| ... | ... |
@@ -464,1540 +464,1540 @@ |
| 464 | 464 |
public: |
| 465 | 465 |
|
| 466 | 466 |
/// Sets the iterator to the first term |
| 467 | 467 |
|
| 468 | 468 |
/// Sets the iterator to the first term of the expression. |
| 469 | 469 |
/// |
| 470 | 470 |
CoeffIt(Expr& e) |
| 471 | 471 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 472 | 472 |
|
| 473 | 473 |
/// Convert the iterator to the column of the term |
| 474 | 474 |
operator Col() const {
|
| 475 | 475 |
return colFromId(_it->first); |
| 476 | 476 |
} |
| 477 | 477 |
|
| 478 | 478 |
/// Returns the coefficient of the term |
| 479 | 479 |
Value& operator*() { return _it->second; }
|
| 480 | 480 |
|
| 481 | 481 |
/// Returns the coefficient of the term |
| 482 | 482 |
const Value& operator*() const { return _it->second; }
|
| 483 | 483 |
/// Next term |
| 484 | 484 |
|
| 485 | 485 |
/// Assign the iterator to the next term. |
| 486 | 486 |
/// |
| 487 | 487 |
CoeffIt& operator++() { ++_it; return *this; }
|
| 488 | 488 |
|
| 489 | 489 |
/// Equality operator |
| 490 | 490 |
bool operator==(Invalid) const { return _it == _end; }
|
| 491 | 491 |
/// Inequality operator |
| 492 | 492 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 493 | 493 |
}; |
| 494 | 494 |
|
| 495 | 495 |
/// Const iterator over the expression |
| 496 | 496 |
|
| 497 | 497 |
///The iterator iterates over the terms of the expression. |
| 498 | 498 |
/// |
| 499 | 499 |
///\code |
| 500 | 500 |
///double s=0; |
| 501 | 501 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
| 502 | 502 |
/// s+=*i * primal(i); |
| 503 | 503 |
///\endcode |
| 504 | 504 |
class ConstCoeffIt {
|
| 505 | 505 |
private: |
| 506 | 506 |
|
| 507 | 507 |
std::map<int, Value>::const_iterator _it, _end; |
| 508 | 508 |
|
| 509 | 509 |
public: |
| 510 | 510 |
|
| 511 | 511 |
/// Sets the iterator to the first term |
| 512 | 512 |
|
| 513 | 513 |
/// Sets the iterator to the first term of the expression. |
| 514 | 514 |
/// |
| 515 | 515 |
ConstCoeffIt(const Expr& e) |
| 516 | 516 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 517 | 517 |
|
| 518 | 518 |
/// Convert the iterator to the column of the term |
| 519 | 519 |
operator Col() const {
|
| 520 | 520 |
return colFromId(_it->first); |
| 521 | 521 |
} |
| 522 | 522 |
|
| 523 | 523 |
/// Returns the coefficient of the term |
| 524 | 524 |
const Value& operator*() const { return _it->second; }
|
| 525 | 525 |
|
| 526 | 526 |
/// Next term |
| 527 | 527 |
|
| 528 | 528 |
/// Assign the iterator to the next term. |
| 529 | 529 |
/// |
| 530 | 530 |
ConstCoeffIt& operator++() { ++_it; return *this; }
|
| 531 | 531 |
|
| 532 | 532 |
/// Equality operator |
| 533 | 533 |
bool operator==(Invalid) const { return _it == _end; }
|
| 534 | 534 |
/// Inequality operator |
| 535 | 535 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 536 | 536 |
}; |
| 537 | 537 |
|
| 538 | 538 |
}; |
| 539 | 539 |
|
| 540 | 540 |
///Linear constraint |
| 541 | 541 |
|
| 542 | 542 |
///This data stucture represents a linear constraint in the LP. |
| 543 | 543 |
///Basically it is a linear expression with a lower or an upper bound |
| 544 | 544 |
///(or both). These parts of the constraint can be obtained by the member |
| 545 | 545 |
///functions \ref expr(), \ref lowerBound() and \ref upperBound(), |
| 546 | 546 |
///respectively. |
| 547 | 547 |
///There are two ways to construct a constraint. |
| 548 | 548 |
///- You can set the linear expression and the bounds directly |
| 549 | 549 |
/// by the functions above. |
| 550 | 550 |
///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt> |
| 551 | 551 |
/// are defined between expressions, or even between constraints whenever |
| 552 | 552 |
/// it makes sense. Therefore if \c e and \c f are linear expressions and |
| 553 | 553 |
/// \c s and \c t are numbers, then the followings are valid expressions |
| 554 | 554 |
/// and thus they can be used directly e.g. in \ref addRow() whenever |
| 555 | 555 |
/// it makes sense. |
| 556 | 556 |
///\code |
| 557 | 557 |
/// e<=s |
| 558 | 558 |
/// e<=f |
| 559 | 559 |
/// e==f |
| 560 | 560 |
/// s<=e<=t |
| 561 | 561 |
/// e>=t |
| 562 | 562 |
///\endcode |
| 563 | 563 |
///\warning The validity of a constraint is checked only at run |
| 564 | 564 |
///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will |
| 565 | 565 |
///compile, but will fail an assertion. |
| 566 | 566 |
class Constr |
| 567 | 567 |
{
|
| 568 | 568 |
public: |
| 569 | 569 |
typedef LpBase::Expr Expr; |
| 570 | 570 |
typedef Expr::Key Key; |
| 571 | 571 |
typedef Expr::Value Value; |
| 572 | 572 |
|
| 573 | 573 |
protected: |
| 574 | 574 |
Expr _expr; |
| 575 | 575 |
Value _lb,_ub; |
| 576 | 576 |
public: |
| 577 | 577 |
///\e |
| 578 | 578 |
Constr() : _expr(), _lb(NaN), _ub(NaN) {}
|
| 579 | 579 |
///\e |
| 580 | 580 |
Constr(Value lb, const Expr &e, Value ub) : |
| 581 | 581 |
_expr(e), _lb(lb), _ub(ub) {}
|
| 582 | 582 |
Constr(const Expr &e) : |
| 583 | 583 |
_expr(e), _lb(NaN), _ub(NaN) {}
|
| 584 | 584 |
///\e |
| 585 | 585 |
void clear() |
| 586 | 586 |
{
|
| 587 | 587 |
_expr.clear(); |
| 588 | 588 |
_lb=_ub=NaN; |
| 589 | 589 |
} |
| 590 | 590 |
|
| 591 | 591 |
///Reference to the linear expression |
| 592 | 592 |
Expr &expr() { return _expr; }
|
| 593 | 593 |
///Cont reference to the linear expression |
| 594 | 594 |
const Expr &expr() const { return _expr; }
|
| 595 | 595 |
///Reference to the lower bound. |
| 596 | 596 |
|
| 597 | 597 |
///\return |
| 598 | 598 |
///- \ref INF "INF": the constraint is lower unbounded. |
| 599 | 599 |
///- \ref NaN "NaN": lower bound has not been set. |
| 600 | 600 |
///- finite number: the lower bound |
| 601 | 601 |
Value &lowerBound() { return _lb; }
|
| 602 | 602 |
///The const version of \ref lowerBound() |
| 603 | 603 |
const Value &lowerBound() const { return _lb; }
|
| 604 | 604 |
///Reference to the upper bound. |
| 605 | 605 |
|
| 606 | 606 |
///\return |
| 607 | 607 |
///- \ref INF "INF": the constraint is upper unbounded. |
| 608 | 608 |
///- \ref NaN "NaN": upper bound has not been set. |
| 609 | 609 |
///- finite number: the upper bound |
| 610 | 610 |
Value &upperBound() { return _ub; }
|
| 611 | 611 |
///The const version of \ref upperBound() |
| 612 | 612 |
const Value &upperBound() const { return _ub; }
|
| 613 | 613 |
///Is the constraint lower bounded? |
| 614 | 614 |
bool lowerBounded() const {
|
| 615 | 615 |
return _lb != -INF && !isNaN(_lb); |
| 616 | 616 |
} |
| 617 | 617 |
///Is the constraint upper bounded? |
| 618 | 618 |
bool upperBounded() const {
|
| 619 | 619 |
return _ub != INF && !isNaN(_ub); |
| 620 | 620 |
} |
| 621 | 621 |
|
| 622 | 622 |
}; |
| 623 | 623 |
|
| 624 | 624 |
///Linear expression of rows |
| 625 | 625 |
|
| 626 | 626 |
///This data structure represents a column of the matrix, |
| 627 | 627 |
///thas is it strores a linear expression of the dual variables |
| 628 | 628 |
///(\ref Row "Row"s). |
| 629 | 629 |
/// |
| 630 | 630 |
///There are several ways to access and modify the contents of this |
| 631 | 631 |
///container. |
| 632 | 632 |
///\code |
| 633 | 633 |
///e[v]=5; |
| 634 | 634 |
///e[v]+=12; |
| 635 | 635 |
///e.erase(v); |
| 636 | 636 |
///\endcode |
| 637 | 637 |
///or you can also iterate through its elements. |
| 638 | 638 |
///\code |
| 639 | 639 |
///double s=0; |
| 640 | 640 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
| 641 | 641 |
/// s+=*i; |
| 642 | 642 |
///\endcode |
| 643 | 643 |
///(This code computes the sum of all coefficients). |
| 644 | 644 |
///- Numbers (<tt>double</tt>'s) |
| 645 | 645 |
///and variables (\ref Row "Row"s) directly convert to an |
| 646 | 646 |
///\ref DualExpr and the usual linear operations are defined, so |
| 647 | 647 |
///\code |
| 648 | 648 |
///v+w |
| 649 | 649 |
///2*v-3.12*(v-w/2) |
| 650 | 650 |
///v*2.1+(3*v+(v*12+w)*3)/2 |
| 651 | 651 |
///\endcode |
| 652 | 652 |
///are valid \ref DualExpr dual expressions. |
| 653 | 653 |
///The usual assignment operations are also defined. |
| 654 | 654 |
///\code |
| 655 | 655 |
///e=v+w; |
| 656 | 656 |
///e+=2*v-3.12*(v-w/2); |
| 657 | 657 |
///e*=3.4; |
| 658 | 658 |
///e/=5; |
| 659 | 659 |
///\endcode |
| 660 | 660 |
/// |
| 661 | 661 |
