0
5
0
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_GRAPH_TO_EPS_H |
20 | 20 |
#define LEMON_GRAPH_TO_EPS_H |
21 | 21 |
|
22 | 22 |
#include<iostream> |
23 | 23 |
#include<fstream> |
24 | 24 |
#include<sstream> |
25 | 25 |
#include<algorithm> |
26 | 26 |
#include<vector> |
27 | 27 |
|
28 | 28 |
#ifndef WIN32 |
29 | 29 |
#include<sys/time.h> |
30 | 30 |
#include<ctime> |
31 | 31 |
#else |
32 |
#ifndef WIN32_LEAN_AND_MEAN |
|
32 | 33 |
#define WIN32_LEAN_AND_MEAN |
34 |
#endif |
|
35 |
#ifndef NOMINMAX |
|
33 | 36 |
#define NOMINMAX |
37 |
#endif |
|
34 | 38 |
#include<windows.h> |
35 | 39 |
#endif |
36 | 40 |
|
37 | 41 |
#include<lemon/math.h> |
38 | 42 |
#include<lemon/core.h> |
39 | 43 |
#include<lemon/dim2.h> |
40 | 44 |
#include<lemon/maps.h> |
41 | 45 |
#include<lemon/color.h> |
42 | 46 |
#include<lemon/bits/bezier.h> |
43 | 47 |
#include<lemon/error.h> |
44 | 48 |
|
45 | 49 |
|
46 | 50 |
///\ingroup eps_io |
47 | 51 |
///\file |
48 | 52 |
///\brief A well configurable tool for visualizing graphs |
49 | 53 |
|
50 | 54 |
namespace lemon { |
51 | 55 |
|
52 | 56 |
namespace _graph_to_eps_bits { |
53 | 57 |
template<class MT> |
54 | 58 |
class _NegY { |
55 | 59 |
public: |
56 | 60 |
typedef typename MT::Key Key; |
57 | 61 |
typedef typename MT::Value Value; |
58 | 62 |
const MT ↦ |
59 | 63 |
int yscale; |
60 | 64 |
_NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {} |
61 | 65 |
Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);} |
62 | 66 |
}; |
63 | 67 |
} |
64 | 68 |
|
65 | 69 |
///Default traits class of GraphToEps |
66 | 70 |
|
67 | 71 |
///Default traits class of \ref GraphToEps. |
68 | 72 |
/// |
69 | 73 |
///\c G is the type of the underlying graph. |
70 | 74 |
template<class G> |
71 | 75 |
struct DefaultGraphToEpsTraits |
72 | 76 |
{ |
73 | 77 |
typedef G Graph; |
74 | 78 |
typedef typename Graph::Node Node; |
75 | 79 |
typedef typename Graph::NodeIt NodeIt; |
76 | 80 |
typedef typename Graph::Arc Arc; |
77 | 81 |
typedef typename Graph::ArcIt ArcIt; |
78 | 82 |
typedef typename Graph::InArcIt InArcIt; |
79 | 83 |
typedef typename Graph::OutArcIt OutArcIt; |
80 | 84 |
|
81 | 85 |
|
82 | 86 |
const Graph &g; |
83 | 87 |
|
84 | 88 |
std::ostream& os; |
85 | 89 |
|
86 | 90 |
typedef ConstMap<typename Graph::Node,dim2::Point<double> > CoordsMapType; |
87 | 91 |
CoordsMapType _coords; |
88 | 92 |
ConstMap<typename Graph::Node,double > _nodeSizes; |
89 | 93 |
ConstMap<typename Graph::Node,int > _nodeShapes; |
90 | 94 |
|
91 | 95 |
ConstMap<typename Graph::Node,Color > _nodeColors; |
92 | 96 |
ConstMap<typename Graph::Arc,Color > _arcColors; |
93 | 97 |
|
94 | 98 |
ConstMap<typename Graph::Arc,double > _arcWidths; |
95 | 99 |
|
96 | 100 |
double _arcWidthScale; |
97 | 101 |
|
98 | 102 |
double _nodeScale; |
99 | 103 |
double _xBorder, _yBorder; |
100 | 104 |
double _scale; |
101 | 105 |
double _nodeBorderQuotient; |
102 | 106 |
|
103 | 107 |
bool _drawArrows; |
104 | 108 |
double _arrowLength, _arrowWidth; |
105 | 109 |
|
106 | 110 |
bool _showNodes, _showArcs; |
107 | 111 |
|
108 | 112 |
bool _enableParallel; |
109 | 113 |
double _parArcDist; |
110 | 114 |
|
111 | 115 |
bool _showNodeText; |
112 | 116 |
ConstMap<typename Graph::Node,bool > _nodeTexts; |
113 | 117 |
double _nodeTextSize; |
114 | 118 |
|
115 | 119 |
bool _showNodePsText; |
116 | 120 |
ConstMap<typename Graph::Node,bool > _nodePsTexts; |
117 | 121 |
char *_nodePsTextsPreamble; |
118 | 122 |
|
119 | 123 |
bool _undirected; |
120 | 124 |
|
121 | 125 |
bool _pleaseRemoveOsStream; |
122 | 126 |
|
123 | 127 |
bool _scaleToA4; |
124 | 128 |
|
125 | 129 |
std::string _title; |
126 | 130 |
std::string _copyright; |
127 | 131 |
|
128 | 132 |
enum NodeTextColorType |
129 | 133 |
{ DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType; |
130 | 134 |
ConstMap<typename Graph::Node,Color > _nodeTextColors; |
131 | 135 |
|
132 | 136 |
bool _autoNodeScale; |
133 | 137 |
bool _autoArcWidthScale; |
134 | 138 |
|
135 | 139 |
bool _absoluteNodeSizes; |
136 | 140 |
bool _absoluteArcWidths; |
137 | 141 |
|
138 | 142 |
bool _negY; |
139 | 143 |
|
140 | 144 |
bool _preScale; |
141 | 145 |
///Constructor |
142 | 146 |
|
143 | 147 |
///Constructor |
144 | 148 |
///\param _g Reference to the graph to be printed. |
145 | 149 |
///\param _os Reference to the output stream. |
146 | 150 |
///\param _os Reference to the output stream. |
147 | 151 |
///By default it is <tt>std::cout</tt>. |
148 | 152 |
///\param _pros If it is \c true, then the \c ostream referenced by \c _os |
149 | 153 |
///will be explicitly deallocated by the destructor. |
150 | 154 |
DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout, |
151 | 155 |
bool _pros=false) : |
152 | 156 |
g(_g), os(_os), |
153 | 157 |
_coords(dim2::Point<double>(1,1)), _nodeSizes(1), _nodeShapes(0), |
154 | 158 |
_nodeColors(WHITE), _arcColors(BLACK), |
155 | 159 |
_arcWidths(1.0), _arcWidthScale(0.003), |
156 | 160 |
_nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), |
157 | 161 |
_nodeBorderQuotient(.1), |
158 | 162 |
_drawArrows(false), _arrowLength(1), _arrowWidth(0.3), |
159 | 163 |
_showNodes(true), _showArcs(true), |
160 | 164 |
_enableParallel(false), _parArcDist(1), |
161 | 165 |
_showNodeText(false), _nodeTexts(false), _nodeTextSize(1), |
162 | 166 |
_showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), |
163 | 167 |
_undirected(lemon::UndirectedTagIndicator<G>::value), |
164 | 168 |
_pleaseRemoveOsStream(_pros), _scaleToA4(false), |
165 | 169 |
_nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), |
166 | 170 |
_autoNodeScale(false), |
167 | 171 |
_autoArcWidthScale(false), |
168 | 172 |
_absoluteNodeSizes(false), |
169 | 173 |
_absoluteArcWidths(false), |
170 | 174 |
_negY(false), |
171 | 175 |
_preScale(true) |
172 | 176 |
{} |
173 | 177 |
}; |
174 | 178 |
|
175 | 179 |
///Auxiliary class to implement the named parameters of \ref graphToEps() |
176 | 180 |
|
177 | 181 |
///Auxiliary class to implement the named parameters of \ref graphToEps(). |
178 | 182 |
/// |
179 | 183 |
///For detailed examples see the \ref graph_to_eps_demo.cc demo file. |
180 | 184 |
template<class T> class GraphToEps : public T |
181 | 185 |
{ |
182 | 186 |
// Can't believe it is required by the C++ standard |
183 | 187 |
using T::g; |
184 | 188 |
using T::os; |
185 | 189 |
|
186 | 190 |
using T::_coords; |
187 | 191 |
using T::_nodeSizes; |
188 | 192 |
using T::_nodeShapes; |
189 | 193 |
using T::_nodeColors; |
190 | 194 |
using T::_arcColors; |
191 | 195 |
using T::_arcWidths; |
192 | 196 |
|
193 | 197 |
using T::_arcWidthScale; |
194 | 198 |
using T::_nodeScale; |
195 | 199 |
using T::_xBorder; |
196 | 200 |
using T::_yBorder; |
197 | 201 |
using T::_scale; |
198 | 202 |
using T::_nodeBorderQuotient; |
199 | 203 |
|
200 | 204 |
using T::_drawArrows; |
201 | 205 |
using T::_arrowLength; |
202 | 206 |
using T::_arrowWidth; |
203 | 207 |
|
204 | 208 |
using T::_showNodes; |
205 | 209 |
using T::_showArcs; |
206 | 210 |
|
207 | 211 |
using T::_enableParallel; |
208 | 212 |
using T::_parArcDist; |
209 | 213 |
|
210 | 214 |
using T::_showNodeText; |
211 | 215 |
using T::_nodeTexts; |
212 | 216 |
using T::_nodeTextSize; |
213 | 217 |
|
214 | 218 |
using T::_showNodePsText; |
215 | 219 |
using T::_nodePsTexts; |
216 | 220 |
using T::_nodePsTextsPreamble; |
217 | 221 |
|
218 | 222 |
using T::_undirected; |
219 | 223 |
|
220 | 224 |
using T::_pleaseRemoveOsStream; |
221 | 225 |
|
222 | 226 |
using T::_scaleToA4; |
223 | 227 |
|
224 | 228 |
using T::_title; |
225 | 229 |
using T::_copyright; |
226 | 230 |
|
227 | 231 |
using T::NodeTextColorType; |
228 | 232 |
using T::CUST_COL; |
229 | 233 |
using T::DIST_COL; |
230 | 234 |
using T::DIST_BW; |
231 | 235 |
using T::_nodeTextColorType; |
232 | 236 |
using T::_nodeTextColors; |
233 | 237 |
|
234 | 238 |
using T::_autoNodeScale; |
235 | 239 |
using T::_autoArcWidthScale; |
236 | 240 |
|
237 | 241 |
using T::_absoluteNodeSizes; |
238 | 242 |
using T::_absoluteArcWidths; |
239 | 243 |
|
240 | 244 |
|
241 | 245 |
using T::_negY; |
242 | 246 |
using T::_preScale; |
243 | 247 |
|
244 | 248 |
// dradnats ++C eht yb deriuqer si ti eveileb t'naC |
245 | 249 |
|
246 | 250 |
typedef typename T::Graph Graph; |
247 | 251 |
typedef typename Graph::Node Node; |
248 | 252 |
typedef typename Graph::NodeIt NodeIt; |
249 | 253 |
typedef typename Graph::Arc Arc; |
250 | 254 |
typedef typename Graph::ArcIt ArcIt; |
251 | 255 |
typedef typename Graph::InArcIt InArcIt; |
252 | 256 |
typedef typename Graph::OutArcIt OutArcIt; |
253 | 257 |
|
254 | 258 |
static const int INTERPOL_PREC; |
255 | 259 |
static const double A4HEIGHT; |
256 | 260 |
static const double A4WIDTH; |
257 | 261 |
static const double A4BORDER; |
258 | 262 |
|
259 | 263 |
bool dontPrint; |
260 | 264 |
|
261 | 265 |
public: |
262 | 266 |
///Node shapes |
263 | 267 |
|
264 | 268 |
///Node shapes. |
265 | 269 |
/// |
266 | 270 |
enum NodeShapes { |
267 | 271 |
/// = 0 |
268 | 272 |
///\image html nodeshape_0.png |
269 | 273 |
///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm |
270 | 274 |
CIRCLE=0, |
271 | 275 |
/// = 1 |
272 | 276 |
///\image html nodeshape_1.png |
273 | 277 |
///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm |
274 | 278 |
/// |
275 | 279 |
SQUARE=1, |
276 | 280 |
/// = 2 |
277 | 281 |
///\image html nodeshape_2.png |
278 | 282 |
///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm |
279 | 283 |
/// |
280 | 284 |
DIAMOND=2, |
281 | 285 |
/// = 3 |
282 | 286 |
///\image html nodeshape_3.png |
283 | 287 |
///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm |
284 | 288 |
/// |
285 | 289 |
MALE=3, |
286 | 290 |
/// = 4 |
287 | 291 |
///\image html nodeshape_4.png |
288 | 292 |
///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm |
289 | 293 |
/// |
290 | 294 |
FEMALE=4 |
291 | 295 |
}; |
292 | 296 |
|
293 | 297 |
private: |
294 | 298 |
class arcLess { |
295 | 299 |
const Graph &g; |
296 | 300 |
public: |
297 | 301 |
arcLess(const Graph &_g) : g(_g) {} |
298 | 302 |
bool operator()(Arc a,Arc b) const |
299 | 303 |
{ |
300 | 304 |
Node ai=std::min(g.source(a),g.target(a)); |
301 | 305 |
Node aa=std::max(g.source(a),g.target(a)); |
302 | 306 |
Node bi=std::min(g.source(b),g.target(b)); |
303 | 307 |
Node ba=std::max(g.source(b),g.target(b)); |
304 | 308 |
return ai<bi || |
305 | 309 |
(ai==bi && (aa < ba || |
306 | 310 |
(aa==ba && ai==g.source(a) && bi==g.target(b)))); |
307 | 311 |
} |
308 | 312 |
}; |
309 | 313 |
bool isParallel(Arc e,Arc f) const |
310 | 314 |
{ |
311 | 315 |
return (g.source(e)==g.source(f)&& |
312 | 316 |
g.target(e)==g.target(f)) || |
313 | 317 |
(g.source(e)==g.target(f)&& |
314 | 318 |
g.target(e)==g.source(f)); |
315 | 319 |
} |
316 | 320 |
template<class TT> |
317 | 321 |
static std::string psOut(const dim2::Point<TT> &p) |
318 | 322 |
{ |
319 | 323 |
std::ostringstream os; |
320 | 324 |
os << p.x << ' ' << p.y; |
321 | 325 |
return os.str(); |
322 | 326 |
} |
323 | 327 |
static std::string psOut(const Color &c) |
324 | 328 |
{ |
325 | 329 |
std::ostringstream os; |
326 | 330 |
os << c.red() << ' ' << c.green() << ' ' << c.blue(); |
327 | 331 |
return os.str(); |
328 | 332 |
} |
329 | 333 |
|
330 | 334 |
public: |
331 | 335 |
GraphToEps(const T &t) : T(t), dontPrint(false) {}; |
332 | 336 |
|
333 | 337 |
template<class X> struct CoordsTraits : public T { |
334 | 338 |
typedef X CoordsMapType; |
335 | 339 |
const X &_coords; |
336 | 340 |
CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {} |
337 | 341 |
}; |
338 | 342 |
///Sets the map of the node coordinates |
339 | 343 |
|
340 | 344 |
///Sets the map of the node coordinates. |
341 | 345 |
///\param x must be a node map with \ref dim2::Point "dim2::Point<double>" or |
342 | 346 |
///\ref dim2::Point "dim2::Point<int>" values. |
343 | 347 |
template<class X> GraphToEps<CoordsTraits<X> > coords(const X &x) { |
344 | 348 |
dontPrint=true; |
345 | 349 |
return GraphToEps<CoordsTraits<X> >(CoordsTraits<X>(*this,x)); |
346 | 350 |
} |
347 | 351 |
template<class X> struct NodeSizesTraits : public T { |
348 | 352 |
const X &_nodeSizes; |
349 | 353 |
NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {} |
350 | 354 |
}; |
351 | 355 |
///Sets the map of the node sizes |
352 | 356 |
|
353 | 357 |
///Sets the map of the node sizes. |
354 | 358 |
///\param x must be a node map with \c double (or convertible) values. |
355 | 359 |
template<class X> GraphToEps<NodeSizesTraits<X> > nodeSizes(const X &x) |
356 | 360 |
{ |
357 | 361 |
dontPrint=true; |
358 | 362 |
return GraphToEps<NodeSizesTraits<X> >(NodeSizesTraits<X>(*this,x)); |
359 | 363 |
} |
360 | 364 |
template<class X> struct NodeShapesTraits : public T { |
361 | 365 |
const X &_nodeShapes; |
362 | 366 |
NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {} |
363 | 367 |
}; |
364 | 368 |
///Sets the map of the node shapes |
365 | 369 |
|
366 | 370 |
///Sets the map of the node shapes. |
367 | 371 |
///The available shape values |
368 | 372 |
///can be found in \ref NodeShapes "enum NodeShapes". |
369 | 373 |
///\param x must be a node map with \c int (or convertible) values. |
370 | 374 |
///\sa NodeShapes |
371 | 375 |
template<class X> GraphToEps<NodeShapesTraits<X> > nodeShapes(const X &x) |
372 | 376 |
{ |
373 | 377 |
dontPrint=true; |
374 | 378 |
return GraphToEps<NodeShapesTraits<X> >(NodeShapesTraits<X>(*this,x)); |
375 | 379 |
} |
376 | 380 |
template<class X> struct NodeTextsTraits : public T { |
377 | 381 |
const X &_nodeTexts; |
378 | 382 |
NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {} |
379 | 383 |
}; |
380 | 384 |
///Sets the text printed on the nodes |
381 | 385 |
|
382 | 386 |
///Sets the text printed on the nodes. |
383 | 387 |
///\param x must be a node map with type that can be pushed to a standard |
384 | 388 |
///\c ostream. |
385 | 389 |
template<class X> GraphToEps<NodeTextsTraits<X> > nodeTexts(const X &x) |
386 | 390 |
{ |
387 | 391 |
dontPrint=true; |
388 | 392 |
_showNodeText=true; |
389 | 393 |
return GraphToEps<NodeTextsTraits<X> >(NodeTextsTraits<X>(*this,x)); |
390 | 394 |
} |
391 | 395 |
template<class X> struct NodePsTextsTraits : public T { |
392 | 396 |
const X &_nodePsTexts; |
393 | 397 |
NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {} |
394 | 398 |
}; |
395 | 399 |
///Inserts a PostScript block to the nodes |
396 | 400 |
|
397 | 401 |
///With this command it is possible to insert a verbatim PostScript |
398 | 402 |
///block to the nodes. |
399 | 403 |
///The PS current point will be moved to the center of the node before |
400 | 404 |
///the PostScript block inserted. |
401 | 405 |
/// |
402 | 406 |
///Before and after the block a newline character is inserted so you |
403 | 407 |
///don't have to bother with the separators. |
404 | 408 |
/// |
405 | 409 |
///\param x must be a node map with type that can be pushed to a standard |
406 | 410 |
///\c ostream. |
407 | 411 |
/// |
408 | 412 |
///\sa nodePsTextsPreamble() |
409 | 413 |
template<class X> GraphToEps<NodePsTextsTraits<X> > nodePsTexts(const X &x) |
410 | 414 |
{ |
411 | 415 |
dontPrint=true; |
412 | 416 |
_showNodePsText=true; |
413 | 417 |
return GraphToEps<NodePsTextsTraits<X> >(NodePsTextsTraits<X>(*this,x)); |
414 | 418 |
} |
415 | 419 |
template<class X> struct ArcWidthsTraits : public T { |
416 | 420 |
const X &_arcWidths; |
417 | 421 |
ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {} |
418 | 422 |
}; |
419 | 423 |
///Sets the map of the arc widths |
420 | 424 |
|
421 | 425 |
///Sets the map of the arc widths. |
422 | 426 |
///\param x must be an arc map with \c double (or convertible) values. |
423 | 427 |
template<class X> GraphToEps<ArcWidthsTraits<X> > arcWidths(const X &x) |
424 | 428 |
{ |
425 | 429 |
dontPrint=true; |
426 | 430 |
return GraphToEps<ArcWidthsTraits<X> >(ArcWidthsTraits<X>(*this,x)); |
427 | 431 |
} |
428 | 432 |
|
429 | 433 |
template<class X> struct NodeColorsTraits : public T { |
430 | 434 |
const X &_nodeColors; |
431 | 435 |
NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {} |
432 | 436 |
}; |
433 | 437 |
///Sets the map of the node colors |
434 | 438 |
|
435 | 439 |
///Sets the map of the node colors. |
436 | 440 |
///\param x must be a node map with \ref Color values. |
437 | 441 |
/// |
438 | 442 |
///\sa Palette |
439 | 443 |
template<class X> GraphToEps<NodeColorsTraits<X> > |
440 | 444 |
nodeColors(const X &x) |
441 | 445 |
{ |
442 | 446 |
dontPrint=true; |
443 | 447 |
return GraphToEps<NodeColorsTraits<X> >(NodeColorsTraits<X>(*this,x)); |
444 | 448 |
} |
445 | 449 |
template<class X> struct NodeTextColorsTraits : public T { |
446 | 450 |
const X &_nodeTextColors; |
447 | 451 |
NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {} |
448 | 452 |
}; |
449 | 453 |
///Sets the map of the node text colors |
450 | 454 |
|
451 | 455 |
///Sets the map of the node text colors. |
452 | 456 |
///\param x must be a node map with \ref Color values. |
453 | 457 |
/// |
454 | 458 |
///\sa Palette |
455 | 459 |
template<class X> GraphToEps<NodeTextColorsTraits<X> > |
456 | 460 |
nodeTextColors(const X &x) |
457 | 461 |
{ |
458 | 462 |
dontPrint=true; |
459 | 463 |
_nodeTextColorType=CUST_COL; |
460 | 464 |
return GraphToEps<NodeTextColorsTraits<X> > |
461 | 465 |
(NodeTextColorsTraits<X>(*this,x)); |
462 | 466 |
} |
463 | 467 |
template<class X> struct ArcColorsTraits : public T { |
464 | 468 |
const X &_arcColors; |
465 | 469 |
ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {} |
466 | 470 |
}; |
467 | 471 |
///Sets the map of the arc colors |
468 | 472 |
|
469 | 473 |
///Sets the map of the arc colors. |
470 | 474 |
///\param x must be an arc map with \ref Color values. |
471 | 475 |
/// |
472 | 476 |
///\sa Palette |
473 | 477 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
474 | 478 |
arcColors(const X &x) |
475 | 479 |
{ |
476 | 480 |
dontPrint=true; |
477 | 481 |
return GraphToEps<ArcColorsTraits<X> >(ArcColorsTraits<X>(*this,x)); |
478 | 482 |
} |
479 | 483 |
///Sets a global scale factor for node sizes |
480 | 484 |
|
481 | 485 |
///Sets a global scale factor for node sizes. |
482 | 486 |
/// |
483 | 487 |
/// If nodeSizes() is not given, this function simply sets the node |
484 | 488 |
/// sizes to \c d. If nodeSizes() is given, but |
485 | 489 |
/// autoNodeScale() is not, then the node size given by |
486 | 490 |
/// nodeSizes() will be multiplied by the value \c d. |
487 | 491 |
/// If both nodeSizes() and autoNodeScale() are used, then the |
488 | 492 |
/// node sizes will be scaled in such a way that the greatest size will be |
489 | 493 |
/// equal to \c d. |
490 | 494 |
/// \sa nodeSizes() |
491 | 495 |
/// \sa autoNodeScale() |
492 | 496 |
GraphToEps<T> &nodeScale(double d=.01) {_nodeScale=d;return *this;} |
493 | 497 |
///Turns on/off the automatic node size scaling. |
494 | 498 |
|
495 | 499 |
///Turns on/off the automatic node size scaling. |
496 | 500 |
/// |
497 | 501 |
///\sa nodeScale() |
498 | 502 |
/// |
499 | 503 |
GraphToEps<T> &autoNodeScale(bool b=true) { |
500 | 504 |
_autoNodeScale=b;return *this; |
501 | 505 |
} |
502 | 506 |
|
503 | 507 |
///Turns on/off the absolutematic node size scaling. |
504 | 508 |
|
505 | 509 |
///Turns on/off the absolutematic node size scaling. |
506 | 510 |
/// |
507 | 511 |
///\sa nodeScale() |
508 | 512 |
/// |
509 | 513 |
GraphToEps<T> &absoluteNodeSizes(bool b=true) { |
510 | 514 |
_absoluteNodeSizes=b;return *this; |
511 | 515 |
} |
512 | 516 |
|
513 | 517 |
///Negates the Y coordinates. |
514 | 518 |
GraphToEps<T> &negateY(bool b=true) { |
515 | 519 |
_negY=b;return *this; |
516 | 520 |
