gravatar
deba@inf.elte.hu
deba@inf.elte.hu
Unify DynArcLookUp interface (ticket #127)
0 1 0
default
1 file changed with 71 insertions and 101 deletions:
71
101
↑ Collapse diff ↑
Ignore white space 96 line context
1 1
/* -*- mode: C++; indent-tabs-mode: nil; -*-
2 2
 *
3 3
 * This file is a part of LEMON, a generic C++ optimization library.
4 4
 *
5 5
 * Copyright (C) 2003-2008
6 6
 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
7 7
 * (Egervary Research Group on Combinatorial Optimization, EGRES).
8 8
 *
9 9
 * Permission to use, modify and distribute this software is granted
10 10
 * provided that this copyright notice appears in all copies. For
11 11
 * precise terms see the accompanying LICENSE file.
12 12
 *
13 13
 * This software is provided "AS IS" with no warranty of any kind,
14 14
 * express or implied, and with no claim as to its suitability for any
15 15
 * purpose.
16 16
 *
17 17
 */
18 18

	
19 19
#ifndef LEMON_CORE_H
20 20
#define LEMON_CORE_H
21 21

	
22 22
#include <vector>
23 23
#include <algorithm>
24 24

	
25 25
#include <lemon/bits/enable_if.h>
26 26
#include <lemon/bits/traits.h>
27 27

	
28 28
///\file
29 29
///\brief LEMON core utilities.
30 30
///
31 31
///This header file contains core utilities for LEMON.
32
///It is automatically included by all graph types, therefore it usually 
32
///It is automatically included by all graph types, therefore it usually
33 33
///do not have to be included directly.
34 34

	
35 35
namespace lemon {
36 36

	
37 37
  /// \brief Dummy type to make it easier to create invalid iterators.
38 38
  ///
39 39
  /// Dummy type to make it easier to create invalid iterators.
40 40
  /// See \ref INVALID for the usage.
41 41
  struct Invalid {
42 42
  public:
43 43
    bool operator==(Invalid) { return true;  }
44 44
    bool operator!=(Invalid) { return false; }
45 45
    bool operator< (Invalid) { return false; }
46 46
  };
47 47

	
48 48
  /// \brief Invalid iterators.
49 49
  ///
50 50
  /// \ref Invalid is a global type that converts to each iterator
51 51
  /// in such a way that the value of the target iterator will be invalid.
52 52
#ifdef LEMON_ONLY_TEMPLATES
53 53
  const Invalid INVALID = Invalid();
54 54
#else
55 55
  extern const Invalid INVALID;
56 56
#endif
57 57

	
58 58
  /// \addtogroup gutils
59 59
  /// @{
60 60

	
61 61
  ///Creates convenience typedefs for the digraph types and iterators
62 62

	
63 63
  ///This \c \#define creates convenience typedefs for the following types
64 64
  ///of \c Digraph: \c Node,  \c NodeIt, \c Arc, \c ArcIt, \c InArcIt,
65 65
  ///\c OutArcIt, \c BoolNodeMap, \c IntNodeMap, \c DoubleNodeMap,
66 66
  ///\c BoolArcMap, \c IntArcMap, \c DoubleArcMap.
67 67
  ///
68 68
  ///\note If the graph type is a dependent type, ie. the graph type depend
69 69
  ///on a template parameter, then use \c TEMPLATE_DIGRAPH_TYPEDEFS()
70 70
  ///macro.
71 71
#define DIGRAPH_TYPEDEFS(Digraph)                                       \
72 72
  typedef Digraph::Node Node;                                           \
73 73
  typedef Digraph::NodeIt NodeIt;                                       \
74 74
  typedef Digraph::Arc Arc;                                             \
75 75
  typedef Digraph::ArcIt ArcIt;                                         \
76 76
  typedef Digraph::InArcIt InArcIt;                                     \
77 77
  typedef Digraph::OutArcIt OutArcIt;                                   \
78 78
  typedef Digraph::NodeMap<bool> BoolNodeMap;                           \
79 79
  typedef Digraph::NodeMap<int> IntNodeMap;                             \
80 80
  typedef Digraph::NodeMap<double> DoubleNodeMap;                       \
... ...
@@ -1126,101 +1126,101 @@
1126 1126
  /// use it the following way:
1127 1127
  ///\code
1128 1128
  /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) {
1129 1129
  ///   ...
1130 1130
  /// }
1131 1131
  ///\endcode
1132 1132
  ///
1133 1133
  ///\sa findEdge()
1134 1134
  template <typename _Graph>
1135 1135
  class ConEdgeIt : public _Graph::Edge {
1136 1136
  public:
1137 1137