///\sa Expr |
| 662 | 662 |
class DualExpr {
|
| 663 | 663 |
friend class LpBase; |
| 664 | 664 |
public: |
| 665 | 665 |
/// The key type of the expression |
| 666 | 666 |
typedef LpBase::Row Key; |
| 667 | 667 |
/// The value type of the expression |
| 668 | 668 |
typedef LpBase::Value Value; |
| 669 | 669 |
|
| 670 | 670 |
protected: |
| 671 | 671 |
std::map<int, Value> comps; |
| 672 | 672 |
|
| 673 | 673 |
public: |
| 674 | 674 |
typedef True SolverExpr; |
| 675 | 675 |
/// Default constructor |
| 676 | 676 |
|
| 677 | 677 |
/// Construct an empty expression, the coefficients are |
| 678 | 678 |
/// initialized to zero. |
| 679 | 679 |
DualExpr() {}
|
| 680 | 680 |
/// Construct an expression from a row |
| 681 | 681 |
|
| 682 | 682 |
/// Construct an expression, which has a term with \c r dual |
| 683 | 683 |
/// variable and 1.0 coefficient. |
| 684 | 684 |
DualExpr(const Row &r) {
|
| 685 | 685 |
typedef std::map<int, Value>::value_type pair_type; |
| 686 | 686 |
comps.insert(pair_type(id(r), 1)); |
| 687 | 687 |
} |
| 688 | 688 |
/// Returns the coefficient of the row |
| 689 | 689 |
Value operator[](const Row& r) const {
|
| 690 | 690 |
std::map<int, Value>::const_iterator it = comps.find(id(r)); |
| 691 | 691 |
if (it != comps.end()) {
|
| 692 | 692 |
return it->second; |
| 693 | 693 |
} else {
|
| 694 | 694 |
return 0; |
| 695 | 695 |
} |
| 696 | 696 |
} |
| 697 | 697 |
/// Returns the coefficient of the row |
| 698 | 698 |
Value& operator[](const Row& r) {
|
| 699 | 699 |
return comps[id(r)]; |
| 700 | 700 |
} |
| 701 | 701 |
/// Sets the coefficient of the row |
| 702 | 702 |
void set(const Row &r, const Value &v) {
|
| 703 | 703 |
if (v != 0.0) {
|
| 704 | 704 |
typedef std::map<int, Value>::value_type pair_type; |
| 705 | 705 |
comps.insert(pair_type(id(r), v)); |
| 706 | 706 |
} else {
|
| 707 | 707 |
comps.erase(id(r)); |
| 708 | 708 |
} |
| 709 | 709 |
} |
| 710 | 710 |
/// \brief Removes the coefficients which's absolute value does |
| 711 | 711 |
/// not exceed \c epsilon. |
| 712 | 712 |
void simplify(Value epsilon = 0.0) {
|
| 713 | 713 |
std::map<int, Value>::iterator it=comps.begin(); |
| 714 | 714 |
while (it != comps.end()) {
|
| 715 | 715 |
std::map<int, Value>::iterator jt=it; |
| 716 | 716 |
++jt; |
| 717 | 717 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
| 718 | 718 |
it=jt; |
| 719 | 719 |
} |
| 720 | 720 |
} |
| 721 | 721 |
|
| 722 | 722 |
void simplify(Value epsilon = 0.0) const {
|
| 723 | 723 |
const_cast<DualExpr*>(this)->simplify(epsilon); |
| 724 | 724 |
} |
| 725 | 725 |
|
| 726 | 726 |
///Sets all coefficients to 0. |
| 727 | 727 |
void clear() {
|
| 728 | 728 |
comps.clear(); |
| 729 | 729 |
} |
| 730 | 730 |
///Compound assignment |
| 731 | 731 |
DualExpr &operator+=(const DualExpr &e) {
|
| 732 | 732 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
| 733 | 733 |
it!=e.comps.end(); ++it) |
| 734 | 734 |
comps[it->first]+=it->second; |
| 735 | 735 |
return *this; |
| 736 | 736 |
} |
| 737 | 737 |
///Compound assignment |
| 738 | 738 |
DualExpr &operator-=(const DualExpr &e) {
|
| 739 | 739 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
| 740 | 740 |
it!=e.comps.end(); ++it) |
| 741 | 741 |
comps[it->first]-=it->second; |
| 742 | 742 |
return *this; |
| 743 | 743 |
} |
| 744 | 744 |
///Multiply with a constant |
| 745 | 745 |
DualExpr &operator*=(const Value &v) {
|
| 746 | 746 |
for (std::map<int, Value>::iterator it=comps.begin(); |
| 747 | 747 |
it!=comps.end(); ++it) |
| 748 | 748 |
it->second*=v; |
| 749 | 749 |
return *this; |
| 750 | 750 |
} |
| 751 | 751 |
///Division with a constant |
| 752 | 752 |
DualExpr &operator/=(const Value &v) {
|
| 753 | 753 |
for (std::map<int, Value>::iterator it=comps.begin(); |
| 754 | 754 |
it!=comps.end(); ++it) |
| 755 | 755 |
it->second/=v; |
| 756 | 756 |
return *this; |
| 757 | 757 |
} |
| 758 | 758 |
|
| 759 | 759 |
///Iterator over the expression |
| 760 | 760 |
|
| 761 | 761 |
///The iterator iterates over the terms of the expression. |
| 762 | 762 |
/// |
| 763 | 763 |
///\code |
| 764 | 764 |
///double s=0; |
| 765 | 765 |
///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i) |
| 766 | 766 |
/// s+= *i * dual(i); |
| 767 | 767 |
///\endcode |
| 768 | 768 |
class CoeffIt {
|
| 769 | 769 |
private: |
| 770 | 770 |
|
| 771 | 771 |
std::map<int, Value>::iterator _it, _end; |
| 772 | 772 |
|
| 773 | 773 |
public: |
| 774 | 774 |
|
| 775 | 775 |
/// Sets the iterator to the first term |
| 776 | 776 |
|
| 777 | 777 |
/// Sets the iterator to the first term of the expression. |
| 778 | 778 |
/// |
| 779 | 779 |
CoeffIt(DualExpr& e) |
| 780 | 780 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 781 | 781 |
|
| 782 | 782 |
/// Convert the iterator to the row of the term |
| 783 | 783 |
operator Row() const {
|
| 784 | 784 |
return rowFromId(_it->first); |
| 785 | 785 |
} |
| 786 | 786 |
|
| 787 | 787 |
/// Returns the coefficient of the term |
| 788 | 788 |
Value& operator*() { return _it->second; }
|
| 789 | 789 |
|
| 790 | 790 |
/// Returns the coefficient of the term |
| 791 | 791 |
const Value& operator*() const { return _it->second; }
|
| 792 | 792 |
|
| 793 | 793 |
/// Next term |
| 794 | 794 |
|
| 795 | 795 |
/// Assign the iterator to the next term. |
| 796 | 796 |
/// |
| 797 | 797 |
CoeffIt& operator++() { ++_it; return *this; }
|
| 798 | 798 |
|
| 799 | 799 |
/// Equality operator |
| 800 | 800 |
bool operator==(Invalid) const { return _it == _end; }
|
| 801 | 801 |
/// Inequality operator |
| 802 | 802 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 803 | 803 |
}; |
| 804 | 804 |
|
| 805 | 805 |
///Iterator over the expression |
| 806 | 806 |
|
| 807 | 807 |
///The iterator iterates over the terms of the expression. |
| 808 | 808 |
/// |
| 809 | 809 |
///\code |
| 810 | 810 |
///double s=0; |
| 811 | 811 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
| 812 | 812 |
/// s+= *i * dual(i); |
| 813 | 813 |
///\endcode |
| 814 | 814 |
class ConstCoeffIt {
|
| 815 | 815 |
private: |
| 816 | 816 |
|
| 817 | 817 |
std::map<int, Value>::const_iterator _it, _end; |
| 818 | 818 |
|
| 819 | 819 |
public: |
| 820 | 820 |
|
| 821 | 821 |
/// Sets the iterator to the first term |
| 822 | 822 |
|
| 823 | 823 |
/// Sets the iterator to the first term of the expression. |
| 824 | 824 |
/// |
| 825 | 825 |
ConstCoeffIt(const DualExpr& e) |
| 826 | 826 |
: _it(e.comps.begin()), _end(e.comps.end()){}
|
| 827 | 827 |
|
| 828 | 828 |
/// Convert the iterator to the row of the term |
| 829 | 829 |
operator Row() const {
|
| 830 | 830 |
return rowFromId(_it->first); |
| 831 | 831 |
} |
| 832 | 832 |
|
| 833 | 833 |
/// Returns the coefficient of the term |
| 834 | 834 |
const Value& operator*() const { return _it->second; }
|
| 835 | 835 |
|
| 836 | 836 |
/// Next term |
| 837 | 837 |
|
| 838 | 838 |
/// Assign the iterator to the next term. |
| 839 | 839 |
/// |
| 840 | 840 |
ConstCoeffIt& operator++() { ++_it; return *this; }
|
| 841 | 841 |
|
| 842 | 842 |
/// Equality operator |
| 843 | 843 |
bool operator==(Invalid) const { return _it == _end; }
|
| 844 | 844 |
/// Inequality operator |
| 845 | 845 |
bool operator!=(Invalid) const { return _it != _end; }
|
| 846 | 846 |
}; |
| 847 | 847 |
}; |
| 848 | 848 |
|
| 849 | 849 |
|
| 850 | 850 |
protected: |
| 851 | 851 |
|
| 852 | 852 |
class InsertIterator {
|
| 853 | 853 |
private: |
| 854 | 854 |
|
| 855 | 855 |
std::map<int, Value>& _host; |
| 856 | 856 |
const _solver_bits::VarIndex& _index; |
| 857 | 857 |
|
| 858 | 858 |
public: |
| 859 | 859 |
|
| 860 | 860 |
typedef std::output_iterator_tag iterator_category; |
| 861 | 861 |
typedef void difference_type; |
| 862 | 862 |
typedef void value_type; |
| 863 | 863 |
typedef void reference; |
| 864 | 864 |
typedef void pointer; |
| 865 | 865 |
|
| 866 | 866 |
InsertIterator(std::map<int, Value>& host, |
| 867 | 867 |
const _solver_bits::VarIndex& index) |
| 868 | 868 |
: _host(host), _index(index) {}
|
| 869 | 869 |
|
| 870 | 870 |
InsertIterator& operator=(const std::pair<int, Value>& value) {
|
| 871 | 871 |
typedef std::map<int, Value>::value_type pair_type; |
| 872 | 872 |
_host.insert(pair_type(_index[value.first], value.second)); |
| 873 | 873 |
