gravatar
alpar (Alpar Juttner)
alpar@cs.elte.hu
Merge #340
0 4 0
merge default
4 files changed with 365 insertions and 149 deletions:
↑ Collapse diff ↑
Show white space 24 line context
... ...
@@ -130,27 +130,28 @@
130 130
      /// upper bound. It means that the objective function is unbounded
131 131
      /// on that arc, however, note that it could actually be bounded
132 132
      /// over the feasible flows, but this algroithm cannot handle
133 133
      /// these cases.
134 134
      UNBOUNDED
135 135
    };
136 136
  
137 137
  private:
138 138

	
139 139
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
140 140

	
141 141
    typedef std::vector<int> IntVector;
142
    typedef std::vector<char> BoolVector;
143 142
    typedef std::vector<Value> ValueVector;
144 143
    typedef std::vector<Cost> CostVector;
144
    typedef std::vector<char> BoolVector;
145
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
145 146

	
146 147
  private:
147 148

	
148 149
    // Data related to the underlying digraph
149 150
    const GR &_graph;
150 151
    int _node_num;
151 152
    int _arc_num;
152 153
    int _res_arc_num;
153 154
    int _root;
154 155

	
155 156
    // Parameters of the problem
156 157
    bool _have_lower;
... ...
@@ -789,33 +790,33 @@
789 790
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
790 791
          int ra = _reverse[a];
791 792
          _res_cap[a] = 1;
792 793
          _res_cap[ra] = 0;
793 794
          _cost[a] = 0;
794 795
          _cost[ra] = 0;
795 796
        }
796 797
      }
797 798

	
798 799
      // Initialize delta value
799 800
      if (_factor > 1) {
800 801
        // With scaling
801
        Value max_sup = 0, max_dem = 0;
802
        for (int i = 0; i != _node_num; ++i) {
802
        Value max_sup = 0, max_dem = 0, max_cap = 0;
803
        for (int i = 0; i != _root; ++i) {
803 804
          Value ex = _excess[i];
804 805
          if ( ex > max_sup) max_sup =  ex;
805 806
          if (-ex > max_dem) max_dem = -ex;
807
          int last_out = _first_out[i+1] - 1;
808
          for (int j = _first_out[i]; j != last_out; ++j) {
809
            if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
806 810
        }
807
        Value max_cap = 0;
808
        for (int j = 0; j != _res_arc_num; ++j) {
809
          if (_res_cap[j] > max_cap) max_cap = _res_cap[j];
810 811
        }
811 812
        max_sup = std::min(std::min(max_sup, max_dem), max_cap);
812 813
        for (_delta = 1; 2 * _delta <= max_sup; _delta *= 2) ;
813 814
      } else {
814 815
        // Without scaling
815 816
        _delta = 1;
816 817
      }
817 818

	
818 819
      return OPTIMAL;
819 820
    }
820 821

	
821 822
    ProblemType start() {
Show white space 24 line context
... ...
@@ -192,28 +192,29 @@
192 192
      /// Partial augment operations are used, i.e. flow is moved on 
193 193
      /// admissible paths started from a node with excess, but the
194 194
      /// lengths of these paths are limited. This method can be viewed
195 195
      /// as a combined version of the previous two operations.
196 196
      PARTIAL_AUGMENT
197 197
    };
198 198

	
199 199
  private:
200 200

	
201 201
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
202 202

	
203 203
    typedef std::vector<int> IntVector;
204
    typedef std::vector<char> BoolVector;
205 204
    typedef std::vector<Value> ValueVector;
206 205
    typedef std::vector<Cost> CostVector;
207 206
    typedef std::vector<LargeCost> LargeCostVector;
207
    typedef std::vector<char> BoolVector;
208
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
208 209

	
209 210
  private:
210 211
  
211 212
    template <typename KT, typename VT>
212 213
    class StaticVectorMap {
213 214
    public:
214 215
      typedef KT Key;
215 216
      typedef VT Value;
216 217
      
217 218
      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
218 219
      
219 220
      const Value& operator[](const Key& key) const {
... ...
@@ -239,24 +240,25 @@
239 240

	
240 241
    // Data related to the underlying digraph
241 242
    const GR &_graph;
242 243
    int _node_num;
243 244
    int _arc_num;
244 245
    int _res_node_num;
245 246
    int _res_arc_num;
246 247
    int _root;
247 248

	
248 249
    // Parameters of the problem
249 250
    bool _have_lower;
250 251
    Value _sum_supply;
252
    int _sup_node_num;
251 253

	
252 254
    // Data structures for storing the digraph
253 255
    IntNodeMap _node_id;
254 256
    IntArcMap _arc_idf;
255 257
    IntArcMap _arc_idb;
256 258
    IntVector _first_out;
257 259
    BoolVector _forward;
258 260
    IntVector _source;
259 261
    IntVector _target;
260 262
    IntVector _reverse;
261 263

	
262 264
    // Node and arc data
... ...
@@ -267,24 +269,30 @@
267 269

	
268 270
    ValueVector _res_cap;
269 271
    LargeCostVector _cost;
270 272
    LargeCostVector _pi;
271 273
    ValueVector _excess;
272 274
    IntVector _next_out;
273 275
    std::deque<int> _active_nodes;
274 276

	
275 277
    // Data for scaling
276 278
    LargeCost _epsilon;
277 279
    int _alpha;
278 280

	
281
    IntVector _buckets;
282
    IntVector _bucket_next;
283
    IntVector _bucket_prev;
284
    IntVector _rank;
285
    int _max_rank;
286
  
279 287
    // Data for a StaticDigraph structure
280 288
    typedef std::pair<int, int> IntPair;
281 289
    StaticDigraph _sgr;
282 290
    std::vector<IntPair> _arc_vec;
283 291
    std::vector<LargeCost> _cost_vec;
284 292
    LargeCostArcMap _cost_map;
285 293
    LargeCostNodeMap _pi_map;
286 294
  
287 295
  public:
288 296
  
289 297
    /// \brief Constant for infinite upper bounds (capacities).
290 298
    ///
... ...
@@ -819,24 +827,29 @@
819 827
          int j = _arc_idf[a];
820 828
          Value c = _lower[j];
821 829
          cap[a] = _upper[j] - c;
822 830
          sup[_graph.source(a)] -= c;
823 831
          sup[_graph.target(a)] += c;
824 832
        }
825 833
      } else {
826 834
        for (ArcIt a(_graph); a != INVALID; ++a) {
827 835
          cap[a] = _upper[_arc_idf[a]];
828 836
        }
829 837
      }
830 838

	
839
      _sup_node_num = 0;
840
      for (NodeIt n(_graph); n != INVALID; ++n) {
841
        if (sup[n] > 0) ++_sup_node_num;
842
      }
843

	
831 844
      // Find a feasible flow using Circulation
832 845
      Circulation<Digraph, ConstMap<Arc, Value>, ValueArcMap, ValueNodeMap>
833 846
        circ(_graph, low, cap, sup);
834 847
      if (!circ.flowMap(flow).run()) return INFEASIBLE;
835 848

