... | ... |
@@ -44,26 +44,26 @@ |
44 | 44 |
/// value cut in a directed graph \f$D=(V,A)\f$. |
45 | 45 |
/// It takes a fixed node \f$ source \in V \f$ and |
46 | 46 |
/// consists of two phases: in the first phase it determines a |
47 | 47 |
/// minimum cut with \f$ source \f$ on the source-side (i.e. a set |
48 | 48 |
/// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal outgoing |
49 | 49 |
/// capacity) and in the second phase it determines a minimum cut |
50 | 50 |
/// with \f$ source \f$ on the sink-side (i.e. a set |
51 | 51 |
/// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal outgoing |
52 | 52 |
/// capacity). Obviously, the smaller of these two cuts will be a |
53 | 53 |
/// minimum cut of \f$ D \f$. The algorithm is a modified |
54 | 54 |
/// preflow push-relabel algorithm. Our implementation calculates |
55 | 55 |
/// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the |
56 |
/// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The |
|
57 |
/// purpose of such algorithm is e.g. testing network reliability. |
|
56 |
/// highest-label rule), or in \f$O(nm)\f$ for unit capacities. A notable |
|
57 |
/// use of this algorithm is testing network reliability. |
|
58 | 58 |
/// |
59 | 59 |
/// For an undirected graph you can run just the first phase of the |
60 | 60 |
/// algorithm or you can use the algorithm of Nagamochi and Ibaraki, |
61 | 61 |
/// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ |
62 | 62 |
/// time. It is implemented in the NagamochiIbaraki algorithm class. |
63 | 63 |
/// |
64 | 64 |
/// \tparam GR The type of the digraph the algorithm runs on. |
65 | 65 |
/// \tparam CAP The type of the arc map containing the capacities, |
66 | 66 |
/// which can be any numreric type. The default map type is |
67 | 67 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
68 | 68 |
/// \tparam TOL Tolerance class for handling inexact computations. The |
69 | 69 |
/// default tolerance type is \ref Tolerance "Tolerance<CAP::Value>". |
... | ... |
@@ -903,91 +903,101 @@ |
903 | 903 |
} |
904 | 904 |
|
905 | 905 |
_min_cut = std::numeric_limits<Value>::max(); |
906 | 906 |
} |
907 | 907 |
|
908 | 908 |
|
909 | 909 |
/// \brief Calculate a minimum cut with \f$ source \f$ on the |
910 | 910 |
/// source-side. |
911 | 911 |
/// |
912 | 912 |
/// This function calculates a minimum cut with \f$ source \f$ on the |
913 | 913 |
/// source-side (i.e. a set \f$ X\subsetneq V \f$ with |
914 | 914 |
/// \f$ source \in X \f$ and minimal outgoing capacity). |
915 |
/// It updates the stored cut if (and only if) the newly found one |
|
916 |
/// is better. |
|
915 | 917 |
/// |
916 | 918 |
/// \pre \ref init() must be called before using this function. |
917 | 919 |
void calculateOut() { |
918 | 920 |
findMinCutOut(); |
919 | 921 |
} |
920 | 922 |
|
921 | 923 |
/// \brief Calculate a minimum cut with \f$ source \f$ on the |
922 | 924 |
/// sink-side. |
923 | 925 |
/// |
924 | 926 |
/// This function calculates a minimum cut with \f$ source \f$ on the |
925 | 927 |
/// sink-side (i.e. a set \f$ X\subsetneq V \f$ with |
926 | 928 |
/// \f$ source \notin X \f$ and minimal outgoing capacity). |
929 |
/// It updates the stored cut if (and only if) the newly found one |
|
930 |
/// is better. |
|
927 | 931 |
/// |
928 | 932 |
/// \pre \ref init() must be called before using this function. |