return *this; |
| 874 | 874 |
} |
| 875 | 875 |
|
| 876 | 876 |
InsertIterator& operator*() { return *this; }
|
| 877 | 877 |
InsertIterator& operator++() { return *this; }
|
| 878 | 878 |
InsertIterator operator++(int) { return *this; }
|
| 879 | 879 |
|
| 880 | 880 |
}; |
| 881 | 881 |
|
| 882 | 882 |
class ExprIterator {
|
| 883 | 883 |
private: |
| 884 | 884 |
std::map<int, Value>::const_iterator _host_it; |
| 885 | 885 |
const _solver_bits::VarIndex& _index; |
| 886 | 886 |
public: |
| 887 | 887 |
|
| 888 | 888 |
typedef std::bidirectional_iterator_tag iterator_category; |
| 889 | 889 |
typedef std::ptrdiff_t difference_type; |
| 890 | 890 |
typedef const std::pair<int, Value> value_type; |
| 891 | 891 |
typedef value_type reference; |
| 892 | 892 |
|
| 893 | 893 |
class pointer {
|
| 894 | 894 |
public: |
| 895 | 895 |
pointer(value_type& _value) : value(_value) {}
|
| 896 | 896 |
value_type* operator->() { return &value; }
|
| 897 | 897 |
private: |
| 898 | 898 |
value_type value; |
| 899 | 899 |
}; |
| 900 | 900 |
|
| 901 | 901 |
ExprIterator(const std::map<int, Value>::const_iterator& host_it, |
| 902 | 902 |
const _solver_bits::VarIndex& index) |
| 903 | 903 |
: _host_it(host_it), _index(index) {}
|
| 904 | 904 |
|
| 905 | 905 |
reference operator*() {
|
| 906 | 906 |
return std::make_pair(_index(_host_it->first), _host_it->second); |
| 907 | 907 |
} |
| 908 | 908 |
|
| 909 | 909 |
pointer operator->() {
|
| 910 | 910 |
return pointer(operator*()); |
| 911 | 911 |
} |
| 912 | 912 |
|
| 913 | 913 |
ExprIterator& operator++() { ++_host_it; return *this; }
|
| 914 | 914 |
ExprIterator operator++(int) {
|
| 915 | 915 |
ExprIterator tmp(*this); ++_host_it; return tmp; |
| 916 | 916 |
} |
| 917 | 917 |
|
| 918 | 918 |
ExprIterator& operator--() { --_host_it; return *this; }
|
| 919 | 919 |
ExprIterator operator--(int) {
|
| 920 | 920 |
ExprIterator tmp(*this); --_host_it; return tmp; |
| 921 | 921 |
} |
| 922 | 922 |
|
| 923 | 923 |
bool operator==(const ExprIterator& it) const {
|
| 924 | 924 |
return _host_it == it._host_it; |
| 925 | 925 |
} |
| 926 | 926 |
|
| 927 | 927 |
bool operator!=(const ExprIterator& it) const {
|
| 928 | 928 |
return _host_it != it._host_it; |
| 929 | 929 |
} |
| 930 | 930 |
|
| 931 | 931 |
}; |
| 932 | 932 |
|
| 933 | 933 |
protected: |
| 934 | 934 |
|
| 935 | 935 |
//Abstract virtual functions |
| 936 | 936 |
|
| 937 | 937 |
virtual int _addColId(int col) { return cols.addIndex(col); }
|
| 938 | 938 |
virtual int _addRowId(int row) { return rows.addIndex(row); }
|
| 939 | 939 |
|
| 940 | 940 |
virtual void _eraseColId(int col) { cols.eraseIndex(col); }
|
| 941 | 941 |
virtual void _eraseRowId(int row) { rows.eraseIndex(row); }
|
| 942 | 942 |
|
| 943 | 943 |
virtual int _addCol() = 0; |
| 944 | 944 |
virtual int _addRow() = 0; |
| 945 | 945 |
|
| 946 | 946 |
virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u) {
|
| 947 | 947 |
int row = _addRow(); |
| 948 | 948 |
_setRowCoeffs(row, b, e); |
| 949 | 949 |
_setRowLowerBound(row, l); |
| 950 | 950 |
_setRowUpperBound(row, u); |
| 951 | 951 |
return row; |
| 952 | 952 |
} |
| 953 | 953 |
|
| 954 | 954 |
virtual void _eraseCol(int col) = 0; |
| 955 | 955 |
virtual void _eraseRow(int row) = 0; |
| 956 | 956 |
|
| 957 | 957 |
virtual void _getColName(int col, std::string& name) const = 0; |
| 958 | 958 |
virtual void _setColName(int col, const std::string& name) = 0; |
| 959 | 959 |
virtual int _colByName(const std::string& name) const = 0; |
| 960 | 960 |
|
| 961 | 961 |
virtual void _getRowName(int row, std::string& name) const = 0; |
| 962 | 962 |
virtual void _setRowName(int row, const std::string& name) = 0; |
| 963 | 963 |
virtual int _rowByName(const std::string& name) const = 0; |
| 964 | 964 |
|
| 965 | 965 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
| 966 | 966 |
virtual void _getRowCoeffs(int i, InsertIterator b) const = 0; |
| 967 | 967 |
|
| 968 | 968 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
| 969 | 969 |
virtual void _getColCoeffs(int i, InsertIterator b) const = 0; |
| 970 | 970 |
|
| 971 | 971 |
virtual void _setCoeff(int row, int col, Value value) = 0; |
| 972 | 972 |
virtual Value _getCoeff(int row, int col) const = 0; |
| 973 | 973 |
|
| 974 | 974 |
virtual void _setColLowerBound(int i, Value value) = 0; |
| 975 | 975 |
virtual Value _getColLowerBound(int i) const = 0; |
| 976 | 976 |
|
| 977 | 977 |
virtual void _setColUpperBound(int i, Value value) = 0; |
| 978 | 978 |
virtual Value _getColUpperBound(int i) const = 0; |
| 979 | 979 |
|
| 980 | 980 |
virtual void _setRowLowerBound(int i, Value value) = 0; |
| 981 | 981 |
virtual Value _getRowLowerBound(int i) const = 0; |
| 982 | 982 |
|
| 983 | 983 |
virtual void _setRowUpperBound(int i, Value value) = 0; |
| 984 | 984 |
virtual Value _getRowUpperBound(int i) const = 0; |
| 985 | 985 |
|
| 986 | 986 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e) = 0; |
| 987 | 987 |
virtual void _getObjCoeffs(InsertIterator b) const = 0; |
| 988 | 988 |
|
| 989 | 989 |
virtual void _setObjCoeff(int i, Value obj_coef) = 0; |
| 990 | 990 |
virtual Value _getObjCoeff(int i) const = 0; |
| 991 | 991 |
|
| 992 | 992 |
virtual void _setSense(Sense) = 0; |
| 993 | 993 |
virtual Sense _getSense() const = 0; |
| 994 | 994 |
|
| 995 | 995 |
virtual void _clear() = 0; |
| 996 | 996 |
|
| 997 | 997 |
virtual const char* _solverName() const = 0; |
| 998 | 998 |
|
| 999 | 999 |
virtual void _messageLevel(MessageLevel level) = 0; |
| 1000 | 1000 |
|
| 1001 | 1001 |
//Own protected stuff |
| 1002 | 1002 |
|
| 1003 | 1003 |
//Constant component of the objective function |
| 1004 | 1004 |
Value obj_const_comp; |
| 1005 | 1005 |
|
| 1006 | 1006 |
LpBase() : rows(), cols(), obj_const_comp(0) {}
|
| 1007 | 1007 |
|
| 1008 | 1008 |
public: |
| 1009 | 1009 |
|
| 1010 | 1010 |
/// Virtual destructor |
| 1011 | 1011 |
virtual ~LpBase() {}
|
| 1012 | 1012 |
|
| 1013 | 1013 |
///Gives back the name of the solver. |
| 1014 | 1014 |
const char* solverName() const {return _solverName();}
|
| 1015 | 1015 |
|
| 1016 | 1016 |
///\name Build Up and Modify the LP |
| 1017 | 1017 |
|
| 1018 | 1018 |
///@{
|
| 1019 | 1019 |
|
| 1020 | 1020 |
///Add a new empty column (i.e a new variable) to the LP |
| 1021 | 1021 |
Col addCol() { Col c; c._id = _addColId(_addCol()); return c;}
|
| 1022 | 1022 |
|
| 1023 | 1023 |
///\brief Adds several new columns (i.e variables) at once |
| 1024 | 1024 |
/// |
| 1025 | 1025 |
///This magic function takes a container as its argument and fills |
| 1026 | 1026 |
///its elements with new columns (i.e. variables) |
| 1027 | 1027 |
///\param t can be |
| 1028 | 1028 |
///- a standard STL compatible iterable container with |
| 1029 | 1029 |
///\ref Col as its \c values_type like |
| 1030 | 1030 |
///\code |
| 1031 | 1031 |
///std::vector<LpBase::Col> |
| 1032 | 1032 |
///std::list<LpBase::Col> |
| 1033 | 1033 |
///\endcode |
| 1034 | 1034 |
///- a standard STL compatible iterable container with |
| 1035 | 1035 |
///\ref Col as its \c mapped_type like |
| 1036 | 1036 |
///\code |
| 1037 | 1037 |
///std::map<AnyType,LpBase::Col> |
| 1038 | 1038 |
///\endcode |
| 1039 | 1039 |
///- an iterable lemon \ref concepts::WriteMap "write map" like |
| 1040 | 1040 |
///\code |
| 1041 | 1041 |
///ListGraph::NodeMap<LpBase::Col> |
| 1042 | 1042 |
///ListGraph::ArcMap<LpBase::Col> |
| 1043 | 1043 |
///\endcode |
| 1044 | 1044 |
///\return The number of the created column. |
| 1045 | 1045 |
#ifdef DOXYGEN |
| 1046 | 1046 |
template<class T> |
| 1047 | 1047 |
int addColSet(T &t) { return 0;}
|
| 1048 | 1048 |
#else |
| 1049 | 1049 |
template<class T> |
| 1050 | 1050 |
typename enable_if<typename T::value_type::LpCol,int>::type |
| 1051 | 1051 |
addColSet(T &t,dummy<0> = 0) {
|
| 1052 | 1052 |
int s=0; |
| 1053 | 1053 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;}
|
| 1054 | 1054 |
return s; |
| 1055 | 1055 |
} |
| 1056 | 1056 |
template<class T> |
| 1057 | 1057 |
typename enable_if<typename T::value_type::second_type::LpCol, |
| 1058 | 1058 |
int>::type |
| 1059 | 1059 |
addColSet(T &t,dummy<1> = 1) {
|
| 1060 | 1060 |
int s=0; |
| 1061 | 1061 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1062 | 1062 |