	
836 849
      // Set residual capacities and handle GEQ supply type
837 850
      if (_sum_supply < 0) {
838 851
        for (ArcIt a(_graph); a != INVALID; ++a) {
839 852
          Value fa = flow[a];
840 853
          _res_cap[_arc_idf[a]] = cap[a] - fa;
841 854
          _res_cap[_arc_idb[a]] = fa;
842 855
          sup[_graph.source(a)] -= fa;
... ...
@@ -853,39 +866,46 @@
853 866
          _cost[a] = 0;
854 867
          _cost[ra] = 0;
855 868
          _excess[u] = 0;
856 869
        }
857 870
      } else {
858 871
        for (ArcIt a(_graph); a != INVALID; ++a) {
859 872
          Value fa = flow[a];
860 873
          _res_cap[_arc_idf[a]] = cap[a] - fa;
861 874
          _res_cap[_arc_idb[a]] = fa;
862 875
        }
863 876
        for (int a = _first_out[_root]; a != _res_arc_num; ++a) {
864 877
          int ra = _reverse[a];
865
          _res_cap[a] = 1;
878
          _res_cap[a] = 0;
866 879
          _res_cap[ra] = 0;
867 880
          _cost[a] = 0;
868 881
          _cost[ra] = 0;
869 882
        }
870 883
      }
871 884
      
872 885
      return OPTIMAL;
873 886
    }
874 887

	
875 888
    // Execute the algorithm and transform the results
876 889
    void start(Method method) {
877 890
      // Maximum path length for partial augment
878 891
      const int MAX_PATH_LENGTH = 4;
879 892
      
893
      // Initialize data structures for buckets      
894
      _max_rank = _alpha * _res_node_num;
895
      _buckets.resize(_max_rank);
896
      _bucket_next.resize(_res_node_num + 1);
897
      _bucket_prev.resize(_res_node_num + 1);
898
      _rank.resize(_res_node_num + 1);
899
  
880 900
      // Execute the algorithm
881 901
      switch (method) {
882 902
        case PUSH:
883 903
          startPush();
884 904
          break;
885 905
        case AUGMENT:
886 906
          startAugment();
887 907
          break;
888 908
        case PARTIAL_AUGMENT:
889 909
          startAugment(MAX_PATH_LENGTH);
890 910
          break;
891 911
      }
... ...
@@ -907,290 +927,386 @@
907 927
      bf.init(0);
908 928
      bf.start();
909 929

	
910 930
      // Handle non-zero lower bounds
911 931
      if (_have_lower) {
912 932
        int limit = _first_out[_root];
913 933
        for (int j = 0; j != limit; ++j) {
914 934
          if (!_forward[j]) _res_cap[j] += _lower[j];
915 935
        }
916 936
      }
917 937
    }
918 938

	
919
    /// Execute the algorithm performing augment and relabel operations
920
    void startAugment(int max_length = std::numeric_limits<int>::max()) {
921
      // Paramters for heuristics
922
      const int BF_HEURISTIC_EPSILON_BOUND = 1000;
923
      const int BF_HEURISTIC_BOUND_FACTOR  = 3;
924

	
925
      // Perform cost scaling phases
926
      IntVector pred_arc(_res_node_num);
927
      std::vector<int> path_nodes;
928
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
929
                                        1 : _epsilon / _alpha )
930
      {
931
        // "Early Termination" heuristic: use Bellman-Ford algorithm
932
        // to check if the current flow is optimal
933
        if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
934
          _arc_vec.clear();
935
          _cost_vec.clear();
936
          for (int j = 0; j != _res_arc_num; ++j) {
937
            if (_res_cap[j] > 0) {
938
              _arc_vec.push_back(IntPair(_source[j], _target[j]));
939
              _cost_vec.push_back(_cost[j] + 1);
940
            }
941
          }
942
          _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
943

	
944
          BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
945
          bf.init(0);
946
          bool done = false;
947
          int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num));
948
          for (int i = 0; i < K && !done; ++i)
949
            done = bf.processNextWeakRound();
950
          if (done) break;
951
        }
952

	
939
    // Initialize a cost scaling phase
940
    void initPhase() {
953 941
        // Saturate arcs not satisfying the optimality condition
954
        for (int a = 0; a != _res_arc_num; ++a) {
955
          if (_res_cap[a] > 0 &&
956
              _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
942
      for (int u = 0; u != _res_node_num; ++u) {
943
        int last_out = _first_out[u+1];
944
        LargeCost pi_u = _pi[u];
945
        for (int a = _first_out[u]; a != last_out; ++a) {
946
          int v = _target[a];
947
          if (_res_cap[a] > 0 && _cost[a] + pi_u - _pi[v] < 0) {
957 948
            Value delta = _res_cap[a];
958
            _excess[_source[a]] -= delta;
959
            _excess[_target[a]] += delta;
949
            _excess[u] -= delta;
950
            _excess[v] += delta;
960 951
            _res_cap[a] = 0;
961 952
            _res_cap[_reverse[a]] += delta;
962 953
          }
963 954
        }
955
      }
964 956
        
965 957
        // Find active nodes (i.e. nodes with positive excess)
966 958
        for (int u = 0; u != _res_node_num; ++u) {
967 959
          if (_excess[u] > 0) _active_nodes.push_back(u);
968 960
        }
969 961

	
970 962
        // Initialize the next arcs
971 963
        for (int u = 0; u != _res_node_num; ++u) {
972 964
          _next_out[u] = _first_out[u];
973 965
        }
966
    }
967
    
968
    // Early termination heuristic
969
    bool earlyTermination() {
970
      const double EARLY_TERM_FACTOR = 3.0;
971

	
972
      // Build a static residual graph
973
      _arc_vec.clear();
974
      _cost_vec.clear();
975
      for (int j = 0; j != _res_arc_num; ++j) {
976
        if (_res_cap[j] > 0) {
977
          _arc_vec.push_back(IntPair(_source[j], _target[j]));
978
          _cost_vec.push_back(_cost[j] + 1);
979
        }
980
      }
981
      _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
982

	
983
      // Run Bellman-Ford algorithm to check if the current flow is optimal
984
      BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
985
      bf.init(0);
986
      bool done = false;
987
      int K = int(EARLY_TERM_FACTOR * std::sqrt(double(_res_node_num)));
988
      for (int i = 0; i < K && !done; ++i) {
989
        done = bf.processNextWeakRound();
990
      }
991
      return done;
992
    }
993

	
994
    // Global potential update heuristic
995
    void globalUpdate() {
996
      int bucket_end = _root + 1;
997
    
998
      // Initialize buckets
999
      for (int r = 0; r != _max_rank; ++r) {
1000
        _buckets[r] = bucket_end;
1001
      }
1002
      Value total_excess = 0;
1003
      for (int i = 0; i != _res_node_num; ++i) {
1004
        if (_excess[i] < 0) {
1005
          _rank[i] = 0;
1006
          _bucket_next[i] = _buckets[0];
1007
          _bucket_prev[_buckets[0]] = i;
1008
          _buckets[0] = i;
1009
        } else {
1010
          total_excess += _excess[i];
1011
          _rank[i] = _max_rank;
1012
        }
1013
      }
1014
      if (total_excess == 0) return;
1015

