0
2
0
1085
879
198
38
| ... | ... |
@@ -3,1444 +3,1650 @@ |
| 3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library |
| 4 | 4 |
* |
| 5 | 5 |
* Copyright (C) 2003-2008 |
| 6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
| 7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
| 8 | 8 |
* |
| 9 | 9 |
* Permission to use, modify and distribute this software is granted |
| 10 | 10 |
* provided that this copyright notice appears in all copies. For |
| 11 | 11 |
* precise terms see the accompanying LICENSE file. |
| 12 | 12 |
* |
| 13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
| 14 | 14 |
* express or implied, and with no claim as to its suitability for any |
| 15 | 15 |
* purpose. |
| 16 | 16 |
* |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#ifndef LEMON_MAPS_H |
| 20 | 20 |
#define LEMON_MAPS_H |
| 21 | 21 |
|
| 22 | 22 |
#include <iterator> |
| 23 | 23 |
#include <functional> |
| 24 | 24 |
#include <vector> |
| 25 | 25 |
|
| 26 | 26 |
#include <lemon/bits/utility.h> |
| 27 |
|
|
| 27 |
#include <lemon/bits/traits.h> |
|
| 28 | 28 |
|
| 29 | 29 |
///\file |
| 30 | 30 |
///\ingroup maps |
| 31 | 31 |
///\brief Miscellaneous property maps |
| 32 |
|
|
| 32 |
|
|
| 33 | 33 |
#include <map> |
| 34 | 34 |
|
| 35 | 35 |
namespace lemon {
|
| 36 | 36 |
|
| 37 | 37 |
/// \addtogroup maps |
| 38 | 38 |
/// @{
|
| 39 | 39 |
|
| 40 | 40 |
/// Base class of maps. |
| 41 | 41 |
|
| 42 |
/// Base class of maps. |
|
| 43 |
/// It provides the necessary <tt>typedef</tt>s required by the map concept. |
|
| 44 |
|
|
| 42 |
/// Base class of maps. It provides the necessary type definitions |
|
| 43 |
/// required by the map %concepts. |
|
| 44 |
template<typename K, typename V> |
|
| 45 | 45 |
class MapBase {
|
| 46 | 46 |
public: |
| 47 |
/// The key type of the map. |
|
| 47 |
/// \biref The key type of the map. |
|
| 48 | 48 |
typedef K Key; |
| 49 |
/// The value type of the map. (The type of objects associated with the keys). |
|
| 50 |
typedef T Value; |
|
| 49 |
/// \brief The value type of the map. |
|
| 50 |
/// (The type of objects associated with the keys). |
|
| 51 |
typedef V Value; |
|
| 51 | 52 |
}; |
| 52 | 53 |
|
| 54 |
|
|
| 53 | 55 |
/// Null map. (a.k.a. DoNothingMap) |
| 54 | 56 |
|
| 55 | 57 |
/// This map can be used if you have to provide a map only for |
| 56 | 58 |
/// its type definitions, or if you have to provide a writable map, |
| 57 | 59 |
/// but data written to it is not required (i.e. it will be sent to |
| 58 | 60 |
/// <tt>/dev/null</tt>). |
| 59 |
template<typename K, typename T> |
|
| 60 |
class NullMap : public MapBase<K, T> {
|
|
| 61 |
/// It conforms the \ref concepts::ReadWriteMap "ReadWriteMap" concept. |
|
| 62 |
/// |
|
| 63 |
/// \sa ConstMap |
|
| 64 |
template<typename K, typename V> |
|
| 65 |
class NullMap : public MapBase<K, V> {
|
|
| 61 | 66 |
public: |
| 62 |
typedef MapBase<K, |
|
| 67 |
typedef MapBase<K, V> Parent; |
|
| 63 | 68 |
typedef typename Parent::Key Key; |
| 64 | 69 |
typedef typename Parent::Value Value; |
| 65 | 70 |
|
| 66 | 71 |
/// Gives back a default constructed element. |
| 67 |
|
|
| 72 |
Value operator[](const Key&) const { return Value(); }
|
|
| 68 | 73 |
/// Absorbs the value. |
| 69 |
void set(const |
|
| 74 |
void set(const Key&, const Value&) {}
|
|
| 70 | 75 |
}; |
| 71 | 76 |
|
| 72 |
///Returns a \ |
|
| 77 |
/// Returns a \ref NullMap class |
|
| 73 | 78 |
|
| 74 |
///This function just returns a \ |
|
| 79 |
/// This function just returns a \ref NullMap class. |
|
| 75 | 80 |
///\relates NullMap |
| 76 | 81 |
template <typename K, typename V> |
| 77 | 82 |
NullMap<K, V> nullMap() {
|
| 78 | 83 |
return NullMap<K, V>(); |
| 79 | 84 |
} |
| 80 | 85 |
|
| 81 | 86 |
|
| 82 | 87 |
/// Constant map. |
| 83 | 88 |
|
| 84 | 89 |
/// This is a \ref concepts::ReadMap "readable" map which assigns a |
| 85 | 90 |
/// specified value to each key. |
| 86 |
/// In other aspects it is equivalent to \c NullMap. |
|
| 87 |
template<typename K, typename T> |
|
| 88 |
|
|
| 91 |
/// |
|
| 92 |
/// In other aspects it is equivalent to \ref NullMap. |
|
| 93 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 94 |
/// concept, but it absorbs the data written to it. |
|
| 95 |
/// |
|
| 96 |
/// The simplest way of using this map is through the constMap() |
|
| 97 |
/// function. |
|
| 98 |
/// |
|
| 99 |
/// \sa NullMap |
|
| 100 |
/// \sa IdentityMap |
|
| 101 |
template<typename K, typename V> |
|
| 102 |
class ConstMap : public MapBase<K, V> {
|
|
| 89 | 103 |
private: |
| 90 |
|
|
| 104 |
V _value; |
|
| 91 | 105 |
public: |
| 92 |
|
|
| 93 |
typedef MapBase<K, T> Parent; |
|
| 106 |
typedef MapBase<K, V> Parent; |
|
| 94 | 107 |
typedef typename Parent::Key Key; |
| 95 | 108 |
typedef typename Parent::Value Value; |
| 96 | 109 |
|
| 97 | 110 |
/// Default constructor |
| 98 | 111 |
|
| 99 | 112 |
/// Default constructor. |
| 100 |
/// The value of the map will be uninitialized. |
|
| 101 |
/// (More exactly it will be default constructed.) |
|
| 113 |
/// The value of the map will be default constructed. |
|
| 102 | 114 |
ConstMap() {}
|
| 103 | 115 |
|
| 104 | 116 |
/// Constructor with specified initial value |
| 105 | 117 |
|
| 106 | 118 |
/// Constructor with specified initial value. |
| 107 |
/// \param _v is the initial value of the map. |
|
| 108 |
ConstMap(const T &_v) : v(_v) {}
|
|
| 119 |
/// \param v is the initial value of the map. |
|
| 120 |
ConstMap(const Value &v) : _value(v) {}
|
|
| 109 | 121 |
|
| 110 |
///\e |
|
| 111 |
T operator[](const K&) const { return v; }
|
|
| 122 |
/// Gives back the specified value. |
|
| 123 |
Value operator[](const Key&) const { return _value; }
|
|
| 112 | 124 |
|
| 113 |
///\e |
|
| 114 |
void setAll(const T &t) {
|
|
| 115 |
|
|
| 125 |
/// Absorbs the value. |
|
| 126 |
void set(const Key&, const Value&) {}
|
|
| 127 |
|
|
| 128 |
/// Sets the value that is assigned to each key. |
|
| 129 |
void setAll(const Value &v) {
|
|
| 130 |
_value = v; |
|
| 116 | 131 |
} |
| 117 | 132 |
|
| 118 |
template<typename T1> |
|
| 119 |
ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {}
|
|
| 133 |
template<typename V1> |
|
| 134 |
ConstMap(const ConstMap<K, V1> &, const Value &v) : _value(v) {}
|
|
| 120 | 135 |
}; |
| 121 | 136 |
|
| 122 |
///Returns a \ |
|
| 137 |
/// Returns a \ref ConstMap class |
|
| 123 | 138 |
|
| 124 |
///This function just returns a \ |
|
| 139 |
/// This function just returns a \ref ConstMap class. |
|
| 125 | 140 |
///\relates ConstMap |
| 126 | 141 |
template<typename K, typename V> |
| 127 | 142 |
inline ConstMap<K, V> constMap(const V &v) {
|
| 128 | 143 |
return ConstMap<K, V>(v); |
| 129 | 144 |
} |
| 130 | 145 |
|
| 131 | 146 |
|
| 132 | 147 |
template<typename T, T v> |
| 133 | 148 |
struct Const { };
|
| 134 | 149 |
|
| 135 | 150 |
/// Constant map with inlined constant value. |
| 136 | 151 |
|
| 137 | 152 |
/// This is a \ref concepts::ReadMap "readable" map which assigns a |
| 138 | 153 |
/// specified value to each key. |
| 139 |
/// |
|
| 154 |
/// |
|
| 155 |
/// In other aspects it is equivalent to \ref NullMap. |
|
| 156 |
/// So it conforms the \ref concepts::ReadWriteMap "ReadWriteMap" |
|
| 157 |
/// concept, but it absorbs the data written to it. |
|
| 158 |
/// |
|
| 159 |
/// The simplest way of using this map is through the constMap() |
|
| 160 |
/// function. |
|
| 161 |
/// |
|
| 162 |
/// \sa NullMap |
|
| 163 |
/// \sa IdentityMap |
|
| 140 | 164 |
template<typename K, typename V, V v> |
| 141 | 165 |
class ConstMap<K, Const<V, v> > : public MapBase<K, V> {
|
| 142 | 166 |
public: |
| 143 | 167 |
typedef MapBase<K, V> Parent; |
| 144 | 168 |
typedef typename Parent::Key Key; |
| 145 | 169 |
typedef typename Parent::Value Value; |
| 146 | 170 |
|
| 171 |
/// Constructor. |
|
| 147 | 172 |
ConstMap() { }
|
| 148 |
///\e |
|
| 149 |
V operator[](const K&) const { return v; }
|
|
| 150 |
///\e |
|
| 151 |
void set(const K&, const V&) { }
|
|
| 173 |
|
|
| 174 |
/// Gives back the specified value. |
|
| 175 |
Value operator[](const Key&) const { return v; }
|
|
| 176 |
|
|
| 177 |
/// Absorbs the value. |
|
| 178 |
void set(const Key&, const Value&) {}
|
|
| 152 | 179 |
}; |
| 153 | 180 |
|
| 154 |
///Returns a \ |
|
| 181 |
/// Returns a \ref ConstMap class with inlined constant value |
|
| 155 | 182 |
|
| 156 |
///This function just returns a \ |
|
| 183 |
/// This function just returns a \ref ConstMap class with inlined |
|
| 184 |
/// constant value. |
|
| 157 | 185 |
///\relates ConstMap |
| 158 | 186 |
template<typename K, typename V, V v> |
| 159 | 187 |
inline ConstMap<K, Const<V, v> > constMap() {
|
| 160 | 188 |
return ConstMap<K, Const<V, v> >(); |
| 161 | 189 |
} |
| 162 | 190 |
|
| 163 |
///Map based on \c std::map |
|
| 164 | 191 |
|
| 165 |
///This is essentially a wrapper for \c std::map with addition that |
|
| 166 |
///you can specify a default value different from \c Value(). |
|
| 167 |
///It meets the \ref concepts::ReferenceMap "ReferenceMap" concept. |
|
| 168 |
template <typename K, typename T, typename Compare = std::less<K> > |
|
| 169 |
class StdMap : public MapBase<K, T> {
|
|
| 170 |
template <typename K1, typename T1, typename C1> |
|
| 171 |
|
|
| 192 |
/// \brief Identity map. |
|
| 193 |
/// |
|
| 194 |
/// This map gives back the given key as value without any |
|
| 195 |
/// modification. |
|
| 196 |
/// |
|
| 197 |
/// \sa ConstMap |
|
| 198 |
template <typename T> |
|
| 199 |
class IdentityMap : public MapBase<T, T> {
|
|
| 200 |
public: |
|
| 201 |
typedef MapBase<T, T> Parent; |
|
| 202 |
typedef typename Parent::Key Key; |
|
| 203 |
typedef typename Parent::Value Value; |
|
| 204 |
|
|
| 205 |
/// Gives back the given value without any modification. |
|
| 206 |
const T& operator[](const T& t) const {
|
|
| 207 |
return t; |
|
| 208 |
} |
|
| 209 |
}; |
|
| 210 |
|
|
| 211 |
/// Returns an \ref IdentityMap class |
|
| 212 |
|
|
| 213 |
/// This function just returns an \ref IdentityMap class. |
|
| 214 |
/// \relates IdentityMap |
|
| 215 |
template<typename T> |
|
| 216 |
inline IdentityMap<T> identityMap() {
|
|
| 217 |
return IdentityMap<T>(); |
|
| 218 |
} |
|
| 219 |
|
|
| 220 |
|
|
| 221 |
/// \brief Map for storing values for integer keys from the range |
|
| 222 |
/// <tt>[0..size-1]</tt>. |
|
| 223 |
/// |
|
| 224 |
/// This map is essentially a wrapper for \c std::vector. It assigns |
|
| 225 |
/// values to integer keys from the range <tt>[0..size-1]</tt>. |
|
| 226 |
/// It can be used with some data structures, for example |
|
| 227 |
/// \ref UnionFind, \ref BinHeap, when the used items are small |
|
| 228 |
/// integers. This map conforms the \ref concepts::ReferenceMap |
|
| 229 |
/// "ReferenceMap" concept. |
|
| 230 |
/// |
|
| 231 |
/// The simplest way of using this map is through the rangeMap() |
|
| 232 |
/// function. |
|
| 233 |
template <typename V> |
|
| 234 |
class RangeMap : public MapBase<int, V> {
|
|
| 235 |
template <typename V1> |
|
| 236 |
friend class RangeMap; |
|
| 237 |
private: |
|
| 238 |
|
|
| 239 |
typedef std::vector<V> Vector; |
|
| 240 |
Vector _vector; |
|
| 241 |
|
|
| 172 | 242 |
public: |
| 173 | 243 |
|
| 174 |
typedef MapBase< |
|
| 244 |
typedef MapBase<int, V> Parent; |
|
| 175 | 245 |
///Key type |
| 176 | 246 |
typedef typename Parent::Key Key; |
| 177 | 247 |
///Value type |
| 178 | 248 |
typedef typename Parent::Value Value; |
| 179 |
///Reference Type |
|
| 180 |
typedef T& Reference; |
|
| 249 |
/// Reference type |
|
| 250 |
typedef typename Vector::reference Reference; |
|
| 181 | 251 |
///Const reference type |
| 182 |
typedef |
|
| 252 |
typedef typename Vector::const_reference ConstReference; |
|
| 253 |
|
|
| 254 |
typedef True ReferenceMapTag; |
|
| 255 |
|
|
| 256 |
public: |
|
| 257 |
|
|
| 258 |
/// Constructor with specified default value. |
|
| 259 |
RangeMap(int size = 0, const Value &value = Value()) |
|
| 260 |
: _vector(size, value) {}
|
|
| 261 |
|
|
| 262 |
/// Constructs the map from an appropriate \c std::vector. |
|
| 263 |
template <typename V1> |
|
| 264 |
RangeMap(const std::vector<V1>& vector) |
|
| 265 |
: _vector(vector.begin(), vector.end()) {}
|
|
| 266 |
|
|
| 267 |
/// Constructs the map from another \ref RangeMap. |
|
| 268 |
template <typename V1> |
|
| 269 |
RangeMap(const RangeMap<V1> &c) |
|
| 270 |
: _vector(c._vector.begin(), c._vector.end()) {}
|
|
| 271 |
|
|
| 272 |
/// Returns the size of the map. |
|
| 273 |
int size() {
|
|
| 274 |
return _vector.size(); |
|
| 275 |
} |
|
| 276 |
|
|
| 277 |
/// Resizes the map. |
|
| 278 |
|
|
| 279 |
/// Resizes the underlying \c std::vector container, so changes the |
|
| 280 |
/// keyset of the map. |
|
| 281 |
/// \param size The new size of the map. The new keyset will be the |
|
| 282 |
/// range <tt>[0..size-1]</tt>. |
|
| 283 |
/// \param value The default value to assign to the new keys. |
|
| 284 |
void resize(int size, const Value &value = Value()) {
|
|
| 285 |
_vector.resize(size, value); |
|
| 286 |
} |
|
| 287 |
|
|
| 288 |
private: |
|
| 289 |
|
|
| 290 |
RangeMap& operator=(const RangeMap&); |
|
| 291 |
|
|
| 292 |
public: |
|
| 293 |
|
|
| 294 |
///\e |
|
| 295 |
Reference operator[](const Key &k) {
|
|
| 296 |
return _vector[k]; |
|
| 297 |
} |
|
| 298 |
|
|
| 299 |
///\e |
|
| 300 |
ConstReference operator[](const Key &k) const {
|
|
| 301 |
return _vector[k]; |
|
| 302 |
} |
|
| 303 |
|
|
| 304 |
///\e |
|
| 305 |
void set(const Key &k, const Value &v) {
|
|
| 306 |
_vector[k] = v; |
|
| 307 |
} |
|
| 308 |
}; |
|
| 309 |
|
|
| 310 |
/// Returns a \ref RangeMap class |
|
| 311 |
|
|
| 312 |
/// This function just returns a \ref RangeMap class. |
|
| 313 |
/// \relates RangeMap |
|
| 314 |
template<typename V> |
|
| 315 |
inline RangeMap<V> rangeMap(int size = 0, const V &value = V()) {
|
|
| 316 |
return RangeMap<V>(size, value); |
|
| 317 |
} |
|
| 318 |
|
|
| 319 |
/// \brief Returns a \ref RangeMap class created from an appropriate |
|
| 320 |
/// \c std::vector |
|
| 321 |
|
|
| 322 |
/// This function just returns a \ref RangeMap class created from an |
|
| 323 |
/// appropriate \c std::vector. |
|
| 324 |
/// \relates RangeMap |
|
| 325 |
template<typename V> |
|
| 326 |
inline RangeMap<V> rangeMap(const std::vector<V> &vector) {
|
|
| 327 |
return RangeMap<V>(vector); |
|
| 328 |
} |
|
| 329 |
|
|
| 330 |
|
|
| 331 |
/// Map type based on \c std::map |
|
| 332 |
|
|
| 333 |
/// This map is essentially a wrapper for \c std::map with addition |
|
| 334 |
/// that you can specify a default value for the keys that are not |
|
| 335 |
/// stored actually. This value can be different from the default |
|
| 336 |
/// contructed value (i.e. \c %Value()). |
|
| 337 |
/// This type conforms the \ref concepts::ReferenceMap "ReferenceMap" |
|
| 338 |
/// concept. |
|
| 339 |
/// |
|
| 340 |
/// This map is useful if a default value should be assigned to most of |
|
| 341 |
/// the keys and different values should be assigned only to a few |
|
| 342 |
/// keys (i.e. the map is "sparse"). |
|
| 343 |
/// The name of this type also refers to this important usage. |
|
| 344 |
/// |
|
| 345 |
/// Apart form that this map can be used in many other cases since it |
|
| 346 |
/// is based on \c std::map, which is a general associative container. |
