... | ... |
@@ -8,98 +8,98 @@ |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_HAO_ORLIN_H |
20 | 20 |
#define LEMON_HAO_ORLIN_H |
21 | 21 |
|
22 | 22 |
#include <vector> |
23 | 23 |
#include <list> |
24 | 24 |
#include <limits> |
25 | 25 |
|
26 | 26 |
#include <lemon/maps.h> |
27 | 27 |
#include <lemon/core.h> |
28 | 28 |
#include <lemon/tolerance.h> |
29 | 29 |
|
30 | 30 |
/// \file |
31 | 31 |
/// \ingroup min_cut |
32 | 32 |
/// \brief Implementation of the Hao-Orlin algorithm. |
33 | 33 |
/// |
34 | 34 |
/// Implementation of the Hao-Orlin algorithm for finding a minimum cut |
35 | 35 |
/// in a digraph. |
36 | 36 |
|
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
/// \ingroup min_cut |
40 | 40 |
/// |
41 | 41 |
/// \brief Hao-Orlin algorithm for finding a minimum cut in a digraph. |
42 | 42 |
/// |
43 | 43 |
/// This class implements the Hao-Orlin algorithm for finding a minimum |
44 | 44 |
/// value cut in a directed graph \f$D=(V,A)\f$. |
45 | 45 |
/// It takes a fixed node \f$ source \in V \f$ and |
46 | 46 |
/// consists of two phases: in the first phase it determines a |
47 | 47 |
/// minimum cut with \f$ source \f$ on the source-side (i.e. a set |
48 | 48 |
/// \f$ X\subsetneq V \f$ with \f$ source \in X \f$ and minimal outgoing |
49 | 49 |
/// capacity) and in the second phase it determines a minimum cut |
50 | 50 |
/// with \f$ source \f$ on the sink-side (i.e. a set |
51 | 51 |
/// \f$ X\subsetneq V \f$ with \f$ source \notin X \f$ and minimal outgoing |
52 | 52 |
/// capacity). Obviously, the smaller of these two cuts will be a |
53 | 53 |
/// minimum cut of \f$ D \f$. The algorithm is a modified |
54 | 54 |
/// preflow push-relabel algorithm. Our implementation calculates |
55 | 55 |
/// the minimum cut in \f$ O(n^2\sqrt{m}) \f$ time (we use the |
56 |
/// highest-label rule), or in \f$O(nm)\f$ for unit capacities. The |
|
57 |
/// purpose of such algorithm is e.g. testing network reliability. |
|
56 |
/// highest-label rule), or in \f$O(nm)\f$ for unit capacities. A notable |
|
57 |
/// use of this algorithm is testing network reliability. |
|
58 | 58 |
/// |
59 | 59 |
/// For an undirected graph you can run just the first phase of the |
60 | 60 |
/// algorithm or you can use the algorithm of Nagamochi and Ibaraki, |
61 | 61 |
/// which solves the undirected problem in \f$ O(nm + n^2 \log n) \f$ |
62 | 62 |
/// time. It is implemented in the NagamochiIbaraki algorithm class. |
63 | 63 |
/// |
64 | 64 |
/// \tparam GR The type of the digraph the algorithm runs on. |
65 | 65 |
/// \tparam CAP The type of the arc map containing the capacities, |
66 | 66 |
/// which can be any numreric type. The default map type is |
67 | 67 |
/// \ref concepts::Digraph::ArcMap "GR::ArcMap<int>". |
68 | 68 |
/// \tparam TOL Tolerance class for handling inexact computations. The |
69 | 69 |
/// default tolerance type is \ref Tolerance "Tolerance<CAP::Value>". |
70 | 70 |
#ifdef DOXYGEN |
71 | 71 |
template <typename GR, typename CAP, typename TOL> |
72 | 72 |
#else |
73 | 73 |
template <typename GR, |
74 | 74 |
typename CAP = typename GR::template ArcMap<int>, |
75 | 75 |
typename TOL = Tolerance<typename CAP::Value> > |
76 | 76 |
#endif |
77 | 77 |
class HaoOrlin { |
78 | 78 |
public: |
79 | 79 |
|
80 | 80 |
/// The digraph type of the algorithm |
81 | 81 |
typedef GR Digraph; |
82 | 82 |
/// The capacity map type of the algorithm |
83 | 83 |
typedef CAP CapacityMap; |
84 | 84 |
/// The tolerance type of the algorithm |
85 | 85 |