	
1138 1138
    typedef _Graph Graph;
1139 1139
    typedef typename Graph::Edge Parent;
1140 1140

	
1141 1141
    typedef typename Graph::Edge Edge;
1142 1142
    typedef typename Graph::Node Node;
1143 1143

	
1144 1144
    /// \brief Constructor.
1145 1145
    ///
1146 1146
    /// Construct a new ConEdgeIt iterating on the edges which
1147 1147
    /// connects the \c u and \c v node.
1148 1148
    ConEdgeIt(const Graph& g, Node u, Node v) : _graph(g) {
1149 1149
      Parent::operator=(findEdge(_graph, u, v));
1150 1150
    }
1151 1151

	
1152 1152
    /// \brief Constructor.
1153 1153
    ///
1154 1154
    /// Construct a new ConEdgeIt which continues the iterating from
1155 1155
    /// the \c e edge.
1156 1156
    ConEdgeIt(const Graph& g, Edge e) : Parent(e), _graph(g) {}
1157 1157

	
1158 1158
    /// \brief Increment operator.
1159 1159
    ///
1160 1160
    /// It increments the iterator and gives back the next edge.
1161 1161
    ConEdgeIt& operator++() {
1162 1162
      Parent::operator=(findEdge(_graph, _graph.u(*this),
1163 1163
                                 _graph.v(*this), *this));
1164 1164
      return *this;
1165 1165
    }
1166 1166
  private:
1167 1167
    const Graph& _graph;
1168 1168
  };
1169 1169

	
1170 1170

	
1171 1171
  ///Dynamic arc look up between given endpoints.
1172 1172

	
1173 1173
  ///Using this class, you can find an arc in a digraph from a given
1174
  ///source to a given target in amortized time <em>O(log d)</em>,
1174
  ///source to a given target in amortized time <em>O(log</em>d<em>)</em>,
1175 1175
  ///where <em>d</em> is the out-degree of the source node.
1176 1176
  ///
1177 1177
  ///It is possible to find \e all parallel arcs between two nodes with
1178
  ///the \c findFirst() and \c findNext() members.
1178
  ///the \c operator() member.
1179 1179
  ///
1180 1180
  ///See the \ref ArcLookUp and \ref AllArcLookUp classes if your
1181 1181
  ///digraph is not changed so frequently.
1182 1182
  ///
1183 1183
  ///This class uses a self-adjusting binary search tree, Sleator's
1184 1184
  ///and Tarjan's Splay tree for guarantee the logarithmic amortized
1185 1185
  ///time bound for arc lookups. This class also guarantees the
1186 1186
  ///optimal time bound in a constant factor for any distribution of
1187 1187
  ///queries.
1188 1188
  ///
1189 1189
  ///\tparam G The type of the underlying digraph.
1190 1190
  ///
1191 1191
  ///\sa ArcLookUp
1192 1192
  ///\sa AllArcLookUp
1193 1193
  template<class G>
1194 1194
  class DynArcLookUp
1195 1195
    : protected ItemSetTraits<G, typename G::Arc>::ItemNotifier::ObserverBase
1196 1196
  {
1197 1197
  public:
1198 1198
    typedef typename ItemSetTraits<G, typename G::Arc>
1199 1199
    ::ItemNotifier::ObserverBase Parent;
1200 1200

