0
2
0
111
88
143
73
... | ... |
@@ -23,224 +23,247 @@ |
23 | 23 |
#include<lemon/adaptors.h> |
24 | 24 |
#include<lemon/connectivity.h> |
25 | 25 |
#include <list> |
26 | 26 |
|
27 | 27 |
/// \ingroup graph_properties |
28 | 28 |
/// \file |
29 |
/// \brief Euler tour |
|
29 |
/// \brief Euler tour iterators and a function for checking the \e Eulerian |
|
30 |
/// property. |
|
30 | 31 |
/// |
31 |
///This file provides an Euler tour iterator and ways to check |
|
32 |
///if a digraph is euler. |
|
33 |
|
|
32 |
///This file provides Euler tour iterators and a function to check |
|
33 |
///if a (di)graph is \e Eulerian. |
|
34 | 34 |
|
35 | 35 |
namespace lemon { |
36 | 36 |
|
37 |
///Euler iterator for digraphs. |
|
37 |
///Euler tour iterator for digraphs. |
|
38 | 38 |
|
39 |
/// \ingroup graph_properties |
|
40 |
///This iterator converts to the \c Arc type of the digraph and using |
|
41 |
///operator ++, it provides an Euler tour of a \e directed |
|
42 |
///graph (if there exists). |
|
39 |
/// \ingroup graph_prop |
|
40 |
///This iterator provides an Euler tour (Eulerian circuit) of a \e directed |
|
41 |
///graph (if there exists) and it converts to the \c Arc type of the digraph. |
|
43 | 42 |
/// |
44 |
///For example |
|
45 |
///if the given digraph is Euler (i.e it has only one nontrivial component |
|
46 |
///and the in-degree is equal to the out-degree for all nodes), |
|
47 |
///the following code will put the arcs of \c g |
|
48 |
///to the vector \c et according to an |
|
49 |
///Euler tour of \c g. |
|
43 |
///For example, if the given digraph has an Euler tour (i.e it has only one |
|
44 |
///non-trivial component and the in-degree is equal to the out-degree |
|
45 |
///for all nodes), then the following code will put the arcs of \c g |
|
46 |
///to the vector \c et according to an Euler tour of \c g. |
|
50 | 47 |
///\code |
51 | 48 |
/// std::vector<ListDigraph::Arc> et; |
52 |
/// for(DiEulerIt<ListDigraph> e(g) |
|
49 |
/// for(DiEulerIt<ListDigraph> e(g); e!=INVALID; ++e) |
|
53 | 50 |
/// et.push_back(e); |
54 | 51 |
///\endcode |
55 |
///If \c g |
|
52 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
|
53 |
///or not contain all arcs. |
|
56 | 54 |
///\sa EulerIt |
57 | 55 |
template<typename GR> |
58 | 56 |
class DiEulerIt |
59 | 57 |
{ |
60 | 58 |
typedef typename GR::Node Node; |
61 | 59 |
typedef typename GR::NodeIt NodeIt; |
62 | 60 |
typedef typename GR::Arc Arc; |
63 | 61 |
typedef typename GR::ArcIt ArcIt; |
64 | 62 |
typedef typename GR::OutArcIt OutArcIt; |
65 | 63 |
typedef typename GR::InArcIt InArcIt; |
66 | 64 |
|
67 | 65 |
const GR &g; |
68 |
typename GR::template NodeMap<OutArcIt> |
|
66 |
typename GR::template NodeMap<OutArcIt> narc; |
|
69 | 67 |
std::list<Arc> euler; |
