivity algorithms |
40 | 40 |
|
41 | 41 |
namespace lemon { |
42 | 42 |
|
43 | 43 |
/// \ingroup graph_properties |
44 | 44 |
/// |
45 | 45 |
/// \brief Check whether an undirected graph is connected. |
46 | 46 |
/// |
47 | 47 |
/// This function checks whether the given undirected graph is connected, |
48 | 48 |
/// i.e. there is a path between any two nodes in the graph. |
49 | 49 |
/// |
50 | 50 |
/// \return \c true if the graph is connected. |
51 | 51 |
/// \note By definition, the empty graph is connected. |
52 | 52 |
/// |
53 | 53 |
/// \see countConnectedComponents(), connectedComponents() |
54 | 54 |
/// \see stronglyConnected() |
55 | 55 |
template <typename Graph> |
56 | 56 |
bool connected(const Graph& graph) { |
57 | 57 |
checkConcept<concepts::Graph, Graph>(); |
58 | 58 |
typedef typename Graph::NodeIt NodeIt; |
59 | 59 |
if (NodeIt(graph) == INVALID) return true; |
60 | 60 |
Dfs<Graph> dfs(graph); |
61 | 61 |
dfs.run(NodeIt(graph)); |
62 | 62 |
for (NodeIt it(graph); it != INVALID; ++it) { |
63 | 63 |
if (!dfs.reached(it)) { |
64 | 64 |
return false; |
65 | 65 |
} |
66 | 66 |
} |
67 | 67 |
return true; |
68 | 68 |
} |
69 | 69 |
|
70 | 70 |
/// \ingroup graph_properties |
71 | 71 |
/// |
72 | 72 |
/// \brief Count the number of connected components of an undirected graph |
73 | 73 |
/// |
74 | 74 |
/// This function counts the number of connected components of the given |
75 | 75 |
/// undirected graph. |
76 | 76 |
/// |
77 | 77 |
/// The connected components are the classes of an equivalence relation |
78 | 78 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
79 | 79 |
/// if they are connected with a path. |
80 | 80 |
/// |
81 | 81 |
/// \return The number of connected components. |
82 | 82 |
/// \note By definition, the empty graph consists |
83 | 83 |
/// of zero connected components. |
84 | 84 |
/// |
85 | 85 |
/// \see connected(), connectedComponents() |
86 | 86 |
template <typename Graph> |
87 | 87 |
int countConnectedComponents(const Graph &graph) { |
88 | 88 |
checkConcept<concepts::Graph, Graph>(); |
89 | 89 |
typedef typename Graph::Node Node; |
90 | 90 |
typedef typename Graph::Arc Arc; |
91 | 91 |
|
92 | 92 |
typedef NullMap<Node, Arc> PredMap; |
93 | 93 |
typedef NullMap<Node, int> DistMap; |
94 | 94 |
|
95 | 95 |
int compNum = 0; |
96 | 96 |
typename Bfs<Graph>:: |
97 | 97 |
template SetPredMap<PredMap>:: |
98 | 98 |
template SetDistMap<DistMap>:: |
99 | 99 |
Create bfs(graph); |
100 | 100 |
|
101 | 101 |
PredMap predMap; |
102 | 102 |
bfs.predMap(predMap); |
103 | 103 |
|
104 | 104 |
DistMap distMap; |
105 | 105 |
bfs.distMap(distMap); |
106 | 106 |
|
107 | 107 |
bfs.init(); |
108 | 108 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
109 | 109 |
if (!bfs.reached(n)) { |
110 | 110 |
bfs.addSource(n); |
111 | 111 |
bfs.start(); |
112 | 112 |
++compNum; |
113 | 113 |
} |
114 | 114 |
} |
115 | 115 |
return compNum; |
116 | 116 |
} |
117 | 117 |
|
118 | 118 |
/// \ingroup graph_properties |
119 | 119 |
/// |
120 | 120 |
/// \brief Find the connected components of an undirected graph |
121 | 121 |
/// |
122 | 122 |
/// This function finds the connected components of the given undirected |
123 | 123 |
/// graph. |
124 | 124 |
/// |
125 | 125 |
/// The connected components are the classes of an equivalence relation |
126 | 126 |
/// on the nodes of an undirected graph. Two nodes are in the same class |
127 | 127 |
/// if they are connected with a path. |
128 | 128 |
/// |
129 | 129 |
/// \image html connected_components.png |
130 | 130 |
/// \image latex connected_components.eps "Connected components" width=\textwidth |
131 | 131 |
/// |
132 | 132 |
/// \param graph The undirected graph. |
133 | 133 |
/// \retval compMap A writable node map. The values will be set from 0 to |
134 | 134 |
/// the number of the connected components minus one. Each value of the map |
135 | 135 |
/// will be set exactly once, and the values of a certain component will be |
136 | 136 |
/// set continuously. |
137 | 137 |
/// \return The number of connected components. |
138 | 138 |
/// \note By definition, the empty graph consists |
139 | 139 |
/// of zero connected components. |
140 | 140 |
/// |
141 | 141 |
/// \see connected(), countConnectedComponents() |
142 | 142 |
template <class Graph, class NodeMap> |
143 | 143 |
int connectedComponents(const Graph &graph, NodeMap &compMap) { |
144 | 144 |
checkConcept<concepts::Graph, Graph>(); |
145 | 145 |
typedef typename Graph::Node Node; |
146 | 146 |
typedef typename Graph::Arc Arc; |
147 | 147 |
checkConcept<concepts::WriteMap<Node, int>, NodeMap>(); |
148 | 148 |
|
149 | 149 |
typedef NullMap<Node, Arc> PredMap; |
150 | 150 |
typedef NullMap<Node, int> DistMap; |
151 | 151 |
|
152 | 152 |
int compNum = 0; |
153 | 153 |
typename Bfs<Graph>:: |
154 | 154 |
template SetPredMap<PredMap>:: |
155 | 155 |
template SetDistMap<DistMap>:: |
156 | 156 |
Create bfs(graph); |
157 | 157 |
|
158 | 158 |
PredMap predMap; |
159 | 159 |
bfs.predMap(predMap); |
160 | 160 |
|
161 | 161 |
DistMap distMap; |
162 | 162 |
bfs.distMap(distMap); |
163 | 163 |
|
164 | 164 |
bfs.init(); |
165 | 165 |
for(typename Graph::NodeIt n(graph); n != INVALID; ++n) { |
166 | 166 |
if(!bfs.reached(n)) { |
167 | 167 |
bfs.addSource(n); |
168 | 168 |
while (!bfs.emptyQueue()) { |
169 | 169 |
compMap.set(bfs.nextNode(), compNum); |
170 | 170 |
bfs.processNextNode(); |
171 | 171 |
} |
172 | 172 |
++compNum; |
173 | 173 |
} |
174 | 174 |
} |
175 | 175 |
return compNum; |
176 | 176 |
} |
177 | 177 |
|
178 | 178 |
namespace _connectivity_bits { |
179 | 179 |
|
180 | 180 |
template <typename Digraph, typename Iterator > |
181 | 181 |
struct LeaveOrderVisitor : public DfsVisitor<Digraph> { |
182 | 182 |
public: |
183 | 183 |
typedef typename Digraph::Node Node; |
184 | 184 |
LeaveOrderVisitor(Iterator it) : _it(it) {} |
185 | 185 |
|
186 | 186 |
void leave(const Node& node) { |
187 | 187 |
*(_it++) = node; |
188 | 188 |
} |
189 | 189 |
|
190 | 190 |
private: |
191 | 191 |
Iterator _it; |
192 | 192 |
}; |
193 | 193 |
|
194 | 194 |
template <typename Digraph, typename Map> |
195 | 195 |
struct FillMapVisitor : public DfsVisitor<Digraph> { |
196 | 196 |
public: |
197 | 197 |
typedef typename Digraph::Node Node; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CORE_H |
20 | 20 |
#define LEMON_CORE_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <algorithm> |
24 | 24 |
|
25 | 25 |
#include <lemon/config.h> |
26 | 26 |
#include <lemon/bits/enable_if.h> |
27 | 27 |
#include <lemon/bits/traits.h> |