	
1201 1201
    TEMPLATE_DIGRAPH_TYPEDEFS(G);
1202 1202
    typedef G Digraph;
1203 1203

	
1204 1204
  protected:
1205 1205

	
1206 1206
    class AutoNodeMap : public ItemSetTraits<G, Node>::template Map<Arc>::Type {
1207 1207
    public:
1208 1208

	
1209 1209
      typedef typename ItemSetTraits<G, Node>::template Map<Arc>::Type Parent;
1210 1210

	
1211 1211
      AutoNodeMap(const G& digraph) : Parent(digraph, INVALID) {}
1212 1212

	
1213 1213
      virtual void add(const Node& node) {
1214 1214
        Parent::add(node);
1215 1215
        Parent::set(node, INVALID);
1216 1216
      }
1217 1217

	
1218 1218
      virtual void add(const std::vector<Node>& nodes) {
1219 1219
        Parent::add(nodes);
1220 1220
        for (int i = 0; i < int(nodes.size()); ++i) {
1221 1221
          Parent::set(nodes[i], INVALID);
1222 1222
        }
1223 1223
      }
1224 1224

	
1225 1225
      virtual void build() {
1226 1226
        Parent::build();
... ...
@@ -1378,286 +1378,256 @@
1378 1378
              _left.set(_parent[arc], e);
1379 1379
            } else {
1380 1380
              _right.set(_parent[arc], e);
1381 1381
            }
1382 1382
          }
1383 1383
          splay(s);
1384 1384
        } else {
1385 1385
          _right.set(e, _right[arc]);
1386 1386
          _parent.set(_right[arc], e);
1387 1387
          _parent.set(e, _parent[arc]);
1388 1388

	
1389 1389
          if (_parent[arc] != INVALID) {
1390 1390
            if (_left[_parent[arc]] == arc) {
1391 1391
              _left.set(_parent[arc], e);
1392 1392
            } else {
1393 1393
              _right.set(_parent[arc], e);
1394 1394
            }
1395 1395
          } else {
1396 1396
            _head.set(_g.source(arc), e);
1397 1397
          }
1398 1398
        }
1399 1399
      }
1400 1400
    }
1401 1401

	
1402 1402
    Arc refreshRec(std::vector<Arc> &v,int a,int b)
1403 1403
    {
1404 1404
      int m=(a+b)/2;
1405 1405
      Arc me=v[m];
1406 1406
      if (a < m) {
1407 1407
        Arc left = refreshRec(v,a,m-1);
1408 1408
        _left.set(me, left);
1409 1409
        _parent.set(left, me);
1410 1410
      } else {
1411 1411
        _left.set(me, INVALID);
1412 1412
      }
1413 1413
      if (m < b) {
1414 1414
        Arc right = refreshRec(v,m+1,b);
1415 1415
        _right.set(me, right);
1416 1416
        _parent.set(right, me);
1417 1417
      } else {
1418 1418
        _right.set(me, INVALID);
1419 1419
      }
1420 1420
      return me;
1421 1421
    }
1422 1422

	
1423 1423
    void refresh() {
1424 1424
      for(NodeIt n(_g);n!=INVALID;++n) {
1425 1425
        std::vector<Arc> v;
1426
        for(OutArcIt e(_g,n);e!=INVALID;++e) v.push_back(e);
1427
        if(v.size()) {
1426
        for(OutArcIt a(_g,n);a!=INVALID;++a) v.push_back(a);
1427
        if (!v.empty()) {
1428 1428
          std::sort(v.begin(),v.end(),ArcLess(_g));
1429 1429
          Arc head = refreshRec(v,0,v.size()-1);
1430 1430
          _head.set(n, head);
1431 1431
          _parent.set(head, INVALID);
1432 1432
        }
1433 1433
        else _head.set(n, INVALID);
1434 1434
      }
1435 1435
    }
1436 1436

