... | ... |
@@ -21,6 +21,7 @@ |
21 | 21 |
|
22 | 22 |
#include <lemon/tolerance.h> |
23 | 23 |
#include <lemon/elevator.h> |
24 |
#include <limits> |
|
24 | 25 |
|
25 | 26 |
///\ingroup max_flow |
26 | 27 |
///\file |
... | ... |
@@ -119,15 +120,15 @@ |
119 | 120 |
at the nodes. |
120 | 121 |
|
121 | 122 |
The exact formulation of this problem is the following. |
122 |
Let \f$G=(V,A)\f$ be a digraph, |
|
123 |
\f$lower, upper: A\rightarrow\mathbf{R}^+_0\f$ denote the lower and |
|
124 |
|
|
123 |
Let \f$G=(V,A)\f$ be a digraph, \f$lower: A\rightarrow\mathbf{R}\f$ |
|
124 |
\f$upper: A\rightarrow\mathbf{R}\cup\{\infty\}\f$ denote the lower and |
|
125 |
upper bounds on the arcs, for which \f$lower(uv) \leq upper(uv)\f$ |
|
125 | 126 |
holds for all \f$uv\in A\f$, and \f$sup: V\rightarrow\mathbf{R}\f$ |
126 | 127 |
denotes the signed supply values of the nodes. |
127 | 128 |
If \f$sup(u)>0\f$, then \f$u\f$ is a supply node with \f$sup(u)\f$ |
128 | 129 |
supply, if \f$sup(u)<0\f$, then \f$u\f$ is a demand node with |
129 | 130 |
\f$-sup(u)\f$ demand. |
130 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R} |
|
131 |
A feasible circulation is an \f$f: A\rightarrow\mathbf{R}\f$ |
|
131 | 132 |
solution of the following problem. |
132 | 133 |
|
133 | 134 |
\f[ \sum_{uv\in A} f(uv) - \sum_{vu\in A} f(vu) |
... | ... |
@@ -151,6 +152,10 @@ |
151 | 152 |
the direction of the arcs and taking the negative of the supply values |
152 | 153 |
(e.g. using \ref ReverseDigraph and \ref NegMap adaptors). |
153 | 154 |
|
155 |
This algorithm either calculates a feasible circulation, or provides |
|
156 |
a \ref barrier() "barrier", which prooves that a feasible soultion |
|
157 |
cannot exist. |
|
158 |
|
|
154 | 159 |
Note that this algorithm also provides a feasible solution for the |
155 | 160 |
\ref min_cost_flow "minimum cost flow problem". |
156 | 161 |
|
... | ... |
@@ -337,6 +342,13 @@ |
337 | 342 |
|
338 | 343 |
private: |
339 | 344 |
|
345 |
bool checkBoundMaps() { |
|
346 |
for (ArcIt e(_g);e!=INVALID;++e) { |
|
347 |
if (_tol.less((*_up)[e], (*_lo)[e])) return false; |
|
348 |
} |
|
349 |
return true; |
|
350 |
} |
|
351 |
|
|
340 | 352 |
void createStructures() { |
341 | 353 |
_node_num = _el = countNodes(_g); |
342 | 354 |
|
... | ... |
@@ -380,7 +392,7 @@ |
380 | 392 |
|
381 | 393 |
/// Sets the upper bound (capacity) map. |
382 | 394 |
/// \return <tt>(*this)</tt> |
383 |
Circulation& upperMap(const |
|
395 |
Circulation& upperMap(const UpperMap& map) { |
|
384 | 396 |
_up = ↦ |
385 | 397 |
return *this; |
386 | 398 |
} |
... | ... |
@@ -467,6 +479,9 @@ |
467 | 479 |
/// to the lower bound. |
468 | 480 |
void init() |
469 | 481 |
{ |
482 |
LEMON_DEBUG(checkBoundMaps(), |
|
483 |
"Upper bounds must be greater or equal to the lower bounds"); |
|
484 |
|
|
470 | 485 |
createStructures(); |
471 | 486 |
|
472 | 487 |
for(NodeIt n(_g);n!=INVALID;++n) { |
... | ... |
@@ -496,6 +511,9 @@ |
496 | 511 |
/// to construct the initial solution. |
497 | 512 |
void greedyInit() |
498 | 513 |
{ |
514 |
LEMON_DEBUG(checkBoundMaps(), |
|
515 |
"Upper bounds must be greater or equal to the lower bounds"); |
|
516 |
|
|
499 | 517 |
createStructures(); |
500 | 518 |
|
501 | 519 |
for(NodeIt n(_g);n!=INVALID;++n) { |
... | ... |
@@ -503,11 +521,11 @@ |
503 | 521 |
} |
504 | 522 |
|
505 | 523 |
for (ArcIt e(_g);e!=INVALID;++e) { |
506 |
if (!_tol. |
|
524 |
if (!_tol.less(-(*_excess)[_g.target(e)], (*_up)[e])) { |
|
507 | 525 |
_flow->set(e, (*_up)[e]); |
508 | 526 |
(*_excess)[_g.target(e)] += (*_up)[e]; |
509 | 527 |
(*_excess)[_g.source(e)] -= (*_up)[e]; |
510 |
} else if (_tol. |
|
528 |
} else if (_tol.less(-(*_excess)[_g.target(e)], (*_lo)[e])) { |
|
511 | 529 |
_flow->set(e, (*_lo)[e]); |
512 | 530 |
(*_excess)[_g.target(e)] += (*_lo)[e]; |
513 | 531 |
(*_excess)[_g.source(e)] -= (*_lo)[e]; |
... | ... |
@@ -748,6 +766,9 @@ |
748 | 766 |
bool checkBarrier() const |
749 | 767 |
{ |
750 | 768 |
Flow delta=0; |
769 |
Flow inf_cap = std::numeric_limits<Flow>::has_infinity ? |
|
770 |
std::numeric_limits<Flow>::infinity() : |
|
771 |
std::numeric_limits<Flow>::max(); |
|
751 | 772 |
for(NodeIt n(_g);n!=INVALID;++n) |
752 | 773 |
if(barrier(n)) |
753 | 774 |
delta-=(*_supply)[n]; |
... | ... |
@@ -755,7 +776,10 @@ |
755 | 776 |
{ |
756 | 777 |
Node s=_g.source(e); |
757 | 778 |
Node t=_g.target(e); |
758 |
if(barrier(s)&&!barrier(t)) |
|
779 |
if(barrier(s)&&!barrier(t)) { |
|
780 |
if (_tol.less(inf_cap - (*_up)[e], delta)) return false; |
|
781 |
delta+=(*_up)[e]; |
|
782 |
} |
|
759 | 783 |
else if(barrier(t)&&!barrier(s)) delta-=(*_lo)[e]; |
760 | 784 |
} |
761 | 785 |
return _tol.negative(delta); |
0 comments (0 inline)