i->second=addCol(); |
| 1063 | 1063 |
s++; |
| 1064 | 1064 |
} |
| 1065 | 1065 |
return s; |
| 1066 | 1066 |
} |
| 1067 | 1067 |
template<class T> |
| 1068 | 1068 |
typename enable_if<typename T::MapIt::Value::LpCol, |
| 1069 | 1069 |
int>::type |
| 1070 | 1070 |
addColSet(T &t,dummy<2> = 2) {
|
| 1071 | 1071 |
int s=0; |
| 1072 | 1072 |
for(typename T::MapIt i(t); i!=INVALID; ++i) |
| 1073 | 1073 |
{
|
| 1074 | 1074 |
i.set(addCol()); |
| 1075 | 1075 |
s++; |
| 1076 | 1076 |
} |
| 1077 | 1077 |
return s; |
| 1078 | 1078 |
} |
| 1079 | 1079 |
#endif |
| 1080 | 1080 |
|
| 1081 | 1081 |
///Set a column (i.e a dual constraint) of the LP |
| 1082 | 1082 |
|
| 1083 | 1083 |
///\param c is the column to be modified |
| 1084 | 1084 |
///\param e is a dual linear expression (see \ref DualExpr) |
| 1085 | 1085 |
///a better one. |
| 1086 | 1086 |
void col(Col c, const DualExpr &e) {
|
| 1087 | 1087 |
e.simplify(); |
| 1088 | 1088 |
_setColCoeffs(cols(id(c)), ExprIterator(e.comps.begin(), rows), |
| 1089 | 1089 |
ExprIterator(e.comps.end(), rows)); |
| 1090 | 1090 |
} |
| 1091 | 1091 |
|
| 1092 | 1092 |
///Get a column (i.e a dual constraint) of the LP |
| 1093 | 1093 |
|
| 1094 | 1094 |
///\param c is the column to get |
| 1095 | 1095 |
///\return the dual expression associated to the column |
| 1096 | 1096 |
DualExpr col(Col c) const {
|
| 1097 | 1097 |
DualExpr e; |
| 1098 | 1098 |
_getColCoeffs(cols(id(c)), InsertIterator(e.comps, rows)); |
| 1099 | 1099 |
return e; |
| 1100 | 1100 |
} |
| 1101 | 1101 |
|
| 1102 | 1102 |
///Add a new column to the LP |
| 1103 | 1103 |
|
| 1104 | 1104 |
///\param e is a dual linear expression (see \ref DualExpr) |
| 1105 | 1105 |
///\param o is the corresponding component of the objective |
| 1106 | 1106 |
///function. It is 0 by default. |
| 1107 | 1107 |
///\return The created column. |
| 1108 | 1108 |
Col addCol(const DualExpr &e, Value o = 0) {
|
| 1109 | 1109 |
Col c=addCol(); |
| 1110 | 1110 |
col(c,e); |
| 1111 | 1111 |
objCoeff(c,o); |
| 1112 | 1112 |
return c; |
| 1113 | 1113 |
} |
| 1114 | 1114 |
|
| 1115 | 1115 |
///Add a new empty row (i.e a new constraint) to the LP |
| 1116 | 1116 |
|
| 1117 | 1117 |
///This function adds a new empty row (i.e a new constraint) to the LP. |
| 1118 | 1118 |
///\return The created row |
| 1119 | 1119 |
Row addRow() { Row r; r._id = _addRowId(_addRow()); return r;}
|
| 1120 | 1120 |
|
| 1121 | 1121 |
///\brief Add several new rows (i.e constraints) at once |
| 1122 | 1122 |
/// |
| 1123 | 1123 |
///This magic function takes a container as its argument and fills |
| 1124 | 1124 |
///its elements with new row (i.e. variables) |
| 1125 | 1125 |
///\param t can be |
| 1126 | 1126 |
///- a standard STL compatible iterable container with |
| 1127 | 1127 |
///\ref Row as its \c values_type like |
| 1128 | 1128 |
///\code |
| 1129 | 1129 |
///std::vector<LpBase::Row> |
| 1130 | 1130 |
///std::list<LpBase::Row> |
| 1131 | 1131 |
///\endcode |
| 1132 | 1132 |
///- a standard STL compatible iterable container with |
| 1133 | 1133 |
///\ref Row as its \c mapped_type like |
| 1134 | 1134 |
///\code |
| 1135 | 1135 |
///std::map<AnyType,LpBase::Row> |
| 1136 | 1136 |
///\endcode |
| 1137 | 1137 |
///- an iterable lemon \ref concepts::WriteMap "write map" like |
| 1138 | 1138 |
///\code |
| 1139 | 1139 |
///ListGraph::NodeMap<LpBase::Row> |
| 1140 | 1140 |
///ListGraph::ArcMap<LpBase::Row> |
| 1141 | 1141 |
///\endcode |
| 1142 | 1142 |
///\return The number of rows created. |
| 1143 | 1143 |
#ifdef DOXYGEN |
| 1144 | 1144 |
template<class T> |
| 1145 | 1145 |
int addRowSet(T &t) { return 0;}
|
| 1146 | 1146 |
#else |
| 1147 | 1147 |
template<class T> |
| 1148 | 1148 |
typename enable_if<typename T::value_type::LpRow,int>::type |
| 1149 | 1149 |
addRowSet(T &t, dummy<0> = 0) {
|
| 1150 | 1150 |
int s=0; |
| 1151 | 1151 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;}
|
| 1152 | 1152 |
return s; |
| 1153 | 1153 |
} |
| 1154 | 1154 |
template<class T> |
| 1155 | 1155 |
typename enable_if<typename T::value_type::second_type::LpRow, int>::type |
| 1156 | 1156 |
addRowSet(T &t, dummy<1> = 1) {
|
| 1157 | 1157 |
int s=0; |
| 1158 | 1158 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1159 | 1159 |
i->second=addRow(); |
| 1160 | 1160 |
s++; |
| 1161 | 1161 |
} |
| 1162 | 1162 |
return s; |
| 1163 | 1163 |
} |
| 1164 | 1164 |
template<class T> |
| 1165 | 1165 |
typename enable_if<typename T::MapIt::Value::LpRow, int>::type |
| 1166 | 1166 |
addRowSet(T &t, dummy<2> = 2) {
|
| 1167 | 1167 |
int s=0; |
| 1168 | 1168 |
for(typename T::MapIt i(t); i!=INVALID; ++i) |
| 1169 | 1169 |
{
|
| 1170 | 1170 |
i.set(addRow()); |
| 1171 | 1171 |
s++; |
| 1172 | 1172 |
} |
| 1173 | 1173 |
return s; |
| 1174 | 1174 |
} |
| 1175 | 1175 |
#endif |
| 1176 | 1176 |
|
| 1177 | 1177 |
///Set a row (i.e a constraint) of the LP |
| 1178 | 1178 |
|
| 1179 | 1179 |
///\param r is the row to be modified |
| 1180 | 1180 |
///\param l is lower bound (-\ref INF means no bound) |
| 1181 | 1181 |
///\param e is a linear expression (see \ref Expr) |
| 1182 | 1182 |
///\param u is the upper bound (\ref INF means no bound) |
| 1183 | 1183 |
void row(Row r, Value l, const Expr &e, Value u) {
|
| 1184 | 1184 |
e.simplify(); |
| 1185 | 1185 |
_setRowCoeffs(rows(id(r)), ExprIterator(e.comps.begin(), cols), |
| 1186 | 1186 |
ExprIterator(e.comps.end(), cols)); |
| 1187 | 1187 |
_setRowLowerBound(rows(id(r)),l - *e); |
| 1188 | 1188 |
_setRowUpperBound(rows(id(r)),u - *e); |
| 1189 | 1189 |
} |
| 1190 | 1190 |
|
| 1191 | 1191 |
///Set a row (i.e a constraint) of the LP |
| 1192 | 1192 |
|
| 1193 | 1193 |
///\param r is the row to be modified |
| 1194 | 1194 |
///\param c is a linear expression (see \ref Constr) |
| 1195 | 1195 |
void row(Row r, const Constr &c) {
|
| 1196 | 1196 |
row(r, c.lowerBounded()?c.lowerBound():-INF, |
| 1197 | 1197 |
c.expr(), c.upperBounded()?c.upperBound():INF); |
| 1198 | 1198 |
} |
| 1199 | 1199 |
|
| 1200 | 1200 |
|
| 1201 | 1201 |
///Get a row (i.e a constraint) of the LP |
| 1202 | 1202 |
|
| 1203 | 1203 |
///\param r is the row to get |
| 1204 | 1204 |
///\return the expression associated to the row |
| 1205 | 1205 |
Expr row(Row r) const {
|
| 1206 | 1206 |
Expr e; |
| 1207 | 1207 |
_getRowCoeffs(rows(id(r)), InsertIterator(e.comps, cols)); |
| 1208 | 1208 |
return e; |
| 1209 | 1209 |
} |
| 1210 | 1210 |
|
| 1211 | 1211 |
///Add a new row (i.e a new constraint) to the LP |
| 1212 | 1212 |
|
| 1213 | 1213 |
///\param l is the lower bound (-\ref INF means no bound) |
| 1214 | 1214 |
///\param e is a linear expression (see \ref Expr) |
| 1215 | 1215 |
///\param u is the upper bound (\ref INF means no bound) |
| 1216 | 1216 |
///\return The created row. |
| 1217 | 1217 |
Row addRow(Value l,const Expr &e, Value u) {
|
| 1218 | 1218 |
Row r; |
| 1219 | 1219 |
e.simplify(); |
| 1220 | 1220 |
r._id = _addRowId(_addRow(l - *e, ExprIterator(e.comps.begin(), cols), |
| 1221 | 1221 |
ExprIterator(e.comps.end(), cols), u - *e)); |
| 1222 | 1222 |
return r; |
| 1223 | 1223 |
} |
| 1224 | 1224 |
|
| 1225 | 1225 |
///Add a new row (i.e a new constraint) to the LP |
| 1226 | 1226 |
|
| 1227 | 1227 |
///\param c is a linear expression (see \ref Constr) |
| 1228 | 1228 |
///\return The created row. |
| 1229 | 1229 |
Row addRow(const Constr &c) {
|
| 1230 | 1230 |
Row r; |
| 1231 | 1231 |
c.expr().simplify(); |
| 1232 |
r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound():-INF, |
|
| 1232 |
r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound()-*c.expr():-INF, |
|
| 1233 | 1233 |
ExprIterator(c.expr().comps.begin(), cols), |
| 1234 | 1234 |
ExprIterator(c.expr().comps.end(), cols), |
| 1235 |
c.upperBounded()?c.upperBound():INF)); |
|
| 1235 |
c.upperBounded()?c.upperBound()-*c.expr():INF)); |
|
| 1236 | 1236 |
return r; |
| 1237 | 1237 |
} |
| 1238 | 1238 |
///Erase a column (i.e a variable) from the LP |
| 1239 | 1239 |
|
| 1240 | 1240 |
///\param c is the column to be deleted |
| 1241 | 1241 |
void erase(Col c) {
|
| 1242 | 1242 |
_eraseCol(cols(id(c))); |
| 1243 | 1243 |
_eraseColId(cols(id(c))); |
| 1244 | 1244 |
} |
| 1245 | 1245 |
///Erase a row (i.e a constraint) from the LP |
| 1246 | 1246 |
|
