gravatar
deba@inf.elte.hu
deba@inf.elte.hu
Unify DynArcLookUp interface (ticket #127)
0 1 0
default
1 file changed with 71 insertions and 101 deletions:
71
101
↑ Collapse diff ↑
Ignore white space 2 line context
... ...
@@ -31,3 +31,3 @@
31 31
///This header file contains core utilities for LEMON.
32
///It is automatically included by all graph types, therefore it usually 
32
///It is automatically included by all graph types, therefore it usually
33 33
///do not have to be included directly.
... ...
@@ -1173,3 +1173,3 @@
1173 1173
  ///Using this class, you can find an arc in a digraph from a given
1174
  ///source to a given target in amortized time <em>O(log d)</em>,
1174
  ///source to a given target in amortized time <em>O(log</em>d<em>)</em>,
1175 1175
  ///where <em>d</em> is the out-degree of the source node.
... ...
@@ -1177,3 +1177,3 @@
1177 1177
  ///It is possible to find \e all parallel arcs between two nodes with
1178
  ///the \c findFirst() and \c findNext() members.
1178
  ///the \c operator() member.
1179 1179
  ///
... ...
@@ -1425,4 +1425,4 @@
1425 1425
        std::vector<Arc> v;
1426
        for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
1427
        if(v.size()) {
1426
        for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
1427
        if (!v.empty()) {
1428 1428
          std::sort(v.begin(),v.end(),ArcLess(_g));
... ...
@@ -1508,31 +1508,76 @@
1508 1508

	
1509
    ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
1510
    /// <em>d</em> is the number of outgoing arcs of \c s.
1509
    ///Find an arc between two nodes.
1511 1510
    ///\param s The source node
1512 1511
    ///\param t The target node
1513
    ///\return An arc from \c s to \c t if there exists,
1514
    ///\ref INVALID otherwise.
1515
    Arc operator()(Node s, Node t) const
1516
    {
1517
      Arc a = _head[s];
1518
      if (a == INVALID) return INVALID;
1519
      while (true) {
1520
        if (_g.target(a) == t) {
1512
    ///\param p The previous arc between \c s and \c t. It it is INVALID or
1513
    ///not given, the operator finds the first appropriate arc.
1514
    ///\return An arc from \c s to \c t after \c p or
1515
    ///\ref INVALID if there is no more.
1516
    ///
1517
    ///For example, you can count the number of arcs from \c u to \c v in the
1518
    ///following way.
1519
    ///\code
1520
    ///DynArcLookUp<ListDigraph> ae(g);
1521
    ///...
1522
    ///int n=0;
1523
    ///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
1524
    ///\endcode
1525
    ///
1526
    ///Finding the arcs take at most <em>O(</em>log<em>d)</em>
1527
    ///amortized time, specifically, the time complexity of the lookups
1528
    ///is equal to the optimal search tree implementation for the
1529
    ///current query distribution in a constant factor.
1530
    ///
1531
    ///\note This is a dynamic data structure, therefore the data
1532
    ///structure is updated after each graph alteration. However,
1533
    ///theoretically this data structure is faster than \c ArcLookUp
1534
    ///or AllEdgeLookup, but it often provides worse performance than
1535
    ///them.
1536
    ///
1537
    Arc operator()(Node s, Node t, Arc p = INVALID) const  {
1538
      if (p == INVALID) {
1539
        Arc a = _head[s];
1540
        if (a == INVALID) return INVALID;
1541
        Arc r = INVALID;
1542
        while (true) {
1543
          if (_g.target(a) < t) {
1544
            if (_right[a] == INVALID) {
1545
              const_cast<DynArcLookUp&>(*this).splay(a);
1546
              return r;
1547
            } else {
1548
              a = _right[a];
1549
            }
1550
          } else {
1551
            if (_g.target(a) == t) {
1552
              r = a;
1553
            }
1554
            if (_left[a] == INVALID) {
1555
              const_cast<DynArcLookUp&>(*this).splay(a);
1556
              return r;
1557
            } else {
1558
              a = _left[a];
1559
            }
1560
          }
1561
        }
1562
      } else {
1563
        Arc a = p;
1564
        if (_right[a] != INVALID) {
1565
          a = _right[a];
1566
          while (_left[a] != INVALID) {
1567
            a = _left[a];
1568
          }
1521 1569
          const_cast<DynArcLookUp&>(*this).splay(a);
1522
          return a;
1523
        } else if (t < _g.target(a)) {
1524
          if (_left[a] == INVALID) {
1525
            const_cast<DynArcLookUp&>(*this).splay(a);
1570
        } else {
1571
          while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
1572
            a = _parent[a];
1573
          }
1574
          if (_parent[a] == INVALID) {
1526 1575
            return INVALID;
1527 1576
          } else {
1528
            a = _left[a];
1529
          }
1530
        } else  {
1531
          if (_right[a] == INVALID) {
1577
            a = _parent[a];
1532 1578
            const_cast<DynArcLookUp&>(*this).splay(a);
1533
            return INVALID;
1534
          } else {
1535
            a = _right[a];
1536 1579
          }
1537 1580
        }
1581
        if (_g.target(a) == t) return a;
1582
        else return INVALID;
1538 1583
      }
... ...
@@ -1540,77 +1585,2 @@
1540 1585