	
1016
      // Search the buckets
1017
      int r = 0;
1018
      for ( ; r != _max_rank; ++r) {
1019
        while (_buckets[r] != bucket_end) {
1020
          // Remove the first node from the current bucket
1021
          int u = _buckets[r];
1022
          _buckets[r] = _bucket_next[u];
1023
          
1024
          // Search the incomming arcs of u
1025
          LargeCost pi_u = _pi[u];
1026
          int last_out = _first_out[u+1];
1027
          for (int a = _first_out[u]; a != last_out; ++a) {
1028
            int ra = _reverse[a];
1029
            if (_res_cap[ra] > 0) {
1030
              int v = _source[ra];
1031
              int old_rank_v = _rank[v];
1032
              if (r < old_rank_v) {
1033
                // Compute the new rank of v
1034
                LargeCost nrc = (_cost[ra] + _pi[v] - pi_u) / _epsilon;
1035
                int new_rank_v = old_rank_v;
1036
                if (nrc < LargeCost(_max_rank))
1037
                  new_rank_v = r + 1 + int(nrc);
1038
                  
1039
                // Change the rank of v
1040
                if (new_rank_v < old_rank_v) {
1041
                  _rank[v] = new_rank_v;
1042
                  _next_out[v] = _first_out[v];
1043
                  
1044
                  // Remove v from its old bucket
1045
                  if (old_rank_v < _max_rank) {
1046
                    if (_buckets[old_rank_v] == v) {
1047
                      _buckets[old_rank_v] = _bucket_next[v];
1048
                    } else {
1049
                      _bucket_next[_bucket_prev[v]] = _bucket_next[v];
1050
                      _bucket_prev[_bucket_next[v]] = _bucket_prev[v];
1051
                    }
1052
                  }
1053
                  
1054
                  // Insert v to its new bucket
1055
                  _bucket_next[v] = _buckets[new_rank_v];
1056
                  _bucket_prev[_buckets[new_rank_v]] = v;
1057
                  _buckets[new_rank_v] = v;
1058
                }
1059
              }
1060
            }
1061
          }
1062

	
1063
          // Finish search if there are no more active nodes
1064
          if (_excess[u] > 0) {
1065
            total_excess -= _excess[u];
1066
            if (total_excess <= 0) break;
1067
          }
1068
        }
1069
        if (total_excess <= 0) break;
1070
      }
1071
      
1072
      // Relabel nodes
1073
      for (int u = 0; u != _res_node_num; ++u) {
1074
        int k = std::min(_rank[u], r);
1075
        if (k > 0) {
1076
          _pi[u] -= _epsilon * k;
1077
          _next_out[u] = _first_out[u];
1078
        }
1079
      }
1080
    }
1081

	
1082
    /// Execute the algorithm performing augment and relabel operations
1083
    void startAugment(int max_length = std::numeric_limits<int>::max()) {
1084
      // Paramters for heuristics
1085
      const int EARLY_TERM_EPSILON_LIMIT = 1000;
1086
      const double GLOBAL_UPDATE_FACTOR = 3.0;
1087

	
1088
      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1089
        (_res_node_num + _sup_node_num * _sup_node_num));
1090
      int next_update_limit = global_update_freq;
1091
      
1092
      int relabel_cnt = 0;
1093
      
1094
      // Perform cost scaling phases
1095
      std::vector<int> path;
1096
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1097
                                        1 : _epsilon / _alpha )
1098
      {
1099
        // Early termination heuristic
1100
        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1101
          if (earlyTermination()) break;
1102
        }
1103
        
1104
        // Initialize current phase
1105
        initPhase();
974 1106

	
975 1107
        // Perform partial augment and relabel operations
976 1108
        while (true) {
977 1109
          // Select an active node (FIFO selection)
978 1110
          while (_active_nodes.size() > 0 &&
979 1111
                 _excess[_active_nodes.front()] <= 0) {
980 1112
            _active_nodes.pop_front();
981 1113
          }
982 1114
          if (_active_nodes.size() == 0) break;
983 1115
          int start = _active_nodes.front();
984
          path_nodes.clear();
985
          path_nodes.push_back(start);
986 1116

	
987 1117
          // Find an augmenting path from the start node
1118
          path.clear();
988 1119
          int tip = start;
989
          while (_excess[tip] >= 0 &&
990
                 int(path_nodes.size()) <= max_length) {
1120
          while (_excess[tip] >= 0 && int(path.size()) < max_length) {
991 1121
            int u;
992
            LargeCost min_red_cost, rc;
993
            int last_out = _sum_supply < 0 ?
994
              _first_out[tip+1] : _first_out[tip+1] - 1;
1122
            LargeCost min_red_cost, rc, pi_tip = _pi[tip];
1123
            int last_out = _first_out[tip+1];
995 1124
            for (int a = _next_out[tip]; a != last_out; ++a) {
996
              if (_res_cap[a] > 0 &&
997
                  _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
998 1125
                u = _target[a];
999
                pred_arc[u] = a;
1126
              if (_res_cap[a] > 0 && _cost[a] + pi_tip - _pi[u] < 0) {
1127
                path.push_back(a);
1000 1128
                _next_out[tip] = a;
1001 1129
                tip = u;
1002
                path_nodes.push_back(tip);
1003 1130
                goto next_step;
1004 1131
              }
1005 1132
            }
1006 1133

	
1007 1134
            // Relabel tip node
1008
            min_red_cost = std::numeric_limits<LargeCost>::max() / 2;
1135
            min_red_cost = std::numeric_limits<LargeCost>::max();
1136
            if (tip != start) {
1137
              int ra = _reverse[path.back()];
1138
              min_red_cost = _cost[ra] + pi_tip - _pi[_target[ra]];
1139
            }
1009 1140
            for (int a = _first_out[tip]; a != last_out; ++a) {
1010
              rc = _cost[a] + _pi[_source[a]] - _pi[_target[a]];
1141
              rc = _cost[a] + pi_tip - _pi[_target[a]];
1011 1142
              if (_res_cap[a] > 0 && rc < min_red_cost) {
1012 1143
                min_red_cost = rc;
1013 1144
              }
1014 1145
            }
1015 1146
            _pi[tip] -= min_red_cost + _epsilon;
1016

	
1017
            // Reset the next arc of tip
1018 1147
            _next_out[tip] = _first_out[tip];
1148
            ++relabel_cnt;
1019 1149

	
1020 1150
            // Step back
1021 1151
            if (tip != start) {
1022
              path_nodes.pop_back();
1023
              tip = path_nodes.back();
1152
              tip = _source[path.back()];
1153
              path.pop_back();
1024 1154
            }
1025 1155