|
| 347 |
/// However keep in mind that it is usually not as efficient as other |
|
| 348 |
/// maps. |
|
| 349 |
/// |
|
| 350 |
/// The simplest way of using this map is through the sparseMap() |
|
| 351 |
/// function. |
|
| 352 |
template <typename K, typename V, typename Compare = std::less<K> > |
|
| 353 |
class SparseMap : public MapBase<K, V> {
|
|
| 354 |
template <typename K1, typename V1, typename C1> |
|
| 355 |
friend class SparseMap; |
|
| 356 |
public: |
|
| 357 |
|
|
| 358 |
typedef MapBase<K, V> Parent; |
|
| 359 |
/// Key type |
|
| 360 |
typedef typename Parent::Key Key; |
|
| 361 |
/// Value type |
|
| 362 |
typedef typename Parent::Value Value; |
|
| 363 |
/// Reference type |
|
| 364 |
typedef Value& Reference; |
|
| 365 |
/// Const reference type |
|
| 366 |
typedef const Value& ConstReference; |
|
| 183 | 367 |
|
| 184 | 368 |
typedef True ReferenceMapTag; |
| 185 | 369 |
|
| 186 | 370 |
private: |
| 187 | 371 |
|
| 188 |
typedef std::map<K, |
|
| 372 |
typedef std::map<K, V, Compare> Map; |
|
| 373 |
Map _map; |
|
| 189 | 374 |
Value _value; |
| 190 |
Map _map; |
|
| 191 | 375 |
|
| 192 | 376 |
public: |
| 193 | 377 |
|
| 194 |
/// Constructor with specified default value |
|
| 195 |
StdMap(const T& value = T()) : _value(value) {}
|
|
| 378 |
/// \brief Constructor with specified default value. |
|
| 379 |
SparseMap(const Value &value = Value()) : _value(value) {}
|
|
| 196 | 380 |
/// \brief Constructs the map from an appropriate \c std::map, and |
| 197 | 381 |
/// explicitly specifies a default value. |
| 198 |
template <typename T1, typename Comp1> |
|
| 199 |
StdMap(const std::map<Key, T1, Comp1> &map, const T& value = T()) |
|
| 382 |
template <typename V1, typename Comp1> |
|
| 383 |
SparseMap(const std::map<Key, V1, Comp1> &map, |
|
| 384 |
const Value &value = Value()) |
|
| 200 | 385 |
: _map(map.begin(), map.end()), _value(value) {}
|
| 201 | 386 |
|
| 202 |
/// \brief Constructs a map from an other \ref StdMap. |
|
| 203 |
template<typename T1, typename Comp1> |
|
| 204 |
|
|
| 387 |
/// \brief Constructs the map from another \ref SparseMap. |
|
| 388 |
template<typename V1, typename Comp1> |
|
| 389 |
SparseMap(const SparseMap<Key, V1, Comp1> &c) |
|
| 205 | 390 |
: _map(c._map.begin(), c._map.end()), _value(c._value) {}
|
| 206 | 391 |
|
| 207 | 392 |
private: |
| 208 | 393 |
|
| 209 |
|
|
| 394 |
SparseMap& operator=(const SparseMap&); |
|
| 210 | 395 |
|
| 211 | 396 |
public: |
| 212 | 397 |
|
| 213 | 398 |
///\e |
| 214 | 399 |
Reference operator[](const Key &k) {
|
| 215 | 400 |
typename Map::iterator it = _map.lower_bound(k); |
| 216 | 401 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
| 217 | 402 |
return it->second; |
| 218 | 403 |
else |
| 219 | 404 |
return _map.insert(it, std::make_pair(k, _value))->second; |
| 220 | 405 |
} |
| 221 | 406 |
|
| 222 | 407 |
/// \e |
| 223 | 408 |
ConstReference operator[](const Key &k) const {
|
| 224 | 409 |
typename Map::const_iterator it = _map.find(k); |
| 225 | 410 |
if (it != _map.end()) |
| 226 | 411 |
return it->second; |
| 227 | 412 |
else |
| 228 | 413 |
return _value; |
| 229 | 414 |
} |
| 230 | 415 |
|
| 231 | 416 |
/// \e |
| 232 |
void set(const Key &k, const |
|
| 417 |
void set(const Key &k, const Value &v) {
|
|
| 233 | 418 |
typename Map::iterator it = _map.lower_bound(k); |
| 234 | 419 |
if (it != _map.end() && !_map.key_comp()(k, it->first)) |
| 235 |
it->second = |
|
| 420 |
it->second = v; |
|
| 236 | 421 |
else |
| 237 |
_map.insert(it, std::make_pair(k, |
|
| 422 |
_map.insert(it, std::make_pair(k, v)); |
|
| 238 | 423 |
} |
| 239 | 424 |
|
| 240 | 425 |
/// \e |
| 241 |
void setAll(const T &t) {
|
|
| 242 |
_value = t; |
|
| 426 |
void setAll(const Value &v) {
|
|
| 427 |
_value = v; |
|
| 243 | 428 |
_map.clear(); |
| 244 | 429 |
} |
| 245 |
|
|
| 246 | 430 |
}; |
| 247 | 431 |
|
| 248 |
///Returns a \ |
|
| 432 |
/// Returns a \ref SparseMap class |
|
| 249 | 433 |
|
| 250 |
///This function just returns a \ |
|
| 434 |
/// This function just returns a \ref SparseMap class with specified |
|
| 251 | 435 |
///default value. |
| 252 |
///\relates |
|
| 436 |
/// \relates SparseMap |
|
| 253 | 437 |
template<typename K, typename V, typename Compare> |
| 254 |
inline StdMap<K, V, Compare> stdMap(const V& value = V()) {
|
|
| 255 |
return StdMap<K, V, Compare>(value); |
|
| 438 |
inline SparseMap<K, V, Compare> sparseMap(const V& value = V()) {
|
|
| 439 |
return SparseMap<K, V, Compare>(value); |
|
| 256 | 440 |
} |
| 257 | 441 |
|
| 258 |
///Returns a \c StdMap class |
|
| 259 |
|
|
| 260 |
///This function just returns a \c StdMap class with specified |
|
| 261 |
///default value. |
|
| 262 |
///\relates StdMap |
|
| 263 | 442 |
template<typename K, typename V> |
| 264 |
inline StdMap<K, V, std::less<K> > stdMap(const V& value = V()) {
|
|
| 265 |
return StdMap<K, V, std::less<K> >(value); |
|
| 443 |
inline SparseMap<K, V, std::less<K> > sparseMap(const V& value = V()) {
|
|
| 444 |
return SparseMap<K, V, std::less<K> >(value); |
|
| 266 | 445 |
} |
| 267 | 446 |
|
| 268 |
///Returns a \ |
|
| 447 |
/// \brief Returns a \ref SparseMap class created from an appropriate |
|
| 448 |
/// \c std::map |
|
| 269 | 449 |
|
| 270 |
///This function just returns a \c StdMap class created from an |
|
| 271 |
///appropriate std::map. |
|
| 272 |
/// |
|
| 450 |
/// This function just returns a \ref SparseMap class created from an |
|
| 451 |
/// appropriate \c std::map. |
|
| 452 |
/// \relates SparseMap |
|
| 273 | 453 |
template<typename K, typename V, typename Compare> |
| 274 |
inline StdMap<K, V, Compare> stdMap( const std::map<K, V, Compare> &map, |
|
| 275 |
const V& value = V() ) {
|
|
| 276 |
return StdMap<K, V, Compare>(map, value); |
|
| 277 |
} |
|
| 278 |
|
|
| 279 |
///Returns a \c StdMap class created from an appropriate std::map |
|
| 280 |
|
|
| 281 |
///This function just returns a \c StdMap class created from an |
|
| 282 |
///appropriate std::map. |
|
| 283 |
///\relates StdMap |
|
| 284 |
template<typename K, typename V> |
|
| 285 |
inline StdMap<K, V, std::less<K> > stdMap( const std::map<K, V, std::less<K> > &map, |
|
| 286 |
const V& value = V() ) {
|
|
| 287 |
return StdMap<K, V, std::less<K> >(map, value); |
|
| 288 |
} |
|
| 289 |
|
|
| 290 |
/// \brief Map for storing values for keys from the range <tt>[0..size-1]</tt> |
|
| 291 |
/// |
|
| 292 |
/// This map has the <tt>[0..size-1]</tt> keyset and the values |
|
| 293 |
/// are stored in a \c std::vector<T> container. It can be used with |
|
| 294 |
/// some data structures, for example \c UnionFind, \c BinHeap, when |
|
| 295 |
/// the used items are small integer numbers. |
|
| 296 |
/// This map meets the \ref concepts::ReferenceMap "ReferenceMap" concept. |
|
| 297 |
/// |
|
| 298 |
/// \todo Revise its name |
|
| 299 |
template <typename T> |
|
| 300 |
class IntegerMap : public MapBase<int, T> {
|
|
| 301 |
|
|
| 302 |
template <typename T1> |
|
| 303 |
friend class IntegerMap; |
|
| 304 |
|
|
| 305 |
public: |
|
| 306 |
|
|
| 307 |
typedef MapBase<int, T> Parent; |
|
| 308 |
///\e |
|
| 309 |
typedef typename Parent::Key Key; |
|
| 310 |
///\e |
|
| 311 |
typedef typename Parent::Value Value; |
|
| 312 |
///\e |
|
| 313 |
typedef T& Reference; |
|
| 314 |
///\e |
|
| 315 |
typedef const T& ConstReference; |
|
| 316 |
|
|
| 317 |
typedef True ReferenceMapTag; |
|
| 318 |
|
|
| 319 |
private: |
|
| 320 |
|
|
| 321 |
typedef std::vector<T> Vector; |
|
| 322 |
Vector _vector; |
|
| 323 |
|
|
| 324 |
public: |
|
| 325 |
|
|
| 326 |
/// Constructor with specified default value |
|
| 327 |
IntegerMap(int size = 0, const T& value = T()) : _vector(size, value) {}
|
|
| 328 |
|
|
| 329 |
/// \brief Constructs the map from an appropriate \c std::vector. |
|
| 330 |
template <typename T1> |
|
| 331 |
IntegerMap(const std::vector<T1>& vector) |
|
| 332 |
: _vector(vector.begin(), vector.end()) {}
|
|
| 333 |
|
|
| 334 |
/// \brief Constructs a map from an other \ref IntegerMap. |
|
| 335 |
template <typename T1> |
|
| 336 |
IntegerMap(const IntegerMap<T1> &c) |
|
| 337 |
: _vector(c._vector.begin(), c._vector.end()) {}
|
|
| 338 |
|
|
| 339 |
/// \brief Resize the container |
|
| 340 |
void resize(int size, const T& value = T()) {
|
|
| 341 |
_vector.resize(size, value); |
|
| 342 |
} |
|
| 343 |
|
|
| 344 |
private: |
|
| 345 |
|
|
| 346 |
IntegerMap& operator=(const IntegerMap&); |
|
| 347 |
|
|
| 348 |
public: |
|
| 349 |
|
|
| 350 |
///\e |
|
| 351 |
Reference operator[](Key k) {
|
|
| 352 |
return _vector[k]; |
|
| 353 |
} |
|
| 354 |
|
|
| 355 |
/// \e |
|
| 356 |
ConstReference operator[](Key k) const {
|
|
| 357 |
return _vector[k]; |
|
| 358 |
} |
|
| 359 |
|
|
| 360 |
/// \e |
|
| 361 |
void set(const Key &k, const T& t) {
|
|
| 362 |
_vector[k] = t; |
|
| 363 |
} |
|
| 364 |
|
|
| 365 |
}; |
|
| 366 |
|
|
| 367 |
///Returns an \c IntegerMap class |
|
| 368 |
|
|
| 369 |
///This function just returns an \c IntegerMap class. |
|
| 370 |
///\relates IntegerMap |
|
| 371 |
template<typename T> |
|
| 372 |
inline IntegerMap<T> integerMap(int size = 0, const T& value = T()) {
|
|
| 373 |
return IntegerMap<T>(size, value); |
|
| 454 |
inline SparseMap<K, V, Compare> |
|
| 455 |
sparseMap(const std::map<K, V, Compare> &map, const V& value = V()) |
|
| 456 |
{
|
|
| 457 |
return SparseMap<K, V, Compare>(map, value); |
|
| 374 | 458 |
} |
| 375 | 459 |
|
| 376 | 460 |
/// @} |
| 377 | 461 |
|
| 378 | 462 |
/// \addtogroup map_adaptors |
| 379 | 463 |
/// @{
|
| 380 | 464 |
|
| 381 |
/// \brief Identity map. |
|
| 382 |
/// |
|
| 383 |
/// This map gives back the given key as value without any |
|
| 384 |
/// modification. |
|
| 385 |
template <typename T> |
|
| 386 |
class IdentityMap : public MapBase<T, T> {
|
|
| 387 |
public: |
|
| 388 |
typedef MapBase<T, T> Parent; |
|
| 389 |
typedef typename Parent::Key Key; |
|
| 390 |
typedef typename Parent::Value Value; |
|
| 391 |
|
|
| 392 |
/// \e |
|
| 393 |
const T& operator[](const T& t) const {
|
|
| 394 |
return t; |
|
| 395 |
} |
|
| 396 |
}; |
|
| 397 |
|
|
| 398 |
///Returns an \c IdentityMap class |
|
| 399 |
|
|
| 400 |
///This function just returns an \c IdentityMap class. |
|
| 401 |
///\relates IdentityMap |
|
| 402 |
template<typename T> |
|
| 403 |
inline IdentityMap<T> identityMap() {
|
|
| 404 |
return IdentityMap<T>(); |
|
| 405 |
} |
|
| 406 |
|
|
| 407 |
|
|
| 408 |
///\brief Convert the \c Value of a map to another type using |
|
| 409 |
///the default conversion. |
|
| 410 |
/// |
|
| 411 |
///This \ref concepts::ReadMap "read only map" |
|
| 412 |
///converts the \c Value of a map to type \c T. |
|
| 413 |
///Its \c Key is inherited from \c M. |
|
| 414 |
template <typename M, typename T> |
|
| 415 |
class ConvertMap : public MapBase<typename M::Key, T> {
|
|
| 416 |
const M& m; |
|
| 417 |
public: |
|
| 418 |
typedef MapBase<typename M::Key, T> Parent; |
|
| 419 |
typedef typename Parent::Key Key; |
|
| 420 |
typedef typename Parent::Value Value; |
|
| 421 |
|
|
| 422 |
///Constructor |
|
| 423 |
|
|
| 424 |
///Constructor. |
|
| 425 |
///\param _m is the underlying map. |
|
| 426 |
ConvertMap(const M &_m) : m(_m) {};
|
|
| 427 |
|
|
| 428 |
///\e |
|
| 429 |
Value operator[](const Key& k) const {return m[k];}
|
|
| 430 |
}; |
|
| 431 |
|
|
| 432 |
///Returns a \c ConvertMap class |
|
| 433 |
|
|
| 434 |
///This function just returns a \c ConvertMap class. |
|
| 435 |
///\relates ConvertMap |
|
| 436 |
template<typename T, typename M> |
|
| 437 |
inline ConvertMap<M, T> convertMap(const M &m) {
|
|
| 438 |
return ConvertMap<M, T>(m); |
|
| 439 |
} |
|
| 440 |
|
|
| 441 |
///Simple wrapping of a map |
|
| 442 |
|
|
| 443 |
///This \ref concepts::ReadMap "read only map" returns the simple |
|
| 444 |
///wrapping of the given map. Sometimes the reference maps cannot be |
|
| 445 |
///combined with simple read maps. This map adaptor wraps the given |
|
| 446 |
///map to simple read map. |
|
| 447 |
/// |
|
| 448 |
///\sa SimpleWriteMap |
|
| 449 |
/// |
|
| 450 |
/// \todo Revise the misleading name |
|
| 451 |
template<typename M> |
|
| 452 |
class SimpleMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 453 |
const M& m; |
|
| 454 |
|
|
| 455 |
public: |
|
| 456 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 457 |
typedef typename Parent::Key Key; |
|
| 458 |
typedef typename Parent::Value Value; |
|
| 459 |
|
|
| 460 |
///Constructor |
|
| 461 |
SimpleMap(const M &_m) : m(_m) {};
|
|
| 462 |
///\e |
|
| 463 |
Value operator[](Key k) const {return m[k];}
|
|
| 464 |
}; |
|
| 465 |
|
|
| 466 |
///Returns a \c SimpleMap class |
|
| 467 |
|
|
| 468 |
///This function just returns a \c SimpleMap class. |
|
| 469 |
///\relates SimpleMap |
|
| 470 |
template<typename M> |
|
| 471 |
inline SimpleMap<M> simpleMap(const M &m) {
|
|
| 472 |
return SimpleMap<M>(m); |
|
| 473 |
} |
|
| 474 |
|
|
| 475 |
///Simple writable wrapping of a map |
|
| 476 |
|
|
| 477 |
///This \ref concepts::ReadWriteMap "read-write map" returns the simple |
|
| 478 |
///wrapping of the given map. Sometimes the reference maps cannot be |
|
| 479 |
///combined with simple read-write maps. This map adaptor wraps the |
|
| 480 |
///given map to simple read-write map. |
|
| 481 |
/// |
|
| 482 |
///\sa SimpleMap |
|
| 483 |
/// |
|
| 484 |
/// \todo Revise the misleading name |
|
| 485 |
template<typename M> |
|
| 486 |
class SimpleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 487 |
M& m; |
|
| 488 |
|
|
| 489 |
public: |
|
| 490 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 491 |
typedef typename Parent::Key Key; |
|
| 492 |
typedef typename Parent::Value Value; |
|
| 493 |
|
|
| 494 |
///Constructor |
|
| 495 |
SimpleWriteMap(M &_m) : m(_m) {};
|
|
| 496 |
///\e |
|
| 497 |
Value operator[](Key k) const {return m[k];}
|
|
| 498 |
///\e |
|
| 499 |
void set(Key k, const Value& c) { m.set(k, c); }
|
|
| 500 |
}; |
|
| 501 |
|
|
| 502 |
///Returns a \c SimpleWriteMap class |
|
| 503 |
|
|
| 504 |
///This function just returns a \c SimpleWriteMap class. |
|
| 505 |
///\relates SimpleWriteMap |
|
| 506 |
template<typename M> |
|
| 507 |
inline SimpleWriteMap<M> simpleWriteMap(M &m) {
|
|
| 508 |
return SimpleWriteMap<M>(m); |
|
| 509 |
} |
|
| 510 |
|
|
| 511 |
///Sum of two maps |
|
| 512 |
|
|
| 513 |
///This \ref concepts::ReadMap "read only map" returns the sum of the two |
|
| 514 |
///given maps. |
|
| 515 |
///Its \c Key and \c Value are inherited from \c M1. |
|
| 516 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
|
| 517 |
template<typename M1, typename M2> |
|
| 518 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
|
|
| 519 |
const M1& m1; |
|
| 520 |
const M2& m2; |
|
| 521 |
|
|
| 522 |
public: |
|
| 523 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
| 524 |
typedef typename Parent::Key Key; |
|
| 525 |
typedef typename Parent::Value Value; |
|
| 526 |
|
|
| 527 |
///Constructor |
|
| 528 |
AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
|
| 529 |
///\e |
|
| 530 |
Value operator[](Key k) const {return m1[k]+m2[k];}
|
|
| 531 |
}; |
|
| 532 |
|
|
| 533 |
///Returns an \c AddMap class |
|
| 534 |
|
|
| 535 |
///This function just returns an \c AddMap class. |
|
| 536 |