| 1247 | 1247 |
///\param r is the row to be deleted |
| 1248 | 1248 |
void erase(Row r) {
|
| 1249 | 1249 |
_eraseRow(rows(id(r))); |
| 1250 | 1250 |
_eraseRowId(rows(id(r))); |
| 1251 | 1251 |
} |
| 1252 | 1252 |
|
| 1253 | 1253 |
/// Get the name of a column |
| 1254 | 1254 |
|
| 1255 | 1255 |
///\param c is the coresponding column |
| 1256 | 1256 |
///\return The name of the colunm |
| 1257 | 1257 |
std::string colName(Col c) const {
|
| 1258 | 1258 |
std::string name; |
| 1259 | 1259 |
_getColName(cols(id(c)), name); |
| 1260 | 1260 |
return name; |
| 1261 | 1261 |
} |
| 1262 | 1262 |
|
| 1263 | 1263 |
/// Set the name of a column |
| 1264 | 1264 |
|
| 1265 | 1265 |
///\param c is the coresponding column |
| 1266 | 1266 |
///\param name The name to be given |
| 1267 | 1267 |
void colName(Col c, const std::string& name) {
|
| 1268 | 1268 |
_setColName(cols(id(c)), name); |
| 1269 | 1269 |
} |
| 1270 | 1270 |
|
| 1271 | 1271 |
/// Get the column by its name |
| 1272 | 1272 |
|
| 1273 | 1273 |
///\param name The name of the column |
| 1274 | 1274 |
///\return the proper column or \c INVALID |
| 1275 | 1275 |
Col colByName(const std::string& name) const {
|
| 1276 | 1276 |
int k = _colByName(name); |
| 1277 | 1277 |
return k != -1 ? Col(cols[k]) : Col(INVALID); |
| 1278 | 1278 |
} |
| 1279 | 1279 |
|
| 1280 | 1280 |
/// Get the name of a row |
| 1281 | 1281 |
|
| 1282 | 1282 |
///\param r is the coresponding row |
| 1283 | 1283 |
///\return The name of the row |
| 1284 | 1284 |
std::string rowName(Row r) const {
|
| 1285 | 1285 |
std::string name; |
| 1286 | 1286 |
_getRowName(rows(id(r)), name); |
| 1287 | 1287 |
return name; |
| 1288 | 1288 |
} |
| 1289 | 1289 |
|
| 1290 | 1290 |
/// Set the name of a row |
| 1291 | 1291 |
|
| 1292 | 1292 |
///\param r is the coresponding row |
| 1293 | 1293 |
///\param name The name to be given |
| 1294 | 1294 |
void rowName(Row r, const std::string& name) {
|
| 1295 | 1295 |
_setRowName(rows(id(r)), name); |
| 1296 | 1296 |
} |
| 1297 | 1297 |
|
| 1298 | 1298 |
/// Get the row by its name |
| 1299 | 1299 |
|
| 1300 | 1300 |
///\param name The name of the row |
| 1301 | 1301 |
///\return the proper row or \c INVALID |
| 1302 | 1302 |
Row rowByName(const std::string& name) const {
|
| 1303 | 1303 |
int k = _rowByName(name); |
| 1304 | 1304 |
return k != -1 ? Row(rows[k]) : Row(INVALID); |
| 1305 | 1305 |
} |
| 1306 | 1306 |
|
| 1307 | 1307 |
/// Set an element of the coefficient matrix of the LP |
| 1308 | 1308 |
|
| 1309 | 1309 |
///\param r is the row of the element to be modified |
| 1310 | 1310 |
///\param c is the column of the element to be modified |
| 1311 | 1311 |
///\param val is the new value of the coefficient |
| 1312 | 1312 |
void coeff(Row r, Col c, Value val) {
|
| 1313 | 1313 |
_setCoeff(rows(id(r)),cols(id(c)), val); |
| 1314 | 1314 |
} |
| 1315 | 1315 |
|
| 1316 | 1316 |
/// Get an element of the coefficient matrix of the LP |
| 1317 | 1317 |
|
| 1318 | 1318 |
///\param r is the row of the element |
| 1319 | 1319 |
///\param c is the column of the element |
| 1320 | 1320 |
///\return the corresponding coefficient |
| 1321 | 1321 |
Value coeff(Row r, Col c) const {
|
| 1322 | 1322 |
return _getCoeff(rows(id(r)),cols(id(c))); |
| 1323 | 1323 |
} |
| 1324 | 1324 |
|
| 1325 | 1325 |
/// Set the lower bound of a column (i.e a variable) |
| 1326 | 1326 |
|
| 1327 | 1327 |
/// The lower bound of a variable (column) has to be given by an |
| 1328 | 1328 |
/// extended number of type Value, i.e. a finite number of type |
| 1329 | 1329 |
/// Value or -\ref INF. |
| 1330 | 1330 |
void colLowerBound(Col c, Value value) {
|
| 1331 | 1331 |
_setColLowerBound(cols(id(c)),value); |
| 1332 | 1332 |
} |
| 1333 | 1333 |
|
| 1334 | 1334 |
/// Get the lower bound of a column (i.e a variable) |
| 1335 | 1335 |
|
| 1336 | 1336 |
/// This function returns the lower bound for column (variable) \c c |
| 1337 | 1337 |
/// (this might be -\ref INF as well). |
| 1338 | 1338 |
///\return The lower bound for column \c c |
| 1339 | 1339 |
Value colLowerBound(Col c) const {
|
| 1340 | 1340 |
return _getColLowerBound(cols(id(c))); |
| 1341 | 1341 |
} |
| 1342 | 1342 |
|
| 1343 | 1343 |
///\brief Set the lower bound of several columns |
| 1344 | 1344 |
///(i.e variables) at once |
| 1345 | 1345 |
/// |
| 1346 | 1346 |
///This magic function takes a container as its argument |
| 1347 | 1347 |
///and applies the function on all of its elements. |
| 1348 | 1348 |
///The lower bound of a variable (column) has to be given by an |
| 1349 | 1349 |
///extended number of type Value, i.e. a finite number of type |
| 1350 | 1350 |
///Value or -\ref INF. |
| 1351 | 1351 |
#ifdef DOXYGEN |
| 1352 | 1352 |
template<class T> |
| 1353 | 1353 |
void colLowerBound(T &t, Value value) { return 0;}
|
| 1354 | 1354 |
#else |
| 1355 | 1355 |
template<class T> |
| 1356 | 1356 |
typename enable_if<typename T::value_type::LpCol,void>::type |
| 1357 | 1357 |
colLowerBound(T &t, Value value,dummy<0> = 0) {
|
| 1358 | 1358 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1359 | 1359 |
colLowerBound(*i, value); |
| 1360 | 1360 |
} |
| 1361 | 1361 |
} |
| 1362 | 1362 |
template<class T> |
| 1363 | 1363 |
typename enable_if<typename T::value_type::second_type::LpCol, |
| 1364 | 1364 |
void>::type |
| 1365 | 1365 |
colLowerBound(T &t, Value value,dummy<1> = 1) {
|
| 1366 | 1366 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {
|
| 1367 | 1367 |
colLowerBound(i->second, value); |
| 1368 | 1368 |
} |
| 1369 | 1369 |
} |
| 1370 | 1370 |
template<class T> |
| 1371 | 1371 |
typename enable_if<typename T::MapIt::Value::LpCol, |
| 1372 | 1372 |
void>::type |
| 1373 | 1373 |
colLowerBound(T &t, Value value,dummy<2> = 2) {
|
| 1374 | 1374 |
for(typename T::MapIt i(t); i!=INVALID; ++i){
|
| 1375 | 1375 |
colLowerBound(*i, value); |
| 1376 | 1376 |
} |
| 1377 | 1377 |
} |
| 1378 | 1378 |
#endif |
| 1379 | 1379 |
|
| 1380 | 1380 |
/// Set the upper bound of a column (i.e a variable) |
| 1381 | 1381 |
|
| 1382 | 1382 |
/// The upper bound of a variable (column) has to be given by an |
| 1383 | 1383 |
/// extended number of type Value, i.e. a finite number of type |
| 1384 | 1384 |
/// Value or \ref INF. |
| 1385 | 1385 |
void colUpperBound(Col c, Value value) {
|
| 1386 | 1386 |
_setColUpperBound(cols(id(c)),value); |
| 1387 | 1387 |
}; |
| 1388 | 1388 |
|
| 1389 | 1389 |
/// Get the upper bound of a column (i.e a variable) |
| 1390 | 1390 |
|
| 1391 | 1391 |
/// This function returns the upper bound for column (variable) \c c |
| 1392 | 1392 |
/// (this might be \ref INF as well). |
| 1393 | 1393 |
/// \return The upper bound for column \c c |
| 1394 | 1394 |
Value colUpperBound(Col c) const {
|
| 1395 | 1395 |
return _getColUpperBound(cols(id(c))); |
| 1396 | 1396 |
} |
| 1397 | 1397 |
|
| 1398 | 1398 |
///\brief Set the upper bound of several columns |
| 1399 | 1399 |
///(i.e variables) at once |
| 1400 | 1400 |
/// |
| 1401 | 1401 |
///This magic function takes a container as its argument |
| 1402 | 1402 |
///and applies the function on all of its elements. |
| 1403 | 1403 |
///The upper bound of a variable (column) has to be given by an |
| 1404 | 1404 |
///extended number of type Value, i.e. a finite number of type |
| 1405 | 1405 |
///Value or \ref INF. |
| 1406 | 1406 |
#ifdef DOXYGEN |
| 1407 | 1407 |
template<class T> |
| 1408 | 1408 |
void colUpperBound(T &t, Value value) { return 0;}
|
| 1409 | 1409 |
#else |
| 1410 | 1410 |
template<class T1> |
| 1411 | 1411 |
typename enable_if<typename T1::value_type::LpCol,void>::type |
| 1412 | 1412 |
colUpperBound(T1 &t, Value value,dummy<0> = 0) {
|
| 1413 | 1413 |
for(typename T1::iterator i=t.begin();i!=t.end();++i) {
|
| 1414 | 1414 |
colUpperBound(*i, value); |
| 1415 | 1415 |
} |
| 1416 | 1416 |
} |
| 1417 | 1417 |
template<class T1> |
| 1418 | 1418 |
typename enable_if<typename T1::value_type::second_type::LpCol, |
| 1419 | 1419 |
void>::type |
| 1420 | 1420 |
colUpperBound(T1 &t, Value value,dummy<1> = 1) {
|
| 1421 | 1421 |
for(typename T1::iterator i=t.begin();i!=t.end();++i) {
|
| 1422 | 1422 |
colUpperBound(i->second, value); |
| 1423 | 1423 |
} |
| 1424 | 1424 |
} |
| 1425 | 1425 |
template<class T1> |
| 1426 | 1426 |