} |
517 | 521 |
|
518 | 522 |
///Turn on/off pre-scaling |
519 | 523 |
|
520 | 524 |
///By default graphToEps() rescales the whole image in order to avoid |
521 | 525 |
///very big or very small bounding boxes. |
522 | 526 |
/// |
523 | 527 |
///This (p)rescaling can be turned off with this function. |
524 | 528 |
/// |
525 | 529 |
GraphToEps<T> &preScale(bool b=true) { |
526 | 530 |
_preScale=b;return *this; |
527 | 531 |
} |
528 | 532 |
|
529 | 533 |
///Sets a global scale factor for arc widths |
530 | 534 |
|
531 | 535 |
/// Sets a global scale factor for arc widths. |
532 | 536 |
/// |
533 | 537 |
/// If arcWidths() is not given, this function simply sets the arc |
534 | 538 |
/// widths to \c d. If arcWidths() is given, but |
535 | 539 |
/// autoArcWidthScale() is not, then the arc withs given by |
536 | 540 |
/// arcWidths() will be multiplied by the value \c d. |
537 | 541 |
/// If both arcWidths() and autoArcWidthScale() are used, then the |
538 | 542 |
/// arc withs will be scaled in such a way that the greatest width will be |
539 | 543 |
/// equal to \c d. |
540 | 544 |
GraphToEps<T> &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;} |
541 | 545 |
///Turns on/off the automatic arc width scaling. |
542 | 546 |
|
543 | 547 |
///Turns on/off the automatic arc width scaling. |
544 | 548 |
/// |
545 | 549 |
///\sa arcWidthScale() |
546 | 550 |
/// |
547 | 551 |
GraphToEps<T> &autoArcWidthScale(bool b=true) { |
548 | 552 |
_autoArcWidthScale=b;return *this; |
549 | 553 |
} |
550 | 554 |
///Turns on/off the absolutematic arc width scaling. |
551 | 555 |
|
552 | 556 |
///Turns on/off the absolutematic arc width scaling. |
553 | 557 |
/// |
554 | 558 |
///\sa arcWidthScale() |
555 | 559 |
/// |
556 | 560 |
GraphToEps<T> &absoluteArcWidths(bool b=true) { |
557 | 561 |
_absoluteArcWidths=b;return *this; |
558 | 562 |
} |
559 | 563 |
///Sets a global scale factor for the whole picture |
560 | 564 |
GraphToEps<T> &scale(double d) {_scale=d;return *this;} |
561 | 565 |
///Sets the width of the border around the picture |
562 | 566 |
GraphToEps<T> &border(double b=10) {_xBorder=_yBorder=b;return *this;} |
563 | 567 |
///Sets the width of the border around the picture |
564 | 568 |
GraphToEps<T> &border(double x, double y) { |
565 | 569 |
_xBorder=x;_yBorder=y;return *this; |
566 | 570 |
} |
567 | 571 |
///Sets whether to draw arrows |
568 | 572 |
GraphToEps<T> &drawArrows(bool b=true) {_drawArrows=b;return *this;} |
569 | 573 |
///Sets the length of the arrowheads |
570 | 574 |
GraphToEps<T> &arrowLength(double d=1.0) {_arrowLength*=d;return *this;} |
571 | 575 |
///Sets the width of the arrowheads |
572 | 576 |
GraphToEps<T> &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;} |
573 | 577 |
|
574 | 578 |
///Scales the drawing to fit to A4 page |
575 | 579 |
GraphToEps<T> &scaleToA4() {_scaleToA4=true;return *this;} |
576 | 580 |
|
577 | 581 |
///Enables parallel arcs |
578 | 582 |
GraphToEps<T> &enableParallel(bool b=true) {_enableParallel=b;return *this;} |
579 | 583 |
|
580 | 584 |
///Sets the distance between parallel arcs |
581 | 585 |
GraphToEps<T> &parArcDist(double d) {_parArcDist*=d;return *this;} |
582 | 586 |
|
583 | 587 |
///Hides the arcs |
584 | 588 |
GraphToEps<T> &hideArcs(bool b=true) {_showArcs=!b;return *this;} |
585 | 589 |
///Hides the nodes |
586 | 590 |
GraphToEps<T> &hideNodes(bool b=true) {_showNodes=!b;return *this;} |
587 | 591 |
|
588 | 592 |
///Sets the size of the node texts |
589 | 593 |
GraphToEps<T> &nodeTextSize(double d) {_nodeTextSize=d;return *this;} |
590 | 594 |
|
591 | 595 |
///Sets the color of the node texts to be different from the node color |
592 | 596 |
|
593 | 597 |
///Sets the color of the node texts to be as different from the node color |
594 | 598 |
///as it is possible. |
595 | 599 |
GraphToEps<T> &distantColorNodeTexts() |
596 | 600 |
{_nodeTextColorType=DIST_COL;return *this;} |
597 | 601 |
///Sets the color of the node texts to be black or white and always visible. |
598 | 602 |
|
599 | 603 |
///Sets the color of the node texts to be black or white according to |
600 | 604 |
///which is more different from the node color. |
601 | 605 |
GraphToEps<T> &distantBWNodeTexts() |
602 | 606 |
{_nodeTextColorType=DIST_BW;return *this;} |
603 | 607 |
|
604 | 608 |
///Gives a preamble block for node Postscript block. |
605 | 609 |
|
606 | 610 |
///Gives a preamble block for node Postscript block. |
607 | 611 |
/// |
608 | 612 |
///\sa nodePsTexts() |
609 | 613 |
GraphToEps<T> & nodePsTextsPreamble(const char *str) { |
610 | 614 |
_nodePsTextsPreamble=str ;return *this; |
611 | 615 |
} |
612 | 616 |
///Sets whether the graph is undirected |
613 | 617 |
|
614 | 618 |
///Sets whether the graph is undirected. |
615 | 619 |
/// |
616 | 620 |
///This setting is the default for undirected graphs. |
617 | 621 |
/// |
618 | 622 |
///\sa directed() |
619 | 623 |
GraphToEps<T> &undirected(bool b=true) {_undirected=b;return *this;} |
620 | 624 |
|
621 | 625 |
///Sets whether the graph is directed |
622 | 626 |
|
623 | 627 |
///Sets whether the graph is directed. |
624 | 628 |
///Use it to show the edges as a pair of directed ones. |
625 | 629 |
/// |
626 | 630 |
///This setting is the default for digraphs. |
627 | 631 |
/// |
628 | 632 |
///\sa undirected() |
629 | 633 |
GraphToEps<T> &directed(bool b=true) {_undirected=!b;return *this;} |
630 | 634 |
|
631 | 635 |
///Sets the title. |
632 | 636 |
|
633 | 637 |
///Sets the title of the generated image, |
634 | 638 |
///namely it inserts a <tt>%%Title:</tt> DSC field to the header of |
635 | 639 |
///the EPS file. |
636 | 640 |
GraphToEps<T> &title(const std::string &t) {_title=t;return *this;} |
637 | 641 |
///Sets the copyright statement. |
638 | 642 |
|
639 | 643 |
///Sets the copyright statement of the generated image, |
640 | 644 |
///namely it inserts a <tt>%%Copyright:</tt> DSC field to the header of |
641 | 645 |
///the EPS file. |
642 | 646 |
GraphToEps<T> ©right(const std::string &t) {_copyright=t;return *this;} |
643 | 647 |
|
644 | 648 |
protected: |
645 | 649 |
bool isInsideNode(dim2::Point<double> p, double r,int t) |
646 | 650 |
{ |
647 | 651 |
switch(t) { |
648 | 652 |
case CIRCLE: |
649 | 653 |
case MALE: |
650 | 654 |
case FEMALE: |
651 | 655 |
return p.normSquare()<=r*r; |
652 | 656 |
case SQUARE: |
653 | 657 |
return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r; |
654 | 658 |
case DIAMOND: |
655 | 659 |
return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r; |
656 | 660 |
} |
657 | 661 |
return false; |
658 | 662 |
} |
659 | 663 |
|
660 | 664 |
public: |
661 | 665 |
~GraphToEps() { } |
662 | 666 |
|
663 | 667 |
///Draws the graph. |
664 | 668 |
|
665 | 669 |
///Like other functions using |
666 | 670 |
///\ref named-templ-func-param "named template parameters", |
667 | 671 |
///this function calls the algorithm itself, i.e. in this case |
668 | 672 |
///it draws the graph. |
669 | 673 |
void run() { |
670 | 674 |
const double EPSILON=1e-9; |
671 | 675 |
if(dontPrint) return; |
672 | 676 |
|
673 | 677 |
_graph_to_eps_bits::_NegY<typename T::CoordsMapType> |
674 | 678 |
mycoords(_coords,_negY); |
675 | 679 |
|
676 | 680 |
os << "%!PS-Adobe-2.0 EPSF-2.0\n"; |
677 | 681 |
if(_title.size()>0) os << "%%Title: " << _title << '\n'; |
678 | 682 |
if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n'; |
679 | 683 |
os << "%%Creator: LEMON, graphToEps()\n"; |
680 | 684 |
|
681 | 685 |
{ |
682 | 686 |
#ifndef WIN32 |
683 | 687 |
timeval tv; |
684 | 688 |
gettimeofday(&tv, 0); |
685 | 689 |
|
686 | 690 |
char cbuf[26]; |
687 | 691 |
ctime_r(&tv.tv_sec,cbuf); |
688 | 692 |
os << "%%CreationDate: " << cbuf; |
689 | 693 |
#else |
690 | 694 |
SYSTEMTIME time; |
691 |
char buf1[11], buf2[9], buf3[5]; |
|
692 |
|
|
693 | 695 |
GetSystemTime(&time); |
696 |
#if defined(_MSC_VER) && (_MSC_VER < 1500) |
|
697 |
LPWSTR buf1, buf2, buf3; |
|
694 | 698 |
if (GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
695 |
"ddd MMM dd", buf1, 11) && |
|
699 |
L"ddd MMM dd", buf1, 11) && |
|
696 | 700 |
GetTimeFormat(LOCALE_USER_DEFAULT, 0, &time, |
697 |
"HH':'mm':'ss", buf2, 9) && |
|
701 |
L"HH':'mm':'ss", buf2, 9) && |
|
698 | 702 |
GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
699 |
|
|
703 |
L"yyyy", buf3, 5)) { |
|
700 | 704 |
os << "%%CreationDate: " << buf1 << ' ' |
701 | 705 |
<< buf2 << ' ' << buf3 << std::endl; |
702 | 706 |
} |
707 |
#else |
|
708 |
char buf1[11], buf2[9], buf3[5]; |
|
709 |
if (GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
|
710 |
"ddd MMM dd", buf1, 11) && |
|
711 |
GetTimeFormat(LOCALE_USER_DEFAULT, 0, &time, |
|
712 |
"HH':'mm':'ss", buf2, 9) && |
|
713 |
GetDateFormat(LOCALE_USER_DEFAULT, 0, &time, |
|
714 |
"yyyy", buf3, 5)) { |
|
715 |
os << "%%CreationDate: " << buf1 << ' ' |
|
716 |
<< buf2 << ' ' << buf3 << std::endl; |
|
717 |
} |
|
718 |
#endif |
|
703 | 719 |
#endif |
704 | 720 |
} |
705 | 721 |
|
706 | 722 |
if (_autoArcWidthScale) { |
707 | 723 |
double max_w=0; |
708 | 724 |
for(ArcIt e(g);e!=INVALID;++e) |
709 | 725 |
max_w=std::max(double(_arcWidths[e]),max_w); |
710 | 726 |
if(max_w>EPSILON) { |
711 | 727 |
_arcWidthScale/=max_w; |
712 | 728 |
} |
713 | 729 |
} |
714 | 730 |
|
715 | 731 |
if (_autoNodeScale) { |
716 | 732 |
double max_s=0; |
717 | 733 |
for(NodeIt n(g);n!=INVALID;++n) |
718 | 734 |
max_s=std::max(double(_nodeSizes[n]),max_s); |
719 | 735 |
if(max_s>EPSILON) { |
720 | 736 |
_nodeScale/=max_s; |
721 | 737 |
} |
722 | 738 |
} |
723 | 739 |
|
724 | 740 |
double diag_len = 1; |
725 | 741 |
if(!(_absoluteNodeSizes&&_absoluteArcWidths)) { |
726 | 742 |
dim2::Box<double> bb; |
727 | 743 |
for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]); |
728 | 744 |
if (bb.empty()) { |
729 | 745 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
730 | 746 |
} |
731 | 747 |
diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare()); |
732 | 748 |
if(diag_len<EPSILON) diag_len = 1; |
733 | 749 |
if(!_absoluteNodeSizes) _nodeScale*=diag_len; |
734 | 750 |
if(!_absoluteArcWidths) _arcWidthScale*=diag_len; |
735 | 751 |
} |
736 | 752 |
|
737 | 753 |
dim2::Box<double> bb; |
738 | 754 |
for(NodeIt n(g);n!=INVALID;++n) { |
739 | 755 |
double ns=_nodeSizes[n]*_nodeScale; |
740 | 756 |
dim2::Point<double> p(ns,ns); |
741 | 757 |
switch(_nodeShapes[n]) { |
742 | 758 |
case CIRCLE: |
743 | 759 |
case SQUARE: |
744 | 760 |
case DIAMOND: |
745 | 761 |
bb.add(p+mycoords[n]); |
746 | 762 |
bb.add(-p+mycoords[n]); |
747 | 763 |
break; |
748 | 764 |
case MALE: |
749 | 765 |
bb.add(-p+mycoords[n]); |
750 | 766 |
bb.add(dim2::Point<double>(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]); |
751 | 767 |
break; |
752 | 768 |
case FEMALE: |
753 | 769 |
bb.add(p+mycoords[n]); |
754 | 770 |
bb.add(dim2::Point<double>(-ns,-3.01*ns)+mycoords[n]); |
755 | 771 |
break; |
756 | 772 |
} |
757 | 773 |
} |
758 | 774 |
if (bb.empty()) { |
759 | 775 |
bb = dim2::Box<double>(dim2::Point<double>(0,0)); |
760 | 776 |
} |
761 | 777 |
|
762 | 778 |
if(_scaleToA4) |
763 | 779 |
os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n"; |
764 | 780 |
else { |
765 | 781 |
if(_preScale) { |
766 | 782 |
//Rescale so that BoundingBox won't be neither to big nor too small. |
767 | 783 |
while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10; |
768 | 784 |
while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10; |
769 | 785 |
} |
770 | 786 |
|
771 | 787 |
os << "%%BoundingBox: " |
772 | 788 |
<< int(floor(bb.left() * _scale - _xBorder)) << ' ' |
773 | 789 |
<< int(floor(bb.bottom() * _scale - _yBorder)) << ' ' |
774 | 790 |
<< int(ceil(bb.right() * _scale + _xBorder)) << ' ' |
775 | 791 |
<< int(ceil(bb.top() * _scale + _yBorder)) << '\n'; |
776 | 792 |
} |
777 | 793 |
|
778 | 794 |
os << "%%EndComments\n"; |
779 | 795 |
|
780 | 796 |
//x1 y1 x2 y2 x3 y3 cr cg cb w |
781 | 797 |
os << "/lb { setlinewidth setrgbcolor newpath moveto\n" |
782 | 798 |
<< " 4 2 roll 1 index 1 index curveto stroke } bind def\n"; |
783 | 799 |
os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }" |
784 | 800 |
<< " bind def\n"; |
785 | 801 |
//x y r |
786 | 802 |
os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }" |
787 | 803 |
<< " bind def\n"; |
788 | 804 |
//x y r |
789 | 805 |
os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n" |
790 | 806 |
<< " 2 index 1 index sub 2 index 2 index add lineto\n" |
791 | 807 |
<< " 2 index 1 index sub 2 index 2 index sub lineto\n" |
792 | 808 |
<< " 2 index 1 index add 2 index 2 index sub lineto\n" |
793 | 809 |
<< " closepath pop pop pop} bind def\n"; |
794 | 810 |
//x y r |
795 | 811 |
os << "/di { newpath 2 index 1 index add 2 index moveto\n" |
796 | 812 |
<< " 2 index 2 index 2 index add lineto\n" |
797 | 813 |
<< " 2 index 1 index sub 2 index lineto\n" |
798 | 814 |
<< " 2 index 2 index 2 index sub lineto\n" |
799 | 815 |
<< " closepath pop pop pop} bind def\n"; |
800 | 816 |
// x y r cr cg cb |
801 | 817 |
os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n" |
802 | 818 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
803 | 819 |
<< " } bind def\n"; |
804 | 820 |
os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n" |
805 | 821 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n" |
806 | 822 |
<< " } bind def\n"; |
807 | 823 |
os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n" |
808 | 824 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n" |
809 | 825 |
<< " } bind def\n"; |
810 | 826 |
os << "/nfemale { 0 0 0 setrgbcolor 3 index " |
811 | 827 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
812 | 828 |
<< " 1.5 mul mul setlinewidth\n" |
813 | 829 |
<< " newpath 5 index 5 index moveto " |
814 | 830 |
<< "5 index 5 index 5 index 3.01 mul sub\n" |
815 | 831 |
<< " lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub" |
816 | 832 |
<< " moveto\n" |
817 | 833 |
<< " 5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto " |
818 | 834 |
<< "stroke\n" |
819 | 835 |
<< " 5 index 5 index 5 index c fill\n" |
820 | 836 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
821 | 837 |
<< " } bind def\n"; |
822 | 838 |
os << "/nmale {\n" |
823 | 839 |
<< " 0 0 0 setrgbcolor 3 index " |
824 | 840 |
<< _nodeBorderQuotient/(1+_nodeBorderQuotient) |
825 | 841 |
<<" 1.5 mul mul setlinewidth\n" |
826 | 842 |
<< " newpath 5 index 5 index moveto\n" |
827 | 843 |
<< " 5 index 4 index 1 mul 1.5 mul add\n" |
828 | 844 |
<< " 5 index 5 index 3 sqrt 1.5 mul mul add\n" |
829 | 845 |
<< " 1 index 1 index lineto\n" |
830 | 846 |
<< " 1 index 1 index 7 index sub moveto\n" |
831 | 847 |
<< " 1 index 1 index lineto\n" |
832 | 848 |
<< " exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub" |
833 | 849 |
<< " lineto\n" |
834 | 850 |
<< " stroke\n" |
835 | 851 |
<< " 5 index 5 index 5 index c fill\n" |
836 | 852 |
<< " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" |
837 | 853 |
<< " } bind def\n"; |
838 | 854 |
|
839 | 855 |
|
840 | 856 |
os << "/arrl " << _arrowLength << " def\n"; |
841 | 857 |
os << "/arrw " << _arrowWidth << " def\n"; |
842 | 858 |
// l dx_norm dy_norm |
843 | 859 |
os << "/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def\n"; |
844 | 860 |
//len w dx_norm dy_norm x1 y1 cr cg cb |
845 | 861 |
os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx " |
846 | 862 |
<< "exch def\n" |
847 | 863 |
<< " /w exch def /len exch def\n" |
848 | 864 |
//<< "0.1 setlinewidth x1 y1 moveto dx len mul dy len mul rlineto stroke" |
849 | 865 |
<< " newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto\n" |
850 | 866 |
<< " len w sub arrl sub dx dy lrl\n" |
851 | 867 |
<< " arrw dy dx neg lrl\n" |
852 | 868 |
<< " dx arrl w add mul dy w 2 div arrw add mul sub\n" |
853 | 869 |
<< " dy arrl w add mul dx w 2 div arrw add mul add rlineto\n" |
854 | 870 |
<< " dx arrl w add mul neg dy w 2 div arrw add mul sub\n" |
855 | 871 |
<< " dy arrl w add mul neg dx w 2 div arrw add mul add rlineto\n" |
856 | 872 |
<< " arrw dy dx neg lrl\n" |
857 | 873 |
<< " len w sub arrl sub neg dx dy lrl\n" |
858 | 874 |
<< " closepath fill } bind def\n"; |
859 | 875 |
os << "/cshow { 2 index 2 index moveto dup stringwidth pop\n" |
860 | 876 |
<< " neg 2 div fosi .35 mul neg rmoveto show pop pop} def\n"; |
861 | 877 |
|
862 | 878 |
os << "\ngsave\n"; |
863 | 879 |
if(_scaleToA4) |
864 | 880 |
if(bb.height()>bb.width()) { |
865 | 881 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.height(), |
866 | 882 |
(A4WIDTH-2*A4BORDER)/bb.width()); |
867 | 883 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.width())/2 + A4BORDER << ' ' |
868 | 884 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.height())/2 + A4BORDER |
869 | 885 |
<< " translate\n" |
870 | 886 |
<< sc << " dup scale\n" |
871 | 887 |
<< -bb.left() << ' ' << -bb.bottom() << " translate\n"; |
872 | 888 |
} |
873 | 889 |
else { |
874 | 890 |
double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.width(), |
875 | 891 |
(A4WIDTH-2*A4BORDER)/bb.height()); |
876 | 892 |
os << ((A4WIDTH -2*A4BORDER)-sc*bb.height())/2 + A4BORDER << ' ' |
877 | 893 |
<< ((A4HEIGHT-2*A4BORDER)-sc*bb.width())/2 + A4BORDER |
878 | 894 |
<< " translate\n" |
879 | 895 |
<< sc << " dup scale\n90 rotate\n" |
880 | 896 |
<< -bb.left() << ' ' << -bb.top() << " translate\n"; |
881 | 897 |
} |
882 | 898 |
else if(_scale!=1.0) os << _scale << " dup scale\n"; |
883 | 899 |
|
884 | 900 |
if(_showArcs) { |
885 | 901 |
os << "%Arcs:\ngsave\n"; |
886 | 902 |
if(_enableParallel) { |
887 | 903 |
std::vector<Arc> el; |
888 | 904 |
for(ArcIt e(g);e!=INVALID;++e) |
889 | 905 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
890 | 906 |
&&g.source(e)!=g.target(e)) |
891 | 907 |
el.push_back(e); |
892 | 908 |
std::sort(el.begin(),el.end(),arcLess(g)); |
893 | 909 |
|
894 | 910 |
typename std::vector<Arc>::iterator j; |
895 | 911 |
for(typename std::vector<Arc>::iterator i=el.begin();i!=el.end();i=j) { |
896 | 912 |
for(j=i+1;j!=el.end()&&isParallel(*i,*j);++j) ; |
897 | 913 |
|
898 | 914 |
double sw=0; |
899 | 915 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) |
900 | 916 |
sw+=_arcWidths[*e]*_arcWidthScale+_parArcDist; |
901 | 917 |
sw-=_parArcDist; |
902 | 918 |
sw/=-2.0; |
903 | 919 |
dim2::Point<double> |
904 | 920 |
dvec(mycoords[g.target(*i)]-mycoords[g.source(*i)]); |
905 | 921 |
double l=std::sqrt(dvec.normSquare()); |
906 | 922 |
dim2::Point<double> d(dvec/std::max(l,EPSILON)); |
907 | 923 |
dim2::Point<double> m; |
908 | 924 |
// m=dim2::Point<double>(mycoords[g.target(*i)]+ |
909 | 925 |
// mycoords[g.source(*i)])/2.0; |
910 | 926 |
|
911 | 927 |
// m=dim2::Point<double>(mycoords[g.source(*i)])+ |
912 | 928 |
// dvec*(double(_nodeSizes[g.source(*i)])/ |
913 | 929 |
// (_nodeSizes[g.source(*i)]+_nodeSizes[g.target(*i)])); |
914 | 930 |
|
915 | 931 |
m=dim2::Point<double>(mycoords[g.source(*i)])+ |
916 | 932 |
d*(l+_nodeSizes[g.source(*i)]-_nodeSizes[g.target(*i)])/2.0; |
917 | 933 |
|
918 | 934 |
for(typename std::vector<Arc>::iterator e=i;e!=j;++e) { |
919 | 935 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0; |
920 | 936 |
dim2::Point<double> mm=m+rot90(d)*sw/.75; |
921 | 937 |
if(_drawArrows) { |
922 | 938 |
int node_shape; |
923 | 939 |
dim2::Point<double> s=mycoords[g.source(*e)]; |
924 | 940 |
dim2::Point<double> t=mycoords[g.target(*e)]; |
925 | 941 |
double rn=_nodeSizes[g.target(*e)]*_nodeScale; |
926 | 942 |
node_shape=_nodeShapes[g.target(*e)]; |
927 | 943 |
dim2::Bezier3 bez(s,mm,mm,t); |
928 | 944 |
double t1=0,t2=1; |
929 | 945 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
930 | 946 |
if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) t2=(t1+t2)/2; |