	
1437 1437
    void zig(Arc v) {
1438 1438
      Arc w = _parent[v];
1439 1439
      _parent.set(v, _parent[w]);
1440 1440
      _parent.set(w, v);
1441 1441
      _left.set(w, _right[v]);
1442 1442
      _right.set(v, w);
1443 1443
      if (_parent[v] != INVALID) {
1444 1444
        if (_right[_parent[v]] == w) {
1445 1445
          _right.set(_parent[v], v);
1446 1446
        } else {
1447 1447
          _left.set(_parent[v], v);
1448 1448
        }
1449 1449
      }
1450 1450
      if (_left[w] != INVALID){
1451 1451
        _parent.set(_left[w], w);
1452 1452
      }
1453 1453
    }
1454 1454

	
1455 1455
    void zag(Arc v) {
1456 1456
      Arc w = _parent[v];
1457 1457
      _parent.set(v, _parent[w]);
1458 1458
      _parent.set(w, v);
1459 1459
      _right.set(w, _left[v]);
1460 1460
      _left.set(v, w);
1461 1461
      if (_parent[v] != INVALID){
1462 1462
        if (_left[_parent[v]] == w) {
1463 1463
          _left.set(_parent[v], v);
1464 1464
        } else {
1465 1465
          _right.set(_parent[v], v);
1466 1466
        }
1467 1467
      }
1468 1468
      if (_right[w] != INVALID){
1469 1469
        _parent.set(_right[w], w);
1470 1470
      }
1471 1471
    }
1472 1472

	
1473 1473
    void splay(Arc v) {
1474 1474
      while (_parent[v] != INVALID) {
1475 1475
        if (v == _left[_parent[v]]) {
1476 1476
          if (_parent[_parent[v]] == INVALID) {
1477 1477
            zig(v);
1478 1478
          } else {
1479 1479
            if (_parent[v] == _left[_parent[_parent[v]]]) {
1480 1480
              zig(_parent[v]);
1481 1481
              zig(v);
1482 1482
            } else {
1483 1483
              zig(v);
1484 1484
              zag(v);
1485 1485
            }
1486 1486
          }
1487 1487
        } else {
1488 1488
          if (_parent[_parent[v]] == INVALID) {
1489 1489
            zag(v);
1490 1490
          } else {
1491 1491
            if (_parent[v] == _left[_parent[_parent[v]]]) {
1492 1492
              zag(v);
1493 1493
              zig(v);
1494 1494
            } else {
1495 1495
              zag(_parent[v]);
1496 1496
              zag(v);
1497 1497
            }
1498 1498
          }
1499 1499
        }
1500 1500
      }
1501 1501
      _head[_g.source(v)] = v;
1502 1502
    }
1503 1503