///\todo Extend the documentation: how to call these type of functions? |
|
| 537 |
/// |
|
| 538 |
///\relates AddMap |
|
| 539 |
template<typename M1, typename M2> |
|
| 540 |
inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) {
|
|
| 541 |
return AddMap<M1, M2>(m1,m2); |
|
| 542 |
} |
|
| 543 |
|
|
| 544 |
///Shift a map with a constant. |
|
| 545 |
|
|
| 546 |
///This \ref concepts::ReadMap "read only map" returns the sum of the |
|
| 547 |
///given map and a constant value. |
|
| 548 |
///Its \c Key and \c Value are inherited from \c M. |
|
| 549 |
/// |
|
| 550 |
///Actually, |
|
| 551 |
///\code |
|
| 552 |
/// ShiftMap<X> sh(x,v); |
|
| 553 |
///\endcode |
|
| 554 |
///is equivalent to |
|
| 555 |
///\code |
|
| 556 |
/// ConstMap<X::Key, X::Value> c_tmp(v); |
|
| 557 |
/// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v); |
|
| 558 |
///\endcode |
|
| 559 |
/// |
|
| 560 |
///\sa ShiftWriteMap |
|
| 561 |
template<typename M, typename C = typename M::Value> |
|
| 562 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 563 |
const M& m; |
|
| 564 |
C v; |
|
| 565 |
public: |
|
| 566 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 567 |
typedef typename Parent::Key Key; |
|
| 568 |
typedef typename Parent::Value Value; |
|
| 569 |
|
|
| 570 |
///Constructor |
|
| 571 |
|
|
| 572 |
///Constructor. |
|
| 573 |
///\param _m is the undelying map. |
|
| 574 |
///\param _v is the shift value. |
|
| 575 |
ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
|
|
| 576 |
///\e |
|
| 577 |
Value operator[](Key k) const {return m[k] + v;}
|
|
| 578 |
}; |
|
| 579 |
|
|
| 580 |
///Shift a map with a constant (ReadWrite version). |
|
| 581 |
|
|
| 582 |
///This \ref concepts::ReadWriteMap "read-write map" returns the sum of the |
|
| 583 |
///given map and a constant value. It makes also possible to write the map. |
|
| 584 |
///Its \c Key and \c Value are inherited from \c M. |
|
| 585 |
/// |
|
| 586 |
///\sa ShiftMap |
|
| 587 |
template<typename M, typename C = typename M::Value> |
|
| 588 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 589 |
M& m; |
|
| 590 |
C v; |
|
| 591 |
public: |
|
| 592 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 593 |
typedef typename Parent::Key Key; |
|
| 594 |
typedef typename Parent::Value Value; |
|
| 595 |
|
|
| 596 |
///Constructor |
|
| 597 |
|
|
| 598 |
///Constructor. |
|
| 599 |
///\param _m is the undelying map. |
|
| 600 |
///\param _v is the shift value. |
|
| 601 |
ShiftWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
|
|
| 602 |
/// \e |
|
| 603 |
Value operator[](Key k) const {return m[k] + v;}
|
|
| 604 |
/// \e |
|
| 605 |
void set(Key k, const Value& c) { m.set(k, c - v); }
|
|
| 606 |
}; |
|
| 607 |
|
|
| 608 |
///Returns a \c ShiftMap class |
|
| 609 |
|
|
| 610 |
///This function just returns a \c ShiftMap class. |
|
| 611 |
///\relates ShiftMap |
|
| 612 |
template<typename M, typename C> |
|
| 613 |
inline ShiftMap<M, C> shiftMap(const M &m,const C &v) {
|
|
| 614 |
return ShiftMap<M, C>(m,v); |
|
| 615 |
} |
|
| 616 |
|
|
| 617 |
///Returns a \c ShiftWriteMap class |
|
| 618 |
|
|
| 619 |
///This function just returns a \c ShiftWriteMap class. |
|
| 620 |
///\relates ShiftWriteMap |
|
| 621 |
template<typename M, typename C> |
|
| 622 |
inline ShiftWriteMap<M, C> shiftMap(M &m,const C &v) {
|
|
| 623 |
return ShiftWriteMap<M, C>(m,v); |
|
| 624 |
} |
|
| 625 |
|
|
| 626 |
///Difference of two maps |
|
| 627 |
|
|
| 628 |
///This \ref concepts::ReadMap "read only map" returns the difference |
|
| 629 |
///of the values of the two given maps. |
|
| 630 |
///Its \c Key and \c Value are inherited from \c M1. |
|
| 631 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
|
| 632 |
/// |
|
| 633 |
/// \todo Revise the misleading name |
|
| 634 |
template<typename M1, typename M2> |
|
| 635 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
|
|
| 636 |
const M1& m1; |
|
| 637 |
const M2& m2; |
|
| 638 |
public: |
|
| 639 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
| 640 |
typedef typename Parent::Key Key; |
|
| 641 |
typedef typename Parent::Value Value; |
|
| 642 |
|
|
| 643 |
///Constructor |
|
| 644 |
SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
|
| 645 |
/// \e |
|
| 646 |
Value operator[](Key k) const {return m1[k]-m2[k];}
|
|
| 647 |
}; |
|
| 648 |
|
|
| 649 |
///Returns a \c SubMap class |
|
| 650 |
|
|
| 651 |
///This function just returns a \c SubMap class. |
|
| 652 |
/// |
|
| 653 |
///\relates SubMap |
|
| 654 |
template<typename M1, typename M2> |
|
| 655 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
|
|
| 656 |
return SubMap<M1, M2>(m1, m2); |
|
| 657 |
} |
|
| 658 |
|
|
| 659 |
///Product of two maps |
|
| 660 |
|
|
| 661 |
///This \ref concepts::ReadMap "read only map" returns the product of the |
|
| 662 |
///values of the two given maps. |
|
| 663 |
///Its \c Key and \c Value are inherited from \c M1. |
|
| 664 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
|
| 665 |
template<typename M1, typename M2> |
|
| 666 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
|
|
| 667 |
const M1& m1; |
|
| 668 |
const M2& m2; |
|
| 669 |
public: |
|
| 670 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
| 671 |
typedef typename Parent::Key Key; |
|
| 672 |
typedef typename Parent::Value Value; |
|
| 673 |
|
|
| 674 |
///Constructor |
|
| 675 |
MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
|
| 676 |
/// \e |
|
| 677 |
Value operator[](Key k) const {return m1[k]*m2[k];}
|
|
| 678 |
}; |
|
| 679 |
|
|
| 680 |
///Returns a \c MulMap class |
|
| 681 |
|
|
| 682 |
///This function just returns a \c MulMap class. |
|
| 683 |
///\relates MulMap |
|
| 684 |
template<typename M1, typename M2> |
|
| 685 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
|
|
| 686 |
return MulMap<M1, M2>(m1,m2); |
|
| 687 |
} |
|
| 688 |
|
|
| 689 |
///Scales a map with a constant. |
|
| 690 |
|
|
| 691 |
///This \ref concepts::ReadMap "read only map" returns the value of the |
|
| 692 |
///given map multiplied from the left side with a constant value. |
|
| 693 |
///Its \c Key and \c Value are inherited from \c M. |
|
| 694 |
/// |
|
| 695 |
///Actually, |
|
| 696 |
///\code |
|
| 697 |
/// ScaleMap<X> sc(x,v); |
|
| 698 |
///\endcode |
|
| 699 |
///is equivalent to |
|
| 700 |
///\code |
|
| 701 |
/// ConstMap<X::Key, X::Value> c_tmp(v); |
|
| 702 |
/// MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v); |
|
| 703 |
///\endcode |
|
| 704 |
/// |
|
| 705 |
///\sa ScaleWriteMap |
|
| 706 |
template<typename M, typename C = typename M::Value> |
|
| 707 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 708 |
const M& m; |
|
| 709 |
C v; |
|
| 710 |
public: |
|
| 711 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 712 |
typedef typename Parent::Key Key; |
|
| 713 |
typedef typename Parent::Value Value; |
|
| 714 |
|
|
| 715 |
///Constructor |
|
| 716 |
|
|
| 717 |
///Constructor. |
|
| 718 |
///\param _m is the undelying map. |
|
| 719 |
///\param _v is the scaling value. |
|
| 720 |
ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {};
|
|
| 721 |
/// \e |
|
| 722 |
Value operator[](Key k) const {return v * m[k];}
|
|
| 723 |
}; |
|
| 724 |
|
|
| 725 |
///Scales a map with a constant (ReadWrite version). |
|
| 726 |
|
|
| 727 |
///This \ref concepts::ReadWriteMap "read-write map" returns the value of the |
|
| 728 |
///given map multiplied from the left side with a constant value. It can |
|
| 729 |
///also be used as write map if the \c / operator is defined between |
|
| 730 |
///\c Value and \c C and the given multiplier is not zero. |
|
| 731 |
///Its \c Key and \c Value are inherited from \c M. |
|
| 732 |
/// |
|
| 733 |
///\sa ScaleMap |
|
| 734 |
template<typename M, typename C = typename M::Value> |
|
| 735 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 736 |
M& m; |
|
| 737 |
C v; |
|
| 738 |
public: |
|
| 739 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 740 |
typedef typename Parent::Key Key; |
|
| 741 |
typedef typename Parent::Value Value; |
|
| 742 |
|
|
| 743 |
///Constructor |
|
| 744 |
|
|
| 745 |
///Constructor. |
|
| 746 |
///\param _m is the undelying map. |
|
| 747 |
///\param _v is the scaling value. |
|
| 748 |
ScaleWriteMap(M &_m, const C &_v ) : m(_m), v(_v) {};
|
|
| 749 |
/// \e |
|
| 750 |
Value operator[](Key k) const {return v * m[k];}
|
|
| 751 |
/// \e |
|
| 752 |
void set(Key k, const Value& c) { m.set(k, c / v);}
|
|
| 753 |
}; |
|
| 754 |
|
|
| 755 |
///Returns a \c ScaleMap class |
|
| 756 |
|
|
| 757 |
///This function just returns a \c ScaleMap class. |
|
| 758 |
///\relates ScaleMap |
|
| 759 |
template<typename M, typename C> |
|
| 760 |
inline ScaleMap<M, C> scaleMap(const M &m,const C &v) {
|
|
| 761 |
return ScaleMap<M, C>(m,v); |
|
| 762 |
} |
|
| 763 |
|
|
| 764 |
///Returns a \c ScaleWriteMap class |
|
| 765 |
|
|
| 766 |
///This function just returns a \c ScaleWriteMap class. |
|
| 767 |
///\relates ScaleWriteMap |
|
| 768 |
template<typename M, typename C> |
|
| 769 |
inline ScaleWriteMap<M, C> scaleMap(M &m,const C &v) {
|
|
| 770 |
return ScaleWriteMap<M, C>(m,v); |
|
| 771 |
} |
|
| 772 |
|
|
| 773 |
///Quotient of two maps |
|
| 774 |
|
|
| 775 |
///This \ref concepts::ReadMap "read only map" returns the quotient of the |
|
| 776 |
///values of the two given maps. |
|
| 777 |
///Its \c Key and \c Value are inherited from \c M1. |
|
| 778 |
///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
|
| 779 |
template<typename M1, typename M2> |
|
| 780 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
|
|
| 781 |
const M1& m1; |
|
| 782 |
const M2& m2; |
|
| 783 |
public: |
|
| 784 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
| 785 |
typedef typename Parent::Key Key; |
|
| 786 |
typedef typename Parent::Value Value; |
|
| 787 |
|
|
| 788 |
///Constructor |
|
| 789 |
DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {};
|
|
| 790 |
/// \e |
|
| 791 |
Value operator[](Key k) const {return m1[k]/m2[k];}
|
|
| 792 |
}; |
|
| 793 |
|
|
| 794 |
///Returns a \c DivMap class |
|
| 795 |
|
|
| 796 |
///This function just returns a \c DivMap class. |
|
| 797 |
///\relates DivMap |
|
| 798 |
template<typename M1, typename M2> |
|
| 799 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
|
|
| 800 |
return DivMap<M1, M2>(m1,m2); |
|
| 801 |
} |
|
| 802 |
|
|
| 803 | 465 |
///Composition of two maps |
| 804 | 466 |
|
| 805 |
///This \ref concepts::ReadMap "read only map" returns the composition of |
|
| 806 |
///two given maps. |
|
| 807 |
///That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2, |
|
| 808 |
///then for |
|
| 467 |
/// This \ref concepts::ReadMap "read only map" returns the |
|
| 468 |
/// composition of two given maps. That is to say, if \c m1 is of |
|
| 469 |
/// type \c M1 and \c m2 is of \c M2, then for |
|
| 809 | 470 |
///\code |
| 810 | 471 |
/// ComposeMap<M1, M2> cm(m1,m2); |
| 811 | 472 |
///\endcode |
| 812 | 473 |
/// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt>. |
| 813 | 474 |
/// |
| 814 |
/// |
|
| 475 |
/// The \c Key type of the map is inherited from \c M2 and the |
|
| 476 |
/// \c Value type is from \c M1. |
|
| 815 | 477 |
///\c M2::Value must be convertible to \c M1::Key. |
| 816 | 478 |
/// |
| 479 |
/// The simplest way of using this map is through the composeMap() |
|
| 480 |
/// function. |
|
| 481 |
/// |
|
| 817 | 482 |
///\sa CombineMap |
| 818 | 483 |
/// |
| 819 | 484 |
///\todo Check the requirements. |
| 820 | 485 |
template <typename M1, typename M2> |
| 821 | 486 |
class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> {
|
| 822 |
const M1& m1; |
|
| 823 |
const M2& m2; |
|
| 487 |
const M1 &_m1; |
|
| 488 |
const M2 &_m2; |
|
| 824 | 489 |
public: |
| 825 | 490 |
typedef MapBase<typename M2::Key, typename M1::Value> Parent; |
| 826 | 491 |
typedef typename Parent::Key Key; |
| 827 | 492 |
typedef typename Parent::Value Value; |
| 828 | 493 |
|
| 829 | 494 |
///Constructor |
| 830 |
ComposeMap(const M1 & |
|
| 495 |
ComposeMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
|
| 831 | 496 |
|
| 832 | 497 |
/// \e |
| 833 |
|
|
| 834 |
|
|
| 835 |
/// \todo Use the MapTraits once it is ported. |
|
| 836 |
/// |
|
| 837 |
|
|
| 838 |
//typename MapTraits<M1>::ConstReturnValue |
|
| 839 |
typename M1::Value |
|
| 840 |
operator[](Key k) const {return m1[m2[k]];}
|
|
| 498 |
typename MapTraits<M1>::ConstReturnValue |
|
| 499 |
operator[](const Key &k) const { return _m1[_m2[k]]; }
|
|
| 841 | 500 |
}; |
| 842 | 501 |
|
| 843 |
///Returns a \ |
|
| 502 |
/// Returns a \ref ComposeMap class |
|
| 844 | 503 |
|
| 845 |
///This function just returns a \ |
|
| 504 |
/// This function just returns a \ref ComposeMap class. |
|
| 505 |
/// |
|
| 506 |
/// If \c m1 and \c m2 are maps and the \c Value type of \c m2 is |
|
| 507 |
/// convertible to the \c Key of \c m1, then <tt>composeMap(m1,m2)[x]</tt> |
|
| 508 |
/// will be equal to <tt>m1[m2[x]]</tt>. |
|
| 509 |
/// |
|
| 846 | 510 |
///\relates ComposeMap |
| 847 | 511 |
template <typename M1, typename M2> |
| 848 | 512 |
inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) {
|
| 849 | 513 |
return ComposeMap<M1, M2>(m1,m2); |
| 850 | 514 |
} |
| 851 | 515 |
|
| 852 |
///Combine of two maps using an STL (binary) functor. |
|
| 853 | 516 |
|
| 854 |
///Combine of two maps using an STL (binary) functor. |
|
| 855 |
/// |
|
| 517 |
/// Combination of two maps using an STL (binary) functor. |
|
| 518 |
|
|
| 856 | 519 |
///This \ref concepts::ReadMap "read only map" takes two maps and a |
| 857 |
///binary functor and returns the composition of the two |
|
| 858 |
///given maps unsing the functor. |
|
| 859 |
/// |
|
| 520 |
/// binary functor and returns the combination of the two given maps |
|
| 521 |
/// using the functor. |
|
| 522 |
/// That is to say, if \c m1 is of type \c M1 and \c m2 is of \c M2 |
|
| 860 | 523 |
///and \c f is of \c F, then for |
| 861 | 524 |
///\code |
| 862 | 525 |
/// CombineMap<M1,M2,F,V> cm(m1,m2,f); |
| 863 | 526 |
///\endcode |
| 864 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt> |
|
| 527 |
/// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt>. |
|
| 865 | 528 |
/// |
| 866 |
///Its \c Key is inherited from \c M1 and its \c Value is \c V. |
|
| 867 |
///\c M2::Value and \c M1::Value must be convertible to the corresponding |
|
| 868 |
///input parameter of \c F and the return type of \c F must be convertible |
|
| 869 |
///to \c V. |
|
| 529 |
/// The \c Key type of the map is inherited from \c M1 (\c M1::Key |
|
| 530 |
/// must be convertible to \c M2::Key) and the \c Value type is \c V. |
|
| 531 |
/// \c M2::Value and \c M1::Value must be convertible to the |
|
| 532 |
/// corresponding input parameter of \c F and the return type of \c F |
|
| 533 |
/// must be convertible to \c V. |
|
| 534 |
/// |
|
| 535 |
/// The simplest way of using this map is through the combineMap() |
|
| 536 |
/// function. |
|
| 870 | 537 |
/// |
| 871 | 538 |
///\sa ComposeMap |
| 872 | 539 |
/// |
| 873 | 540 |
///\todo Check the requirements. |
| 874 | 541 |
template<typename M1, typename M2, typename F, |
| 875 | 542 |
typename V = typename F::result_type> |
| 876 | 543 |
class CombineMap : public MapBase<typename M1::Key, V> {
|
| 877 |
const M1& m1; |
|
| 878 |