931 | 947 |
else t1=(t1+t2)/2; |
932 | 948 |
dim2::Point<double> apoint=bez((t1+t2)/2); |
933 | 949 |
rn = _arrowLength+_arcWidths[*e]*_arcWidthScale; |
934 | 950 |
rn*=rn; |
935 | 951 |
t2=(t1+t2)/2;t1=0; |
936 | 952 |
for(int ii=0;ii<INTERPOL_PREC;++ii) |
937 | 953 |
if((bez((t1+t2)/2)-apoint).normSquare()>rn) t1=(t1+t2)/2; |
938 | 954 |
else t2=(t1+t2)/2; |
939 | 955 |
dim2::Point<double> linend=bez((t1+t2)/2); |
940 | 956 |
bez=bez.before((t1+t2)/2); |
941 | 957 |
// rn=_nodeSizes[g.source(*e)]*_nodeScale; |
942 | 958 |
// node_shape=_nodeShapes[g.source(*e)]; |
943 | 959 |
// t1=0;t2=1; |
944 | 960 |
// for(int i=0;i<INTERPOL_PREC;++i) |
945 | 961 |
// if(isInsideNode(bez((t1+t2)/2)-t,rn,node_shape)) |
946 | 962 |
// t1=(t1+t2)/2; |
947 | 963 |
// else t2=(t1+t2)/2; |
948 | 964 |
// bez=bez.after((t1+t2)/2); |
949 | 965 |
os << _arcWidths[*e]*_arcWidthScale << " setlinewidth " |
950 | 966 |
<< _arcColors[*e].red() << ' ' |
951 | 967 |
<< _arcColors[*e].green() << ' ' |
952 | 968 |
<< _arcColors[*e].blue() << " setrgbcolor newpath\n" |
953 | 969 |
<< bez.p1.x << ' ' << bez.p1.y << " moveto\n" |
954 | 970 |
<< bez.p2.x << ' ' << bez.p2.y << ' ' |
955 | 971 |
<< bez.p3.x << ' ' << bez.p3.y << ' ' |
956 | 972 |
<< bez.p4.x << ' ' << bez.p4.y << " curveto stroke\n"; |
957 | 973 |
dim2::Point<double> dd(rot90(linend-apoint)); |
958 | 974 |
dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/ |
959 | 975 |
std::sqrt(dd.normSquare()); |
960 | 976 |
os << "newpath " << psOut(apoint) << " moveto " |
961 | 977 |
<< psOut(linend+dd) << " lineto " |
962 | 978 |
<< psOut(linend-dd) << " lineto closepath fill\n"; |
963 | 979 |
} |
964 | 980 |
else { |
965 | 981 |
os << mycoords[g.source(*e)].x << ' ' |
966 | 982 |
<< mycoords[g.source(*e)].y << ' ' |
967 | 983 |
<< mm.x << ' ' << mm.y << ' ' |
968 | 984 |
<< mycoords[g.target(*e)].x << ' ' |
969 | 985 |
<< mycoords[g.target(*e)].y << ' ' |
970 | 986 |
<< _arcColors[*e].red() << ' ' |
971 | 987 |
<< _arcColors[*e].green() << ' ' |
972 | 988 |
<< _arcColors[*e].blue() << ' ' |
973 | 989 |
<< _arcWidths[*e]*_arcWidthScale << " lb\n"; |
974 | 990 |
} |
975 | 991 |
sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist; |
976 | 992 |
} |
977 | 993 |
} |
978 | 994 |
} |
979 | 995 |
else for(ArcIt e(g);e!=INVALID;++e) |
980 | 996 |
if((!_undirected||g.source(e)<g.target(e))&&_arcWidths[e]>0 |
981 | 997 |
&&g.source(e)!=g.target(e)) { |
982 | 998 |
if(_drawArrows) { |
983 | 999 |
dim2::Point<double> d(mycoords[g.target(e)]-mycoords[g.source(e)]); |
984 | 1000 |
double rn=_nodeSizes[g.target(e)]*_nodeScale; |
985 | 1001 |
int node_shape=_nodeShapes[g.target(e)]; |
986 | 1002 |
double t1=0,t2=1; |
987 | 1003 |
for(int i=0;i<INTERPOL_PREC;++i) |
988 | 1004 |
if(isInsideNode((-(t1+t2)/2)*d,rn,node_shape)) t1=(t1+t2)/2; |
989 | 1005 |
else t2=(t1+t2)/2; |
990 | 1006 |
double l=std::sqrt(d.normSquare()); |
991 | 1007 |
d/=l; |
992 | 1008 |
|
993 | 1009 |
os << l*(1-(t1+t2)/2) << ' ' |
994 | 1010 |
<< _arcWidths[e]*_arcWidthScale << ' ' |
995 | 1011 |
<< d.x << ' ' << d.y << ' ' |
996 | 1012 |
<< mycoords[g.source(e)].x << ' ' |
997 | 1013 |
<< mycoords[g.source(e)].y << ' ' |
998 | 1014 |
<< _arcColors[e].red() << ' ' |
999 | 1015 |
<< _arcColors[e].green() << ' ' |
1000 | 1016 |
<< _arcColors[e].blue() << " arr\n"; |
1001 | 1017 |
} |
1002 | 1018 |
else os << mycoords[g.source(e)].x << ' ' |
1003 | 1019 |
<< mycoords[g.source(e)].y << ' ' |
1004 | 1020 |
<< mycoords[g.target(e)].x << ' ' |
1005 | 1021 |
<< mycoords[g.target(e)].y << ' ' |
1006 | 1022 |
<< _arcColors[e].red() << ' ' |
1007 | 1023 |
<< _arcColors[e].green() << ' ' |
1008 | 1024 |
<< _arcColors[e].blue() << ' ' |
1009 | 1025 |
<< _arcWidths[e]*_arcWidthScale << " l\n"; |
1010 | 1026 |
} |
1011 | 1027 |
os << "grestore\n"; |
1012 | 1028 |
} |
1013 | 1029 |
if(_showNodes) { |
1014 | 1030 |
os << "%Nodes:\ngsave\n"; |
1015 | 1031 |
for(NodeIt n(g);n!=INVALID;++n) { |
1016 | 1032 |
os << mycoords[n].x << ' ' << mycoords[n].y << ' ' |
1017 | 1033 |
<< _nodeSizes[n]*_nodeScale << ' ' |
1018 | 1034 |
<< _nodeColors[n].red() << ' ' |
1019 | 1035 |
<< _nodeColors[n].green() << ' ' |
1020 | 1036 |
<< _nodeColors[n].blue() << ' '; |
1021 | 1037 |
switch(_nodeShapes[n]) { |
1022 | 1038 |
case CIRCLE: |
1023 | 1039 |
os<< "nc";break; |
1024 | 1040 |
case SQUARE: |
1025 | 1041 |
os<< "nsq";break; |
1026 | 1042 |
case DIAMOND: |
1027 | 1043 |
os<< "ndi";break; |
1028 | 1044 |
case MALE: |
1029 | 1045 |
os<< "nmale";break; |
1030 | 1046 |
case FEMALE: |
1031 | 1047 |
os<< "nfemale";break; |
1032 | 1048 |
} |
1033 | 1049 |
os<<'\n'; |
1034 | 1050 |
} |
1035 | 1051 |
os << "grestore\n"; |
1036 | 1052 |
} |
1037 | 1053 |
if(_showNodeText) { |
1038 | 1054 |
os << "%Node texts:\ngsave\n"; |
1039 | 1055 |
os << "/fosi " << _nodeTextSize << " def\n"; |
1040 | 1056 |
os << "(Helvetica) findfont fosi scalefont setfont\n"; |
1041 | 1057 |
for(NodeIt n(g);n!=INVALID;++n) { |
1042 | 1058 |
switch(_nodeTextColorType) { |
1043 | 1059 |
case DIST_COL: |
1044 | 1060 |
os << psOut(distantColor(_nodeColors[n])) << " setrgbcolor\n"; |
1045 | 1061 |
break; |
1046 | 1062 |
case DIST_BW: |
1047 | 1063 |
os << psOut(distantBW(_nodeColors[n])) << " setrgbcolor\n"; |
1048 | 1064 |
break; |
1049 | 1065 |
case CUST_COL: |
1050 | 1066 |
os << psOut(distantColor(_nodeTextColors[n])) << " setrgbcolor\n"; |
1051 | 1067 |
break; |
1052 | 1068 |
default: |
1053 | 1069 |
os << "0 0 0 setrgbcolor\n"; |
1054 | 1070 |
} |
1055 | 1071 |
os << mycoords[n].x << ' ' << mycoords[n].y |
1056 | 1072 |
<< " (" << _nodeTexts[n] << ") cshow\n"; |
1057 | 1073 |
} |
1058 | 1074 |
os << "grestore\n"; |
1059 | 1075 |
} |
1060 | 1076 |
if(_showNodePsText) { |
1061 | 1077 |
os << "%Node PS blocks:\ngsave\n"; |
1062 | 1078 |
for(NodeIt n(g);n!=INVALID;++n) |
1063 | 1079 |
os << mycoords[n].x << ' ' << mycoords[n].y |
1064 | 1080 |
<< " moveto\n" << _nodePsTexts[n] << "\n"; |
1065 | 1081 |
os << "grestore\n"; |
1066 | 1082 |
} |
1067 | 1083 |
|
1068 | 1084 |
os << "grestore\nshowpage\n"; |
1069 | 1085 |
|
1070 | 1086 |
//CleanUp: |
1071 | 1087 |
if(_pleaseRemoveOsStream) {delete &os;} |
1072 | 1088 |
} |
1073 | 1089 |
|
1074 | 1090 |
///\name Aliases |
1075 | 1091 |
///These are just some aliases to other parameter setting functions. |
1076 | 1092 |
|
1077 | 1093 |
///@{ |
1078 | 1094 |
|
1079 | 1095 |
///An alias for arcWidths() |
1080 | 1096 |
template<class X> GraphToEps<ArcWidthsTraits<X> > edgeWidths(const X &x) |
1081 | 1097 |
{ |
1082 | 1098 |
return arcWidths(x); |
1083 | 1099 |
} |
1084 | 1100 |
|
1085 | 1101 |
///An alias for arcColors() |
1086 | 1102 |
template<class X> GraphToEps<ArcColorsTraits<X> > |
1087 | 1103 |
edgeColors(const X &x) |
1088 | 1104 |
{ |
1089 | 1105 |
return arcColors(x); |
1090 | 1106 |
} |
1091 | 1107 |
|
1092 | 1108 |
///An alias for arcWidthScale() |
1093 | 1109 |
GraphToEps<T> &edgeWidthScale(double d) {return arcWidthScale(d);} |
1094 | 1110 |
|
1095 | 1111 |
///An alias for autoArcWidthScale() |
1096 | 1112 |
GraphToEps<T> &autoEdgeWidthScale(bool b=true) |
1097 | 1113 |
{ |
1098 | 1114 |
return autoArcWidthScale(b); |
1099 | 1115 |
} |
1100 | 1116 |
|
1101 | 1117 |
///An alias for absoluteArcWidths() |
1102 | 1118 |
GraphToEps<T> &absoluteEdgeWidths(bool b=true) |
1103 | 1119 |
{ |
1104 | 1120 |
return absoluteArcWidths(b); |
1105 | 1121 |
} |
1106 | 1122 |
|
1107 | 1123 |
///An alias for parArcDist() |
1108 | 1124 |
GraphToEps<T> &parEdgeDist(double d) {return parArcDist(d);} |
1109 | 1125 |
|
1110 | 1126 |
///An alias for hideArcs() |
1111 | 1127 |
GraphToEps<T> &hideEdges(bool b=true) {return hideArcs(b);} |
1112 | 1128 |
|
1113 | 1129 |
///@} |
1114 | 1130 |
}; |
1115 | 1131 |
|
1116 | 1132 |
template<class T> |
1117 | 1133 |
const int GraphToEps<T>::INTERPOL_PREC = 20; |
1118 | 1134 |
template<class T> |
1119 | 1135 |
const double GraphToEps<T>::A4HEIGHT = 841.8897637795276; |
1120 | 1136 |
template<class T> |
1121 | 1137 |
const double GraphToEps<T>::A4WIDTH = 595.275590551181; |
1122 | 1138 |
template<class T> |
1123 | 1139 |
const double GraphToEps<T>::A4BORDER = 15; |
1124 | 1140 |
|
1125 | 1141 |
|
1126 | 1142 |
///Generates an EPS file from a graph |
1127 | 1143 |
|
1128 | 1144 |
///\ingroup eps_io |
1129 | 1145 |
///Generates an EPS file from a graph. |
1130 | 1146 |
///\param g Reference to the graph to be printed. |
1131 | 1147 |
///\param os Reference to the output stream. |
1132 | 1148 |
///By default it is <tt>std::cout</tt>. |
1133 | 1149 |
/// |
1134 | 1150 |
///This function also has a lot of |
1135 | 1151 |
///\ref named-templ-func-param "named parameters", |
1136 | 1152 |
///they are declared as the members of class \ref GraphToEps. The following |
1137 | 1153 |
///example shows how to use these parameters. |
1138 | 1154 |
///\code |
1139 | 1155 |
/// graphToEps(g,os).scale(10).coords(coords) |
1140 | 1156 |
/// .nodeScale(2).nodeSizes(sizes) |
1141 | 1157 |
/// .arcWidthScale(.4).run(); |
1142 | 1158 |
///\endcode |
1143 | 1159 |
/// |
1144 | 1160 |
///For more detailed examples see the \ref graph_to_eps_demo.cc demo file. |
1145 | 1161 |
/// |
1146 | 1162 |
///\warning Don't forget to put the \ref GraphToEps::run() "run()" |
1147 | 1163 |
///to the end of the parameter list. |
1148 | 1164 |
///\sa GraphToEps |
1149 | 1165 |
///\sa graphToEps(G &g, const char *file_name) |
1150 | 1166 |
template<class G> |
1151 | 1167 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1152 | 1168 |
graphToEps(G &g, std::ostream& os=std::cout) |
1153 | 1169 |
{ |
1154 | 1170 |
return |
1155 | 1171 |
GraphToEps<DefaultGraphToEpsTraits<G> >(DefaultGraphToEpsTraits<G>(g,os)); |
1156 | 1172 |
} |
1157 | 1173 |
|
1158 | 1174 |
///Generates an EPS file from a graph |
1159 | 1175 |
|
1160 | 1176 |
///\ingroup eps_io |
1161 | 1177 |
///This function does the same as |
1162 | 1178 |
///\ref graphToEps(G &g,std::ostream& os) |
1163 | 1179 |
///but it writes its output into the file \c file_name |
1164 | 1180 |
///instead of a stream. |
1165 | 1181 |
///\sa graphToEps(G &g, std::ostream& os) |
1166 | 1182 |
template<class G> |
1167 | 1183 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1168 | 1184 |
graphToEps(G &g,const char *file_name) |
1169 | 1185 |
{ |
1170 | 1186 |
std::ostream* os = new std::ofstream(file_name); |
1171 | 1187 |
if (!(*os)) { |
1172 | 1188 |
delete os; |
1173 | 1189 |
throw IoError("Cannot write file", file_name); |
1174 | 1190 |
} |
1175 | 1191 |
return GraphToEps<DefaultGraphToEpsTraits<G> > |
1176 | 1192 |
(DefaultGraphToEpsTraits<G>(g,*os,true)); |
1177 | 1193 |
} |
1178 | 1194 |
|
1179 | 1195 |
///Generates an EPS file from a graph |
1180 | 1196 |
|
1181 | 1197 |
///\ingroup eps_io |
1182 | 1198 |
///This function does the same as |
1183 | 1199 |
///\ref graphToEps(G &g,std::ostream& os) |
1184 | 1200 |
///but it writes its output into the file \c file_name |
1185 | 1201 |
///instead of a stream. |
1186 | 1202 |
///\sa graphToEps(G &g, std::ostream& os) |
1187 | 1203 |
template<class G> |
1188 | 1204 |
GraphToEps<DefaultGraphToEpsTraits<G> > |
1189 | 1205 |
graphToEps(G &g,const std::string& file_name) |
1190 | 1206 |
{ |
1191 | 1207 |
std::ostream* os = new std::ofstream(file_name.c_str()); |
1192 | 1208 |
if (!(*os)) { |
1193 | 1209 |
delete os; |
1194 | 1210 |
throw IoError("Cannot write file", file_name); |
1195 | 1211 |
} |
1196 | 1212 |
return GraphToEps<DefaultGraphToEpsTraits<G> > |
1197 | 1213 |
(DefaultGraphToEpsTraits<G>(g,*os,true)); |
1198 | 1214 |
} |
1199 | 1215 |
|
1200 | 1216 |
} //END OF NAMESPACE LEMON |
1201 | 1217 |
|
1202 | 1218 |
#endif // LEMON_GRAPH_TO_EPS_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
///\file |
20 | 20 |
///\brief The implementation of the LP solver interface. |
21 | 21 |
|
22 | 22 |
#include <lemon/lp_base.h> |
23 | 23 |
namespace lemon { |
24 | 24 |
|
25 |
const LpBase::Value LpBase::INF = std::numeric_limits<Value>::infinity(); |
|
26 |
const LpBase::Value LpBase::NaN = std::numeric_limits<Value>::quiet_NaN(); |
|
25 |
const LpBase::Value LpBase::INF = |
|
26 |
std::numeric_limits<LpBase::Value>::infinity(); |
|
27 |
const LpBase::Value LpBase::NaN = |
|
28 |
std::numeric_limits<LpBase::Value>::quiet_NaN(); |
|
27 | 29 |
|
28 | 30 |
} //namespace lemon |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2008 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_LP_BASE_H |
20 | 20 |
#define LEMON_LP_BASE_H |
21 | 21 |
|
22 | 22 |
#include<iostream> |
23 | 23 |
#include<vector> |
24 | 24 |
#include<map> |
25 | 25 |
#include<limits> |
26 | 26 |
#include<lemon/math.h> |
27 | 27 |
|
28 | 28 |
#include<lemon/error.h> |
29 | 29 |
#include<lemon/assert.h> |
30 | 30 |
|
31 | 31 |
#include<lemon/core.h> |
32 | 32 |
#include<lemon/bits/solver_bits.h> |
33 | 33 |
|
34 | 34 |
///\file |
35 | 35 |
///\brief The interface of the LP solver interface. |
36 | 36 |
///\ingroup lp_group |
37 | 37 |
namespace lemon { |
38 | 38 |
|
39 | 39 |
///Common base class for LP and MIP solvers |
40 | 40 |
|
41 | 41 |
///Usually this class is not used directly, please use one of the concrete |
42 | 42 |
///implementations of the solver interface. |
43 | 43 |
///\ingroup lp_group |
44 | 44 |
class LpBase { |
45 | 45 |
|
46 | 46 |
protected: |
47 | 47 |
|
48 | 48 |
_solver_bits::VarIndex rows; |
49 | 49 |
_solver_bits::VarIndex cols; |
50 | 50 |
|
51 | 51 |
public: |
52 | 52 |
|
53 | 53 |
///Possible outcomes of an LP solving procedure |
54 | 54 |
enum SolveExitStatus { |
55 | 55 |
///This means that the problem has been successfully solved: either |
56 | 56 |
///an optimal solution has been found or infeasibility/unboundedness |
57 | 57 |
///has been proved. |
58 | 58 |
SOLVED = 0, |
59 | 59 |
///Any other case (including the case when some user specified |
60 | 60 |
///limit has been exceeded) |
61 | 61 |
UNSOLVED = 1 |
62 | 62 |
}; |
63 | 63 |
|
64 | 64 |
///Direction of the optimization |
65 | 65 |
enum Sense { |
66 | 66 |
/// Minimization |
67 | 67 |
MIN, |
68 | 68 |
/// Maximization |
69 | 69 |
MAX |
70 | 70 |
}; |
71 | 71 |
|
72 | 72 |
///The floating point type used by the solver |
73 | 73 |
typedef double Value; |
74 | 74 |
///The infinity constant |
75 | 75 |
static const Value INF; |
76 | 76 |
///The not a number constant |
77 | 77 |
static const Value NaN; |
78 | 78 |
|
79 | 79 |
friend class Col; |
80 | 80 |
friend class ColIt; |
81 | 81 |
friend class Row; |
82 | 82 |
friend class RowIt; |
83 | 83 |
|
84 | 84 |
///Refer to a column of the LP. |
85 | 85 |
|
86 | 86 |
///This type is used to refer to a column of the LP. |
87 | 87 |
/// |
88 | 88 |
///Its value remains valid and correct even after the addition or erase of |
89 | 89 |
///other columns. |
90 | 90 |
/// |
91 | 91 |
///\note This class is similar to other Item types in LEMON, like |
92 | 92 |
///Node and Arc types in digraph. |
93 | 93 |
class Col { |
94 | 94 |
friend class LpBase; |
95 | 95 |
protected: |
96 | 96 |
int _id; |
97 | 97 |
explicit Col(int id) : _id(id) {} |
98 | 98 |
public: |
99 | 99 |
typedef Value ExprValue; |
100 | 100 |
typedef True LpCol; |
101 | 101 |
/// Default constructor |
102 | 102 |
|
103 | 103 |
/// \warning The default constructor sets the Col to an |
104 | 104 |
/// undefined value. |
105 | 105 |
Col() {} |
106 | 106 |
/// Invalid constructor \& conversion. |
107 | 107 |
|
108 | 108 |
/// This constructor initializes the Col to be invalid. |
109 | 109 |
/// \sa Invalid for more details. |
110 | 110 |
Col(const Invalid&) : _id(-1) {} |
111 | 111 |
/// Equality operator |
112 | 112 |
|
113 | 113 |
/// Two \ref Col "Col"s are equal if and only if they point to |
114 | 114 |
/// the same LP column or both are invalid. |
115 | 115 |
bool operator==(Col c) const {return _id == c._id;} |
116 | 116 |
/// Inequality operator |
117 | 117 |
|
118 | 118 |
/// \sa operator==(Col c) |
119 | 119 |
/// |
120 | 120 |
bool operator!=(Col c) const {return _id != c._id;} |
121 | 121 |
/// Artificial ordering operator. |
122 | 122 |
|
123 | 123 |
/// To allow the use of this object in std::map or similar |
124 | 124 |
/// associative container we require this. |
125 | 125 |
/// |
126 | 126 |
/// \note This operator only have to define some strict ordering of |
127 | 127 |
/// the items; this order has nothing to do with the iteration |
128 | 128 |
/// ordering of the items. |
129 | 129 |
bool operator<(Col c) const {return _id < c._id;} |
130 | 130 |
}; |
131 | 131 |
|
132 | 132 |
///Iterator for iterate over the columns of an LP problem |
133 | 133 |
|
134 | 134 |
/// Its usage is quite simple, for example you can count the number |
135 | 135 |
/// of columns in an LP \c lp: |
136 | 136 |
///\code |
137 | 137 |
/// int count=0; |
138 | 138 |
/// for (LpBase::ColIt c(lp); c!=INVALID; ++c) ++count; |
139 | 139 |
///\endcode |
140 | 140 |
class ColIt : public Col { |
141 | 141 |
const LpBase *_solver; |
142 | 142 |
public: |
143 | 143 |
/// Default constructor |
144 | 144 |
|
145 | 145 |
/// \warning The default constructor sets the iterator |
146 | 146 |
/// to an undefined value. |
147 | 147 |
ColIt() {} |
148 | 148 |
/// Sets the iterator to the first Col |
149 | 149 |
|
150 | 150 |
/// Sets the iterator to the first Col. |
151 | 151 |
/// |
152 | 152 |
ColIt(const LpBase &solver) : _solver(&solver) |
153 | 153 |
{ |
154 | 154 |
_solver->cols.firstItem(_id); |
155 | 155 |
} |
156 | 156 |
/// Invalid constructor \& conversion |
157 | 157 |
|
158 | 158 |
/// Initialize the iterator to be invalid. |
159 | 159 |
/// \sa Invalid for more details. |
160 | 160 |
ColIt(const Invalid&) : Col(INVALID) {} |
161 | 161 |
/// Next column |
162 | 162 |
|
163 | 163 |
/// Assign the iterator to the next column. |
164 | 164 |
/// |
165 | 165 |
ColIt &operator++() |
166 | 166 |
{ |
167 | 167 |
_solver->cols.nextItem(_id); |
168 | 168 |
return *this; |
169 | 169 |
} |
170 | 170 |
}; |
171 | 171 |
|
172 | 172 |
/// \brief Returns the ID of the column. |
173 | 173 |
static int id(const Col& col) { return col._id; } |
174 | 174 |
/// \brief Returns the column with the given ID. |
175 | 175 |
/// |
176 | 176 |
/// \pre The argument should be a valid column ID in the LP problem. |
177 | 177 |
static Col colFromId(int id) { return Col(id); } |
178 | 178 |
|
179 | 179 |
///Refer to a row of the LP. |
180 | 180 |
|
181 | 181 |
///This type is used to refer to a row of the LP. |
182 | 182 |
/// |
183 | 183 |
///Its value remains valid and correct even after the addition or erase of |
184 | 184 |
///other rows. |
185 | 185 |
/// |
186 | 186 |
///\note This class is similar to other Item types in LEMON, like |
187 | 187 |
///Node and Arc types in digraph. |
188 | 188 |
class Row { |
189 | 189 |
friend class LpBase; |
190 | 190 |
protected: |
191 | 191 |
int _id; |
192 | 192 |
explicit Row(int id) : _id(id) {} |
193 | 193 |
public: |
194 | 194 |
typedef Value ExprValue; |
195 | 195 |
typedef True LpRow; |
196 | 196 |
/// Default constructor |
197 | 197 |
|
198 | 198 |
/// \warning The default constructor sets the Row to an |
199 | 199 |
/// undefined value. |
200 | 200 |
Row() {} |
201 | 201 |
/// Invalid constructor \& conversion. |
202 | 202 |
|
203 | 203 |
/// This constructor initializes the Row to be invalid. |
204 | 204 |
/// \sa Invalid for more details. |
205 | 205 |
Row(const Invalid&) : _id(-1) {} |
206 | 206 |
/// Equality operator |
207 | 207 |
|
208 | 208 |
/// Two \ref Row "Row"s are equal if and only if they point to |
209 | 209 |
/// the same LP row or both are invalid. |
210 | 210 |
bool operator==(Row r) const {return _id == r._id;} |
211 | 211 |
/// Inequality operator |