	
1541
    ///Find the first arc between two nodes.
1542

	
1543
    ///Find the first arc between two nodes in time
1544
    /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
1545
    /// outgoing arcs of \c s.
1546
    ///\param s The source node
1547
    ///\param t The target node
1548
    ///\return An arc from \c s to \c t if there exists, \ref INVALID
1549
    /// otherwise.
1550
    Arc findFirst(Node s, Node t) const
1551
    {
1552
      Arc a = _head[s];
1553
      if (a == INVALID) return INVALID;
1554
      Arc r = INVALID;
1555
      while (true) {
1556
        if (_g.target(a) < t) {
1557
          if (_right[a] == INVALID) {
1558
            const_cast<DynArcLookUp&>(*this).splay(a);
1559
            return r;
1560
          } else {
1561
            a = _right[a];
1562
          }
1563
        } else {
1564
          if (_g.target(a) == t) {
1565
            r = a;
1566
          }
1567
          if (_left[a] == INVALID) {
1568
            const_cast<DynArcLookUp&>(*this).splay(a);
1569
            return r;
1570
          } else {
1571
            a = _left[a];
1572
          }
1573
        }
1574
      }
1575
    }
1576

	
1577
    ///Find the next arc between two nodes.
1578

	
1579
    ///Find the next arc between two nodes in time
1580
    /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
1581
    /// outgoing arcs of \c s.
1582
    ///\param s The source node
1583
    ///\param t The target node
1584
    ///\return An arc from \c s to \c t if there exists, \ref INVALID
1585
    /// otherwise.
1586

	
1587
    ///\note If \c e is not the result of the previous \c findFirst()
1588
    ///operation then the amorized time bound can not be guaranteed.
1589
#ifdef DOXYGEN
1590
    Arc findNext(Node s, Node t, Arc a) const
1591
#else
1592
    Arc findNext(Node, Node t, Arc a) const
1593
#endif
1594
    {
1595
      if (_right[a] != INVALID) {
1596
        a = _right[a];
1597
        while (_left[a] != INVALID) {
1598
          a = _left[a];
1599
        }
1600
        const_cast<DynArcLookUp&>(*this).splay(a);
1601
      } else {
1602
        while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
1603
          a = _parent[a];
1604
        }
1605
        if (_parent[a] == INVALID) {
1606
          return INVALID;
1607
        } else {
1608
          a = _parent[a];
1609
          const_cast<DynArcLookUp&>(*this).splay(a);
1610
        }
1611
      }
1612
      if (_g.target(a) == t) return a;
1613
      else return INVALID;
1614
    }
1615

	
1616 1586
  };
0 comments (0 inline)