const M2& m2; |
|
| 879 |
|
|
| 544 |
const M1 &_m1; |
|
| 545 |
const M2 &_m2; |
|
| 546 |
F _f; |
|
| 880 | 547 |
public: |
| 881 | 548 |
typedef MapBase<typename M1::Key, V> Parent; |
| 882 | 549 |
typedef typename Parent::Key Key; |
| 883 | 550 |
typedef typename Parent::Value Value; |
| 884 | 551 |
|
| 885 | 552 |
///Constructor |
| 886 |
CombineMap(const M1 &_m1,const M2 &_m2,const F &_f = F()) |
|
| 887 |
: m1(_m1), m2(_m2), f(_f) {};
|
|
| 553 |
CombineMap(const M1 &m1, const M2 &m2, const F &f = F()) |
|
| 554 |
: _m1(m1), _m2(m2), _f(f) {}
|
|
| 888 | 555 |
/// \e |
| 889 |
Value operator[](Key k) const {return
|
|
| 556 |
Value operator[](const Key &k) const { return _f(_m1[k],_m2[k]); }
|
|
| 890 | 557 |
}; |
| 891 | 558 |
|
| 892 |
///Returns a \ |
|
| 559 |
/// Returns a \ref CombineMap class |
|
| 893 | 560 |
|
| 894 |
///This function just returns a \ |
|
| 561 |
/// This function just returns a \ref CombineMap class. |
|
| 895 | 562 |
/// |
| 896 |
///For example if \c m1 and \c m2 are both \c double |
|
| 563 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
|
| 564 |
/// values, then |
|
| 897 | 565 |
///\code |
| 898 | 566 |
///combineMap(m1,m2,std::plus<double>()) |
| 899 | 567 |
///\endcode |
| 900 | 568 |
///is equivalent to |
| 901 | 569 |
///\code |
| 902 | 570 |
///addMap(m1,m2) |
| 903 | 571 |
///\endcode |
| 904 | 572 |
/// |
| 905 | 573 |
///This function is specialized for adaptable binary function |
| 906 | 574 |
///classes and C++ functions. |
| 907 | 575 |
/// |
| 908 | 576 |
///\relates CombineMap |
| 909 | 577 |
template<typename M1, typename M2, typename F, typename V> |
| 910 | 578 |
inline CombineMap<M1, M2, F, V> |
| 911 | 579 |
combineMap(const M1& m1,const M2& m2, const F& f) {
|
| 912 | 580 |
return CombineMap<M1, M2, F, V>(m1,m2,f); |
| 913 | 581 |
} |
| 914 | 582 |
|
| 915 | 583 |
template<typename M1, typename M2, typename F> |
| 916 | 584 |
inline CombineMap<M1, M2, F, typename F::result_type> |
| 917 | 585 |
combineMap(const M1& m1, const M2& m2, const F& f) {
|
| 918 | 586 |
return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
| 919 | 587 |
} |
| 920 | 588 |
|
| 921 | 589 |
template<typename M1, typename M2, typename K1, typename K2, typename V> |
| 922 | 590 |
inline CombineMap<M1, M2, V (*)(K1, K2), V> |
| 923 | 591 |
combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) {
|
| 924 | 592 |
return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
| 925 | 593 |
} |
| 926 | 594 |
|
| 927 |
///Negative value of a map |
|
| 928 | 595 |
|
| 929 |
///This \ref concepts::ReadMap "read only map" returns the negative |
|
| 930 |
///value of the value returned by the given map. |
|
| 931 |
///Its \c Key and \c Value are inherited from \c M. |
|
| 932 |
///The unary \c - operator must be defined for \c Value, of course. |
|
| 596 |
/// Converts an STL style (unary) functor to a map |
|
| 597 |
|
|
| 598 |
/// This \ref concepts::ReadMap "read only map" returns the value |
|
| 599 |
/// of a given functor. Actually, it just wraps the functor and |
|
| 600 |
/// provides the \c Key and \c Value typedefs. |
|
| 933 | 601 |
/// |
| 934 |
/// |
|
| 602 |
/// Template parameters \c K and \c V will become its \c Key and |
|
| 603 |
/// \c Value. In most cases they have to be given explicitly because |
|
| 604 |
/// a functor typically does not provide \c argument_type and |
|
| 605 |
/// \c result_type typedefs. |
|
| 606 |
/// Parameter \c F is the type of the used functor. |
|
| 607 |
/// |
|
| 608 |
/// The simplest way of using this map is through the functorToMap() |
|
| 609 |
/// function. |
|
| 610 |
/// |
|
| 611 |
/// \sa MapToFunctor |
|
| 612 |
template<typename F, |
|
| 613 |
typename K = typename F::argument_type, |
|
| 614 |
typename V = typename F::result_type> |
|
| 615 |
class FunctorToMap : public MapBase<K, V> {
|
|
| 616 |
const F &_f; |
|
| 617 |
public: |
|
| 618 |
typedef MapBase<K, V> Parent; |
|
| 619 |
typedef typename Parent::Key Key; |
|
| 620 |
typedef typename Parent::Value Value; |
|
| 621 |
|
|
| 622 |
/// Constructor |
|
| 623 |
FunctorToMap(const F &f = F()) : _f(f) {}
|
|
| 624 |
/// \e |
|
| 625 |
Value operator[](const Key &k) const { return _f(k); }
|
|
| 626 |
}; |
|
| 627 |
|
|
| 628 |
/// Returns a \ref FunctorToMap class |
|
| 629 |
|
|
| 630 |
/// This function just returns a \ref FunctorToMap class. |
|
| 631 |
/// |
|
| 632 |
/// This function is specialized for adaptable binary function |
|
| 633 |
/// classes and C++ functions. |
|
| 634 |
/// |
|
| 635 |
/// \relates FunctorToMap |
|
| 636 |
template<typename K, typename V, typename F> |
|
| 637 |
inline FunctorToMap<F, K, V> functorToMap(const F &f) {
|
|
| 638 |
return FunctorToMap<F, K, V>(f); |
|
| 639 |
} |
|
| 640 |
|
|
| 641 |
template <typename F> |
|
| 642 |
inline FunctorToMap<F, typename F::argument_type, typename F::result_type> |
|
| 643 |
functorToMap(const F &f) |
|
| 644 |
{
|
|
| 645 |
return FunctorToMap<F, typename F::argument_type, |
|
| 646 |
typename F::result_type>(f); |
|
| 647 |
} |
|
| 648 |
|
|
| 649 |
template <typename K, typename V> |
|
| 650 |
inline FunctorToMap<V (*)(K), K, V> functorToMap(V (*f)(K)) {
|
|
| 651 |
return FunctorToMap<V (*)(K), K, V>(f); |
|
| 652 |
} |
|
| 653 |
|
|
| 654 |
|
|
| 655 |
/// Converts a map to an STL style (unary) functor |
|
| 656 |
|
|
| 657 |
/// This class converts a map to an STL style (unary) functor. |
|
| 658 |
/// That is it provides an <tt>operator()</tt> to read its values. |
|
| 659 |
/// |
|
| 660 |
/// For the sake of convenience it also works as a usual |
|
| 661 |
/// \ref concepts::ReadMap "readable map", i.e. <tt>operator[]</tt> |
|
| 662 |
/// and the \c Key and \c Value typedefs also exist. |
|
| 663 |
/// |
|
| 664 |
/// The simplest way of using this map is through the mapToFunctor() |
|
| 665 |
/// function. |
|
| 666 |
/// |
|
| 667 |
///\sa FunctorToMap |
|
| 935 | 668 |
template<typename M> |
| 936 |
class NegMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 937 |
const M& m; |
|
| 669 |
class MapToFunctor : public MapBase<typename M::Key, typename M::Value> {
|
|
| 670 |
const M &_m; |
|
| 671 |
public: |
|
| 672 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 673 |
typedef typename Parent::Key Key; |
|
| 674 |
typedef typename Parent::Value Value; |
|
| 675 |
|
|
| 676 |
typedef typename Parent::Key argument_type; |
|
| 677 |
typedef typename Parent::Value result_type; |
|
| 678 |
|
|
| 679 |
/// Constructor |
|
| 680 |
MapToFunctor(const M &m) : _m(m) {}
|
|
| 681 |
/// \e |
|
| 682 |
Value operator()(const Key &k) const { return _m[k]; }
|
|
| 683 |
/// \e |
|
| 684 |
Value operator[](const Key &k) const { return _m[k]; }
|
|
| 685 |
}; |
|
| 686 |
|
|
| 687 |
/// Returns a \ref MapToFunctor class |
|
| 688 |
|
|
| 689 |
/// This function just returns a \ref MapToFunctor class. |
|
| 690 |
/// \relates MapToFunctor |
|
| 691 |
template<typename M> |
|
| 692 |
inline MapToFunctor<M> mapToFunctor(const M &m) {
|
|
| 693 |
return MapToFunctor<M>(m); |
|
| 694 |
} |
|
| 695 |
|
|
| 696 |
|
|
| 697 |
/// \brief Map adaptor to convert the \c Value type of a map to |
|
| 698 |
/// another type using the default conversion. |
|
| 699 |
|
|
| 700 |
/// Map adaptor to convert the \c Value type of a \ref concepts::ReadMap |
|
| 701 |
/// "readable map" to another type using the default conversion. |
|
| 702 |
/// The \c Key type of it is inherited from \c M and the \c Value |
|
| 703 |
/// type is \c V. |
|
| 704 |
/// This type conforms the \ref concepts::ReadMap "ReadMap" concept. |
|
| 705 |
/// |
|
| 706 |
/// The simplest way of using this map is through the convertMap() |
|
| 707 |
/// function. |
|
| 708 |
template <typename M, typename V> |
|
| 709 |
class ConvertMap : public MapBase<typename M::Key, V> {
|
|
| 710 |
const M &_m; |
|
| 711 |
public: |
|
| 712 |
typedef MapBase<typename M::Key, V> Parent; |
|
| 713 |
typedef typename Parent::Key Key; |
|
| 714 |
typedef typename Parent::Value Value; |
|
| 715 |
|
|
| 716 |
/// Constructor |
|
| 717 |
|
|
| 718 |
/// Constructor. |
|
| 719 |
/// \param m The underlying map. |
|
| 720 |
ConvertMap(const M &m) : _m(m) {}
|
|
| 721 |
|
|
| 722 |
/// \e |
|
| 723 |
Value operator[](const Key &k) const { return _m[k]; }
|
|
| 724 |
}; |
|
| 725 |
|
|
| 726 |
/// Returns a \ref ConvertMap class |
|
| 727 |
|
|
| 728 |
/// This function just returns a \ref ConvertMap class. |
|
| 729 |
/// \relates ConvertMap |
|
| 730 |
template<typename V, typename M> |
|
| 731 |
inline ConvertMap<M, V> convertMap(const M &map) {
|
|
| 732 |
return ConvertMap<M, V>(map); |
|
| 733 |
} |
|
| 734 |
|
|
| 735 |
|
|
| 736 |
/// Applies all map setting operations to two maps |
|
| 737 |
|
|
| 738 |
/// This map has two \ref concepts::WriteMap "writable map" parameters |
|
| 739 |
/// and each write request will be passed to both of them. |
|
| 740 |
/// If \c M1 is also \ref concepts::ReadMap "readable", then the read |
|
| 741 |
/// operations will return the corresponding values of \c M1. |
|
| 742 |
/// |
|
| 743 |
/// The \c Key and \c Value types are inherited from \c M1. |
|
| 744 |
/// The \c Key and \c Value of \c M2 must be convertible from those |
|
| 745 |
/// of \c M1. |
|
| 746 |
/// |
|
| 747 |
/// The simplest way of using this map is through the forkMap() |
|
| 748 |
/// function. |
|
| 749 |
template<typename M1, typename M2> |
|
| 750 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
|
|
| 751 |
M1 &_m1; |
|
| 752 |
M2 &_m2; |
|
| 753 |
public: |
|
| 754 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
| 755 |
typedef typename Parent::Key Key; |
|
| 756 |
typedef typename Parent::Value Value; |
|
| 757 |
|
|
| 758 |
/// Constructor |
|
| 759 |
ForkMap(M1 &m1, M2 &m2) : _m1(m1), _m2(m2) {}
|
|
| 760 |
/// Returns the value associated with the given key in the first map. |
|
| 761 |
Value operator[](const Key &k) const { return _m1[k]; }
|
|
| 762 |
/// Sets the value associated with the given key in both maps. |
|
| 763 |
void set(const Key &k, const Value &v) { _m1.set(k,v); _m2.set(k,v); }
|
|
| 764 |
}; |
|
| 765 |
|
|
| 766 |
/// Returns a \ref ForkMap class |
|
| 767 |
|
|
| 768 |
/// This function just returns a \ref ForkMap class. |
|
| 769 |
/// \relates ForkMap |
|
| 770 |
template <typename M1, typename M2> |
|
| 771 |
inline ForkMap<M1,M2> forkMap(M1 &m1, M2 &m2) {
|
|
| 772 |
return ForkMap<M1,M2>(m1,m2); |
|
| 773 |
} |
|
| 774 |
|
|
| 775 |
|
|
| 776 |
/// Simple wrapping of a map |
|
| 777 |
|
|
| 778 |
/// This \ref concepts::ReadMap "read only map" returns the simple |
|
| 779 |
/// wrapping of the given map. Sometimes the reference maps cannot be |
|
| 780 |
/// combined with simple read maps. This map adaptor wraps the given |
|
| 781 |
/// map to simple read map. |
|
| 782 |
/// |
|
| 783 |
/// The simplest way of using this map is through the wrapMap() |
|
| 784 |
/// function. |
|
| 785 |
/// |
|
| 786 |
/// \sa WrapWriteMap |
|
| 787 |
template<typename M> |
|
| 788 |
class WrapMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 789 |
const M &_m; |
|
| 938 | 790 |
public: |
| 939 | 791 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 940 | 792 |
typedef typename Parent::Key Key; |
| 941 | 793 |
typedef typename Parent::Value Value; |
| 942 | 794 |
|
| 943 | 795 |
///Constructor |
| 944 |
|
|
| 796 |
WrapMap(const M &m) : _m(m) {}
|
|
| 945 | 797 |
/// \e |
| 946 |
Value operator[](Key k) const {return
|
|
| 798 |
Value operator[](const Key &k) const { return _m[k]; }
|
|
| 947 | 799 |
}; |
| 948 | 800 |
|
| 949 |
/// |
|
| 801 |
/// Returns a \ref WrapMap class |
|
| 950 | 802 |
|
| 951 |
///This \ref concepts::ReadWriteMap "read-write map" returns the negative |
|
| 952 |
///value of the value returned by the given map. |
|
| 953 |
///Its \c Key and \c Value are inherited from \c M. |
|
| 954 |
///The unary \c - operator must be defined for \c Value, of course. |
|
| 803 |
/// This function just returns a \ref WrapMap class. |
|
| 804 |
/// \relates WrapMap |
|
| 805 |
template<typename M> |
|
| 806 |
inline WrapMap<M> wrapMap(const M &map) {
|
|
| 807 |
return WrapMap<M>(map); |
|
| 808 |
} |
|
| 809 |
|
|
| 810 |
|
|
| 811 |
/// Simple writable wrapping of a map |
|
| 812 |
|
|
| 813 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the simple |
|
| 814 |
/// wrapping of the given map. Sometimes the reference maps cannot be |
|
| 815 |
/// combined with simple read-write maps. This map adaptor wraps the |
|
| 816 |
/// given map to simple read-write map. |
|
| 955 | 817 |
/// |
| 956 |
/// |
|
| 818 |
/// The simplest way of using this map is through the wrapWriteMap() |
|
| 819 |
/// function. |
|
| 820 |
/// |
|
| 821 |
/// \sa WrapMap |
|
| 957 | 822 |
template<typename M> |
| 958 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 959 |
M& m; |
|
| 823 |
class WrapWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 824 |
M &_m; |
|
| 960 | 825 |
public: |
| 961 | 826 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 962 | 827 |
typedef typename Parent::Key Key; |
| 963 | 828 |
typedef typename Parent::Value Value; |
| 964 | 829 |
|
| 965 | 830 |
///Constructor |
| 966 |
|
|
| 831 |
WrapWriteMap(M &m) : _m(m) {}
|
|
| 967 | 832 |
/// \e |
| 968 |
Value operator[](Key k) const {return
|
|
| 833 |
Value operator[](const Key &k) const { return _m[k]; }
|
|
| 969 | 834 |
/// \e |
| 970 |
void set(Key k, const Value |
|
| 835 |
void set(const Key &k, const Value &c) { _m.set(k, c); }
|
|
| 971 | 836 |
}; |
| 972 | 837 |
|
| 973 |
///Returns a \ |
|
| 838 |
///Returns a \ref WrapWriteMap class |
|
| 974 | 839 |
|
| 975 |
///This function just returns a \ |
|
| 840 |
///This function just returns a \ref WrapWriteMap class. |
|
| 841 |
///\relates WrapWriteMap |
|
| 842 |
template<typename M> |
|
| 843 |
inline WrapWriteMap<M> wrapWriteMap(M &map) {
|
|
| 844 |
return WrapWriteMap<M>(map); |
|
| 845 |
} |
|
| 846 |
|
|
| 847 |
|
|
| 848 |
/// Sum of two maps |
|
| 849 |
|
|
| 850 |
/// This \ref concepts::ReadMap "read only map" returns the sum |
|
| 851 |
/// of the values of the two given maps. |
|
| 852 |
/// Its \c Key and \c Value types are inherited from \c M1. |
|
| 853 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
|
| 854 |
/// \c M1. |
|
| 855 |
/// |
|
| 856 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|
| 857 |
/// \code |
|
| 858 |
/// AddMap<M1,M2> am(m1,m2); |
|
| 859 |
/// \endcode |
|
| 860 |
/// <tt>am[x]</tt> will be equal to <tt>m1[x]+m2[x]</tt>. |
|
| 861 |
/// |
|
| 862 |
/// The simplest way of using this map is through the addMap() |
|
| 863 |
/// function. |
|
| 864 |
/// |
|
| 865 |
/// \sa SubMap, MulMap, DivMap |
|
| 866 |
/// \sa ShiftMap, ShiftWriteMap |
|
| 867 |
template<typename M1, typename M2> |
|
| 868 |
class AddMap : public MapBase<typename M1::Key, typename M1::Value> {
|
|
| 869 |
const M1 &_m1; |
|
| 870 |
const M2 &_m2; |
|
| 871 |
public: |
|
| 872 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
| 873 |
typedef typename Parent::Key Key; |
|
| 874 |
typedef typename Parent::Value Value; |
|
| 875 |
|
|
| 876 |
/// Constructor |
|
| 877 |
AddMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
|
| 878 |
/// \e |
|
| 879 |
Value operator[](const Key &k) const { return _m1[k]+_m2[k]; }
|
|
| 880 |