28 | 28 |
#include <lemon/assert.h> |
29 | 29 |
|
30 | 30 |
// Disable the following warnings when compiling with MSVC: |
31 | 31 |
// C4250: 'class1' : inherits 'class2::member' via dominance |
32 | 32 |
// C4355: 'this' : used in base member initializer list |
33 | 33 |
// C4503: 'function' : decorated name length exceeded, name was truncated |
34 | 34 |
// C4800: 'type' : forcing value to bool 'true' or 'false' (performance warning) |
35 | 35 |
// C4996: 'function': was declared deprecated |
36 | 36 |
#ifdef _MSC_VER |
37 | 37 |
#pragma warning( disable : 4250 4355 4503 4800 4996 ) |
38 | 38 |
#endif |
39 | 39 |
|
40 | 40 |
///\file |
41 | 41 |
///\brief LEMON core utilities. |
42 | 42 |
/// |
43 | 43 |
///This header file contains core utilities for LEMON. |
44 | 44 |
///It is automatically included by all graph types, therefore it usually |
45 | 45 |
///do not have to be included directly. |
46 | 46 |
|
47 | 47 |
namespace lemon { |
48 | 48 |
|
49 | 49 |
/// \brief Dummy type to make it easier to create invalid iterators. |
50 | 50 |
/// |
51 | 51 |
/// Dummy type to make it easier to create invalid iterators. |
52 | 52 |
/// See \ref INVALID for the usage. |
53 | 53 |
struct Invalid { |
54 | 54 |
public: |
55 | 55 |
bool operator==(Invalid) { return true; } |
56 | 56 |
bool operator!=(Invalid) { return false; } |
57 | 57 |
bool operator< (Invalid) { return false; } |
58 | 58 |
}; |
59 | 59 |
|
60 | 60 |
/// \brief Invalid iterators. |
61 | 61 |
/// |
62 | 62 |
/// \ref Invalid is a global type that converts to each iterator |
63 | 63 |
/// in such a way that the value of the target iterator will be invalid. |
64 | 64 |
#ifdef LEMON_ONLY_TEMPLATES |
65 | 65 |
const Invalid INVALID = Invalid(); |
66 | 66 |
#else |
67 | 67 |
extern const Invalid INVALID; |
68 | 68 |
#endif |
69 | 69 |
|
70 | 70 |
/// \addtogroup gutils |
71 | 71 |
/// @{ |
72 | 72 |
|
73 | 73 |
///Create convenience typedefs for the digraph types and iterators |
74 | 74 |
|
75 | 75 |
///This \c \#define creates convenient type definitions for the following |
76 | 76 |
///types of \c Digraph: \c Node, \c NodeIt, \c Arc, \c ArcIt, \c InArcIt, |
77 | 77 |
///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap, |
78 | 78 |
///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap. |
79 | 79 |
/// |
80 | 80 |
///\note If the graph type is a dependent type, ie. the graph type depend |
81 | 81 |
///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS() |
82 | 82 |
///macro. |
83 | 83 |
#define DIGRAPH_TYPEDEFS(Digraph) \ |
84 | 84 |
typedef Digraph::Node Node; \ |
85 | 85 |
typedef Digraph::NodeIt NodeIt; \ |
86 | 86 |
typedef Digraph::Arc Arc; \ |
87 | 87 |
typedef Digraph::ArcIt ArcIt; \ |
88 | 88 |
typedef Digraph::InArcIt InArcIt; \ |
89 | 89 |
typedef Digraph::OutArcIt OutArcIt; \ |
90 | 90 |
typedef Digraph::NodeMap<bool> BoolNodeMap; \ |
91 | 91 |
typedef Digraph::NodeMap<int> IntNodeMap; \ |
92 | 92 |
typedef Digraph::NodeMap<double> DoubleNodeMap; \ |
93 | 93 |
typedef Digraph::ArcMap<bool> BoolArcMap; \ |
94 | 94 |
typedef Digraph::ArcMap<int> IntArcMap; \ |
95 | 95 |
typedef Digraph::ArcMap<double> DoubleArcMap |
96 | 96 |
|
97 | 97 |
///Create convenience typedefs for the digraph types and iterators |
98 | 98 |
|
99 | 99 |
///\see DIGRAPH_TYPEDEFS |
100 | 100 |
/// |
101 | 101 |
///\note Use this macro, if the graph type is a dependent type, |
102 | 102 |
///ie. the graph type depend on a template parameter. |
103 | 103 |
#define TEMPLATE_DIGRAPH_TYPEDEFS(Digraph) \ |
104 | 104 |
typedef typename Digraph::Node Node; \ |
105 | 105 |
typedef typename Digraph::NodeIt NodeIt; \ |
106 | 106 |
typedef typename Digraph::Arc Arc; \ |
107 | 107 |
typedef typename Digraph::ArcIt ArcIt; \ |
108 | 108 |
typedef typename Digraph::InArcIt InArcIt; \ |
109 | 109 |
typedef typename Digraph::OutArcIt OutArcIt; \ |
110 | 110 |
typedef typename Digraph::template NodeMap<bool> BoolNodeMap; \ |
111 | 111 |
typedef typename Digraph::template NodeMap<int> IntNodeMap; \ |
112 | 112 |
typedef typename Digraph::template NodeMap<double> DoubleNodeMap; \ |
113 | 113 |
typedef typename Digraph::template ArcMap<bool> BoolArcMap; \ |
114 | 114 |
typedef typename Digraph::template ArcMap<int> IntArcMap; \ |
115 | 115 |
typedef typename Digraph::template ArcMap<double> DoubleArcMap |
116 | 116 |
|
117 | 117 |
///Create convenience typedefs for the graph types and iterators |
118 | 118 |
|
119 | 119 |
///This \c \#define creates the same convenient type definitions as defined |
120 | 120 |
///by \ref DIGRAPH_TYPEDEFS(Graph) and six more, namely it creates |
121 | 121 |
///\c Edge, \c EdgeIt, \c IncEdgeIt, \c BoolEdgeMap, \c IntEdgeMap, |
122 | 122 |
///\c DoubleEdgeMap. |
123 | 123 |
/// |
124 | 124 |
///\note If the graph type is a dependent type, ie. the graph type depend |
125 | 125 |
///on a template parameter, then use \c TEMPLATE_GRAPH_TYPEDEFS() |
126 | 126 |
///macro. |
127 | 127 |
#define GRAPH_TYPEDEFS(Graph) \ |
128 | 128 |
DIGRAPH_TYPEDEFS(Graph); \ |
129 | 129 |
typedef Graph::Edge Edge; \ |
130 | 130 |
typedef Graph::EdgeIt EdgeIt; \ |
131 | 131 |
typedef Graph::IncEdgeIt IncEdgeIt; \ |
132 | 132 |
typedef Graph::EdgeMap<bool> BoolEdgeMap; \ |
133 | 133 |
typedef Graph::EdgeMap<int> IntEdgeMap; \ |
134 | 134 |
typedef Graph::EdgeMap<double> DoubleEdgeMap |
135 | 135 |
|
136 | 136 |
///Create convenience typedefs for the graph types and iterators |
137 | 137 |
|
138 | 138 |
///\see GRAPH_TYPEDEFS |
139 | 139 |
/// |
140 | 140 |
///\note Use this macro, if the graph type is a dependent type, |
141 | 141 |
///ie. the graph type depend on a template parameter. |
142 | 142 |
#define TEMPLATE_GRAPH_TYPEDEFS(Graph) \ |
143 | 143 |
TEMPLATE_DIGRAPH_TYPEDEFS(Graph); \ |
144 | 144 |
typedef typename Graph::Edge Edge; \ |
145 | 145 |
typedef typename Graph::EdgeIt EdgeIt; \ |
146 | 146 |
typedef typename Graph::IncEdgeIt IncEdgeIt; \ |
147 | 147 |
typedef typename Graph::template EdgeMap<bool> BoolEdgeMap; \ |
148 | 148 |
typedef typename Graph::template EdgeMap<int> IntEdgeMap; \ |
149 | 149 |
typedef typename Graph::template EdgeMap<double> DoubleEdgeMap |
150 | 150 |
|
151 | 151 |
/// \brief Function to count the items in a graph. |
152 | 152 |
/// |
153 | 153 |
/// This function counts the items (nodes, arcs etc.) in a graph. |
154 | 154 |
/// The complexity of the function is linear because |
155 | 155 |
/// it iterates on all of the items. |
156 | 156 |
template <typename Graph, typename Item> |
157 | 157 |
inline int countItems(const Graph& g) { |