typename enable_if<typename T1::MapIt::Value::LpCol, |
| 1427 | 1427 |
void>::type |
| 1428 | 1428 |
colUpperBound(T1 &t, Value value,dummy<2> = 2) {
|
| 1429 | 1429 |
for(typename T1::MapIt i(t); i!=INVALID; ++i){
|
| 1430 | 1430 |
colUpperBound(*i, value); |
| 1431 | 1431 |
} |
| 1432 | 1432 |
} |
| 1433 | 1433 |
#endif |
| 1434 | 1434 |
|
| 1435 | 1435 |
/// Set the lower and the upper bounds of a column (i.e a variable) |
| 1436 | 1436 |
|
| 1437 | 1437 |
/// The lower and the upper bounds of |
| 1438 | 1438 |
/// a variable (column) have to be given by an |
| 1439 | 1439 |
/// extended number of type Value, i.e. a finite number of type |
| 1440 | 1440 |
/// Value, -\ref INF or \ref INF. |
| 1441 | 1441 |
void colBounds(Col c, Value lower, Value upper) {
|
| 1442 | 1442 |
_setColLowerBound(cols(id(c)),lower); |
| 1443 | 1443 |
_setColUpperBound(cols(id(c)),upper); |
| 1444 | 1444 |
} |
| 1445 | 1445 |
|
| 1446 | 1446 |
///\brief Set the lower and the upper bound of several columns |
| 1447 | 1447 |
///(i.e variables) at once |
| 1448 | 1448 |
/// |
| 1449 | 1449 |
///This magic function takes a container as its argument |
| 1450 | 1450 |
///and applies the function on all of its elements. |
| 1451 | 1451 |
/// The lower and the upper bounds of |
| 1452 | 1452 |
/// a variable (column) have to be given by an |
| 1453 | 1453 |
/// extended number of type Value, i.e. a finite number of type |
| 1454 | 1454 |
/// Value, -\ref INF or \ref INF. |
| 1455 | 1455 |
#ifdef DOXYGEN |
| 1456 | 1456 |
template<class T> |
| 1457 | 1457 |
void colBounds(T &t, Value lower, Value upper) { return 0;}
|
| 1458 | 1458 |
#else |
| 1459 | 1459 |
template<class T2> |
| 1460 | 1460 |
typename enable_if<typename T2::value_type::LpCol,void>::type |
| 1461 | 1461 |
colBounds(T2 &t, Value lower, Value upper,dummy<0> = 0) {
|
| 1462 | 1462 |
for(typename T2::iterator i=t.begin();i!=t.end();++i) {
|
| 1463 | 1463 |
colBounds(*i, lower, upper); |
| 1464 | 1464 |
} |
| 1465 | 1465 |
} |
| 1466 | 1466 |
template<class T2> |
| 1467 | 1467 |
typename enable_if<typename T2::value_type::second_type::LpCol, void>::type |
| 1468 | 1468 |
colBounds(T2 &t, Value lower, Value upper,dummy<1> = 1) {
|
| 1469 | 1469 |
for(typename T2::iterator i=t.begin();i!=t.end();++i) {
|
| 1470 | 1470 |
colBounds(i->second, lower, upper); |
| 1471 | 1471 |
} |
| 1472 | 1472 |
} |
| 1473 | 1473 |
template<class T2> |
| 1474 | 1474 |
typename enable_if<typename T2::MapIt::Value::LpCol, void>::type |
| 1475 | 1475 |
colBounds(T2 &t, Value lower, Value upper,dummy<2> = 2) {
|
| 1476 | 1476 |
for(typename T2::MapIt i(t); i!=INVALID; ++i){
|
| 1477 | 1477 |
colBounds(*i, lower, upper); |
| 1478 | 1478 |
} |
| 1479 | 1479 |
} |
| 1480 | 1480 |
#endif |
| 1481 | 1481 |
|
| 1482 | 1482 |
/// Set the lower bound of a row (i.e a constraint) |
| 1483 | 1483 |
|
| 1484 | 1484 |
/// The lower bound of a constraint (row) has to be given by an |
| 1485 | 1485 |
/// extended number of type Value, i.e. a finite number of type |
| 1486 | 1486 |
/// Value or -\ref INF. |
| 1487 | 1487 |
void rowLowerBound(Row r, Value value) {
|
| 1488 | 1488 |
_setRowLowerBound(rows(id(r)),value); |
| 1489 | 1489 |
} |
| 1490 | 1490 |
|
| 1491 | 1491 |
/// Get the lower bound of a row (i.e a constraint) |
| 1492 | 1492 |
|
| 1493 | 1493 |
/// This function returns the lower bound for row (constraint) \c c |
| 1494 | 1494 |
/// (this might be -\ref INF as well). |
| 1495 | 1495 |
///\return The lower bound for row \c r |
| 1496 | 1496 |
Value rowLowerBound(Row r) const {
|
| 1497 | 1497 |
return _getRowLowerBound(rows(id(r))); |
| 1498 | 1498 |
} |
| 1499 | 1499 |
|
| 1500 | 1500 |
/// Set the upper bound of a row (i.e a constraint) |
| 1501 | 1501 |
|
| 1502 | 1502 |
/// The upper bound of a constraint (row) has to be given by an |
| 1503 | 1503 |
/// extended number of type Value, i.e. a finite number of type |
| 1504 | 1504 |
/// Value or -\ref INF. |
| 1505 | 1505 |
void rowUpperBound(Row r, Value value) {
|
| 1506 | 1506 |
_setRowUpperBound(rows(id(r)),value); |
| 1507 | 1507 |
} |
| 1508 | 1508 |
|
| 1509 | 1509 |
/// Get the upper bound of a row (i.e a constraint) |
| 1510 | 1510 |
|
| 1511 | 1511 |
/// This function returns the upper bound for row (constraint) \c c |
| 1512 | 1512 |
/// (this might be -\ref INF as well). |
| 1513 | 1513 |
///\return The upper bound for row \c r |
| 1514 | 1514 |
Value rowUpperBound(Row r) const {
|
| 1515 | 1515 |
return _getRowUpperBound(rows(id(r))); |
| 1516 | 1516 |
} |
| 1517 | 1517 |
|
| 1518 | 1518 |
///Set an element of the objective function |
| 1519 | 1519 |
void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); };
|
| 1520 | 1520 |
|
| 1521 | 1521 |
///Get an element of the objective function |
| 1522 | 1522 |
Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); };
|
| 1523 | 1523 |
|
| 1524 | 1524 |
///Set the objective function |
| 1525 | 1525 |
|
| 1526 | 1526 |
///\param e is a linear expression of type \ref Expr. |
| 1527 | 1527 |
/// |
| 1528 | 1528 |
void obj(const Expr& e) {
|
| 1529 | 1529 |
_setObjCoeffs(ExprIterator(e.comps.begin(), cols), |
| 1530 | 1530 |
ExprIterator(e.comps.end(), cols)); |
| 1531 | 1531 |
obj_const_comp = *e; |
| 1532 | 1532 |
} |
| 1533 | 1533 |
|
| 1534 | 1534 |
///Get the objective function |
| 1535 | 1535 |
|
| 1536 | 1536 |
///\return the objective function as a linear expression of type |
| 1537 | 1537 |
///Expr. |
| 1538 | 1538 |
Expr obj() const {
|
| 1539 | 1539 |
Expr e; |
| 1540 | 1540 |
_getObjCoeffs(InsertIterator(e.comps, cols)); |
| 1541 | 1541 |
*e = obj_const_comp; |
| 1542 | 1542 |
return e; |
| 1543 | 1543 |
} |
| 1544 | 1544 |
|
| 1545 | 1545 |
|
| 1546 | 1546 |
///Set the direction of optimization |
| 1547 | 1547 |
void sense(Sense sense) { _setSense(sense); }
|
| 1548 | 1548 |
|
| 1549 | 1549 |
///Query the direction of the optimization |
| 1550 | 1550 |
Sense sense() const {return _getSense(); }
|
| 1551 | 1551 |
|
| 1552 | 1552 |
///Set the sense to maximization |
| 1553 | 1553 |
void max() { _setSense(MAX); }
|
| 1554 | 1554 |
|
| 1555 | 1555 |
///Set the sense to maximization |
| 1556 | 1556 |
void min() { _setSense(MIN); }
|
| 1557 | 1557 |
|
| 1558 | 1558 |
///Clears the problem |
| 1559 | 1559 |
void clear() { _clear(); }
|
| 1560 | 1560 |
|
| 1561 | 1561 |
/// Sets the message level of the solver |
| 1562 | 1562 |
void messageLevel(MessageLevel level) { _messageLevel(level); }
|
| 1563 | 1563 |
|
| 1564 | 1564 |
///@} |
| 1565 | 1565 |
|
| 1566 | 1566 |
}; |
| 1567 | 1567 |
|
| 1568 | 1568 |
/// Addition |
| 1569 | 1569 |
|
| 1570 | 1570 |
///\relates LpBase::Expr |
| 1571 | 1571 |
/// |
| 1572 | 1572 |
inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) {
|
| 1573 | 1573 |
LpBase::Expr tmp(a); |
| 1574 | 1574 |
tmp+=b; |
| 1575 | 1575 |
return tmp; |
| 1576 | 1576 |
} |
| 1577 | 1577 |
///Substraction |
| 1578 | 1578 |
|
| 1579 | 1579 |
///\relates LpBase::Expr |
| 1580 | 1580 |
/// |
| 1581 | 1581 |
inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) {
|
| 1582 | 1582 |
LpBase::Expr tmp(a); |
| 1583 | 1583 |
tmp-=b; |
| 1584 | 1584 |
return tmp; |
| 1585 | 1585 |
} |
| 1586 | 1586 |
///Multiply with constant |
| 1587 | 1587 |
|
| 1588 | 1588 |
///\relates LpBase::Expr |
| 1589 | 1589 |
/// |
| 1590 | 1590 |
inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) {
|
| 1591 | 1591 |
LpBase::Expr tmp(a); |
| 1592 | 1592 |
tmp*=b; |
| 1593 | 1593 |
return tmp; |
| 1594 | 1594 |
} |
| 1595 | 1595 |
|
| 1596 | 1596 |
///Multiply with constant |
| 1597 | 1597 |
|
| 1598 | 1598 |
///\relates LpBase::Expr |
| 1599 | 1599 |
/// |
| 1600 | 1600 |
inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) {
|
| 1601 | 1601 |
LpBase::Expr tmp(b); |
| 1602 | 1602 |
tmp*=a; |
| 1603 | 1603 |
return tmp; |
| 1604 | 1604 |
} |
| 1605 | 1605 |
///Divide with constant |
| 1606 | 1606 |
|
| 1607 | 1607 |
///\relates LpBase::Expr |
| 1608 | 1608 |
/// |
| 1609 | 1609 |
inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) {
|
| 1610 | 1610 |
LpBase::Expr tmp(a); |
| 1611 | 1611 |
tmp/=b; |
| 1612 | 1612 |
return tmp; |
| 1613 | 1613 |
} |
| 1614 | 1614 |
|
| 1615 | 1615 |
///Create constraint |
| 1616 | 1616 |
|
| 1617 | 1617 |