	
1026 1156
          next_step: ;
1027 1157
          }
1028 1158

	
1029 1159
          // Augment along the found path (as much flow as possible)
1030 1160
          Value delta;
1031
          int u, v = path_nodes.front(), pa;
1032
          for (int i = 1; i < int(path_nodes.size()); ++i) {
1161
          int pa, u, v = start;
1162
          for (int i = 0; i != int(path.size()); ++i) {
1163
            pa = path[i];
1033 1164
            u = v;
1034
            v = path_nodes[i];
1035
            pa = pred_arc[v];
1165
            v = _target[pa];
1036 1166
            delta = std::min(_res_cap[pa], _excess[u]);
1037 1167
            _res_cap[pa] -= delta;
1038 1168
            _res_cap[_reverse[pa]] += delta;
1039 1169
            _excess[u] -= delta;
1040 1170
            _excess[v] += delta;
1041 1171
            if (_excess[v] > 0 && _excess[v] <= delta)
1042 1172
              _active_nodes.push_back(v);
1043 1173
          }
1174

	
1175
          // Global update heuristic
1176
          if (relabel_cnt >= next_update_limit) {
1177
            globalUpdate();
1178
            next_update_limit += global_update_freq;
1179
          }
1044 1180
        }
1045 1181
      }
1046 1182
    }
1047 1183

	
1048 1184
    /// Execute the algorithm performing push and relabel operations
1049 1185
    void startPush() {
1050 1186
      // Paramters for heuristics
1051
      const int BF_HEURISTIC_EPSILON_BOUND = 1000;
1052
      const int BF_HEURISTIC_BOUND_FACTOR  = 3;
1187
      const int EARLY_TERM_EPSILON_LIMIT = 1000;
1188
      const double GLOBAL_UPDATE_FACTOR = 2.0;
1189

	
1190
      const int global_update_freq = int(GLOBAL_UPDATE_FACTOR *
1191
        (_res_node_num + _sup_node_num * _sup_node_num));
1192
      int next_update_limit = global_update_freq;
1193

	
1194
      int relabel_cnt = 0;
1053 1195

	
1054 1196
      // Perform cost scaling phases
1055 1197
      BoolVector hyper(_res_node_num, false);
1198
      LargeCostVector hyper_cost(_res_node_num);
1056 1199
      for ( ; _epsilon >= 1; _epsilon = _epsilon < _alpha && _epsilon > 1 ?
1057 1200
                                        1 : _epsilon / _alpha )
1058 1201
      {
1059
        // "Early Termination" heuristic: use Bellman-Ford algorithm
1060
        // to check if the current flow is optimal
1061
        if (_epsilon <= BF_HEURISTIC_EPSILON_BOUND) {
1062
          _arc_vec.clear();
1063
          _cost_vec.clear();
1064
          for (int j = 0; j != _res_arc_num; ++j) {
1065
            if (_res_cap[j] > 0) {
1066
              _arc_vec.push_back(IntPair(_source[j], _target[j]));
1067
              _cost_vec.push_back(_cost[j] + 1);
1068
            }
1069
          }
1070
          _sgr.build(_res_node_num, _arc_vec.begin(), _arc_vec.end());
1071

	
1072
          BellmanFord<StaticDigraph, LargeCostArcMap> bf(_sgr, _cost_map);
1073
          bf.init(0);
1074
          bool done = false;
1075
          int K = int(BF_HEURISTIC_BOUND_FACTOR * sqrt(_res_node_num));
1076
          for (int i = 0; i < K && !done; ++i)
1077
            done = bf.processNextWeakRound();
1078
          if (done) break;
1202
        // Early termination heuristic
1203
        if (_epsilon <= EARLY_TERM_EPSILON_LIMIT) {
1204
          if (earlyTermination()) break;
1079 1205
        }
1080 1206

	
1081
        // Saturate arcs not satisfying the optimality condition
1082
        for (int a = 0; a != _res_arc_num; ++a) {
1083
          if (_res_cap[a] > 0 &&
1084
              _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
1085
            Value delta = _res_cap[a];
1086
            _excess[_source[a]] -= delta;
1087
            _excess[_target[a]] += delta;
1088
            _res_cap[a] = 0;
1089
            _res_cap[_reverse[a]] += delta;
1090
          }
1091
        }
1092

	
1093
        // Find active nodes (i.e. nodes with positive excess)
1094
        for (int u = 0; u != _res_node_num; ++u) {
1095
          if (_excess[u] > 0) _active_nodes.push_back(u);
1096
        }
1097

	
1098
        // Initialize the next arcs
1099
        for (int u = 0; u != _res_node_num; ++u) {
1100
          _next_out[u] = _first_out[u];
1101
        }
1207
        // Initialize current phase
1208
        initPhase();
1102 1209

	
1103 1210
        // Perform push and relabel operations
1104 1211
        while (_active_nodes.size() > 0) {
1105
          LargeCost min_red_cost, rc;
1212
          LargeCost min_red_cost, rc, pi_n;
1106 1213
          Value delta;
1107 1214
          int n, t, a, last_out = _res_arc_num;
1108 1215

	
1216
        next_node:
1109 1217
          // Select an active node (FIFO selection)
1110
        next_node:
1111 1218
          n = _active_nodes.front();
1112
          last_out = _sum_supply < 0 ?
1113
            _first_out[n+1] : _first_out[n+1] - 1;
1219
          last_out = _first_out[n+1];
1220
          pi_n = _pi[n];
1114 1221

	
1115 1222
          // Perform push operations if there are admissible arcs
1116 1223
          if (_excess[n] > 0) {
1117 1224
            for (a = _next_out[n]; a != last_out; ++a) {
1118 1225
              if (_res_cap[a] > 0 &&
1119
                  _cost[a] + _pi[_source[a]] - _pi[_target[a]] < 0) {
1226
                  _cost[a] + pi_n - _pi[_target[a]] < 0) {
1120 1227
                delta = std::min(_res_cap[a], _excess[n]);
1121 1228
                t = _target[a];
1122 1229

	
1123 1230
                // Push-look-ahead heuristic
1124 1231
                Value ahead = -_excess[t];
1125
                int last_out_t = _sum_supply < 0 ?
1126
                  _first_out[t+1] : _first_out[t+1] - 1;
1232
                int last_out_t = _first_out[t+1];
1233
                LargeCost pi_t = _pi[t];
1127 1234
                for (int ta = _next_out[t]; ta != last_out_t; ++ta) {
1128 1235
                  if (_res_cap[ta] > 0 && 
1129
                      _cost[ta] + _pi[_source[ta]] - _pi[_target[ta]] < 0)
1236
                      _cost[ta] + pi_t - _pi[_target[ta]] < 0)
1130 1237
                    ahead += _res_cap[ta];
1131 1238
                  if (ahead >= delta) break;
1132 1239
                }
1133 1240
                if (ahead < 0) ahead = 0;
1134 1241