}; |
|
| 881 |
|
|
| 882 |
/// Returns an \ref AddMap class |
|
| 883 |
|
|
| 884 |
/// This function just returns an \ref AddMap class. |
|
| 885 |
/// |
|
| 886 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
|
| 887 |
/// values, then <tt>addMap(m1,m2)[x]</tt> will be equal to |
|
| 888 |
/// <tt>m1[x]+m2[x]</tt>. |
|
| 889 |
/// |
|
| 890 |
/// \relates AddMap |
|
| 891 |
template<typename M1, typename M2> |
|
| 892 |
inline AddMap<M1, M2> addMap(const M1 &m1, const M2 &m2) {
|
|
| 893 |
return AddMap<M1, M2>(m1,m2); |
|
| 894 |
} |
|
| 895 |
|
|
| 896 |
|
|
| 897 |
/// Difference of two maps |
|
| 898 |
|
|
| 899 |
/// This \ref concepts::ReadMap "read only map" returns the difference |
|
| 900 |
/// of the values of the two given maps. |
|
| 901 |
/// Its \c Key and \c Value types are inherited from \c M1. |
|
| 902 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
|
| 903 |
/// \c M1. |
|
| 904 |
/// |
|
| 905 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|
| 906 |
/// \code |
|
| 907 |
/// SubMap<M1,M2> sm(m1,m2); |
|
| 908 |
/// \endcode |
|
| 909 |
/// <tt>sm[x]</tt> will be equal to <tt>m1[x]-m2[x]</tt>. |
|
| 910 |
/// |
|
| 911 |
/// The simplest way of using this map is through the subMap() |
|
| 912 |
/// function. |
|
| 913 |
/// |
|
| 914 |
/// \sa AddMap, MulMap, DivMap |
|
| 915 |
template<typename M1, typename M2> |
|
| 916 |
class SubMap : public MapBase<typename M1::Key, typename M1::Value> {
|
|
| 917 |
const M1 &_m1; |
|
| 918 |
const M2 &_m2; |
|
| 919 |
public: |
|
| 920 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
| 921 |
typedef typename Parent::Key Key; |
|
| 922 |
typedef typename Parent::Value Value; |
|
| 923 |
|
|
| 924 |
/// Constructor |
|
| 925 |
SubMap(const M1 &m1, const M2 &m2) : _m1(m1), _m2(m2) {}
|
|
| 926 |
/// \e |
|
| 927 |
Value operator[](const Key &k) const { return _m1[k]-_m2[k]; }
|
|
| 928 |
}; |
|
| 929 |
|
|
| 930 |
/// Returns a \ref SubMap class |
|
| 931 |
|
|
| 932 |
/// This function just returns a \ref SubMap class. |
|
| 933 |
/// |
|
| 934 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
|
| 935 |
/// values, then <tt>subMap(m1,m2)[x]</tt> will be equal to |
|
| 936 |
/// <tt>m1[x]-m2[x]</tt>. |
|
| 937 |
/// |
|
| 938 |
/// \relates SubMap |
|
| 939 |
template<typename M1, typename M2> |
|
| 940 |
inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) {
|
|
| 941 |
return SubMap<M1, M2>(m1,m2); |
|
| 942 |
} |
|
| 943 |
|
|
| 944 |
|
|
| 945 |
/// Product of two maps |
|
| 946 |
|
|
| 947 |
/// This \ref concepts::ReadMap "read only map" returns the product |
|
| 948 |
/// of the values of the two given maps. |
|
| 949 |
/// Its \c Key and \c Value types are inherited from \c M1. |
|
| 950 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
|
| 951 |
/// \c M1. |
|
| 952 |
/// |
|
| 953 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|
| 954 |
/// \code |
|
| 955 |
/// MulMap<M1,M2> mm(m1,m2); |
|
| 956 |
/// \endcode |
|
| 957 |
/// <tt>mm[x]</tt> will be equal to <tt>m1[x]*m2[x]</tt>. |
|
| 958 |
/// |
|
| 959 |
/// The simplest way of using this map is through the mulMap() |
|
| 960 |
/// function. |
|
| 961 |
/// |
|
| 962 |
/// \sa AddMap, SubMap, DivMap |
|
| 963 |
/// \sa ScaleMap, ScaleWriteMap |
|
| 964 |
template<typename M1, typename M2> |
|
| 965 |
class MulMap : public MapBase<typename M1::Key, typename M1::Value> {
|
|
| 966 |
const M1 &_m1; |
|
| 967 |
const M2 &_m2; |
|
| 968 |
public: |
|
| 969 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
| 970 |
typedef typename Parent::Key Key; |
|
| 971 |
typedef typename Parent::Value Value; |
|
| 972 |
|
|
| 973 |
/// Constructor |
|
| 974 |
MulMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
|
|
| 975 |
/// \e |
|
| 976 |
Value operator[](const Key &k) const { return _m1[k]*_m2[k]; }
|
|
| 977 |
}; |
|
| 978 |
|
|
| 979 |
/// Returns a \ref MulMap class |
|
| 980 |
|
|
| 981 |
/// This function just returns a \ref MulMap class. |
|
| 982 |
/// |
|
| 983 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
|
| 984 |
/// values, then <tt>mulMap(m1,m2)[x]</tt> will be equal to |
|
| 985 |
/// <tt>m1[x]*m2[x]</tt>. |
|
| 986 |
/// |
|
| 987 |
/// \relates MulMap |
|
| 988 |
template<typename M1, typename M2> |
|
| 989 |
inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) {
|
|
| 990 |
return MulMap<M1, M2>(m1,m2); |
|
| 991 |
} |
|
| 992 |
|
|
| 993 |
|
|
| 994 |
/// Quotient of two maps |
|
| 995 |
|
|
| 996 |
/// This \ref concepts::ReadMap "read only map" returns the quotient |
|
| 997 |
/// of the values of the two given maps. |
|
| 998 |
/// Its \c Key and \c Value types are inherited from \c M1. |
|
| 999 |
/// The \c Key and \c Value of \c M2 must be convertible to those of |
|
| 1000 |
/// \c M1. |
|
| 1001 |
/// |
|
| 1002 |
/// If \c m1 is of type \c M1 and \c m2 is of \c M2, then for |
|
| 1003 |
/// \code |
|
| 1004 |
/// DivMap<M1,M2> dm(m1,m2); |
|
| 1005 |
/// \endcode |
|
| 1006 |
/// <tt>dm[x]</tt> will be equal to <tt>m1[x]/m2[x]</tt>. |
|
| 1007 |
/// |
|
| 1008 |
/// The simplest way of using this map is through the divMap() |
|
| 1009 |
/// function. |
|
| 1010 |
/// |
|
| 1011 |
/// \sa AddMap, SubMap, MulMap |
|
| 1012 |
template<typename M1, typename M2> |
|
| 1013 |
class DivMap : public MapBase<typename M1::Key, typename M1::Value> {
|
|
| 1014 |
const M1 &_m1; |
|
| 1015 |
const M2 &_m2; |
|
| 1016 |
public: |
|
| 1017 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
| 1018 |
typedef typename Parent::Key Key; |
|
| 1019 |
typedef typename Parent::Value Value; |
|
| 1020 |
|
|
| 1021 |
/// Constructor |
|
| 1022 |
DivMap(const M1 &m1,const M2 &m2) : _m1(m1), _m2(m2) {}
|
|
| 1023 |
/// \e |
|
| 1024 |
Value operator[](const Key &k) const { return _m1[k]/_m2[k]; }
|
|
| 1025 |
}; |
|
| 1026 |
|
|
| 1027 |
/// Returns a \ref DivMap class |
|
| 1028 |
|
|
| 1029 |
/// This function just returns a \ref DivMap class. |
|
| 1030 |
/// |
|
| 1031 |
/// For example, if \c m1 and \c m2 are both maps with \c double |
|
| 1032 |
/// values, then <tt>divMap(m1,m2)[x]</tt> will be equal to |
|
| 1033 |
/// <tt>m1[x]/m2[x]</tt>. |
|
| 1034 |
/// |
|
| 1035 |
/// \relates DivMap |
|
| 1036 |
template<typename M1, typename M2> |
|
| 1037 |
inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) {
|
|
| 1038 |
return DivMap<M1, M2>(m1,m2); |
|
| 1039 |
} |
|
| 1040 |
|
|
| 1041 |
|
|
| 1042 |
/// Shifts a map with a constant. |
|
| 1043 |
|
|
| 1044 |
/// This \ref concepts::ReadMap "read only map" returns the sum of |
|
| 1045 |
/// the given map and a constant value (i.e. it shifts the map with |
|
| 1046 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
|
| 1047 |
/// |
|
| 1048 |
/// Actually, |
|
| 1049 |
/// \code |
|
| 1050 |
/// ShiftMap<M> sh(m,v); |
|
| 1051 |
/// \endcode |
|
| 1052 |
/// is equivalent to |
|
| 1053 |
/// \code |
|
| 1054 |
/// ConstMap<M::Key, M::Value> cm(v); |
|
| 1055 |
/// AddMap<M, ConstMap<M::Key, M::Value> > sh(m,cm); |
|
| 1056 |
/// \endcode |
|
| 1057 |
/// |
|
| 1058 |
/// The simplest way of using this map is through the shiftMap() |
|
| 1059 |
/// function. |
|
| 1060 |
/// |
|
| 1061 |
/// \sa ShiftWriteMap |
|
| 1062 |
template<typename M, typename C = typename M::Value> |
|
| 1063 |
class ShiftMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 1064 |
const M &_m; |
|
| 1065 |
C _v; |
|
| 1066 |
public: |
|
| 1067 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 1068 |
typedef typename Parent::Key Key; |
|
| 1069 |
typedef typename Parent::Value Value; |
|
| 1070 |
|
|
| 1071 |
/// Constructor |
|
| 1072 |
|
|
| 1073 |
/// Constructor. |
|
| 1074 |
/// \param m The undelying map. |
|
| 1075 |
/// \param v The constant value. |
|
| 1076 |
ShiftMap(const M &m, const C &v) : _m(m), _v(v) {}
|
|
| 1077 |
/// \e |
|
| 1078 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
|
| 1079 |
}; |
|
| 1080 |
|
|
| 1081 |
/// Shifts a map with a constant (read-write version). |
|
| 1082 |
|
|
| 1083 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the sum |
|
| 1084 |
/// of the given map and a constant value (i.e. it shifts the map with |
|
| 1085 |
/// the constant). Its \c Key and \c Value are inherited from \c M. |
|
| 1086 |
/// It makes also possible to write the map. |
|
| 1087 |
/// |
|
| 1088 |
/// The simplest way of using this map is through the shiftWriteMap() |
|
| 1089 |
/// function. |
|
| 1090 |
/// |
|
| 1091 |
/// \sa ShiftMap |
|
| 1092 |
template<typename M, typename C = typename M::Value> |
|
| 1093 |
class ShiftWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 1094 |
M &_m; |
|
| 1095 |
C _v; |
|
| 1096 |
public: |
|
| 1097 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 1098 |
typedef typename Parent::Key Key; |
|
| 1099 |
typedef typename Parent::Value Value; |
|
| 1100 |
|
|
| 1101 |
/// Constructor |
|
| 1102 |
|
|
| 1103 |
/// Constructor. |
|
| 1104 |
/// \param m The undelying map. |
|
| 1105 |
/// \param v The constant value. |
|
| 1106 |
ShiftWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
|
| 1107 |
/// \e |
|
| 1108 |
Value operator[](const Key &k) const { return _m[k]+_v; }
|
|
| 1109 |
/// \e |
|
| 1110 |
void set(const Key &k, const Value &v) { _m.set(k, v-_v); }
|
|
| 1111 |
}; |
|
| 1112 |
|
|
| 1113 |
/// Returns a \ref ShiftMap class |
|
| 1114 |
|
|
| 1115 |
/// This function just returns a \ref ShiftMap class. |
|
| 1116 |
/// |
|
| 1117 |
/// For example, if \c m is a map with \c double values and \c v is |
|
| 1118 |
/// \c double, then <tt>shiftMap(m,v)[x]</tt> will be equal to |
|
| 1119 |
/// <tt>m[x]+v</tt>. |
|
| 1120 |
/// |
|
| 1121 |
/// \relates ShiftMap |
|
| 1122 |
template<typename M, typename C> |
|
| 1123 |
inline ShiftMap<M, C> shiftMap(const M &m, const C &v) {
|
|
| 1124 |
return ShiftMap<M, C>(m,v); |
|
| 1125 |
} |
|
| 1126 |
|
|
| 1127 |
/// Returns a \ref ShiftWriteMap class |
|
| 1128 |
|
|
| 1129 |
/// This function just returns a \ref ShiftWriteMap class. |
|
| 1130 |
/// |
|
| 1131 |
/// For example, if \c m is a map with \c double values and \c v is |
|
| 1132 |
/// \c double, then <tt>shiftWriteMap(m,v)[x]</tt> will be equal to |
|
| 1133 |
/// <tt>m[x]+v</tt>. |
|
| 1134 |
/// Moreover it makes also possible to write the map. |
|
| 1135 |
/// |
|
| 1136 |
/// \relates ShiftWriteMap |
|
| 1137 |
template<typename M, typename C> |
|
| 1138 |
inline ShiftWriteMap<M, C> shiftWriteMap(M &m, const C &v) {
|
|
| 1139 |
return ShiftWriteMap<M, C>(m,v); |
|
| 1140 |
} |
|
| 1141 |
|
|
| 1142 |
|
|
| 1143 |
/// Scales a map with a constant. |
|
| 1144 |
|
|
| 1145 |
/// This \ref concepts::ReadMap "read only map" returns the value of |
|
| 1146 |
/// the given map multiplied from the left side with a constant value. |
|
| 1147 |
/// Its \c Key and \c Value are inherited from \c M. |
|
| 1148 |
/// |
|
| 1149 |
/// Actually, |
|
| 1150 |
/// \code |
|
| 1151 |
/// ScaleMap<M> sc(m,v); |
|
| 1152 |
/// \endcode |
|
| 1153 |
/// is equivalent to |
|
| 1154 |
/// \code |
|
| 1155 |
/// ConstMap<M::Key, M::Value> cm(v); |
|
| 1156 |
/// MulMap<ConstMap<M::Key, M::Value>, M> sc(cm,m); |
|
| 1157 |
/// \endcode |
|
| 1158 |
/// |
|
| 1159 |
/// The simplest way of using this map is through the scaleMap() |
|
| 1160 |
/// function. |
|
| 1161 |
/// |
|
| 1162 |
/// \sa ScaleWriteMap |
|
| 1163 |
template<typename M, typename C = typename M::Value> |
|
| 1164 |
class ScaleMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 1165 |
const M &_m; |
|
| 1166 |
C _v; |
|
| 1167 |
public: |
|
| 1168 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 1169 |
typedef typename Parent::Key Key; |
|
| 1170 |
typedef typename Parent::Value Value; |
|
| 1171 |
|
|
| 1172 |
/// Constructor |
|
| 1173 |
|
|
| 1174 |
/// Constructor. |
|
| 1175 |
/// \param m The undelying map. |
|
| 1176 |
/// \param v The constant value. |
|
| 1177 |
ScaleMap(const M &m, const C &v) : _m(m), _v(v) {}
|
|
| 1178 |
/// \e |
|
| 1179 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
|
| 1180 |
}; |
|
| 1181 |
|
|
| 1182 |
/// Scales a map with a constant (read-write version). |
|
| 1183 |
|
|
| 1184 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the value of |
|
| 1185 |
/// the given map multiplied from the left side with a constant value. |
|
| 1186 |
/// Its \c Key and \c Value are inherited from \c M. |
|
| 1187 |
/// It can also be used as write map if the \c / operator is defined |
|
| 1188 |
/// between \c Value and \c C and the given multiplier is not zero. |
|
| 1189 |
/// |
|
| 1190 |
/// The simplest way of using this map is through the scaleWriteMap() |
|
| 1191 |
/// function. |
|
| 1192 |
/// |
|
| 1193 |
/// \sa ScaleMap |
|
| 1194 |
template<typename M, typename C = typename M::Value> |
|
| 1195 |
class ScaleWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 1196 |
M &_m; |
|
| 1197 |
C _v; |
|
| 1198 |
public: |
|
| 1199 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 1200 |
typedef typename Parent::Key Key; |
|
| 1201 |
typedef typename Parent::Value Value; |
|
| 1202 |
|
|
| 1203 |
/// Constructor |
|
| 1204 |
|
|
| 1205 |
/// Constructor. |
|
| 1206 |
/// \param m The undelying map. |
|
| 1207 |
/// \param v The constant value. |
|
| 1208 |
ScaleWriteMap(M &m, const C &v) : _m(m), _v(v) {}
|
|
| 1209 |
/// \e |
|
| 1210 |
Value operator[](const Key &k) const { return _v*_m[k]; }
|
|
| 1211 |
/// \e |
|
| 1212 |
void set(const Key &k, const Value &v) { _m.set(k, v/_v); }
|
|
| 1213 |
}; |
|
| 1214 |
|
|
| 1215 |
/// Returns a \ref ScaleMap class |
|
| 1216 |
|
|
| 1217 |
/// This function just returns a \ref ScaleMap class. |
|
| 1218 |
/// |
|
| 1219 |
/// For example, if \c m is a map with \c double values and \c v is |
|
| 1220 |
/// \c double, then <tt>scaleMap(m,v)[x]</tt> will be equal to |
|
| 1221 |
/// <tt>v*m[x]</tt>. |
|
| 1222 |
/// |
|
| 1223 |
/// \relates ScaleMap |
|
| 1224 |
template<typename M, typename C> |
|
| 1225 |
inline ScaleMap<M, C> scaleMap(const M &m, const C &v) {
|
|
| 1226 |
return ScaleMap<M, C>(m,v); |
|
| 1227 |
} |
|
| 1228 |
|
|
| 1229 |
/// Returns a \ref ScaleWriteMap class |
|
| 1230 |
|
|
| 1231 |
/// This function just returns a \ref ScaleWriteMap class. |
|
| 1232 |
/// |
|
| 1233 |
/// For example, if \c m is a map with \c double values and \c v is |
|
| 1234 |
/// \c double, then <tt>scaleWriteMap(m,v)[x]</tt> will be equal to |
|
| 1235 |
/// <tt>v*m[x]</tt>. |
|
| 1236 |
/// Moreover it makes also possible to write the map. |
|
| 1237 |
/// |
|
| 1238 |
/// \relates ScaleWriteMap |
|
| 1239 |
template<typename M, typename C> |
|
| 1240 |
inline ScaleWriteMap<M, C> scaleWriteMap(M &m, const C &v) {
|
|
| 1241 |
return ScaleWriteMap<M, C>(m,v); |
|
| 1242 |
} |
|
| 1243 |
|
|
| 1244 |
|
|
| 1245 |
/// Negative of a map |
|
| 1246 |
|
|
| 1247 |
/// This \ref concepts::ReadMap "read only map" returns the negative |
|
| 1248 |
/// of the values of the given map (using the unary \c - operator). |
|
| 1249 |
/// Its \c Key and \c Value are inherited from \c M. |
|
| 1250 |
/// |
|
| 1251 |
/// If M::Value is \c int, \c double etc., then |
|
| 1252 |
/// \code |
|
| 1253 |
/// NegMap<M> neg(m); |
|
| 1254 |
/// \endcode |
|
| 1255 |
/// is equivalent to |
|
| 1256 |
/// \code |
|
| 1257 |
/// ScaleMap<M> neg(m,-1); |
|
| 1258 |