158 | 158 |
typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
159 | 159 |
int num = 0; |
160 | 160 |
for (ItemIt it(g); it != INVALID; ++it) { |
161 | 161 |
++num; |
162 | 162 |
} |
163 | 163 |
return num; |
164 | 164 |
} |
165 | 165 |
|
166 | 166 |
// Node counting: |
167 | 167 |
|
168 | 168 |
namespace _core_bits { |
169 | 169 |
|
170 | 170 |
template <typename Graph, typename Enable = void> |
171 | 171 |
struct CountNodesSelector { |
172 | 172 |
static int count(const Graph &g) { |
173 | 173 |
return countItems<Graph, typename Graph::Node>(g); |
174 | 174 |
} |
175 | 175 |
}; |
176 | 176 |
|
177 | 177 |
template <typename Graph> |
178 | 178 |
struct CountNodesSelector< |
179 | 179 |
Graph, typename |
180 | 180 |
enable_if<typename Graph::NodeNumTag, void>::type> |
181 | 181 |
{ |
182 | 182 |
static int count(const Graph &g) { |
183 | 183 |
return g.nodeNum(); |
184 | 184 |
} |
185 | 185 |
}; |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
/// \brief Function to count the nodes in the graph. |
189 | 189 |
/// |
190 | 190 |
/// This function counts the nodes in the graph. |
191 | 191 |
/// The complexity of the function is <em>O</em>(<em>n</em>), but for some |
192 | 192 |
/// graph structures it is specialized to run in <em>O</em>(1). |
193 | 193 |
/// |
194 | 194 |
/// \note If the graph contains a \c nodeNum() member function and a |
195 | 195 |
/// \c NodeNumTag tag then this function calls directly the member |
196 | 196 |
/// function to query the cardinality of the node set. |
197 | 197 |
template <typename Graph> |
... | ... |
@@ -1050,385 +1050,386 @@ |
1050 | 1050 |
|
1051 | 1051 |
public: |
1052 | 1052 |
|
1053 | 1053 |
typedef typename GR::Arc Arc; |
1054 | 1054 |
typedef typename GR::Node Node; |
1055 | 1055 |
|
1056 | 1056 |
/// \brief Constructor. |
1057 | 1057 |
/// |
1058 | 1058 |
/// Construct a new ConArcIt iterating on the arcs that |
1059 | 1059 |
/// connects nodes \c u and \c v. |
1060 | 1060 |
ConArcIt(const GR& g, Node u, Node v) : _graph(g) { |
1061 | 1061 |
Parent::operator=(findArc(_graph, u, v)); |
1062 | 1062 |
} |
1063 | 1063 |
|
1064 | 1064 |
/// \brief Constructor. |
1065 | 1065 |
/// |
1066 | 1066 |
/// Construct a new ConArcIt that continues the iterating from arc \c a. |
1067 | 1067 |
ConArcIt(const GR& g, Arc a) : Parent(a), _graph(g) {} |
1068 | 1068 |
|
1069 | 1069 |
/// \brief Increment operator. |
1070 | 1070 |
/// |
1071 | 1071 |
/// It increments the iterator and gives back the next arc. |
1072 | 1072 |
ConArcIt& operator++() { |
1073 | 1073 |
Parent::operator=(findArc(_graph, _graph.source(*this), |
1074 | 1074 |
_graph.target(*this), *this)); |
1075 | 1075 |
return *this; |
1076 | 1076 |
} |
1077 | 1077 |
private: |
1078 | 1078 |
const GR& _graph; |
1079 | 1079 |
}; |
1080 | 1080 |
|
1081 | 1081 |
namespace _core_bits { |
1082 | 1082 |
|
1083 | 1083 |
template <typename Graph, typename Enable = void> |
1084 | 1084 |
struct FindEdgeSelector { |
1085 | 1085 |
typedef typename Graph::Node Node; |
1086 | 1086 |
typedef typename Graph::Edge Edge; |
1087 | 1087 |
static Edge find(const Graph &g, Node u, Node v, Edge e) { |
1088 | 1088 |
bool b; |
1089 | 1089 |
if (u != v) { |
1090 | 1090 |
if (e == INVALID) { |
1091 | 1091 |
g.firstInc(e, b, u); |
1092 | 1092 |
} else { |
1093 | 1093 |
b = g.u(e) == u; |
1094 | 1094 |
g.nextInc(e, b); |
1095 | 1095 |
} |
1096 | 1096 |
while (e != INVALID && (b ? g.v(e) : g.u(e)) != v) { |
1097 | 1097 |
g.nextInc(e, b); |
1098 | 1098 |
} |
1099 | 1099 |
} else { |
1100 | 1100 |
if (e == INVALID) { |
1101 | 1101 |
g.firstInc(e, b, u); |
1102 | 1102 |
} else { |
1103 | 1103 |
b = true; |
1104 | 1104 |
g.nextInc(e, b); |
1105 | 1105 |
} |
1106 | 1106 |
while (e != INVALID && (!b || g.v(e) != v)) { |
1107 | 1107 |
g.nextInc(e, b); |
1108 | 1108 |
} |
1109 | 1109 |
} |
1110 | 1110 |
return e; |
1111 | 1111 |
} |
1112 | 1112 |
}; |
1113 | 1113 |
|
1114 | 1114 |
template <typename Graph> |
1115 | 1115 |
struct FindEdgeSelector< |
1116 | 1116 |
Graph, |
1117 | 1117 |
typename enable_if<typename Graph::FindEdgeTag, void>::type> |
1118 | 1118 |
{ |
1119 | 1119 |
typedef typename Graph::Node Node; |
1120 | 1120 |
typedef typename Graph::Edge Edge; |
1121 | 1121 |
static Edge find(const Graph &g, Node u, Node v, Edge prev) { |
1122 | 1122 |
return g.findEdge(u, v, prev); |
1123 | 1123 |
} |
1124 | 1124 |
}; |
1125 | 1125 |
} |
1126 | 1126 |
|
1127 | 1127 |
/// \brief Find an edge between two nodes of a graph. |
1128 | 1128 |
/// |
1129 | 1129 |
/// This function finds an edge from node \c u to node \c v in graph \c g. |
1130 | 1130 |
/// If node \c u and node \c v is equal then each loop edge |
1131 | 1131 |
/// will be enumerated once. |
1132 | 1132 |
/// |
1133 | 1133 |
/// If \c prev is \ref INVALID (this is the default value), then |
1134 | 1134 |
/// it finds the first edge from \c u to \c v. Otherwise it looks for |
1135 | 1135 |
/// the next edge from \c u to \c v after \c prev. |
1136 | 1136 |
/// \return The found edge or \ref INVALID if there is no such an edge. |
1137 | 1137 |
/// |
1138 | 1138 |
/// Thus you can iterate through each edge between \c u and \c v |
1139 | 1139 |
/// as it follows. |
1140 | 1140 |
///\code |
1141 | 1141 |
/// for(Edge e = findEdge(g,u,v); e != INVALID; e = findEdge(g,u,v,e)) { |
1142 | 1142 |
/// ... |
1143 | 1143 |
/// } |
1144 | 1144 |
///\endcode |
1145 | 1145 |
/// |
1146 | 1146 |
/// \note \ref ConEdgeIt provides iterator interface for the same |
1147 | 1147 |
/// functionality. |
1148 | 1148 |
/// |
1149 | 1149 |
///\sa ConEdgeIt |
1150 | 1150 |
template <typename Graph> |
1151 | 1151 |
inline typename Graph::Edge |
1152 | 1152 |
findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
1153 | 1153 |
typename Graph::Edge p = INVALID) { |
1154 | 1154 |
return _core_bits::FindEdgeSelector<Graph>::find(g, u, v, p); |
1155 | 1155 |
} |
1156 | 1156 |
|
1157 | 1157 |
/// \brief Iterator for iterating on parallel edges connecting the same nodes. |
1158 | 1158 |
/// |
1159 | 1159 |
/// Iterator for iterating on parallel edges connecting the same nodes. |
1160 | 1160 |
/// It is a higher level interface for the findEdge() function. You can |
1161 | 1161 |
/// use it the following way: |
1162 | 1162 |
///\code |
1163 | 1163 |
/// for (ConEdgeIt<Graph> it(g, u, v); it != INVALID; ++it) { |
1164 | 1164 |
/// ... |
1165 | 1165 |
/// } |
1166 | 1166 |
///\endcode |
1167 | 1167 |
/// |
1168 | 1168 |
///\sa findEdge() |
1169 | 1169 |
template <typename GR> |
1170 | 1170 |
class ConEdgeIt : public GR::Edge { |