	
1135 1242
                // Push flow along the arc
1136
                if (ahead < delta) {
1243
                if (ahead < delta && !hyper[t]) {
1137 1244
                  _res_cap[a] -= ahead;
1138 1245
                  _res_cap[_reverse[a]] += ahead;
1139 1246
                  _excess[n] -= ahead;
1140 1247
                  _excess[t] += ahead;
1141 1248
                  _active_nodes.push_front(t);
1142 1249
                  hyper[t] = true;
1250
                  hyper_cost[t] = _cost[a] + pi_n - pi_t;
1143 1251
                  _next_out[n] = a;
1144 1252
                  goto next_node;
1145 1253
                } else {
1146 1254
                  _res_cap[a] -= delta;
1147 1255
                  _res_cap[_reverse[a]] += delta;
1148 1256
                  _excess[n] -= delta;
1149 1257
                  _excess[t] += delta;
1150 1258
                  if (_excess[t] > 0 && _excess[t] <= delta)
1151 1259
                    _active_nodes.push_back(t);
1152 1260
                }
1153 1261

	
1154 1262
                if (_excess[n] == 0) {
1155 1263
                  _next_out[n] = a;
1156 1264
                  goto remove_nodes;
1157 1265
                }
1158 1266
              }
1159 1267
            }
1160 1268
            _next_out[n] = a;
1161 1269
          }
1162 1270

	
1163 1271
          // Relabel the node if it is still active (or hyper)
1164 1272
          if (_excess[n] > 0 || hyper[n]) {
1165
            min_red_cost = std::numeric_limits<LargeCost>::max() / 2;
1273
             min_red_cost = hyper[n] ? -hyper_cost[n] :
1274
               std::numeric_limits<LargeCost>::max();
1166 1275
            for (int a = _first_out[n]; a != last_out; ++a) {
1167
              rc = _cost[a] + _pi[_source[a]] - _pi[_target[a]];
1276
              rc = _cost[a] + pi_n - _pi[_target[a]];
1168 1277
              if (_res_cap[a] > 0 && rc < min_red_cost) {
1169 1278
                min_red_cost = rc;
1170 1279
              }
1171 1280
            }
1172 1281
            _pi[n] -= min_red_cost + _epsilon;
1282
            _next_out[n] = _first_out[n];
1173 1283
            hyper[n] = false;
1174

	
1175
            // Reset the next arc
1176
            _next_out[n] = _first_out[n];
1284
            ++relabel_cnt;
1177 1285
          }
1178 1286
        
1179 1287
          // Remove nodes that are not active nor hyper
1180 1288
        remove_nodes:
1181 1289
          while ( _active_nodes.size() > 0 &&
1182 1290
                  _excess[_active_nodes.front()] <= 0 &&
1183 1291
                  !hyper[_active_nodes.front()] ) {
1184 1292
            _active_nodes.pop_front();
1185 1293
          }
1294
          
1295
          // Global update heuristic
1296
          if (relabel_cnt >= next_update_limit) {
1297
            globalUpdate();
1298
            for (int u = 0; u != _res_node_num; ++u)
1299
              hyper[u] = false;
1300
            next_update_limit += global_update_freq;
1301
          }
1186 1302
        }
1187 1303
      }
1188 1304
    }
1189 1305

	
1190 1306
  }; //class CostScaling
1191 1307

	
1192 1308
  ///@}
1193 1309

	
1194 1310
} //namespace lemon
1195 1311

	
1196 1312
#endif //LEMON_COST_SCALING_H
Show white space 24 line context
... ...
@@ -135,28 +135,29 @@
135 135
      /// improved version of the previous method
136 136
      /// \ref goldberg89cyclecanceling.
137 137
      /// It is faster both in theory and in practice, its running time
138 138
      /// complexity is O(n<sup>2</sup>m<sup>2</sup>log(n)).
139 139
      CANCEL_AND_TIGHTEN
140 140
    };
141 141

	
142 142
  private:
143 143

	
144 144
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
145 145
    
146 146
    typedef std::vector<int> IntVector;
147
    typedef std::vector<char> CharVector;
148 147
    typedef std::vector<double> DoubleVector;
149 148
    typedef std::vector<Value> ValueVector;
150 149
    typedef std::vector<Cost> CostVector;
150
    typedef std::vector<char> BoolVector;
151
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
151 152

	
152 153
  private:
153 154
  
154 155
    template <typename KT, typename VT>
155 156
    class StaticVectorMap {
156 157
    public:
157 158
      typedef KT Key;
158 159
      typedef VT Value;
159 160
      
160 161
      StaticVectorMap(std::vector<Value>& v) : _v(v) {}
161 162
      
162 163
      const Value& operator[](const Key& key) const {
... ...
@@ -189,25 +190,25 @@
189 190
    int _res_arc_num;
190 191
    int _root;
191 192

	
192 193
    // Parameters of the problem
193 194
    bool _have_lower;
194 195
    Value _sum_supply;
195 196

	
196 197
    // Data structures for storing the digraph
197 198
    IntNodeMap _node_id;
198 199
    IntArcMap _arc_idf;
199 200
    IntArcMap _arc_idb;
200 201
    IntVector _first_out;
201
    CharVector _forward;
202
    BoolVector _forward;
202 203
    IntVector _source;
203 204
    IntVector _target;
204 205
    IntVector _reverse;
205 206

	
206 207
    // Node and arc data
207 208
    ValueVector _lower;
208 209
    ValueVector _upper;
209 210
    CostVector _cost;
210 211
    ValueVector _supply;
211 212

	
212 213
    ValueVector _res_cap;
213 214
    CostVector _pi;
... ...
@@ -953,26 +954,26 @@
953 954
      }
954 955
    }
955 956

	
956 957
    // Execute the "Cancel And Tighten" method
957 958
    void startCancelAndTighten() {
958 959
      // Constants for the min mean cycle computations
959 960
      const double LIMIT_FACTOR = 1.0;
960 961
      const int MIN_LIMIT = 5;
961 962

	
962 963
      // Contruct auxiliary data vectors
963 964
      DoubleVector pi(_res_node_num, 0.0);
964 965
      IntVector level(_res_node_num);
965
      CharVector reached(_res_node_num);
966
      CharVector processed(_res_node_num);
966
      BoolVector reached(_res_node_num);
967
      BoolVector processed(_res_node_num);
967 968
      IntVector pred_node(_res_node_num);
968 969
      IntVector pred_arc(_res_node_num);
969 970
      std::vector<int> stack(_res_node_num);
970 971
      std::vector<int> proc_vector(_res_node_num);
971 972

	
972 973
      // Initialize epsilon
973 974
      double epsilon = 0;
974 975
      for (int a = 0; a != _res_arc_num; ++a) {
975 976
        if (_res_cap[a] > 0 && -_cost[a] > epsilon)
976 977
          epsilon = -_cost[a];
977 978
      }
978 979

	
Show white space 24 line context
... ...
@@ -155,27 +155,28 @@
155 155
      /// The \e Altering \e Candidate \e List pivot rule.
156 156
      /// It is a modified version of the Candidate List method.
157 157
      /// It keeps only the several best eligible arcs from the former
158 158
      /// candidate list and extends this list in every iteration.
159 159
      ALTERING_LIST
160 160
    };
161 161
    