/// \endcode |
|
| 1259 |
/// |
|
| 1260 |
/// The simplest way of using this map is through the negMap() |
|
| 1261 |
/// function. |
|
| 1262 |
/// |
|
| 1263 |
/// \sa NegWriteMap |
|
| 1264 |
template<typename M> |
|
| 1265 |
class NegMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 1266 |
const M& _m; |
|
| 1267 |
public: |
|
| 1268 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 1269 |
typedef typename Parent::Key Key; |
|
| 1270 |
typedef typename Parent::Value Value; |
|
| 1271 |
|
|
| 1272 |
/// Constructor |
|
| 1273 |
NegMap(const M &m) : _m(m) {}
|
|
| 1274 |
/// \e |
|
| 1275 |
Value operator[](const Key &k) const { return -_m[k]; }
|
|
| 1276 |
}; |
|
| 1277 |
|
|
| 1278 |
/// Negative of a map (read-write version) |
|
| 1279 |
|
|
| 1280 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
|
| 1281 |
/// negative of the values of the given map (using the unary \c - |
|
| 1282 |
/// operator). |
|
| 1283 |
/// Its \c Key and \c Value are inherited from \c M. |
|
| 1284 |
/// It makes also possible to write the map. |
|
| 1285 |
/// |
|
| 1286 |
/// If M::Value is \c int, \c double etc., then |
|
| 1287 |
/// \code |
|
| 1288 |
/// NegWriteMap<M> neg(m); |
|
| 1289 |
/// \endcode |
|
| 1290 |
/// is equivalent to |
|
| 1291 |
/// \code |
|
| 1292 |
/// ScaleWriteMap<M> neg(m,-1); |
|
| 1293 |
/// \endcode |
|
| 1294 |
/// |
|
| 1295 |
/// The simplest way of using this map is through the negWriteMap() |
|
| 1296 |
/// function. |
|
| 1297 |
/// |
|
| 1298 |
/// \sa NegMap |
|
| 1299 |
template<typename M> |
|
| 1300 |
class NegWriteMap : public MapBase<typename M::Key, typename M::Value> {
|
|
| 1301 |
M &_m; |
|
| 1302 |
public: |
|
| 1303 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 1304 |
typedef typename Parent::Key Key; |
|
| 1305 |
typedef typename Parent::Value Value; |
|
| 1306 |
|
|
| 1307 |
/// Constructor |
|
| 1308 |
NegWriteMap(M &m) : _m(m) {}
|
|
| 1309 |
/// \e |
|
| 1310 |
Value operator[](const Key &k) const { return -_m[k]; }
|
|
| 1311 |
/// \e |
|
| 1312 |
void set(const Key &k, const Value &v) { _m.set(k, -v); }
|
|
| 1313 |
}; |
|
| 1314 |
|
|
| 1315 |
/// Returns a \ref NegMap class |
|
| 1316 |
|
|
| 1317 |
/// This function just returns a \ref NegMap class. |
|
| 1318 |
/// |
|
| 1319 |
/// For example, if \c m is a map with \c double values, then |
|
| 1320 |
/// <tt>negMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
|
| 1321 |
/// |
|
| 976 | 1322 |
///\relates NegMap |
| 977 | 1323 |
template <typename M> |
| 978 | 1324 |
inline NegMap<M> negMap(const M &m) {
|
| 979 | 1325 |
return NegMap<M>(m); |
| 980 | 1326 |
} |
| 981 | 1327 |
|
| 982 |
///Returns a \ |
|
| 1328 |
/// Returns a \ref NegWriteMap class |
|
| 983 | 1329 |
|
| 984 |
///This function just returns a \ |
|
| 1330 |
/// This function just returns a \ref NegWriteMap class. |
|
| 1331 |
/// |
|
| 1332 |
/// For example, if \c m is a map with \c double values, then |
|
| 1333 |
/// <tt>negWriteMap(m)[x]</tt> will be equal to <tt>-m[x]</tt>. |
|
| 1334 |
/// Moreover it makes also possible to write the map. |
|
| 1335 |
/// |
|
| 985 | 1336 |
///\relates NegWriteMap |
| 986 | 1337 |
template <typename M> |
| 987 |
inline NegWriteMap<M> |
|
| 1338 |
inline NegWriteMap<M> negWriteMap(M &m) {
|
|
| 988 | 1339 |
return NegWriteMap<M>(m); |
| 989 | 1340 |
} |
| 990 | 1341 |
|
| 1342 |
|
|
| 991 | 1343 |
///Absolute value of a map |
| 992 | 1344 |
|
| 993 |
///This \ref concepts::ReadMap "read only map" returns the absolute value |
|
| 994 |
///of the value returned by the given map. |
|
| 1345 |
/// This \ref concepts::ReadMap "read only map" returns the absolute |
|
| 1346 |
/// value of the values of the given map. |
|
| 995 | 1347 |
///Its \c Key and \c Value are inherited from \c M. |
| 996 | 1348 |
///\c Value must be comparable to \c 0 and the unary \c - |
| 997 | 1349 |
///operator must be defined for it, of course. |
| 1350 |
/// |
|
| 1351 |
/// The simplest way of using this map is through the absMap() |
|
| 1352 |
/// function. |
|
| 998 | 1353 |
template<typename M> |
| 999 | 1354 |
class AbsMap : public MapBase<typename M::Key, typename M::Value> {
|
| 1000 |
const M |
|
| 1355 |
const M &_m; |
|
| 1001 | 1356 |
public: |
| 1002 | 1357 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
| 1003 | 1358 |
typedef typename Parent::Key Key; |
| 1004 | 1359 |
typedef typename Parent::Value Value; |
| 1005 | 1360 |
|
| 1006 | 1361 |
///Constructor |
| 1007 |
AbsMap(const M & |
|
| 1362 |
AbsMap(const M &m) : _m(m) {}
|
|
| 1008 | 1363 |
/// \e |
| 1009 |
Value operator[](Key k) const {
|
|
| 1010 |
Value tmp = m[k]; |
|
| 1364 |
Value operator[](const Key &k) const {
|
|
| 1365 |
Value tmp = _m[k]; |
|
| 1011 | 1366 |
return tmp >= 0 ? tmp : -tmp; |
| 1012 | 1367 |
} |
| 1013 | 1368 |
|
| 1014 | 1369 |
}; |
| 1015 | 1370 |
|
| 1016 |
///Returns an \ |
|
| 1371 |
/// Returns an \ref AbsMap class |
|
| 1017 | 1372 |
|
| 1018 |
///This function just returns an \ |
|
| 1373 |
/// This function just returns an \ref AbsMap class. |
|
| 1374 |
/// |
|
| 1375 |
/// For example, if \c m is a map with \c double values, then |
|
| 1376 |
/// <tt>absMap(m)[x]</tt> will be equal to <tt>m[x]</tt> if |
|
| 1377 |
/// it is positive or zero and <tt>-m[x]</tt> if <tt>m[x]</tt> is |
|
| 1378 |
/// negative. |
|
| 1379 |
/// |
|
| 1019 | 1380 |
///\relates AbsMap |
| 1020 | 1381 |
template<typename M> |
| 1021 | 1382 |
inline AbsMap<M> absMap(const M &m) {
|
| 1022 | 1383 |
return AbsMap<M>(m); |
| 1023 | 1384 |
} |
| 1024 | 1385 |
|
| 1025 |
///Converts an STL style functor to a map |
|
| 1026 |
|
|
| 1027 |
///This \ref concepts::ReadMap "read only map" returns the value |
|
| 1028 |
///of a given functor. |
|
| 1029 |
/// |
|
| 1030 |
///Template parameters \c K and \c V will become its |
|
| 1031 |
///\c Key and \c Value. |
|
| 1032 |
///In most cases they have to be given explicitly because a |
|
| 1033 |
///functor typically does not provide \c argument_type and |
|
| 1034 |
///\c result_type typedefs. |
|
| 1035 |
/// |
|
| 1036 |
///Parameter \c F is the type of the used functor. |
|
| 1037 |
/// |
|
| 1038 |
///\sa MapFunctor |
|
| 1039 |
template<typename F, |
|
| 1040 |
typename K = typename F::argument_type, |
|
| 1041 |
typename V = typename F::result_type> |
|
| 1042 |
class FunctorMap : public MapBase<K, V> {
|
|
| 1043 |
F f; |
|
| 1044 |
public: |
|
| 1045 |
typedef MapBase<K, V> Parent; |
|
| 1046 |
typedef typename Parent::Key Key; |
|
| 1047 |
typedef typename Parent::Value Value; |
|
| 1048 |
|
|
| 1049 |
///Constructor |
|
| 1050 |
FunctorMap(const F &_f = F()) : f(_f) {}
|
|
| 1051 |
/// \e |
|
| 1052 |
Value operator[](Key k) const { return f(k);}
|
|
| 1053 |
}; |
|
| 1054 |
|
|
| 1055 |
///Returns a \c FunctorMap class |
|
| 1056 |
|
|
| 1057 |
///This function just returns a \c FunctorMap class. |
|
| 1058 |
/// |
|
| 1059 |
///This function is specialized for adaptable binary function |
|
| 1060 |
///classes and C++ functions. |
|
| 1061 |
/// |
|
| 1062 |
///\relates FunctorMap |
|
| 1063 |
template<typename K, typename V, typename F> inline |
|
| 1064 |
FunctorMap<F, K, V> functorMap(const F &f) {
|
|
| 1065 |
return FunctorMap<F, K, V>(f); |
|
| 1066 |
} |
|
| 1067 |
|
|
| 1068 |
template <typename F> inline |
|
| 1069 |
FunctorMap<F, typename F::argument_type, typename F::result_type> |
|
| 1070 |
functorMap(const F &f) {
|
|
| 1071 |
return FunctorMap<F, typename F::argument_type, |
|
| 1072 |
typename F::result_type>(f); |
|
| 1073 |
} |
|
| 1074 |
|
|
| 1075 |
template <typename K, typename V> inline |
|
| 1076 |
FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) {
|
|
| 1077 |
return FunctorMap<V (*)(K), K, V>(f); |
|
| 1078 |
} |
|
| 1079 |
|
|
| 1080 |
|
|
| 1081 |
///Converts a map to an STL style (unary) functor |
|
| 1082 |
|
|
| 1083 |
///This class Converts a map to an STL style (unary) functor. |
|
| 1084 |
///That is it provides an <tt>operator()</tt> to read its values. |
|
| 1085 |
/// |
|
| 1086 |
///For the sake of convenience it also works as |
|
| 1087 |
///a ususal \ref concepts::ReadMap "readable map", |
|
| 1088 |
///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist. |
|
| 1089 |
/// |
|
| 1090 |
///\sa FunctorMap |
|
| 1091 |
template <typename M> |
|
| 1092 |
class MapFunctor : public MapBase<typename M::Key, typename M::Value> {
|
|
| 1093 |
const M& m; |
|
| 1094 |
public: |
|
| 1095 |
typedef MapBase<typename M::Key, typename M::Value> Parent; |
|
| 1096 |
typedef typename Parent::Key Key; |
|
| 1097 |
typedef typename Parent::Value Value; |
|
| 1098 |
|
|
| 1099 |
typedef typename M::Key argument_type; |
|
| 1100 |
typedef typename M::Value result_type; |
|
| 1101 |
|
|
| 1102 |
///Constructor |
|
| 1103 |
MapFunctor(const M &_m) : m(_m) {};
|
|
| 1104 |
///\e |
|
| 1105 |
Value operator()(Key k) const {return m[k];}
|
|
| 1106 |
///\e |
|
| 1107 |
Value operator[](Key k) const {return m[k];}
|
|
| 1108 |
}; |
|
| 1109 |
|
|
| 1110 |
///Returns a \c MapFunctor class |
|
| 1111 |
|
|
| 1112 |
///This function just returns a \c MapFunctor class. |
|
| 1113 |
///\relates MapFunctor |
|
| 1114 |
template<typename M> |
|
| 1115 |
inline MapFunctor<M> mapFunctor(const M &m) {
|
|
| 1116 |
return MapFunctor<M>(m); |
|
| 1117 |
} |
|
| 1118 |
|
|
| 1119 |
///Just readable version of \ref ForkWriteMap |
|
| 1120 |
|
|
| 1121 |
///This map has two \ref concepts::ReadMap "readable map" |
|
| 1122 |
///parameters and each read request will be passed just to the |
|
| 1123 |
///first map. This class is the just readable map type of \c ForkWriteMap. |
|
| 1124 |
/// |
|
| 1125 |
///The \c Key and \c Value are inherited from \c M1. |
|
| 1126 |
///The \c Key and \c Value of \c M2 must be convertible from those of \c M1. |
|
| 1127 |
/// |
|
| 1128 |
///\sa ForkWriteMap |
|
| 1129 |
/// |
|
| 1130 |
/// \todo Why is it needed? |
|
| 1131 |
template<typename M1, typename M2> |
|
| 1132 |
class ForkMap : public MapBase<typename M1::Key, typename M1::Value> {
|
|
| 1133 |
const M1& m1; |
|
| 1134 |
const M2& m2; |
|
| 1135 |
public: |
|
| 1136 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
| 1137 |
typedef typename Parent::Key Key; |
|
| 1138 |
typedef typename Parent::Value Value; |
|
| 1139 |
|
|
| 1140 |
///Constructor |
|
| 1141 |
ForkMap(const M1 &_m1, const M2 &_m2) : m1(_m1), m2(_m2) {};
|
|
| 1142 |
/// \e |
|
| 1143 |
Value operator[](Key k) const {return m1[k];}
|
|
| 1144 |
}; |
|
| 1145 |
|
|
| 1146 |
|
|
| 1147 |
///Applies all map setting operations to two maps |
|
| 1148 |
|
|
| 1149 |
///This map has two \ref concepts::WriteMap "writable map" |
|
| 1150 |
///parameters and each write request will be passed to both of them. |
|
| 1151 |
///If \c M1 is also \ref concepts::ReadMap "readable", |
|
| 1152 |
///then the read operations will return the |
|
| 1153 |
///corresponding values of \c M1. |
|
| 1154 |
/// |
|
| 1155 |
///The \c Key and \c Value are inherited from \c M1. |
|
| 1156 |
///The \c Key and \c Value of \c M2 must be convertible from those of \c M1. |
|
| 1157 |
/// |
|
| 1158 |
///\sa ForkMap |
|
| 1159 |
template<typename M1, typename M2> |
|
| 1160 |
class ForkWriteMap : public MapBase<typename M1::Key, typename M1::Value> {
|
|
| 1161 |
M1& m1; |
|
| 1162 |
M2& m2; |
|
| 1163 |
public: |
|
| 1164 |
typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
|
| 1165 |
typedef typename Parent::Key Key; |
|
| 1166 |
typedef typename Parent::Value Value; |
|
| 1167 |
|
|
| 1168 |
///Constructor |
|
| 1169 |
ForkWriteMap(M1 &_m1, M2 &_m2) : m1(_m1), m2(_m2) {};
|
|
| 1170 |
///\e |
|
| 1171 |
Value operator[](Key k) const {return m1[k];}
|
|
| 1172 |
///\e |
|
| 1173 |
void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);}
|
|
| 1174 |
}; |
|
| 1175 |
|
|
| 1176 |
///Returns a \c ForkMap class |
|
| 1177 |
|
|
| 1178 |
///This function just returns a \c ForkMap class. |
|
| 1179 |
///\relates ForkMap |
|
| 1180 |
template <typename M1, typename M2> |
|
| 1181 |
inline ForkMap<M1, M2> forkMap(const M1 &m1, const M2 &m2) {
|
|
| 1182 |
return ForkMap<M1, M2>(m1,m2); |
|
| 1183 |
} |
|
| 1184 |
|
|
| 1185 |
///Returns a \c ForkWriteMap class |
|
| 1186 |
|
|
| 1187 |
///This function just returns a \c ForkWriteMap class. |
|
| 1188 |
///\relates ForkWriteMap |
|
| 1189 |
template <typename M1, typename M2> |
|
| 1190 |
inline ForkWriteMap<M1, M2> forkMap(M1 &m1, M2 &m2) {
|
|
| 1191 |
return ForkWriteMap<M1, M2>(m1,m2); |
|
| 1192 |
} |
|
| 1193 |
|
|
| 1194 |
|
|
| 1195 |
|
|
| 1196 |
/* ************* BOOL MAPS ******************* */ |
|
| 1197 | 1386 |
|
| 1198 | 1387 |
///Logical 'not' of a map |
| 1199 | 1388 |
|
| 1200 |
///This bool \ref concepts::ReadMap "read only map" returns the |
|
| 1201 |
///logical negation of the value returned by the given map. |
|
| 1202 |
/// |
|
| 1389 |
/// This \ref concepts::ReadMap "read only map" returns the logical |
|
| 1390 |
/// negation of the values of the given map. |
|
| 1391 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
|
| 1392 |
/// |
|
| 1393 |
/// The simplest way of using this map is through the notMap() |
|
| 1394 |
/// function. |
|
| 1203 | 1395 |
/// |
| 1204 | 1396 |
///\sa NotWriteMap |
| 1205 | 1397 |
template <typename M> |
| 1206 | 1398 |
class NotMap : public MapBase<typename M::Key, bool> {
|
| 1207 |
const M |
|
| 1399 |
const M &_m; |
|
| 1208 | 1400 |
public: |
| 1209 | 1401 |
typedef MapBase<typename M::Key, bool> Parent; |
| 1210 | 1402 |
typedef typename Parent::Key Key; |
| 1211 | 1403 |
typedef typename Parent::Value Value; |
| 1212 | 1404 |
|
| 1213 | 1405 |
/// Constructor |
| 1214 |
NotMap(const M & |
|
| 1406 |
NotMap(const M &m) : _m(m) {}
|
|
| 1215 | 1407 |
///\e |
| 1216 |
Value operator[](Key k) const {return !
|
|
| 1408 |
Value operator[](const Key &k) const { return !_m[k]; }
|
|
| 1217 | 1409 |
}; |
| 1218 | 1410 |
|
| 1219 |
///Logical 'not' of a map ( |
|
| 1411 |
/// Logical 'not' of a map (read-write version) |
|
| 1220 | 1412 |
|
| 1221 |
///This bool \ref concepts::ReadWriteMap "read-write map" returns the |
|
| 1222 |
///logical negation of the value returned by the given map. When it is set, |
|
| 1413 |
/// This \ref concepts::ReadWriteMap "read-write map" returns the |
|
| 1414 |
/// logical negation of the values of the given map. |
|
| 1415 |
/// Its \c Key is inherited from \c M and its \c Value is \c bool. |
|
| 1416 |
/// It makes also possible to write the map. When a value is set, |
|
| 1223 | 1417 |
///the opposite value is set to the original map. |
| 1224 |
/// |
|
| 1418 |
/// |
|
| 1419 |
/// The simplest way of using this map is through the notWriteMap() |
|
| 1420 |
/// function. |
|
| 1225 | 1421 |
/// |
| 1226 | 1422 |
///\sa NotMap |
| 1227 | 1423 |
template <typename M> |
| 1228 | 1424 |
class NotWriteMap : public MapBase<typename M::Key, bool> {
|
| 1229 |
M |
|
| 1425 |
M &_m; |
|
| 1230 | 1426 |
public: |
| 1231 | 1427 |
typedef MapBase<typename M::Key, bool> Parent; |
| 1232 | 1428 |
typedef typename Parent::Key Key; |
| 1233 | 1429 |
typedef typename Parent::Value Value; |
| 1234 | 1430 |
|
| 1235 | 1431 |
/// Constructor |
| 1236 |
NotWriteMap(M & |
|
| 1432 |
NotWriteMap(M &m) : _m(m) {}
|
|
| 1237 | 1433 |
///\e |
| 1238 |
Value operator[](Key k) const {return !