	
1504 1504

	
1505 1505
  public:
1506 1506

	
1507 1507
    ///Find an arc between two nodes.
1508 1508

	
1509
    ///Find an arc between two nodes in time <em>O(</em>log<em>d)</em>, where
1510
    /// <em>d</em> is the number of outgoing arcs of \c s.
1509
    ///Find an arc between two nodes.
1511 1510
    ///\param s The source node
1512 1511
    ///\param t The target node
1513
    ///\return An arc from \c s to \c t if there exists,
1514
    ///\ref INVALID otherwise.
1515
    Arc operator()(Node s, Node t) const
1516
    {
1517
      Arc a = _head[s];
1518
      if (a == INVALID) return INVALID;
1519
      while (true) {
1520
        if (_g.target(a) == t) {
1512
    ///\param p The previous arc between \c s and \c t. It it is INVALID or
1513
    ///not given, the operator finds the first appropriate arc.
1514
    ///\return An arc from \c s to \c t after \c p or
1515
    ///\ref INVALID if there is no more.
1516
    ///
1517
    ///For example, you can count the number of arcs from \c u to \c v in the
1518
    ///following way.
1519
    ///\code
1520
    ///DynArcLookUp<ListDigraph> ae(g);
1521
    ///...
1522
    ///int n=0;
1523
    ///for(Arc e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++;
1524
    ///\endcode
1525
    ///
1526
    ///Finding the arcs take at most <em>O(</em>log<em>d)</em>
1527
    ///amortized time, specifically, the time complexity of the lookups
1528
    ///is equal to the optimal search tree implementation for the
1529
    ///current query distribution in a constant factor.
1530
    ///
1531
    ///\note This is a dynamic data structure, therefore the data
1532
    ///structure is updated after each graph alteration. However,
1533
    ///theoretically this data structure is faster than \c ArcLookUp
1534
    ///or AllEdgeLookup, but it often provides worse performance than
1535
    ///them.
1536
    ///
1537
    Arc operator()(Node s, Node t, Arc p = INVALID) const  {
1538
      if (p == INVALID) {
1539
        Arc a = _head[s];
1540
        if (a == INVALID) return INVALID;
1541
        Arc r = INVALID;
1542
        while (true) {
1543
          if (_g.target(a) < t) {
1544
            if (_right[a] == INVALID) {
1545
              const_cast<DynArcLookUp&>(*this).splay(a);
1546
              return r;
1547
            } else {
1548
              a = _right[a];
1549
            }
1550
          } else {
1551
            if (_g.target(a) == t) {
1552
              r = a;
1553
            }
1554
            if (_left[a] == INVALID) {
1555
              const_cast<DynArcLookUp&>(*this).splay(a);
1556
              return r;
1557
            } else {
1558
              a = _left[a];
1559
            }
1560
          }
1561
        }
1562
      } else {
1563
        Arc a = p;
1564
        if (_right[a] != INVALID) {
1565
          a = _right[a];
1566
          while (_left[a] != INVALID) {
1567
            a = _left[a];
1568
          }
1521 1569
          const_cast<DynArcLookUp&>(*this).splay(a);
1522
          return a;
1523
        } else if (t < _g.target(a)) {
1524
          if (_left[a] == INVALID) {
1525
            const_cast<DynArcLookUp&>(*this).splay(a);
1570
        } else {
1571
          while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
1572
            a = _parent[a];
1573
          }
1574
          if (_parent[a] == INVALID) {
1526 1575
            return INVALID;
1527 1576
          } else {
1528
            a = _left[a];
1529
          }
1530
        } else  {
1531
          if (_right[a] == INVALID) {
1577
            a = _parent[a];
1532 1578
            const_cast<DynArcLookUp&>(*this).splay(a);
1533
            return INVALID;
1534
          } else {
1535
            a = _right[a];
1536 1579
          }
1537 1580
        }
1581
        if (_g.target(a) == t) return a;
1582
        else return INVALID;
1538 1583
      }
1539 1584
    }
1540 1585

	
1541
    ///Find the first arc between two nodes.
1542

	
1543
    ///Find the first arc between two nodes in time
1544
    /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
1545
    /// outgoing arcs of \c s.
1546
    ///\param s The source node
1547
    ///\param t The target node
1548
    ///\return An arc from \c s to \c t if there exists, \ref INVALID
1549
    /// otherwise.
1550
    Arc findFirst(Node s, Node t) const
1551
    {
1552
      Arc a = _head[s];
1553
      if (a == INVALID) return INVALID;
1554
      Arc r = INVALID;
1555
      while (true) {
1556
        if (_g.target(a) < t) {
1557
          if (_right[a] == INVALID) {
1558
            const_cast<DynArcLookUp&>(*this).splay(a);
1559
            return r;
1560
          } else {
1561
            a = _right[a];
1562
          }
1563
        } else {
1564
          if (_g.target(a) == t) {
1565
            r = a;
1566
          }
1567
          if (_left[a] == INVALID) {
1568
            const_cast<DynArcLookUp&>(*this).splay(a);
1569
            return r;
1570
          } else {
1571
            a = _left[a];
1572
          }
1573
        }
1574
      }
1575
    }
1576