1171 | 1171 |
typedef typename GR::Edge Parent; |
1172 | 1172 |
|
1173 | 1173 |
public: |
1174 | 1174 |
|
1175 | 1175 |
typedef typename GR::Edge Edge; |
1176 | 1176 |
typedef typename GR::Node Node; |
1177 | 1177 |
|
1178 | 1178 |
/// \brief Constructor. |
1179 | 1179 |
/// |
1180 | 1180 |
/// Construct a new ConEdgeIt iterating on the edges that |
1181 | 1181 |
/// connects nodes \c u and \c v. |
1182 | 1182 |
ConEdgeIt(const GR& g, Node u, Node v) : _graph(g), _u(u), _v(v) { |
1183 | 1183 |
Parent::operator=(findEdge(_graph, _u, _v)); |
1184 | 1184 |
} |
1185 | 1185 |
|
1186 | 1186 |
/// \brief Constructor. |
1187 | 1187 |
/// |
1188 | 1188 |
/// Construct a new ConEdgeIt that continues iterating from edge \c e. |
1189 | 1189 |
ConEdgeIt(const GR& g, Edge e) : Parent(e), _graph(g) {} |
1190 | 1190 |
|
1191 | 1191 |
/// \brief Increment operator. |
1192 | 1192 |
/// |
1193 | 1193 |
/// It increments the iterator and gives back the next edge. |
1194 | 1194 |
ConEdgeIt& operator++() { |
1195 | 1195 |
Parent::operator=(findEdge(_graph, _u, _v, *this)); |
1196 | 1196 |
return *this; |
1197 | 1197 |
} |
1198 | 1198 |
private: |
1199 | 1199 |
const GR& _graph; |
1200 | 1200 |
Node _u, _v; |
1201 | 1201 |
}; |
1202 | 1202 |
|
1203 | 1203 |
|
1204 | 1204 |
///Dynamic arc look-up between given endpoints. |
1205 | 1205 |
|
1206 | 1206 |
///Using this class, you can find an arc in a digraph from a given |
1207 | 1207 |
///source to a given target in amortized time <em>O</em>(log<em>d</em>), |
1208 | 1208 |
///where <em>d</em> is the out-degree of the source node. |
1209 | 1209 |
/// |
1210 | 1210 |
///It is possible to find \e all parallel arcs between two nodes with |
1211 | 1211 |
///the \c operator() member. |
1212 | 1212 |
/// |
1213 | 1213 |
///This is a dynamic data structure. Consider to use \ref ArcLookUp or |
1214 | 1214 |
///\ref AllArcLookUp if your digraph is not changed so frequently. |
1215 | 1215 |
/// |
1216 | 1216 |
///This class uses a self-adjusting binary search tree, the Splay tree |
1217 | 1217 |
///of Sleator and Tarjan to guarantee the logarithmic amortized |
1218 | 1218 |
///time bound for arc look-ups. This class also guarantees the |
1219 | 1219 |
///optimal time bound in a constant factor for any distribution of |
1220 | 1220 |
///queries. |
1221 | 1221 |
/// |
1222 | 1222 |
///\tparam GR The type of the underlying digraph. |
1223 | 1223 |
/// |
1224 | 1224 |
///\sa ArcLookUp |
1225 | 1225 |
///\sa AllArcLookUp |
1226 | 1226 |
template <typename GR> |
1227 | 1227 |
class DynArcLookUp |
1228 | 1228 |
: protected ItemSetTraits<GR, typename GR::Arc>::ItemNotifier::ObserverBase |
1229 | 1229 |
{ |
1230 | 1230 |
typedef typename ItemSetTraits<GR, typename GR::Arc> |
1231 | 1231 |
::ItemNotifier::ObserverBase Parent; |
1232 | 1232 |
|
1233 | 1233 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
1234 | 1234 |
|
1235 | 1235 |
public: |
1236 | 1236 |
|
1237 | 1237 |
/// The Digraph type |
1238 | 1238 |
typedef GR Digraph; |
1239 | 1239 |
|
1240 | 1240 |
protected: |
1241 | 1241 |
|
1242 |
class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type |
|
1242 |
class AutoNodeMap : public ItemSetTraits<GR, Node>::template Map<Arc>::Type |
|
1243 |
{ |
|
1243 | 1244 |
typedef typename ItemSetTraits<GR, Node>::template Map<Arc>::Type Parent; |
1244 | 1245 |
|
1245 | 1246 |
public: |
1246 | 1247 |
|
1247 | 1248 |
AutoNodeMap(const GR& digraph) : Parent(digraph, INVALID) {} |
1248 | 1249 |
|
1249 | 1250 |
virtual void add(const Node& node) { |
1250 | 1251 |
Parent::add(node); |
1251 | 1252 |
Parent::set(node, INVALID); |
1252 | 1253 |
} |
1253 | 1254 |
|
1254 | 1255 |
virtual void add(const std::vector<Node>& nodes) { |
1255 | 1256 |
Parent::add(nodes); |
1256 | 1257 |
for (int i = 0; i < int(nodes.size()); ++i) { |
1257 | 1258 |
Parent::set(nodes[i], INVALID); |
1258 | 1259 |
} |
1259 | 1260 |
} |
1260 | 1261 |
|
1261 | 1262 |
virtual void build() { |
1262 | 1263 |
Parent::build(); |
1263 | 1264 |
Node it; |
1264 | 1265 |
typename Parent::Notifier* nf = Parent::notifier(); |
1265 | 1266 |
for (nf->first(it); it != INVALID; nf->next(it)) { |
1266 | 1267 |
Parent::set(it, INVALID); |
1267 | 1268 |
} |
1268 | 1269 |
} |
1269 | 1270 |
}; |
1270 | 1271 |
|
1271 | 1272 |
class ArcLess { |
1272 | 1273 |
const Digraph &g; |
1273 | 1274 |
public: |
1274 | 1275 |
ArcLess(const Digraph &_g) : g(_g) {} |
1275 | 1276 |
bool operator()(Arc a,Arc b) const |
1276 | 1277 |
{ |
1277 | 1278 |
return g.target(a)<g.target(b); |
1278 | 1279 |
} |
1279 | 1280 |
}; |
1280 | 1281 |
|
1281 | 1282 |
protected: |
1282 | 1283 |
|
1283 | 1284 |
const Digraph &_g; |
1284 | 1285 |
AutoNodeMap _head; |
1285 | 1286 |
typename Digraph::template ArcMap<Arc> _parent; |
1286 | 1287 |
typename Digraph::template ArcMap<Arc> _left; |
1287 | 1288 |
typename Digraph::template ArcMap<Arc> _right; |
1288 | 1289 |
|
1289 | 1290 |
public: |
1290 | 1291 |
|
1291 | 1292 |
///Constructor |
1292 | 1293 |
|
1293 | 1294 |
///Constructor. |
1294 | 1295 |
/// |
1295 | 1296 |
///It builds up the search database. |
1296 | 1297 |
DynArcLookUp(const Digraph &g) |
1297 | 1298 |
: _g(g),_head(g),_parent(g),_left(g),_right(g) |
1298 | 1299 |
{ |
1299 | 1300 |
Parent::attach(_g.notifier(typename Digraph::Arc())); |
1300 | 1301 |
refresh(); |
1301 | 1302 |
} |
1302 | 1303 |
|
1303 | 1304 |
protected: |
1304 | 1305 |
|
1305 | 1306 |
virtual void add(const Arc& arc) { |
1306 | 1307 |
insert(arc); |
1307 | 1308 |
} |
1308 | 1309 |
|
1309 | 1310 |
virtual void add(const std::vector<Arc>& arcs) { |
1310 | 1311 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1311 | 1312 |
insert(arcs[i]); |
1312 | 1313 |
} |
1313 | 1314 |
} |
1314 | 1315 |
|
1315 | 1316 |
virtual void erase(const Arc& arc) { |
1316 | 1317 |
remove(arc); |
1317 | 1318 |
} |
1318 | 1319 |
|
1319 | 1320 |
virtual void erase(const std::vector<Arc>& arcs) { |
1320 | 1321 |
for (int i = 0; i < int(arcs.size()); ++i) { |
1321 | 1322 |
remove(arcs[i]); |
1322 | 1323 |
} |
1323 | 1324 |
} |
1324 | 1325 |
|
1325 | 1326 |
virtual void build() { |
1326 | 1327 |
refresh(); |
1327 | 1328 |
} |
1328 | 1329 |
|
1329 | 1330 |
virtual void clear() { |
1330 | 1331 |
for(NodeIt n(_g);n!=INVALID;++n) { |
1331 | 1332 |
_head[n] = INVALID; |
1332 | 1333 |
} |
1333 | 1334 |
} |
1334 | 1335 |
|
1335 | 1336 |
void insert(Arc arc) { |
1336 | 1337 |
Node s = _g.source(arc); |
1337 | 1338 |
Node t = _g.target(arc); |
1338 | 1339 |
_left[arc] = INVALID; |
1339 | 1340 |
_right[arc] = INVALID; |
1340 | 1341 |