///\relates LpBase::Constr |
| 1618 | 1618 |
/// |
| 1619 | 1619 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
| 1620 | 1620 |
const LpBase::Expr &f) {
|
| 1621 | 1621 |
return LpBase::Constr(0, f - e, LpBase::INF); |
| 1622 | 1622 |
} |
| 1623 | 1623 |
|
| 1624 | 1624 |
///Create constraint |
| 1625 | 1625 |
|
| 1626 | 1626 |
///\relates LpBase::Constr |
| 1627 | 1627 |
/// |
| 1628 | 1628 |
inline LpBase::Constr operator<=(const LpBase::Value &e, |
| 1629 | 1629 |
const LpBase::Expr &f) {
|
| 1630 | 1630 |
return LpBase::Constr(e, f, LpBase::NaN); |
| 1631 | 1631 |
} |
| 1632 | 1632 |
|
| 1633 | 1633 |
///Create constraint |
| 1634 | 1634 |
|
| 1635 | 1635 |
///\relates LpBase::Constr |
| 1636 | 1636 |
/// |
| 1637 | 1637 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
| 1638 | 1638 |
const LpBase::Value &f) {
|
| 1639 | 1639 |
return LpBase::Constr(- LpBase::INF, e, f); |
| 1640 | 1640 |
} |
| 1641 | 1641 |
|
| 1642 | 1642 |
///Create constraint |
| 1643 | 1643 |
|
| 1644 | 1644 |
///\relates LpBase::Constr |
| 1645 | 1645 |
/// |
| 1646 | 1646 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
| 1647 | 1647 |
const LpBase::Expr &f) {
|
| 1648 | 1648 |
return LpBase::Constr(0, e - f, LpBase::INF); |
| 1649 | 1649 |
} |
| 1650 | 1650 |
|
| 1651 | 1651 |
|
| 1652 | 1652 |
///Create constraint |
| 1653 | 1653 |
|
| 1654 | 1654 |
///\relates LpBase::Constr |
| 1655 | 1655 |
/// |
| 1656 | 1656 |
inline LpBase::Constr operator>=(const LpBase::Value &e, |
| 1657 | 1657 |
const LpBase::Expr &f) {
|
| 1658 | 1658 |
return LpBase::Constr(LpBase::NaN, f, e); |
| 1659 | 1659 |
} |
| 1660 | 1660 |
|
| 1661 | 1661 |
|
| 1662 | 1662 |
///Create constraint |
| 1663 | 1663 |
|
| 1664 | 1664 |
///\relates LpBase::Constr |
| 1665 | 1665 |
/// |
| 1666 | 1666 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
| 1667 | 1667 |
const LpBase::Value &f) {
|
| 1668 | 1668 |
return LpBase::Constr(f, e, LpBase::INF); |
| 1669 | 1669 |
} |
| 1670 | 1670 |
|
| 1671 | 1671 |
///Create constraint |
| 1672 | 1672 |
|
| 1673 | 1673 |
///\relates LpBase::Constr |
| 1674 | 1674 |
/// |
| 1675 | 1675 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
| 1676 | 1676 |
const LpBase::Value &f) {
|
| 1677 | 1677 |
return LpBase::Constr(f, e, f); |
| 1678 | 1678 |
} |
| 1679 | 1679 |
|
| 1680 | 1680 |
///Create constraint |
| 1681 | 1681 |
|
| 1682 | 1682 |
///\relates LpBase::Constr |
| 1683 | 1683 |
/// |
| 1684 | 1684 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
| 1685 | 1685 |
const LpBase::Expr &f) {
|
| 1686 | 1686 |
return LpBase::Constr(0, f - e, 0); |
| 1687 | 1687 |
} |
| 1688 | 1688 |
|
| 1689 | 1689 |
///Create constraint |
| 1690 | 1690 |
|
| 1691 | 1691 |
///\relates LpBase::Constr |
| 1692 | 1692 |
/// |
| 1693 | 1693 |
inline LpBase::Constr operator<=(const LpBase::Value &n, |
| 1694 | 1694 |
const LpBase::Constr &c) {
|
| 1695 | 1695 |
LpBase::Constr tmp(c); |
| 1696 | 1696 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
| 1697 | 1697 |
tmp.lowerBound()=n; |
| 1698 | 1698 |
return tmp; |
| 1699 | 1699 |
} |
| 1700 | 1700 |
///Create constraint |
| 1701 | 1701 |
|
| 1702 | 1702 |
///\relates LpBase::Constr |
| 1703 | 1703 |
/// |
| 1704 | 1704 |
inline LpBase::Constr operator<=(const LpBase::Constr &c, |
| 1705 | 1705 |
const LpBase::Value &n) |
| 1706 | 1706 |
{
|
| 1707 | 1707 |
LpBase::Constr tmp(c); |
| 1708 | 1708 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
| 1709 | 1709 |
tmp.upperBound()=n; |
| 1710 | 1710 |
return tmp; |
| 1711 | 1711 |
} |
| 1712 | 1712 |
|
| 1713 | 1713 |
///Create constraint |
| 1714 | 1714 |
|
| 1715 | 1715 |
///\relates LpBase::Constr |
| 1716 | 1716 |
/// |
| 1717 | 1717 |
inline LpBase::Constr operator>=(const LpBase::Value &n, |
| 1718 | 1718 |
const LpBase::Constr &c) {
|
| 1719 | 1719 |
LpBase::Constr tmp(c); |
| 1720 | 1720 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
| 1721 | 1721 |
tmp.upperBound()=n; |
| 1722 | 1722 |
return tmp; |
| 1723 | 1723 |
} |
| 1724 | 1724 |
///Create constraint |
| 1725 | 1725 |
|
| 1726 | 1726 |
///\relates LpBase::Constr |
| 1727 | 1727 |
/// |
| 1728 | 1728 |
inline LpBase::Constr operator>=(const LpBase::Constr &c, |
| 1729 | 1729 |
const LpBase::Value &n) |
| 1730 | 1730 |
{
|
| 1731 | 1731 |
LpBase::Constr tmp(c); |
| 1732 | 1732 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
| 1733 | 1733 |
tmp.lowerBound()=n; |
| 1734 | 1734 |
return tmp; |
| 1735 | 1735 |
} |
| 1736 | 1736 |
|
| 1737 | 1737 |
///Addition |
| 1738 | 1738 |
|
| 1739 | 1739 |
///\relates LpBase::DualExpr |
| 1740 | 1740 |
/// |
| 1741 | 1741 |
inline LpBase::DualExpr operator+(const LpBase::DualExpr &a, |
| 1742 | 1742 |
const LpBase::DualExpr &b) {
|
| 1743 | 1743 |
LpBase::DualExpr tmp(a); |
| 1744 | 1744 |
tmp+=b; |
| 1745 | 1745 |
return tmp; |
| 1746 | 1746 |
} |
| 1747 | 1747 |
///Substraction |
| 1748 | 1748 |
|
| 1749 | 1749 |
///\relates LpBase::DualExpr |
| 1750 | 1750 |
/// |
| 1751 | 1751 |
inline LpBase::DualExpr operator-(const LpBase::DualExpr &a, |
| 1752 | 1752 |
const LpBase::DualExpr &b) {
|
| 1753 | 1753 |
LpBase::DualExpr tmp(a); |
| 1754 | 1754 |
tmp-=b; |
| 1755 | 1755 |
return tmp; |
| 1756 | 1756 |
} |
| 1757 | 1757 |
///Multiply with constant |
| 1758 | 1758 |
|
| 1759 | 1759 |
///\relates LpBase::DualExpr |
| 1760 | 1760 |
/// |
| 1761 | 1761 |
inline LpBase::DualExpr operator*(const LpBase::DualExpr &a, |
| 1762 | 1762 |
const LpBase::Value &b) {
|
| 1763 | 1763 |
LpBase::DualExpr tmp(a); |
| 1764 | 1764 |
tmp*=b; |
| 1765 | 1765 |
return tmp; |
| 1766 | 1766 |
} |
| 1767 | 1767 |
|
| 1768 | 1768 |
///Multiply with constant |
| 1769 | 1769 |
|
| 1770 | 1770 |
///\relates LpBase::DualExpr |
| 1771 | 1771 |
/// |
| 1772 | 1772 |
inline LpBase::DualExpr operator*(const LpBase::Value &a, |
| 1773 | 1773 |
const LpBase::DualExpr &b) {
|
| 1774 | 1774 |
LpBase::DualExpr tmp(b); |
| 1775 | 1775 |
tmp*=a; |
| 1776 | 1776 |
return tmp; |
| 1777 | 1777 |
} |
| 1778 | 1778 |
///Divide with constant |
| 1779 | 1779 |
|
| 1780 | 1780 |
///\relates LpBase::DualExpr |
| 1781 | 1781 |
/// |
| 1782 | 1782 |
inline LpBase::DualExpr operator/(const LpBase::DualExpr &a, |
| 1783 | 1783 |
const LpBase::Value &b) {
|
| 1784 | 1784 |
LpBase::DualExpr tmp(a); |
| 1785 | 1785 |
tmp/=b; |
| 1786 | 1786 |
return tmp; |
| 1787 | 1787 |
} |
| 1788 | 1788 |
|
| 1789 | 1789 |
/// \ingroup lp_group |
| 1790 | 1790 |
/// |
| 1791 | 1791 |
/// \brief Common base class for LP solvers |
| 1792 | 1792 |
/// |
| 1793 | 1793 |
/// This class is an abstract base class for LP solvers. This class |
| 1794 | 1794 |
/// provides a full interface for set and modify an LP problem, |
| 1795 | 1795 |
/// solve it and retrieve the solution. You can use one of the |
| 1796 | 1796 |
/// descendants as a concrete implementation, or the \c Lp |
| 1797 | 1797 |
/// default LP solver. However, if you would like to handle LP |
| 1798 | 1798 |
/// solvers as reference or pointer in a generic way, you can use |
| 1799 | 1799 |
/// this class directly. |
| 1800 | 1800 |
class LpSolver : virtual public LpBase {
|
| 1801 | 1801 |
public: |
| 1802 | 1802 |
|
| 1803 | 1803 |
/// The problem types for primal and dual problems |
| 1804 | 1804 |
enum ProblemType {
|
| 1805 | 1805 |
/// = 0. Feasible solution hasn't been found (but may exist). |
| 1806 | 1806 |
UNDEFINED = 0, |
| 1807 | 1807 |
/// = 1. The problem has no feasible solution. |
| 1808 | 1808 |
INFEASIBLE = 1, |
| 1809 | 1809 |
/// = 2. Feasible solution found. |
| 1810 | 1810 |
FEASIBLE = 2, |
| 1811 | 1811 |
/// = 3. Optimal solution exists and found. |
| 1812 | 1812 |
OPTIMAL = 3, |
| 1813 | 1813 |
/// = 4. The cost function is unbounded. |
| 1814 | 1814 |
UNBOUNDED = 4 |
| 1815 | 1815 |
}; |
| 1816 | 1816 |
|
| 1817 | 1817 |
///The basis status of variables |
| 1818 | 1818 |
enum VarStatus {
|
| 1819 | 1819 |
/// The variable is in the basis |
| 1820 | 1820 |
BASIC, |
| 1821 | 1821 |
/// The variable is free, but not basic |
| 1822 | 1822 |
FREE, |
| 1823 | 1823 |
/// The variable has active lower bound |
| 1824 | 1824 |
LOWER, |
| 1825 | 1825 |
/// The variable has active upper bound |
| 1826 | 1826 |
UPPER, |
| 1827 | 1827 |
/// The variable is non-basic and fixed |