70 | 68 |
|
71 | 69 |
public: |
72 | 70 |
|
73 | 71 |
///Constructor |
74 | 72 |
|
73 |
///Constructor. |
|
75 | 74 |
///\param gr A digraph. |
76 |
///\param start The starting point of the tour. If it is not given |
|
77 |
/// the tour will start from the first node. |
|
75 |
///\param start The starting point of the tour. If it is not given, |
|
76 |
///the tour will start from the first node that has an outgoing arc. |
|
78 | 77 |
DiEulerIt(const GR &gr, typename GR::Node start = INVALID) |
79 |
: g(gr), |
|
78 |
: g(gr), narc(g) |
|
80 | 79 |
{ |
81 |
if(start==INVALID) start=NodeIt(g); |
|
82 |
for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutArcIt(g,n); |
|
83 |
while(nedge[start]!=INVALID) { |
|
84 |
euler.push_back(nedge[start]); |
|
85 |
Node next=g.target(nedge[start]); |
|
86 |
++nedge[start]; |
|
87 |
|
|
80 |
if (start==INVALID) { |
|
81 |
NodeIt n(g); |
|
82 |
while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n; |
|
83 |
start=n; |
|
84 |
} |
|
85 |
if (start!=INVALID) { |
|
86 |
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n); |
|
87 |
while (narc[start]!=INVALID) { |
|
88 |
euler.push_back(narc[start]); |
|
89 |
Node next=g.target(narc[start]); |
|
90 |
++narc[start]; |
|
91 |
start=next; |
|
92 |
} |
|
88 | 93 |
} |
89 | 94 |
} |
90 | 95 |
|
91 |
///Arc |
|
96 |
///Arc conversion |
|
92 | 97 |
operator Arc() { return euler.empty()?INVALID:euler.front(); } |
98 |
///Compare with \c INVALID |
|
93 | 99 |
bool operator==(Invalid) { return euler.empty(); } |
100 |
///Compare with \c INVALID |
|
94 | 101 |
bool operator!=(Invalid) { return !euler.empty(); } |
95 | 102 |
|
96 | 103 |
///Next arc of the tour |
104 |
|
|
105 |
///Next arc of the tour |
|
106 |
/// |
|
97 | 107 |
DiEulerIt &operator++() { |
98 | 108 |
Node s=g.target(euler.front()); |
99 | 109 |
euler.pop_front(); |
100 |
//This produces a warning.Strange. |
|
101 |
//std::list<Arc>::iterator next=euler.begin(); |
|
102 | 110 |
typename std::list<Arc>::iterator next=euler.begin(); |
103 |
while(nedge[s]!=INVALID) { |
|
104 |
euler.insert(next,nedge[s]); |
|
105 |
Node n=g.target(nedge[s]); |
|
106 |
++nedge[s]; |
|
111 |
while(narc[s]!=INVALID) { |
|
112 |
euler.insert(next,narc[s]); |
|
113 |
Node n=g.target(narc[s]); |
|
114 |
++narc[s]; |
|
107 | 115 |
s=n; |
108 | 116 |
} |
109 | 117 |
return *this; |
110 | 118 |
} |
111 | 119 |
///Postfix incrementation |
112 | 120 |
|
121 |
/// Postfix incrementation. |
|
122 |
/// |
|
113 | 123 |
///\warning This incrementation |
114 |
///returns an \c Arc, not |
|
124 |
///returns an \c Arc, not a \ref DiEulerIt, as one may |
|
115 | 125 |
///expect. |
116 | 126 |
Arc operator++(int) |
117 | 127 |
{ |
118 | 128 |
Arc e=*this; |
119 | 129 |
++(*this); |
120 | 130 |
return e; |
121 | 131 |