typedef TOL Tolerance; |
86 | 86 |
|
87 | 87 |
private: |
88 | 88 |
|
89 | 89 |
typedef typename CapacityMap::Value Value; |
90 | 90 |
|
91 | 91 |
TEMPLATE_DIGRAPH_TYPEDEFS(Digraph); |
92 | 92 |
|
93 | 93 |
const Digraph& _graph; |
94 | 94 |
const CapacityMap* _capacity; |
95 | 95 |
|
96 | 96 |
typedef typename Digraph::template ArcMap<Value> FlowMap; |
97 | 97 |
FlowMap* _flow; |
98 | 98 |
|
99 | 99 |
Node _source; |
100 | 100 |
|
101 | 101 |
int _node_num; |
102 | 102 |
|
103 | 103 |
// Bucketing structure |
104 | 104 |
std::vector<Node> _first, _last; |
105 | 105 |
typename Digraph::template NodeMap<Node>* _next; |
... | ... |
@@ -867,139 +867,149 @@ |
867 | 867 |
/// the maps and some bucket structures for the algorithm. |
868 | 868 |
/// The given node is used as the source node for the push-relabel |
869 | 869 |
/// algorithm. |
870 | 870 |
void init(const Node& source) { |
871 | 871 |
_source = source; |
872 | 872 |
|
873 | 873 |
_node_num = countNodes(_graph); |
874 | 874 |
|
875 | 875 |
_first.resize(_node_num); |
876 | 876 |
_last.resize(_node_num); |
877 | 877 |
|
878 | 878 |
_dormant.resize(_node_num); |
879 | 879 |
|
880 | 880 |
if (!_flow) { |
881 | 881 |
_flow = new FlowMap(_graph); |
882 | 882 |
} |
883 | 883 |
if (!_next) { |
884 | 884 |
_next = new typename Digraph::template NodeMap<Node>(_graph); |
885 | 885 |
} |
886 | 886 |
if (!_prev) { |
887 | 887 |
_prev = new typename Digraph::template NodeMap<Node>(_graph); |
888 | 888 |
} |
889 | 889 |
if (!_active) { |
890 | 890 |
_active = new typename Digraph::template NodeMap<bool>(_graph); |
891 | 891 |
} |
892 | 892 |
if (!_bucket) { |
893 | 893 |
_bucket = new typename Digraph::template NodeMap<int>(_graph); |
894 | 894 |
} |
895 | 895 |
if (!_excess) { |
896 | 896 |
_excess = new ExcessMap(_graph); |
897 | 897 |
} |
898 | 898 |
if (!_source_set) { |
899 | 899 |
_source_set = new SourceSetMap(_graph); |
900 | 900 |
} |
901 | 901 |
if (!_min_cut_map) { |
902 | 902 |
_min_cut_map = new MinCutMap(_graph); |
903 | 903 |
} |
904 | 904 |
|
905 | 905 |
_min_cut = std::numeric_limits<Value>::max(); |
906 | 906 |
} |
907 | 907 |
|
908 | 908 |
|
909 | 909 |
/// \brief Calculate a minimum cut with \f$ source \f$ on the |
910 | 910 |
/// source-side. |
911 | 911 |
/// |
912 | 912 |
/// This function calculates a minimum cut with \f$ source \f$ on the |
913 | 913 |
/// source-side (i.e. a set \f$ X\subsetneq V \f$ with |
914 | 914 |
/// \f$ source \in X \f$ and minimal outgoing capacity). |
915 |
/// It updates the stored cut if (and only if) the newly found one |
|
916 |
/// is better. |
|
915 | 917 |
/// |
916 | 918 |
/// \pre \ref init() must be called before using this function. |
917 | 919 |
void calculateOut() { |
918 | 920 |
findMinCutOut(); |
919 | 921 |
} |
920 | 922 |
|
921 | 923 |
/// \brief Calculate a minimum cut with \f$ source \f$ on the |
922 | 924 |
/// sink-side. |
923 | 925 |
/// |
924 | 926 |
/// This function calculates a minimum cut with \f$ source \f$ on the |
925 | 927 |
/// sink-side (i.e. a set \f$ X\subsetneq V \f$ with |
926 | 928 |
/// \f$ source \notin X \f$ and minimal outgoing capacity). |
929 |
/// It updates the stored cut if (and only if) the newly found one |
|
930 |
/// is better. |
|
927 | 931 |
/// |
928 | 932 |
/// \pre \ref init() must be called before using this function. |
929 | 933 |
void calculateIn() { |
930 | 934 |
findMinCutIn(); |
931 | 935 |
} |
932 | 936 |
|
933 | 937 |
|
934 | 938 |
/// \brief Run the algorithm. |
935 | 939 |
/// |
936 |