|
|
| 1434 |
Value operator[](const Key &k) const { return !_m[k]; }
|
|
| 1239 | 1435 |
///\e |
| 1240 |
void set(Key k, bool v) {
|
|
| 1436 |
void set(const Key &k, bool v) { _m.set(k, !v); }
|
|
| 1241 | 1437 |
}; |
| 1242 | 1438 |
|
| 1243 |
///Returns a \ |
|
| 1439 |
/// Returns a \ref NotMap class |
|
| 1244 | 1440 |
|
| 1245 |
///This function just returns a \ |
|
| 1441 |
/// This function just returns a \ref NotMap class. |
|
| 1442 |
/// |
|
| 1443 |
/// For example, if \c m is a map with \c bool values, then |
|
| 1444 |
/// <tt>notMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
|
| 1445 |
/// |
|
| 1246 | 1446 |
///\relates NotMap |
| 1247 | 1447 |
template <typename M> |
| 1248 | 1448 |
inline NotMap<M> notMap(const M &m) {
|
| 1249 | 1449 |
return NotMap<M>(m); |
| 1250 | 1450 |
} |
| 1251 | 1451 |
|
| 1252 |
///Returns a \ |
|
| 1452 |
/// Returns a \ref NotWriteMap class |
|
| 1253 | 1453 |
|
| 1254 |
///This function just returns a \ |
|
| 1454 |
/// This function just returns a \ref NotWriteMap class. |
|
| 1455 |
/// |
|
| 1456 |
/// For example, if \c m is a map with \c bool values, then |
|
| 1457 |
/// <tt>notWriteMap(m)[x]</tt> will be equal to <tt>!m[x]</tt>. |
|
| 1458 |
/// Moreover it makes also possible to write the map. |
|
| 1459 |
/// |
|
| 1255 | 1460 |
///\relates NotWriteMap |
| 1256 | 1461 |
template <typename M> |
| 1257 |
inline NotWriteMap<M> |
|
| 1462 |
inline NotWriteMap<M> notWriteMap(M &m) {
|
|
| 1258 | 1463 |
return NotWriteMap<M>(m); |
| 1259 | 1464 |
} |
| 1260 | 1465 |
|
| 1466 |
|
|
| 1261 | 1467 |
namespace _maps_bits {
|
| 1262 | 1468 |
|
| 1263 | 1469 |
template <typename Value> |
| 1264 | 1470 |
struct Identity {
|
| 1265 | 1471 |
typedef Value argument_type; |
| 1266 | 1472 |
typedef Value result_type; |
| 1267 | 1473 |
Value operator()(const Value& val) const {
|
| 1268 | 1474 |
return val; |
| 1269 | 1475 |
} |
| 1270 | 1476 |
}; |
| 1271 | 1477 |
|
| 1272 | 1478 |
template <typename _Iterator, typename Enable = void> |
| 1273 | 1479 |
struct IteratorTraits {
|
| 1274 | 1480 |
typedef typename std::iterator_traits<_Iterator>::value_type Value; |
| 1275 | 1481 |
}; |
| 1276 | 1482 |
|
| 1277 | 1483 |
template <typename _Iterator> |
| 1278 | 1484 |
struct IteratorTraits<_Iterator, |
| 1279 | 1485 |
typename exists<typename _Iterator::container_type>::type> |
| 1280 | 1486 |
{
|
| 1281 | 1487 |
typedef typename _Iterator::container_type::value_type Value; |
| 1282 | 1488 |
}; |
| 1283 | 1489 |
|
| 1284 | 1490 |
} |
| 1285 | 1491 |
|
| 1286 | 1492 |
|
| 1287 | 1493 |
/// \brief Writable bool map for logging each \c true assigned element |
| 1288 | 1494 |
/// |
| 1289 | 1495 |
/// A \ref concepts::ReadWriteMap "read-write" bool map for logging |
| 1290 | 1496 |
/// each \c true assigned element, i.e it copies all the keys set |
| 1291 | 1497 |
/// to \c true to the given iterator. |
| 1292 | 1498 |
/// |
| 1293 | 1499 |
/// \note The container of the iterator should contain space |
| 1294 | 1500 |
/// for each element. |
| 1295 | 1501 |
/// |
| 1296 | 1502 |
/// The following example shows how you can write the edges found by |
| 1297 | 1503 |
/// the \ref Prim algorithm directly to the standard output. |
| 1298 | 1504 |
///\code |
| 1299 | 1505 |
/// typedef IdMap<Graph, Edge> EdgeIdMap; |
| 1300 | 1506 |
/// EdgeIdMap edgeId(graph); |
| 1301 | 1507 |
/// |
| 1302 |
/// typedef |
|
| 1508 |
/// typedef MapToFunctor<EdgeIdMap> EdgeIdFunctor; |
|
| 1303 | 1509 |
/// EdgeIdFunctor edgeIdFunctor(edgeId); |
| 1304 | 1510 |
/// |
| 1305 | 1511 |
/// StoreBoolMap<ostream_iterator<int>, EdgeIdFunctor> |
| 1306 | 1512 |
/// writerMap(ostream_iterator<int>(cout, " "), edgeIdFunctor); |
| 1307 | 1513 |
/// |
| 1308 | 1514 |
/// prim(graph, cost, writerMap); |
| 1309 | 1515 |
///\endcode |
| 1310 | 1516 |
/// |
| 1311 | 1517 |
///\sa BackInserterBoolMap |
| 1312 | 1518 |
///\sa FrontInserterBoolMap |
| 1313 | 1519 |
///\sa InserterBoolMap |
| 1314 | 1520 |
/// |
| 1315 | 1521 |
///\todo Revise the name of this class and the related ones. |
| 1316 | 1522 |
template <typename _Iterator, |
| 1317 | 1523 |
typename _Functor = |
| 1318 | 1524 |
_maps_bits::Identity<typename _maps_bits:: |
| 1319 | 1525 |
IteratorTraits<_Iterator>::Value> > |
| 1320 | 1526 |
class StoreBoolMap {
|
| 1321 | 1527 |
public: |
| 1322 | 1528 |
typedef _Iterator Iterator; |
| 1323 | 1529 |
|
| 1324 | 1530 |
typedef typename _Functor::argument_type Key; |
| 1325 | 1531 |
typedef bool Value; |
| 1326 | 1532 |
|
| 1327 | 1533 |
typedef _Functor Functor; |
| 1328 | 1534 |
|
| 1329 | 1535 |
/// Constructor |
| 1330 | 1536 |
StoreBoolMap(Iterator it, const Functor& functor = Functor()) |
| 1331 | 1537 |
: _begin(it), _end(it), _functor(functor) {}
|
| 1332 | 1538 |
|
| 1333 | 1539 |
/// Gives back the given iterator set for the first key |
| 1334 | 1540 |
Iterator begin() const {
|
| 1335 | 1541 |
return _begin; |
| 1336 | 1542 |
} |
| 1337 | 1543 |
|
| 1338 | 1544 |
/// Gives back the the 'after the last' iterator |
| 1339 | 1545 |
Iterator end() const {
|
| 1340 | 1546 |
return _end; |
| 1341 | 1547 |
} |
| 1342 | 1548 |
|
| 1343 |
/// The |
|
| 1549 |
/// The set function of the map |
|
| 1344 | 1550 |
void set(const Key& key, Value value) const {
|
| 1345 | 1551 |
if (value) {
|
| 1346 | 1552 |
*_end++ = _functor(key); |
| 1347 | 1553 |
} |
| 1348 | 1554 |
} |
| 1349 | 1555 |
|
| 1350 | 1556 |
private: |
| 1351 | 1557 |
Iterator _begin; |
| 1352 | 1558 |
mutable Iterator _end; |
| 1353 | 1559 |
Functor _functor; |
| 1354 | 1560 |
}; |
| 1355 | 1561 |
|
| 1356 | 1562 |
/// \brief Writable bool map for logging each \c true assigned element in |
| 1357 | 1563 |
/// a back insertable container. |
| 1358 | 1564 |
/// |
| 1359 | 1565 |
/// Writable bool map for logging each \c true assigned element by pushing |
| 1360 | 1566 |
/// them into a back insertable container. |
| 1361 | 1567 |
/// It can be used to retrieve the items into a standard |
| 1362 | 1568 |
/// container. The next example shows how you can store the |
| 1363 | 1569 |
/// edges found by the Prim algorithm in a vector. |
| 1364 | 1570 |
/// |
| 1365 | 1571 |
///\code |
| 1366 | 1572 |
/// vector<Edge> span_tree_edges; |
| 1367 | 1573 |
/// BackInserterBoolMap<vector<Edge> > inserter_map(span_tree_edges); |
| 1368 | 1574 |
/// prim(graph, cost, inserter_map); |
| 1369 | 1575 |
///\endcode |
| 1370 | 1576 |
/// |
| 1371 | 1577 |
///\sa StoreBoolMap |
| 1372 | 1578 |
///\sa FrontInserterBoolMap |
| 1373 | 1579 |
///\sa InserterBoolMap |
| 1374 | 1580 |
template <typename Container, |
| 1375 | 1581 |
typename Functor = |
| 1376 | 1582 |
_maps_bits::Identity<typename Container::value_type> > |
| 1377 | 1583 |
class BackInserterBoolMap {
|
| 1378 | 1584 |
public: |
| 1379 | 1585 |
typedef typename Functor::argument_type Key; |
| 1380 | 1586 |
typedef bool Value; |
| 1381 | 1587 |
|
| 1382 | 1588 |
/// Constructor |
| 1383 | 1589 |
BackInserterBoolMap(Container& _container, |
| 1384 | 1590 |
const Functor& _functor = Functor()) |
| 1385 | 1591 |
: container(_container), functor(_functor) {}
|
| 1386 | 1592 |
|
| 1387 |
/// The |
|
| 1593 |
/// The set function of the map |
|
| 1388 | 1594 |
void set(const Key& key, Value value) {
|
| 1389 | 1595 |
if (value) {
|
| 1390 | 1596 |
container.push_back(functor(key)); |
| 1391 | 1597 |
} |
| 1392 | 1598 |
} |
| 1393 | 1599 |
|
| 1394 | 1600 |
private: |
| 1395 | 1601 |
Container& container; |
| 1396 | 1602 |
Functor functor; |
| 1397 | 1603 |
}; |
| 1398 | 1604 |
|
| 1399 | 1605 |
/// \brief Writable bool map for logging each \c true assigned element in |
| 1400 | 1606 |
/// a front insertable container. |
| 1401 | 1607 |
/// |
| 1402 | 1608 |
/// Writable bool map for logging each \c true assigned element by pushing |
| 1403 | 1609 |
/// them into a front insertable container. |
| 1404 | 1610 |
/// It can be used to retrieve the items into a standard |
| 1405 | 1611 |
/// container. For example see \ref BackInserterBoolMap. |
| 1406 | 1612 |
/// |
| 1407 | 1613 |
///\sa BackInserterBoolMap |
| 1408 | 1614 |
///\sa InserterBoolMap |
| 1409 | 1615 |
template <typename Container, |
| 1410 | 1616 |
typename Functor = |
| 1411 | 1617 |
_maps_bits::Identity<typename Container::value_type> > |
| 1412 | 1618 |
class FrontInserterBoolMap {
|
| 1413 | 1619 |
public: |
| 1414 | 1620 |
typedef typename Functor::argument_type Key; |
| 1415 | 1621 |
typedef bool Value; |
| 1416 | 1622 |
|
| 1417 | 1623 |
/// Constructor |
| 1418 | 1624 |
FrontInserterBoolMap(Container& _container, |
| 1419 | 1625 |
const Functor& _functor = Functor()) |
| 1420 | 1626 |
: container(_container), functor(_functor) {}
|
| 1421 | 1627 |
|
| 1422 |
/// The |
|
| 1628 |
/// The set function of the map |
|
| 1423 | 1629 |
void set(const Key& key, Value value) {
|
| 1424 | 1630 |
if (value) {
|
| 1425 | 1631 |
container.push_front(functor(key)); |
| 1426 | 1632 |
} |
| 1427 | 1633 |
} |
| 1428 | 1634 |
|
| 1429 | 1635 |
private: |
| 1430 | 1636 |
Container& container; |
| 1431 | 1637 |
Functor functor; |
| 1432 | 1638 |
}; |
| 1433 | 1639 |
|
| 1434 | 1640 |
/// \brief Writable bool map for storing each \c true assigned element in |
| 1435 | 1641 |
/// an insertable container. |
| 1436 | 1642 |
/// |
| 1437 | 1643 |
/// Writable bool map for storing each \c true assigned element in an |
| 1438 | 1644 |
/// insertable container. It will insert all the keys set to \c true into |
| 1439 | 1645 |
/// the container. |
| 1440 | 1646 |
/// |
| 1441 | 1647 |
/// For example, if you want to store the cut arcs of the strongly |
| 1442 | 1648 |
/// connected components in a set you can use the next code: |
| 1443 | 1649 |
/// |
| 1444 | 1650 |
///\code |
| 1445 | 1651 |
/// set<Arc> cut_arcs; |
| 1446 | 1652 |
/// InserterBoolMap<set<Arc> > inserter_map(cut_arcs); |
| ... | ... |
@@ -1455,49 +1661,49 @@ |
| 1455 | 1661 |
class InserterBoolMap {
|
| 1456 | 1662 |
public: |
| 1457 | 1663 |
typedef typename Container::value_type Key; |
| 1458 | 1664 |
typedef bool Value; |
| 1459 | 1665 |
|
| 1460 | 1666 |
/// Constructor with specified iterator |
| 1461 | 1667 |
|
| 1462 | 1668 |
/// Constructor with specified iterator. |
| 1463 | 1669 |
/// \param _container The container for storing the elements. |
| 1464 | 1670 |
/// \param _it The elements will be inserted before this iterator. |
| 1465 | 1671 |
/// \param _functor The functor that is used when an element is stored. |
| 1466 | 1672 |
InserterBoolMap(Container& _container, typename Container::iterator _it, |
| 1467 | 1673 |
const Functor& _functor = Functor()) |
| 1468 | 1674 |
: container(_container), it(_it), functor(_functor) {}
|
| 1469 | 1675 |
|
| 1470 | 1676 |
/// Constructor |
| 1471 | 1677 |
|
| 1472 | 1678 |
/// Constructor without specified iterator. |
| 1473 | 1679 |
/// The elements will be inserted before <tt>_container.end()</tt>. |
| 1474 | 1680 |
/// \param _container The container for storing the elements. |
| 1475 | 1681 |
/// \param _functor The functor that is used when an element is stored. |
| 1476 | 1682 |
InserterBoolMap(Container& _container, const Functor& _functor = Functor()) |
| 1477 | 1683 |
: container(_container), it(_container.end()), functor(_functor) {}
|
| 1478 | 1684 |
|
| 1479 |
/// The |
|
| 1685 |
/// The set function of the map |
|
| 1480 | 1686 |
void set(const Key& key, Value value) {
|
| 1481 | 1687 |
if (value) {
|
| 1482 | 1688 |
it = container.insert(it, functor(key)); |
| 1483 | 1689 |
++it; |
| 1484 | 1690 |
} |
| 1485 | 1691 |
} |
| 1486 | 1692 |
|
| 1487 | 1693 |
private: |
| 1488 | 1694 |
Container& container; |
| 1489 | 1695 |
typename Container::iterator it; |
| 1490 | 1696 |
Functor functor; |
| 1491 | 1697 |
}; |
| 1492 | 1698 |
|
| 1493 | 1699 |
/// \brief Writable bool map for filling each \c true assigned element with a |
| 1494 | 1700 |
/// given value. |
| 1495 | 1701 |
/// |
| 1496 | 1702 |
/// Writable bool map for filling each \c true assigned element with a |
| 1497 | 1703 |
/// given value. The value can set the container. |
| 1498 | 1704 |
/// |
| 1499 | 1705 |
/// The following code finds the connected components of a graph |
| 1500 | 1706 |
/// and stores it in the \c comp map: |
| 1501 | 1707 |
///\code |
| 1502 | 1708 |
/// typedef Graph::NodeMap<int> ComponentMap; |
| 1503 | 1709 |
/// ComponentMap comp(graph); |
| ... | ... |
@@ -1523,117 +1729,117 @@ |
| 1523 | 1729 |
|
| 1524 | 1730 |
/// Constructor |
| 1525 | 1731 |
FillBoolMap(Map& _map, const typename Map::Value& _fill) |
| 1526 | 1732 |
: map(_map), fill(_fill) {}
|
| 1527 | 1733 |
|
| 1528 | 1734 |
/// Constructor |
| 1529 | 1735 |
FillBoolMap(Map& _map) |
| 1530 | 1736 |
: map(_map), fill() {}
|
| 1531 | 1737 |
|
| 1532 | 1738 |
/// Gives back the current fill value |
| 1533 | 1739 |
const typename Map::Value& fillValue() const {
|
| 1534 | 1740 |
return fill; |
| 1535 | 1741 |
} |
| 1536 | 1742 |
|
| 1537 | 1743 |
/// Gives back the current fill value |
| 1538 | 1744 |
typename Map::Value& fillValue() {
|
| 1539 | 1745 |
return fill; |
| 1540 | 1746 |
} |
| 1541 | 1747 |
|
| 1542 | 1748 |
/// Sets the current fill value |
| 1543 | 1749 |
void fillValue(const typename Map::Value& _fill) {
|
| 1544 | 1750 |
fill = _fill; |
| 1545 | 1751 |
} |
| 1546 | 1752 |
|
| 1547 |
/// The |
|
| 1753 |
/// The set function of the map |
|
| 1548 | 1754 |
void set(const Key& key, Value value) {
|
| 1549 | 1755 |
if (value) {
|
| 1550 | 1756 |
map.set(key, fill); |
| 1551 | 1757 |
} |
| 1552 | 1758 |
} |
| 1553 | 1759 |
|
| 1554 | 1760 |
private: |
| 1555 | 1761 |
Map& map; |
| 1556 | 1762 |
typename Map::Value fill; |
| 1557 | 1763 |
}; |
| 1558 | 1764 |
|
| 1559 | 1765 |
|
| 1560 | 1766 |
/// \brief Writable bool map for storing the sequence number of |
| 1561 | 1767 |
/// \c true assignments. |
| 1562 | 1768 |
/// |
| 1563 | 1769 |
/// Writable bool map that stores for each \c true assigned elements |
| 1564 | 1770 |
/// the sequence number of this setting. |
| 1565 | 1771 |
/// It makes it easy to calculate the leaving |
| 1566 |
/// order of the nodes in the \ |
|
| 1772 |
/// order of the nodes in the \ref Dfs algorithm. |
|
| 1567 | 1773 |
/// |
| 1568 | 1774 |
///\code |
| 1569 | 1775 |
/// typedef Digraph::NodeMap<int> OrderMap; |
| 1570 | 1776 |
/// OrderMap order(digraph); |
| 1571 | 1777 |
/// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap; |
| 1572 | 1778 |
/// OrderSetterMap setter(order); |
| 1573 | 1779 |
/// Dfs<Digraph>::DefProcessedMap<OrderSetterMap>::Create dfs(digraph); |
| 1574 | 1780 |
/// dfs.processedMap(setter); |
| 1575 | 1781 |
/// dfs.init(); |
| 1576 | 1782 |
/// for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1577 | 1783 |
/// if (!dfs.reached(it)) {
|
| 1578 | 1784 |
/// dfs.addSource(it); |
| 1579 | 1785 |
/// dfs.start(); |
| 1580 | 1786 |
/// } |
| 1581 | 1787 |
/// } |
| 1582 | 1788 |
///\endcode |
| 1583 | 1789 |
/// |
| 1584 | 1790 |
/// The storing of the discovering order is more difficult because the |
| 1585 | 1791 |
/// ReachedMap should be readable in the dfs algorithm but the setting |
| 1586 | 1792 |
/// order map is not readable. Thus we must use the fork map: |
| 1587 | 1793 |
/// |
| 1588 | 1794 |
///\code |
| 1589 | 1795 |
/// typedef Digraph::NodeMap<int> OrderMap; |