} |
122 | 132 |
}; |
123 | 133 |
|
124 |
///Euler iterator for graphs. |
|
134 |
///Euler tour iterator for graphs. |
|
125 | 135 |
|
126 | 136 |
/// \ingroup graph_properties |
127 |
///This iterator converts to the \c Arc (or \c Edge) |
|
128 |
///type of the digraph and using |
|
129 |
///operator ++, it provides an Euler tour of an undirected |
|
130 |
///digraph (if there exists). |
|
137 |
///This iterator provides an Euler tour (Eulerian circuit) of an |
|
138 |
///\e undirected graph (if there exists) and it converts to the \c Arc |
|
139 |
///and \c Edge types of the graph. |
|
131 | 140 |
/// |
132 |
///For example |
|
133 |
///if the given digraph if Euler (i.e it has only one nontrivial component |
|
134 |
/// |
|
141 |
///For example, if the given graph has an Euler tour (i.e it has only one |
|
142 |
///non-trivial component and the degree of each node is even), |
|
135 | 143 |
///the following code will print the arc IDs according to an |
136 | 144 |
///Euler tour of \c g. |
137 | 145 |
///\code |
138 |
/// for(EulerIt<ListGraph> e(g) |
|
146 |
/// for(EulerIt<ListGraph> e(g); e!=INVALID; ++e) { |
|
139 | 147 |
/// std::cout << g.id(Edge(e)) << std::eol; |
140 | 148 |
/// } |
141 | 149 |
///\endcode |
142 |
///Although the iterator provides an Euler tour of an graph, |
|
143 |
///it still returns Arcs in order to indicate the direction of the tour. |
|
144 |
/// |
|
150 |
///Although this iterator is for undirected graphs, it still returns |
|
151 |
///arcs in order to indicate the direction of the tour. |
|
152 |
///(But arcs convert to edges, of course.) |
|
145 | 153 |
/// |
146 |
///If \c g is not Euler then the resulted tour will not be full or closed. |
|
147 |
///\sa EulerIt |
|
154 |
///If \c g has no Euler tour, then the resulted walk will not be closed |
|
155 |
///or not contain all edges. |
|
148 | 156 |
template<typename GR> |
149 | 157 |
class EulerIt |
150 | 158 |
{ |
151 | 159 |
typedef typename GR::Node Node; |
152 | 160 |
typedef typename GR::NodeIt NodeIt; |
153 | 161 |
typedef typename GR::Arc Arc; |
154 | 162 |
typedef typename GR::Edge Edge; |
155 | 163 |
typedef typename GR::ArcIt ArcIt; |
156 | 164 |
typedef typename GR::OutArcIt OutArcIt; |
157 | 165 |
typedef typename GR::InArcIt InArcIt; |
158 | 166 |
|
159 | 167 |
const GR &g; |
160 |
typename GR::template NodeMap<OutArcIt> |
|
168 |
typename GR::template NodeMap<OutArcIt> narc; |
|
161 | 169 |
typename GR::template EdgeMap<bool> visited; |
162 | 170 |
std::list<Arc> euler; |
163 | 171 |
|
164 | 172 |
public: |
165 | 173 |
|
166 | 174 |
///Constructor |
167 | 175 |
|
168 |
///\param gr An graph. |
|
169 |
///\param start The starting point of the tour. If it is not given |
|
170 |
/// |
|
176 |
///Constructor. |
|
177 |