/// This function runs the algorithm. It finds nodes \c source and |
|
937 |
/// \c target arbitrarily and then calls \ref init(), \ref calculateOut() |
|
940 |
/// This function runs the algorithm. It chooses source node, |
|
941 |
/// then calls \ref init(), \ref calculateOut() |
|
938 | 942 |
/// and \ref calculateIn(). |
939 | 943 |
void run() { |
940 | 944 |
init(); |
941 | 945 |
calculateOut(); |
942 | 946 |
calculateIn(); |
943 | 947 |
} |
944 | 948 |
|
945 | 949 |
/// \brief Run the algorithm. |
946 | 950 |
/// |
947 |
/// This function runs the algorithm. It uses the given \c source node, |
|
948 |
/// finds a proper \c target node and then calls the \ref init(), |
|
949 |
/// |
|
951 |
/// This function runs the algorithm. It calls \ref init(), |
|
952 |
/// \ref calculateOut() and \ref calculateIn() with the given |
|
953 |
/// source node. |
|
950 | 954 |
void run(const Node& s) { |
951 | 955 |
init(s); |
952 | 956 |
calculateOut(); |
953 | 957 |
calculateIn(); |
954 | 958 |
} |
955 | 959 |
|
956 | 960 |
/// @} |
957 | 961 |
|
958 | 962 |
/// \name Query Functions |
959 | 963 |
/// The result of the %HaoOrlin algorithm |
960 | 964 |
/// can be obtained using these functions.\n |
961 | 965 |
/// \ref run(), \ref calculateOut() or \ref calculateIn() |
962 | 966 |
/// should be called before using them. |
963 | 967 |
|
964 | 968 |
/// @{ |
965 | 969 |
|
966 | 970 |
/// \brief Return the value of the minimum cut. |
967 | 971 |
/// |
968 |
/// This function returns the value of the |
|
972 |
/// This function returns the value of the best cut found by the |
|
973 |
/// previously called \ref run(), \ref calculateOut() or \ref |
|
974 |
/// calculateIn(). |
|
969 | 975 |
/// |
970 | 976 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
971 | 977 |
/// must be called before using this function. |
972 | 978 |
Value minCutValue() const { |
973 | 979 |
return _min_cut; |
974 | 980 |
} |
975 | 981 |
|
976 | 982 |
|
977 | 983 |
/// \brief Return a minimum cut. |
978 | 984 |
/// |
979 |
/// This function sets \c cutMap to the characteristic vector of a |
|
980 |
/// minimum value cut: it will give a non-empty set \f$ X\subsetneq V \f$ |
|
981 |
/// |
|
985 |
/// This function gives the best cut found by the |
|
986 |
/// previously called \ref run(), \ref calculateOut() or \ref |
|
987 |
/// calculateIn(). |
|
988 |
/// |
|
989 |
/// It sets \c cutMap to the characteristic vector of the found |
|
990 |
/// minimum value cut - a non-empty set \f$ X\subsetneq V \f$ |
|
991 |
/// of minimum outgoing capacity (i.e. \c cutMap will be \c true exactly |
|
982 | 992 |
/// for the nodes of \f$ X \f$). |
983 | 993 |
/// |
984 | 994 |
/// \param cutMap A \ref concepts::WriteMap "writable" node map with |
985 | 995 |
/// \c bool (or convertible) value type. |
986 | 996 |
/// |
987 | 997 |
/// \return The value of the minimum cut. |
988 | 998 |
/// |
989 | 999 |
/// \pre \ref run(), \ref calculateOut() or \ref calculateIn() |
990 | 1000 |
/// must be called before using this function. |
991 | 1001 |
template <typename CutMap> |
992 | 1002 |
Value minCutMap(CutMap& cutMap) const { |
993 | 1003 |
for (NodeIt it(_graph); it != INVALID; ++it) { |
994 | 1004 |
cutMap.set(it, (*_min_cut_map)[it]); |
995 | 1005 |
} |
996 | 1006 |
return _min_cut; |
997 | 1007 |
} |
998 | 1008 |
|
999 | 1009 |
/// @} |
1000 | 1010 |
|
1001 | 1011 |
}; //class HaoOrlin |
1002 | 1012 |
|
1003 | 1013 |
} //namespace lemon |
1004 | 1014 |
|
1005 | 1015 |
#endif //LEMON_HAO_ORLIN_H |
0 comments (0 inline)