929 | 933 |
void calculateIn() { |
930 | 934 |
findMinCutIn(); |
931 | 935 |
} |
932 | 936 |
|
933 | 937 |
|
934 | 938 |
/// \brief Run the algorithm. |
935 | 939 |
/// |
936 |
/// This function runs the algorithm. It finds nodes \c source and |
|
937 |
/// \c target arbitrarily and then calls \ref init(), \ref calculateOut() |
|
940 |
/// This function runs the algorithm. It chooses source node, |
|
941 |
/// then calls \ref init(), \ref calculateOut() |
|
938 | 942 |
/// and \ref calculateIn(). |
939 | 943 |
void run() { |
940 | 944 |
init(); |
941 | 945 |
calculateOut(); |
942 | 946 |
calculateIn(); |
943 | 947 |
} |
944 | 948 |
|
945 | 949 |
/// \brief Run the algorithm. |
946 | 950 |
/// |
947 |
/// This function runs the algorithm. It uses the given \c source node, |
|
948 |
/// finds a proper \c target node and then calls the \ref init(), |
|
949 |
/// |
|
951 |
/// This function runs the algorithm. It calls \ref init(), |
|
952 |
/// \ref calculateOut() and \ref calculateIn() with the given |
|
953 |
/// source node. |
|
950 | 954 |
void run(const Node& s) { |
951 | 955 |
init(s); |
952 | 956 |
calculateOut(); |
953 | 957 |
calculateIn(); |
954 | 958 |
} |
955 | 959 |
|
956 | 960 |
/// @} |
957 | 961 |
|
958 | 962 |
/// \name Query Functions |
959 | 963 |
/// The result of the %HaoOrlin algorithm |
960 | 964 |
/// can be obtained using these functions.\n |
961 | 965 |
/// \ref run(), \ref calculateOut() or \ref calculateIn() |
962 | 966 |
/// should be called before using them. |
963 | 967 |
|
964 | 968 |
/// @{ |
965 | 969 |
|
966 | 970 |
/// \brief Return the value of the minimum cut. |
967 | 971 |
/// |
968 |
/// This function returns the value of the |
|
972 |
/// This function returns the value of the best cut found by the |
|
973 |
/// previously called \ref run(), \ref calculateOut() or \ref |
|
974 |
/// calculateIn(). |
|
969 | 975 |
/// |
970 | 976 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
971 | 977 |
/// must be called before using this function. |
972 | 978 |
Value minCutValue() const { |
973 | 979 |
return _min_cut; |
974 | 980 |
} |
975 | 981 |
|
976 | 982 |
|
977 | 983 |
/// \brief Return a minimum cut. |
978 | 984 |
/// |
979 |
/// This function sets \c cutMap to the characteristic vector of a |
|
980 |
/// minimum value cut: it will give a non-empty set \f$ X\subsetneq V \f$ |
|
981 |
/// |
|
985 |
/// This function gives the best cut found by the |
|
986 |
/// previously called \ref run(), \ref calculateOut() or \ref |
|
987 |
/// calculateIn(). |
|
988 |
/// |
|
989 |
/// It sets \c cutMap to the characteristic vector of the found |
|
990 |
/// minimum value cut - a non-empty set \f$ X\subsetneq V \f$ |
|
991 |
/// of minimum outgoing capacity (i.e. \c cutMap will be \c true exactly |
|
982 | 992 |
/// for the nodes of \f$ X \f$). |
983 | 993 |
/// |
984 | 994 |
/// \param cutMap A \ref concepts::WriteMap "writable" node map with |
985 | 995 |
/// \c bool (or convertible) value type. |
986 | 996 |
/// |
987 | 997 |
/// \return The value of the minimum cut. |
988 | 998 |
/// |
989 | 999 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
990 | 1000 |
/// must be called before using this function. |
991 | 1001 |
template <typename CutMap> |
992 | 1002 |
Value minCutMap(CutMap& cutMap) const { |
993 | 1003 |
for (NodeIt it(_graph); it != INVALID; ++it) { |
0 comments (0 inline)