///\param gr A graph. |
|
178 |
///\param start The starting point of the tour. If it is not given, |
|
179 |
///the tour will start from the first node that has an incident edge. |
|
171 | 180 |
EulerIt(const GR &gr, typename GR::Node start = INVALID) |
172 |
: g(gr), |
|
181 |
: g(gr), narc(g), visited(g, false) |
|
173 | 182 |
{ |
174 |
if(start==INVALID) start=NodeIt(g); |
|
175 |
for(NodeIt n(g);n!=INVALID;++n) nedge[n]=OutArcIt(g,n); |
|
176 |
while(nedge[start]!=INVALID) { |
|
177 |
euler.push_back(nedge[start]); |
|
178 |
visited[nedge[start]]=true; |
|
179 |
Node next=g.target(nedge[start]); |
|
180 |
++nedge[start]; |
|
181 |
start=next; |
|
182 |
|
|
183 |
if (start==INVALID) { |
|
184 |
NodeIt n(g); |
|
185 |
while (n!=INVALID && OutArcIt(g,n)==INVALID) ++n; |
|
186 |
start=n; |
|
187 |
} |
|
188 |
if (start!=INVALID) { |
|
189 |
for (NodeIt n(g); n!=INVALID; ++n) narc[n]=OutArcIt(g,n); |
|
190 |
while(narc[start]!=INVALID) { |
|
191 |
euler.push_back(narc[start]); |
|
192 |
visited[narc[start]]=true; |
|
193 |
Node next=g.target(narc[start]); |
|
194 |
++narc[start]; |
|
195 |
start=next; |
|
196 |
while(narc[start]!=INVALID && visited[narc[start]]) ++narc[start]; |
|
197 |
} |
|
183 | 198 |
} |
184 | 199 |
} |
185 | 200 |
|
186 |
///Arc |
|
201 |
///Arc conversion |
|
187 | 202 |
operator Arc() const { return euler.empty()?INVALID:euler.front(); } |
188 |
/// |
|
203 |
///Edge conversion |
|
189 | 204 |
operator Edge() const { return euler.empty()?INVALID:euler.front(); } |
190 |
///\ |
|
205 |
///Compare with \c INVALID |
|
191 | 206 |
bool operator==(Invalid) const { return euler.empty(); } |
192 |
///\ |
|
207 |
///Compare with \c INVALID |
|
193 | 208 |
bool operator!=(Invalid) const { return !euler.empty(); } |
194 | 209 |
|
195 | 210 |
///Next arc of the tour |
211 |
|
|
212 |
///Next arc of the tour |
|
213 |
/// |
|
196 | 214 |
EulerIt &operator++() { |
197 | 215 |
Node s=g.target(euler.front()); |
198 | 216 |
euler.pop_front(); |
199 | 217 |
typename std::list<Arc>::iterator next=euler.begin(); |
200 |
|
|
201 |
while(nedge[s]!=INVALID) { |
|
202 |
while(nedge[s]!=INVALID && visited[nedge[s]]) ++nedge[s]; |
|
203 |
if(nedge[s]==INVALID) break; |
|
218 |
while(narc[s]!=INVALID) { |
|
219 |
while(narc[s]!=INVALID && visited[narc[s]]) ++narc[s]; |
|
220 |
if(narc[s]==INVALID) break; |
|
204 | 221 |
else { |
205 |
euler.insert(next,nedge[s]); |
|
206 |
visited[nedge[s]]=true; |
|
207 |
Node n=g.target(nedge[s]); |
|
208 |
++nedge[s]; |
|
222 |
euler.insert(next,narc[s]); |
|
223 |
visited[narc[s]]=true; |
|
224 |
Node n=g.target(narc[s]); |
|
225 |
++narc[s]; |
|
209 | 226 |
s=n; |
210 | 227 |
} |
211 | 228 |
} |
212 | 229 |
return *this; |
213 | 230 |
} |
214 | 231 |
|
215 | 232 |
///Postfix incrementation |