|
1341 | 1342 |
Arc e = _head[s]; |
1342 | 1343 |
if (e == INVALID) { |
1343 | 1344 |
_head[s] = arc; |
1344 | 1345 |
_parent[arc] = INVALID; |
1345 | 1346 |
return; |
1346 | 1347 |
} |
1347 | 1348 |
while (true) { |
1348 | 1349 |
if (t < _g.target(e)) { |
1349 | 1350 |
if (_left[e] == INVALID) { |
1350 | 1351 |
_left[e] = arc; |
1351 | 1352 |
_parent[arc] = e; |
1352 | 1353 |
splay(arc); |
1353 | 1354 |
return; |
1354 | 1355 |
} else { |
1355 | 1356 |
e = _left[e]; |
1356 | 1357 |
} |
1357 | 1358 |
} else { |
1358 | 1359 |
if (_right[e] == INVALID) { |
1359 | 1360 |
_right[e] = arc; |
1360 | 1361 |
_parent[arc] = e; |
1361 | 1362 |
splay(arc); |
1362 | 1363 |
return; |
1363 | 1364 |
} else { |
1364 | 1365 |
e = _right[e]; |
1365 | 1366 |
} |
1366 | 1367 |
} |
1367 | 1368 |
} |
1368 | 1369 |
} |
1369 | 1370 |
|
1370 | 1371 |
void remove(Arc arc) { |
1371 | 1372 |
if (_left[arc] == INVALID) { |
1372 | 1373 |
if (_right[arc] != INVALID) { |
1373 | 1374 |
_parent[_right[arc]] = _parent[arc]; |
1374 | 1375 |
} |
1375 | 1376 |
if (_parent[arc] != INVALID) { |
1376 | 1377 |
if (_left[_parent[arc]] == arc) { |
1377 | 1378 |
_left[_parent[arc]] = _right[arc]; |
1378 | 1379 |
} else { |
1379 | 1380 |
_right[_parent[arc]] = _right[arc]; |
1380 | 1381 |
} |
1381 | 1382 |
} else { |
1382 | 1383 |
_head[_g.source(arc)] = _right[arc]; |
1383 | 1384 |
} |
1384 | 1385 |
} else if (_right[arc] == INVALID) { |
1385 | 1386 |
_parent[_left[arc]] = _parent[arc]; |
1386 | 1387 |
if (_parent[arc] != INVALID) { |
1387 | 1388 |
if (_left[_parent[arc]] == arc) { |
1388 | 1389 |
_left[_parent[arc]] = _left[arc]; |
1389 | 1390 |
} else { |
1390 | 1391 |
_right[_parent[arc]] = _left[arc]; |
1391 | 1392 |
} |
1392 | 1393 |
} else { |
1393 | 1394 |
_head[_g.source(arc)] = _left[arc]; |
1394 | 1395 |
} |
1395 | 1396 |
} else { |
1396 | 1397 |
Arc e = _left[arc]; |
1397 | 1398 |
if (_right[e] != INVALID) { |
1398 | 1399 |
e = _right[e]; |
1399 | 1400 |
while (_right[e] != INVALID) { |
1400 | 1401 |
e = _right[e]; |
1401 | 1402 |
} |
1402 | 1403 |
Arc s = _parent[e]; |
1403 | 1404 |
_right[_parent[e]] = _left[e]; |
1404 | 1405 |
if (_left[e] != INVALID) { |
1405 | 1406 |
_parent[_left[e]] = _parent[e]; |
1406 | 1407 |
} |
1407 | 1408 |
|
1408 | 1409 |
_left[e] = _left[arc]; |
1409 | 1410 |
_parent[_left[arc]] = e; |
1410 | 1411 |
_right[e] = _right[arc]; |
1411 | 1412 |
_parent[_right[arc]] = e; |
1412 | 1413 |
|
1413 | 1414 |
_parent[e] = _parent[arc]; |
1414 | 1415 |
if (_parent[arc] != INVALID) { |
1415 | 1416 |
if (_left[_parent[arc]] == arc) { |
1416 | 1417 |
_left[_parent[arc]] = e; |
1417 | 1418 |
} else { |
1418 | 1419 |
_right[_parent[arc]] = e; |
1419 | 1420 |
} |
1420 | 1421 |
} |
1421 | 1422 |
splay(s); |
1422 | 1423 |
} else { |
1423 | 1424 |
_right[e] = _right[arc]; |
1424 | 1425 |
_parent[_right[arc]] = e; |
1425 | 1426 |
_parent[e] = _parent[arc]; |
1426 | 1427 |
|
1427 | 1428 |
if (_parent[arc] != INVALID) { |
1428 | 1429 |
if (_left[_parent[arc]] == arc) { |
1429 | 1430 |
_left[_parent[arc]] = e; |
1430 | 1431 |
} else { |
1431 | 1432 |
_right[_parent[arc]] = e; |
1432 | 1433 |
} |
1433 | 1434 |
} else { |
1434 | 1435 |
_head[_g.source(arc)] = e; |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_COST_SCALING_H |
20 | 20 |
#define LEMON_COST_SCALING_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Cost scaling algorithm for finding a minimum cost flow. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <deque> |
28 | 28 |
#include <limits> |
29 | 29 |
|
30 | 30 |
#include <lemon/core.h> |
31 | 31 |
#include <lemon/maps.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
#include <lemon/static_graph.h> |
34 | 34 |
#include <lemon/circulation.h> |
35 | 35 |
#include <lemon/bellman_ford.h> |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
/// \brief Default traits class of CostScaling algorithm. |
40 | 40 |
/// |
41 | 41 |
/// Default traits class of CostScaling algorithm. |
42 | 42 |
/// \tparam GR Digraph type. |
43 | 43 |
/// \tparam V The number type used for flow amounts, capacity bounds |
44 | 44 |
/// and supply values. By default it is \c int. |
45 | 45 |
/// \tparam C The number type used for costs and potentials. |
46 | 46 |
/// By default it is the same as \c V. |
47 | 47 |
#ifdef DOXYGEN |
48 | 48 |
template <typename GR, typename V = int, typename C = V> |
49 | 49 |
#else |
50 | 50 |
template < typename GR, typename V = int, typename C = V, |
51 | 51 |
bool integer = std::numeric_limits<C>::is_integer > |
52 | 52 |
#endif |
53 | 53 |
struct CostScalingDefaultTraits |
54 | 54 |
{ |
55 | 55 |
/// The type of the digraph |
56 | 56 |
typedef GR Digraph; |
57 | 57 |
/// The type of the flow amounts, capacity bounds and supply values |
58 | 58 |
typedef V Value; |
59 | 59 |
/// The type of the arc costs |
60 | 60 |
typedef C Cost; |
61 | 61 |
|
62 | 62 |
/// \brief The large cost type used for internal computations |
63 | 63 |
/// |
64 | 64 |
/// The large cost type used for internal computations. |
65 | 65 |
/// It is \c long \c long if the \c Cost type is integer, |
66 | 66 |
/// otherwise it is \c double. |
67 | 67 |
/// \c Cost must be convertible to \c LargeCost. |
68 | 68 |
typedef double LargeCost; |
69 | 69 |
}; |
70 | 70 |
|
71 | 71 |
// Default traits class for integer cost types |
72 | 72 |
template <typename GR, typename V, typename C> |
73 | 73 |
struct CostScalingDefaultTraits<GR, V, C, true> |
74 | 74 |
{ |
75 | 75 |
typedef GR Digraph; |
76 | 76 |
typedef V Value; |
77 | 77 |
typedef C Cost; |
78 | 78 |
#ifdef LEMON_HAVE_LONG_LONG |
79 | 79 |
typedef long long LargeCost; |
80 | 80 |
#else |
81 | 81 |
typedef long LargeCost; |
82 | 82 |
#endif |
83 | 83 |
}; |
84 | 84 |
|
85 | 85 |
|
86 | 86 |
/// \addtogroup min_cost_flow_algs |
87 | 87 |
/// @{ |
88 | 88 |
|
89 | 89 |
/// \brief Implementation of the Cost Scaling algorithm for |
90 | 90 |
/// finding a \ref min_cost_flow "minimum cost flow". |
91 | 91 |
/// |
92 | 92 |
/// \ref CostScaling implements a cost scaling algorithm that performs |
93 | 93 |
/// push/augment and relabel operations for finding a \ref min_cost_flow |
94 | 94 |
/// "minimum cost flow" \ref amo93networkflows, \ref goldberg90approximation, |
95 | 95 |
/// \ref goldberg97efficient, \ref bunnagel98efficient. |
96 | 96 |
/// It is a highly efficient primal-dual solution method, which |
97 | 97 |
/// can be viewed as the generalization of the \ref Preflow |
98 | 98 |
/// "preflow push-relabel" algorithm for the maximum flow problem. |
99 | 99 |
/// |
100 | 100 |