212 | 212 |
|
213 | 213 |
/// \sa operator==(Row r) |
214 | 214 |
/// |
215 | 215 |
bool operator!=(Row r) const {return _id != r._id;} |
216 | 216 |
/// Artificial ordering operator. |
217 | 217 |
|
218 | 218 |
/// To allow the use of this object in std::map or similar |
219 | 219 |
/// associative container we require this. |
220 | 220 |
/// |
221 | 221 |
/// \note This operator only have to define some strict ordering of |
222 | 222 |
/// the items; this order has nothing to do with the iteration |
223 | 223 |
/// ordering of the items. |
224 | 224 |
bool operator<(Row r) const {return _id < r._id;} |
225 | 225 |
}; |
226 | 226 |
|
227 | 227 |
///Iterator for iterate over the rows of an LP problem |
228 | 228 |
|
229 | 229 |
/// Its usage is quite simple, for example you can count the number |
230 | 230 |
/// of rows in an LP \c lp: |
231 | 231 |
///\code |
232 | 232 |
/// int count=0; |
233 | 233 |
/// for (LpBase::RowIt c(lp); c!=INVALID; ++c) ++count; |
234 | 234 |
///\endcode |
235 | 235 |
class RowIt : public Row { |
236 | 236 |
const LpBase *_solver; |
237 | 237 |
public: |
238 | 238 |
/// Default constructor |
239 | 239 |
|
240 | 240 |
/// \warning The default constructor sets the iterator |
241 | 241 |
/// to an undefined value. |
242 | 242 |
RowIt() {} |
243 | 243 |
/// Sets the iterator to the first Row |
244 | 244 |
|
245 | 245 |
/// Sets the iterator to the first Row. |
246 | 246 |
/// |
247 | 247 |
RowIt(const LpBase &solver) : _solver(&solver) |
248 | 248 |
{ |
249 | 249 |
_solver->rows.firstItem(_id); |
250 | 250 |
} |
251 | 251 |
/// Invalid constructor \& conversion |
252 | 252 |
|
253 | 253 |
/// Initialize the iterator to be invalid. |
254 | 254 |
/// \sa Invalid for more details. |
255 | 255 |
RowIt(const Invalid&) : Row(INVALID) {} |
256 | 256 |
/// Next row |
257 | 257 |
|
258 | 258 |
/// Assign the iterator to the next row. |
259 | 259 |
/// |
260 | 260 |
RowIt &operator++() |
261 | 261 |
{ |
262 | 262 |
_solver->rows.nextItem(_id); |
263 | 263 |
return *this; |
264 | 264 |
} |
265 | 265 |
}; |
266 | 266 |
|
267 | 267 |
/// \brief Returns the ID of the row. |
268 | 268 |
static int id(const Row& row) { return row._id; } |
269 | 269 |
/// \brief Returns the row with the given ID. |
270 | 270 |
/// |
271 | 271 |
/// \pre The argument should be a valid row ID in the LP problem. |
272 | 272 |
static Row rowFromId(int id) { return Row(id); } |
273 | 273 |
|
274 | 274 |
public: |
275 | 275 |
|
276 | 276 |
///Linear expression of variables and a constant component |
277 | 277 |
|
278 | 278 |
///This data structure stores a linear expression of the variables |
279 | 279 |
///(\ref Col "Col"s) and also has a constant component. |
280 | 280 |
/// |
281 | 281 |
///There are several ways to access and modify the contents of this |
282 | 282 |
///container. |
283 | 283 |
///\code |
284 | 284 |
///e[v]=5; |
285 | 285 |
///e[v]+=12; |
286 | 286 |
///e.erase(v); |
287 | 287 |
///\endcode |
288 | 288 |
///or you can also iterate through its elements. |
289 | 289 |
///\code |
290 | 290 |
///double s=0; |
291 | 291 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
292 | 292 |
/// s+=*i * primal(i); |
293 | 293 |
///\endcode |
294 | 294 |
///(This code computes the primal value of the expression). |
295 | 295 |
///- Numbers (<tt>double</tt>'s) |
296 | 296 |
///and variables (\ref Col "Col"s) directly convert to an |
297 | 297 |
///\ref Expr and the usual linear operations are defined, so |
298 | 298 |
///\code |
299 | 299 |
///v+w |
300 | 300 |
///2*v-3.12*(v-w/2)+2 |
301 | 301 |
///v*2.1+(3*v+(v*12+w+6)*3)/2 |
302 | 302 |
///\endcode |
303 | 303 |
///are valid expressions. |
304 | 304 |
///The usual assignment operations are also defined. |
305 | 305 |
///\code |
306 | 306 |
///e=v+w; |
307 | 307 |
///e+=2*v-3.12*(v-w/2)+2; |
308 | 308 |
///e*=3.4; |
309 | 309 |
///e/=5; |
310 | 310 |
///\endcode |
311 | 311 |
///- The constant member can be set and read by dereference |
312 | 312 |
/// operator (unary *) |
313 | 313 |
/// |
314 | 314 |
///\code |
315 | 315 |
///*e=12; |
316 | 316 |
///double c=*e; |
317 | 317 |
///\endcode |
318 | 318 |
/// |
319 | 319 |
///\sa Constr |
320 | 320 |
class Expr { |
321 | 321 |
friend class LpBase; |
322 | 322 |
public: |
323 | 323 |
/// The key type of the expression |
324 | 324 |
typedef LpBase::Col Key; |
325 | 325 |
/// The value type of the expression |
326 | 326 |
typedef LpBase::Value Value; |
327 | 327 |
|
328 | 328 |
protected: |
329 | 329 |
Value const_comp; |
330 | 330 |
std::map<int, Value> comps; |
331 | 331 |
|
332 | 332 |
public: |
333 | 333 |
typedef True SolverExpr; |
334 | 334 |
/// Default constructor |
335 | 335 |
|
336 | 336 |
/// Construct an empty expression, the coefficients and |
337 | 337 |
/// the constant component are initialized to zero. |
338 | 338 |
Expr() : const_comp(0) {} |
339 | 339 |
/// Construct an expression from a column |
340 | 340 |
|
341 | 341 |
/// Construct an expression, which has a term with \c c variable |
342 | 342 |
/// and 1.0 coefficient. |
343 | 343 |
Expr(const Col &c) : const_comp(0) { |
344 | 344 |
typedef std::map<int, Value>::value_type pair_type; |
345 | 345 |
comps.insert(pair_type(id(c), 1)); |
346 | 346 |
} |
347 | 347 |
/// Construct an expression from a constant |
348 | 348 |
|
349 | 349 |
/// Construct an expression, which's constant component is \c v. |
350 | 350 |
/// |
351 | 351 |
Expr(const Value &v) : const_comp(v) {} |
352 | 352 |
/// Returns the coefficient of the column |
353 | 353 |
Value operator[](const Col& c) const { |
354 | 354 |
std::map<int, Value>::const_iterator it=comps.find(id(c)); |
355 | 355 |
if (it != comps.end()) { |
356 | 356 |
return it->second; |
357 | 357 |
} else { |
358 | 358 |
return 0; |
359 | 359 |
} |
360 | 360 |
} |
361 | 361 |
/// Returns the coefficient of the column |
362 | 362 |
Value& operator[](const Col& c) { |
363 | 363 |
return comps[id(c)]; |
364 | 364 |
} |
365 | 365 |
/// Sets the coefficient of the column |
366 | 366 |
void set(const Col &c, const Value &v) { |
367 | 367 |
if (v != 0.0) { |
368 | 368 |
typedef std::map<int, Value>::value_type pair_type; |
369 | 369 |
comps.insert(pair_type(id(c), v)); |
370 | 370 |
} else { |
371 | 371 |
comps.erase(id(c)); |
372 | 372 |
} |
373 | 373 |
} |
374 | 374 |
/// Returns the constant component of the expression |
375 | 375 |
Value& operator*() { return const_comp; } |
376 | 376 |
/// Returns the constant component of the expression |
377 | 377 |
const Value& operator*() const { return const_comp; } |
378 | 378 |
/// \brief Removes the coefficients which's absolute value does |
379 | 379 |
/// not exceed \c epsilon. It also sets to zero the constant |
380 | 380 |
/// component, if it does not exceed epsilon in absolute value. |
381 | 381 |
void simplify(Value epsilon = 0.0) { |
382 | 382 |
std::map<int, Value>::iterator it=comps.begin(); |
383 | 383 |
while (it != comps.end()) { |
384 | 384 |
std::map<int, Value>::iterator jt=it; |
385 | 385 |
++jt; |
386 | 386 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
387 | 387 |
it=jt; |
388 | 388 |
} |
389 | 389 |
if (std::fabs(const_comp) <= epsilon) const_comp = 0; |
390 | 390 |
} |
391 | 391 |
|
392 | 392 |
void simplify(Value epsilon = 0.0) const { |
393 | 393 |
const_cast<Expr*>(this)->simplify(epsilon); |
394 | 394 |
} |
395 | 395 |
|
396 | 396 |
///Sets all coefficients and the constant component to 0. |
397 | 397 |
void clear() { |
398 | 398 |
comps.clear(); |
399 | 399 |
const_comp=0; |
400 | 400 |
} |
401 | 401 |
|
402 | 402 |
///Compound assignment |
403 | 403 |
Expr &operator+=(const Expr &e) { |
404 | 404 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
405 | 405 |
it!=e.comps.end(); ++it) |
406 | 406 |
comps[it->first]+=it->second; |
407 | 407 |
const_comp+=e.const_comp; |
408 | 408 |
return *this; |
409 | 409 |
} |
410 | 410 |
///Compound assignment |
411 | 411 |
Expr &operator-=(const Expr &e) { |
412 | 412 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
413 | 413 |
it!=e.comps.end(); ++it) |
414 | 414 |
comps[it->first]-=it->second; |
415 | 415 |
const_comp-=e.const_comp; |
416 | 416 |
return *this; |
417 | 417 |
} |
418 | 418 |
///Multiply with a constant |
419 | 419 |
Expr &operator*=(const Value &v) { |
420 | 420 |
for (std::map<int, Value>::iterator it=comps.begin(); |
421 | 421 |
it!=comps.end(); ++it) |
422 | 422 |
it->second*=v; |
423 | 423 |
const_comp*=v; |
424 | 424 |
return *this; |
425 | 425 |
} |
426 | 426 |
///Division with a constant |
427 | 427 |
Expr &operator/=(const Value &c) { |
428 | 428 |
for (std::map<int, Value>::iterator it=comps.begin(); |
429 | 429 |
it!=comps.end(); ++it) |
430 | 430 |
it->second/=c; |
431 | 431 |
const_comp/=c; |
432 | 432 |
return *this; |
433 | 433 |
} |
434 | 434 |
|
435 | 435 |
///Iterator over the expression |
436 | 436 |
|
437 | 437 |
///The iterator iterates over the terms of the expression. |
438 | 438 |
/// |
439 | 439 |
///\code |
440 | 440 |
///double s=0; |
441 | 441 |
///for(LpBase::Expr::CoeffIt i(e);i!=INVALID;++i) |
442 | 442 |
/// s+= *i * primal(i); |
443 | 443 |
///\endcode |
444 | 444 |
class CoeffIt { |
445 | 445 |
private: |
446 | 446 |
|
447 | 447 |
std::map<int, Value>::iterator _it, _end; |
448 | 448 |
|
449 | 449 |
public: |
450 | 450 |
|
451 | 451 |
/// Sets the iterator to the first term |
452 | 452 |
|
453 | 453 |
/// Sets the iterator to the first term of the expression. |
454 | 454 |
/// |
455 | 455 |
CoeffIt(Expr& e) |
456 | 456 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
457 | 457 |
|
458 | 458 |
/// Convert the iterator to the column of the term |
459 | 459 |
operator Col() const { |
460 | 460 |
return colFromId(_it->first); |
461 | 461 |
} |
462 | 462 |
|
463 | 463 |
/// Returns the coefficient of the term |
464 | 464 |
Value& operator*() { return _it->second; } |
465 | 465 |
|
466 | 466 |
/// Returns the coefficient of the term |
467 | 467 |
const Value& operator*() const { return _it->second; } |
468 | 468 |
/// Next term |
469 | 469 |
|
470 | 470 |
/// Assign the iterator to the next term. |
471 | 471 |
/// |
472 | 472 |
CoeffIt& operator++() { ++_it; return *this; } |
473 | 473 |
|
474 | 474 |
/// Equality operator |
475 | 475 |
bool operator==(Invalid) const { return _it == _end; } |
476 | 476 |
/// Inequality operator |
477 | 477 |
bool operator!=(Invalid) const { return _it != _end; } |
478 | 478 |
}; |
479 | 479 |
|
480 | 480 |
/// Const iterator over the expression |
481 | 481 |
|
482 | 482 |
///The iterator iterates over the terms of the expression. |
483 | 483 |
/// |
484 | 484 |
///\code |
485 | 485 |
///double s=0; |
486 | 486 |
///for(LpBase::Expr::ConstCoeffIt i(e);i!=INVALID;++i) |
487 | 487 |
/// s+=*i * primal(i); |
488 | 488 |
///\endcode |
489 | 489 |
class ConstCoeffIt { |
490 | 490 |
private: |
491 | 491 |
|
492 | 492 |
std::map<int, Value>::const_iterator _it, _end; |
493 | 493 |
|
494 | 494 |
public: |
495 | 495 |
|
496 | 496 |
/// Sets the iterator to the first term |
497 | 497 |
|
498 | 498 |
/// Sets the iterator to the first term of the expression. |
499 | 499 |
/// |
500 | 500 |
ConstCoeffIt(const Expr& e) |
501 | 501 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
502 | 502 |
|
503 | 503 |
/// Convert the iterator to the column of the term |
504 | 504 |
operator Col() const { |
505 | 505 |
return colFromId(_it->first); |
506 | 506 |
} |
507 | 507 |
|
508 | 508 |
/// Returns the coefficient of the term |
509 | 509 |
const Value& operator*() const { return _it->second; } |
510 | 510 |
|
511 | 511 |
/// Next term |
512 | 512 |
|
513 | 513 |
/// Assign the iterator to the next term. |
514 | 514 |
/// |
515 | 515 |
ConstCoeffIt& operator++() { ++_it; return *this; } |
516 | 516 |
|
517 | 517 |
/// Equality operator |
518 | 518 |
bool operator==(Invalid) const { return _it == _end; } |
519 | 519 |
/// Inequality operator |
520 | 520 |
bool operator!=(Invalid) const { return _it != _end; } |
521 | 521 |
}; |
522 | 522 |
|
523 | 523 |
}; |
524 | 524 |
|
525 | 525 |
///Linear constraint |
526 | 526 |
|
527 | 527 |
///This data stucture represents a linear constraint in the LP. |
528 | 528 |
///Basically it is a linear expression with a lower or an upper bound |
529 | 529 |
///(or both). These parts of the constraint can be obtained by the member |
530 | 530 |
///functions \ref expr(), \ref lowerBound() and \ref upperBound(), |
531 | 531 |
///respectively. |
532 | 532 |
///There are two ways to construct a constraint. |
533 | 533 |
///- You can set the linear expression and the bounds directly |
534 | 534 |
/// by the functions above. |
535 | 535 |
///- The operators <tt>\<=</tt>, <tt>==</tt> and <tt>\>=</tt> |
536 | 536 |
/// are defined between expressions, or even between constraints whenever |
537 | 537 |
/// it makes sense. Therefore if \c e and \c f are linear expressions and |
538 | 538 |
/// \c s and \c t are numbers, then the followings are valid expressions |
539 | 539 |
/// and thus they can be used directly e.g. in \ref addRow() whenever |
540 | 540 |
/// it makes sense. |
541 | 541 |
///\code |
542 | 542 |
/// e<=s |
543 | 543 |
/// e<=f |
544 | 544 |
/// e==f |
545 | 545 |
/// s<=e<=t |
546 | 546 |
/// e>=t |
547 | 547 |
///\endcode |
548 | 548 |
///\warning The validity of a constraint is checked only at run |
549 | 549 |
///time, so e.g. \ref addRow(<tt>x[1]\<=x[2]<=5</tt>) will |
550 | 550 |
///compile, but will fail an assertion. |
551 | 551 |
class Constr |
552 | 552 |
{ |
553 | 553 |
public: |
554 | 554 |
typedef LpBase::Expr Expr; |
555 | 555 |
typedef Expr::Key Key; |
556 | 556 |
typedef Expr::Value Value; |
557 | 557 |
|
558 | 558 |
protected: |
559 | 559 |
Expr _expr; |
560 | 560 |
Value _lb,_ub; |
561 | 561 |
public: |
562 | 562 |
///\e |
563 | 563 |
Constr() : _expr(), _lb(NaN), _ub(NaN) {} |
564 | 564 |
///\e |
565 | 565 |
Constr(Value lb, const Expr &e, Value ub) : |
566 | 566 |
_expr(e), _lb(lb), _ub(ub) {} |
567 | 567 |
Constr(const Expr &e) : |
568 | 568 |
_expr(e), _lb(NaN), _ub(NaN) {} |
569 | 569 |
///\e |
570 | 570 |
void clear() |
571 | 571 |
{ |
572 | 572 |
_expr.clear(); |
573 | 573 |
_lb=_ub=NaN; |
574 | 574 |
} |
575 | 575 |
|
576 | 576 |
///Reference to the linear expression |
577 | 577 |
Expr &expr() { return _expr; } |
578 | 578 |
///Cont reference to the linear expression |
579 | 579 |
const Expr &expr() const { return _expr; } |
580 | 580 |
///Reference to the lower bound. |
581 | 581 |
|
582 | 582 |
///\return |
583 | 583 |
///- \ref INF "INF": the constraint is lower unbounded. |
584 | 584 |
///- \ref NaN "NaN": lower bound has not been set. |
585 | 585 |
///- finite number: the lower bound |
586 | 586 |
Value &lowerBound() { return _lb; } |
587 | 587 |
///The const version of \ref lowerBound() |
588 | 588 |
const Value &lowerBound() const { return _lb; } |
589 | 589 |
///Reference to the upper bound. |
590 | 590 |
|
591 | 591 |
///\return |
592 | 592 |
///- \ref INF "INF": the constraint is upper unbounded. |
593 | 593 |
///- \ref NaN "NaN": upper bound has not been set. |
594 | 594 |
///- finite number: the upper bound |
595 | 595 |
Value &upperBound() { return _ub; } |
596 | 596 |
///The const version of \ref upperBound() |
597 | 597 |
const Value &upperBound() const { return _ub; } |
598 | 598 |
///Is the constraint lower bounded? |
599 | 599 |
bool lowerBounded() const { |
600 |
return _lb != -INF && ! |
|
600 |
return _lb != -INF && !isNaN(_lb); |
|
601 | 601 |
} |
602 | 602 |
///Is the constraint upper bounded? |
603 | 603 |
bool upperBounded() const { |
604 |
return _ub != INF && ! |
|
604 |
return _ub != INF && !isNaN(_ub); |
|
605 | 605 |
} |
606 | 606 |
|
607 | 607 |
}; |
608 | 608 |
|
609 | 609 |
///Linear expression of rows |
610 | 610 |
|
611 | 611 |
///This data structure represents a column of the matrix, |
612 | 612 |
///thas is it strores a linear expression of the dual variables |
613 | 613 |
///(\ref Row "Row"s). |
614 | 614 |
/// |
615 | 615 |
///There are several ways to access and modify the contents of this |
616 | 616 |
///container. |
617 | 617 |
///\code |
618 | 618 |
///e[v]=5; |
619 | 619 |
///e[v]+=12; |
620 | 620 |
///e.erase(v); |
621 | 621 |
///\endcode |
622 | 622 |
///or you can also iterate through its elements. |
623 | 623 |
///\code |
624 | 624 |
///double s=0; |
625 | 625 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
626 | 626 |
/// s+=*i; |
627 | 627 |
///\endcode |
628 | 628 |
///(This code computes the sum of all coefficients). |
629 | 629 |
///- Numbers (<tt>double</tt>'s) |
630 | 630 |
///and variables (\ref Row "Row"s) directly convert to an |
631 | 631 |
///\ref DualExpr and the usual linear operations are defined, so |
632 | 632 |
///\code |
633 | 633 |
///v+w |
634 | 634 |
///2*v-3.12*(v-w/2) |
635 | 635 |
///v*2.1+(3*v+(v*12+w)*3)/2 |
636 | 636 |
///\endcode |
637 | 637 |
///are valid \ref DualExpr dual expressions. |
638 | 638 |
///The usual assignment operations are also defined. |
639 | 639 |
///\code |
640 | 640 |
///e=v+w; |
641 | 641 |
///e+=2*v-3.12*(v-w/2); |
642 | 642 |
///e*=3.4; |
643 | 643 |
///e/=5; |
644 | 644 |
///\endcode |
645 | 645 |
/// |
646 | 646 |
///\sa Expr |
647 | 647 |
class DualExpr { |
648 | 648 |
friend class LpBase; |
649 | 649 |
public: |
650 | 650 |
/// The key type of the expression |
651 | 651 |
typedef LpBase::Row Key; |
652 | 652 |
/// The value type of the expression |
653 | 653 |
typedef LpBase::Value Value; |
654 | 654 |
|
655 | 655 |
protected: |
656 | 656 |
std::map<int, Value> comps; |
657 | 657 |
|
658 | 658 |
public: |
659 | 659 |
typedef True SolverExpr; |
660 | 660 |
/// Default constructor |
661 | 661 |
|
662 | 662 |
/// Construct an empty expression, the coefficients are |
663 | 663 |
/// initialized to zero. |
664 | 664 |
DualExpr() {} |
665 | 665 |
/// Construct an expression from a row |
666 | 666 |
|
667 | 667 |
/// Construct an expression, which has a term with \c r dual |
668 | 668 |
/// variable and 1.0 coefficient. |
669 | 669 |
DualExpr(const Row &r) { |
670 | 670 |
typedef std::map<int, Value>::value_type pair_type; |
671 | 671 |
comps.insert(pair_type(id(r), 1)); |
672 | 672 |
} |
673 | 673 |
/// Returns the coefficient of the row |
674 | 674 |
Value operator[](const Row& r) const { |
675 | 675 |
std::map<int, Value>::const_iterator it = comps.find(id(r)); |
676 | 676 |
if (it != comps.end()) { |
677 | 677 |
return it->second; |
678 | 678 |
} else { |
679 | 679 |
return 0; |
680 | 680 |
} |
681 | 681 |
} |
682 | 682 |
/// Returns the coefficient of the row |
683 | 683 |
Value& operator[](const Row& r) { |
684 | 684 |
return comps[id(r)]; |
685 | 685 |
} |
686 | 686 |
/// Sets the coefficient of the row |
687 | 687 |
void set(const Row &r, const Value &v) { |
688 | 688 |
if (v != 0.0) { |
689 | 689 |
typedef std::map<int, Value>::value_type pair_type; |
690 | 690 |
comps.insert(pair_type(id(r), v)); |
691 | 691 |
} else { |
692 | 692 |
comps.erase(id(r)); |
693 | 693 |
} |
694 | 694 |
} |
695 | 695 |
/// \brief Removes the coefficients which's absolute value does |
696 | 696 |
/// not exceed \c epsilon. |
697 | 697 |
void simplify(Value epsilon = 0.0) { |
698 | 698 |
std::map<int, Value>::iterator it=comps.begin(); |
699 | 699 |
while (it != comps.end()) { |
700 | 700 |
std::map<int, Value>::iterator jt=it; |
701 | 701 |
++jt; |
702 | 702 |
if (std::fabs((*it).second) <= epsilon) comps.erase(it); |
703 | 703 |
it=jt; |
704 | 704 |
} |
705 | 705 |
} |
706 | 706 |
|
707 | 707 |
void simplify(Value epsilon = 0.0) const { |
708 | 708 |
const_cast<DualExpr*>(this)->simplify(epsilon); |
709 | 709 |
} |
710 | 710 |
|
711 | 711 |