216 | 233 |
|
217 |
///\warning This incrementation |
|
218 |
///returns an \c Arc, not an \ref EulerIt, as one may |
|
219 |
/// |
|
234 |
/// Postfix incrementation. |
|
235 |
/// |
|
236 |
///\warning This incrementation returns an \c Arc (which converts to |
|
237 |
///an \c Edge), not an \ref EulerIt, as one may expect. |
|
220 | 238 |
Arc operator++(int) |
221 | 239 |
{ |
222 | 240 |
Arc e=*this; |
223 | 241 |
++(*this); |
224 | 242 |
return e; |
225 | 243 |
} |
226 | 244 |
}; |
227 | 245 |
|
228 | 246 |
|
229 |
/// |
|
247 |
///Check if the given graph is \e Eulerian |
|
230 | 248 |
|
231 | 249 |
/// \ingroup graph_properties |
232 |
///Checks if the graph is Eulerian. It works for both directed and undirected |
|
233 |
///graphs. |
|
234 |
///\note By definition, a digraph is called \e Eulerian if |
|
235 |
///and only if it is connected and the number of its incoming and outgoing |
|
250 |
///This function checks if the given graph is \e Eulerian. |
|
251 |
///It works for both directed and undirected graphs. |
|
252 |
/// |
|
253 |
///By definition, a digraph is called \e Eulerian if |
|
254 |
///and only if it is connected and the number of incoming and outgoing |
|
236 | 255 |
///arcs are the same for each node. |
237 | 256 |
///Similarly, an undirected graph is called \e Eulerian if |
238 |
///and only if it is connected and the number of incident arcs is even |
|
239 |
///for each node. <em>Therefore, there are digraphs which are not Eulerian, |
|
240 |
/// |
|
257 |
///and only if it is connected and the number of incident edges is even |
|
258 |
///for each node. |
|
259 |
/// |
|
260 |
///\note There are (di)graphs that are not Eulerian, but still have an |
|
261 |
/// Euler tour, since they may contain isolated nodes. |
|
262 |
/// |
|
263 |
///\sa DiEulerIt, EulerIt |
|
241 | 264 |
template<typename GR> |
242 | 265 |
#ifdef DOXYGEN |
243 | 266 |
bool |
244 | 267 |
#else |
245 | 268 |
typename enable_if<UndirectedTagIndicator<GR>,bool>::type |
246 | 269 |
eulerian(const GR &g) |
... | ... |
@@ -253,12 +276,12 @@ |
253 | 276 |
typename disable_if<UndirectedTagIndicator<GR>,bool>::type |
254 | 277 |
#endif |
255 | 278 |
eulerian(const GR &g) |
256 | 279 |
{ |
257 | 280 |
for(typename GR::NodeIt n(g);n!=INVALID;++n) |
258 | 281 |
if(countInArcs(g,n)!=countOutArcs(g,n)) return false; |
259 |
return connected( |
|
282 |
return connected(undirector(g)); |
|
260 | 283 |
} |
261 | 284 |
|
262 | 285 |
} |
263 | 286 |
|
264 | 287 |
#endif |
... | ... |
@@ -15,139 +15,209 @@ |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#include <lemon/euler.h> |
20 | 20 |
#include <lemon/list_graph.h> |
21 |
#include < |
|
21 |
#include <lemon/adaptors.h> |
|
22 |
#include "test_tools.h" |
|
22 | 23 |
|
23 | 24 |
using namespace lemon; |