	
1577
    ///Find the next arc between two nodes.
1578

	
1579
    ///Find the next arc between two nodes in time
1580
    /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of
1581
    /// outgoing arcs of \c s.
1582
    ///\param s The source node
1583
    ///\param t The target node
1584
    ///\return An arc from \c s to \c t if there exists, \ref INVALID
1585
    /// otherwise.
1586

	
1587
    ///\note If \c e is not the result of the previous \c findFirst()
1588
    ///operation then the amorized time bound can not be guaranteed.
1589
#ifdef DOXYGEN
1590
    Arc findNext(Node s, Node t, Arc a) const
1591
#else
1592
    Arc findNext(Node, Node t, Arc a) const
1593
#endif
1594
    {
1595
      if (_right[a] != INVALID) {
1596
        a = _right[a];
1597
        while (_left[a] != INVALID) {
1598
          a = _left[a];
1599
        }
1600
        const_cast<DynArcLookUp&>(*this).splay(a);
1601
      } else {
1602
        while (_parent[a] != INVALID && _right[_parent[a]] ==  a) {
1603
          a = _parent[a];
1604
        }
1605
        if (_parent[a] == INVALID) {
1606
          return INVALID;
1607
        } else {
1608
          a = _parent[a];
1609
          const_cast<DynArcLookUp&>(*this).splay(a);
1610
        }
1611
      }
1612
      if (_g.target(a) == t) return a;
1613
      else return INVALID;
1614
    }
1615

	
1616 1586
  };
1617 1587

	
1618 1588
  ///Fast arc look up between given endpoints.
1619 1589

	
1620 1590
  ///Using this class, you can find an arc in a digraph from a given
1621 1591
  ///source to a given target in time <em>O(log d)</em>,
1622 1592
  ///where <em>d</em> is the out-degree of the source node.
1623 1593
  ///
1624 1594
  ///It is not possible to find \e all parallel arcs between two nodes.
1625 1595
  ///Use \ref AllArcLookUp for this purpose.
1626 1596
  ///
1627 1597
  ///\warning This class is static, so you should refresh() (or at least
1628 1598
  ///refresh(Node)) this data structure
1629 1599
  ///whenever the digraph changes. This is a time consuming (superlinearly
1630 1600
  ///proportional (<em>O(m</em>log<em>m)</em>) to the number of arcs).
1631 1601
  ///
1632 1602
  ///\tparam G The type of the underlying digraph.
1633 1603
  ///
1634 1604
  ///\sa DynArcLookUp
1635 1605
  ///\sa AllArcLookUp
1636 1606
  template<class G>
1637 1607
  class ArcLookUp
1638 1608
  {
1639 1609
  public:
1640 1610
    TEMPLATE_DIGRAPH_TYPEDEFS(G);
1641 1611
    typedef G Digraph;
1642 1612

	
1643 1613
  protected:
1644 1614
    const Digraph &_g;
1645 1615
    typename Digraph::template NodeMap<Arc> _head;
1646 1616
    typename Digraph::template ArcMap<Arc> _left;
1647 1617
    typename Digraph::template ArcMap<Arc> _right;
1648 1618

	
1649 1619
    class ArcLess {
1650 1620
      const Digraph &g;
1651 1621
    public:
1652 1622
      ArcLess(const Digraph &_g) : g(_g) {}
1653 1623
      bool operator()(Arc a,Arc b) const
1654 1624
      {
1655 1625
        return g.target(a)<g.target(b);
1656 1626
      }
1657 1627
    };
1658 1628

	
1659 1629
  public:
1660 1630

	
1661 1631
    ///Constructor
1662 1632

	
1663 1633
    ///Constructor.
0 comments (0 inline)