///Sets all coefficients to 0. |
712 | 712 |
void clear() { |
713 | 713 |
comps.clear(); |
714 | 714 |
} |
715 | 715 |
///Compound assignment |
716 | 716 |
DualExpr &operator+=(const DualExpr &e) { |
717 | 717 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
718 | 718 |
it!=e.comps.end(); ++it) |
719 | 719 |
comps[it->first]+=it->second; |
720 | 720 |
return *this; |
721 | 721 |
} |
722 | 722 |
///Compound assignment |
723 | 723 |
DualExpr &operator-=(const DualExpr &e) { |
724 | 724 |
for (std::map<int, Value>::const_iterator it=e.comps.begin(); |
725 | 725 |
it!=e.comps.end(); ++it) |
726 | 726 |
comps[it->first]-=it->second; |
727 | 727 |
return *this; |
728 | 728 |
} |
729 | 729 |
///Multiply with a constant |
730 | 730 |
DualExpr &operator*=(const Value &v) { |
731 | 731 |
for (std::map<int, Value>::iterator it=comps.begin(); |
732 | 732 |
it!=comps.end(); ++it) |
733 | 733 |
it->second*=v; |
734 | 734 |
return *this; |
735 | 735 |
} |
736 | 736 |
///Division with a constant |
737 | 737 |
DualExpr &operator/=(const Value &v) { |
738 | 738 |
for (std::map<int, Value>::iterator it=comps.begin(); |
739 | 739 |
it!=comps.end(); ++it) |
740 | 740 |
it->second/=v; |
741 | 741 |
return *this; |
742 | 742 |
} |
743 | 743 |
|
744 | 744 |
///Iterator over the expression |
745 | 745 |
|
746 | 746 |
///The iterator iterates over the terms of the expression. |
747 | 747 |
/// |
748 | 748 |
///\code |
749 | 749 |
///double s=0; |
750 | 750 |
///for(LpBase::DualExpr::CoeffIt i(e);i!=INVALID;++i) |
751 | 751 |
/// s+= *i * dual(i); |
752 | 752 |
///\endcode |
753 | 753 |
class CoeffIt { |
754 | 754 |
private: |
755 | 755 |
|
756 | 756 |
std::map<int, Value>::iterator _it, _end; |
757 | 757 |
|
758 | 758 |
public: |
759 | 759 |
|
760 | 760 |
/// Sets the iterator to the first term |
761 | 761 |
|
762 | 762 |
/// Sets the iterator to the first term of the expression. |
763 | 763 |
/// |
764 | 764 |
CoeffIt(DualExpr& e) |
765 | 765 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
766 | 766 |
|
767 | 767 |
/// Convert the iterator to the row of the term |
768 | 768 |
operator Row() const { |
769 | 769 |
return rowFromId(_it->first); |
770 | 770 |
} |
771 | 771 |
|
772 | 772 |
/// Returns the coefficient of the term |
773 | 773 |
Value& operator*() { return _it->second; } |
774 | 774 |
|
775 | 775 |
/// Returns the coefficient of the term |
776 | 776 |
const Value& operator*() const { return _it->second; } |
777 | 777 |
|
778 | 778 |
/// Next term |
779 | 779 |
|
780 | 780 |
/// Assign the iterator to the next term. |
781 | 781 |
/// |
782 | 782 |
CoeffIt& operator++() { ++_it; return *this; } |
783 | 783 |
|
784 | 784 |
/// Equality operator |
785 | 785 |
bool operator==(Invalid) const { return _it == _end; } |
786 | 786 |
/// Inequality operator |
787 | 787 |
bool operator!=(Invalid) const { return _it != _end; } |
788 | 788 |
}; |
789 | 789 |
|
790 | 790 |
///Iterator over the expression |
791 | 791 |
|
792 | 792 |
///The iterator iterates over the terms of the expression. |
793 | 793 |
/// |
794 | 794 |
///\code |
795 | 795 |
///double s=0; |
796 | 796 |
///for(LpBase::DualExpr::ConstCoeffIt i(e);i!=INVALID;++i) |
797 | 797 |
/// s+= *i * dual(i); |
798 | 798 |
///\endcode |
799 | 799 |
class ConstCoeffIt { |
800 | 800 |
private: |
801 | 801 |
|
802 | 802 |
std::map<int, Value>::const_iterator _it, _end; |
803 | 803 |
|
804 | 804 |
public: |
805 | 805 |
|
806 | 806 |
/// Sets the iterator to the first term |
807 | 807 |
|
808 | 808 |
/// Sets the iterator to the first term of the expression. |
809 | 809 |
/// |
810 | 810 |
ConstCoeffIt(const DualExpr& e) |
811 | 811 |
: _it(e.comps.begin()), _end(e.comps.end()){} |
812 | 812 |
|
813 | 813 |
/// Convert the iterator to the row of the term |
814 | 814 |
operator Row() const { |
815 | 815 |
return rowFromId(_it->first); |
816 | 816 |
} |
817 | 817 |
|
818 | 818 |
/// Returns the coefficient of the term |
819 | 819 |
const Value& operator*() const { return _it->second; } |
820 | 820 |
|
821 | 821 |
/// Next term |
822 | 822 |
|
823 | 823 |
/// Assign the iterator to the next term. |
824 | 824 |
/// |
825 | 825 |
ConstCoeffIt& operator++() { ++_it; return *this; } |
826 | 826 |
|
827 | 827 |
/// Equality operator |
828 | 828 |
bool operator==(Invalid) const { return _it == _end; } |
829 | 829 |
/// Inequality operator |
830 | 830 |
bool operator!=(Invalid) const { return _it != _end; } |
831 | 831 |
}; |
832 | 832 |
}; |
833 | 833 |
|
834 | 834 |
|
835 | 835 |
protected: |
836 | 836 |
|
837 | 837 |
class InsertIterator { |
838 | 838 |
private: |
839 | 839 |
|
840 | 840 |
std::map<int, Value>& _host; |
841 | 841 |
const _solver_bits::VarIndex& _index; |
842 | 842 |
|
843 | 843 |
public: |
844 | 844 |
|
845 | 845 |
typedef std::output_iterator_tag iterator_category; |
846 | 846 |
typedef void difference_type; |
847 | 847 |
typedef void value_type; |
848 | 848 |
typedef void reference; |
849 | 849 |
typedef void pointer; |
850 | 850 |
|
851 | 851 |
InsertIterator(std::map<int, Value>& host, |
852 | 852 |
const _solver_bits::VarIndex& index) |
853 | 853 |
: _host(host), _index(index) {} |
854 | 854 |
|
855 | 855 |
InsertIterator& operator=(const std::pair<int, Value>& value) { |
856 | 856 |
typedef std::map<int, Value>::value_type pair_type; |
857 | 857 |
_host.insert(pair_type(_index[value.first], value.second)); |
858 | 858 |
return *this; |
859 | 859 |
} |
860 | 860 |
|
861 | 861 |
InsertIterator& operator*() { return *this; } |
862 | 862 |
InsertIterator& operator++() { return *this; } |
863 | 863 |
InsertIterator operator++(int) { return *this; } |
864 | 864 |
|
865 | 865 |
}; |
866 | 866 |
|
867 | 867 |
class ExprIterator { |
868 | 868 |
private: |
869 | 869 |
std::map<int, Value>::const_iterator _host_it; |
870 | 870 |
const _solver_bits::VarIndex& _index; |
871 | 871 |
public: |
872 | 872 |
|
873 | 873 |
typedef std::bidirectional_iterator_tag iterator_category; |
874 | 874 |
typedef std::ptrdiff_t difference_type; |
875 | 875 |
typedef const std::pair<int, Value> value_type; |
876 | 876 |
typedef value_type reference; |
877 | 877 |
|
878 | 878 |
class pointer { |
879 | 879 |
public: |
880 | 880 |
pointer(value_type& _value) : value(_value) {} |
881 | 881 |
value_type* operator->() { return &value; } |
882 | 882 |
private: |
883 | 883 |
value_type value; |
884 | 884 |
}; |
885 | 885 |
|
886 | 886 |
ExprIterator(const std::map<int, Value>::const_iterator& host_it, |
887 | 887 |
const _solver_bits::VarIndex& index) |
888 | 888 |
: _host_it(host_it), _index(index) {} |
889 | 889 |
|
890 | 890 |
reference operator*() { |
891 | 891 |
return std::make_pair(_index(_host_it->first), _host_it->second); |
892 | 892 |
} |
893 | 893 |
|
894 | 894 |
pointer operator->() { |
895 | 895 |
return pointer(operator*()); |
896 | 896 |
} |
897 | 897 |
|
898 | 898 |
ExprIterator& operator++() { ++_host_it; return *this; } |
899 | 899 |
ExprIterator operator++(int) { |
900 | 900 |
ExprIterator tmp(*this); ++_host_it; return tmp; |
901 | 901 |
} |
902 | 902 |
|
903 | 903 |
ExprIterator& operator--() { --_host_it; return *this; } |
904 | 904 |
ExprIterator operator--(int) { |
905 | 905 |
ExprIterator tmp(*this); --_host_it; return tmp; |
906 | 906 |
} |
907 | 907 |
|
908 | 908 |
bool operator==(const ExprIterator& it) const { |
909 | 909 |
return _host_it == it._host_it; |
910 | 910 |
} |
911 | 911 |
|
912 | 912 |
bool operator!=(const ExprIterator& it) const { |
913 | 913 |
return _host_it != it._host_it; |
914 | 914 |
} |
915 | 915 |
|
916 | 916 |
}; |
917 | 917 |
|
918 | 918 |
protected: |
919 | 919 |
|
920 | 920 |
//Abstract virtual functions |
921 | 921 |
virtual LpBase* _newSolver() const = 0; |
922 | 922 |
virtual LpBase* _cloneSolver() const = 0; |
923 | 923 |
|
924 | 924 |
virtual int _addColId(int col) { return cols.addIndex(col); } |
925 | 925 |
virtual int _addRowId(int row) { return rows.addIndex(row); } |
926 | 926 |
|
927 | 927 |
virtual void _eraseColId(int col) { cols.eraseIndex(col); } |
928 | 928 |
virtual void _eraseRowId(int row) { rows.eraseIndex(row); } |
929 | 929 |
|
930 | 930 |
virtual int _addCol() = 0; |
931 | 931 |
virtual int _addRow() = 0; |
932 | 932 |
|
933 | 933 |
virtual void _eraseCol(int col) = 0; |
934 | 934 |
virtual void _eraseRow(int row) = 0; |
935 | 935 |
|
936 | 936 |
virtual void _getColName(int col, std::string& name) const = 0; |
937 | 937 |
virtual void _setColName(int col, const std::string& name) = 0; |
938 | 938 |
virtual int _colByName(const std::string& name) const = 0; |
939 | 939 |
|
940 | 940 |
virtual void _getRowName(int row, std::string& name) const = 0; |
941 | 941 |
virtual void _setRowName(int row, const std::string& name) = 0; |
942 | 942 |
virtual int _rowByName(const std::string& name) const = 0; |
943 | 943 |
|
944 | 944 |
virtual void _setRowCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
945 | 945 |
virtual void _getRowCoeffs(int i, InsertIterator b) const = 0; |
946 | 946 |
|
947 | 947 |
virtual void _setColCoeffs(int i, ExprIterator b, ExprIterator e) = 0; |
948 | 948 |
virtual void _getColCoeffs(int i, InsertIterator b) const = 0; |
949 | 949 |
|
950 | 950 |
virtual void _setCoeff(int row, int col, Value value) = 0; |
951 | 951 |
virtual Value _getCoeff(int row, int col) const = 0; |
952 | 952 |
|
953 | 953 |
virtual void _setColLowerBound(int i, Value value) = 0; |
954 | 954 |
virtual Value _getColLowerBound(int i) const = 0; |
955 | 955 |
|
956 | 956 |
virtual void _setColUpperBound(int i, Value value) = 0; |
957 | 957 |
virtual Value _getColUpperBound(int i) const = 0; |
958 | 958 |
|
959 | 959 |
virtual void _setRowLowerBound(int i, Value value) = 0; |
960 | 960 |
virtual Value _getRowLowerBound(int i) const = 0; |
961 | 961 |
|
962 | 962 |
virtual void _setRowUpperBound(int i, Value value) = 0; |
963 | 963 |
virtual Value _getRowUpperBound(int i) const = 0; |
964 | 964 |
|
965 | 965 |
virtual void _setObjCoeffs(ExprIterator b, ExprIterator e) = 0; |
966 | 966 |
virtual void _getObjCoeffs(InsertIterator b) const = 0; |
967 | 967 |
|
968 | 968 |
virtual void _setObjCoeff(int i, Value obj_coef) = 0; |
969 | 969 |
virtual Value _getObjCoeff(int i) const = 0; |
970 | 970 |
|
971 | 971 |
virtual void _setSense(Sense) = 0; |
972 | 972 |
virtual Sense _getSense() const = 0; |
973 | 973 |
|
974 | 974 |
virtual void _clear() = 0; |
975 | 975 |
|
976 | 976 |
virtual const char* _solverName() const = 0; |
977 | 977 |
|
978 | 978 |
//Own protected stuff |
979 | 979 |
|
980 | 980 |
//Constant component of the objective function |
981 | 981 |
Value obj_const_comp; |
982 | 982 |
|
983 | 983 |
LpBase() : rows(), cols(), obj_const_comp(0) {} |
984 | 984 |
|
985 | 985 |
public: |
986 | 986 |
|
987 | 987 |
/// Virtual destructor |
988 | 988 |
virtual ~LpBase() {} |
989 | 989 |
|
990 | 990 |
///Creates a new LP problem |
991 | 991 |
LpBase* newSolver() {return _newSolver();} |
992 | 992 |
///Makes a copy of the LP problem |
993 | 993 |
LpBase* cloneSolver() {return _cloneSolver();} |
994 | 994 |
|
995 | 995 |
///Gives back the name of the solver. |
996 | 996 |
const char* solverName() const {return _solverName();} |
997 | 997 |
|
998 | 998 |
///\name Build up and modify the LP |
999 | 999 |
|
1000 | 1000 |
///@{ |
1001 | 1001 |
|
1002 | 1002 |
///Add a new empty column (i.e a new variable) to the LP |
1003 | 1003 |
Col addCol() { Col c; c._id = _addColId(_addCol()); return c;} |
1004 | 1004 |
|
1005 | 1005 |
///\brief Adds several new columns (i.e variables) at once |
1006 | 1006 |
/// |
1007 | 1007 |
///This magic function takes a container as its argument and fills |
1008 | 1008 |
///its elements with new columns (i.e. variables) |
1009 | 1009 |
///\param t can be |
1010 | 1010 |
///- a standard STL compatible iterable container with |
1011 | 1011 |
///\ref Col as its \c values_type like |
1012 | 1012 |
///\code |
1013 | 1013 |
///std::vector<LpBase::Col> |
1014 | 1014 |
///std::list<LpBase::Col> |
1015 | 1015 |
///\endcode |
1016 | 1016 |
///- a standard STL compatible iterable container with |
1017 | 1017 |
///\ref Col as its \c mapped_type like |
1018 | 1018 |
///\code |
1019 | 1019 |
///std::map<AnyType,LpBase::Col> |
1020 | 1020 |
///\endcode |
1021 | 1021 |
///- an iterable lemon \ref concepts::WriteMap "write map" like |
1022 | 1022 |
///\code |
1023 | 1023 |
///ListGraph::NodeMap<LpBase::Col> |
1024 | 1024 |
///ListGraph::ArcMap<LpBase::Col> |
1025 | 1025 |
///\endcode |
1026 | 1026 |
///\return The number of the created column. |
1027 | 1027 |
#ifdef DOXYGEN |
1028 | 1028 |
template<class T> |
1029 | 1029 |
int addColSet(T &t) { return 0;} |
1030 | 1030 |
#else |
1031 | 1031 |
template<class T> |
1032 | 1032 |
typename enable_if<typename T::value_type::LpCol,int>::type |
1033 | 1033 |
addColSet(T &t,dummy<0> = 0) { |
1034 | 1034 |
int s=0; |
1035 | 1035 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addCol();s++;} |
1036 | 1036 |
return s; |
1037 | 1037 |
} |
1038 | 1038 |
template<class T> |
1039 | 1039 |
typename enable_if<typename T::value_type::second_type::LpCol, |
1040 | 1040 |
int>::type |
1041 | 1041 |
addColSet(T &t,dummy<1> = 1) { |
1042 | 1042 |
int s=0; |
1043 | 1043 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1044 | 1044 |
i->second=addCol(); |
1045 | 1045 |
s++; |
1046 | 1046 |
} |
1047 | 1047 |
return s; |
1048 | 1048 |
} |
1049 | 1049 |
template<class T> |
1050 | 1050 |
typename enable_if<typename T::MapIt::Value::LpCol, |
1051 | 1051 |
int>::type |
1052 | 1052 |
addColSet(T &t,dummy<2> = 2) { |
1053 | 1053 |
int s=0; |
1054 | 1054 |
for(typename T::MapIt i(t); i!=INVALID; ++i) |
1055 | 1055 |
{ |
1056 | 1056 |
i.set(addCol()); |
1057 | 1057 |
s++; |
1058 | 1058 |
} |
1059 | 1059 |
return s; |
1060 | 1060 |
} |
1061 | 1061 |
#endif |
1062 | 1062 |
|
1063 | 1063 |
///Set a column (i.e a dual constraint) of the LP |
1064 | 1064 |
|
1065 | 1065 |
///\param c is the column to be modified |
1066 | 1066 |
///\param e is a dual linear expression (see \ref DualExpr) |
1067 | 1067 |
///a better one. |
1068 | 1068 |
void col(Col c, const DualExpr &e) { |
1069 | 1069 |
e.simplify(); |
1070 | 1070 |
_setColCoeffs(cols(id(c)), ExprIterator(e.comps.begin(), rows), |
1071 | 1071 |
ExprIterator(e.comps.end(), rows)); |
1072 | 1072 |
} |
1073 | 1073 |
|
1074 | 1074 |
///Get a column (i.e a dual constraint) of the LP |
1075 | 1075 |
|
1076 | 1076 |
///\param c is the column to get |
1077 | 1077 |
///\return the dual expression associated to the column |
1078 | 1078 |
DualExpr col(Col c) const { |
1079 | 1079 |
DualExpr e; |
1080 | 1080 |
_getColCoeffs(cols(id(c)), InsertIterator(e.comps, rows)); |
1081 | 1081 |
return e; |
1082 | 1082 |
} |
1083 | 1083 |
|
1084 | 1084 |
///Add a new column to the LP |
1085 | 1085 |
|
1086 | 1086 |
///\param e is a dual linear expression (see \ref DualExpr) |
1087 | 1087 |
///\param o is the corresponding component of the objective |
1088 | 1088 |
///function. It is 0 by default. |
1089 | 1089 |
///\return The created column. |
1090 | 1090 |
Col addCol(const DualExpr &e, Value o = 0) { |
1091 | 1091 |
Col c=addCol(); |
1092 | 1092 |
col(c,e); |
1093 | 1093 |
objCoeff(c,o); |
1094 | 1094 |
return c; |
1095 | 1095 |
} |
1096 | 1096 |
|
1097 | 1097 |
///Add a new empty row (i.e a new constraint) to the LP |
1098 | 1098 |
|
1099 | 1099 |
///This function adds a new empty row (i.e a new constraint) to the LP. |
1100 | 1100 |
///\return The created row |
1101 | 1101 |
Row addRow() { Row r; r._id = _addRowId(_addRow()); return r;} |
1102 | 1102 |
|
1103 | 1103 |
///\brief Add several new rows (i.e constraints) at once |
1104 | 1104 |
/// |
1105 | 1105 |
///This magic function takes a container as its argument and fills |
1106 | 1106 |
///its elements with new row (i.e. variables) |
1107 | 1107 |
///\param t can be |
1108 | 1108 |
///- a standard STL compatible iterable container with |
1109 | 1109 |
///\ref Row as its \c values_type like |
1110 | 1110 |
///\code |
1111 | 1111 |
///std::vector<LpBase::Row> |
1112 | 1112 |
///std::list<LpBase::Row> |
1113 | 1113 |
///\endcode |
1114 | 1114 |
///- a standard STL compatible iterable container with |
1115 | 1115 |
///\ref Row as its \c mapped_type like |
1116 | 1116 |
///\code |
1117 | 1117 |
///std::map<AnyType,LpBase::Row> |
1118 | 1118 |
///\endcode |
1119 | 1119 |
///- an iterable lemon \ref concepts::WriteMap "write map" like |
1120 | 1120 |
///\code |
1121 | 1121 |
///ListGraph::NodeMap<LpBase::Row> |
1122 | 1122 |
///ListGraph::ArcMap<LpBase::Row> |
1123 | 1123 |
///\endcode |
1124 | 1124 |
///\return The number of rows created. |
1125 | 1125 |
#ifdef DOXYGEN |
1126 | 1126 |
template<class T> |
1127 | 1127 |
int addRowSet(T &t) { return 0;} |
1128 | 1128 |
#else |
1129 | 1129 |
template<class T> |
1130 | 1130 |
typename enable_if<typename T::value_type::LpRow,int>::type |
1131 | 1131 |
addRowSet(T &t, dummy<0> = 0) { |
1132 | 1132 |
int s=0; |
1133 | 1133 |
for(typename T::iterator i=t.begin();i!=t.end();++i) {*i=addRow();s++;} |
1134 | 1134 |
return s; |
1135 | 1135 |
} |
1136 | 1136 |
template<class T> |
1137 | 1137 |
typename enable_if<typename T::value_type::second_type::LpRow, int>::type |
1138 | 1138 |
addRowSet(T &t, dummy<1> = 1) { |
1139 | 1139 |
int s=0; |
1140 | 1140 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1141 | 1141 |
i->second=addRow(); |
1142 | 1142 |
s++; |
1143 | 1143 |
} |
1144 | 1144 |
return s; |
1145 | 1145 |
} |
1146 | 1146 |
template<class T> |
1147 | 1147 |
typename enable_if<typename T::MapIt::Value::LpRow, int>::type |
1148 | 1148 |
addRowSet(T &t, dummy<2> = 2) { |
1149 | 1149 |
int s=0; |
1150 | 1150 |
for(typename T::MapIt i(t); i!=INVALID; ++i) |
1151 | 1151 |
{ |
1152 | 1152 |
i.set(addRow()); |
1153 | 1153 |
s++; |
1154 | 1154 |
} |
1155 | 1155 |
return s; |
1156 | 1156 |
} |
1157 | 1157 |
#endif |
1158 | 1158 |
|
1159 | 1159 |
///Set a row (i.e a constraint) of the LP |
1160 | 1160 |
|
1161 | 1161 |
///\param r is the row to be modified |
1162 | 1162 |
///\param l is lower bound (-\ref INF means no bound) |
1163 | 1163 |
///\param e is a linear expression (see \ref Expr) |
1164 | 1164 |
///\param u is the upper bound (\ref INF means no bound) |
1165 | 1165 |
void row(Row r, Value l, const Expr &e, Value u) { |
1166 | 1166 |
e.simplify(); |
1167 | 1167 |
_setRowCoeffs(rows(id(r)), ExprIterator(e.comps.begin(), cols), |
1168 | 1168 |
ExprIterator(e.comps.end(), cols)); |
1169 | 1169 |
_setRowLowerBound(rows(id(r)),l - *e); |
1170 | 1170 |
_setRowUpperBound(rows(id(r)),u - *e); |
1171 | 1171 |
} |
1172 | 1172 |
|
1173 | 1173 |
///Set a row (i.e a constraint) of the LP |
1174 | 1174 |
|
1175 | 1175 |
///\param r is the row to be modified |
1176 | 1176 |
///\param c is a linear expression (see \ref Constr) |
1177 | 1177 |
void row(Row r, const Constr &c) { |
1178 | 1178 |
row(r, c.lowerBounded()?c.lowerBound():-INF, |
1179 | 1179 |
c.expr(), c.upperBounded()?c.upperBound():INF); |
1180 | 1180 |
} |
1181 | 1181 |
|
1182 | 1182 |
|
1183 | 1183 |
///Get a row (i.e a constraint) of the LP |
1184 | 1184 |
|
1185 | 1185 |
///\param r is the row to get |
1186 | 1186 |
///\return the expression associated to the row |
1187 | 1187 |
Expr row(Row r) const { |
1188 | 1188 |
Expr e; |
1189 | 1189 |
_getRowCoeffs(rows(id(r)), InsertIterator(e.comps, cols)); |
1190 | 1190 |
return e; |
1191 | 1191 |
} |
1192 | 1192 |
|
1193 | 1193 |
///Add a new row (i.e a new constraint) to the LP |
1194 | 1194 |
|
1195 | 1195 |
///\param l is the lower bound (-\ref INF means no bound) |
1196 | 1196 |
///\param e is a linear expression (see \ref Expr) |
1197 | 1197 |
///\param u is the upper bound (\ref INF means no bound) |