24 | 25 |
|
25 | 26 |
template <typename Digraph> |
26 |
void checkDiEulerIt(const Digraph& g |
|
27 |
void checkDiEulerIt(const Digraph& g, |
|
28 |
const typename Digraph::Node& start = INVALID) |
|
27 | 29 |
{ |
28 | 30 |
typename Digraph::template ArcMap<int> visitationNumber(g, 0); |
29 | 31 |
|
30 |
DiEulerIt<Digraph> e(g); |
|
32 |
DiEulerIt<Digraph> e(g, start); |
|
33 |
if (e == INVALID) return; |
|
31 | 34 |
typename Digraph::Node firstNode = g.source(e); |
32 | 35 |
typename Digraph::Node lastNode = g.target(e); |
36 |
if (start != INVALID) { |
|
37 |
check(firstNode == start, "checkDiEulerIt: Wrong first node"); |
|
38 |
} |
|
33 | 39 |
|
34 |
for (; e != INVALID; ++e) |
|
35 |
{ |
|
36 |
if (e != INVALID) |
|
37 |
{ |
|
38 |
lastNode = g.target(e); |
|
39 |
} |
|
40 |
for (; e != INVALID; ++e) { |
|
41 |
if (e != INVALID) lastNode = g.target(e); |
|
40 | 42 |
++visitationNumber[e]; |
41 | 43 |
} |
42 | 44 |
|
43 | 45 |
check(firstNode == lastNode, |
44 |
"checkDiEulerIt: |
|
46 |
"checkDiEulerIt: First and last nodes are not the same"); |
|
45 | 47 |
|
46 | 48 |
for (typename Digraph::ArcIt a(g); a != INVALID; ++a) |
47 | 49 |
{ |
48 | 50 |
check(visitationNumber[a] == 1, |
49 |
"checkDiEulerIt: |
|
51 |
"checkDiEulerIt: Not visited or multiple times visited arc found"); |
|
50 | 52 |
} |
51 | 53 |
} |
52 | 54 |
|
53 | 55 |
template <typename Graph> |
54 |
void checkEulerIt(const Graph& g |
|
56 |
void checkEulerIt(const Graph& g, |
|
57 |
const typename Graph::Node& start = INVALID) |
|
55 | 58 |
{ |
56 | 59 |
typename Graph::template EdgeMap<int> visitationNumber(g, 0); |
57 | 60 |
|
58 |
EulerIt<Graph> e(g); |
|
59 |
typename Graph::Node firstNode = g.u(e); |
|
60 |
|
|
61 |
EulerIt<Graph> e(g, start); |
|
62 |
if (e == INVALID) return; |
|
63 |
typename Graph::Node firstNode = g.source(typename Graph::Arc(e)); |
|
64 |
typename Graph::Node lastNode = g.target(typename Graph::Arc(e)); |
|
65 |
if (start != INVALID) { |
|
66 |
check(firstNode == start, "checkEulerIt: Wrong first node"); |
|
67 |
} |
|
61 | 68 |
|
62 |
for (; e != INVALID; ++e) |
|
63 |
{ |
|
64 |
if (e != INVALID) |
|
65 |
{ |
|
66 |
lastNode = g.v(e); |
|
67 |
} |
|
69 |
for (; e != INVALID; ++e) { |
|
70 |
if (e != INVALID) lastNode = g.target(typename Graph::Arc(e)); |
|
68 | 71 |
++visitationNumber[e]; |
69 | 72 |
} |
70 | 73 |
|
71 | 74 |
check(firstNode == lastNode, |
72 |
"checkEulerIt: |
|
75 |
"checkEulerIt: First and last nodes are not the same"); |
|
73 | 76 |
|
74 | 77 |
for (typename Graph::EdgeIt e(g); e != INVALID; ++e) |
75 | 78 |
{ |
76 | 79 |
check(visitationNumber[e] == 1, |
77 |
"checkEulerIt: |
|
80 |
"checkEulerIt: Not visited or multiple times visited edge found"); |
|
78 | 81 |
} |
79 | 82 |
} |
80 | 83 |
|