/// Most of the parameters of the problem (except for the digraph) |
101 | 101 |
/// can be given using separate functions, and the algorithm can be |
102 | 102 |
/// executed using the \ref run() function. If some parameters are not |
103 | 103 |
/// specified, then default values will be used. |
104 | 104 |
/// |
105 | 105 |
/// \tparam GR The digraph type the algorithm runs on. |
106 | 106 |
/// \tparam V The number type used for flow amounts, capacity bounds |
107 | 107 |
/// and supply values in the algorithm. By default, it is \c int. |
108 | 108 |
/// \tparam C The number type used for costs and potentials in the |
109 | 109 |
/// algorithm. By default, it is the same as \c V. |
110 | 110 |
/// \tparam TR The traits class that defines various types used by the |
111 | 111 |
/// algorithm. By default, it is \ref CostScalingDefaultTraits |
112 | 112 |
/// "CostScalingDefaultTraits<GR, V, C>". |
113 | 113 |
/// In most cases, this parameter should not be set directly, |
114 | 114 |
/// consider to use the named template parameters instead. |
115 | 115 |
/// |
116 | 116 |
/// \warning Both number types must be signed and all input data must |
117 | 117 |
/// be integer. |
118 | 118 |
/// \warning This algorithm does not support negative costs for such |
119 | 119 |
/// arcs that have infinite upper bound. |
120 | 120 |
/// |
121 | 121 |
/// \note %CostScaling provides three different internal methods, |
122 | 122 |
/// from which the most efficient one is used by default. |
123 | 123 |
/// For more information, see \ref Method. |
124 | 124 |
#ifdef DOXYGEN |
125 | 125 |
template <typename GR, typename V, typename C, typename TR> |
126 | 126 |
#else |
127 | 127 |
template < typename GR, typename V = int, typename C = V, |
128 | 128 |
typename TR = CostScalingDefaultTraits<GR, V, C> > |
129 | 129 |
#endif |
130 | 130 |
class CostScaling |
131 | 131 |
{ |
132 | 132 |
public: |
133 | 133 |
|
134 | 134 |
/// The type of the digraph |
135 | 135 |
typedef typename TR::Digraph Digraph; |
136 | 136 |
/// The type of the flow amounts, capacity bounds and supply values |
137 | 137 |
typedef typename TR::Value Value; |
138 | 138 |
/// The type of the arc costs |
139 | 139 |
typedef typename TR::Cost Cost; |
140 | 140 |
|
141 | 141 |
/// \brief The large cost type |
142 | 142 |
/// |
143 | 143 |
/// The large cost type used for internal computations. |
144 | 144 |
/// By default, it is \c long \c long if the \c Cost type is integer, |
145 | 145 |
/// otherwise it is \c double. |
146 | 146 |
typedef typename TR::LargeCost LargeCost; |
147 | 147 |
|
148 | 148 |
/// The \ref CostScalingDefaultTraits "traits class" of the algorithm |
149 | 149 |
typedef TR Traits; |
150 | 150 |
|
151 | 151 |
public: |
152 | 152 |
|
153 | 153 |
/// \brief Problem type constants for the \c run() function. |
154 | 154 |
/// |
155 | 155 |
/// Enum type containing the problem type constants that can be |
156 | 156 |
/// returned by the \ref run() function of the algorithm. |
157 | 157 |
enum ProblemType { |
158 | 158 |
/// The problem has no feasible solution (flow). |
159 | 159 |
INFEASIBLE, |
160 | 160 |
/// The problem has optimal solution (i.e. it is feasible and |
161 | 161 |
/// bounded), and the algorithm has found optimal flow and node |
162 | 162 |
/// potentials (primal and dual solutions). |
163 | 163 |
OPTIMAL, |
164 | 164 |
/// The digraph contains an arc of negative cost and infinite |
165 | 165 |
/// upper bound. It means that the objective function is unbounded |
166 | 166 |
/// on that arc, however, note that it could actually be bounded |
167 | 167 |
/// over the feasible flows, but this algroithm cannot handle |
168 | 168 |
/// these cases. |
169 | 169 |
UNBOUNDED |
170 | 170 |
}; |
171 | 171 |
|
172 | 172 |
/// \brief Constants for selecting the internal method. |
173 | 173 |
/// |
174 | 174 |
/// Enum type containing constants for selecting the internal method |
175 | 175 |
/// for the \ref run() function. |
176 | 176 |
/// |
177 | 177 |
/// \ref CostScaling provides three internal methods that differ mainly |
178 | 178 |
/// in their base operations, which are used in conjunction with the |
179 | 179 |
/// relabel operation. |
180 | 180 |
/// By default, the so called \ref PARTIAL_AUGMENT |
181 | 181 |
/// "Partial Augment-Relabel" method is used, which proved to be |
182 | 182 |
/// the most efficient and the most robust on various test inputs. |
183 | 183 |
/// However, the other methods can be selected using the \ref run() |
184 | 184 |
/// function with the proper parameter. |
185 | 185 |
enum Method { |
186 | 186 |
/// Local push operations are used, i.e. flow is moved only on one |
187 | 187 |
/// admissible arc at once. |
188 | 188 |
PUSH, |
189 | 189 |
/// Augment operations are used, i.e. flow is moved on admissible |
190 | 190 |
/// paths from a node with excess to a node with deficit. |
191 | 191 |
AUGMENT, |
192 | 192 |
/// Partial augment operations are used, i.e. flow is moved on |
193 | 193 |
/// admissible paths started from a node with excess, but the |
194 | 194 |
/// lengths of these paths are limited. This method can be viewed |
195 | 195 |
/// as a combined version of the previous two operations. |
196 | 196 |
PARTIAL_AUGMENT |
197 | 197 |
}; |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <iostream> |
20 | 20 |
#include <vector> |
21 | 21 |
#include <cstring> |
22 | 22 |
|
23 | 23 |
#include <lemon/cplex.h> |
24 | 24 |
|
25 | 25 |
extern "C" { |
26 | 26 |
#include <ilcplex/cplex.h> |
27 | 27 |
} |
28 | 28 |
|
29 | 29 |
|
30 | 30 |
///\file |
31 | 31 |
///\brief Implementation of the LEMON-CPLEX lp solver interface. |
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
CplexEnv::LicenseError::LicenseError(int status) { |
35 | 35 |
if (!CPXgeterrorstring(0, status, _message)) { |
36 | 36 |
std::strcpy(_message, "Cplex unknown error"); |
37 | 37 |
} |
38 | 38 |
} |
39 | 39 |
|
40 | 40 |
CplexEnv::CplexEnv() { |
41 | 41 |
int status; |
42 | 42 |
_cnt = new int; |
43 | 43 |
_env = CPXopenCPLEX(&status); |
44 | 44 |
if (_env == 0) { |
45 | 45 |
delete _cnt; |
46 | 46 |
_cnt = 0; |
47 | 47 |
throw LicenseError(status); |
48 | 48 |
} |
49 | 49 |
} |
50 | 50 |
|
51 | 51 |
CplexEnv::CplexEnv(const CplexEnv& other) { |
52 | 52 |
_env = other._env; |
53 | 53 |
_cnt = other._cnt; |
54 | 54 |
++(*_cnt); |
55 | 55 |
} |
56 | 56 |
|
57 | 57 |
CplexEnv& CplexEnv::operator=(const CplexEnv& other) { |
58 | 58 |
_env = other._env; |
59 | 59 |
_cnt = other._cnt; |
60 | 60 |
++(*_cnt); |
61 | 61 |
return *this; |