1198 | 1198 |
///\return The created row. |
1199 | 1199 |
Row addRow(Value l,const Expr &e, Value u) { |
1200 | 1200 |
Row r=addRow(); |
1201 | 1201 |
row(r,l,e,u); |
1202 | 1202 |
return r; |
1203 | 1203 |
} |
1204 | 1204 |
|
1205 | 1205 |
///Add a new row (i.e a new constraint) to the LP |
1206 | 1206 |
|
1207 | 1207 |
///\param c is a linear expression (see \ref Constr) |
1208 | 1208 |
///\return The created row. |
1209 | 1209 |
Row addRow(const Constr &c) { |
1210 | 1210 |
Row r=addRow(); |
1211 | 1211 |
row(r,c); |
1212 | 1212 |
return r; |
1213 | 1213 |
} |
1214 | 1214 |
///Erase a column (i.e a variable) from the LP |
1215 | 1215 |
|
1216 | 1216 |
///\param c is the column to be deleted |
1217 | 1217 |
void erase(Col c) { |
1218 | 1218 |
_eraseCol(cols(id(c))); |
1219 | 1219 |
_eraseColId(cols(id(c))); |
1220 | 1220 |
} |
1221 | 1221 |
///Erase a row (i.e a constraint) from the LP |
1222 | 1222 |
|
1223 | 1223 |
///\param r is the row to be deleted |
1224 | 1224 |
void erase(Row r) { |
1225 | 1225 |
_eraseRow(rows(id(r))); |
1226 | 1226 |
_eraseRowId(rows(id(r))); |
1227 | 1227 |
} |
1228 | 1228 |
|
1229 | 1229 |
/// Get the name of a column |
1230 | 1230 |
|
1231 | 1231 |
///\param c is the coresponding column |
1232 | 1232 |
///\return The name of the colunm |
1233 | 1233 |
std::string colName(Col c) const { |
1234 | 1234 |
std::string name; |
1235 | 1235 |
_getColName(cols(id(c)), name); |
1236 | 1236 |
return name; |
1237 | 1237 |
} |
1238 | 1238 |
|
1239 | 1239 |
/// Set the name of a column |
1240 | 1240 |
|
1241 | 1241 |
///\param c is the coresponding column |
1242 | 1242 |
///\param name The name to be given |
1243 | 1243 |
void colName(Col c, const std::string& name) { |
1244 | 1244 |
_setColName(cols(id(c)), name); |
1245 | 1245 |
} |
1246 | 1246 |
|
1247 | 1247 |
/// Get the column by its name |
1248 | 1248 |
|
1249 | 1249 |
///\param name The name of the column |
1250 | 1250 |
///\return the proper column or \c INVALID |
1251 | 1251 |
Col colByName(const std::string& name) const { |
1252 | 1252 |
int k = _colByName(name); |
1253 | 1253 |
return k != -1 ? Col(cols[k]) : Col(INVALID); |
1254 | 1254 |
} |
1255 | 1255 |
|
1256 | 1256 |
/// Get the name of a row |
1257 | 1257 |
|
1258 | 1258 |
///\param r is the coresponding row |
1259 | 1259 |
///\return The name of the row |
1260 | 1260 |
std::string rowName(Row r) const { |
1261 | 1261 |
std::string name; |
1262 | 1262 |
_getRowName(rows(id(r)), name); |
1263 | 1263 |
return name; |
1264 | 1264 |
} |
1265 | 1265 |
|
1266 | 1266 |
/// Set the name of a row |
1267 | 1267 |
|
1268 | 1268 |
///\param r is the coresponding row |
1269 | 1269 |
///\param name The name to be given |
1270 | 1270 |
void rowName(Row r, const std::string& name) { |
1271 | 1271 |
_setRowName(rows(id(r)), name); |
1272 | 1272 |
} |
1273 | 1273 |
|
1274 | 1274 |
/// Get the row by its name |
1275 | 1275 |
|
1276 | 1276 |
///\param name The name of the row |
1277 | 1277 |
///\return the proper row or \c INVALID |
1278 | 1278 |
Row rowByName(const std::string& name) const { |
1279 | 1279 |
int k = _rowByName(name); |
1280 | 1280 |
return k != -1 ? Row(rows[k]) : Row(INVALID); |
1281 | 1281 |
} |
1282 | 1282 |
|
1283 | 1283 |
/// Set an element of the coefficient matrix of the LP |
1284 | 1284 |
|
1285 | 1285 |
///\param r is the row of the element to be modified |
1286 | 1286 |
///\param c is the column of the element to be modified |
1287 | 1287 |
///\param val is the new value of the coefficient |
1288 | 1288 |
void coeff(Row r, Col c, Value val) { |
1289 | 1289 |
_setCoeff(rows(id(r)),cols(id(c)), val); |
1290 | 1290 |
} |
1291 | 1291 |
|
1292 | 1292 |
/// Get an element of the coefficient matrix of the LP |
1293 | 1293 |
|
1294 | 1294 |
///\param r is the row of the element |
1295 | 1295 |
///\param c is the column of the element |
1296 | 1296 |
///\return the corresponding coefficient |
1297 | 1297 |
Value coeff(Row r, Col c) const { |
1298 | 1298 |
return _getCoeff(rows(id(r)),cols(id(c))); |
1299 | 1299 |
} |
1300 | 1300 |
|
1301 | 1301 |
/// Set the lower bound of a column (i.e a variable) |
1302 | 1302 |
|
1303 | 1303 |
/// The lower bound of a variable (column) has to be given by an |
1304 | 1304 |
/// extended number of type Value, i.e. a finite number of type |
1305 | 1305 |
/// Value or -\ref INF. |
1306 | 1306 |
void colLowerBound(Col c, Value value) { |
1307 | 1307 |
_setColLowerBound(cols(id(c)),value); |
1308 | 1308 |
} |
1309 | 1309 |
|
1310 | 1310 |
/// Get the lower bound of a column (i.e a variable) |
1311 | 1311 |
|
1312 | 1312 |
/// This function returns the lower bound for column (variable) \c c |
1313 | 1313 |
/// (this might be -\ref INF as well). |
1314 | 1314 |
///\return The lower bound for column \c c |
1315 | 1315 |
Value colLowerBound(Col c) const { |
1316 | 1316 |
return _getColLowerBound(cols(id(c))); |
1317 | 1317 |
} |
1318 | 1318 |
|
1319 | 1319 |
///\brief Set the lower bound of several columns |
1320 | 1320 |
///(i.e variables) at once |
1321 | 1321 |
/// |
1322 | 1322 |
///This magic function takes a container as its argument |
1323 | 1323 |
///and applies the function on all of its elements. |
1324 | 1324 |
///The lower bound of a variable (column) has to be given by an |
1325 | 1325 |
///extended number of type Value, i.e. a finite number of type |
1326 | 1326 |
///Value or -\ref INF. |
1327 | 1327 |
#ifdef DOXYGEN |
1328 | 1328 |
template<class T> |
1329 | 1329 |
void colLowerBound(T &t, Value value) { return 0;} |
1330 | 1330 |
#else |
1331 | 1331 |
template<class T> |
1332 | 1332 |
typename enable_if<typename T::value_type::LpCol,void>::type |
1333 | 1333 |
colLowerBound(T &t, Value value,dummy<0> = 0) { |
1334 | 1334 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1335 | 1335 |
colLowerBound(*i, value); |
1336 | 1336 |
} |
1337 | 1337 |
} |
1338 | 1338 |
template<class T> |
1339 | 1339 |
typename enable_if<typename T::value_type::second_type::LpCol, |
1340 | 1340 |
void>::type |
1341 | 1341 |
colLowerBound(T &t, Value value,dummy<1> = 1) { |
1342 | 1342 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1343 | 1343 |
colLowerBound(i->second, value); |
1344 | 1344 |
} |
1345 | 1345 |
} |
1346 | 1346 |
template<class T> |
1347 | 1347 |
typename enable_if<typename T::MapIt::Value::LpCol, |
1348 | 1348 |
void>::type |
1349 | 1349 |
colLowerBound(T &t, Value value,dummy<2> = 2) { |
1350 | 1350 |
for(typename T::MapIt i(t); i!=INVALID; ++i){ |
1351 | 1351 |
colLowerBound(*i, value); |
1352 | 1352 |
} |
1353 | 1353 |
} |
1354 | 1354 |
#endif |
1355 | 1355 |
|
1356 | 1356 |
/// Set the upper bound of a column (i.e a variable) |
1357 | 1357 |
|
1358 | 1358 |
/// The upper bound of a variable (column) has to be given by an |
1359 | 1359 |
/// extended number of type Value, i.e. a finite number of type |
1360 | 1360 |
/// Value or \ref INF. |
1361 | 1361 |
void colUpperBound(Col c, Value value) { |
1362 | 1362 |
_setColUpperBound(cols(id(c)),value); |
1363 | 1363 |
}; |
1364 | 1364 |
|
1365 | 1365 |
/// Get the upper bound of a column (i.e a variable) |
1366 | 1366 |
|
1367 | 1367 |
/// This function returns the upper bound for column (variable) \c c |
1368 | 1368 |
/// (this might be \ref INF as well). |
1369 | 1369 |
/// \return The upper bound for column \c c |
1370 | 1370 |
Value colUpperBound(Col c) const { |
1371 | 1371 |
return _getColUpperBound(cols(id(c))); |
1372 | 1372 |
} |
1373 | 1373 |
|
1374 | 1374 |
///\brief Set the upper bound of several columns |
1375 | 1375 |
///(i.e variables) at once |
1376 | 1376 |
/// |
1377 | 1377 |
///This magic function takes a container as its argument |
1378 | 1378 |
///and applies the function on all of its elements. |
1379 | 1379 |
///The upper bound of a variable (column) has to be given by an |
1380 | 1380 |
///extended number of type Value, i.e. a finite number of type |
1381 | 1381 |
///Value or \ref INF. |
1382 | 1382 |
#ifdef DOXYGEN |
1383 | 1383 |
template<class T> |
1384 | 1384 |
void colUpperBound(T &t, Value value) { return 0;} |
1385 | 1385 |
#else |
1386 | 1386 |
template<class T> |
1387 | 1387 |
typename enable_if<typename T::value_type::LpCol,void>::type |
1388 | 1388 |
colUpperBound(T &t, Value value,dummy<0> = 0) { |
1389 | 1389 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1390 | 1390 |
colUpperBound(*i, value); |
1391 | 1391 |
} |
1392 | 1392 |
} |
1393 | 1393 |
template<class T> |
1394 | 1394 |
typename enable_if<typename T::value_type::second_type::LpCol, |
1395 | 1395 |
void>::type |
1396 | 1396 |
colUpperBound(T &t, Value value,dummy<1> = 1) { |
1397 | 1397 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1398 | 1398 |
colUpperBound(i->second, value); |
1399 | 1399 |
} |
1400 | 1400 |
} |
1401 | 1401 |
template<class T> |
1402 | 1402 |
typename enable_if<typename T::MapIt::Value::LpCol, |
1403 | 1403 |
void>::type |
1404 | 1404 |
colUpperBound(T &t, Value value,dummy<2> = 2) { |
1405 | 1405 |
for(typename T::MapIt i(t); i!=INVALID; ++i){ |
1406 | 1406 |
colUpperBound(*i, value); |
1407 | 1407 |
} |
1408 | 1408 |
} |
1409 | 1409 |
#endif |
1410 | 1410 |
|
1411 | 1411 |
/// Set the lower and the upper bounds of a column (i.e a variable) |
1412 | 1412 |
|
1413 | 1413 |
/// The lower and the upper bounds of |
1414 | 1414 |
/// a variable (column) have to be given by an |
1415 | 1415 |
/// extended number of type Value, i.e. a finite number of type |
1416 | 1416 |
/// Value, -\ref INF or \ref INF. |
1417 | 1417 |
void colBounds(Col c, Value lower, Value upper) { |
1418 | 1418 |
_setColLowerBound(cols(id(c)),lower); |
1419 | 1419 |
_setColUpperBound(cols(id(c)),upper); |
1420 | 1420 |
} |
1421 | 1421 |
|
1422 | 1422 |
///\brief Set the lower and the upper bound of several columns |
1423 | 1423 |
///(i.e variables) at once |
1424 | 1424 |
/// |
1425 | 1425 |
///This magic function takes a container as its argument |
1426 | 1426 |
///and applies the function on all of its elements. |
1427 | 1427 |
/// The lower and the upper bounds of |
1428 | 1428 |
/// a variable (column) have to be given by an |
1429 | 1429 |
/// extended number of type Value, i.e. a finite number of type |
1430 | 1430 |
/// Value, -\ref INF or \ref INF. |
1431 | 1431 |
#ifdef DOXYGEN |
1432 | 1432 |
template<class T> |
1433 | 1433 |
void colBounds(T &t, Value lower, Value upper) { return 0;} |
1434 | 1434 |
#else |
1435 | 1435 |
template<class T> |
1436 | 1436 |
typename enable_if<typename T::value_type::LpCol,void>::type |
1437 | 1437 |
colBounds(T &t, Value lower, Value upper,dummy<0> = 0) { |
1438 | 1438 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1439 | 1439 |
colBounds(*i, lower, upper); |
1440 | 1440 |
} |
1441 | 1441 |
} |
1442 | 1442 |
template<class T> |
1443 | 1443 |
typename enable_if<typename T::value_type::second_type::LpCol, void>::type |
1444 | 1444 |
colBounds(T &t, Value lower, Value upper,dummy<1> = 1) { |
1445 | 1445 |
for(typename T::iterator i=t.begin();i!=t.end();++i) { |
1446 | 1446 |
colBounds(i->second, lower, upper); |
1447 | 1447 |
} |
1448 | 1448 |
} |
1449 | 1449 |
template<class T> |
1450 | 1450 |
typename enable_if<typename T::MapIt::Value::LpCol, void>::type |
1451 | 1451 |
colBounds(T &t, Value lower, Value upper,dummy<2> = 2) { |
1452 | 1452 |
for(typename T::MapIt i(t); i!=INVALID; ++i){ |
1453 | 1453 |
colBounds(*i, lower, upper); |
1454 | 1454 |
} |
1455 | 1455 |
} |
1456 | 1456 |
#endif |
1457 | 1457 |
|
1458 | 1458 |
/// Set the lower bound of a row (i.e a constraint) |
1459 | 1459 |
|
1460 | 1460 |
/// The lower bound of a constraint (row) has to be given by an |
1461 | 1461 |
/// extended number of type Value, i.e. a finite number of type |
1462 | 1462 |
/// Value or -\ref INF. |
1463 | 1463 |
void rowLowerBound(Row r, Value value) { |
1464 | 1464 |
_setRowLowerBound(rows(id(r)),value); |
1465 | 1465 |
} |
1466 | 1466 |
|
1467 | 1467 |
/// Get the lower bound of a row (i.e a constraint) |
1468 | 1468 |
|
1469 | 1469 |
/// This function returns the lower bound for row (constraint) \c c |
1470 | 1470 |
/// (this might be -\ref INF as well). |
1471 | 1471 |
///\return The lower bound for row \c r |
1472 | 1472 |
Value rowLowerBound(Row r) const { |
1473 | 1473 |
return _getRowLowerBound(rows(id(r))); |
1474 | 1474 |
} |
1475 | 1475 |
|
1476 | 1476 |
/// Set the upper bound of a row (i.e a constraint) |
1477 | 1477 |
|
1478 | 1478 |
/// The upper bound of a constraint (row) has to be given by an |
1479 | 1479 |
/// extended number of type Value, i.e. a finite number of type |
1480 | 1480 |
/// Value or -\ref INF. |
1481 | 1481 |
void rowUpperBound(Row r, Value value) { |
1482 | 1482 |
_setRowUpperBound(rows(id(r)),value); |
1483 | 1483 |
} |
1484 | 1484 |
|
1485 | 1485 |
/// Get the upper bound of a row (i.e a constraint) |
1486 | 1486 |
|
1487 | 1487 |
/// This function returns the upper bound for row (constraint) \c c |
1488 | 1488 |
/// (this might be -\ref INF as well). |
1489 | 1489 |
///\return The upper bound for row \c r |
1490 | 1490 |
Value rowUpperBound(Row r) const { |
1491 | 1491 |
return _getRowUpperBound(rows(id(r))); |
1492 | 1492 |
} |
1493 | 1493 |
|
1494 | 1494 |
///Set an element of the objective function |
1495 | 1495 |
void objCoeff(Col c, Value v) {_setObjCoeff(cols(id(c)),v); }; |
1496 | 1496 |
|
1497 | 1497 |
///Get an element of the objective function |
1498 | 1498 |
Value objCoeff(Col c) const { return _getObjCoeff(cols(id(c))); }; |
1499 | 1499 |
|
1500 | 1500 |
///Set the objective function |
1501 | 1501 |
|
1502 | 1502 |
///\param e is a linear expression of type \ref Expr. |
1503 | 1503 |
/// |
1504 | 1504 |
void obj(const Expr& e) { |
1505 | 1505 |
_setObjCoeffs(ExprIterator(e.comps.begin(), cols), |
1506 | 1506 |
ExprIterator(e.comps.end(), cols)); |
1507 | 1507 |
obj_const_comp = *e; |
1508 | 1508 |
} |
1509 | 1509 |
|
1510 | 1510 |
///Get the objective function |
1511 | 1511 |
|
1512 | 1512 |
///\return the objective function as a linear expression of type |
1513 | 1513 |
///Expr. |
1514 | 1514 |
Expr obj() const { |
1515 | 1515 |
Expr e; |
1516 | 1516 |
_getObjCoeffs(InsertIterator(e.comps, cols)); |
1517 | 1517 |
*e = obj_const_comp; |
1518 | 1518 |
return e; |
1519 | 1519 |
} |
1520 | 1520 |
|
1521 | 1521 |
|
1522 | 1522 |
///Set the direction of optimization |
1523 | 1523 |
void sense(Sense sense) { _setSense(sense); } |
1524 | 1524 |
|
1525 | 1525 |
///Query the direction of the optimization |
1526 | 1526 |
Sense sense() const {return _getSense(); } |
1527 | 1527 |
|
1528 | 1528 |
///Set the sense to maximization |
1529 | 1529 |
void max() { _setSense(MAX); } |
1530 | 1530 |
|
1531 | 1531 |
///Set the sense to maximization |
1532 | 1532 |
void min() { _setSense(MIN); } |
1533 | 1533 |
|
1534 | 1534 |
///Clears the problem |
1535 | 1535 |
void clear() { _clear(); } |
1536 | 1536 |
|
1537 | 1537 |
///@} |
1538 | 1538 |
|
1539 | 1539 |
}; |
1540 | 1540 |
|
1541 | 1541 |
/// Addition |
1542 | 1542 |
|
1543 | 1543 |
///\relates LpBase::Expr |
1544 | 1544 |
/// |
1545 | 1545 |
inline LpBase::Expr operator+(const LpBase::Expr &a, const LpBase::Expr &b) { |
1546 | 1546 |
LpBase::Expr tmp(a); |
1547 | 1547 |
tmp+=b; |
1548 | 1548 |
return tmp; |
1549 | 1549 |
} |
1550 | 1550 |
///Substraction |
1551 | 1551 |
|
1552 | 1552 |
///\relates LpBase::Expr |
1553 | 1553 |
/// |
1554 | 1554 |
inline LpBase::Expr operator-(const LpBase::Expr &a, const LpBase::Expr &b) { |
1555 | 1555 |
LpBase::Expr tmp(a); |
1556 | 1556 |
tmp-=b; |
1557 | 1557 |
return tmp; |
1558 | 1558 |
} |
1559 | 1559 |
///Multiply with constant |
1560 | 1560 |
|
1561 | 1561 |
///\relates LpBase::Expr |
1562 | 1562 |
/// |
1563 | 1563 |
inline LpBase::Expr operator*(const LpBase::Expr &a, const LpBase::Value &b) { |
1564 | 1564 |
LpBase::Expr tmp(a); |
1565 | 1565 |
tmp*=b; |
1566 | 1566 |
return tmp; |
1567 | 1567 |
} |
1568 | 1568 |
|
1569 | 1569 |
///Multiply with constant |
1570 | 1570 |
|
1571 | 1571 |
///\relates LpBase::Expr |
1572 | 1572 |
/// |
1573 | 1573 |
inline LpBase::Expr operator*(const LpBase::Value &a, const LpBase::Expr &b) { |
1574 | 1574 |
LpBase::Expr tmp(b); |
1575 | 1575 |
tmp*=a; |
1576 | 1576 |
return tmp; |
1577 | 1577 |
} |
1578 | 1578 |
///Divide with constant |
1579 | 1579 |
|
1580 | 1580 |
///\relates LpBase::Expr |
1581 | 1581 |
/// |
1582 | 1582 |
inline LpBase::Expr operator/(const LpBase::Expr &a, const LpBase::Value &b) { |
1583 | 1583 |
LpBase::Expr tmp(a); |
1584 | 1584 |
tmp/=b; |
1585 | 1585 |
return tmp; |
1586 | 1586 |
} |
1587 | 1587 |
|
1588 | 1588 |
///Create constraint |
1589 | 1589 |
|
1590 | 1590 |
///\relates LpBase::Constr |
1591 | 1591 |
/// |
1592 | 1592 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
1593 | 1593 |
const LpBase::Expr &f) { |
1594 | 1594 |
return LpBase::Constr(0, f - e, LpBase::INF); |
1595 | 1595 |
} |
1596 | 1596 |
|
1597 | 1597 |
///Create constraint |
1598 | 1598 |
|
1599 | 1599 |
///\relates LpBase::Constr |
1600 | 1600 |
/// |
1601 | 1601 |
inline LpBase::Constr operator<=(const LpBase::Value &e, |
1602 | 1602 |
const LpBase::Expr &f) { |
1603 | 1603 |
return LpBase::Constr(e, f, LpBase::NaN); |
1604 | 1604 |
} |
1605 | 1605 |
|
1606 | 1606 |
///Create constraint |
1607 | 1607 |
|
1608 | 1608 |
///\relates LpBase::Constr |
1609 | 1609 |
/// |
1610 | 1610 |
inline LpBase::Constr operator<=(const LpBase::Expr &e, |
1611 | 1611 |
const LpBase::Value &f) { |
1612 | 1612 |
return LpBase::Constr(- LpBase::INF, e, f); |
1613 | 1613 |
} |
1614 | 1614 |
|
1615 | 1615 |
///Create constraint |
1616 | 1616 |
|
1617 | 1617 |
///\relates LpBase::Constr |
1618 | 1618 |
/// |
1619 | 1619 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
1620 | 1620 |
const LpBase::Expr &f) { |
1621 | 1621 |
return LpBase::Constr(0, e - f, LpBase::INF); |
1622 | 1622 |
} |
1623 | 1623 |
|
1624 | 1624 |
|
1625 | 1625 |
///Create constraint |
1626 | 1626 |
|
1627 | 1627 |
///\relates LpBase::Constr |
1628 | 1628 |
/// |
1629 | 1629 |
inline LpBase::Constr operator>=(const LpBase::Value &e, |
1630 | 1630 |
const LpBase::Expr &f) { |
1631 | 1631 |
return LpBase::Constr(LpBase::NaN, f, e); |
1632 | 1632 |
} |
1633 | 1633 |
|
1634 | 1634 |
|
1635 | 1635 |
///Create constraint |
1636 | 1636 |
|
1637 | 1637 |
///\relates LpBase::Constr |
1638 | 1638 |
/// |
1639 | 1639 |
inline LpBase::Constr operator>=(const LpBase::Expr &e, |
1640 | 1640 |
const LpBase::Value &f) { |
1641 | 1641 |
return LpBase::Constr(f, e, LpBase::INF); |
1642 | 1642 |
} |
1643 | 1643 |
|
1644 | 1644 |
///Create constraint |
1645 | 1645 |
|
1646 | 1646 |
///\relates LpBase::Constr |
1647 | 1647 |
/// |
1648 | 1648 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
1649 | 1649 |
const LpBase::Value &f) { |
1650 | 1650 |
return LpBase::Constr(f, e, f); |
1651 | 1651 |
} |
1652 | 1652 |
|
1653 | 1653 |
///Create constraint |
1654 | 1654 |
|
1655 | 1655 |
///\relates LpBase::Constr |
1656 | 1656 |
/// |
1657 | 1657 |
inline LpBase::Constr operator==(const LpBase::Expr &e, |
1658 | 1658 |
const LpBase::Expr &f) { |
1659 | 1659 |
return LpBase::Constr(0, f - e, 0); |
1660 | 1660 |
} |
1661 | 1661 |
|
1662 | 1662 |
///Create constraint |
1663 | 1663 |
|
1664 | 1664 |
///\relates LpBase::Constr |
1665 | 1665 |
/// |
1666 | 1666 |
inline LpBase::Constr operator<=(const LpBase::Value &n, |
1667 | 1667 |
const LpBase::Constr &c) { |
1668 | 1668 |
LpBase::Constr tmp(c); |
1669 |
LEMON_ASSERT( |
|
1669 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
|
1670 | 1670 |
tmp.lowerBound()=n; |
1671 | 1671 |
return tmp; |
1672 | 1672 |
} |
1673 | 1673 |
///Create constraint |
1674 | 1674 |
|
1675 | 1675 |