162 162
  private:
163 163

	
164 164
    TEMPLATE_DIGRAPH_TYPEDEFS(GR);
165 165

	
166 166
    typedef std::vector<int> IntVector;
167
    typedef std::vector<char> CharVector;
168 167
    typedef std::vector<Value> ValueVector;
169 168
    typedef std::vector<Cost> CostVector;
169
    typedef std::vector<char> BoolVector;
170
    // Note: vector<char> is used instead of vector<bool> for efficiency reasons
170 171

	
171 172
    // State constants for arcs
172 173
    enum ArcStateEnum {
173 174
      STATE_UPPER = -1,
174 175
      STATE_TREE  =  0,
175 176
      STATE_LOWER =  1
176 177
    };
177 178

	
178 179
  private:
179 180

	
180 181
    // Data related to the underlying digraph
181 182
    const GR &_graph;
... ...
@@ -204,26 +205,26 @@
204 205
    ValueVector _supply;
205 206
    ValueVector _flow;
206 207
    CostVector _pi;
207 208

	
208 209
    // Data for storing the spanning tree structure
209 210
    IntVector _parent;
210 211
    IntVector _pred;
211 212
    IntVector _thread;
212 213
    IntVector _rev_thread;
213 214
    IntVector _succ_num;
214 215
    IntVector _last_succ;
215 216
    IntVector _dirty_revs;
216
    CharVector _forward;
217
    CharVector _state;
217
    BoolVector _forward;
218
    BoolVector _state;
218 219
    int _root;
219 220

	
220 221
    // Temporary data used in the current pivot iteration
221 222
    int in_arc, join, u_in, v_in, u_out, v_out;
222 223
    int first, second, right, last;
223 224
    int stem, par_stem, new_stem;
224 225
    Value delta;
225 226
    
226 227
    const Value MAX;
227 228

	
228 229
  public:
229 230
  
... ...
@@ -236,159 +237,159 @@
236 237

	
237 238
  private:
238 239

	
239 240
    // Implementation of the First Eligible pivot rule
240 241
    class FirstEligiblePivotRule
241 242
    {
242 243
    private:
243 244

	
244 245
      // References to the NetworkSimplex class
245 246
      const IntVector  &_source;
246 247
      const IntVector  &_target;
247 248
      const CostVector &_cost;
248
      const CharVector &_state;
249
      const BoolVector &_state;
249 250
      const CostVector &_pi;
250 251
      int &_in_arc;
251 252
      int _search_arc_num;
252 253

	
253 254
      // Pivot rule data
254 255
      int _next_arc;
255 256

	
256 257
    public:
257 258

	
258 259
      // Constructor
259 260
      FirstEligiblePivotRule(NetworkSimplex &ns) :
260 261
        _source(ns._source), _target(ns._target),
261 262
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
262 263
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
263 264
        _next_arc(0)
264 265
      {}
265 266

	
266 267
      // Find next entering arc
267 268
      bool findEnteringArc() {
268 269
        Cost c;
269
        for (int e = _next_arc; e < _search_arc_num; ++e) {
270
        for (int e = _next_arc; e != _search_arc_num; ++e) {
270 271
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
271 272
          if (c < 0) {
272 273
            _in_arc = e;
273 274
            _next_arc = e + 1;
274 275
            return true;
275 276
          }
276 277
        }
277
        for (int e = 0; e < _next_arc; ++e) {
278
        for (int e = 0; e != _next_arc; ++e) {
278 279
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
279 280
          if (c < 0) {
280 281
            _in_arc = e;
281 282
            _next_arc = e + 1;
282 283
            return true;
283 284
          }
284 285
        }
285 286
        return false;
286 287
      }
287 288

	
288 289
    }; //class FirstEligiblePivotRule
289 290

	
290 291

	
291 292
    // Implementation of the Best Eligible pivot rule
292 293
    class BestEligiblePivotRule
293 294
    {
294 295
    private:
295 296

	
296 297
      // References to the NetworkSimplex class
297 298
      const IntVector  &_source;
298 299
      const IntVector  &_target;
299 300
      const CostVector &_cost;
300
      const CharVector &_state;
301
      const BoolVector &_state;
301 302
      const CostVector &_pi;
302 303
      int &_in_arc;
303 304
      int _search_arc_num;
304 305

	
305 306
    public:
306 307

	
307 308
      // Constructor
308 309
      BestEligiblePivotRule(NetworkSimplex &ns) :
309 310
        _source(ns._source), _target(ns._target),
310 311
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
311 312
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num)
312 313
      {}
313 314

	
314 315
      // Find next entering arc
315 316
      bool findEnteringArc() {
316 317
        Cost c, min = 0;
317
        for (int e = 0; e < _search_arc_num; ++e) {
318
        for (int e = 0; e != _search_arc_num; ++e) {
318 319
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
319 320
          if (c < min) {
320 321
            min = c;
321 322
            _in_arc = e;
322 323
          }
323 324
        }
324 325
        return min < 0;
325 326
      }
326 327

	
327 328
    }; //class BestEligiblePivotRule
328 329

	
329 330

	
330 331
    // Implementation of the Block Search pivot rule
331 332
    class BlockSearchPivotRule
332 333
    {
333 334
    private:
334 335

	
335 336
      // References to the NetworkSimplex class
336 337
      const IntVector  &_source;
337 338
      const IntVector  &_target;
338 339
      const CostVector &_cost;
339
      const CharVector &_state;
340
      const BoolVector &_state;
340 341
      const CostVector &_pi;
341 342
      int &_in_arc;
342 343
      int _search_arc_num;
343 344

	
344 345
      // Pivot rule data
345 346
      int _block_size;
346 347
      int _next_arc;
347 348

	
348 349
    public:
349 350

	
350 351
      // Constructor
351 352
      BlockSearchPivotRule(NetworkSimplex &ns) :
352 353
        _source(ns._source), _target(ns._target),
353 354
        _cost(ns._cost), _state(ns._state), _pi(ns._pi),
354 355
        _in_arc(ns.in_arc), _search_arc_num(ns._search_arc_num),
355 356
        _next_arc(0)
356 357
      {
357 358
        // The main parameters of the pivot rule
358
        const double BLOCK_SIZE_FACTOR = 0.5;
359
        const double BLOCK_SIZE_FACTOR = 1.0;
359 360
        const int MIN_BLOCK_SIZE = 10;
360 361

	
361 362
        _block_size = std::max( int(BLOCK_SIZE_FACTOR *
362 363
                                    std::sqrt(double(_search_arc_num))),
363 364
                                MIN_BLOCK_SIZE );
364 365
      }
365 366