62 | 62 |
} |
63 | 63 |
|
64 | 64 |
CplexEnv::~CplexEnv() { |
65 | 65 |
--(*_cnt); |
66 | 66 |
if (*_cnt == 0) { |
67 | 67 |
delete _cnt; |
68 | 68 |
CPXcloseCPLEX(&_env); |
69 | 69 |
} |
70 | 70 |
} |
71 | 71 |
|
72 | 72 |
CplexBase::CplexBase() : LpBase() { |
73 | 73 |
int status; |
74 | 74 |
_prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem"); |
75 | 75 |
messageLevel(MESSAGE_NOTHING); |
76 | 76 |
} |
77 | 77 |
|
78 | 78 |
CplexBase::CplexBase(const CplexEnv& env) |
79 | 79 |
: LpBase(), _env(env) { |
80 | 80 |
int status; |
81 | 81 |
_prob = CPXcreateprob(cplexEnv(), &status, "Cplex problem"); |
82 | 82 |
messageLevel(MESSAGE_NOTHING); |
83 | 83 |
} |
84 | 84 |
|
85 | 85 |
CplexBase::CplexBase(const CplexBase& cplex) |
86 | 86 |
: LpBase() { |
87 | 87 |
int status; |
88 | 88 |
_prob = CPXcloneprob(cplexEnv(), cplex._prob, &status); |
89 | 89 |
rows = cplex.rows; |
90 | 90 |
cols = cplex.cols; |
91 | 91 |
messageLevel(MESSAGE_NOTHING); |
92 | 92 |
} |
93 | 93 |
|
94 | 94 |
CplexBase::~CplexBase() { |
95 | 95 |
CPXfreeprob(cplexEnv(),&_prob); |
96 | 96 |
} |
97 | 97 |
|
98 | 98 |
int CplexBase::_addCol() { |
99 | 99 |
int i = CPXgetnumcols(cplexEnv(), _prob); |
100 | 100 |
double lb = -INF, ub = INF; |
101 | 101 |
CPXnewcols(cplexEnv(), _prob, 1, 0, &lb, &ub, 0, 0); |
102 | 102 |
return i; |
103 | 103 |
} |
104 | 104 |
|
105 | 105 |
|
106 | 106 |
int CplexBase::_addRow() { |
107 | 107 |
int i = CPXgetnumrows(cplexEnv(), _prob); |
108 | 108 |
const double ub = INF; |
109 | 109 |
const char s = 'L'; |
110 | 110 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
111 | 111 |
return i; |
112 | 112 |
} |
113 | 113 |
|
114 | 114 |
int CplexBase::_addRow(Value lb, ExprIterator b, |
115 | 115 |
ExprIterator e, Value ub) { |
116 | 116 |
int i = CPXgetnumrows(cplexEnv(), _prob); |
117 | 117 |
if (lb == -INF) { |
118 | 118 |
const char s = 'L'; |
119 | 119 |
CPXnewrows(cplexEnv(), _prob, 1, &ub, &s, 0, 0); |
120 | 120 |
} else if (ub == INF) { |
121 | 121 |
const char s = 'G'; |
122 | 122 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
123 | 123 |
} else if (lb == ub){ |
124 | 124 |
const char s = 'E'; |
125 | 125 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, 0, 0); |
126 | 126 |
} else { |
127 | 127 |
const char s = 'R'; |
128 | 128 |
double len = ub - lb; |
129 | 129 |
CPXnewrows(cplexEnv(), _prob, 1, &lb, &s, &len, 0); |
130 | 130 |
} |
131 | 131 |
|
132 | 132 |
std::vector<int> indices; |
133 | 133 |
std::vector<int> rowlist; |
134 | 134 |
std::vector<Value> values; |
135 | 135 |
|
136 | 136 |
for(ExprIterator it=b; it!=e; ++it) { |
137 | 137 |
indices.push_back(it->first); |
138 | 138 |
values.push_back(it->second); |
139 | 139 |
rowlist.push_back(i); |
140 | 140 |
} |
141 | 141 |
|
142 | 142 |
CPXchgcoeflist(cplexEnv(), _prob, values.size(), |
143 | 143 |
&rowlist.front(), &indices.front(), &values.front()); |
144 | 144 |
|
145 | 145 |
return i; |
146 | 146 |
} |
147 | 147 |
|
148 | 148 |
void CplexBase::_eraseCol(int i) { |
149 | 149 |
CPXdelcols(cplexEnv(), _prob, i, i); |
150 | 150 |
} |
151 | 151 |
|
152 | 152 |
void CplexBase::_eraseRow(int i) { |
153 | 153 |
CPXdelrows(cplexEnv(), _prob, i, i); |
154 | 154 |
} |
155 | 155 |
|
156 | 156 |
void CplexBase::_eraseColId(int i) { |
157 | 157 |
cols.eraseIndex(i); |
158 | 158 |
cols.shiftIndices(i); |
159 | 159 |
} |
160 | 160 |
void CplexBase::_eraseRowId(int i) { |
161 | 161 |
rows.eraseIndex(i); |
162 | 162 |
rows.shiftIndices(i); |
163 | 163 |
} |
164 | 164 |
|
165 | 165 |
void CplexBase::_getColName(int col, std::string &name) const { |
166 | 166 |
int size; |
167 | 167 |
CPXgetcolname(cplexEnv(), _prob, 0, 0, 0, &size, col, col); |
168 | 168 |
if (size == 0) { |
169 | 169 |
name.clear(); |
170 | 170 |
return; |
171 | 171 |
} |
172 | 172 |
|
173 | 173 |
size *= -1; |
174 | 174 |
std::vector<char> buf(size); |
175 | 175 |
char *cname; |
176 | 176 |
int tmp; |
177 | 177 |
CPXgetcolname(cplexEnv(), _prob, &cname, &buf.front(), size, |
178 | 178 |
&tmp, col, col); |
179 | 179 |
name = cname; |
180 | 180 |
} |
181 | 181 |
|
182 | 182 |
void CplexBase::_setColName(int col, const std::string &name) { |
183 | 183 |
char *cname; |
184 | 184 |
cname = const_cast<char*>(name.c_str()); |
185 | 185 |
CPXchgcolname(cplexEnv(), _prob, 1, &col, &cname); |
186 | 186 |
} |
187 | 187 |
|
188 | 188 |
int CplexBase::_colByName(const std::string& name) const { |
189 | 189 |
int index; |
190 | 190 |
if (CPXgetcolindex(cplexEnv(), _prob, |
191 | 191 |
const_cast<char*>(name.c_str()), &index) == 0) { |
192 | 192 |
return index; |
193 | 193 |
} |
194 | 194 |
return -1; |
195 | 195 |
} |
196 | 196 |
|
197 | 197 |
void CplexBase::_getRowName(int row, std::string &name) const { |
1 |
/* -*- C++ -*- |
|
1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
|
2 | 2 |
* |
3 |
* This file is a part of LEMON, a generic C++ optimization library |
|
3 |
* This file is a part of LEMON, a generic C++ optimization library. |
|
4 | 4 |
* |
5 |
* Copyright (C) 2003- |
|
5 |
* Copyright (C) 2003-2010 |
|
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_CYCLE_CANCELING_H |
20 | 20 |
#define LEMON_CYCLE_CANCELING_H |
21 | 21 |
|
22 | 22 |
/// \ingroup min_cost_flow_algs |
23 | 23 |
/// \file |
24 | 24 |
/// \brief Cycle-canceling algorithms for finding a minimum cost flow. |
25 | 25 |
|
26 | 26 |
#include <vector> |
27 | 27 |
#include <limits> |
28 | 28 |
|
29 | 29 |
#include <lemon/core.h> |
30 | 30 |
#include <lemon/maps.h> |
31 | 31 |
#include <lemon/path.h> |
32 | 32 |
#include <lemon/math.h> |
33 | 33 |
#include <lemon/static_graph.h> |
34 | 34 |
#include <lemon/adaptors.h> |
35 | 35 |
#include <lemon/circulation.h> |
36 | 36 |
#include <lemon/bellman_ford.h> |
37 | 37 |
#include <lemon/howard_mmc.h> |
38 | 38 |
|
39 | 39 |
namespace lemon { |
40 | 40 |
|
41 | 41 |
/// \addtogroup min_cost_flow_algs |
42 | 42 |
/// @{ |
43 | 43 |
|
44 | 44 |
/// \brief Implementation of cycle-canceling algorithms for |
45 | 45 |
/// finding a \ref min_cost_flow "minimum cost flow". |
46 | 46 |
/// |
47 | 47 |
/// \ref CycleCanceling implements three different cycle-canceling |
48 | 48 |
/// algorithms for finding a \ref min_cost_flow "minimum cost flow" |
49 | 49 |
/// \ref amo93networkflows, \ref klein67primal, |
50 | 50 |
/// \ref goldberg89cyclecanceling. |
51 | 51 |
/// The most efficent one (both theoretically and practically) |
52 | 52 |
/// is the \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" algorithm, |
53 | 53 |
/// thus it is the default method. |
54 | 54 |