| 1828 | 1828 |
FIXED |
| 1829 | 1829 |
}; |
| 1830 | 1830 |
|
| 1831 | 1831 |
protected: |
| 1832 | 1832 |
|
| 1833 | 1833 |
virtual SolveExitStatus _solve() = 0; |
| 1834 | 1834 |
|
| 1835 | 1835 |
virtual Value _getPrimal(int i) const = 0; |
| 1836 | 1836 |
virtual Value _getDual(int i) const = 0; |
| 1837 | 1837 |
|
| 1838 | 1838 |
virtual Value _getPrimalRay(int i) const = 0; |
| 1839 | 1839 |
virtual Value _getDualRay(int i) const = 0; |
| 1840 | 1840 |
|
| 1841 | 1841 |
virtual Value _getPrimalValue() const = 0; |
| 1842 | 1842 |
|
| 1843 | 1843 |
virtual VarStatus _getColStatus(int i) const = 0; |
| 1844 | 1844 |
virtual VarStatus _getRowStatus(int i) const = 0; |
| 1845 | 1845 |
|
| 1846 | 1846 |
virtual ProblemType _getPrimalType() const = 0; |
| 1847 | 1847 |
virtual ProblemType _getDualType() const = 0; |
| 1848 | 1848 |
|
| 1849 | 1849 |
public: |
| 1850 | 1850 |
|
| 1851 | 1851 |
///Allocate a new LP problem instance |
| 1852 | 1852 |
virtual LpSolver* newSolver() const = 0; |
| 1853 | 1853 |
///Make a copy of the LP problem |
| 1854 | 1854 |
virtual LpSolver* cloneSolver() const = 0; |
| 1855 | 1855 |
|
| 1856 | 1856 |
///\name Solve the LP |
| 1857 | 1857 |
|
| 1858 | 1858 |
///@{
|
| 1859 | 1859 |
|
| 1860 | 1860 |
///\e Solve the LP problem at hand |
| 1861 | 1861 |
/// |
| 1862 | 1862 |
///\return The result of the optimization procedure. Possible |
| 1863 | 1863 |
///values and their meanings can be found in the documentation of |
| 1864 | 1864 |
///\ref SolveExitStatus. |
| 1865 | 1865 |
SolveExitStatus solve() { return _solve(); }
|
| 1866 | 1866 |
|
| 1867 | 1867 |
///@} |
| 1868 | 1868 |
|
| 1869 | 1869 |
///\name Obtain the Solution |
| 1870 | 1870 |
|
| 1871 | 1871 |
///@{
|
| 1872 | 1872 |
|
| 1873 | 1873 |
/// The type of the primal problem |
| 1874 | 1874 |
ProblemType primalType() const {
|
| 1875 | 1875 |
return _getPrimalType(); |
| 1876 | 1876 |
} |
| 1877 | 1877 |
|
| 1878 | 1878 |
/// The type of the dual problem |
| 1879 | 1879 |
ProblemType dualType() const {
|
| 1880 | 1880 |
return _getDualType(); |
| 1881 | 1881 |
} |
| 1882 | 1882 |
|
| 1883 | 1883 |
/// Return the primal value of the column |
| 1884 | 1884 |
|
| 1885 | 1885 |
/// Return the primal value of the column. |
| 1886 | 1886 |
/// \pre The problem is solved. |
| 1887 | 1887 |
Value primal(Col c) const { return _getPrimal(cols(id(c))); }
|
| 1888 | 1888 |
|
| 1889 | 1889 |
/// Return the primal value of the expression |
| 1890 | 1890 |
|
| 1891 | 1891 |
/// Return the primal value of the expression, i.e. the dot |
| 1892 | 1892 |
/// product of the primal solution and the expression. |
| 1893 | 1893 |
/// \pre The problem is solved. |
| 1894 | 1894 |
Value primal(const Expr& e) const {
|
| 1895 | 1895 |
double res = *e; |
| 1896 | 1896 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) {
|
| 1897 | 1897 |
res += *c * primal(c); |
| 1898 | 1898 |
} |
| 1899 | 1899 |
return res; |
| 1900 | 1900 |
} |
| 1901 | 1901 |
/// Returns a component of the primal ray |
| 1902 | 1902 |
|
| 1903 | 1903 |
/// The primal ray is solution of the modified primal problem, |
| 1904 | 1904 |
/// where we change each finite bound to 0, and we looking for a |
| 1905 | 1905 |
/// negative objective value in case of minimization, and positive |
| 1906 | 1906 |
/// objective value for maximization. If there is such solution, |
| 1907 | 1907 |
/// that proofs the unsolvability of the dual problem, and if a |
| 1908 | 1908 |
/// feasible primal solution exists, then the unboundness of |
| 1909 | 1909 |
/// primal problem. |
| 1910 | 1910 |
/// |
| 1911 | 1911 |
/// \pre The problem is solved and the dual problem is infeasible. |
| 1912 | 1912 |
/// \note Some solvers does not provide primal ray calculation |
| 1913 | 1913 |
/// functions. |
| 1914 | 1914 |
Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); }
|
| 1915 | 1915 |
|
| 1916 | 1916 |
/// Return the dual value of the row |
| 1917 | 1917 |
|
| 1918 | 1918 |
/// Return the dual value of the row. |
| 1919 | 1919 |
/// \pre The problem is solved. |
| 1920 | 1920 |
Value dual(Row r) const { return _getDual(rows(id(r))); }
|
| 1921 | 1921 |
|
| 1922 | 1922 |
/// Return the dual value of the dual expression |
| 1923 | 1923 |
|
| 1924 | 1924 |
/// Return the dual value of the dual expression, i.e. the dot |
| 1925 | 1925 |
/// product of the dual solution and the dual expression. |
| 1926 | 1926 |
/// \pre The problem is solved. |
| 1927 | 1927 |
Value dual(const DualExpr& e) const {
|
| 1928 | 1928 |
double res = 0.0; |
| 1929 | 1929 |
for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) {
|
| 1930 | 1930 |
res += *r * dual(r); |
| 1931 | 1931 |
} |
| 1932 | 1932 |
return res; |
| 1933 | 1933 |
} |
| 1934 | 1934 |
|
| 1935 | 1935 |
/// Returns a component of the dual ray |
| 1936 | 1936 |
|
| 1937 | 1937 |
/// The dual ray is solution of the modified primal problem, where |
| 1938 | 1938 |
/// we change each finite bound to 0 (i.e. the objective function |
| 1939 | 1939 |
/// coefficients in the primal problem), and we looking for a |
| 1940 | 1940 |
/// ositive objective value. If there is such solution, that |
| 1941 | 1941 |
/// proofs the unsolvability of the primal problem, and if a |
| 1942 | 1942 |
/// feasible dual solution exists, then the unboundness of |
| 1943 | 1943 |
/// dual problem. |
| 1944 | 1944 |
/// |
| 1945 | 1945 |
/// \pre The problem is solved and the primal problem is infeasible. |
| 1946 | 1946 |
/// \note Some solvers does not provide dual ray calculation |
| 1947 | 1947 |
/// functions. |
| 1948 | 1948 |
Value dualRay(Row r) const { return _getDualRay(rows(id(r))); }
|
| 1949 | 1949 |
|
| 1950 | 1950 |
/// Return the basis status of the column |
| 1951 | 1951 |
|
| 1952 | 1952 |
/// \see VarStatus |
| 1953 | 1953 |
VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); }
|
| 1954 | 1954 |
|
| 1955 | 1955 |
/// Return the basis status of the row |
| 1956 | 1956 |
|
| 1957 | 1957 |
/// \see VarStatus |
| 1958 | 1958 |
VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); }
|
| 1959 | 1959 |
|
| 1960 | 1960 |
///The value of the objective function |
| 1961 | 1961 |
|
| 1962 | 1962 |
///\return |
| 1963 | 1963 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
| 1964 | 1964 |
/// of the primal problem, depending on whether we minimize or maximize. |
| 1965 | 1965 |
///- \ref NaN if no primal solution is found. |
| 1966 | 1966 |
///- The (finite) objective value if an optimal solution is found. |
| 1967 | 1967 |
Value primal() const { return _getPrimalValue()+obj_const_comp;}
|
| 1968 | 1968 |
///@} |
| 1969 | 1969 |
|
| 1970 | 1970 |
protected: |
| 1971 | 1971 |
|
| 1972 | 1972 |
}; |
| 1973 | 1973 |
|
| 1974 | 1974 |
|
| 1975 | 1975 |
/// \ingroup lp_group |
| 1976 | 1976 |
/// |
| 1977 | 1977 |
/// \brief Common base class for MIP solvers |
| 1978 | 1978 |
/// |
| 1979 | 1979 |
/// This class is an abstract base class for MIP solvers. This class |
| 1980 | 1980 |
/// provides a full interface for set and modify an MIP problem, |
| 1981 | 1981 |
/// solve it and retrieve the solution. You can use one of the |
| 1982 | 1982 |
/// descendants as a concrete implementation, or the \c Lp |
| 1983 | 1983 |
/// default MIP solver. However, if you would like to handle MIP |
| 1984 | 1984 |
/// solvers as reference or pointer in a generic way, you can use |
| 1985 | 1985 |
/// this class directly. |
| 1986 | 1986 |
class MipSolver : virtual public LpBase {
|
| 1987 | 1987 |
public: |
| 1988 | 1988 |
|
| 1989 | 1989 |
/// The problem types for MIP problems |
| 1990 | 1990 |
enum ProblemType {
|
| 1991 | 1991 |
/// = 0. Feasible solution hasn't been found (but may exist). |
| 1992 | 1992 |
UNDEFINED = 0, |
| 1993 | 1993 |
/// = 1. The problem has no feasible solution. |
| 1994 | 1994 |
INFEASIBLE = 1, |
| 1995 | 1995 |
/// = 2. Feasible solution found. |
| 1996 | 1996 |
FEASIBLE = 2, |
| 1997 | 1997 |
/// = 3. Optimal solution exists and found. |
| 1998 | 1998 |
OPTIMAL = 3, |
| 1999 | 1999 |
/// = 4. The cost function is unbounded. |
| 2000 | 2000 |
///The Mip or at least the relaxed problem is unbounded. |
| 2001 | 2001 |
UNBOUNDED = 4 |
| 2002 | 2002 |
}; |
| 2003 | 2003 |
|
0 comments (0 inline)