81 | 84 |
int main() |
82 | 85 |
{ |
83 | 86 |
typedef ListDigraph Digraph; |
84 |
typedef |
|
87 |
typedef Undirector<Digraph> Graph; |
|
88 |
|
|
89 |
{ |
|
90 |
Digraph d; |
|
91 |
Graph g(d); |
|
92 |
|
|
93 |
checkDiEulerIt(d); |
|
94 |
checkDiEulerIt(g); |
|
95 |
checkEulerIt(g); |
|
85 | 96 |
|
86 |
|
|
97 |
check(eulerian(d), "This graph is Eulerian"); |
|
98 |
check(eulerian(g), "This graph is Eulerian"); |
|
99 |
} |
|
87 | 100 |
{ |
88 |
Digraph |
|
101 |
Digraph d; |
|
102 |
Graph g(d); |
|
103 |
Digraph::Node n = d.addNode(); |
|
89 | 104 |
|
90 |
Digraph::Node n0 = g.addNode(); |
|
91 |
Digraph::Node n1 = g.addNode(); |
|
92 |
|
|
105 |
checkDiEulerIt(d); |
|
106 |
checkDiEulerIt(g); |
|
107 |
checkEulerIt(g); |
|
93 | 108 |
|
94 |
g.addArc(n0, n1); |
|
95 |
g.addArc(n1, n0); |
|
96 |
g.addArc(n1, n2); |
|
97 |
g.addArc(n2, n1); |
|
109 |
check(eulerian(d), "This graph is Eulerian"); |
|
110 |
check(eulerian(g), "This graph is Eulerian"); |
|
98 | 111 |
} |
112 |
{ |
|
113 |
Digraph d; |
|
114 |
Graph g(d); |
|
115 |
Digraph::Node n = d.addNode(); |
|
116 |
d.addArc(n, n); |
|
99 | 117 |
|
100 |
|
|
118 |
checkDiEulerIt(d); |
|
119 |
checkDiEulerIt(g); |
|
120 |
checkEulerIt(g); |
|
121 |
|
|
122 |
check(eulerian(d), "This graph is Eulerian"); |
|
123 |
check(eulerian(g), "This graph is Eulerian"); |
|
124 |
} |
|
101 | 125 |
{ |
102 |
Digraph |
|
126 |
Digraph d; |
|
127 |
Graph g(d); |
|
128 |
Digraph::Node n1 = d.addNode(); |
|
129 |
Digraph::Node n2 = d.addNode(); |
|
130 |
Digraph::Node n3 = d.addNode(); |
|
131 |
|
|
132 |
d.addArc(n1, n2); |
|
133 |
d.addArc(n2, n1); |
|
134 |
d.addArc(n2, n3); |
|
135 |
d.addArc(n3, n2); |
|
103 | 136 |
|
104 |
Digraph::Node n0 = g.addNode(); |
|
105 |
Digraph::Node n1 = g.addNode(); |
|
106 |
|
|
137 |
checkDiEulerIt(d); |
|
138 |
checkDiEulerIt(d, n2); |
|
139 |
checkDiEulerIt(g); |
|
140 |
checkDiEulerIt(g, n2); |
|
141 |
checkEulerIt(g); |
|
142 |
checkEulerIt(g, n2); |
|
107 | 143 |
|
108 |
g.addArc(n0, n1); |
|
109 |
g.addArc(n1, n0); |
|
110 |
|
|
144 |
check(eulerian(d), "This graph is Eulerian"); |
|
145 |
check(eulerian(g), "This graph is Eulerian"); |
|
111 | 146 |
} |
147 |
{ |
|
148 |
Digraph d; |
|
149 |
Graph g(d); |
|
150 |
Digraph::Node n1 = d.addNode(); |
|
151 |
Digraph::Node n2 = d.addNode(); |
|
152 |
Digraph::Node n3 = d.addNode(); |
|
153 |
Digraph::Node n4 = d.addNode(); |
|
154 |
Digraph::Node n5 = d.addNode(); |
|
155 |
Digraph::Node n6 = d.addNode(); |
|
156 |
|
|
157 |
d.addArc(n1, n2); |
|
158 |
d.addArc(n2, n4); |
|
159 |
d.addArc(n1, n3); |
|
160 |
d.addArc(n3, n4); |
|
161 |
d.addArc(n4, n1); |
|
162 |
d.addArc(n3, n5); |
|
163 |
d.addArc(n5, n2); |
|
164 |
d.addArc(n4, n6); |
|
165 |
d.addArc(n2, n6); |
|
166 |
d.addArc(n6, n1); |
|
167 |