/// It is strongly polynomial, but in practice, it is typically much |
55 | 55 |
/// slower than the scaling algorithms and NetworkSimplex. |
56 | 56 |
/// |
57 | 57 |
/// Most of the parameters of the problem (except for the digraph) |
58 | 58 |
/// can be given using separate functions, and the algorithm can be |
59 | 59 |
/// executed using the \ref run() function. If some parameters are not |
60 | 60 |
/// specified, then default values will be used. |
61 | 61 |
/// |
62 | 62 |
/// \tparam GR The digraph type the algorithm runs on. |
63 | 63 |
/// \tparam V The number type used for flow amounts, capacity bounds |
64 | 64 |
/// and supply values in the algorithm. By default, it is \c int. |
65 | 65 |
/// \tparam C The number type used for costs and potentials in the |
66 | 66 |
/// algorithm. By default, it is the same as \c V. |
67 | 67 |
/// |
68 | 68 |
/// \warning Both number types must be signed and all input data must |
69 | 69 |
/// be integer. |
70 | 70 |
/// \warning This algorithm does not support negative costs for such |
71 | 71 |
/// arcs that have infinite upper bound. |
72 | 72 |
/// |
73 | 73 |
/// \note For more information about the three available methods, |
74 | 74 |
/// see \ref Method. |
75 | 75 |
#ifdef DOXYGEN |
76 | 76 |
template <typename GR, typename V, typename C> |
77 | 77 |
#else |
78 | 78 |
template <typename GR, typename V = int, typename C = V> |
79 | 79 |
#endif |
80 | 80 |
class CycleCanceling |
81 | 81 |
{ |
82 | 82 |
public: |
83 | 83 |
|
84 | 84 |
/// The type of the digraph |
85 | 85 |
typedef GR Digraph; |
86 | 86 |
/// The type of the flow amounts, capacity bounds and supply values |
87 | 87 |
typedef V Value; |
88 | 88 |
/// The type of the arc costs |
89 | 89 |
typedef C Cost; |
90 | 90 |
|
91 | 91 |
public: |
92 | 92 |
|
93 | 93 |
/// \brief Problem type constants for the \c run() function. |
94 | 94 |
/// |
95 | 95 |
/// Enum type containing the problem type constants that can be |
96 | 96 |
/// returned by the \ref run() function of the algorithm. |
97 | 97 |
enum ProblemType { |
98 | 98 |
/// The problem has no feasible solution (flow). |
99 | 99 |
INFEASIBLE, |
100 | 100 |
/// The problem has optimal solution (i.e. it is feasible and |
101 | 101 |
/// bounded), and the algorithm has found optimal flow and node |
102 | 102 |
/// potentials (primal and dual solutions). |
103 | 103 |
OPTIMAL, |
104 | 104 |
/// The digraph contains an arc of negative cost and infinite |
105 | 105 |
/// upper bound. It means that the objective function is unbounded |
106 | 106 |
/// on that arc, however, note that it could actually be bounded |
107 | 107 |
/// over the feasible flows, but this algroithm cannot handle |
108 | 108 |
/// these cases. |
109 | 109 |
UNBOUNDED |
110 | 110 |
}; |
111 | 111 |
|
112 | 112 |
/// \brief Constants for selecting the used method. |
113 | 113 |
/// |
114 | 114 |
/// Enum type containing constants for selecting the used method |
115 | 115 |
/// for the \ref run() function. |
116 | 116 |
/// |
117 | 117 |
/// \ref CycleCanceling provides three different cycle-canceling |
118 | 118 |
/// methods. By default, \ref CANCEL_AND_TIGHTEN "Cancel and Tighten" |
119 | 119 |
/// is used, which proved to be the most efficient and the most robust |
120 | 120 |
/// on various test inputs. |
121 | 121 |
/// However, the other methods can be selected using the \ref run() |
122 | 122 |
/// function with the proper parameter. |
123 | 123 |
enum Method { |
124 | 124 |
/// A simple cycle-canceling method, which uses the |
125 | 125 |
/// \ref BellmanFord "Bellman-Ford" algorithm with limited iteration |
126 | 126 |
/// number for detecting negative cycles in the residual network. |
127 | 127 |
SIMPLE_CYCLE_CANCELING, |
128 | 128 |
/// The "Minimum Mean Cycle-Canceling" algorithm, which is a |
129 | 129 |
/// well-known strongly polynomial method |
130 | 130 |
/// \ref goldberg89cyclecanceling. It improves along a |
131 | 131 |
/// \ref min_mean_cycle "minimum mean cycle" in each iteration. |
132 | 132 |
/// Its running time complexity is O(n<sup>2</sup>m<sup>3</sup>log(n)). |
133 | 133 |
MINIMUM_MEAN_CYCLE_CANCELING, |
134 | 134 |
/// The "Cancel And Tighten" algorithm, which can be viewed as an |
135 | 135 |
/// improved version of the previous method |
136 | 136 |
/// \ref goldberg89cyclecanceling. |
137 | 137 |
/// It is faster both in theory and in practice, its running time |
138 | 138 |
/// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)). |
139 | 139 |
CANCEL_AND_TIGHTEN |
140 | 140 |
}; |
141 | 141 |
|
142 | 142 |
private: |
143 | 143 |
|
144 | 144 |
TEMPLATE_DIGRAPH_TYPEDEFS(GR); |
145 | 145 |
|
146 | 146 |
typedef std::vector<int> IntVector; |
147 | 147 |
typedef std::vector<double> DoubleVector; |
148 | 148 |
typedef std::vector<Value> ValueVector; |
149 | 149 |
typedef std::vector<Cost> CostVector; |
150 | 150 |
typedef std::vector<char> BoolVector; |
151 | 151 |
// Note: vector<char> is used instead of vector<bool> for efficiency reasons |
152 | 152 |
|
153 | 153 |
private: |
154 | 154 |
|
155 | 155 |
template <typename KT, typename VT> |
156 | 156 |
class StaticVectorMap { |
157 | 157 |
public: |
158 | 158 |
typedef KT Key; |
159 | 159 |
typedef VT Value; |
160 | 160 |
|
161 | 161 |
StaticVectorMap(std::vector<Value>& v) : _v(v) {} |
162 | 162 |
|
163 | 163 |
const Value& operator[](const Key& key) const { |
164 | 164 |
return _v[StaticDigraph::id(key)]; |
165 | 165 |
} |
166 | 166 |
|
167 | 167 |
Value& operator[](const Key& key) { |
168 | 168 |
return _v[StaticDigraph::id(key)]; |
169 | 169 |
} |
170 | 170 |
|
171 | 171 |
void set(const Key& key, const Value& val) { |
172 | 172 |
_v[StaticDigraph::id(key)] = val; |
173 | 173 |
} |
174 | 174 |
|
175 | 175 |
private: |
176 | 176 |
std::vector<Value>& _v; |
177 | 177 |
}; |
178 | 178 |
|
179 | 179 |
typedef StaticVectorMap<StaticDigraph::Node, Cost> CostNodeMap; |
180 | 180 |
typedef StaticVectorMap<StaticDigraph::Arc, Cost> CostArcMap; |
181 | 181 |
|
182 | 182 |
private: |
183 | 183 |
|
184 | 184 |
|
185 | 185 |
// Data related to the underlying digraph |
186 | 186 |
const GR &_graph; |
187 | 187 |
int _node_num; |
188 | 188 |
int _arc_num; |
189 | 189 |
int _res_node_num; |
190 | 190 |
int _res_arc_num; |
191 | 191 |
int _root; |
192 | 192 |
|
193 | 193 |
// Parameters of the problem |
194 | 194 |
bool _have_lower; |
195 | 195 |
Value _sum_supply; |
196 | 196 |
|
197 | 197 |
// Data structures for storing the digraph |
Changeset was too big and was cut off... Show full diff
0 comments (0 inline)