	
366 367
      // Find next entering arc
367 368
      bool findEnteringArc() {
368 369
        Cost c, min = 0;
369 370
        int cnt = _block_size;
370 371
        int e;
371
        for (e = _next_arc; e < _search_arc_num; ++e) {
372
        for (e = _next_arc; e != _search_arc_num; ++e) {
372 373
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
373 374
          if (c < min) {
374 375
            min = c;
375 376
            _in_arc = e;
376 377
          }
377 378
          if (--cnt == 0) {
378 379
            if (min < 0) goto search_end;
379 380
            cnt = _block_size;
380 381
          }
381 382
        }
382
        for (e = 0; e < _next_arc; ++e) {
383
        for (e = 0; e != _next_arc; ++e) {
383 384
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
384 385
          if (c < min) {
385 386
            min = c;
386 387
            _in_arc = e;
387 388
          }
388 389
          if (--cnt == 0) {
389 390
            if (min < 0) goto search_end;
390 391
            cnt = _block_size;
391 392
          }
392 393
        }
393 394
        if (min >= 0) return false;
394 395

	
... ...
@@ -400,25 +401,25 @@
400 401
    }; //class BlockSearchPivotRule
401 402

	
402 403

	
403 404
    // Implementation of the Candidate List pivot rule
404 405
    class CandidateListPivotRule
405 406
    {
406 407
    private:
407 408

	
408 409
      // References to the NetworkSimplex class
409 410
      const IntVector  &_source;
410 411
      const IntVector  &_target;
411 412
      const CostVector &_cost;
412
      const CharVector &_state;
413
      const BoolVector &_state;
413 414
      const CostVector &_pi;
414 415
      int &_in_arc;
415 416
      int _search_arc_num;
416 417

	
417 418
      // Pivot rule data
418 419
      IntVector _candidates;
419 420
      int _list_length, _minor_limit;
420 421
      int _curr_length, _minor_count;
421 422
      int _next_arc;
422 423

	
423 424
    public:
424 425

	
... ...
@@ -461,36 +462,36 @@
461 462
              _in_arc = e;
462 463
            }
463 464
            else if (c >= 0) {
464 465
              _candidates[i--] = _candidates[--_curr_length];
465 466
            }
466 467
          }
467 468
          if (min < 0) return true;
468 469
        }
469 470

	
470 471
        // Major iteration: build a new candidate list
471 472
        min = 0;
472 473
        _curr_length = 0;
473
        for (e = _next_arc; e < _search_arc_num; ++e) {
474
        for (e = _next_arc; e != _search_arc_num; ++e) {
474 475
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
475 476
          if (c < 0) {
476 477
            _candidates[_curr_length++] = e;
477 478
            if (c < min) {
478 479
              min = c;
479 480
              _in_arc = e;
480 481
            }
481 482
            if (_curr_length == _list_length) goto search_end;
482 483
          }
483 484
        }
484
        for (e = 0; e < _next_arc; ++e) {
485
        for (e = 0; e != _next_arc; ++e) {
485 486
          c = _state[e] * (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
486 487
          if (c < 0) {
487 488
            _candidates[_curr_length++] = e;
488 489
            if (c < min) {
489 490
              min = c;
490 491
              _in_arc = e;
491 492
            }
492 493
            if (_curr_length == _list_length) goto search_end;
493 494
          }
494 495
        }
495 496
        if (_curr_length == 0) return false;
496 497
      
... ...
@@ -503,25 +504,25 @@
503 504
    }; //class CandidateListPivotRule
504 505

	
505 506

	
506 507
    // Implementation of the Altering Candidate List pivot rule
507 508
    class AlteringListPivotRule
508 509
    {
509 510
    private:
510 511

	
511 512
      // References to the NetworkSimplex class
512 513
      const IntVector  &_source;
513 514
      const IntVector  &_target;
514 515
      const CostVector &_cost;
515
      const CharVector &_state;
516
      const BoolVector &_state;
516 517
      const CostVector &_pi;
517 518
      int &_in_arc;
518 519
      int _search_arc_num;
519 520

	
520 521
      // Pivot rule data
521 522
      int _block_size, _head_length, _curr_length;
522 523
      int _next_arc;
523 524
      IntVector _candidates;
524 525
      CostVector _cand_cost;
525 526

	
526 527
      // Functor class to compare arcs during sort of the candidate list
527 528
      class SortFunc
... ...
@@ -556,50 +557,50 @@
556 557
                                    std::sqrt(double(_search_arc_num))),
557 558
                                MIN_BLOCK_SIZE );
558 559
        _head_length = std::max( int(HEAD_LENGTH_FACTOR * _block_size),
559 560
                                 MIN_HEAD_LENGTH );
560 561
        _candidates.resize(_head_length + _block_size);
561 562
        _curr_length = 0;
562 563
      }
563 564

	
564 565
      // Find next entering arc
565 566
      bool findEnteringArc() {
566 567
        // Check the current candidate list
567 568
        int e;
568
        for (int i = 0; i < _curr_length; ++i) {
569
        for (int i = 0; i != _curr_length; ++i) {
569 570
          e = _candidates[i];
570 571
          _cand_cost[e] = _state[e] *
571 572
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
572 573
          if (_cand_cost[e] >= 0) {
573 574
            _candidates[i--] = _candidates[--_curr_length];
574 575
          }
575 576
        }
576 577

	
577 578
        // Extend the list
578 579
        int cnt = _block_size;
579 580
        int limit = _head_length;
580 581

	
581
        for (e = _next_arc; e < _search_arc_num; ++e) {
582
        for (e = _next_arc; e != _search_arc_num; ++e) {
582 583
          _cand_cost[e] = _state[e] *
583 584
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
584 585
          if (_cand_cost[e] < 0) {
585 586
            _candidates[_curr_length++] = e;
586 587
          }
587 588
          if (--cnt == 0) {
588 589
            if (_curr_length > limit) goto search_end;
589 590
            limit = 0;
590 591
            cnt = _block_size;
591 592
          }
592 593
        }
593
        for (e = 0; e < _next_arc; ++e) {
594
        for (e = 0; e != _next_arc; ++e) {
594 595
          _cand_cost[e] = _state[e] *
595 596
            (_cost[e] + _pi[_source[e]] - _pi[_target[e]]);
596 597
          if (_cand_cost[e] < 0) {
597 598
            _candidates[_curr_length++] = e;
598 599
          }
599 600
          if (--cnt == 0) {
600 601
            if (_curr_length > limit) goto search_end;
601 602
            limit = 0;
602 603
            cnt = _block_size;
603 604
          }
604 605
        }
605 606
        if (_curr_length == 0) return false;
... ...
@@ -1351,25 +1352,25 @@
1351 1352
      _rev_thread[last] = u;
1352 1353
      _last_succ[u_out] = u;
1353 1354

	
1354 1355
      // Remove the subtree of u_out from the thread list except for
1355 1356
      // the case when old_rev_thread equals to v_in
1356 1357
      // (it also means that join and v_out coincide)
1357 1358
      if (old_rev_thread != v_in) {
1358 1359
        _thread[old_rev_thread] = right;
1359 1360
        _rev_thread[right] = old_rev_thread;
1360 1361
      }
1361 1362