///\relates LpBase::Constr |
1676 | 1676 |
/// |
1677 | 1677 |
inline LpBase::Constr operator<=(const LpBase::Constr &c, |
1678 | 1678 |
const LpBase::Value &n) |
1679 | 1679 |
{ |
1680 | 1680 |
LpBase::Constr tmp(c); |
1681 |
LEMON_ASSERT( |
|
1681 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
|
1682 | 1682 |
tmp.upperBound()=n; |
1683 | 1683 |
return tmp; |
1684 | 1684 |
} |
1685 | 1685 |
|
1686 | 1686 |
///Create constraint |
1687 | 1687 |
|
1688 | 1688 |
///\relates LpBase::Constr |
1689 | 1689 |
/// |
1690 | 1690 |
inline LpBase::Constr operator>=(const LpBase::Value &n, |
1691 | 1691 |
const LpBase::Constr &c) { |
1692 | 1692 |
LpBase::Constr tmp(c); |
1693 |
LEMON_ASSERT( |
|
1693 |
LEMON_ASSERT(isNaN(tmp.upperBound()), "Wrong LP constraint"); |
|
1694 | 1694 |
tmp.upperBound()=n; |
1695 | 1695 |
return tmp; |
1696 | 1696 |
} |
1697 | 1697 |
///Create constraint |
1698 | 1698 |
|
1699 | 1699 |
///\relates LpBase::Constr |
1700 | 1700 |
/// |
1701 | 1701 |
inline LpBase::Constr operator>=(const LpBase::Constr &c, |
1702 | 1702 |
const LpBase::Value &n) |
1703 | 1703 |
{ |
1704 | 1704 |
LpBase::Constr tmp(c); |
1705 |
LEMON_ASSERT( |
|
1705 |
LEMON_ASSERT(isNaN(tmp.lowerBound()), "Wrong LP constraint"); |
|
1706 | 1706 |
tmp.lowerBound()=n; |
1707 | 1707 |
return tmp; |
1708 | 1708 |
} |
1709 | 1709 |
|
1710 | 1710 |
///Addition |
1711 | 1711 |
|
1712 | 1712 |
///\relates LpBase::DualExpr |
1713 | 1713 |
/// |
1714 | 1714 |
inline LpBase::DualExpr operator+(const LpBase::DualExpr &a, |
1715 | 1715 |
const LpBase::DualExpr &b) { |
1716 | 1716 |
LpBase::DualExpr tmp(a); |
1717 | 1717 |
tmp+=b; |
1718 | 1718 |
return tmp; |
1719 | 1719 |
} |
1720 | 1720 |
///Substraction |
1721 | 1721 |
|
1722 | 1722 |
///\relates LpBase::DualExpr |
1723 | 1723 |
/// |
1724 | 1724 |
inline LpBase::DualExpr operator-(const LpBase::DualExpr &a, |
1725 | 1725 |
const LpBase::DualExpr &b) { |
1726 | 1726 |
LpBase::DualExpr tmp(a); |
1727 | 1727 |
tmp-=b; |
1728 | 1728 |
return tmp; |
1729 | 1729 |
} |
1730 | 1730 |
///Multiply with constant |
1731 | 1731 |
|
1732 | 1732 |
///\relates LpBase::DualExpr |
1733 | 1733 |
/// |
1734 | 1734 |
inline LpBase::DualExpr operator*(const LpBase::DualExpr &a, |
1735 | 1735 |
const LpBase::Value &b) { |
1736 | 1736 |
LpBase::DualExpr tmp(a); |
1737 | 1737 |
tmp*=b; |
1738 | 1738 |
return tmp; |
1739 | 1739 |
} |
1740 | 1740 |
|
1741 | 1741 |
///Multiply with constant |
1742 | 1742 |
|
1743 | 1743 |
///\relates LpBase::DualExpr |
1744 | 1744 |
/// |
1745 | 1745 |
inline LpBase::DualExpr operator*(const LpBase::Value &a, |
1746 | 1746 |
const LpBase::DualExpr &b) { |
1747 | 1747 |
LpBase::DualExpr tmp(b); |
1748 | 1748 |
tmp*=a; |
1749 | 1749 |
return tmp; |
1750 | 1750 |
} |
1751 | 1751 |
///Divide with constant |
1752 | 1752 |
|
1753 | 1753 |
///\relates LpBase::DualExpr |
1754 | 1754 |
/// |
1755 | 1755 |
inline LpBase::DualExpr operator/(const LpBase::DualExpr &a, |
1756 | 1756 |
const LpBase::Value &b) { |
1757 | 1757 |
LpBase::DualExpr tmp(a); |
1758 | 1758 |
tmp/=b; |
1759 | 1759 |
return tmp; |
1760 | 1760 |
} |
1761 | 1761 |
|
1762 | 1762 |
/// \ingroup lp_group |
1763 | 1763 |
/// |
1764 | 1764 |
/// \brief Common base class for LP solvers |
1765 | 1765 |
/// |
1766 | 1766 |
/// This class is an abstract base class for LP solvers. This class |
1767 | 1767 |
/// provides a full interface for set and modify an LP problem, |
1768 | 1768 |
/// solve it and retrieve the solution. You can use one of the |
1769 | 1769 |
/// descendants as a concrete implementation, or the \c Lp |
1770 | 1770 |
/// default LP solver. However, if you would like to handle LP |
1771 | 1771 |
/// solvers as reference or pointer in a generic way, you can use |
1772 | 1772 |
/// this class directly. |
1773 | 1773 |
class LpSolver : virtual public LpBase { |
1774 | 1774 |
public: |
1775 | 1775 |
|
1776 | 1776 |
/// The problem types for primal and dual problems |
1777 | 1777 |
enum ProblemType { |
1778 | 1778 |
///Feasible solution hasn't been found (but may exist). |
1779 | 1779 |
UNDEFINED = 0, |
1780 | 1780 |
///The problem has no feasible solution |
1781 | 1781 |
INFEASIBLE = 1, |
1782 | 1782 |
///Feasible solution found |
1783 | 1783 |
FEASIBLE = 2, |
1784 | 1784 |
///Optimal solution exists and found |
1785 | 1785 |
OPTIMAL = 3, |
1786 | 1786 |
///The cost function is unbounded |
1787 | 1787 |
UNBOUNDED = 4 |
1788 | 1788 |
}; |
1789 | 1789 |
|
1790 | 1790 |
///The basis status of variables |
1791 | 1791 |
enum VarStatus { |
1792 | 1792 |
/// The variable is in the basis |
1793 | 1793 |
BASIC, |
1794 | 1794 |
/// The variable is free, but not basic |
1795 | 1795 |
FREE, |
1796 | 1796 |
/// The variable has active lower bound |
1797 | 1797 |
LOWER, |
1798 | 1798 |
/// The variable has active upper bound |
1799 | 1799 |
UPPER, |
1800 | 1800 |
/// The variable is non-basic and fixed |
1801 | 1801 |
FIXED |
1802 | 1802 |
}; |
1803 | 1803 |
|
1804 | 1804 |
protected: |
1805 | 1805 |
|
1806 | 1806 |
virtual SolveExitStatus _solve() = 0; |
1807 | 1807 |
|
1808 | 1808 |
virtual Value _getPrimal(int i) const = 0; |
1809 | 1809 |
virtual Value _getDual(int i) const = 0; |
1810 | 1810 |
|
1811 | 1811 |
virtual Value _getPrimalRay(int i) const = 0; |
1812 | 1812 |
virtual Value _getDualRay(int i) const = 0; |
1813 | 1813 |
|
1814 | 1814 |
virtual Value _getPrimalValue() const = 0; |
1815 | 1815 |
|
1816 | 1816 |
virtual VarStatus _getColStatus(int i) const = 0; |
1817 | 1817 |
virtual VarStatus _getRowStatus(int i) const = 0; |
1818 | 1818 |
|
1819 | 1819 |
virtual ProblemType _getPrimalType() const = 0; |
1820 | 1820 |
virtual ProblemType _getDualType() const = 0; |
1821 | 1821 |
|
1822 | 1822 |
public: |
1823 | 1823 |
|
1824 | 1824 |
///\name Solve the LP |
1825 | 1825 |
|
1826 | 1826 |
///@{ |
1827 | 1827 |
|
1828 | 1828 |
///\e Solve the LP problem at hand |
1829 | 1829 |
/// |
1830 | 1830 |
///\return The result of the optimization procedure. Possible |
1831 | 1831 |
///values and their meanings can be found in the documentation of |
1832 | 1832 |
///\ref SolveExitStatus. |
1833 | 1833 |
SolveExitStatus solve() { return _solve(); } |
1834 | 1834 |
|
1835 | 1835 |
///@} |
1836 | 1836 |
|
1837 | 1837 |
///\name Obtain the solution |
1838 | 1838 |
|
1839 | 1839 |
///@{ |
1840 | 1840 |
|
1841 | 1841 |
/// The type of the primal problem |
1842 | 1842 |
ProblemType primalType() const { |
1843 | 1843 |
return _getPrimalType(); |
1844 | 1844 |
} |
1845 | 1845 |
|
1846 | 1846 |
/// The type of the dual problem |
1847 | 1847 |
ProblemType dualType() const { |
1848 | 1848 |
return _getDualType(); |
1849 | 1849 |
} |
1850 | 1850 |
|
1851 | 1851 |
/// Return the primal value of the column |
1852 | 1852 |
|
1853 | 1853 |
/// Return the primal value of the column. |
1854 | 1854 |
/// \pre The problem is solved. |
1855 | 1855 |
Value primal(Col c) const { return _getPrimal(cols(id(c))); } |
1856 | 1856 |
|
1857 | 1857 |
/// Return the primal value of the expression |
1858 | 1858 |
|
1859 | 1859 |
/// Return the primal value of the expression, i.e. the dot |
1860 | 1860 |
/// product of the primal solution and the expression. |
1861 | 1861 |
/// \pre The problem is solved. |
1862 | 1862 |
Value primal(const Expr& e) const { |
1863 | 1863 |
double res = *e; |
1864 | 1864 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { |
1865 | 1865 |
res += *c * primal(c); |
1866 | 1866 |
} |
1867 | 1867 |
return res; |
1868 | 1868 |
} |
1869 | 1869 |
/// Returns a component of the primal ray |
1870 | 1870 |
|
1871 | 1871 |
/// The primal ray is solution of the modified primal problem, |
1872 | 1872 |
/// where we change each finite bound to 0, and we looking for a |
1873 | 1873 |
/// negative objective value in case of minimization, and positive |
1874 | 1874 |
/// objective value for maximization. If there is such solution, |
1875 | 1875 |
/// that proofs the unsolvability of the dual problem, and if a |
1876 | 1876 |
/// feasible primal solution exists, then the unboundness of |
1877 | 1877 |
/// primal problem. |
1878 | 1878 |
/// |
1879 | 1879 |
/// \pre The problem is solved and the dual problem is infeasible. |
1880 | 1880 |
/// \note Some solvers does not provide primal ray calculation |
1881 | 1881 |
/// functions. |
1882 | 1882 |
Value primalRay(Col c) const { return _getPrimalRay(cols(id(c))); } |
1883 | 1883 |
|
1884 | 1884 |
/// Return the dual value of the row |
1885 | 1885 |
|
1886 | 1886 |
/// Return the dual value of the row. |
1887 | 1887 |
/// \pre The problem is solved. |
1888 | 1888 |
Value dual(Row r) const { return _getDual(rows(id(r))); } |
1889 | 1889 |
|
1890 | 1890 |
/// Return the dual value of the dual expression |
1891 | 1891 |
|
1892 | 1892 |
/// Return the dual value of the dual expression, i.e. the dot |
1893 | 1893 |
/// product of the dual solution and the dual expression. |
1894 | 1894 |
/// \pre The problem is solved. |
1895 | 1895 |
Value dual(const DualExpr& e) const { |
1896 | 1896 |
double res = 0.0; |
1897 | 1897 |
for (DualExpr::ConstCoeffIt r(e); r != INVALID; ++r) { |
1898 | 1898 |
res += *r * dual(r); |
1899 | 1899 |
} |
1900 | 1900 |
return res; |
1901 | 1901 |
} |
1902 | 1902 |
|
1903 | 1903 |
/// Returns a component of the dual ray |
1904 | 1904 |
|
1905 | 1905 |
/// The dual ray is solution of the modified primal problem, where |
1906 | 1906 |
/// we change each finite bound to 0 (i.e. the objective function |
1907 | 1907 |
/// coefficients in the primal problem), and we looking for a |
1908 | 1908 |
/// ositive objective value. If there is such solution, that |
1909 | 1909 |
/// proofs the unsolvability of the primal problem, and if a |
1910 | 1910 |
/// feasible dual solution exists, then the unboundness of |
1911 | 1911 |
/// dual problem. |
1912 | 1912 |
/// |
1913 | 1913 |
/// \pre The problem is solved and the primal problem is infeasible. |
1914 | 1914 |
/// \note Some solvers does not provide dual ray calculation |
1915 | 1915 |
/// functions. |
1916 | 1916 |
Value dualRay(Row r) const { return _getDualRay(rows(id(r))); } |
1917 | 1917 |
|
1918 | 1918 |
/// Return the basis status of the column |
1919 | 1919 |
|
1920 | 1920 |
/// \see VarStatus |
1921 | 1921 |
VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); } |
1922 | 1922 |
|
1923 | 1923 |
/// Return the basis status of the row |
1924 | 1924 |
|
1925 | 1925 |
/// \see VarStatus |
1926 | 1926 |
VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); } |
1927 | 1927 |
|
1928 | 1928 |
///The value of the objective function |
1929 | 1929 |
|
1930 | 1930 |
///\return |
1931 | 1931 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
1932 | 1932 |
/// of the primal problem, depending on whether we minimize or maximize. |
1933 | 1933 |
///- \ref NaN if no primal solution is found. |
1934 | 1934 |
///- The (finite) objective value if an optimal solution is found. |
1935 | 1935 |
Value primal() const { return _getPrimalValue()+obj_const_comp;} |
1936 | 1936 |
///@} |
1937 | 1937 |
|
1938 | 1938 |
LpSolver* newSolver() {return _newSolver();} |
1939 | 1939 |
LpSolver* cloneSolver() {return _cloneSolver();} |
1940 | 1940 |
|
1941 | 1941 |
protected: |
1942 | 1942 |
|
1943 | 1943 |
virtual LpSolver* _newSolver() const = 0; |
1944 | 1944 |
virtual LpSolver* _cloneSolver() const = 0; |
1945 | 1945 |
}; |
1946 | 1946 |
|
1947 | 1947 |
|
1948 | 1948 |
/// \ingroup lp_group |
1949 | 1949 |
/// |
1950 | 1950 |
/// \brief Common base class for MIP solvers |
1951 | 1951 |
/// |
1952 | 1952 |
/// This class is an abstract base class for MIP solvers. This class |
1953 | 1953 |
/// provides a full interface for set and modify an MIP problem, |
1954 | 1954 |
/// solve it and retrieve the solution. You can use one of the |
1955 | 1955 |
/// descendants as a concrete implementation, or the \c Lp |
1956 | 1956 |
/// default MIP solver. However, if you would like to handle MIP |
1957 | 1957 |
/// solvers as reference or pointer in a generic way, you can use |
1958 | 1958 |
/// this class directly. |
1959 | 1959 |
class MipSolver : virtual public LpBase { |
1960 | 1960 |
public: |
1961 | 1961 |
|
1962 | 1962 |
/// The problem types for MIP problems |
1963 | 1963 |
enum ProblemType { |
1964 | 1964 |
///Feasible solution hasn't been found (but may exist). |
1965 | 1965 |
UNDEFINED = 0, |
1966 | 1966 |
///The problem has no feasible solution |
1967 | 1967 |
INFEASIBLE = 1, |
1968 | 1968 |
///Feasible solution found |
1969 | 1969 |
FEASIBLE = 2, |
1970 | 1970 |
///Optimal solution exists and found |
1971 | 1971 |
OPTIMAL = 3, |
1972 | 1972 |
///The cost function is unbounded |
1973 | 1973 |
/// |
1974 | 1974 |
///The Mip or at least the relaxed problem is unbounded |
1975 | 1975 |
UNBOUNDED = 4 |
1976 | 1976 |
}; |
1977 | 1977 |
|
1978 | 1978 |
///\name Solve the MIP |
1979 | 1979 |
|
1980 | 1980 |
///@{ |
1981 | 1981 |
|
1982 | 1982 |
/// Solve the MIP problem at hand |
1983 | 1983 |
/// |
1984 | 1984 |
///\return The result of the optimization procedure. Possible |
1985 | 1985 |
///values and their meanings can be found in the documentation of |
1986 | 1986 |
///\ref SolveExitStatus. |
1987 | 1987 |
SolveExitStatus solve() { return _solve(); } |
1988 | 1988 |
|
1989 | 1989 |
///@} |
1990 | 1990 |
|
1991 | 1991 |
///\name Setting column type |
1992 | 1992 |
///@{ |
1993 | 1993 |
|
1994 | 1994 |
///Possible variable (column) types (e.g. real, integer, binary etc.) |
1995 | 1995 |
enum ColTypes { |
1996 | 1996 |
///Continuous variable (default) |
1997 | 1997 |
REAL = 0, |
1998 | 1998 |
///Integer variable |
1999 | 1999 |
INTEGER = 1 |
2000 | 2000 |
}; |
2001 | 2001 |
|
2002 | 2002 |
///Sets the type of the given column to the given type |
2003 | 2003 |
|
2004 | 2004 |
///Sets the type of the given column to the given type. |
2005 | 2005 |
/// |
2006 | 2006 |
void colType(Col c, ColTypes col_type) { |
2007 | 2007 |
_setColType(cols(id(c)),col_type); |
2008 | 2008 |
} |
2009 | 2009 |
|
2010 | 2010 |
///Gives back the type of the column. |
2011 | 2011 |
|
2012 | 2012 |
///Gives back the type of the column. |
2013 | 2013 |
/// |
2014 | 2014 |
ColTypes colType(Col c) const { |
2015 | 2015 |
return _getColType(cols(id(c))); |
2016 | 2016 |
} |
2017 | 2017 |
///@} |
2018 | 2018 |
|
2019 | 2019 |
///\name Obtain the solution |
2020 | 2020 |
|
2021 | 2021 |
///@{ |
2022 | 2022 |
|
2023 | 2023 |
/// The type of the MIP problem |
2024 | 2024 |
ProblemType type() const { |
2025 | 2025 |
return _getType(); |
2026 | 2026 |
} |
2027 | 2027 |
|
2028 | 2028 |
/// Return the value of the row in the solution |
2029 | 2029 |
|
2030 | 2030 |
/// Return the value of the row in the solution. |
2031 | 2031 |
/// \pre The problem is solved. |
2032 | 2032 |
Value sol(Col c) const { return _getSol(cols(id(c))); } |
2033 | 2033 |
|
2034 | 2034 |
/// Return the value of the expression in the solution |
2035 | 2035 |
|
2036 | 2036 |
/// Return the value of the expression in the solution, i.e. the |
2037 | 2037 |
/// dot product of the solution and the expression. |
2038 | 2038 |
/// \pre The problem is solved. |
2039 | 2039 |
Value sol(const Expr& e) const { |
2040 | 2040 |
double res = *e; |
2041 | 2041 |
for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { |
2042 | 2042 |
res += *c * sol(c); |
2043 | 2043 |
} |
2044 | 2044 |
return res; |
2045 | 2045 |
} |
2046 | 2046 |
///The value of the objective function |
2047 | 2047 |
|
2048 | 2048 |
///\return |
2049 | 2049 |
///- \ref INF or -\ref INF means either infeasibility or unboundedness |
2050 | 2050 |
/// of the problem, depending on whether we minimize or maximize. |
2051 | 2051 |
///- \ref NaN if no primal solution is found. |
2052 | 2052 |
///- The (finite) objective value if an optimal solution is found. |
2053 | 2053 |
Value solValue() const { return _getSolValue()+obj_const_comp;} |
2054 | 2054 |
///@} |
2055 | 2055 |
|
2056 | 2056 |
protected: |
2057 | 2057 |
|
2058 | 2058 |
virtual SolveExitStatus _solve() = 0; |
2059 | 2059 |
virtual ColTypes _getColType(int col) const = 0; |
2060 | 2060 |
virtual void _setColType(int col, ColTypes col_type) = 0; |
2061 | 2061 |
virtual ProblemType _getType() const = 0; |
2062 | 2062 |
virtual Value _getSol(int i) const = 0; |
2063 | 2063 |
virtual Value _getSolValue() const = 0; |
2064 | 2064 |
|
2065 | 2065 |
public: |
2066 | 2066 |
|
2067 | 2067 |
MipSolver* newSolver() {return _newSolver();} |
2068 | 2068 |
MipSolver* cloneSolver() {return _cloneSolver();} |
2069 | 2069 |
|
2070 | 2070 |
protected: |
2071 | 2071 |
|
2072 | 2072 |
virtual MipSolver* _newSolver() const = 0; |
2073 | 2073 |
virtual MipSolver* _cloneSolver() const = 0; |
2074 | 2074 |
}; |
2075 | 2075 |
|
2076 | 2076 |
|
2077 | 2077 |
|
2078 | 2078 |
} //namespace lemon |
2079 | 2079 |
|
2080 | 2080 |
#endif //LEMON_LP_BASE_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_MATH_H |
20 | 20 |
#define LEMON_MATH_H |
21 | 21 |
|
22 | 22 |
///\ingroup misc |
23 | 23 |
///\file |
24 | 24 |
///\brief Some extensions to the standard \c cmath library. |
25 | 25 |
/// |
26 | 26 |
///Some extensions to the standard \c cmath library. |
27 | 27 |
/// |
28 | 28 |
///This file includes the standard math library (cmath). |
29 | 29 |
|
30 | 30 |
#include<cmath> |
31 | 31 |
|
32 | 32 |
namespace lemon { |
33 | 33 |
|
34 | 34 |
/// \addtogroup misc |
35 | 35 |
/// @{ |
36 | 36 |
|
37 | 37 |
/// The Euler constant |
38 | 38 |
const long double E = 2.7182818284590452353602874713526625L; |
39 | 39 |
/// log_2(e) |
40 | 40 |
const long double LOG2E = 1.4426950408889634073599246810018921L; |
41 | 41 |
/// log_10(e) |
42 | 42 |
const long double LOG10E = 0.4342944819032518276511289189166051L; |
43 | 43 |
/// ln(2) |
44 | 44 |
const long double LN2 = 0.6931471805599453094172321214581766L; |
45 | 45 |
/// ln(10) |
46 | 46 |
const long double LN10 = 2.3025850929940456840179914546843642L; |
47 | 47 |
/// pi |
48 | 48 |
const long double PI = 3.1415926535897932384626433832795029L; |
49 | 49 |
/// pi/2 |
50 | 50 |
const long double PI_2 = 1.5707963267948966192313216916397514L; |
51 | 51 |
/// pi/4 |
52 | 52 |
const long double PI_4 = 0.7853981633974483096156608458198757L; |
53 | 53 |
/// sqrt(2) |
54 | 54 |
const long double SQRT2 = 1.4142135623730950488016887242096981L; |
55 | 55 |
/// 1/sqrt(2) |
56 | 56 |
const long double SQRT1_2 = 0.7071067811865475244008443621048490L; |
57 | 57 |
|
58 | 58 |
///Check whether the parameter is NaN or not |
59 | 59 |
|
60 | 60 |
///This function checks whether the parameter is NaN or not. |
61 | 61 |
///Is should be equivalent with std::isnan(), but it is not |
62 | 62 |
///provided by all compilers. |
63 |
inline bool |
|
63 |
inline bool isNaN(double v) |
|
64 | 64 |
{ |
65 | 65 |
return v!=v; |
66 | 66 |
} |
67 | 67 |
|
68 | 68 |
/// @} |
69 | 69 |
|
70 | 70 |
} //namespace lemon |
71 | 71 |
|
72 | 72 |
#endif //LEMON_TOLERANCE_H |
1 | 1 |
/* -*- mode: C++; indent-tabs-mode: nil; -*- |
2 | 2 |
* |
3 | 3 |
* This file is a part of LEMON, a generic C++ optimization library. |
4 | 4 |
* |
5 | 5 |
* Copyright (C) 2003-2009 |
6 | 6 |
* Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
7 | 7 |
* (Egervary Research Group on Combinatorial Optimization, EGRES). |
8 | 8 |
* |
9 | 9 |
* Permission to use, modify and distribute this software is granted |
10 | 10 |
* provided that this copyright notice appears in all copies. For |
11 | 11 |
* precise terms see the accompanying LICENSE file. |
12 | 12 |
* |
13 | 13 |
* This software is provided "AS IS" with no warranty of any kind, |
14 | 14 |
* express or implied, and with no claim as to its suitability for any |
15 | 15 |
* purpose. |