| 1590 | 1796 |
/// OrderMap order(digraph); |
| 1591 | 1797 |
/// typedef SettingOrderBoolMap<OrderMap> OrderSetterMap; |
| 1592 | 1798 |
/// OrderSetterMap setter(order); |
| 1593 | 1799 |
/// typedef Digraph::NodeMap<bool> StoreMap; |
| 1594 | 1800 |
/// StoreMap store(digraph); |
| 1595 | 1801 |
/// |
| 1596 |
/// typedef |
|
| 1802 |
/// typedef ForkMap<StoreMap, OrderSetterMap> ReachedMap; |
|
| 1597 | 1803 |
/// ReachedMap reached(store, setter); |
| 1598 | 1804 |
/// |
| 1599 | 1805 |
/// Dfs<Digraph>::DefReachedMap<ReachedMap>::Create dfs(digraph); |
| 1600 | 1806 |
/// dfs.reachedMap(reached); |
| 1601 | 1807 |
/// dfs.init(); |
| 1602 | 1808 |
/// for (NodeIt it(digraph); it != INVALID; ++it) {
|
| 1603 | 1809 |
/// if (!dfs.reached(it)) {
|
| 1604 | 1810 |
/// dfs.addSource(it); |
| 1605 | 1811 |
/// dfs.start(); |
| 1606 | 1812 |
/// } |
| 1607 | 1813 |
/// } |
| 1608 | 1814 |
///\endcode |
| 1609 | 1815 |
template <typename Map> |
| 1610 | 1816 |
class SettingOrderBoolMap {
|
| 1611 | 1817 |
public: |
| 1612 | 1818 |
typedef typename Map::Key Key; |
| 1613 | 1819 |
typedef bool Value; |
| 1614 | 1820 |
|
| 1615 | 1821 |
/// Constructor |
| 1616 | 1822 |
SettingOrderBoolMap(Map& _map) |
| 1617 | 1823 |
: map(_map), counter(0) {}
|
| 1618 | 1824 |
|
| 1619 | 1825 |
/// Number of set operations. |
| 1620 | 1826 |
int num() const {
|
| 1621 | 1827 |
return counter; |
| 1622 | 1828 |
} |
| 1623 | 1829 |
|
| 1624 |
/// The |
|
| 1830 |
/// The set function of the map |
|
| 1625 | 1831 |
void set(const Key& key, Value value) {
|
| 1626 | 1832 |
if (value) {
|
| 1627 | 1833 |
map.set(key, counter++); |
| 1628 | 1834 |
} |
| 1629 | 1835 |
} |
| 1630 | 1836 |
|
| 1631 | 1837 |
private: |
| 1632 | 1838 |
Map& map; |
| 1633 | 1839 |
int counter; |
| 1634 | 1840 |
}; |
| 1635 | 1841 |
|
| 1636 | 1842 |
/// @} |
| 1637 | 1843 |
} |
| 1638 | 1844 |
|
| 1639 | 1845 |
#endif // LEMON_MAPS_H |
| ... | ... |
@@ -17,92 +17,252 @@ |
| 17 | 17 |
*/ |
| 18 | 18 |
|
| 19 | 19 |
#include <deque> |
| 20 | 20 |
#include <set> |
| 21 | 21 |
|
| 22 | 22 |
#include <lemon/concept_check.h> |
| 23 | 23 |
#include <lemon/concepts/maps.h> |
| 24 | 24 |
#include <lemon/maps.h> |
| 25 | 25 |
|
| 26 | 26 |
#include "test_tools.h" |
| 27 | 27 |
|
| 28 | 28 |
using namespace lemon; |
| 29 | 29 |
using namespace lemon::concepts; |
| 30 | 30 |
|
| 31 | 31 |
struct A {};
|
| 32 | 32 |
inline bool operator<(A, A) { return true; }
|
| 33 | 33 |
struct B {};
|
| 34 | 34 |
|
| 35 | 35 |
class F {
|
| 36 | 36 |
public: |
| 37 | 37 |
typedef A argument_type; |
| 38 | 38 |
typedef B result_type; |
| 39 | 39 |
|
| 40 | 40 |
B operator()(const A &) const {return B();}
|
| 41 |
private: |
|
| 42 |
F& operator=(const F&); |
|
| 41 | 43 |
}; |
| 42 | 44 |
|
| 43 | 45 |
int func(A) {return 3;}
|
| 44 | 46 |
|
| 45 |
int binc(int, B) {return
|
|
| 47 |
int binc(int a, B) { return a+1; }
|
|
| 46 | 48 |
|
| 47 | 49 |
typedef ReadMap<A,double> DoubleMap; |
| 48 |
typedef ReadWriteMap<A, double> |
|
| 50 |
typedef ReadWriteMap<A, double> DoubleWriteMap; |
|
| 51 |
typedef ReferenceMap<A, double, double&, const double&> DoubleRefMap; |
|
| 49 | 52 |
|
| 50 | 53 |
typedef ReadMap<A,bool> BoolMap; |
| 51 | 54 |
typedef ReadWriteMap<A, bool> BoolWriteMap; |
| 55 |
typedef ReferenceMap<A, bool, bool&, const bool&> BoolRefMap; |
|
| 52 | 56 |
|
| 53 | 57 |
int main() |
| 54 |
{ // checking graph components
|
|
| 55 |
|
|
| 58 |
{
|
|
| 59 |
// Map concepts |
|
| 56 | 60 |
checkConcept<ReadMap<A,B>, ReadMap<A,B> >(); |
| 57 | 61 |
checkConcept<WriteMap<A,B>, WriteMap<A,B> >(); |
| 58 | 62 |
checkConcept<ReadWriteMap<A,B>, ReadWriteMap<A,B> >(); |
| 59 | 63 |
checkConcept<ReferenceMap<A,B,B&,const B&>, ReferenceMap<A,B,B&,const B&> >(); |
| 60 | 64 |
|
| 61 |
checkConcept<ReadMap<A,double>, AddMap<DoubleMap,DoubleMap> >(); |
|
| 62 |
checkConcept<ReadMap<A,double>, SubMap<DoubleMap,DoubleMap> >(); |
|
| 63 |
checkConcept<ReadMap<A,double>, MulMap<DoubleMap,DoubleMap> >(); |
|
| 64 |
checkConcept<ReadMap<A,double>, DivMap<DoubleMap,DoubleMap> >(); |
|
| 65 |
checkConcept<ReadMap<A,double>, NegMap<DoubleMap> >(); |
|
| 66 |
checkConcept<ReadWriteMap<A,double>, NegWriteMap<WriteDoubleMap> >(); |
|
| 67 |
checkConcept<ReadMap<A,double>, AbsMap<DoubleMap> >(); |
|
| 68 |
checkConcept<ReadMap<A,double>, ShiftMap<DoubleMap> >(); |
|
| 69 |
checkConcept<ReadWriteMap<A,double>, ShiftWriteMap<WriteDoubleMap> >(); |
|
| 70 |
checkConcept<ReadMap<A,double>, ScaleMap<DoubleMap> >(); |
|
| 71 |
checkConcept<ReadWriteMap<A,double>, ScaleWriteMap<WriteDoubleMap> >(); |
|
| 72 |
checkConcept<ReadMap<A,double>, ForkMap<DoubleMap, DoubleMap> >(); |
|
| 73 |
checkConcept<ReadWriteMap<A,double>, |
|
| 74 |
ForkWriteMap<WriteDoubleMap, WriteDoubleMap> >(); |
|
| 65 |
// NullMap |
|
| 66 |
{
|
|
| 67 |
checkConcept<ReadWriteMap<A,B>, NullMap<A,B> >(); |
|
| 68 |
NullMap<A,B> map1; |
|
| 69 |
NullMap<A,B> map2 = map1; |
|
| 70 |
map1 = nullMap<A,B>(); |
|
| 71 |
} |
|
| 75 | 72 |
|
| 76 |
|
|
| 73 |
// ConstMap |
|
| 74 |
{
|
|
| 75 |
checkConcept<ReadWriteMap<A,B>, ConstMap<A,B> >(); |
|
| 76 |
ConstMap<A,B> map1; |
|
| 77 |
ConstMap<A,B> map2(B()); |
|
| 78 |
ConstMap<A,B> map3 = map1; |
|
| 79 |
map1 = constMap<A>(B()); |
|
| 80 |
map1.setAll(B()); |
|
| 77 | 81 |
|
| 78 |
checkConcept< |
|
| 82 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,int> >(); |
|
| 83 |
check(constMap<A>(10)[A()] == 10, "Something is wrong with ConstMap"); |
|
| 79 | 84 |
|
| 80 |
checkConcept<ReadMap<A, bool>, NotMap<BoolMap> >(); |
|
| 81 |
checkConcept<ReadWriteMap<A, bool>, NotWriteMap<BoolWriteMap> >(); |
|
| 85 |
checkConcept<ReadWriteMap<A,int>, ConstMap<A,Const<int,10> > >(); |
|
| 86 |
ConstMap<A,Const<int,10> > map4; |
|
| 87 |
ConstMap<A,Const<int,10> > map5 = map4; |
|
| 88 |
map4 = map5; |
|
| 89 |
check(map4[A()] == 10 && map5[A()] == 10, "Something is wrong with ConstMap"); |
|
| 90 |
} |
|
| 82 | 91 |
|
| 83 |
checkConcept<WriteMap<A, bool>, StoreBoolMap<A*> >(); |
|
| 84 |
checkConcept<WriteMap<A, bool>, BackInserterBoolMap<std::deque<A> > >(); |
|
| 85 |
checkConcept<WriteMap<A, bool>, FrontInserterBoolMap<std::deque<A> > >(); |
|
| 86 |
checkConcept<WriteMap<A, bool>, InserterBoolMap<std::set<A> > >(); |
|
| 87 |
checkConcept<WriteMap<A, bool>, FillBoolMap<WriteMap<A, B> > >(); |
|
| 88 |
checkConcept<WriteMap<A, bool>, SettingOrderBoolMap<WriteMap<A, int> > >(); |
|
| 92 |
// IdentityMap |
|
| 93 |
{
|
|
| 94 |
checkConcept<ReadMap<A,A>, IdentityMap<A> >(); |
|
| 95 |
IdentityMap<A> map1; |
|
| 96 |
IdentityMap<A> map2 = map1; |
|
| 97 |
map1 = identityMap<A>(); |
|
| 89 | 98 |
|
| 90 |
|
|
| 99 |
checkConcept<ReadMap<double,double>, IdentityMap<double> >(); |
|
| 100 |
check(identityMap<double>()[1.0] == 1.0 && identityMap<double>()[3.14] == 3.14, |
|
| 101 |
"Something is wrong with IdentityMap"); |
|
| 102 |
} |
|
| 91 | 103 |
|
| 92 |
a=mapFunctor(constMap<A,int>(2))(A()); |
|
| 93 |
check(a==2,"Something is wrong with mapFunctor"); |
|
| 104 |
// RangeMap |
|
| 105 |
{
|
|
| 106 |
checkConcept<ReferenceMap<int,B,B&,const B&>, RangeMap<B> >(); |
|
| 107 |
RangeMap<B> map1; |
|
| 108 |
RangeMap<B> map2(10); |
|
| 109 |
RangeMap<B> map3(10,B()); |
|
| 110 |
RangeMap<B> map4 = map1; |
|
| 111 |
RangeMap<B> map5 = rangeMap<B>(); |
|
| 112 |
RangeMap<B> map6 = rangeMap<B>(10); |
|
| 113 |
RangeMap<B> map7 = rangeMap(10,B()); |
|
| 94 | 114 |
|
| 95 |
B b; |
|
| 96 |
b=functorMap(F())[A()]; |
|
| 115 |
checkConcept< ReferenceMap<int, double, double&, const double&>, |
|
| 116 |
RangeMap<double> >(); |
|
| 117 |
std::vector<double> v(10, 0); |
|
| 118 |
v[5] = 100; |
|
| 119 |
RangeMap<double> map8(v); |
|
| 120 |
RangeMap<double> map9 = rangeMap(v); |
|
| 121 |
check(map9.size() == 10 && map9[2] == 0 && map9[5] == 100, |
|
| 122 |
"Something is wrong with RangeMap"); |
|
| 123 |
} |
|
| 97 | 124 |
|
| 98 |
a=functorMap(&func)[A()]; |
|
| 99 |
check(a==3,"Something is wrong with functorMap"); |
|
| 125 |
// SparseMap |
|
| 126 |
{
|
|
| 127 |
checkConcept<ReferenceMap<A,B,B&,const B&>, SparseMap<A,B> >(); |
|
| 128 |
SparseMap<A,B> map1; |
|
| 129 |
SparseMap<A,B> map2(B()); |
|
| 130 |
SparseMap<A,B> map3 = sparseMap<A,B>(); |
|
| 131 |
SparseMap<A,B> map4 = sparseMap<A>(B()); |
|
| 100 | 132 |
|
| 101 |
a=combineMap(constMap<B, int, 1>(), identityMap<B>(), &binc)[B()]; |
|
| 102 |
check(a==4,"Something is wrong with combineMap"); |
|
| 133 |
checkConcept< ReferenceMap<double, int, int&, const int&>, |
|
| 134 |
SparseMap<double, int> >(); |
|
| 135 |
std::map<double, int> m; |
|
| 136 |
SparseMap<double, int> map5(m); |
|
| 137 |
SparseMap<double, int> map6(m,10); |
|
| 138 |
SparseMap<double, int> map7 = sparseMap(m); |
|
| 139 |
SparseMap<double, int> map8 = sparseMap(m,10); |
|
| 103 | 140 |
|
| 141 |
check(map5[1.0] == 0 && map5[3.14] == 0 && map6[1.0] == 10 && map6[3.14] == 10, |
|
| 142 |
"Something is wrong with SparseMap"); |
|
| 143 |
map5[1.0] = map6[3.14] = 100; |
|
| 144 |
check(map5[1.0] == 100 && map5[3.14] == 0 && map6[1.0] == 10 && map6[3.14] == 100, |
|
| 145 |
"Something is wrong with SparseMap"); |
|
| 146 |
} |
|
| 104 | 147 |
|
| 105 |
|
|
| 148 |
// ComposeMap |
|
| 149 |
{
|
|
| 150 |
typedef ComposeMap<DoubleMap, ReadMap<B,A> > CompMap; |
|
| 151 |
checkConcept<ReadMap<B,double>, CompMap>(); |
|
| 152 |
CompMap map1(DoubleMap(),ReadMap<B,A>()); |
|
| 153 |
CompMap map2 = composeMap(DoubleMap(), ReadMap<B,A>()); |
|
| 154 |
|
|
| 155 |
SparseMap<double, bool> m1(false); m1[3.14] = true; |
|
| 156 |
RangeMap<double> m2(2); m2[0] = 3.0; m2[1] = 3.14; |
|
| 157 |
check(!composeMap(m1,m2)[0] && composeMap(m1,m2)[1], "Something is wrong with ComposeMap") |
|
| 158 |
} |
|
| 159 |
|
|
| 160 |
// CombineMap |
|
| 161 |
{
|
|
| 162 |
typedef CombineMap<DoubleMap, DoubleMap, std::plus<double> > CombMap; |
|
| 163 |
checkConcept<ReadMap<A,double>, CombMap>(); |
|
| 164 |
CombMap map1(DoubleMap(), DoubleMap()); |
|
| 165 |
CombMap map2 = combineMap(DoubleMap(), DoubleMap(), std::plus<double>()); |
|
| 166 |
|
|
| 167 |
check(combineMap(constMap<B,int,2>(), identityMap<B>(), &binc)[B()] == 3, |
|
| 168 |
"Something is wrong with CombineMap"); |
|
| 169 |
} |
|
| 170 |
|
|
| 171 |
// FunctorToMap, MapToFunctor |
|
| 172 |
{
|
|
| 173 |
checkConcept<ReadMap<A,B>, FunctorToMap<F,A,B> >(); |
|
| 174 |
checkConcept<ReadMap<A,B>, FunctorToMap<F> >(); |
|
| 175 |
FunctorToMap<F> map1; |
|
| 176 |
FunctorToMap<F> map2(F()); |
|
| 177 |
B b = functorToMap(F())[A()]; |
|
| 178 |
|
|
| 179 |
checkConcept<ReadMap<A,B>, MapToFunctor<ReadMap<A,B> > >(); |
|
| 180 |
MapToFunctor<ReadMap<A,B> > map(ReadMap<A,B>()); |
|
| 181 |
|
|
| 182 |
check(functorToMap(&func)[A()] == 3, "Something is wrong with FunctorToMap"); |
|
| 183 |
check(mapToFunctor(constMap<A,int>(2))(A()) == 2, "Something is wrong with MapToFunctor"); |
|
| 184 |
check(mapToFunctor(functorToMap(&func))(A()) == 3 && mapToFunctor(functorToMap(&func))[A()] == 3, |
|
| 185 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
|
| 186 |
check(functorToMap(mapToFunctor(constMap<A,int>(2)))[A()] == 2, |
|
| 187 |
"Something is wrong with FunctorToMap or MapToFunctor"); |
|
| 188 |
} |
|
| 189 |
|
|
| 190 |
// ConvertMap |
|
| 191 |
{
|
|
| 192 |
checkConcept<ReadMap<double,double>, ConvertMap<ReadMap<double, int>, double> >(); |
|
| 193 |
ConvertMap<RangeMap<bool>, int> map1(rangeMap(1, true)); |
|
| 194 |
ConvertMap<RangeMap<bool>, int> map2 = convertMap<int>(rangeMap(2, false)); |
|
| 195 |
} |
|
| 196 |
|
|
| 197 |
// ForkMap |
|
| 198 |
{
|
|
| 199 |
checkConcept<DoubleWriteMap, ForkMap<DoubleWriteMap, DoubleWriteMap> >(); |
|
| 200 |
|
|
| 201 |
typedef RangeMap<double> RM; |
|
| 202 |
typedef SparseMap<int, double> SM; |
|
| 203 |
RM m1(10, -1); |
|
| 204 |
SM m2(-1); |
|
| 205 |
checkConcept<ReadWriteMap<int, double>, ForkMap<RM, SM> >(); |
|
| 206 |
checkConcept<ReadWriteMap<int, double>, ForkMap<SM, RM> >(); |
|
| 207 |
ForkMap<RM, SM> map1(m1,m2); |
|
| 208 |
ForkMap<SM, RM> map2 = forkMap(m2,m1); |
|
| 209 |
map2.set(5, 10); |
|
| 210 |
check(m1[1] == -1 && m1[5] == 10 && m2[1] == -1 && m2[5] == 10 && map2[1] == -1 && map2[5] == 10, |
|
| 211 |
"Something is wrong with ForkMap"); |
|
| 212 |
} |
|
| 213 |
|
|
| 214 |
// Arithmetic maps: |
|
| 215 |
// - AddMap, SubMap, MulMap, DivMap |
|
| 216 |
// - ShiftMap, ShiftWriteMap, ScaleMap, ScaleWriteMap |
|
| 217 |
// - NegMap, NegWriteMap, AbsMap |
|
| 218 |
{
|
|
| 219 |
checkConcept<DoubleMap, AddMap<DoubleMap,DoubleMap> >(); |
|
| 220 |
checkConcept<DoubleMap, SubMap<DoubleMap,DoubleMap> >(); |
|
| 221 |
checkConcept<DoubleMap, MulMap<DoubleMap,DoubleMap> >(); |
|
| 222 |
checkConcept<DoubleMap, DivMap<DoubleMap,DoubleMap> >(); |
|
| 223 |
|
|
| 224 |
ConstMap<int, double> c1(1.0), c2(3.14); |
|
| 225 |
IdentityMap<int> im; |
|
| 226 |
ConvertMap<IdentityMap<int>, double> id(im); |
|
| 227 |
check(addMap(c1,id)[0] == 1.0 && addMap(c1,id)[10] == 11.0, "Something is wrong with AddMap"); |
|
| 228 |
check(subMap(id,c1)[0] == -1.0 && subMap(id,c1)[10] == 9.0, "Something is wrong with SubMap"); |
|
| 229 |
check(mulMap(id,c2)[0] == 0 && mulMap(id,c2)[2] == 6.28, "Something is wrong with MulMap"); |
|
| 230 |
check(divMap(c2,id)[1] == 3.14 && divMap(c2,id)[2] == 1.57, "Something is wrong with DivMap"); |
|
| 231 |
|
|
| 232 |
checkConcept<DoubleMap, ShiftMap<DoubleMap> >(); |
|
| 233 |
checkConcept<DoubleWriteMap, ShiftWriteMap<DoubleWriteMap> >(); |
|
| 234 |
checkConcept<DoubleMap, ScaleMap<DoubleMap> >(); |
|
| 235 |
checkConcept<DoubleWriteMap, ScaleWriteMap<DoubleWriteMap> >(); |
|
| 236 |
checkConcept<DoubleMap, NegMap<DoubleMap> >(); |
|
| 237 |
checkConcept<DoubleWriteMap, NegWriteMap<DoubleWriteMap> >(); |
|
| 238 |
checkConcept<DoubleMap, AbsMap<DoubleMap> >(); |
|
| 239 |
|
|
| 240 |
check(shiftMap(id, 2.0)[1] == 3.0 && shiftMap(id, 2.0)[10] == 12.0, |
|
| 241 |
"Something is wrong with ShiftMap"); |
|
| 242 |
check(shiftWriteMap(id, 2.0)[1] == 3.0 && shiftWriteMap(id, 2.0)[10] == 12.0, |
|
| 243 |
"Something is wrong with ShiftWriteMap"); |
|
| 244 |
check(scaleMap(id, 2.0)[1] == 2.0 && scaleMap(id, 2.0)[10] == 20.0, |
|
| 245 |
"Something is wrong with ScaleMap"); |
|
| 246 |
check(scaleWriteMap(id, 2.0)[1] == 2.0 && scaleWriteMap(id, 2.0)[10] == 20.0, |
|
| 247 |
"Something is wrong with ScaleWriteMap"); |
|
| 248 |
check(negMap(id)[1] == -1.0 && negMap(id)[-10] == 10.0, |
|
| 249 |
"Something is wrong with NegMap"); |
|
| 250 |
check(negWriteMap(id)[1] == -1.0 && negWriteMap(id)[-10] == 10.0, |
|
| 251 |
"Something is wrong with NegWriteMap"); |
|
| 252 |
check(absMap(id)[1] == 1.0 && absMap(id)[-10] == 10.0, |
|
| 253 |
"Something is wrong with AbsMap"); |
|
| 254 |
} |
|
| 255 |
|
|
| 256 |
// Logical maps |
|
| 257 |
{
|
|
| 258 |
checkConcept<BoolMap, NotMap<BoolMap> >(); |
|
| 259 |
checkConcept<BoolWriteMap, NotWriteMap<BoolWriteMap> >(); |
|
| 260 |
|
|
| 261 |
RangeMap<bool> rm(2); |
|
| 262 |
rm[0] = true; rm[1] = false; |
|
| 263 |
check(!(notMap(rm)[0]) && notMap(rm)[1], "Something is wrong with NotMap"); |
|
| 264 |
check(!(notWriteMap(rm)[0]) && notWriteMap(rm)[1], "Something is wrong with NotWriteMap"); |
|
| 265 |
} |
|
| 106 | 266 |
|
| 107 | 267 |
return 0; |
| 108 | 268 |
} |
0 comments (0 inline)