	
1362 1363
      // Update _rev_thread using the new _thread values
1363
      for (int i = 0; i < int(_dirty_revs.size()); ++i) {
1364
      for (int i = 0; i != int(_dirty_revs.size()); ++i) {
1364 1365
        u = _dirty_revs[i];
1365 1366
        _rev_thread[_thread[u]] = u;
1366 1367
      }
1367 1368

	
1368 1369
      // Update _pred, _forward, _last_succ and _succ_num for the
1369 1370
      // stem nodes from u_out to u_in
1370 1371
      int tmp_sc = 0, tmp_ls = _last_succ[u_out];
1371 1372
      u = u_out;
1372 1373
      while (u != u_in) {
1373 1374
        w = _parent[u];
1374 1375
        _pred[u] = _pred[w];
1375 1376
        _forward[u] = !_forward[w];
... ...
@@ -1423,46 +1424,143 @@
1423 1424
    // Update potentials
1424 1425
    void updatePotential() {
1425 1426
      Cost sigma = _forward[u_in] ?
1426 1427
        _pi[v_in] - _pi[u_in] - _cost[_pred[u_in]] :
1427 1428
        _pi[v_in] - _pi[u_in] + _cost[_pred[u_in]];
1428 1429
      // Update potentials in the subtree, which has been moved
1429 1430
      int end = _thread[_last_succ[u_in]];
1430 1431
      for (int u = u_in; u != end; u = _thread[u]) {
1431 1432
        _pi[u] += sigma;
1432 1433
      }
1433 1434
    }
1434 1435

	
1436
    // Heuristic initial pivots
1437
    bool initialPivots() {
1438
      Value curr, total = 0;
1439
      std::vector<Node> supply_nodes, demand_nodes;
1440
      for (NodeIt u(_graph); u != INVALID; ++u) {
1441
        curr = _supply[_node_id[u]];
1442
        if (curr > 0) {
1443
          total += curr;
1444
          supply_nodes.push_back(u);
1445
        }
1446
        else if (curr < 0) {
1447
          demand_nodes.push_back(u);
1448
        }
1449
      }
1450
      if (_sum_supply > 0) total -= _sum_supply;
1451
      if (total <= 0) return true;
1452

	
1453
      IntVector arc_vector;
1454
      if (_sum_supply >= 0) {
1455
        if (supply_nodes.size() == 1 && demand_nodes.size() == 1) {
1456
          // Perform a reverse graph search from the sink to the source
1457
          typename GR::template NodeMap<bool> reached(_graph, false);
1458
          Node s = supply_nodes[0], t = demand_nodes[0];
1459
          std::vector<Node> stack;
1460
          reached[t] = true;
1461
          stack.push_back(t);
1462
          while (!stack.empty()) {
1463
            Node u, v = stack.back();
1464
            stack.pop_back();
1465
            if (v == s) break;
1466
            for (InArcIt a(_graph, v); a != INVALID; ++a) {
1467
              if (reached[u = _graph.source(a)]) continue;
1468
              int j = _arc_id[a];
1469
              if (_cap[j] >= total) {
1470
                arc_vector.push_back(j);
1471
                reached[u] = true;
1472
                stack.push_back(u);
1473
              }
1474
            }
1475
          }
1476
        } else {
1477
          // Find the min. cost incomming arc for each demand node
1478
          for (int i = 0; i != int(demand_nodes.size()); ++i) {
1479
            Node v = demand_nodes[i];
1480
            Cost c, min_cost = std::numeric_limits<Cost>::max();
1481
            Arc min_arc = INVALID;
1482
            for (InArcIt a(_graph, v); a != INVALID; ++a) {
1483
              c = _cost[_arc_id[a]];
1484
              if (c < min_cost) {
1485
                min_cost = c;
1486
                min_arc = a;
1487
              }
1488
            }
1489
            if (min_arc != INVALID) {
1490
              arc_vector.push_back(_arc_id[min_arc]);
1491
            }
1492
          }
1493
        }
1494
      } else {
1495
        // Find the min. cost outgoing arc for each supply node
1496
        for (int i = 0; i != int(supply_nodes.size()); ++i) {
1497
          Node u = supply_nodes[i];
1498
          Cost c, min_cost = std::numeric_limits<Cost>::max();
1499
          Arc min_arc = INVALID;
1500
          for (OutArcIt a(_graph, u); a != INVALID; ++a) {
1501
            c = _cost[_arc_id[a]];
1502
            if (c < min_cost) {
1503
              min_cost = c;
1504
              min_arc = a;
1505
            }
1506
          }
1507
          if (min_arc != INVALID) {
1508
            arc_vector.push_back(_arc_id[min_arc]);
1509
          }
1510
        }
1511
      }
1512

	
1513
      // Perform heuristic initial pivots
1514
      for (int i = 0; i != int(arc_vector.size()); ++i) {
1515
        in_arc = arc_vector[i];
1516
        if (_state[in_arc] * (_cost[in_arc] + _pi[_source[in_arc]] -
1517
            _pi[_target[in_arc]]) >= 0) continue;
1518
        findJoinNode();
1519
        bool change = findLeavingArc();
1520
        if (delta >= MAX) return false;
1521
        changeFlow(change);
1522
        if (change) {
1523
          updateTreeStructure();
1524
          updatePotential();
1525
        }
1526
      }
1527
      return true;
1528
    }
1529

	
1435 1530
    // Execute the algorithm
1436 1531
    ProblemType start(PivotRule pivot_rule) {
1437 1532
      // Select the pivot rule implementation
1438 1533
      switch (pivot_rule) {
1439 1534
        case FIRST_ELIGIBLE:
1440 1535
          return start<FirstEligiblePivotRule>();
1441 1536
        case BEST_ELIGIBLE:
1442 1537
          return start<BestEligiblePivotRule>();
1443 1538
        case BLOCK_SEARCH:
1444 1539
          return start<BlockSearchPivotRule>();
1445 1540
        case CANDIDATE_LIST:
1446 1541
          return start<CandidateListPivotRule>();
1447 1542
        case ALTERING_LIST:
1448 1543
          return start<AlteringListPivotRule>();
1449 1544
      }
1450 1545
      return INFEASIBLE; // avoid warning
1451 1546
    }
1452 1547

	
1453 1548
    template <typename PivotRuleImpl>
1454 1549
    ProblemType start() {
1455 1550
      PivotRuleImpl pivot(*this);
1456 1551

	
1552
      // Perform heuristic initial pivots
1553
      if (!initialPivots()) return UNBOUNDED;
1554

	
1457 1555
      // Execute the Network Simplex algorithm
1458 1556
      while (pivot.findEnteringArc()) {
1459 1557
        findJoinNode();
1460 1558
        bool change = findLeavingArc();
1461 1559
        if (delta >= MAX) return UNBOUNDED;
1462 1560
        changeFlow(change);
1463 1561
        if (change) {
1464 1562
          updateTreeStructure();
1465 1563
          updatePotential();
1466 1564
        }
1467 1565
      }
1468 1566
      
0 comments (0 inline)