16 | 16 |
* |
17 | 17 |
*/ |
18 | 18 |
|
19 | 19 |
#ifndef LEMON_TIME_MEASURE_H |
20 | 20 |
#define LEMON_TIME_MEASURE_H |
21 | 21 |
|
22 | 22 |
///\ingroup timecount |
23 | 23 |
///\file |
24 | 24 |
///\brief Tools for measuring cpu usage |
25 | 25 |
|
26 | 26 |
#ifdef WIN32 |
27 |
#ifndef WIN32_LEAN_AND_MEAN |
|
27 | 28 |
#define WIN32_LEAN_AND_MEAN |
29 |
#endif |
|
30 |
#ifndef NOMINMAX |
|
28 | 31 |
#define NOMINMAX |
32 |
#endif |
|
29 | 33 |
#include <windows.h> |
30 | 34 |
#include <cmath> |
31 | 35 |
#else |
36 |
#include <unistd.h> |
|
32 | 37 |
#include <sys/times.h> |
33 | 38 |
#include <sys/time.h> |
34 | 39 |
#endif |
35 | 40 |
|
36 | 41 |
#include <string> |
37 | 42 |
#include <fstream> |
38 | 43 |
#include <iostream> |
39 | 44 |
|
40 | 45 |
namespace lemon { |
41 | 46 |
|
42 | 47 |
/// \addtogroup timecount |
43 | 48 |
/// @{ |
44 | 49 |
|
45 | 50 |
/// A class to store (cpu)time instances. |
46 | 51 |
|
47 | 52 |
/// This class stores five time values. |
48 | 53 |
/// - a real time |
49 | 54 |
/// - a user cpu time |
50 | 55 |
/// - a system cpu time |
51 | 56 |
/// - a user cpu time of children |
52 | 57 |
/// - a system cpu time of children |
53 | 58 |
/// |
54 | 59 |
/// TimeStamp's can be added to or substracted from each other and |
55 | 60 |
/// they can be pushed to a stream. |
56 | 61 |
/// |
57 | 62 |
/// In most cases, perhaps the \ref Timer or the \ref TimeReport |
58 | 63 |
/// class is what you want to use instead. |
59 | 64 |
|
60 | 65 |
class TimeStamp |
61 | 66 |
{ |
62 | 67 |
double utime; |
63 | 68 |
double stime; |
64 | 69 |
double cutime; |
65 | 70 |
double cstime; |
66 | 71 |
double rtime; |
67 | 72 |
|
68 | 73 |
void _reset() { |
69 | 74 |
utime = stime = cutime = cstime = rtime = 0; |
70 | 75 |
} |
71 | 76 |
|
72 | 77 |
public: |
73 | 78 |
|
74 | 79 |
///Read the current time values of the process |
75 | 80 |
void stamp() |
76 | 81 |
{ |
77 | 82 |
#ifndef WIN32 |
78 | 83 |
timeval tv; |
79 | 84 |
gettimeofday(&tv, 0); |
80 | 85 |
rtime=tv.tv_sec+double(tv.tv_usec)/1e6; |
81 | 86 |
|
82 | 87 |
tms ts; |
83 | 88 |
double tck=sysconf(_SC_CLK_TCK); |
84 | 89 |
times(&ts); |
85 | 90 |
utime=ts.tms_utime/tck; |
86 | 91 |
stime=ts.tms_stime/tck; |
87 | 92 |
cutime=ts.tms_cutime/tck; |
88 | 93 |
cstime=ts.tms_cstime/tck; |
89 | 94 |
#else |
90 | 95 |
static const double ch = 4294967296.0e-7; |
91 | 96 |
static const double cl = 1.0e-7; |
92 | 97 |
|
93 | 98 |
FILETIME system; |
94 | 99 |
GetSystemTimeAsFileTime(&system); |
95 | 100 |
rtime = ch * system.dwHighDateTime + cl * system.dwLowDateTime; |
96 | 101 |
|
97 | 102 |
FILETIME create, exit, kernel, user; |
98 | 103 |
if (GetProcessTimes(GetCurrentProcess(),&create, &exit, &kernel, &user)) { |
99 | 104 |
utime = ch * user.dwHighDateTime + cl * user.dwLowDateTime; |
100 | 105 |
stime = ch * kernel.dwHighDateTime + cl * kernel.dwLowDateTime; |
101 | 106 |
cutime = 0; |
102 | 107 |
cstime = 0; |
103 | 108 |
} else { |
104 | 109 |
rtime = 0; |
105 | 110 |
utime = 0; |
106 | 111 |
stime = 0; |
107 | 112 |
cutime = 0; |
108 | 113 |
cstime = 0; |
109 | 114 |
} |
110 | 115 |
#endif |
111 | 116 |
} |
112 | 117 |
|
113 | 118 |
/// Constructor initializing with zero |
114 | 119 |
TimeStamp() |
115 | 120 |
{ _reset(); } |
116 | 121 |
///Constructor initializing with the current time values of the process |
117 | 122 |
TimeStamp(void *) { stamp();} |
118 | 123 |
|
119 | 124 |
///Set every time value to zero |
120 | 125 |
TimeStamp &reset() {_reset();return *this;} |
121 | 126 |
|
122 | 127 |
///\e |
123 | 128 |
TimeStamp &operator+=(const TimeStamp &b) |
124 | 129 |
{ |
125 | 130 |
utime+=b.utime; |
126 | 131 |
stime+=b.stime; |
127 | 132 |
cutime+=b.cutime; |
128 | 133 |
cstime+=b.cstime; |
129 | 134 |
rtime+=b.rtime; |
130 | 135 |
return *this; |
131 | 136 |
} |
132 | 137 |
///\e |
133 | 138 |
TimeStamp operator+(const TimeStamp &b) const |
134 | 139 |
{ |
135 | 140 |
TimeStamp t(*this); |
136 | 141 |
return t+=b; |
137 | 142 |
} |
138 | 143 |
///\e |
139 | 144 |
TimeStamp &operator-=(const TimeStamp &b) |
140 | 145 |
{ |
141 | 146 |
utime-=b.utime; |
142 | 147 |
stime-=b.stime; |
143 | 148 |
cutime-=b.cutime; |
144 | 149 |
cstime-=b.cstime; |
145 | 150 |
rtime-=b.rtime; |
146 | 151 |
return *this; |
147 | 152 |
} |
148 | 153 |
///\e |
149 | 154 |
TimeStamp operator-(const TimeStamp &b) const |
150 | 155 |
{ |
151 | 156 |
TimeStamp t(*this); |
152 | 157 |
return t-=b; |
153 | 158 |
} |
154 | 159 |
///\e |
155 | 160 |
TimeStamp &operator*=(double b) |
156 | 161 |
{ |
157 | 162 |
utime*=b; |
158 | 163 |
stime*=b; |
159 | 164 |
cutime*=b; |
160 | 165 |
cstime*=b; |
161 | 166 |
rtime*=b; |
162 | 167 |
return *this; |
163 | 168 |
} |
164 | 169 |
///\e |
165 | 170 |
TimeStamp operator*(double b) const |
166 | 171 |
{ |
167 | 172 |
TimeStamp t(*this); |
168 | 173 |
return t*=b; |
169 | 174 |
} |
170 | 175 |
friend TimeStamp operator*(double b,const TimeStamp &t); |
171 | 176 |
///\e |
172 | 177 |
TimeStamp &operator/=(double b) |
173 | 178 |
{ |
174 | 179 |
utime/=b; |
175 | 180 |
stime/=b; |
176 | 181 |
cutime/=b; |
177 | 182 |
cstime/=b; |
178 | 183 |
rtime/=b; |
179 | 184 |
return *this; |
180 | 185 |
} |
181 | 186 |
///\e |
182 | 187 |
TimeStamp operator/(double b) const |
183 | 188 |
{ |
184 | 189 |
TimeStamp t(*this); |
185 | 190 |
return t/=b; |
186 | 191 |
} |
187 | 192 |
///The time ellapsed since the last call of stamp() |
188 | 193 |
TimeStamp ellapsed() const |
189 | 194 |
{ |
190 | 195 |
TimeStamp t(NULL); |
191 | 196 |
return t-*this; |
192 | 197 |
} |
193 | 198 |
|
194 | 199 |
friend std::ostream& operator<<(std::ostream& os,const TimeStamp &t); |
195 | 200 |
|
196 | 201 |
///Gives back the user time of the process |
197 | 202 |
double userTime() const |
198 | 203 |
{ |
199 | 204 |
return utime; |
200 | 205 |
} |
201 | 206 |
///Gives back the system time of the process |
202 | 207 |
double systemTime() const |
203 | 208 |
{ |
204 | 209 |
return stime; |
205 | 210 |
} |
206 | 211 |
///Gives back the user time of the process' children |
207 | 212 |
|
208 | 213 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
209 | 214 |
/// |
210 | 215 |
double cUserTime() const |
211 | 216 |
{ |
212 | 217 |
return cutime; |
213 | 218 |
} |
214 | 219 |
///Gives back the user time of the process' children |
215 | 220 |
|
216 | 221 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
217 | 222 |
/// |
218 | 223 |
double cSystemTime() const |
219 | 224 |
{ |
220 | 225 |
return cstime; |
221 | 226 |
} |
222 | 227 |
///Gives back the real time |
223 | 228 |
double realTime() const {return rtime;} |
224 | 229 |
}; |
225 | 230 |
|
226 | 231 |
TimeStamp operator*(double b,const TimeStamp &t) |
227 | 232 |
{ |
228 | 233 |
return t*b; |
229 | 234 |
} |
230 | 235 |
|
231 | 236 |
///Prints the time counters |
232 | 237 |
|
233 | 238 |
///Prints the time counters in the following form: |
234 | 239 |
/// |
235 | 240 |
/// <tt>u: XX.XXs s: XX.XXs cu: XX.XXs cs: XX.XXs real: XX.XXs</tt> |
236 | 241 |
/// |
237 | 242 |
/// where the values are the |
238 | 243 |
/// \li \c u: user cpu time, |
239 | 244 |
/// \li \c s: system cpu time, |
240 | 245 |
/// \li \c cu: user cpu time of children, |
241 | 246 |
/// \li \c cs: system cpu time of children, |
242 | 247 |
/// \li \c real: real time. |
243 | 248 |
/// \relates TimeStamp |
244 | 249 |
/// \note On <tt>WIN32</tt> platform the cummulative values are not |
245 | 250 |
/// calculated. |
246 | 251 |
inline std::ostream& operator<<(std::ostream& os,const TimeStamp &t) |
247 | 252 |
{ |
248 | 253 |
os << "u: " << t.userTime() << |
249 | 254 |
"s, s: " << t.systemTime() << |
250 | 255 |
"s, cu: " << t.cUserTime() << |
251 | 256 |
"s, cs: " << t.cSystemTime() << |
252 | 257 |
"s, real: " << t.realTime() << "s"; |
253 | 258 |
return os; |
254 | 259 |
} |
255 | 260 |
|
256 | 261 |
///Class for measuring the cpu time and real time usage of the process |
257 | 262 |
|
258 | 263 |
///Class for measuring the cpu time and real time usage of the process. |
259 | 264 |
///It is quite easy-to-use, here is a short example. |
260 | 265 |
///\code |
261 | 266 |
/// #include<lemon/time_measure.h> |
262 | 267 |
/// #include<iostream> |
263 | 268 |
/// |
264 | 269 |
/// int main() |
265 | 270 |
/// { |
266 | 271 |
/// |
267 | 272 |
/// ... |
268 | 273 |
/// |
269 | 274 |
/// Timer t; |
270 | 275 |
/// doSomething(); |
271 | 276 |
/// std::cout << t << '\n'; |
272 | 277 |
/// t.restart(); |
273 | 278 |
/// doSomethingElse(); |
274 | 279 |
/// std::cout << t << '\n'; |
275 | 280 |
/// |
276 | 281 |
/// ... |
277 | 282 |
/// |
278 | 283 |
/// } |
279 | 284 |
///\endcode |
280 | 285 |
/// |
281 | 286 |
///The \ref Timer can also be \ref stop() "stopped" and |
282 | 287 |
///\ref start() "started" again, so it is possible to compute collected |
283 | 288 |
///running times. |
284 | 289 |
/// |
285 | 290 |
///\warning Depending on the operation system and its actual configuration |
286 | 291 |
///the time counters have a certain (10ms on a typical Linux system) |
287 | 292 |
///granularity. |
288 | 293 |
///Therefore this tool is not appropriate to measure very short times. |
289 | 294 |
///Also, if you start and stop the timer very frequently, it could lead to |
290 | 295 |
///distorted results. |
291 | 296 |
/// |
292 | 297 |
///\note If you want to measure the running time of the execution of a certain |
293 | 298 |
///function, consider the usage of \ref TimeReport instead. |
294 | 299 |
/// |
295 | 300 |
///\sa TimeReport |
296 | 301 |
class Timer |
297 | 302 |
{ |
298 | 303 |
int _running; //Timer is running iff _running>0; (_running>=0 always holds) |
299 | 304 |
TimeStamp start_time; //This is the relativ start-time if the timer |
300 | 305 |
//is _running, the collected _running time otherwise. |
301 | 306 |
|
302 | 307 |
void _reset() {if(_running) start_time.stamp(); else start_time.reset();} |
303 | 308 |
|
304 | 309 |
public: |
305 | 310 |
///Constructor. |
306 | 311 |
|
307 | 312 |
///\param run indicates whether or not the timer starts immediately. |
308 | 313 |
/// |
309 | 314 |
Timer(bool run=true) :_running(run) {_reset();} |
310 | 315 |
|
311 | 316 |
///\name Control the state of the timer |
312 | 317 |
///Basically a Timer can be either running or stopped, |
313 | 318 |
///but it provides a bit finer control on the execution. |
314 | 319 |
///The \ref lemon::Timer "Timer" also counts the number of |
315 | 320 |
///\ref lemon::Timer::start() "start()" executions, and it stops |
316 | 321 |
///only after the same amount (or more) \ref lemon::Timer::stop() |
317 | 322 |
///"stop()"s. This can be useful e.g. to compute the running time |
318 | 323 |
///of recursive functions. |
319 | 324 |
|
320 | 325 |
///@{ |
321 | 326 |
|
322 | 327 |
///Reset and stop the time counters |
323 | 328 |
|
324 | 329 |
///This function resets and stops the time counters |
325 | 330 |
///\sa restart() |
326 | 331 |
void reset() |
327 | 332 |
{ |
328 | 333 |
_running=0; |
329 | 334 |
_reset(); |
330 | 335 |
} |
331 | 336 |
|
332 | 337 |
///Start the time counters |
333 | 338 |
|
334 | 339 |
///This function starts the time counters. |
335 | 340 |
/// |
336 | 341 |
///If the timer is started more than ones, it will remain running |
337 | 342 |
///until the same amount of \ref stop() is called. |
338 | 343 |
///\sa stop() |
339 | 344 |
void start() |
340 | 345 |
{ |
341 | 346 |
if(_running) _running++; |
342 | 347 |
else { |
343 | 348 |
_running=1; |
344 | 349 |
TimeStamp t; |
345 | 350 |
t.stamp(); |
346 | 351 |
start_time=t-start_time; |
347 | 352 |
} |
348 | 353 |
} |
349 | 354 |
|
350 | 355 |
|
351 | 356 |
///Stop the time counters |
352 | 357 |
|
353 | 358 |
///This function stops the time counters. If start() was executed more than |
354 | 359 |
///once, then the same number of stop() execution is necessary the really |
355 | 360 |
///stop the timer. |
356 | 361 |
/// |
357 | 362 |
///\sa halt() |
358 | 363 |
///\sa start() |
359 | 364 |
///\sa restart() |
360 | 365 |
///\sa reset() |
361 | 366 |
|
362 | 367 |
void stop() |
363 | 368 |
{ |
364 | 369 |
if(_running && !--_running) { |
365 | 370 |
TimeStamp t; |
366 | 371 |
t.stamp(); |
367 | 372 |
start_time=t-start_time; |
368 | 373 |
} |
369 | 374 |
} |
370 | 375 |
|
371 | 376 |
///Halt (i.e stop immediately) the time counters |
372 | 377 |
|
373 | 378 |
///This function stops immediately the time counters, i.e. <tt>t.halt()</tt> |
374 | 379 |
///is a faster |
375 | 380 |
///equivalent of the following. |
376 | 381 |
///\code |
377 | 382 |
/// while(t.running()) t.stop() |
378 | 383 |
///\endcode |
379 | 384 |
/// |
380 | 385 |
/// |
381 | 386 |
///\sa stop() |
382 | 387 |
///\sa restart() |
383 | 388 |
///\sa reset() |
384 | 389 |
|
385 | 390 |
void halt() |
386 | 391 |
{ |
387 | 392 |
if(_running) { |
388 | 393 |
_running=0; |
389 | 394 |
TimeStamp t; |
390 | 395 |
t.stamp(); |
391 | 396 |
start_time=t-start_time; |
392 | 397 |
} |
393 | 398 |
} |
394 | 399 |
|
395 | 400 |
///Returns the running state of the timer |
396 | 401 |
|
397 | 402 |
///This function returns the number of stop() exections that is |
398 | 403 |
///necessary to really stop the timer. |
399 | 404 |
///For example the timer |
400 | 405 |
///is running if and only if the return value is \c true |
401 | 406 |
///(i.e. greater than |
402 | 407 |
///zero). |
403 | 408 |
int running() { return _running; } |
404 | 409 |
|
405 | 410 |
|
406 | 411 |
///Restart the time counters |
407 | 412 |
|
408 | 413 |
///This function is a shorthand for |
409 | 414 |
///a reset() and a start() calls. |
410 | 415 |
/// |
411 | 416 |
void restart() |
412 | 417 |
{ |
413 | 418 |
reset(); |
414 | 419 |
start(); |
415 | 420 |
} |
416 | 421 |
|
417 | 422 |
///@} |
418 | 423 |
|
419 | 424 |
///\name Query Functions for the ellapsed time |
420 | 425 |
|
421 | 426 |
///@{ |
422 | 427 |
|
423 | 428 |
///Gives back the ellapsed user time of the process |
424 | 429 |
double userTime() const |
425 | 430 |
{ |
426 | 431 |
return operator TimeStamp().userTime(); |
427 | 432 |
} |
428 | 433 |
///Gives back the ellapsed system time of the process |
429 | 434 |
double systemTime() const |
430 | 435 |
{ |
431 | 436 |
return operator TimeStamp().systemTime(); |
432 | 437 |
} |
433 | 438 |
///Gives back the ellapsed user time of the process' children |
434 | 439 |
|
435 | 440 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
436 | 441 |
/// |
437 | 442 |
double cUserTime() const |
438 | 443 |
{ |
439 | 444 |
return operator TimeStamp().cUserTime(); |
440 | 445 |
} |
441 | 446 |
///Gives back the ellapsed user time of the process' children |
442 | 447 |
|
443 | 448 |
///\note On <tt>WIN32</tt> platform this value is not calculated. |
444 | 449 |
/// |
445 | 450 |
double cSystemTime() const |
446 | 451 |
{ |
447 | 452 |
return operator TimeStamp().cSystemTime(); |
448 | 453 |
} |
449 | 454 |
///Gives back the ellapsed real time |
450 | 455 |
double realTime() const |
451 | 456 |
{ |
452 | 457 |
return operator TimeStamp().realTime(); |
453 | 458 |
} |
454 | 459 |
///Computes the ellapsed time |
455 | 460 |
|
456 | 461 |
///This conversion computes the ellapsed time, therefore you can print |
457 | 462 |
///the ellapsed time like this. |
458 | 463 |
///\code |
459 | 464 |
/// Timer t; |
460 | 465 |
/// doSomething(); |
461 | 466 |
/// std::cout << t << '\n'; |
462 | 467 |
///\endcode |
463 | 468 |
operator TimeStamp () const |
464 | 469 |
{ |
465 | 470 |
TimeStamp t; |
466 | 471 |
t.stamp(); |
467 | 472 |
return _running?t-start_time:start_time; |
468 | 473 |
} |
469 | 474 |
|
470 | 475 |
|
471 | 476 |
///@} |
472 | 477 |
}; |
473 | 478 |
|
474 | 479 |
///Same as Timer but prints a report on destruction. |
475 | 480 |
|
476 | 481 |
///Same as \ref Timer but prints a report on destruction. |
477 | 482 |
///This example shows its usage. |
478 | 483 |
///\code |
479 | 484 |
/// void myAlg(ListGraph &g,int n) |
480 | 485 |
/// { |
481 | 486 |
/// TimeReport tr("Running time of myAlg: "); |
482 | 487 |
/// ... //Here comes the algorithm |
483 | 488 |
/// } |
484 | 489 |
///\endcode |
485 | 490 |
/// |
486 | 491 |
///\sa Timer |
487 | 492 |
///\sa NoTimeReport |
488 | 493 |
class TimeReport : public Timer |
489 | 494 |
{ |
490 | 495 |
std::string _title; |
491 | 496 |
std::ostream &_os; |
492 | 497 |
public: |
493 | 498 |
///Constructor |
494 | 499 |
|
495 | 500 |
///Constructor. |
496 | 501 |
///\param title This text will be printed before the ellapsed time. |
497 | 502 |
///\param os The stream to print the report to. |
498 | 503 |
///\param run Sets whether the timer should start immediately. |
499 | 504 |
TimeReport(std::string title,std::ostream &os=std::cerr,bool run=true) |
500 | 505 |
: Timer(run), _title(title), _os(os){} |
501 | 506 |
///Destructor that prints the ellapsed time |
502 | 507 |
~TimeReport() |
503 | 508 |
{ |
504 | 509 |
_os << _title << *this << std::endl; |
505 | 510 |
} |
506 | 511 |
}; |
507 | 512 |
|
508 | 513 |
///'Do nothing' version of TimeReport |
509 | 514 |
|
510 | 515 |
///\sa TimeReport |
511 | 516 |
/// |
512 | 517 |
class NoTimeReport |
513 | 518 |
{ |
514 | 519 |
public: |
515 | 520 |
///\e |
516 | 521 |
NoTimeReport(std::string,std::ostream &,bool) {} |
517 | 522 |
///\e |
518 | 523 |
NoTimeReport(std::string,std::ostream &) {} |
519 | 524 |
///\e |
520 | 525 |
NoTimeReport(std::string) {} |
521 | 526 |
///\e Do nothing. |
522 | 527 |
~NoTimeReport() {} |
523 | 528 |
|
524 | 529 |
operator TimeStamp () const { return TimeStamp(); } |
525 | 530 |
void reset() {} |
526 | 531 |
void start() {} |
527 | 532 |
void stop() {} |
528 | 533 |
void halt() {} |
529 | 534 |
int running() { return 0; } |
530 | 535 |
void restart() {} |
531 | 536 |
double userTime() const { return 0; } |
532 | 537 |
double systemTime() const { return 0; } |
533 | 538 |
double cUserTime() const { return 0; } |
534 | 539 |
double cSystemTime() const { return 0; } |
535 | 540 |
double realTime() const { return 0; } |
536 | 541 |
}; |
537 | 542 |
|
538 | 543 |
///Tool to measure the running time more exactly. |
539 | 544 |
|
540 | 545 |
///This function calls \c f several times and returns the average |
541 | 546 |
///running time. The number of the executions will be choosen in such a way |
542 | 547 |
///that the full real running time will be roughly between \c min_time |
543 | 548 |
///and <tt>2*min_time</tt>. |
544 | 549 |
///\param f the function object to be measured. |
545 | 550 |
///\param min_time the minimum total running time. |
546 | 551 |
///\retval num if it is not \c NULL, then the actual |
547 | 552 |
/// number of execution of \c f will be written into <tt>*num</tt>. |
548 | 553 |
///\retval full_time if it is not \c NULL, then the actual |
549 | 554 |
/// total running time will be written into <tt>*full_time</tt>. |
550 | 555 |
///\return The average running time of \c f. |
551 | 556 |
|
552 | 557 |
template<class F> |
553 | 558 |
TimeStamp runningTimeTest(F f,double min_time=10,unsigned int *num = NULL, |
554 | 559 |
TimeStamp *full_time=NULL) |
555 | 560 |
{ |
556 | 561 |
TimeStamp full; |
557 | 562 |
unsigned int total=0; |
558 | 563 |
Timer t; |
559 | 564 |
for(unsigned int tn=1;tn <= 1U<<31 && full.realTime()<=min_time; tn*=2) { |
560 | 565 |
for(;total<tn;total++) f(); |
561 | 566 |
full=t; |
562 | 567 |
} |
563 | 568 |
if(num) *num=total; |
564 | 569 |
if(full_time) *full_time=full; |
565 | 570 |
return full/total; |
566 | 571 |
} |
567 | 572 |
|
568 | 573 |
/// @} |
569 | 574 |
|
570 | 575 |
|
571 | 576 |
} //namespace lemon |
572 | 577 |
|
573 | 578 |
#endif //LEMON_TIME_MEASURE_H |
0 comments (0 inline)