d.addArc(n6, n3); |
|
112 | 168 |
|
113 |
|
|
169 |
checkDiEulerIt(d); |
|
170 |
checkDiEulerIt(d, n1); |
|
171 |
checkDiEulerIt(d, n5); |
|
172 |
|
|
173 |
checkDiEulerIt(g); |
|
174 |
checkDiEulerIt(g, n1); |
|
175 |
checkDiEulerIt(g, n5); |
|
176 |
checkEulerIt(g); |
|
177 |
checkEulerIt(g, n1); |
|
178 |
checkEulerIt(g, n5); |
|
179 |
|
|
180 |
check(eulerian(d), "This graph is Eulerian"); |
|
181 |
check(eulerian(g), "This graph is Eulerian"); |
|
182 |
} |
|
114 | 183 |
{ |
115 |
|
|
184 |
Digraph d; |
|
185 |
Graph g(d); |
|
186 |
Digraph::Node n0 = d.addNode(); |
|
187 |
Digraph::Node n1 = d.addNode(); |
|
188 |
Digraph::Node n2 = d.addNode(); |
|
189 |
Digraph::Node n3 = d.addNode(); |
|
190 |
Digraph::Node n4 = d.addNode(); |
|
191 |
Digraph::Node n5 = d.addNode(); |
|
192 |
|
|
193 |
d.addArc(n1, n2); |
|
194 |
d.addArc(n2, n3); |
|
195 |
d.addArc(n3, n1); |
|
116 | 196 |
|
117 |
Graph::Node n0 = g.addNode(); |
|
118 |
Graph::Node n1 = g.addNode(); |
|
119 |
|
|
197 |
checkDiEulerIt(d); |
|
198 |
checkDiEulerIt(d, n2); |
|
120 | 199 |
|
121 |
g.addEdge(n0, n1); |
|
122 |
g.addEdge(n1, n2); |
|
123 |
|
|
200 |
checkDiEulerIt(g); |
|
201 |
checkDiEulerIt(g, n2); |
|
202 |
checkEulerIt(g); |
|
203 |
checkEulerIt(g, n2); |
|
204 |
|
|
205 |
check(!eulerian(d), "This graph is not Eulerian"); |
|
206 |
check(!eulerian(g), "This graph is not Eulerian"); |
|
124 | 207 |
} |
208 |
{ |
|
209 |
Digraph d; |
|
210 |
Graph g(d); |
|
211 |
Digraph::Node n1 = d.addNode(); |
|
212 |
Digraph::Node n2 = d.addNode(); |
|
213 |
Digraph::Node n3 = d.addNode(); |
|
214 |
|
|
215 |
d.addArc(n1, n2); |
|
216 |
d.addArc(n2, n3); |
|
125 | 217 |
|
126 |
Graph graphWithoutEulerianCircuit; |
|
127 |
{ |
|
128 |
Graph& g = graphWithoutEulerianCircuit; |
|
129 |
|
|
130 |
Graph::Node n0 = g.addNode(); |
|
131 |
Graph::Node n1 = g.addNode(); |
|
132 |
Graph::Node n2 = g.addNode(); |
|
133 |
|
|
134 |
g.addEdge(n0, n1); |
|
135 |
g.addEdge(n1, n2); |
|
218 |
check(!eulerian(d), "This graph is not Eulerian"); |
|
219 |
check(!eulerian(g), "This graph is not Eulerian"); |
|
136 | 220 |
} |
137 | 221 |
|
138 |
checkDiEulerIt(digraphWithEulerianCircuit); |
|
139 |
|
|
140 |
checkEulerIt(graphWithEulerianCircuit); |
|
141 |
|
|
142 |
check(eulerian(digraphWithEulerianCircuit), |
|
143 |
"this graph should have an Eulerian circuit"); |
|
144 |
check(!eulerian(digraphWithoutEulerianCircuit), |
|
145 |
"this graph should not have an Eulerian circuit"); |
|
146 |
|
|
147 |
check(eulerian(graphWithEulerianCircuit), |
|
148 |
"this graph should have an Eulerian circuit"); |
|
149 |
check(!eulerian(graphWithoutEulerianCircuit), |
|
150 |
"this graph should have an Eulerian circuit"); |
|
151 |
|
|
152 | 222 |
return 0; |
153 | 223 |
} |
0 comments (0 inline)